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ABSTRACT 

This study combined documentation of four boat propeller scar types in Halodule wrightii 

seagrass beds in Mosquito Lagoon, Florida with manipulative field experiments to document scar 

recovery times with and without restoration.  Scar types ranged from the most severe scar type 

(Type 1) with trench formation which had no roots or shoots in the trench, to the least severe  

(Type 4) scars that had no depth, intact roots and shoots shorter than the surrounding canopy.  For 

110 measured existing scars, the frequency of each scar type was 56% for Type 1, 10% for Type 2, 

7% for Type 3, and 27% for Type 4.  In the first manipulative experiment, experimental scars were 

created to document the natural recovery time of H. wrightii for each scar severity within one year.  

Type 4 scars recovered to the control shoot density at 2 months, while Types 1, 2, and 3 scars did 

not fully recover in one year.  Mean estimated recovery for H. wrightii is expected in 25 months 

for Type 1, and 19 months for Types 2 and 3.  For the second manipulative experiment, three 

restoration methods were tested on Type 1 scars over a 1 year period.  Restoration methods 

included: (1) planting H. wrightii in the scar trench, (2) filling the trench with sand, and (3) filling 

with sand plus planting H. wrightii.  There was complete mortality of all transplants at 2 months 

and only 25% of scars retained fill sand after 1 year.  With dense adjacent seagrass beds, natural 

recovery was more successful than any of my restoration attempts.  Thus, I suggest that managers 

should concentrate on preventing seagrass destruction rather than restoration.  
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CHAPTER 1: GENERAL INTRODUCTION 

Seagrass ecosystems are one of the most productive areas on earth, although they cover 

only 0.1 - 0.2% of the ocean globally (Duarte 2002, Duffy 2006, Erftemeijer and Lewis 2006).  

Seagrass ecosystems are unique because they provide structure to barren sediment bottoms, 

enhance community diversity through increased primary productivity, provide substrate for 

epiphytes that fuel intricate food webs, serve as critical nursery habitat, and stabilize coastal 

sediments (Beck et al. 2001, Burfeind and Stunz 2006, Duffy 2006).  Seagrasses act as important 

energetic links between terrestrial and marine ecosystems by exporting about a quarter of their net 

production to adjacent ecosystems (Duarte and Cebrián 1996, Duarte 2002). 

Unfortunately many valuable seagrass ecosystems are decreasing at an alarming rate 

worldwide from direct and indirect human impacts (Costanza et al. 1997, Durate 2002, Bostrom et 

al. 2006).  Direct impacts, such as mechanical damage from dredging, coastal construction, 

siltation, trawling, boat scarring and anchoring, bomb blasts, eutrophication, fish farming, and food 

web alterations, are all visible causes for seagrass declines (Duarte 2002, Bostrom et al. 2006, 

Erftemeijer and Lewis 2006).  Indirect causes, such as global climate change, and natural disasters, 

such as hurricanes, are also contributing to seagrass declines (Duarte 2002, Bostrom et al. 2006, 

Erftemeijer and Lewis 2006). 

In Florida, impacts from propeller scarring are increasing and are threatening the existence 

of seagrass ecosystems (Handley et al. 2007).  The only statewide assessment of seagrass scarring 

documented at least 70,000 ha of seagrass were moderate to severely-scarred (Sargent et al. 1995).  

There are many high traffic boating areas around the state of Florida that have been studied, 

including Tampa Bay and the Florida Keys (Handley et al. 2007).  A propeller scar is created when 

a boat propeller tears through the rhizomal mat of a seagrass bed, allowing for erosion that may 
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lead to the creation of barren sand trenches, and thus seagrass bed fragmentation (Durako et al. 

1992, Burfeind and Stunz 2006).  Seagrass recovery from propeller scar damage is both site 

specific and depth dependant.  Full recovery of shoal grass, Halodule wrightii, takes 0.3 - 4.6 years 

(Table 1).  For turtle grass, Thalassia testudinum, complete recovery from a propeller scar can take 

0.3 - 60 years (Table 1).  Differences in recovery between sites may be due to strength of currents, 

sediment type, and water depth (Durako et al. 1992, Dawes et al. 1997, Hammerstrom et al. 2007).  

