
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2010 

Treefrog (hyla Squirella) Responses To Rangeland And Treefrog (hyla Squirella) Responses To Rangeland And 

Management In Semi-tropical Florida, Usa Management In Semi-tropical Florida, Usa 

Kathryn Windes 
University of Central Florida 

 Part of the Biology Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for 

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 

Windes, Kathryn, "Treefrog (hyla Squirella) Responses To Rangeland And Management In Semi-tropical 

Florida, Usa" (2010). Electronic Theses and Dissertations, 2004-2019. 4412. 

https://stars.library.ucf.edu/etd/4412 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/41?utm_source=stars.library.ucf.edu%2Fetd%2F4412&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/4412?utm_source=stars.library.ucf.edu%2Fetd%2F4412&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


 
 
 
 

TREEFROG (HYLA SQUIRELLA) RESPONSES TO RANGELAND MANAGEMENT IN 
SEMI-TROPICAL FLORIDA, USA 

 
 
 
 
 

by 
 
 
 

KATHRYN MARIE WINDES 
B.S. Butler University, 2006 

 
 
 
 
 
 
 

A thesis submitted in partial fulfillment of the requirements 
for the degree of Master of Science 

in the Department of Biology 
in the College of Sciences 

at the University of Central Florida 
Orlando, Florida 

 
 
 
 
 
 
 
 
 

Summer Term 
2010 

  



 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2010 Kathryn Marie Windes  



 iii 

ABSTRACT 

 

As urban areas expand, agricultural lands become increasingly important habitat for 

many species.  Compared to some types of agricultural land-use, ranchlands provide vast 

expanses of minimally modified habitat that support many threatened and endangered species.  

Conservation biologists can promote ecologically sound management approaches by quantifying 

the effects of agricultural practices on resident species.  I examined the effects of pasture 

management, cattle grazing, and landscape characteristics on both adult and larval treefrogs in a 

ranchland in south-central Florida.  I experimentally determined optimal deployment of artificial 

treefrog shelters constructed of polyvinylchloride (PVC) pipe to efficiently sample adult 

treefrogs (Chapter 1). Seventy-two shelters were hung on oak trees (Quercus virginiana) and 

cabbage palm trees (Sabal palmetto) with smooth trunks or boots (residual palm fronds), at all 

possible combinations of three heights (2, 3, and 4 m), four compass directions (N, S, E, and W) 

and two water levels (with or without 10 cm). Shelter residence was completely dominated by 

the Squirrel Treefrog, Hyla squirella (N = 65). Significantly fewer H. squirella were found in 

shelters on palms with boots than on smooth palms or oak trees (0.29 ± 0.21 [mean ± 1 SE 

hereinafter] versus 1.3 ± 0.21 and 1.1 ± 0.21, respectively), and shelters with water had slightly 

more H. squirella than those without (1.5 ± 0.19 versus 0.88 ± 0.19, respectively). Orientation 

and height did not affect the number of treefrogs encountered; thus, the optimal protocol is to 

deploy shelters on either smooth palms or oak trees, with water, at 2 m height for easy sampling, 

and in random compass orientations.   

I used this protocol to sample H. squirella in woodlots surrounding twelve wetlands and 

examined how time, frog stage and sex, and landscape features influenced treefrog survival, 
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recapture and site fidelity (Chapter 2).  I deployed 15 shelters/ha of woodlot within a 100 m 

buffer around each wetland.  I sampled shelters three times during the fall breeding season, 

removed all shelters to force frogs to overwinter in natural refugia, and replaced shelters for the 

final spring sampling.  During sampling periods, I sexed, measured, and individually marked 

each frog using visual implant elastomer (VIE) tags.  I used Program MARK to build linear 

models that included either gender group (female, male or juvenile) or life history stage (adult, 

juvenile) and either time (sampling interval 1, 2, or 3) or season (fall, spring).  I used the most 

informative model as a null model to assess effects of landscape covariates on survival and 

recapture.  Females had higher survival than either males or juveniles, for which estimates were 

similar (0.867 vs 0.741 and 0.783, respectively).  Survival did not vary over time, although there 

was some support for an effect of season, with lower survival during the final over-wintering 

period than in the fall intervals (relative variable importance: group = 0.730; stage = 0.134; time 

= 0.200; season = 0.310).  Adults had higher recapture rates than juveniles (average recapture 

0.214 vs 0.102), and recapture for both stages varied over time, with highest recapture in 

sampling interval two (relative variable importance: group = 0.262; stage = 0.514; time = 0.513; 

season = 0.229).  Hyla squirella was extremely site loyal; no individuals moved between 

sampling sites, and 95% of recaptured individuals were in their original shelter.  Strong 

terrestrial site fidelity calls into question the traditional “ponds as patches” metapopulation view 

of treefrog population dynamics.  Area of woodlot within 250 m was the most important 

landscape variable in explaining additional variation in both survival and recapture.  Frogs had 

higher survival and lower recapture in larger woodlots, indicating that intact, contiguous 

woodlots are higher quality habitat than more fragmented woodlots.  Neither survival nor 

recapture varied with wetland grazing treatments or between pasture types.     
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Finally, I experimentally assessed the effects of cattle grazing and pasture management 

on larval H. squirella.  I selected four wetlands: two in semi-natural pastures (SN) and two in 

intensively managed pastures (IM).  One wetland in each pasture type was fenced so that it was 

released from cattle grazing (R).  I collected three clutches of H. squirella eggs (Clutches A, B, 

and C) and reared tadpoles in the laboratory until Gosner stage 25.  In each wetland, I deployed a 

total of 50 tadpoles from each clutch into 105 L pens constructed of plastic laundry baskets and 

mesh window screening.  Clutch significantly affected tadpole survival, with Clutch A having 

the highest percent survival, followed by Clutch B and finally Clutch C (41.66, 32.11 – 53.95 

[mean, 95% confidence limits hereinafter]; 9.00, 6.76 – 11.88; 2.89, 2.02 – 4.01, respectively).  

Wetland type also affected survival, with SN wetlands supporting significantly higher survival 

than IM wetlands (SN-R: 53.95, 32.88 – 88.13; SN-G: 18.95, 11.30 – 31.36 vs IM-R: 7.32, 4.13 

– 12.49; IM-G: 1.09, 0.29 – 2.39).  Genetic variation in survival confirms the potential for H. 

squirella to adapt to rangeland management, but extremely low survival of some clutches 

indicates that few clutches may be able to survive in low quality wetlands, such as IM-G 

wetlands.  Higher survival in SN pasture wetlands suggest this is a superior habitat and future 

management objectives should conserve semi-natural pastures and limit further modification of 

intensively managed pastures, including removing woodlots near wetlands.         
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GENERAL INTRODUCTION 

 

Agriculture is among the largest drivers of habitat loss, degradation and fragmentation 

worldwide (Wilcove et al. 1998, Czech et al. 2000, Tilman et al. 2001).  If human consumption 

and agricultural trends of the past 35 years continue, 109 ha of natural ecosystems – an area 

larger than the contiguous United States - will be converted to agriculture by 2050 (Tilman et al. 

2001).  Such massive loss of natural systems will disrupt ecosystem heterogeneity, reduce 

ecosystem services, increase eutrophication of aquatic ecosystems, shift food chain structure and 

accelerate extinctions (Tilman 1999, Tilman et al. 2001, Benton et al. 2003).  Even in the United 

States, agriculture is among the top three causes of species endangerment, along with non-native 

species and urbanization (Czech et al. 2000).  Rapidly increasing human populations and their 

associated food needs make it unlikely that agriculture will decrease in scale.  However, as urban 

areas expand agricultural lands become increasingly important refuges for flora and fauna.  

Compared with harsh urban landscapes, agricultural lands in Florida support diverse 

communities including threatened and endangered species such as burrowing owls (Athene 

cunicularia), woodstorks (Mycteria americana), indigo snakes (Drymarchon corais), Florida 

grasshopper sparrows (Ammodramus savannarum floridanus) and the crested caracara 

(Caracara cheriway) (Morrison and Humphrey 2001, Boughton 2008, Bohlen et al. 2009).  To 

preserve natural biodiversity and ecosystem processes while promoting economically viable 

agriculture, conservation biologists must understand how agriculture affects aquatic and 

terrestrial habitats and the species that inhabit them, and devise effective management plans.   

I examined factors driving amphibian habitat use and demography in both aquatic and 

terrestrial habitats within a south-central Florida landscape modified for cattle grazing.  Florida 
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ranks 3rd in states east of the Mississippi River and 12th in the nation for production of beef 

calves, with sales totaling more than $443 million in 2004 (Florida Department of Agriculture 

2007).  Compared to many types of agricultural land-use, Florida ranchlands provide vast 

expanses of minimally modified habitat; statewide, over 3 million ha of non-federal land are 

grazed (USDA 2003).  Many Florida cattle ranches have abundant small, isolated wetlands 

(Steinman et al. 2003) that serve a variety of ecosystem services (e.g., food sources and cooling 

for cattle) and provide habitat for local flora and fauna (Gibbons 2003, Jenkins et al. 2003).  

Small wetlands often are very species rich, contain species absent from larger wetlands 

(Snodgrass et al. 2000) and produce juvenile recruits for neighboring wetlands (Semlitsch and 

Bodie 1998).  Therefore, small wetlands with short hydroperiods, which are common in 

agricultural landscapes, are important for maintaining biodiversity (Gibbons 2003).   

Amphibians are among the world’s most threatened taxa (Stuart et al. 2004).  Global 

amphibian declines have been attributed to climate change, habitat fragmentation, introduced 

species, UV-B radiation, chemical contaminants and disease (from Young et al. 2001).  Many 

amphibians depend on an aquatic habitat for breeding and larval stages and spend most of their 

adult life in terrestrial habitat (Wilbur 1980), so they are sensitive to perturbations in both 

environments.  Combined with their moist, permeable skin, these attributes make amphibians 

potential bioindicators (Dunson et al. 1992, Lambert 1997, Welsh and Ollivier 1998).  

Amphibians also are highly philopatric (Gill 1978, Breden 1987, Berven and Grudzien 1990), 

play a significant role in trophic cycling (Dunson et al. 1992, Rowe and Dunson 1994) and are 

relatively long-lived compared to most fishes and macroinvertebrates (Plytycz and Bigaj 1993, 

Kumbar and Pancharatna 2001, Sinsch et al. 2001).  Amphibians contribute to pest control 

through their insect-based diets (Young et al. 2001) and are an important link in food chains; 



 3 

many larger animals are supported by an amphibian food base.  For example, in southern Florida, 

frogs comprise 56% of the diet delivered to Swallow-tailed Kite (Elanoides forficatus) nestlings 

(Meyer et al. 2004).   

Understanding how habitat loss and fragmentation affect amphibian populations requires 

examining the roles of multiple factors in species-specific, landscape-level investigations 

(Cushman 2006; see examples in Eason and Fauth 2001, Schurbon and Fauth 2003).  In a series 

of three experiments, I examined how landscape structure and ranching practices affect both 

adult and larval amphibians.  Specifically, I conducted two terrestrial experiments using PVC 

shelters to sample treefrogs (Boughton et al. 2000, Zacharow et al. 2003).  I examined how tree 

species and morphology, shelter height and orientation, and water depth within a shelter affect 

treefrog use of PVC shelters (Chapter 1).  I used the results of Chapter 1 in a subsequent study, 

where I estimated population characteristics of the squirrel treefrog (Hyla squirella) in woodlots 

adjacent to wetlands and examined how landscape features such as pasture management, area of 

woodlot, wetland availability, and connectivity through ditches affect survival, recapture, and 

site fidelity (Chapter 2).  In addition, I conducted an aquatic experiment to assess effects of 

clutch, cattle grazing and pasture management on survival of larval H. squirella (Chapter 3).  My 

research goals were to determine how amphibians respond to agriculturally-modified landscapes 

in both terrestrial and aquatic environments and to provide ranchland managers with valuable 

information that can promote ecologically sound agricultural practices.           
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STUDY SITE 

 
 

My research was conducted at MacArthur Agro-Ecology Research Center (MAERC), a 

4,170 ha working cattle ranch about 30 km northwest of Lake Okeechobee in south-central 

Florida.  Roughly 3,000 cow-calf pairs grazed on MAERC pastures, which were categorized as 

intensively managed or semi-natural based on historical and ongoing ranch practices.  

Intensively managed pastures were heavily ditched, had few trees, and were regularly fertilized 

with NPK (nitrogen – phosphorus – potassium) fertilizer before 1987; since then, these pastures 

were fertilized with nitrogen only.  Pasture grasses grow best at pH of 6.0 or higher, so ranchers 

commonly lime pastures to raise soil pH (Integrated Crop Management, Iowa State University).  

Lime has been intermittently added to intensively managed pastures at MAERC for the past 30 

years at a rate of 1.1 to 3.4 Mg*ha-1 (Capece et al. 2007).  Intensively managed pastures were 

planted with introduced bahia grass (Paspalum notatum) and grazed most heavily in the wet 

summer season.  Semi-natural pastures were less modified than intensively managed pastures; 

they have fewer ditches, more tree hammocks, and never were fertilized.  Semi-natural pastures 

are dominated by native grasses such as bunchgrasses (eg, Andropogon virginicus and Panicum 

spp.) and grazed most heavily in the winter dry season.  Both semi-natural and intensively 

managed pastures contained hardwood hammocks that are important habitat for adult frogs 

(Figure 1), including Hyla squirella, H. cinerea, H. femoralis, H. gratiosa, Gastrophryne 

carolinensis, Lithobates sphenocephalus, L. grylio, Pseudacris ocularis, P. nigrita, and Anxyrus 

quercicus (Babbitt et al. 2006).  Hardwood hammocks are ecosystems unique to the southeastern 

United States, and consist of scattered patches of deciduous hardwoods and shrub species (Forest 

Encyclopedia Network).  At MAERC, hammocks are  
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A 

.  