Both Tampa Bay (Dawes et al. 1997) and the FL Keys (Kirsh et al. 2005) have tidal currents that 

increase erosion after propeller scar injuries.  Tidal currents can cause the scars to become deeper 

trenches where seagrass recolonization is less likely (Kirsch et al. 2005).  Seagrasses typically 

cannot grow down into trenches, making scar recovery very difficult or impossible without outside 

intervention (restoration) (Kirsch et al. 2005). 

Though propeller scar damage has been studied on Florida’s west coast and Keys, propeller 

scarring has never been studied on the east coast.  The Indian River Lagoon system (IRL) along the 

east coast of central Florida was designated as an Estuary of National Significance by the 

Environmental Protection Agency and has been listed as the most productive and species-rich 

estuary in North America (IRL NEP 2008) (Figure 1). Biological diversity in the IRL is very high 

in part because it is located in a transition zone that encompasses temperate and subtropical climate 

zones (Steward et al. 2006).  This diverse assemblage provides a critical habitat for over 2000 

species of macrophytes, invertebrates, fishes, birds and mammals (Smithsonian Institution 2007).  

It also contains the most diverse assemblage of seagrass species of any estuary in the United States, 

consisting of seven species: Halodule wrightii, Syringodium filiforme, Thalassia testudinum, 

Halophila johnsonii, Halophila decipiens, Halophila engelmannii, and Ruppia maritima (Steward 

et al. 2006).  The value of IRL seagrass beds are estimated at $329 million per year, or $14,000 per 
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hectare for the commercial and recreational fishing industry alone (IRL NEP 2008).  The value for 

seagrasses is even higher if other types of recreation, aesthetics, and water quality functions are 

considered; however, there are currently no monetary estimates for these benefits (IRL NEP 2008). 

Over the last 50 years, the abundance of seagrass the IRL has decreased 13% on average, 

and up to 90% in some areas (Virnstein et al. 2007).  Between 1992 and 1993, it was documented 

that 2,400 hectares of seagrass in the IRL were scarred by boats when surveyed (Sargent et al. 

1995).  Over the past decade, an increase in boating activity led to increased seagrass scarring in 

the IRL (MINWR CCP 2008).  Aerial surveys documented an increase in the number boaters in 

the northern IRL from 2002 to 2006, which accompanied the trend of increasing human population 

in surrounding areas that have negatively impacted the lagoon (Scheidt and Garreau 2007).  About 

46,000 boaters were documented in the northern IRL between 2006 and 2007, of which 76% were 

fishing boats (Scheidt and Garreau 2007).  Boaters used the northern IRL year round, and there 

was no difference in the mean number of boats per month (Scheidt and Garreau 2007).  Over half 

of the boaters using the IRL traveled 51-100 miles to fish, showing that the IRL is a very popular 

place to go boating for all people in central Florida and not just coastal residents (Scheidt and 

Garreau 2007).  

In addition to the increase in boating activity, there have been advances in boating 

technology that allow recreational boaters to travel with outboard motors in shallower waters.  

Newly designed, shallow boat hulls accompanied by outboard motors mounted on hydraulic lifts 

are now able to maneuver in very shallow areas.  For example, Flats CatsTM states their shallow 

water boats can travel and maneuver in as little as 9 cm of water on plane at speeds up to 32 km/h 

(flatscats.com/performance.htm). 
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Moderate to severely-scarred areas have increased in the northernmost portion of the IRL, 

also known as Mosquito Lagoon (MINWR CCP 2008).  In response to this increase, Merritt Island 

National Wildlife Refuge (MINWR) enacted a pole-troll zone to protect 1,272 hectares of 

Mosquito Lagoon seagrass in the spring of 2006 (MINWR CCP 2008).  The Pole-Troll Zone 

prohibits boaters from using their main combustion engines, with the exception of marked 

channels.  Boaters are allowed to troll with a shallow electric motorized propeller, pole, or paddle 

to maneuver in places outside the channels.  Fines for the destruction of seagrasses range from 

$50-1000 (FWC 2008).  Between 2002 and 2006, aerial surveys documented an increase in boaters 

from 483 to 603 in the Pole-Troll Zone, of which 86% were recreational fishing boats (Scheidt and 

Garreau 2007).  In 2006, Scheidt and Garreau documented that the Pole-Troll Zone changed boater 

behavior to increased use of poles and trolling motors, however 80% of the boaters in transit did 

not use the channels (2007).  MINWR immediately initialized a large-scale analysis of aerial 

photography (taken in the summer of 2007) to assess the total amount of seagrass area currently 

damaged, the effectiveness of the Pole-Troll Zone, and to monitor the scar recovery from repeated 

aerial photos.  This project is nearing completion by Dynamac Corporation (D. Scheidt personal 

communication).  My study complements this research as a ground-truthing, fine-scale 

combination of observations and manipulative experiments to document: (1) the existence of 

multiple scar types in Mosquito Lagoon, (2) recovery time of each type of scar, and (3) restoration 

methods for the most severe scar type.  My results are important to help develop a seagrass 

management plan Mosquito Lagoon. 

My study is novel because it is the first to describe and document the severity of individual 

propeller scars in very shallow waters of Mosquito Lagoon.  Initial measurements of existing 

propeller scars were used to design a manipulative field experiment to document the natural 
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recovery time of the dominant seagrass, H. wrightii in different scar severities.  A second 

manipulative field experiment was conducted to test if three restoration methods could speed up 

the recovery time of H. wrightii when applied to the most severe scar type. 
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CHAPTER 2: BASELINE SCAR MEASUREMENTS 

Methods 

Propeller scars had never been measured in Mosquito Lagoon, so I gathered baseline 

measurements on existing boat propeller scars in Mosquito Lagoon.  My objectives were to 

document differences in severity within individual scars, and find the mean dimensions for each 

scar severity.  In addition, the observations and measurements detailed below were necessary 

information to design manipulative experiments to examine H. wrightii seagrass recovery with and 

without restoration described in Chapter 3. 

Study organism 

Halodule wrightii, is the dominant seagrass in Mosquito Lagoon (Hall et al. 2001).  Also 

known as shoal grass, H. wrightii (Figure 2), is considered a pioneer species of seagrass because it 

can tolerate greater variations in salinity, water depth, and clarity than other seagrass species 

(Sargent et al. 1995, Dunton 1996).  Compared to Thalassia testudinum, and Ruppia maritima, H. 

wrightii, is the most salt tolerant and able to survive up to 70 ppt (Koch et al. 2007).  In Mosquito 

Lagoon, H. wrightii occur at a mean depth range of 0.5-1.9 m (Hall et al. 2001).  Halodule wrightii 

requires approximately 20% direct light to grow (Steward et al. 2005).  Halodule wrightii can be 

found on substrate ranging from sand to mud, usually containing less than 6% organic composition 

(Terrados and Duarte 1999, Hemminga and Duarte 2000). 

Halodule wrightii and all seagrasses are submerged angiosperms, underwater plants that 

spread using a horizontal underground growing stem structure called a rhizome (Marbá and Duarte 

1998, Hemminga and Duarte 2000, Marbá et al. 2006).  From the rhizome, both roots and leaves 

are produced (Duarte 2002).  Roots are shallow and create an oxidized micro-layer in which 
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nitrogen-fixing bacterial communities reside (Welsh 2000).  Leaves, also called blades, are 

bundled together in various numbers depending upon the season, and are bound together at the 

shoot.  These vertical stems, or shoots, are the most commonly counted structure for seagrass 

density measurements.   

Halodule wrightii is a perennial monocot that produces seeds that can last up to 46 months 

(McMillian 1991, Orth et al. 2000).  However, seeds or seedlings of H. wrightii have never been 

documented in the IRL, and therefore sexual reproduction is considered absent or a rare event (Hall 

et al. 2006a).  The primary dispersal method for H. wrightii in the IRL is rhizome fragmentation 

(Hall et al. 2006a).  Fragments of H. wrightii containing 3 short shoots were most commonly found 

floating above seagrass beds, and were discovered to be viable for up to 4 weeks of floating in the 

IRL (Hall et al. 2006a).   

In the Caribbean and Florida, H. wrightii is one of the first species to colonize, followed by 

Syringodium filiforme, and eventually leading to the climax species Thalassia testudinum (Marbá 

and Duarte 1998).  These three species can coexist in the same seagrass bed due to root partitioning 

(Duffy 2006).  Halodule wrightii has the shortest roots and occupies the surface sediment, S. 

filiforme occupies the area below H. wrightii roots and T. testudinum has the deepest roots that 

reside below the other two species (Duffy 2006). 