B 

 

Figure 1. A) The MacArthur Agro-Ecology Research Center (MAERC) is located in Highlands 
County, south-central Florida, USA.  B) Pasture map of MAERC.  Images are from (A) 
http://www.maerc.net/ and B) http://www.maerc.org, accessed 30 January 2008. 
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dominated by oak (Quercus virginiana), cabbage palm (Sabal palmetto), and saw palmetto 

(Serenoa repens).  I will use the term woodlot to refer to hammocks at MAERC.   

Vegetation of wetlands embedded within intensively managed and semi-natural pastures 

differed greatly.  Wetlands within intensively managed pastures typically were dominated in the 

shallower margins by rings of Juncus effusus, a common rush unpalatable to cattle.  Several 

small water grasses, such as Hydrochloa caroliniansis and Paspalum acuminatum, were more 

abundant in wetlands within intensively managed pastures than wetlands within semi-natural 

pastures.  Wetlands within semi-natural pastures typically had vegetation zones comprised of 

native grasses such as maidencane (Panicum hemitomon) and sedges (e.g., Rhynchospora sp. and 

Eleocharis vivipara).  Juncus was not common in wetlands within semi-natural pastures.  

Emergent macrophytes such as Pontederia cordata and Sagitaria lancifolia were common to 

wetlands within both semi-natural and intensively managed pastures, especially in the deeper 

water areas (Boughton 2009).   

My research was supported by a USDA-funded project, “Synergistic effects of grazing, 

fire, and pasture management on wetlands in cattle ranches” (hereinafter, USDA    

project).  The USDA project involved forty MAERC wetlands that either were grazed or released 

from grazing (grazing treatment); burned or unburned (fire treatment); and in either semi- 

native or intensively managed pastures (pasture management).  The forty wetlands comprised 

five replicates of each of all combinations of these three factors.  My research was conducted 

simultaneously with the USDA project and some experiments used treatments applied in it.  
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CHAPTER 1: MAXIMIZING CAPTURES OF TREEFROGS USING PVC 

SHELTERS IN A FLORIDA RANGELAND 

 
 

Introduction 

 
 

Recently, herpetologists recognized the importance of identifying factors affecting 

terrestrial amphibian populations at both small scales (e.g., microhabitat choice, Johnson 2008) 

and landscape scales, by examining how landscape features shape populations (Chan-McLeod 

and Moy 2007, Pellet et al. 2004). Studying adult and juvenile amphibians that occupy terrestrial 

habitat is challenging because individuals often are inaccessible to traditional collecting methods. 

For example, treefrogs can climb out of pitfall traps deployed along drift fences (Dodd 1991, but 

see Murphy 1993) and are difficult to survey visually because they inhabit tall trees. Use of 

artificial treefrog shelters constructed of polyvinyl chloride (PVC) pipe is an increasingly 

popular method for sampling adult treefrogs. Treefrog shelters do not involve trapping 

individuals, which are free to enter or exit the shelter (Boughton et al. 2000, Zacharow et al. 

2003). Instead, shelters provide refugia that mimic natural cavities. Treefrog shelters can be hung 

in trees or placed in the ground (Fogarty and Vilella 2002, Johnson 2005, Moulton et al. 1996, 

Pittman et al. 2008, Stewart and Pough 1983, Steward and Rand 1991, Zacharow et al. 2003). 

When both methods are used, frogs more frequently use tree-hung than ground-placed shelters 

(Boughton et al. 2000, Myers et al. 2007). Treefrog shelters are conducive to large-scale 

experimentation and monitoring because they require relatively little labor to construct and 

deploy and are easy to access. Studies often involve hundreds of shelters and result in hundreds 

or even thousands of captures (Boughton et al. 2000, Johnson et al. 2008, Zacharow et al. 2003).  
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Capture bias is a major concern when using treefrog shelters (Zacharow et al. 2003). The 

diameter of PVC used influences the frog species captured, with smaller species generally 

occurring in smaller diameter pipes and larger species being restricted to larger diameters 

(Baratreau 2004, Zacharow et al. 2003). Pipe diameter also influences the size of treefrog 

captured within a particular species, with the average size of individuals increasing with 

increasing diameter (Baratreau 2004). Male and female treefrogs may select tree-hung pipes 

based on tree characteristics. Johnson et al. (2008) found the size of captured female frogs was 

related to certain tree characteristics, such as diameter at breast height (DBH), whereas size of 

males was not. In addition to pipe diameter, researchers must consider other factors that 

influence use of treefrog shelters, such as shelter height and water depth within shelters 

(Boughton et al. 2000). When employing treefrog shelters in large-scale experiments, it is 

worthwhile to develop a hanging protocol appropriate for the system in question.  

I examined use of tree-hung PVC shelters by hylid treefrogs in a landscape modified for 

cattle grazing in south-central Florida. Rangeland management can alter both terrestrial and 

aquatic habitats on which amphibians depend. Patchy habitats are created when trees are 

removed to create open pasture, decreasing suitable habitat and increasing woodlot 

fragmentation and isolation (Babbitt et al. 2006, Pellet et al. 2004). Artificial treefrog shelters are 

useful in determining population-level effects of agricultural fragmentation and detecting 

demographic shifts in treefrog populations. Because rangeland in south-central Florida is 

heterogeneous and consists of small, forested patches surrounded by open, treeless pastures, I 

needed to identify a protocol that captured the greatest number of treefrogs, to increase my 

chances of sampling frogs in sparsely-forested areas. I tested the null hypothesis that mean 

number of treefrogs in a shelter was independent of tree species and morphology, shelter height 
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and orientation, water depth, and their interactions. I used this protocol to sample adult treefrog 

populations in a subsequent demographic study (Chapter 2). 

 

Methods 

 
 

Experimental design 

 
Treefrog shelters were constructed of Schedule 40 PVC pipe (61 cm long x 3.8 cm 

diameter), with a nail hole drilled approximately 1 cm from the top of the pipe and a cap glued to 

the bottom. One-half of the shelters had a small hole drilled in the side of the pipe, 10 cm from 

the bottom, to allow excess water to drain. These shelters were filled with 10 cm of water before 

deployment. The remaining one-half of the shelters had small drainage holes drilled in the 

bottom of their caps to drain any water. These shelters were deployed with no water (0 cm). 

Woodlots at MAERC consisted primarily of cabbage palm (Sabal palmetto) and oak trees 

(Quercus virginiana) that differ in morphology and height. I categorized trees by morphospecies: 

smooth palm trees, palms trees with boots and oak trees. Some palms (typically older trees) have 

smooth bark because they shed their “boots”: residual palm frond stalks that sometimes remain 

on the trunk. Boots also may be lost during fires. Other palms retain their boots, which provide 

numerous crevices suitable for treefrogs.  

Different sides of a tree may be subject to varying amounts of light and heat, so I hung 

shelters on the north, south, east, or west sides of trees. Treefrogs use artificial refugia at varying 

heights on trees (Boughton et al. 2000), so I hung shelters at 2, 3, or 4 m above ground. I used a 

maximum height of 4 m because many palms with boots were just over 4 m tall, so shelters were 

hung directly under or slightly below the tree crown.  



 10 

My experiment used a four-way, complete factorial design. I selected one woodlot in an 

intensively managed pasture that contained a fairly homogenous mixture of tree morphospecies. 

In many areas of MAERC, oaks occur in much smaller numbers than palm trees, so the study 

woodlot reflected a more even distribution of tree types. I deployed 72 treefrog shelters on an 80 

m x 90 m grid, so that all shelters were 10 m apart. Each possible combination of tree 

morphospecies (smooth palm, palm with boots or oak), height (2.0, 3.0 or 4.0 m above ground), 

orientation (north, south, east or west), and water depth inside the shelter (0 cm or 10 cm) was 

represented in one of the 72 shelters. Shelters were sampled after three weeks, on 10 July 2007, 

from 1010-1415 h. Resident frogs were carefully emptied into a plastic bag and processed 

individually, as quickly as possible. I recorded the number, species and snout-vent length (SVL) 

of resident frogs, and then released them at the base of their tree of capture.  

 

Statistical analysis 

 
I used analysis of variance to determine the effects of tree morphospecies, shelter height 

and orientation, water depth, and their two- and three-way interactions on the mean number of 

treefrogs in a shelter. Because my design was unreplicated (Table 1), the four-way interaction 

term served as the error term. All statistical analyses were performed using JMP version 7.0 

(SAS Institute 2007), with α = 0.05.  
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Results 

 
 

Artificial treefrog shelters efficiently sampled large numbers of adult treefrogs. In a 

single sampling session, I encountered 65 treefrogs in the 72 shelters, which required relatively 

little time to deploy and were easy to access and monitor. Shelter use was completely dominated 

by the Squirrel Treefrog (Hyla squirella), with all frogs belonging to this species. Based on call 

surveys, visual censuses and trapping of tadpoles, Hyla squirella was the most abundant treefrog 

at MAERC, although H. cinerea, H. femoralis, and H. gratiosa were present in lower numbers, 

and all four species use PVC refugia (Boughton et al. 2000, Zacharow et al. 2003, K. M. Windes, 

unpubl. data).  

Only the main effect of tree morphospecies was statistically significant in the full model 

(Table 1). On average, shelters deployed on palms with boots had fewer treefrogs than those on 

smooth palms or oak trees (0.29 ± 0.21 [mean ± 1 SE hereinafter] versus 1.3 ± 0.21 and 1.1 ± 

0.21, respectively). Height and orientation were non-significant in all models (full model: F2,12 = 

1.45, p = 0.27 and F3,12 = 0.44, p = 0.69, respectively). Water depth was non-significant in the 

full model (Table 1) but was marginally significant in a reduced model in which palms with 

boots were excluded (F1,6 = 6.047, p = 0.049). In this sectored data set, shelters with water had 

more treefrogs on average than shelters without water (1.5 ± 0.19 versus 0.88 ± 0.19). No 

interaction terms were statistically significant in either the full or reduced models.  

Of the 72 shelters, 35 were occupied. Eighteen (49%) of the empty shelters were on 

palms with boots, 12 (32%) on oaks and smooth palms without water, and the remaining 7 (19%) 

were on oaks and smooth palms with water (Figure 2).  Logistic regression revealed that 

presence or absence of treefrogs was predicted by tree morphospecies (p = 0.0021) and the water 
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depth x shelter height interaction (p = 0.0268).  At 2 and 3 m, shelters with water were more 

likely to have treefrogs present than shelters without water, but the opposite trend existed for 

shelters hung at 4 m (Table 2).    

 

Table 1: Model I (fixed factor) ANOVA. Columns give sources of variation, degrees of freedom 
(df), sum of squares (SS), F-ratio, and p-value; * indicates significant F-ratio. Full model R2 = 
0.871.  

Source df SS F-ratio p 

Tree morphospecies (T) 2 14.19 6.59  0.011* 

Shelter height (S) 2  3.11 1.45 0.273 

Orientation (O) 3  1.60 0.49 0.693 

Water depth (W) 1  4.01 3.73 0.077 

T x S 4  3.64 0.85 0.523 

T x O 6  5.03 0.78 0.602 

T x W 2  2.69 1.25 0.320 

S x O 6  4.78 0.74 0.628 

S x W  2  5.78 2.68 0.109 

O x W 3  1.38 0.43 0.738 

T x S x O         12 15.47 1.20 0.380 

T x O x W  6  9.42 1.46 0.272 

T x S x W  4 4.64 1.08 0.410 

S x O x W  6 11.67 1.81 0.181 

Error          12 12.92   

Total         71         100.33   
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Figure 2: Numerical distribution of treefrogs within shelters.  Black shading represents treefrog 
shelters deployed with water; gray shading represents shelters deployed without water.  
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Table 2. Experiment 1: Trend in water depth x shelter height interaction from logistic regression.  
Shelters were hung at either 2, 3, or 4 m and with either 0 cm or 10 cm water.  Values in cells 
represent the number of shelters that had ≥ 1 treefrog.    

  Shelter height 

  2 m 3 m 4 m 

W
a
te

r 
d

e
p

th
 

0 cm 4 4 7 

10 cm 9 6 5 

 

 

 

Discussion 

 
 

At my study site, the protocol that maximized captures was to hang treefrog shelters on 

either palm trees with smooth trunks or oak trees. Shelters hung at 2 m can be sampled easily 

without using a ladder.  Orientation should be random and equal (assign approximately equal 

numbers of each cardinal direction at each site, but randomize which shelter receives which 

direction) to avoid potential capture differences between sites. Because water depth was 

significant in the reduced model, shelters should be deployed with water to prevent desiccation 

during longer deployment. Shelters with water had slightly more treefrogs than shelters without 

water, indicating that frogs select refugia for moisture. Another study (Boughton et al. 2000) also 

found treefrogs used PVC shelters containing water more frequently than those without. 

I found fewer treefrogs in shelters on palm trees with boots, likely because boots provide 

natural crevices for treefrogs to inhabit, thus decreasing the number of individuals selecting 

artificial shelters. Alternatively, treefrogs may avoid palms with boots. I found equivalent 

numbers of treefrogs in shelters hung at 2, 3, and 4 m, indicating that treefrogs do not restrict 
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refugia selection to certain vertical areas of trees. Although treefrogs also colonize PVC pipes 

anchored to the ground or placed in shrubs (Boughton et al. 2000, Schurbon and Fauth 2003, 

Zacharow et al. 2003), potential trampling by cattle precluded my use of ground-based pipes. 

Orientation did not affect the number of treefrogs sampled. Variables such as tree position in a 

woodlot and proximity to other trees likely affect heat and moisture retention in a shelter; 

orientation may not reflect this variation.  