Study area 

Mosquito Lagoon is the northern portion of the IRL along the east coast of central Florida 

(Dybas 2002) (Figure 1).  It stretches from Ponce de Leon Inlet south to Cape Canaveral, Florida 

and 16,000 ha are protected by MINWR and Canaveral National Seashore (CANA) (Scheidt and 

Garreau 2007). Mosquito Lagoon is home to 41 federally listed species, which is more than any 

other refuge or park in the continental United States (MINWR CCP 2008).  Mosquito Lagoon’s 
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4,500 hectares of seagrass beds are world renown for sport-fishing, and provide habitat for 

commercially important fish species including snook, tarpon, red and black drum, spotted sea trout, 

and striped mullet (MINWR CCP 2008).  

Mosquito Lagoon is unique to previously studied propeller scarred areas because of the 

shallow water depth, slow water motion and fine sediments (Steward et al. 2006).  Mosquito 

Lagoon is very shallow, 1.7 m depth on average (Steward et al. 2006).  Southern Mosquito Lagoon 

has semi-diurnal tides that are microtidal, with the maximum water level change of 10 cm and less 

than 2 cm in some areas (Smith 1993, Hall et al. 2001).  Water motion in the lagoon is 

predominately wind-driven, with winds ranging from 0-30 mph on average that create water 

variations of only ±10-30 cm (Smith 1993, Hall et al. 2001).  Water levels in the lagoon are 

seasonal, occurring with annual rise and fall of ocean water levels, with high water levels peaking 

in October-November, and lowest water levels in April-May (Hall et al. 2001).  Average rainfall 

for the lagoon is 1 cm (Hall et al. 2001).  During the year, mean water salinity ranged from 20-35 

ppt, mean water temperature ranged from 15-31 oC, and light attenuation ranged from 0.3-1.69 m-1 

with 0.92 m-1 on average (Hall et al 2001).  Sediments in Mosquito Lagoon primarily consist of 

fine slit-clay loam (Steward et al. 2006). 

Measurements of existing propeller scars 

To understand the diversity of propeller scars currently in Mosquito Lagoon, I flew in a 

helicopter with MINWR to document areas that were severely scarred.  Then I measured all scars 

(110 total) that could be found by boat in each severely scarred area along the length of Mosquito 

Lagoon between September 2006 and February 2007 (Figure 3).  Measurements for each scar 

included: depth, width, H. wrightii canopy height in the scar, and H. wrightii canopy height 

surrounding the scar.  Other descriptive measurements collected included: GPS location, scar 
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orientation (compass direction), salinity, temperature, water clarity depth (measured before 

entering water using a turbidity tube in cm), and sediment from one core (3 cm diameter x by 5 cm 

deep) per scar.  The percent cover of the following was also recorded: H. wrightii cover in each 

scar, H. wrightii cover surrounding each scar, rhizome cover in each scar, drift algae cover in each 

scar, and leaf litter cover in each scar.  Percent cover was measured using a 1 x 0.25 m strip 

quadrat divided into four sections, only one 0.25 x 0.25 m section in the quadrat was counted for 

density measurements, and the quadrat was haphazardly chosen per scar (Dawes et al. 1997).  

Intra-scar measurements 

Intra-scar variation is the change in scar severity type within a single scar.  The distance 

between and length of each scar type (severity) was measured for 15 m in one direction for all 110 

scars. For every severity scar type encountered within one scar, the following measurements were 

collected: scar depth, width, and canopy height in and surrounding the scar, and percent cover of 

H. wrightii in scar, H. wrightii surrounding scar, rhizome in scar, and the number H. wrightii 

shoots in and surrounding the scar.  

Sediment analyses 

Sediment cores collected from each scar were analyzed for grain size fractions and organic 

content.  All 110 sediment samples were dried for 48 hours at 80o C and then ground with a mortar 

and pestle.  Samples were then sieved into 5 fractions: > 5 mm, 5 mm, 2 mm, 1 mm, and < 1 mm.  

Each fraction was weighed and percents of each fraction were calculated.   

Next, sediment grain size fractions were recombined, and the complete sediment samples 

were dried at 80o C for 24 hours prior to being placed in a muffle furnace for organic content 

analysis (Parker 1983, Fabiano et al. 1995).  Samples were weighed before and after being placed 
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in a muffle furnace for 2 hours at 450o C (Parker 1983, Fabiano et al. 1995).  The organic content 

was calculated from the change in weights and expressed as percent organic matter. 

Statistical analyses 

All measurement data were initially tested for normality using Shapiro-Wilks test, and 

homogeneity of variance using Levene’s test in SPSS Statistical Software (Version 11.5).  All 

measurements were transformed using log10, except for percent fractions which were transformed 

using arc sin to normalize the data.  Only transformed measurement data were used in analyses. 

To document if there were different types of scars, I entered all measured variables in 

Canonical Discriminant Analysis to determine the number of unique scar types and which 

variables were most important in classifying each scar type.  The Wilk’s Lambda test was used to 

test which measurements were significant in defining scar groups.  The frequency of each scar type 

was calculated from the 110 measured scars.  The overall mean and mean per scar type for each 

general measurement were calculated. 

Correlations of all measured variables were tested with Pearson two-tailed tests.  To further 

test the significant correlation of scar depth versus scar width, a linear regression was calculated 

for scar Type 1, since it was the only scar type having depth. 

All scars were mapped in GIS, and GPS coordinates were used to compute distances in 

meters from each scar to the nearest channel (Figures 1, 3).  Channels included the Atlantic 

Intracoastal Waterway, the edge of the Pole-Troll Zone and the inner channels of the Pole-Troll 

Zone.  Distances were used to see if there was a pattern in scar sediment type using Canonical 

Discriminant Analysis.  Sediment fractions were also tested to see if there was a pattern among 

scar types and if sediment type could predict scar types using Canonical Discriminant Analysis.  
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Sediment fractions for each scar type were tested with a one way analysis of variance (ANOVA) to 

test if the mean of each fraction was significantly different in each scar type. 

Results 

Scar severity categories 

Canonical Discriminant Analysis was used to test for categories of scar severity based on 

measured scar dimensions, and four groups were clearly distinguished (Figure 4).  Types 1 and 4 

scars (most extreme) were more accurately classified and intermediate scar Types 2 and 3 were 

less clear. (Table 2).  I concluded that four types of propeller scars accurately represented propeller 

scarring in Mosquito Lagoon because 91.8% of all scars were correctly classified (Table 2).  

Significant variables used to classify scar types were: (1) shoot density in scar, (2) percent root 

cover, (3) scar depth, and (4) scar canopy height (Wilk’s Lambda p < 0.001).   

Type 1 was the most severe scar type, exhibiting a trench formation, having the bottom of 

the scar deeper than the surrounding sediment surface and an absence of seagrass shoots and 

visible rhizomes within the scar (Figure 5).  Type 2 was a scar type having the bottom level with 

the surrounding sediment surface, and with an absence of seagrass shoots and visible rhizomes 

(Figure 5).  Type 3 was a scar type having the bottom level with the surrounding sediment surface, 

and containing rhizomes but no shoots (Figure 5).  Type 4 was a scar having a bottom level with 

the surrounding sediment surface, and containing rhizomes with shoots that were cut shorter than 

the surrounding canopy height (Figure 5).  All four scar types exhibited a linear path through the 

seagrass and could not be distinguished from a boat.  However, aerial photos were underestimating 

the amount of scarring because Type 4 scars could not be seen, since there was not enough contrast 

between the seagrass and the sediment (D. Scheidt personal communication).  Out of the 110 scars 
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measured, the most severe scar type (Type 1) was the most common at 56.4%, followed by the 

least severe scar type (Type 4) at 27.3%, Type 2 at 10.0%, and Type 3 at 6.4% (Figure 6). 

General scar measurements 

The mean width (± S.E.) of all measured scar was 32 (± 2) cm, and the mean depth of scars 

ranged from 9 (± 1) cm in Type 1 to 1 (± 1) cm in Type 4 (Table 3).  Scar depth was significantly 

correlated with scar width in Type 1 scar (ANOVA: p < 0.001, r2 = 0.476; Figure 7).  Scar 

direction was not significantly correlated with any measured variable (Pearson correlation:  

p > 0.088). 