Because treefrogs are selective in their use of artificial refugia, some researchers 

suggested that PVC refugia may be of limited use when monitoring treefrog populations 

(Zacharow et al. 2003). I often encountered several H. squirella in the same shelter, so they may 

crowd or outcompete larger species such as H. cinerea and H. gratiosa. Further research is 

needed to assess this prediction (Zacharow et al. 2003). Larger species also may seek larger 

refugia. I used shelters 3.8 cm in diameter, but in another study that examined shelters of varying 

diameters (1.9 cm, 5.1 cm, 7.7 cm), H. squirella was found more frequently in smaller diameter 

pipes and H. cinerea in larger pipes (Zacharow et al. 2003). In subsequent research conducted at 

MAERC, I encountered H. cinerea, H. femoralis, and H. gratiosa in shelters of the same design, 

albeit in much lower numbers than H. squirella. Sampling using artificial treefrog shelters may 

be particularly useful in mark-recapture studies because it allows access to large numbers of 

individuals. Careful attention must also be paid when using mark-recapture methods. 

Amphibians exhibit varying degrees of pipe fidelity (Boughton et al. 2000, Cohen and Alford 

1996, Zacharow et al. 2003, K. M. Windes, unpubl. data); this can violate one of the critical 

assumptions of many mark-recapture models that all individuals in a population (both marked 

and unmarked) have an equal probability of capture. When this assumption is violated, other 

models must be used. For example, the Cormack-Jolly-Seber method assumes that only marked 
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individuals have an equal probability of recapture, but this model does not estimate population 

size. Other population parameters such as apparent survival are calculated, and the total number 

of unique captures can be used as a conservative estimate of population size. Recent amphibian 

declines (Stuart et al. 2004, Young et al. 2001) and continuing large scale land-use changes 

necessitate a better understanding of amphibian population demography, and few sampling 

methods permit such efficient access to large numbers of individuals as artificial treefrog 

shelters.  

While potential capture biases may make estimating hylid population size difficult, much 

information can be gained from treefrog shelters. Hyla squirella and H. cinerea are not 

threatened or endangered; it is less important to calculate extremely accurate population sizes 

than to detect trends in population demography and the factors that influence those trends. 

Detecting trends allows better management of landscapes and development of conservation 

objectives for amphibians, including threatened and endangered species. However, careful 

attention should be paid to potential capture biases and pilot studies conducted to determine 

appropriate hanging protocol for the species and system in question (Zacharow et al. 2003). The 

hanging protocol presented here (shelters on smooth palm trees or oak trees, at 2 m, with water, 

in random orientations) is appropriate for use in rangeland in Florida and similar semi-tropical 

systems, and is effective for sampling adult and juvenile Hyla squirella. I used this protocol to 

further examine how agriculturally modified landscape features influence H. squirella population 

demography in Chapter 2. 
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CHAPTER 2: LANDSCAPE FEATURES AFFECT TREEFROG 

POPULATION DEMOGRAPHY AND SITE FIDELITY 

 
 

Introduction 

 
 

Global amphibian declines necessitate a better understanding of amphibian autecology 

(Alford and Richards 1999).  Effective conservation measures are built on knowledge of 

underlying population dynamics and how they interact with the environment in question.  Many 

studies support the hypothesis that amphibians exist in metapopulations, where suitable habitat 

patches are occupied, become extinct, and are recolonized by other nearby patches (Gulve 1994, 

Carlson and Edenhamn 2000).  However, an overwhelming majority of research on 

metapopulation dynamics is conducted at breeding sites (e.g., using aquatic sampling or calling 

censuses) and reports the presence or absence of a species from a particular pond (Pellet et al. 

2004, Schmidt and Pellet 2005, Zanini et al. 2008).  In other words, a “ponds as patches” view 

largely has been adopted in metapopulation spatial dynamics (Marsh and Trenham 2001).   

Comparatively little is known about how amphibians use terrestrial, non-breeding habitat, 

although adults of many species spend most of their time in upland habitat.  Mark-recapture 

studies in terrestrial habitats can estimate population survival and recapture and determine how 

landscape features affect these parameters.  In addition, mark-recapture data allow researchers to 

measure degree of site fidelity and trends in dispersal.  Some researchers have used mark-

recapture data to examine differences in growth, development and movement, but have not 

reported estimates of demographic parameters such as survival and recapture (Berven and 

Grudzien 1990, Altwegg 2003, Smith and Green 2006).  Many authors report population 
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abundance estimates but do not calculate other parameters that can be compared among groups 

(e.g., stage or sex) or related to environmental variables (Gittins 1983, Measey et al. 2003, 

Nelson and Graves 2004).  Only a few mark-recapture studies estimated amphibian population 

parameters outside of abundance, and these focused on individuals collected either in ponds or as 

they migrated to breeding ponds.  Holenweg Peter (2001) reported higher survival of Rana 

lessonae than R. esculenta adults captured in breeding ponds and higher recapture of males than 

females; recapture also varied over time.  Wood et al. (1998) collected R. grylio in wetlands and 

reported higher survival of females than males or juveniles, which were similar to each other.  

The problem with collecting individuals only in breeding habitat is that, especially for some 

species, it increases the chance that some groups will be missed (i.e., are in unobservable states), 

such as juveniles or non-breeding adults (Bailey et al. 2004).  Almost no data is available on 

amphibian population parameters calculated from terrestrial sampling methods.                 

 I used mark-recapture data to model survival and recapture parameters for the squirrel 

treefrog, Hyla squirella, in a landscape modified for cattle ranching in south-central Florida.  

Agricultural lands are important in the conservation of many species because these lands often 

retain large areas of native habitat and associated species, especially compared to urban or 

commercial land (Boughton 2008, Bohlen et al. 2009).  Central Florida ranches support species-

rich and abundant amphibian assemblages (Babbitt and Tanner 2000, Babbitt et al. 2006).  

However, extensive landscape modifications during ranchland construction and maintenance 

greatly affect amphibians, which are sensitive to perturbations in both aquatic and terrestrial 

environments due to their complex life cycle and semi-permeable skin.  Ditches that drain or 

irrigate pastures increase connectivity between wetlands and provide a route for predatory fish to 

invade (Babbit and Tanner 2000).  Fish are major tadpole predators and many amphibians avoid 
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laying eggs in fish-inhabited water (Brönmark and Edenhamn 1993, Binckley and Resetarits 

2002, Petranka and Holbrook 2006).  Runoff from fertilizer and nutrients from cattle urine and 

feces alter water chemistry in wetlands (Day and Detling 1990, Hobbs 1996, Frank and 

Groffman 1998), which may affect amphibian growth and development.  

 Modifications to terrestrial habitat create a harsh matrix in which suitable upland habitat 

and breeding sites are interspersed in relatively treeless, open pasture, where amphibians risk 

predation and desiccation (Steinman et al. 2003, Pellett et al. 2004, Babbitt et al. 2006).  Highly 

fragmented environments affect amphibian population processes.  For example, amphibian 

occurrence can be predicted by forest patch proximity (Babbitt et al. 2006) and area (Knutson et 

al. 1999, Kolozsvary and Swihart 1999) and proximity of wetlands (Vos and Stumpel 1995, 

Kolozsvary and Swihart 1999), indicating that both wetland and upland characteristics affect 

population demography.  Fragmentation adversely affects migratory success of juvenile spotted 

salamanders (Ambystoma maculatum) and American toads (Bufo americanus), where migration 

success is primarily a function of distance to nearest forest (Rothermel 2004).  In a 

metapopulation of pool frogs (Rana lessonae), probability of extinction increases with increasing 

inter-population distance (Sjögren 1991).  Fragmentation may have other adverse effects on 

breeding ecology; female tungara frogs have decreased opportunity for mate choice with 

increasing inter-pond distance (Marsh et al. 2000).  In addition, habitat fragmentation may affect 

amphibian populations simply by decreasing habitat quality (Marsh and Pearman 1997).  The 

relatively low mobility of amphibians combined with strong site fidelity may hinder re-

colonization of habitat patches after local extinction (Blaustein et al. 1994), so even modest 

habitat fragmentation may negatively affect amphibian subpopulations (Marsh and Pearman 

1997).  Because habitat fragmentation increases inter-pond distances, site fidelity may increase 
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in more isolated, fragmented woodlots.  If amphibians exhibit strong site fidelity, such 

fragmentation and isolation may affect population persistence.  

 To identify effective conservation and agricultural management strategies, it is important 

to understand how landscape features influence amphibian population demography and habitat 

use (Pope et al. 2000, Bosch et al. 2004, Van Buskirk 2005, Babbitt et al. 2006).  “Area-informed 

isolation metrics,” such as amount of suitable habitat in concentric buffer areas (Bender et al. 

2003), are more informative for predicting population dynamics than distance-based measures 

(e.g., nearest-neighbor distances).  Area informed metrics are particularly important in 

agricultural areas where wetlands are situated in variable and often highly modified landscapes.  

For example, some wetlands may have many nearby, neighboring wetlands but be devoid of 

suitable upland habitat due to agricultural modification.  Recent studies adopted concentric 

buffer areas to examine effects of landscape features on amphibian population dynamics (Pellet 

et al. 2004a,b, Chan-McLeod and Moy 2007, Otto et al. 2007).   

I collected mark-recapture data of H. squirella in a Florida cattle ranch over a nine month 

sampling period.  Using Program MARK, I estimated differences in survival and recapture over 

time and among frog stage and sex.  I then examined how concentric landscape features 

influenced survival and recapture, and measured the strength site fidelity using encounter history 

records and recapture rate as a proxy for site fidelity.  These data reveal how treefrogs use 

terrestrial habitat and could be use to aid in landscape-level management recommendations.       
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Methods 

 
 

Experimental design 

 
I selected six wetlands in semi-natural pastures (three grazed and three released from 

grazing) and six wetlands in intensively managed pastures (three grazed and three released from 

grazing) from the USDA experiment (Figure 3).  Using ArcMap 9.1 (ESRI Inc., Redlands, CA), 

I created a 100 m buffer around each focal wetland.  Any woodlot within this 100 m buffer was 

considered a focal woodlot (Figure 4).  I assessed landscape features within the initial 100 m 

focal woodlot, and also at increasingly large, non-nested buffers of 100 – 150, 150 – 200, and 

200 – 250 m (Figure 4).  In each concentric buffer, I calculated woodlot area (ha), number of 

wetlands, wetland area (ha), Index of Wetland Availability (Wetland Index; Equation 1), and 

Ditch Index (Equation 2).   

 

Wetland Index = ∑ (area of wetland x distance to center of focal wetland)/100 (Equation 1) 

Ditch Index = ∑ (ditch length x top width x depth)*1000 (Equation 2) 

 

I also determined area and Northing and Easting coordinates (UTM) of the focal wetland, and 

included July 2007 water depths of each focal wetland.  There were 26 total landscape variables 

(Table 3).  

To sample treefrogs, in July 2007 I deployed 30 PVC shelters/ha of focal woodlot using 

the optimal tree morphospecies, height, orientation, and water depth combinations determined in 

Chapter 1.  I placed shelters at randomly selected points at least 10 m from any other shelter 
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Figure 3. Location of Chapter 2 focal wetlands shown in red. 

 
 

within the focal woodlot, for a total of 265 treefrog shelters across the twelve sites.  I monitored 

shelters three times in the fall breeding season: in August, October, and November 2007 (the end 

of the wet season), and then removed all shelters to force treefrogs to overwinter in natural 

refugia.  By removing shelters, I ensured that overwintering survival was influenced as little as 

possible, because artificial shelters may provide a superior refuge to natural refuges.  In  
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Figure 4. Chapter 2 – Experimental design. Center red circle delineates experimental wetland 
597.  Focal woodlot is outlined in green within the first 100 m buffer (red).  Red dots indicate 
randomly selected locations of PVC shelters.  Subsequent lines represent buffers of 100-150 
(yellow), 150-200 (blue), and 200-250 m (purple). 

 

 

Table 3. List of landscape variables assessed for all focal wetlands. 

Independent (landscape) variables 

Pasture management (Semi-natural, Intensively managed) Wetland area 100 (ha) 
Grazing (Grazed, Relased from grazing) Wetland area 150 (ha) 
Focal wetland area (ha) Wetland area 200 (ha) 
Easting (m) Wetland area 250 (ha) 
Northing (m) Wetland Index 100 
July water depth (cm) Wetland Index 150 
Woodlot area 100 (ha) Wetland Index 200 
Woodlot area 150 (ha) Wetland Index 250 
Woodlot area 200 (ha) Ditch Index 100 
Woodlot area 250 (ha) Ditch Index 150 
Number of wetlands 100 Ditch Index 200 
Number of wetlands 150 Ditch Index 250 
Number of wetlands 200  
Number of wetlands 250  
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April, I re-hung all shelters in their original location, and added 50% more new ones at each site, 

to compare recapture rates of old versus new location shelters.  With the addition of 136 new 

shelters, there were 401 total shelters across the twelve sites in April 2008.  To determine which 

mark-recapture model best fit my data, I compared recapture rates in old vs. new shelters.  If 

rates were similar, both marked and unmarked individuals had equal capture probability and I 

could use the standard Jolly-Seber (JS) model, which allows estimation of population size.  If 

individuals displayed strong site fidelity, then new shelters would have fewer recaptures, thus 

violating the necessary JS assumptions, and I would proceed with the Cormack-Jolly-Seber 

(CJS) model, which assumes only that marked individuals have equal capture probability.   

I monitored all shelters (old and new) in late May 2008 to estimate overwintering 

survival and growth.  During all monitoring periods, I sexed, measured (SVL) and uniquely 

marked each frog, and identified re-captured frogs during subsequent visits.  Individuals 2.2 cm 

and larger were sexed, while individuals under 2.2 cm were recorded as juveniles, due to the 

difficulty and uncertainty in sexing small individuals.  I chose 2.2 cm because that was the 

minimum size at which I observed obvious characteristics of a sexually mature individual (i.e., a 

gravid female or a male with an enlarged, yellow throat sac).  Marks were administered using 

visible implant elastomer (VIE) tags (Hand Injection Kit, Northwest Marine Technology, Inc., 

Shaw Island, WA).  To generate a sufficiently large list of unique marks, I used eight elastomer 

colors and four potential marking locations: right thigh, right calf, left thigh, and left calf (Figure 

5).  To minimize the total number of marks frogs received, I eliminated combinations comprised 

of four marks (i.e., I only used combinations that consisted of 1, 2 or 3 marks).  Frogs were 

transported in plastic bags from their shelter of capture to various along the focal wetland edges, 

where I processed and released them.      
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Figure 5. Squirrel treefrog (Hyla squirella) marked with combination purple, none, blue, none. 

 

 

Statistical analysis 

 
I used JMP version 8.0 (SAS Institute) to examine correlations among landscape 

variables.  I used Program MARK (White and Burnham 1999) to estimate treefrog survival and 

recapture rate as linear functions of time and season, treefrog stage, sex and size, and selected 

landscape variables.  Program MARK uses mark-recapture data to estimate apparent survival 

(Φ): the probability that an animal survived from time i to time i+1 and was available for 
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recapture.  Program MARK also estimates recapture probability (p): the probability that an 

animal is re-encountered, given that it survived the previous interval.  Survival and recapture 

parameters are assessed for consecutive cohorts over time (Figure 6).   

I assessed goodness of fit (GOF) using two methods available within Program MARK: 

bootstrapping and median ĉ.   Both bootstrapping and median ĉ provide an estimate that 

quantifies the degree of overdispersion in the data (the variance inflation factor, or ĉ ).  

Bootstrapping runs multiple simulations with observed parameter estimates for the model in 

question to construct a series of encounter histories that meet model assumptions.  The original 

model is then fit to the simulated data, generating simulated model deviance and ĉ.  There are 

two ways to calculate ĉ using bootstrap results: ĉ (deviance) = observed model deviance/mean 

simulated deviance, and ĉ (observed ĉ) = observed model ĉ /mean simulated ĉ, where observed ĉ 

= observed model deviance/deviance df.  The median ĉ approach calculates the value of ĉ for 

which the number of simulated deviance ĉ above and below the observed value are equal.   

Model selection analysis was a two-part process based on the Quasi-likelihood corrected 

form of the Akaike Information Criterion coefficient (QAICc).  I first determined the best 

underlying model using combinations of either gender group (Juvenile, Male, Female) or life 

history stage (Juvenile, Adult) and either time (where each sampling interval was considered 

separately, i.e., interval 1, 2 and 3) or season (intervals 1 and 2 [Fall], interval 3 [Spring]).  I used 

these variables to determine the best underlying model for treefrog survival and recapture; this 

model served as the null model in phase two of the analysis, where I applied landscape variables 

and treefrog size to the null model as individual covariates.   

If my data best fit a JS model, then I would use Program MARK to examine how group, 

time, and landscape variables influenced population size, as described above.  If my data best fit 
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a CJS model, I would use the number of unique captures at each site to determine density of 

treefrogs and use model selection based on Akaike’s Information Criterion (AIC) to determine 

the effect of landscape variables on frog density.   

 

 

Figure 6. Apparent survival (Φ) and recapture (p) parameters for three release cohorts and four 
sampling occasions. 

 
 

Results 

Landscape variables 

 
 Focal wetland area averaged 0.80 ha and ranged from 0.46 – 1.18 ha.  Maximum center 

depths were recorded, but four of the 12 wetlands (33.3%) did not hold any water during the 
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study due to drought conditions.  Focal wetlands varied greatly in the area of surrounding 

woodlot.  Wetlands had an average of 1.45 ha of woodlot in the first 100 m buffer, but values 

ranged from as little as 0.15 ha at wetland 205 (IM-R) to 4.37 ha at wetland 597 (SN-R).  

Wetland number and area tended to increase with increasing buffer size, although buffers were 

non-nested.  The Wetland Index varied among sites, with some sites (e.g., site 123 [SN-R]) 

having high values even for larger buffers due to extremely large, nearby wetlands that most 

likely connect to the focal wetland during very wet periods.  Most IM sites had high Ditch Index 

values and most (but not all) SN sites had relatively low Ditch Index values (although site 79 

[SN-R] had a relatively high index).  A complete list of values for all variables in all buffers is 

presented in Table 4.      

To eliminate strong correlations between landscape variables, I selected a reduced set of 

variables.  All measures of woodlot area were significantly correlated with one another, so I used 

one woodlot variable that represented the area of woodlot from 0 – 250 m.  The new woodlot 

variable was negatively correlated with Northing (because larger woodlots in this study were in 

the south of MAERC), so I excluded Northing from the set of candidate variables.  Ditch Index 

was negatively correlated with Woodlot 0 – 250, so I excluded Ditch Index.  Wetland Index 

measures were correlated with one another and with wetland area and number of wetlands, so I 

used one Wetland Index that included all wetlands from 0 – 250 m.  The reduced set of variables 

used for phase two of the Program MARK analysis is presented in Table 5.    
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Table 4. Experiment 2 landscape variables by site.  (Top) Pond No. = site number of focal wetland; Past = pasture type, SN = semi-
natural, IM = intensively managed; Graze = grazing treatment, R = released from grazing, G = grazed; Pd area = area (ha) of focal 
wetland; Depth = July depth (cm) of focal wetland; Woodlot area = area (ha) of woodlot per buffer; Wetland number = number of 
wetlands per buffer.  (Bottom) Wetland area = area of wetland (ha) per buffer; Wetland Index = total Wetland Index per buffer 
(Equation 1); Ditch Index = total Ditch Index per buffer (Equation 2).  Buffers are: 100 = 0 – 100 m from focal wetland, 150 = 100 – 
150 m, 200 = 150 – 200 m, 250 = 200 – 250 m.   

     Woodlot AREA (ha) Wetland NUMBER 

Pond No. Past Graze Pd area (ha) Depth (cm) 100 150 200 250 100 150  200  250 

  49 SN R 0.82 32 1.77 0.85 0.69 0.83 2 3 5 4 
  66 SN R 0.46   0 0.72 0.06 0.08 0.12 1 2 3 2 
  79 SN G 0.65 25 1.60 0.90 1.82 2.29 7 6 7 5 
123 SN G 0.60 16 0.57 0.15 0.06 0.20 1 4 6 6 
196 IM R 0.67   0 1.44 0.86 1.20 0.94 2 3 3 4 
205 IM G 0.98 61 0.15 0.28 0.23 0.24 0 1 2 3 
245 IM G 1.03 40 2.96 1.27 0.77 0.29 1 2 4 4 
271 IM R 0.75   0 0.72 0.15 0.18 0.19 1 1 4 5 
310 IM R 0.71   0 0.46 0.34 0.13 0.30 0 5 9 4 
336 IM G 1.18 24 0.36 0.47 0.25 0.62 2 5 7 5 
595 SN G 1.10 12 4.37 2.50 3.21 2.90 1 3 3 2 
597 SN R 0.65 40 2.28 2.16 3.04 3.85 2 2 3 1 

 

 Wetland AREA (ha) Wetland INDEX Ditch INDEX 

Pond ID 100 150 200 250 100 150 200 250 100 150 200 250 

  49 1.02 0.93 0.76 1.13 10.07   5.79   3.77   4.56   0.00   8.12 10.39 11.02 
  66 0.08 0.33 0.85 1.30   0.66   2.45   4.33   5.56   0.00   0.00 36.33 42.61 
  79 0.83 1.11 1.43 1.89 11.13   8.93   7.10   8.38 10.02   5.37 27.56 21.40 
123 1.43 2.02 3.55 2.76 24.49 13.97 18.50 11.39 12.06 15.12 13.22 15.60 
196 0.30 0.61 0.47 0.98   3.02   4.04   2.32   3.89 18.28 11.59 56.09 40.67 
205 0.00 0.08 0.90 1.49   0.00   0.43   4.37   5.95 13.16 21.18 15.45 16.47 
245 0.06 0.83 1.68 2.19   0.43   5.25   8.06   8.53   0.00   0.25   2.36   6.04 
271 0.00 0.22 0.42 1.14   0.01   1.56   1.90   4.58   9.94 42.03 30.83 29.98 
310 0.00 0.47 1.37 0.50   0.00   2.82   6.92   2.06   2.60 12.63 11.43 38.73 
336 1.58 2.28 1.97 1.12 16.23 14.71   9.33   4.27 11.10   5.95 48.12 55.31 
595 0.14 0.42 0.62 0.62   0.98   2.55   2.99   2.48   0.00   9.65   5.60   4.84 
597 0.63 1.08 0.84 0.15   6.07   7.56   4.30   0.62   0.00   0.00 10.68   4.71 
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Table 5. Reduced landscape variables selected for model building. 

Variable 

Pasture management (Semi-natural, Intensively managed) 
Grazing (Grazed, Released from grazing) 
Easting (m) 
Focal wetland area (ha) 
July water depth (cm) 
Woodlot area (ha) 0 – 250 m 
Wetland Index 0 – 250 m 

 

 

Summary of treefrog captures 

 
 In total, there were 1,875 treefrog captures.  Nearly all captures (1,854) were Hyla 

squirella; I captured only one Hyla gratiosa, seven H. femoralis, and thirteen H. cinerea during 

my study.  None of these congeners was ever recaptured.  In the final sampling occasion, shelter 

status and capture status were not independent (χ2 = 44.002, p < 0.0001); old shelters had a 

recapture percentage nine times greater than new shelters (Table 6).  Therefore, marked and 

unmarked individuals did not have equal probability of capture and the data did not conform to 

JS assumptions.  Instead, I used CJS to estimate survival and recapture.  I excluded new shelter 

captures to ensure that data used in analyses were consistent across all sampling periods.   

 

Table 6. Captures of Hyla squirella in new and old shelters during the last capture session; May, 
2008.  TC = total captures, NC = new captures, RC = recaptures, %RC = percent recaptures.  χ2 
= 44.002, p < 0.0001.     

 TC NC RC %RC 

New shelters 133 130   3   2.26 

Old shelters 241 191 50 20.75 
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There were 1,721 total captures of H. squirella in old shelters, representing 1,547 unique 

individuals.  Of the individuals recaptured, 132 were captured twice, and 20 were captured three 

times.  No individuals were encountered on all four occasions.  Fifty individuals were 

encountered at least once in the fall sampling occasions and then recaptured in the final spring 

sampling (i.e., are known to have survived the 6 month winter interval).  Percent recapture 

increased with every sampling occasion (Table 7), and varied substantially among sites (Table 

8).  Most captures were adult frogs, with a total of 638 (41.2%) females, 683 (44.1%) males, and 

only 226 (14.6%) juveniles. 

 

Table 7. Captures of H. squirella by sampling occasion.  TC = total captures, NC = new 
captures, RC = recaptures, %RC = percent recapture.   

Occasion Date TC NC RC % RC 

1 08 - 2007 220 220   

2 10 - 2007 365 345   20   5.80 

3 11 - 2007 895 792 103 13.01 

4 05 - 2008 241 191   50 26.18 

 

 

Site fidelity 

 
 Individuals of H. squirella exhibited extreme site fidelity.  Of the 152 individuals 

recaptured, 145 (95.4%) were encountered in their original shelter of capture.  The seven 

individuals that were encountered in shelters other than their original shelter were encountered 

only twice, and moved 10 – 175 m between shelters (Table 9).  Over one-half (4/7) were female 

frogs that moved sometime during the six month over-wintering period.  The larger distances 
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almost always required moving across open pasture to reach the second shelter.  The smaller 

distances consisted of movements within the same patch of trees.     

 

Table 8. Captures of H. squirella by sites at the MacArthur Agro-Ecology Research Center.  N 
shelters = number of treefrog shelters deployed, TC = total captures, NC = new captures, RC = 
recaptures, %RC = percent recapture, Avg. frogs/shelt = average number of treefrogs per shelter 
over all four sampling occasions.  

Site N shelters TC NC RC % RC Avg frogs/shelt 

  49 27   56   55   1   1.79   2.1 

  66 11   61   59   2   3.28   5.5 

  79 24   65   58   7 10.77   2.7 

123   9   15   15   0   0.00   1.7 

196 22 149 132 17 11.41   6.8 

205   5   64   55   9 14.06 12.8 

245 44 618 562 56   9.06 14.0 

271 11 111   98 13 11.71 10.1 

310   7   41   34   7 17.07   5.9 

336   5   17   17   0   0.00   3.4 

595 66 265 241 24   9.06   4.0 

597 34 259 222 37 14.29   7.6 

 

 

Table 9. Treefrogs that moved between shelters.  Sex of frog: F = female; M = male; First 
occasion = occasion on which individual was first encountered; Second occasion = occasion on 
which individual was recaptured; Distance = distance traveled between shelters.    

Site Sex First occasion Second occasion Distance (m) Open pasture traversed? 

196 F 3 4 109.4 Yes 
196 F 3 4   10.6 No 
205 M 2 3   13.5 No 
245 F 3 4 168.1 Yes 
245 J 2 3   99.0 Yes 
595 J 1 4 171.4 Likely 
597 F 3 4 175.6 Yes 
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Program MARK 

 
 I used standard Cormack Jolly Seber (CJS), live recaptures only to model survival and 

recapture of H. squirella.  I assessed GOF on the fully time-dependent CJS model {Phi(g*t) 

p(g*t)} using two applications available within Program MARK.  Bootstrapping with 100 

simulations gave ĉ (deviance) = 1.88;  ĉ (observed ĉ) = 2.78; results similar with 500 

simulations: ĉ (deviance) = 1.87; ĉ (observed ĉ) = 2.80.  Using the median ĉ approach, ĉ = 2.49.  

Because the median ĉ yielded an estimate just slightly larger than the mid-way point of the 

bootstrapping estimates, and because median ĉ performs well with CJS data and typically 

produces relatively small mean squared error (Cooch and White 2009), ĉ was adjusted to the 

median ĉ estimate in the analysis.   

Phase 1 

 Because the analysis was exploratory in nature, I ran all possible combinations of gender 

group and time models.  I then incorporated models including either life history stage or season 

in place of group and time.  When ∆ AIC < 2, models are not substantially different (Burnham 

and Anderson 1998). The top seven models had a ∆ QAICc ≤ 2 and are presented in Table 10.  

There was no support for any interactive effects.   

Relative variable importance was calculated for each parameter by adding model weights 

of all models that contained a particular variable (Table 11).  Gender group was the most 

important explanatory variable for apparent survival (Φ).  In models containing group, Female 

survival was consistently higher than Male or Juvenile survival, for which estimates were 

similar.  There was relatively little support for effects of life history stage or time in explaining 

apparent survival (Φ).  Some evidence existed for an effect of season; in models containing 
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season, survival was lower for all groups in the final time interval (i.e., the over-wintering 

period) than in the fall intervals.   

 

Table 10. Top models from phase 1 of Program MARK analysis.  Phi = apparent survival (Φ), p 
= recapture rate.  Variables are: g (gender group: Juvenile, Male, Female), stage (life hiostry 
stage: Juvenile, Adult), t (time: interval 1, 2, 3), and season (Fall, Spring). QAICc = quasi-
likelihood corrected form of Akaike Information Criterion; ∆QAICc = difference between the 
top model and the model in question; QAICc Wgt = model weight; Likelihood = model 
likelihood; No. Par = number of parameters; QDev = model deviance.   

Model QAICc 

∆ 
QAICc 

QAICc 

Wgt 

Likelihoo

d 

No. 

Par QDev. 

1  {Phi(g) p(stage+t)} 
441.62

1 0.000 0.1135 1.000 7 
427.54

4 

2  {Phi(g) p(t)} 
441.93

0 0.310 0.0972 0.857 6 
429.87

3 

3  {Phi(g) p(stage)} 
442.75

0 1.125 0.0647 0.570 5 
432.70

5 
4  {Phi(g+season) 
p(stage+t)} 

442.88
2 1.261 0.0604 0.532 8 

426.78
4 

5  {Phi(t) p(g)} 
443.42

4 1.804 0.0461 0.406 6 
431.36

7 

6  {Phi(g) p(g+t)} 
443.60

0 1.983 0.0421 0.371 8 
427.50

6 

7  {Phi(g+season) p(stage)} 
443.82

0 2.200 0.0378 0.333 6 
431.76

3 

 

 

Table 11. Relative importance of phase 1 variables in Program MARK analysis.  Φ = apparent 
survival; p = recapture. Variables are: g (gender group: Juvenile, Male, Female), stage (life 
history stage: Juvenile, Adult), t (time: interval 1, 2, 3), and season (Fall, Spring).  

Variable Φ p 

Group 0.7294 0.2620 

Stage 0.1343 0.5135 

time  0.1996 0.5126 

Season 0.3104 0.2288 
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Life history stage and time were equally important in estimating recapture (p), and they 

were about twice as important as either gender group or season (Table 11).  In models containing 

stage, Adult recapture was consistently higher than Juvenile.  In models containing a group effect 

rather than stage, whether Male or Female recapture was estimated to be higher varied.  

However, both adult groups had consistently higher recapture estimates than Juveniles, 

indicating that stage is in fact a better predictor of recapture.  Recapture was highest on the third 

sampling occasion (ie, time 3) in all models containing time.     

 Although the top model did not have a very high QAICc weight (Table 10), it reflected 

the results of the relative variable importance for both parameters.  Most subsequent models 

were simply nested versions of the top model, except for the presence of season in models four 

and seven and inclusion of group rather than stage in the recapture parameter in some models.  

Therefore, the top model {Phi(g) p(stage+t)} was selected as the null model for phase two of the 

analysis. 

Phase 2 

I applied the reduced set of landscape variables (Table 5) and treefrog size to the null 

model as individual covariates.  First, each covariate was added as a single additive effect to Φ, 

p, or both Φ and p.  This allowed me to assess the relative contribution of each variable to both 

parameters.  Models with size, pasture or July depth ranked below the null model; in other 

words, they did not explain any additional variation in either Φ or p, so they were excluded in the 

following step.  I next examined additive effects of the remaining variables in sets of two on Φ, p 

or both Φ and p.  This allowed me to examine whether multiple additive effects explained 

substantially more variation than models with single effects.  Woodlot, Wetland, and Easting 
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were important in explaining Φ, and Woodlot and Easting were important in explaining p, so I 

ran a small subset of models with varying combinations of these effects. 

 I selected a subset of biologically meaningful two-way interactions from the possible 

two-way interactions of all eight covariates.  Interactive models were built for each parameter 

separately, and I compared these models to those that had only additive effects of the two 

particular variables as a direct test for an interactive effect (Table 12).  No interactive models 

were substantially different from the additive only models; most interactive models ranked much 

lower.   

   

Table 12. Interactive effects tested in phase 2 of Program MARK analysis. 

Interactive model Additive model for comparison 

Size+Pasture+Size*Pasture Size+Pasture 
Size+Woodlot+Size*Woodlot Size+Woodlot 
Size+Wetland+Size*Wetland Size+Wetland 
Pasture+Grazing+Pasture*Grazing Pasture+Grazing 
Pasture+Woodlot+Pasture*Woodlot Pasture+Woodlot 
Pasture+Wetland+Pasture*Wetland Pasture+Wetland 
Woodlot+Wetland+Woodlot*Wetland Woodlot+Wetland 

 

 

 The top ten models had a ∆ QAICc ≤ 2 (Table 13).  The top two models had 

approximately equal (although relatively low) weight.  Relative variable importance was 

calculated for each parameter by adding model weights of all models that contained a particular 

variable (Table 14).  Woodlot was the most important variable in estimating Φ, with survival of 

all groups increasing with increasing area of woodlot (Figure 7).  There was some evidence for 

effects of Wetland and Easting on Φ, but predicted trends for Easting were inconsistent; some 

models predicted a positive effect of Easting on Φ while others predicted a negative effect.  
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Survival decreased with increasing Wetland Index.  However, most models had at least some β 

estimates for which the 95% confidence intervals overlapped zero.  All other covariates were 

essentially unimportant in estimating Φ.   

Woodlot area also was the most important variable in estimating p, but less so than for Φ 

(Table 14).  Easting was almost equally important in estimating p, with recapture decreasing both 

with increasing woodlot area (Figure 7) and increasing Easting.  The top two covariate models 

were similar in structure and carried approximately equal weight; estimates of survival and 

recapture are given for these models (Table 15, Table 16).       

Population density  

  
 Because CJS does not provide an estimate of population size, I used the number of 

unique captures at each site to determine density of H. squirella in focal woodlots (Table 17).  I 

used model selection based on AIC to determine the relationship between density and the 

reduced set of landscape variables.  The 10 top models are presented in Table 18; only the top 

two models have a ∆AICc < 2 and are not substantially different.  Pasture type and July depth 

were the most informative variables in explaining variation in frog density, with IM woodlots 

having much higher density of H. squirella than SN woodlots (Table 19), and focal wetlands 

with more water having a greater surrounding density of frogs.  Backward stepwise regression 

also revealed a significant effect of July depth and Pasture type on treefrog density (Y = β0 + 

0.590*XJuly depth + 0.524*XPasture type).  There was no relationship between density and treefrog 

size (r2 = 7.483 x 10-5, p = 0.9787).  
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Table 13. Top models from phase 2 of Program MARK analysis. Phi = apparent survival (Φ), p = recapture rate. Variables are: 
Wood = area of woodlot (ha) within 250 m; Wet = area of wetland (ha) within 250 m; East = easting (m); Graze = grazing 
treatment (grazed or released from grazing).  QAICc = quasi-likelihood corrected form of Akaike Information Criterion; ∆QAICc 
= difference between the top model and the model in question; AICc Wgt = model weight; Likelihood = model likelihood; No. Par 
= number of parameters; QDev = model deviance.   

Model QAICc ∆ QAICc QAICc Wgt Likelihood No. Par QDev 

{Phi(g)Wood+Wet p(stage+t)Wood+East} 438.183 0.000 0.0739 1.000 11 416.002 
{Phi(g)Wood+East p(stage+t)Wood+East} 438.255 0.073 0.0713 0.964 11 416.075 
{Phi(g)Woodlot p(stage+t)Woodlot} 439.050 0.867 0.0479 0.648   9 420.927 
{Phi(g) p(stage+t)East} 439.337 1.154 0.0415 0.562   8 423.239 
{Phi(g)East+Woodlot p(stage+t)} 439.608 1.425 0.0362 0.490   9 421.485 
{Phi(g)East p(stage+t)} 439.672 1.490 0.0351 0.475   8 423.574 
{Phi(g)Woodlot p(stage+t)} 439.746 1.564 0.0338 0.458   8 423.648 
{Phi(g)Wood+Wet p(stage+t)Wood} 439.902 1.720 0.0313 0.423 10 419.750 
{Phi(g)Wood+Wet+East p(stage+t)Wood+East} 440.169 1.987 0.0274 0.370 12 415.956 
{Phi(g)Graze+Woodlot p(stage+t)} 440.461 2.278 0.0237 0.320   9 422.338 

 
 
 

Table 14. Relative variable importance for covariates in phase 2 of Program MARK analysis.  Φ = apparent survival, p = 
recapture.   

Variable Φ p 

Woodlot 0.4416 0.3296 
Wetland 0.2757 0.0789 
Size 0.0413 0.0221 
Pasture 0.0671 0.0437 
Grazing 0.0724 0.0839 
Easting 0.2591 0.3123 
Pond area 0.0644 0.0718 
July depth 0.0018 0.0067 
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Figure 7. Effect of woodlot area on apparent survival (top) and recapture rate (bottom) of Hyla 

squirella at the MacArthur Agro-Ecology Research Center.  Modeled using top covariate model: 
Phi(g)woodlot+wetland p (stage+t)woodlot+easting. 
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Table 15. Apparent survival (Phi) estimates for top two covariate models.  g = gender group; t = 
time. 

Model Group Phi SE 

Phi(g)Woodlot+Wetland p(stage+t)Woodlot+Easting Juvenile 0.78280 0.09457 
 Male 0.74055 0.06668 
 Female 0.86713 0.05432 
Phi(g)Woodlot+Easting p(stage+t)Woodlot+Easting Juvenile 0.77650 0.09453 
 Male 0.73522 0.06096 
 Female 0.86483 0.05263 

 
 
 

Table 16. Recapture (p) estimates for top two covariate models. g = gender group; t = time [time 
2 = sampling occasion 2; time 3 = sampling occasion 3; time 4 = sampling occasion 4].    

Model Stage Time p SE 

Phi(g)Woodlot+Wetland p(stage+t)Woodlot+Easting Juvenile 2 0.07140 0.03232 
  3 0.15054 0.05222 
  4 0.08380 0.04624 
 Adult 2 0.15821 0.03778 
  3 0.30225 0.04103 
  4 0.18272 0.07625 
Phi(g)Woodlot+Easting p(stage+t)Woodlot+Easting Juvenile 2 0.07056 0.03216 
  3 0.14944 0.05220 
  4 0.08428 0.04672 
 Adult 2 0.15781 0.03782 
  3 0.30248 0.04082 
  4 0.18511 0.07624 
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Table 17. Minimum Density of Hyla squirella per site.  N captures = number of unique captures; 
focal woodlot = area of woodlot (ha) within 100 m buffer of focal wetland.  

Wetlan

d 

N 

captures 

Focal woodlot 

(ha) 

Minimum Density 

(frogs/ha) 

Average size 

(cm) 

  49   55 1.77   31.12 2.75 
  66   59 0.72   81.66 2.47 
  79   58 1.60   36.29 2.72 
123   15 0.57   26.28 2.61 
196 132 1.44   91.42 2.82 
205   55 0.15 368.59 2.84 
245 562 2.96 189.58 2.41 
271   98 0.72 135.47 2.78 
310   34 0.46   73.35 2.91 
336   17 0.36   47.47 2.93 
595 241 4.37   55.10 2.68 
597 222 2.28   97.17 2.84 

  

 

Table 18.  Top 10 models from analysis of selected landscape variables on treefrog density.  
Model variables are: July depth = July water depth of focal wetland (cm); Pasture = pasture type 
(intensively managed, semi-natural); Wetland = wetland index; Woodlot = woodlot index; Pond 
area = area of focal wetland (ha); Ditch = ditch index; Easting (m).  Remaining columns are: R2 
= multiple correlation coefficient; RMSE = root mean squared error; AICc = corrected form of 
Akaike Information Criterion; ∆AICc = difference between top model and model in question.      

Model R
2
 RMSE AICc ∆AICc 

July depth, Pasture 0.623 65.210 144.579 0.000 
July depth  0.348 81.324 146.429 1.850 
July depth, Pasture, Wetland 0.713 60.326 147.583 3.004 
Pasture 0.275 85.794 147.713 3.134 
July depth, Woodlot 0.450 78.727 149.100 4.521 
July depth, Pasture, Pond area 0.673 64.375 149.456 4.877 
July depth, Ditch 0.434 79.901 149.539 4.960 
July depth, Pasture, Easting 0.662 65.449 150.320 5.741 
Pasture, Ditch 0.391 82.833 150.492 5.913 
July depth, Easting 0.383 83.427 150.553 5.974 
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Table 19. Mean density of Hyla squirella by pasture type.  LCL = lower 95% confidence limit; 
UCL = upper 95% confidence limit.   

Pasture type Average density (frogs/ha) LCL UCL 

Semi-natural   54.60 24.07   85.14 
Intensively managed 150.98 27.37 274.59 

 

 

 

Discussion 

 
 
 There is a paucity of information on treefrog demography, particularly in terrestrial 

stages.  To create effective conservation plans, it is necessary to fill this gap in knowledge.  

Pham et al. (2007) estimated population size of one population of Hyla cinerea in an urban 

environment using data collected from individuals marked with VIE tags.  Mark-recapture data 

can be used to calculate much more informative parameters, such as survival and recapture rate.  

Waddle et al. (2008) used Program MARK to examine the effect of toe clipping on apparent 

survival and recapture rate of H. cinerea and H. squirella.  My study is the first to estimate 

apparent survival and recapture for different groups (e.g., sex and stage) of a treefrog species and 

to examine how those parameters are influenced by landscape features.        

In the general models, treefrog survival (Φ) was best explained by gender group 

(juvenile, male, female), and recapture (p) was best explained by life history stage (juvenile, 

adult) and time (time 2, 3, 4).  The model predictions follow predictions based on anuran 

biology.  Females had higher survival than males and juveniles; there was enough difference in 

male and female survival that the parameter was better explained by group than stage effects.  

Males are conspicuous to predators during calling and juvenile anurans likely disperse from 
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home sites, risking predation and desiccation in the process (Gill 1978a, Berven and Grudzien 

1990).  My data are comparable in trend and survival estimates to mark-recapture data for Rana 

grylio collected in northern Florida wetlands: females in that study had higher survival than 

males and juveniles, for which estimates were similar (mean Φ: 0.83, 0.75, 0.72, respectively; 

Wood et al. 1998).  There was some evidence for effect of season on survival, with all groups 

experiencing lower survival in the final time interval, i.e., the six month over-wintering period.  

Resources were likely lower during this long time interval, as the Fall 2007 – Spring 2008 time 

period was characterized by drought conditions (NOAA 2008); wetlands did not fill again until 

Summer 2008.  Treefrogs also were forced to overwinter in natural refugia, which may be poorer 

quality than artificial shelters.  I used estimates generated by the top model (Table 15) for my 

nine month sampling period to predict annual apparent survival rates for juveniles, males and 

females (annual Φ = 0.71, 0.65, and 0.82, respectively).     

Recapture rate varied by life history stage.  The lower recapture rate for juveniles may 

have occurred because as juveniles migrate away from their pond of emergence, they are less 

likely to be recaptured.  Adult anurans are site-loyal to breeding ponds; for example, Rana 

sylvatica adults were 100% faithful to the ponds in which they first bred, while a portion of 

juveniles dispersed from their home sites (Berven and Grudzien 1990).   

Hyla squirella was extremely site loyal, both to sampling site (no individuals moved 

between sites) and to particular treefrog shelters.  Almost 95% of recaptures were in their 

original shelter of capture every time they were encountered.  Of the 50 individuals encountered 

in one of the fall sampling occasions and then recaptured in the final spring sampling (i.e., 

individuals known to survive the 6 month over-wintering period), 45 were in their original 

shelter.  This is particularly impressive because shelters were removed during the last fall 
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sampling in November and were not re-hung until the following April.  My data suggest that 

while individuals of H. squirella likely use larger areas of terrestrial woodlot for foraging and 

certainly migrate to ponds for breeding events, they return to a relatively small area that can be 

considered “home base”, perhaps to a particular tree or small group of trees.      

My data confirm that adults also are more site loyal within the terrestrial environment 

than are juveniles.  Because frogs were site loyal, recapture rate increased over time during the 

fall samplings as shelters became more colonized and frogs moved into woodlots to over-winter.  

Recapture rate dropped slightly for the final spring sampling, as individuals had to “re-colonize” 

shelters that were removed over the winter.   

 The strong terrestrial site fidelity exhibited by H. squirella has implications for 

population dynamics.  Amphibians commonly are thought to exist in metapopulations, with 

patches blinking in and out over time (Figure 8, top).  However, metapopulation structure 

sometimes is only apparent when considering ponds as patches, but the structure is not conserved 

when terrestrial habitat use is included (Marsh and Trenham 2001).  Metapopulation studies that 

consider only the presence or absence of a particular species in a pond may misrepresent 

population structure.  If suitable upland habitat is nearby and if adults are site-loyal, absence of a 

species from a pond does not mean it is absent from the site entirely; adults may use permanently 

occupied terrestrial habitat and migrate to alternative breeding sites depending on environmental 

conditions such as water levels and presence of competitors and predators (Pechmann et al. 1989, 

Resetarits and Wilbur 1989, Binckley and Resetarits 2002, Babbitt et al. 2003; Figure 8, bottom).   

Woodlot area was the most important landscape covariate in explaining additional 

variation in both survival and recapture rates of H. squirella.  All models predicted a positive 

relationship between survival and woodlot area, indicating that large areas of woodlot are critical 
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for survival of H. squirella.  Ranch managers would need to conserve 6.5 – 7.5 ha of woodlot 

within 250 m of wetlands to maintain estimated survival rates for all groups (Table 15).  While 

many semi-natural wetlands have close to 6.5 ha of woodlot within 250 m, most intensively 

managed wetlands have much less; many IM wetlands at MAERC have less than 1 ha of woodlot 

within 250 m.  On average, the SN wetlands in my study had 2.5 times more surrounding 

woodlot than IM wetlands.      

Distributions of many amphibians are related to woodlot area surrounding breeding sites.  

At MAERC, anuran species composition in wetlands is affected by proximity to woodlot; habitat 

specialists such as Hyla gratiosa, H. femoralis, and Bufo quercicus only bred in wetlands with 

nearby woodlots (Babbitt et al. 2006).  In temperate North America, occurrence of redback 

salamanders (Plethodon cinereus) in forests and nearby wetlands was positively associated with 

area of the forest patch (Kolozsvary and Swihart 1999), and wetlands occupied by carpenter 

frogs (Lithobates virgatipes) had higher proportions of surrounding forest cover than unoccupied 

ponds (Otto et al. 2007).   

Recapture rates of H. squirella decreased with increasing woodlot area, indicating that 

site fidelity was stronger in smaller woodlots.  However, models must be interpreted with 

caution, as the confidence intervals for many models overlapped zero.  The trend of increasing 

site fidelity with decreasing woodlot area is particularly important in landscapes such as 

rangeland and other agricultural lands, where the habitat matrix often consists of small patches of 

suitable habitat surrounded by a harsh matrix of open pasture.  Further upland habitat 

modification (e.g., removing trees to create open pasture) may severely affect the ability of 

amphibians to persist long-term.  Recapture rate also decreased with Easting, representing an



 46 

     

 

occupied

unoccupied

occupied

A

    

B

 

Figure 8. (Top) Classic metapopulation dynamics, with ponds as patches (A), where unoccupied ponds are re-colonized by 
occupied ponds (B).  (Bottom) Terrestrial habitat occupancy model, where individuals migrate to breeding ponds from 
continuously occupied terrestrial patches (A), and unoccupied ponds are colonized from terrestrial patches, for example at 
different times during the breeding season (B).        

occupied
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environmental gradient not captured by the landscape variables measured.  Eastern pastures at 

MAERC are mostly semi-natural pastures with relatively large areas of woodlot, but there was 

not support for an effect of pasture type on either survival or recapture.  Models were 

inconsistent in predicting the relationship of Easting and survival, and confidence intervals 

largely overlapped zero.   

Models consistently predicted a negative relationship between apparent survival and 

Index of Wetland Availability.  I expected a positive relationship between survival and 

availability of breeding habitat.  However, conditions were extremely dry throughout the study, 

as 2007 was a drought year and ponds did not refill until Summer 2008.  The Wetland Index was 

simply a measure of available wetland habitat and did not take into account whether the wetlands 

held water during the study period.  Given the severity of the drought, the Wetland Index 

essentially may have been a measure of open pasture.  The effect of Wetland Index on survival 

was likely heavily influenced by study wetlands in the northeastern corner of MAERC.  The 

three wetlands in this area (49, 79, and 123) had high Wetland Index values, but low treefrog 

captures; there were no recaptures at wetland 123 and no captures at all on the final sampling 

occasion.  There was only one recapture at pond 49.   

Pasture type and July water depth of focal wetlands affected minimum treefrog density.  

Density of H. squirella was greater in intensively managed woodlots than in semi-natural 

woodlots.  On average, intensively managed pastures had less available woodlot than semi-

natural pastures; therefore, frogs had to crowd within the available habitat.  In semi-natural 

pastures, frogs had larger areas of woodlot available and could move more freely through the 

terrestrial habitat.  Wetlands that had greater July water depths supported a higher density of H. 
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squirella.  This is not surprising given the habitat requirements of amphibians, and especially 

given the prolonged dry conditions that characterized the study period.    

My results highlight the importance of terrestrial habitat in amphibian spatial population 

dynamics and conservation.  When species are extremely site-loyal to terrestrial habitat, a 

traditional metapopulation model using “ponds as patches” may not accurately reflect population 

structure and patterns of movement.  Decreased survival and increased site fidelity in smaller 

woodlots highlight the importance of quality (i.e., large or contiguous) woodlot habitat for 

treefrog persistence.  Intensively managed pastures at MAERC typically have less intact woodlot 

than semi-natural pastures and have higher densities of Hyla squirella.  Because intensively 

managed pastures have less woodlot but greater frog densities, the two pasture types likely 

support approximately equal numbers of treefrogs.  Intensively managed pastures at MAERC 

support a minimum of 22,788 H. squirella, and semi-natural pastures support a minimum of 

26,753 H. squirella (Appendix B).  H. squirella was extremely site loyal; therefore, capture 

density in my artificial shelters reflect only a small proportion of the population, so my estimates 

of population density are conservative in nature.  Actual density may be orders of magnitude 

higher than my estimates.  Because H. squirella exhibited strong site fidelity, even small 

modifications to the landscape can affect the ability of populations to persist over time.  

Ranchland managers interested in conserving biodiversity should maintain contiguous woodlots 

and avoid unnecessary tree removal near pasture wetlands.   
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CHAPTER 3: RESPONSES OF LARVAL TREEFROGS TO CATTLE 

GRAZING AND PASTURE MANAGEMENT: GENETIC AND 

ENVIRONMENTAL VARIATION IN HYLA SQUIRELLA 

 

 

Introduction 

 
 

Amphibians are the most threatened vertebrate taxa and their global declines are of 

substantial concern to scientists and conservationists worldwide (Houlahan et al. 2000, Young et 

al. 2001, Stuart et al. 2004).  Declines are attributed to a variety of factors, including climate 

change, disease, introduced species, UV-B radiation, chemical contaminants, and habitat 

fragmentation and degradation (Young et al. 2001).  Large-scale land-use practices such as 

rangeland management contribute heavily to some of these factors and introduce others (e.g., 

cattle grazing), whose effects are just beginning to be quantified (Schmutzer et al. 2008).  About 

one-half of the planet’s usable land is already exploited for pastoral or agricultural purposes 

(Tilman et al. 2001), an amount likely to increase as the global human population increases 50% 

by 2050, and as global grain demand doubles (projections from Alexandratos 1999, Cassman 

1999).  In the United States, rangeland accounts for a significant amount of land cover, with 233 

million hectares of non-federal land grazed nation-wide (USDA 2003).  Pastures in some grazing 

regions are rich in wetlands that provide breeding sites for adult amphibians and habitat for 

larval stages (Babbitt et al. 2006).  Understanding how specific landscape modifications affect 

amphibian growth and survival could lead to better management practices and could help reduce 

or halt widespread population declines.    
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Anthropogenic modifications that create and maintain grazing pasture affect both aquatic 

and terrestrial habitats necessary to complete the amphibian life cycle.  Extensive ditching alters 

wetland hydrology (Babbit and Tanner 2000), pesticides and nitrogenous fertilizers alter 

development and survival of both larval and adult amphibians (Oldham et al. 1997, Marco and 

Blaustein 1999, Rouse et al. 1999, Schuytema and Nebeker 1999, Relyea 2005), and removing 

trees to create open pasture increases habitat fragmentation and reduces suitable habitat for adult 

amphibians (Pellet et al. 2004, Babbitt et al. 2006).  Large herbivores induce changes in pond 

vegetation, topography and water quality that may have important ramifications for larval stages 

of amphibians (Boyer and Grue 1996, Babbitt and Jordan 1996, Babbitt and Tanner 1997, 

Babbitt and Tanner 1998, Marco and Blaustein 1999, Rouse et al. 1999).  Cattle frequently use 

wetlands for cooling and forage, resulting in heavily trampled wetlands with high turbidity 

(Belsky et al. 1999, Schmutzer et al. 2008).  Grazers remove vegetation, which decreases feeding 

sites available for tadpoles because most anurans scrape algae from vegetative surfaces 

(Duellman and Trueb 1986).  Cattle deposit 13 – 27 kg*d-1 of wet feces (Azevedo and Stout 

1974), creating nitrogen surpluses that eutrophy aquatic systems, especially at high cattle 

stocking densities (Carpenter et al. 1998).   

  Understanding how amphibians respond to agricultural modifications is critical for 

developing appropriate conservation and management strategies.  I examined how pasture 

management and cattle grazing affected growth and survival of three sibships of larval Hyla 

squirella in a Florida ranchland.  Amphibians often experience high mortality, particularly in the 

larval stages (Werner 1986), so identifying stressors that affect larval growth and survival is 

critical for conservation. Larvae that develop faster and larger are able to escape gape-limited 

predators (Caldwell et al. 1980, Semlitsch and Gibbons 1988, Richards and Bull 1990, Babbitt 
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and Tanner 1998), are more likely to survive when ponds dry (Semlitsch 1987, Newman 1988, 

Denver 1997), and reproduce earlier or at a larger size (Smith 1987, Semlitsch et al. 1988, 

Berven 1990).  However, amphibians also have adaptive changes in larval and metamorphic 

characteristics (Wilbur and Collins 1973, Wilbur 1980, Werner 1986) that can be attributed to 

genetic variation or phenotypic plasticity (Travis 1980, 1981, Van Buskirk and Relyea 1998, Van 

Buskirk and McCollum 1999, Relyea and Werner 2000, Relyea 2001).  Genetic differences 

among sibships account for some variation in metamorphic traits and differential response to 

environmental stressors (Newman 1988, Semlitsch 1993, Bridges and Semlitsch 2000).    

Assessing the response of different sibships to agriculturally modified wetlands allows 

me to quantify the potential of amphibians to adapt to local conditions created by rangeland 

management.  These data are useful in determining the sensitivity of amphibians to rangeland 

modifications and identifying management strategies that minimize mortality during the larval 

stage. 

Methods 

 

Experimental design 

I selected four wetlands at MAERC: two within semi-natural (SN) pasture, and two 

within intensively managed (IM) pasture.  I selected wetlands that had ample water at the 

beginning of the wet season to ensure sufficient depth throughout the experiment.  One wetland 

from each pasture type was completely fenced since April 2007 to exclude cattle grazing as part 

of an ongoing study assessing effects of grazing on wetland biodiversity.  This resulted in four 

wetland types that comprised a 2 x 2 factorial design (Figure 9): one each of a semi-natural 
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pasture, grazed wetland (SN-G); semi-natural pasture, released from grazing wetland (SN-R); 

intensively managed pasture, grazed wetland (IM-G); and an intensively managed pasture, 

released from grazing wetland (IM-R).   

 

 

Figure 9. Chapter 3 experimental design.  Pasture type (semi-natural, intensively managed) is 
represented by column and grazing treatment (grazed, released from grazing) is represented by 
row.  Each block was a cage constructed of metal fencing panels.  Each clutch (A, B, C) was 
contained in a separate pen.   
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In each wetland, I constructed two cages using metal fencing panels (2.4 m x 2.4 m) to 

exclude large animals.  Cages were placed at random compass bearings from the center of each 

wetland and served as experimental blocks.  Blocks were placed in approximately equal water 

depths (~26 – 32 cm) in each wetland.  Within each block, I deployed three pens to house 

experimental tadpoles.  Pens consisted of a plastic laundry basket (50 cm x 35 cm x 60 cm) fitted 

internally with a mesh liner and externally with a mesh lid, both made out of standard 1 mm 

fiberglass window screening.  The lining mesh confined tadpoles to the inside of the basket and 

excluded potential invertebrate predators.  Pens were secured to metal t-posts staked inside each 

block (Figure 10).  The pens were deployed on 1 August 2009, to allow time for algae to grow 

and provide a food source for tadpoles.   

 

Figure 10. Experimental pens housing Hyla squirella tadpoles.  Pens were constructed of plastic 
laundry baskets fitted with mesh liners made of 1 mm window screening.   
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To quantify environmental differences among wetlands, I recorded temperature (ºC), pH, 

conductivity (μS/cm), DO (mg/L), and water depth (cm) in each block during each of the four 

monitoring occasions, except DO was not recorded during the first monitoring session.  I also 

had access to data for concentrations of nitrogen and phosphorus in the surface water for the 

experimental wetlands from 2006 – 2009 (P. Bohlen, unpublished data).         

 I collected breeding pairs of Hyla squirella in an IM pasture at MAERC on 28 July, 2009, 

after a heavy rain.  I captured amplectant pairs by hand near the ranch laboratory, enclosed them 

in plastic containers (55 cm x 40 cm x 17 cm) with water and plant debris and left them 

overnight to allow females to oviposit egg masses.  The next morning, I released adults and 

transported eggs to the laboratory.  I kept the three clutches that had the highest hatching success 

(hereinafter, clutches A, B, and C) and reared tadpoles in approximately equal densities in water 

collected from a wet pasture at MAERC.  Every 2 – 3 d, I changed the water and fed tadpoles 

frozen chopped spinach and commercial rabbit food pellets.   

I randomly assigned 25 tadpoles from each clutch to one of the three pens in each block 

on 12 August 2009 (13 d post-hatch, Gosner stage 25; Gosner 1960).  I monitored tadpoles four 

times over the next several weeks, taking size measurements on surviving tadpoles.  I halted data 

collection when the first metamorphs were seen experiment-wide; this occurred in the IM-R 

wetland on 27 August 2009, 28 d post-hatch (Table 20).  I infer that smaller tadpoles at that date 

would have metamorphosed either later or at a smaller size than larger surviving tadpoles 

(Wilbur and Collins 1973, Collins 1979, Travis 1984).  
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Statistical analysis 

I used nested analysis of variance to test the null hypothesis that percent survival of H. 

squirella was independent of wetland type, block, or clutch (Table 21).  I used a priori contrasts 

to partition variation among wetland types (SN vs IM, G vs R and pasture type x grazing).  To 

correct for non-normally distributed residuals, I log10-transformed percent survival as 

(log[percent survival +1]).  All means and standard errors reported are back-transformed.  

Complete loss of clutch C in two wetlands and loss of almost all tadpoles in one wetland in 

particular (IM-G) precluded analysis of tadpole size data (Table 20).  Instead, I present growth 

trajectories in Figure 11.  I used individual correlations to assess the relationship between Total 

N and P and tadpole survival, and regression to examine the relationship between all other 

environmental variables and survival.  All statistical analyses were performed using JMP version 

7.0 (SAS Institute 2007), with α = 0.05. 
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Table 20. Percent survival and mean size of Hyla squirella tadpoles at the conclusion of the 
experiment. 

(Wetland number) Wetland type Block Clutch % 

survival 

Mean length (cm), 

28 d post-hatch 

(210) Semi-natural, released 1 A   64 2.43 
 1 B   56 2.97 
 1 C   16 2.95 
 2 A 100 2.68 
 2 B   56 2.53 
 2 C   76 2.60 
(226) Semi-natural, grazed 1 A   60 2.64 
 1 B   48 3.03 
 1 C   36 3.12 
 2 A   44 2.20 
 2 B   12 2.73 
 2 C     0 . 
(127) Intensively managed, released 1 A   96 3.15 
 1 B     8 3.25 
 1 C     0 . 
 2 A   72 3.27 
 2 B     4 2.30 
 2 C     0 . 
(205) Intensively managed, grazed 1 A     4 3.60 
 1 B     0 . 
 1 C     0 . 
 2 A   16 2.78 
 2 B     0 . 
 2 C     0 . 
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Figure 11. Mean (± 1SE) growth trajectories of three clutches of Hyla squirella tadpoles.  Wetland pasture type (semi-natural, 
intensively managed) is represented by row, and grazing treatment (grazed, released from grazing) is represented by column.
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Results 

 
 

Wetland type significantly affected percent survival of H. squirella, with SN-R and SN-G 

wetlands having higher mean survival than IM-R and IM-G (Table 21, Table 22).  A priori 

contrasts of wetland types revealed a significant difference between intensively managed and 

semi-natural pasture wetlands (Table 21), with higher tadpole survival in SN wetlands than IM 

wetlands. The difference between fenced and grazed wetlands neared significance, with R 

wetlands having slightly higher survival than G wetlands.  The interaction between pasture type 

and fencing was not significant.   

 

Table 21. Nested ANOVA for effects of wetland type (fixed), block (random) and clutch 
(random) on percent survival of larval Hyla squirella. Columns give sources of variation, 
numerator and denominator degrees of freedom (df), sum of squares (SS), F-ratio, and p-value; * 

indicates significant F-ratio. Full model R
2
 = 0.947.  

Source df SS F p 

Wetland type 3,4 6.52 5.05   0.0425* 
SN vs IM 1,4 4.88        18.51   0.0126* 
G vs R 1,4 1.61 6.09 0.0691 
Pasture x grazing 1,4 0.04 0.14 0.7279 

Block(wetland) 4,8 1.05 2.76 0.1037 
Clutch 2,6 4.42          8.43   0.0181* 
Clutch x wetland 6,8 1.58 2.75 0.0939 
Error            8 0.76   
Total          23    

 

I concluded the experiment on 27 August, 2009, when five metamorphs from clutch A 

were observed in the IM-R wetland.  Of the surviving tadpoles in IM-R, 60% were in Gosner 

stage 36 or above; they had well-developed hind limbs and could have reached metamorphosis in 

a few days.  Ninety-six percent of these tadpoles were from clutch A.  Tadpoles in the remaining 
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wetlands were farther from metamorphosis (Figure 12): in the IM-F wetland, 20% of surviving 

tadpoles were in stage 36 or above, SN-U had 10%, and SN-F had 0%.   

Clutches also varied significantly in mean survival, with clutch A surviving significantly 

better than clutch B, and clutch B better than clutch C (Table 21, Table 22).  The interaction of 

clutch and wetland type was not significant.      

 

Table 22. Mean percent survival and upper and lower 95% confidence limits (CL) for 
experimental treatments. Values are back-transformed (inverse log – 1). 

Treatment Mean % survival Upper 95% CL Lower 95% CL 

Semi-natural, released 53.95 88.13 32.88 
Semi-natural, grazed 18.95 31.36 11.30 
Intensively managed, released   7.32 12.49   4.13 
Intensively managed, grazed   1.09   2.39   0.29 
Clutch A 41.66 53.95 32.11 
Clutch B   9.00 11.88   6.76 
Clutch C   2.89   4.01   2.02 

 

 

Wetlands varied in mean values of recorded environmental variables.  The IM wetlands 

had higher total N and much higher total P than SN wetlands.  The G wetlands had slightly 

higher N and P levels than the corresponding R wetlands (Table 23).  Principal Components 

Analysis (PCA) of environmental variables resulted in two fundamental axes explaining 95% of 

the variance.  All four experimental wetlands varied substantially in environmental parameters, 

with one pond falling in each quadrat in the fit of Principal Component 2 by Principal 

Component 1 (Figure 13).  IM wetlands occupy the right hand side of the figure, with higher pH, 

conductivity, DO, total N, and total P.  Temperature accounted for most of the variance in PC2, 

with warmer ponds (IM-G and SN-R) occupying the top of the figure.   
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Overall survival was not significantly correlated with total N and total P, although both 

variables showed a clear trend (Total N, r2
1,3 = 0.826, p = 0.091; Total P, r2

1,3 = 0.812, p = 0.099); 

wetlands with higher N and P had lower overall tadpole survival.  To reduce variance inflation 

factors, DO was removed from the regression model.  Regression analysis by block revealed a 

significant effect of pH, conductivity and temperature in tadpole survival that explained virtually 

all of the among-block (>99%) variation (Table 24).  There was a negative relationship between 

survival and mean pH and mean temperature and a positive relationship between survival and 

mean conductivity.   
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Table 23. Mean values (± 1 standard error) of selected environmental parameters of wetlands used in the experiment at MacArthur 
Agro-Ecology Research Center. 

(Wetland number) Wetland type Temperature 

(C) 

pH Conductivity 

(μ/S) 
DO (mg/L) Total N 

(ppm) 

Total P 

(ppm) 

(127) Intensively managed, released 27.92 ± 0.38 5.20 ± 0.36 184.35 ± 6.39 3.27 ± 0.60 1.92 ± 0.09 0.20 ± 0.04 
(205) Intensively managed, grazed 28.83 ± 0.52 4.61 ± 0.22   49.52 ± 2.65 3.89 ± 0.63 2.28 ± 0.22 0.38 ± 0.10 
(210) Semi-natural, released 28.72 ± 0.46 3.42 ± 0.36   23.98 ± 1.30 2.44 ± 0.34 1.52 ± 0.08 0.04 ± 0.00 
(226) Semi-natural, grazed 28.11 ± 0.38 4.02 ± 0.26   25.47 ± 1.41 1.53 ± 0.38 1.59 ± 0.09 0.06 ± 0.01 

 

 

Table 24. ANOVA table for regression of environmental variables and tadpole survival.  Source = source of variation (mean 
environmental variables by block); SS = sum of squares; F-ratio; p value.  *indicates significant p value.  Full model R2 = 0.990.      

Source df SS F-ratio p 

Temperatue 1   131.11   12.13   0.0253* 
pH 1 4088.05 378.09 <0.0001* 
Conductivity 1 1425.99 131.89   0.0003* 
Error 4     43.25   
Total 7 4369.78   
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Figure 12. Distribution of Gosner stages of surviving tadpoles at 28 d post-hatch. Wetland pasture type is represented by row 
(semi-natural, intensively managed), and grazing treatment is represented by column (released from grazing, grazed).  An 
individual was classified as a metamorph when forelimbs appeared (Gosner stage 42).   
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Figure 13.  Plot of wetlands on Principal Component 2 (PC2) by Principal Component 1 (PC1). 
Intensively managed pasture (IM) wetlands occupy the right side of the figure, indicating high 
values for environmental parameters listed on the PC1 axis.  The semi-natural (SN) released 
from grazing (R) wetland and IM grazed (G) wetland had higher mean temperatures than the 
remaining two ponds. 
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Discussion 

 
 

Wetland type significantly affected tadpole survival, with tadpoles surviving better in 

wetlands within semi-natural pasture (SN) than intensively managed pastures (IM).  Collectively, 

wetlands in SN pastures supported 68 tadpoles/m2 in the experimental pens at the conclusion of 

the experiment, compared to only 24 tadpoles/m2 in IM wetlands.  Before 1987, intensively 

managed pastures at MAERC were fertilized with NPK fertilizer, and with nitrogen only since 

1987.  Consequently, wetlands in IM pastures had slightly higher nitrogen levels than those in 

SN pastures, but phosphorus levels over three times higher (P. Bohlen, unpubl. data).  Long-term 

or excess fertilization can lead to differences in water quality (Carpenter et al. 1998) that affect 

development and survival of larval stages of amphibians (Oldham et al. 1997, Marco and 

Blaustein 1999, Rouse et al. 1999, Schuytema and Nebeker 1999, Relyea 2005).  Although the 

correlations between overall survival and total N and P were not significant, wetlands with 

higher nutrient levels (IM pastures) had lower overall survival than wetlands with lower nutrient 

levels (SN pastures).   

Principle Components Analysis of environmental variables highlights environmental 

differences between wetlands in IM and SN pastures (Figure 13).  Wetlands in IM pastures had 

higher pH, conductivity, DO, total N, and total P, indicative of poor-quality environments.  

Tadpole survival decreased with increasing pH.  Pond acidity can interact with many factors 

such as UVB radiation, tadpole density, nitrate, and chemical pollutants to decrease tadpole 

survival (Warner et al. 1983, Horne and Dunson 1995, Long et al. 1995, Hatch and Blaustein 

2000, Macias et al. 2007).  Wetlands with high conductivity had high tadpole survival.  

Conductivity may be a measure of productivity; ponds with high conductivity may have more 
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organic matter available for tadpole consumption.  Tadpole survival also decreased with 

increasing temperature, indicating that high temperature may be an additional stressor for 

tadpoles.   

Intensively managed pastures also were more heavily grazed than semi-natural pastures, 

which leads to vegetation differences in both terrestrial and aquatic habitats (Boughton et al. 

2010).  For example, wetlands in IM pastures were dominated by zones of Juncus effusus, a rush 

unpalatable to cattle (Boughton 2009).  In contrast, wetlands in semi-natural pastures generally 

supported more native plant species (Boughton et al. 2010), and were dominated by native 

grasses and sedges (Panicum hemitomon and Rhynchospora sp).  Fenced wetlands were enclosed 

for only two years, so the IM-R wetland still had vegetation characteristic of wetlands in 

intensively managed pasture wetlands, including dense stands of J. effusus.  Variation in 

vegetation and leaf-litter quality may lead to differences in algal food availability (Cattaneo et al. 

1998, Hart and Lovvorn 2000) and the abundance and diversity of invertebrates (Voights 1976, 

Webb et al. 1984, Sanderson et al. 1995, Morrison and Bohlen unpubl. data).  Aquatic insects are 

common predators of tadpoles (Caldwell et al. 1980, Formanowicz 1986, Peterson and Blaustein 

1992), so association between particular vegetation types and insect predators may affect habitat 

quality for amphibians.  Mesh enclosures in my experiment prevented direct predation by aquatic 

invertebrates on experimental tadpoles.  While larval amphibians can alter morphological 

development in response to chemical cues from invertebrate predators (McCollum and 

Leimberger 1997, Smith and Van Buskirk 1995), there were no differences in invertebrate 

community structure between wetlands in SN and IM pastures (Medley et al., unpubl. data).   

 Pasture modification also alters amphibian species richness and community composition.  

At MAERC, amphibian species richness was higher in wetlands within SN pastures than IM 
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pastures (Babbitt et al. 2009, Fauth and Windes, unpubl. data).  Wetlands in SN pastures favor 

habitat specialists such as treefrogs (e.g., Hyla squirella, H. gratiosa, and H. femoralis), while 

IM pastures are favorable for others, including exotics such as Lithobates catesbeiana (Fauth and 

Windes, unpubl. data).  In general, SN pastures had greater area of hardwood hammock than IM 

pastures.  Babbitt et al. (2006) found proximity to woodlot affected amphibian species 

composition at MAERC, with habitat specialists such as H. gratiosa, H. femoralis, and Anaxyrus 

quercicus found only in wetlands near woodlots.        

 The a priori contrast between wetlands released from grazing (R) versus grazed (G) was 

not statistically significant, but released wetlands had slightly higher tadpole survival than grazed 

wetlands.  Positive responses of amphibian assemblages to fencing led several researchers to 

recommend excluding cattle from aquatic environments (Schmutzer et al. 2008).  Amphibian 

species richness typically is lower in grazed (G) wetlands than released (R) wetlands (Fauth and 

Windes, unpubl. data, Jansen and Healey 2003, Knutson et al. 2004, Schmutzer et al. 2008).  The 

effect of grazing also may be species-specific.  Burton et al. (2009) captured more green frogs 

(Lithobates clamitans) in released wetlands than grazed wetlands, but the opposite trend existed 

for American toads (Anaxyrus americanus).  At MAERC, southern leopard frogs (Lithobates 

sphenocephala) are more than three times as likely to occur in R wetlands than G wetlands 

(Fauth and Windes, unpubl. data).   

 Clutch significantly affected tadpole survival (Table 21), with clutch A having the 

greatest survival, followed by clutch B and finally clutch C, which experienced relatively low 

survival experiment-wide.  Of the surviving tadpoles from clutch A, 25% were in Gosner stage 

36 or above; they had well developed hind limbs and could have reached metamorphosis within 

a few days.  Comparatively, only 9% of surviving clutch B tadpoles and 4% of clutch C tadpoles 
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were in stage 36 or above.  Experiment-wide, tadpoles from all clutches were smaller and less 

developed in ponds with higher survival rates than in ponds with low survival, a typical density-

dependent response: as the density of larvae increases, mean size decreases (Wilbur 1980, Morin 

1983, Wilbur et al. 1983, Scott 1990, Altwegg 2003).   

Genetic variation in survival among clutches confirms the potential for H. squirella to 

adapt to locally modified rangeland conditions such as pasture management.  However, I did not 

observe a clutch x wetland type interaction; poor conditions were equally detrimental (or even 

lethal) to all three clutches.  Lack of phenotypic plasticity in larval H. squirella makes it 

particularly important to identify and manage high quality aquatic habitat conditions.  While 

genotype affects survival, it is unpredictable; the effect of environment on survival can be 

predicted and environmental conditions can be manipulated through management strategies that 

promote tadpole growth.    

 Larval amphibians are excellent bioindicators, and their higher survival in semi-natural 

wetlands indicates these were a superior habitats; I therefore recommend preserving or restoring 

semi-natural conditions to Florida rangelands.  Pastures currently categorized as semi-natural 

should be maintained as such, without addition of ditches, fertilizers, or replacement of native 

vegetation.  Intensively managed pastures can be managed to support higher amphibian survival 

by reducing fertilizer application and excluding cattle from wetlands by fencing.  Other studies 

report positive effects of cattle exclusion on amphibians (Fauth and Windes, unpubl. data, Jansen 

and Healey 2003, Knutson et al. 2004, Schmutzer et al. 2008, Burton et al. 2009); a prudent 

management strategy is to exclude grazing in some wetlands.  Long-term fencing of intensively 

managed pasture wetlands may be necessary to return semi-natural vegetation, improve water 

quality, and restore the topography of heavily trampled pond basins.  Stocking density also could 
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be reduced in pastures with large numbers of wetlands (Schumtzer et al. 2008), but reduced 

stocking rates have a direct negative impact on ranch economics and may not be a feasible 

strategy for most ranchers (Arthington et al. 2007, Swain et al. 2007).  Alternatively, cattle could 

be moved into fenced wetlands for short periods, a technique termed “flash grazing” (Weltz et al. 

1989).  Fencing can be expensive to install and maintain, so ranchers would likely need to fence 

wetlands through cost share programs, such at the United States Department of Agriculture’s 

Wildlife Habitat Enhancement Program.  Being able to defer grazing in wetland may increase 

ranchers’ ability to maintain favorable forage species in wetland habitats on ranches, and so may 

benefit multiple ecosystem services.  Management strategies that minimize amphibian mortality 

are necessary to preserve the biotic integrity of wetland ecosystems and effectively conserve a 

taxon already in global decline.   
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GENERAL CONCLUSION 

 
Rapid increases in global food demands require improved understanding of how 

agriculture affects resident species.  Current agricultural practices attempt to maximize yield and 

largely ignore the need for biologically intact ecosystems.  Rangeland management alters both 

terrestrial and aquatic environments through landscape-level modifications (e.g., tree removal 

and ditching), cattle grazing, and fertilizers (Day and Detling 1990, Hobbs 1996, Frank and 

Groffman 1998, Babbitt and Tanner 2000, Pellett et al. 2004, Babbitt et al. 2006).  Ranches in 

south Florida support large numbers of rare, threatened and endangered species and provide a 

variety of ecosystem services that are critical to conservation priorities in the region (Bohlen and 

Swain 2009, Bohlen et al. 2009).  Conservation biologists must identify rangeland and pasture 

practices that pose the least threat possible to ecosystems while still supporting economic 

viability.  The MacArthur Agro-Ecology Research Center provided the opportunity to 

experimentally determine appropriate rangeland management practices.  The MacArthur Agro-

Ecology Research Center is a working cattle ranch situated in the framework of an ecological 

research center in south-central Florida and is home to a species-rich amphibian assemblage.      

Amphibians are ideal indicators of ecosystem responses to rangeland management 

because they are sensitive to perturbations in both terrestrial and aquatic environments (Figure 

14) and are a key link in many food chains (Meyer et al. 2004).  I examined responses of both 

adult and larval amphibians to rangeland management in both aquatic and terrestrial habitats at 

MAERC.  My results highlight the importance of semi-natural conditions and minimally altered 

habitat for amphibian survival.  Adult treefrog survival was positively associated with area of 

woodlot and larval treefrog survival was higher in wetlands within semi-natural pastures than 
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within intensively managed pastures.  It is critical to examine multiple life history stages and 

habitats of organisms with complex life cycles to provide complete information to ranchland 

managers.   

Using amphibians as indicator species, my results indicate that managers should strive to 

maintain semi-natural conditions and avoid further woodlot fragmentation to promote amphibian 

survival and preserve the integrity of rangeland ecosystems.  Ecologically informed rangeland 

management benefits diverse assemblages, including many threatened and endangered species.  

For example, ranchlands are critical habitat for the crested caracara (Caracara cheriway); in 

south-central Florida, most active nesting sites are on privately-owned cattle ranches, and 

reproductive success is higher on private ranches compared to nests on other land-use types 

(Morrison and Humphrey 2001).  Maintaining semi-natural conditions also benefits livestock; 

trees provide shade and cover for cattle, and native wetland vegetation such as maidencane 

(Panicum hemitomon) is high quality forage (Kalmbacher et al. 2002).  Semi-native pastures also 

provide valuable winter forage for cattle and native grasses survive better during cold freezes 

when Bahia grass dies back (E. Boughton, pers. comm.).  By implementing ecologically sound 

landscape management, ranchland managers can preserve biodiversity while benefitting their 

cattle operation.                  
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Figure 14. Amphibians are bioindicators for effects of rangeland management. 
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APPENDIX A: CHAPTER 2 EXPERIMENTAL WETLANDS 
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Appendix A: Chapter 2 Experimental Wetlands 
 
The twelve experimental wetlands from Chapter 2 are presented in the following figures.  In each 
figure, the focal wetland is in the center, colored in pale green.  Concentric buffers are 
represented in red (0 – 100 m), yellow (100 – 150 m), blue (150 – 200 m), and purple (200 – 250 
m).  The focal woodlot is outlined in red within the first 100 m buffer.  Subsequent woodlot is 
outlined in primary colors corresponding to the buffer in which it is located.  Green dots in the 
focal woodlot indicate randomly selected locations of the old PVC shelters; blue dots indicate 
randomly selected locations of the new PVC shelters (used in the spring sampling only).  
Surrounding wetlands are colored in pastel colors corresponding to the buffer in which they are 
located.  Each site is categorized as either semi-natural (SN) or intensively managed (IM) and as 
either grazed (G) or released from grazing (R).   
 
 
 
 

 

Figure 15. Wetland 49: SN-R.  Wetland 79 can be seen in bottom right of figure. 
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Figure 16. Wetland 66: SN-R. 

 

 

Figure 17. Wetland 79: SN-G.  Wetland 49 can be seen in upper left of figure.  
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Figure 18. Wetland 123: SN-G. 

 

 

Figure 19. Wetland 196: IM:R. 
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Figure 20. Wetland 205: IM-G. 

 

 

Figure 21. Wetland 245: IM-G. 
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Figure 22. Wetland 271: IM-R. 

 

 

Figure 23. Wetland 310: IM-R. 
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Figure 24. Wetland 336: IM-G. 

 

 

Figure 25. Wetland 595: SN-G. 
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Figure 26. Wetland 597: SN-R. 
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Appendix B: Additional calculations 
 
 

Table 25. Fraction of woodlot by site.  Pasture type: SN = semi-native, IM = intensively 
managed; Area (ha) 250 m = total hectares in the 250 m buffer of each focal wetland; Woodlot 
(ha) 250 m = total hectares of woodlot in the 250 m buffer of each wetland; Fraction woodlot = 
(Woodlot (ha) 250 m)/(Area (ha) 250 m) 

Wetland Pasture type Area (ha) 250 m Woodlot (ha) 250 m Fraction woodlot 

  49 SN 29.755   4.135 0.139 
  66 SN 26.554   0.979 0.037 
  79 SN 27.802   6.616 0.238 
123 SN 27.134   0.981 0.036 
196 IM 27.873   4.452 0.160 
205 IM 29.702   0.889 0.030 
245 IM 30.714   5.296 0.172 
271 IM 28.446   1.245 0.044 
310 IM 28.172   1.233 0.044 
336 IM 31.626   1.692 0.053 
595 SN 30.188 12.980 0.430 
597 SN 27.738 11.340 0.409 

 
 

Table 26. Estimated number of Hyla squirella supported by each pasture type.  Past = pasture 
type: SN = semi-natural, IM = intensively managed; Total ha = hectares of each pasture type at 
MAERC; Avg. fract woodlot = average fraction of woodlot, calculated from Fraction woodlot 
values in Table 24.  Est woodlot = estimated woodlot (Total ha x Avg fract woodlot).  Avg 
density = average density of H. squirella in frogs per ha (number of unique captures/area of focal 
woodlot); Est number frogs = estimated number of H. squirella (Est woodlot x Avg density).   

Past Total ha Avg fract woodlot Est woodlot Avg density (frogs/ha) Est number frogs 

SN 2,281 0.215 489.938   54.605 26,752.839 

IM 1,800 0.084 150.936 150.979 22,788.143 
    Total 49,540.982 
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