Two species of seagrass, Halodule wrightii and Syringodium filiforme, were found in and 

surrounding the scars.  The mean shoot density of S. filiforme was 1%, while H. wrightii comprised 

99% of all measured seagrass.  Since H. wrightii was the dominant species of seagrass in Mosquito 

Lagoon, from here on I report only seagrass measurements for H. wrightii.  The mean H. wrightii 

shoot count in scars ranged from 0 (± 0) in Type 1 to 44 (± 6) in Type 4 scars.  Scar Type 4 mean 

H. wrightii shoot density inside the scar was less than half of the mean surrounding H. wrightii 

shoot density (Table 4).  The mean H. wrightii canopy height in scars ranged from 0 (± 0) in  

Type 1 scars to 12 (± 1) in Type 4 scars.  The surrounding seagrass canopy height mean was 

similar in each scar type, ranging from 27-32 cm (Table 3).  The percent cover (± S.E.) of  

H. wrightii in Type 4 scars was 25 (± 4)% and was less than half of the mean percent coverage of 

H. wrightii surrounding the scar, 62 (± 5)% (Table 4).   

Mean percent root cover ranged from 56-73% in scar Types 3 and 4, while scar Types 1 

and 2 did not have roots.  Mean percent leaf litter cover was quite variable, ranging from 10 (± 4)% 

in scar Type 4 to 55 (± 5)% in scar Type 1 (Table 4).  Mean percent cover of drift algae was also 

highly variable among scar types (Table 4). 
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Intra-scar measurements 

Of the 110 scars measured, only 2 scars contained multiple scar types.  Both scars 

alternated between Type 1 and Type 4 scar severities, repeatedly alternating along the 15 m 

sections measured.  Scar Type 1 was more frequent comprising 65% of both scars, while Type 4 

severity comprised 35%.  Severities switched 5 times in the first scar and 6 times in the second 

scar.  The mean length (± S.E.) of a severity section was 1.6 (± 0.4) m.  The mean length ranged 

from 1.9 (± 0.6) m in Type 1 scar sections to 1.3 (± 0.6) m in Type 4 sections.  Only Type 1 scars 

sections had depth, and the mean depth (± S.E.) was 13.9 (± 1.7) cm.  The remaining 108 scars had 

a constant severity for at least 15 m along the length of each scar. 

Scar sediment analysis 

Sediment composition varied among scar types.  Scar Types 1 and 4 were significantly 

different in all fractions (ANOVA: p < 0.01; Figure 8).  Type 4 scars were dominated more by fine 

(< 1 mm) sediments than Type 1 scars, with intermediate levels in scar Types 2 and 3.  Overall, 

60% of all sediment samples were predominately composed of the most fine sediment (< 1 mm) 

fraction (Figure 8).  Mean organic content was 2.3 (± 0.1)% for all samples and did not 

significantly differ among scar types. 

Canonical Discriminant Analysis was used to test if scar categories could be classified with 

sediment type and location, using the following measurements: sediment fractions, nearest channel 

distance, scar GPS location, scar depth, and water depth.  There was no pattern in the location of 

sediment types (Figure 9).  Sediment fractions classified scars into two groups rather than four 

groups, as predicted by the scar and seagrass measurements (Table 5, Figure 9).  Thus, sediment 

fractions were not good predictors of the scar types. 
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Discussion 

My study was the first to discover that different severities within individual propeller scars 

exist, and the first to document the dimensions of propeller scars in the IRL.  Of the scar types I 

identified, only Types 1 and 2 were documented in previous studies (Table 1).  The scarring 

observed in Mosquito Lagoon is less severe than other areas, such as Tampa Bay and the Florida 

Keys.  Seagrass recovery from propeller scar damage is both site specific and depth dependant 

(Table 1).  Sites that have more tidal or current motion are likely to erode scars deeper and wider, 

making seagrass recovery difficult (Kirsh et al. 2005).  Sediment composition may influence how 

well the seagrass can grow and remain rooted when exposed to currents (Durako et al. 1992, 

Dawes et al. 1997, Hammerstrom et al. 2007).  For example, Tampa Bay’s substrate is composed 

of siliceous sand that is firmer than the Florida Keys, which has a different mineral composition in 

the substrate of carbonate sand (Fonseca et al. 2004).  Scars in the Florida Keys have more coarse 

sediments with a lower pH than the sediments from surrounding seagrass beds; this however was 

not found in Tampa Bay scars (Sargent et al. 1995).  Sites that are in more shallow water may take 

longer to recover (Table 1).   

Mosquito Lagoon is microtidal with very slow, wind-driven currents.  I predict scars 

created in Mosquito Lagoon to be less severe than previously studied areas.  However, Mosquito 

Lagoon is also very shallow with fine, unstable sediments, which may make the recovery more 

difficult.  Table 1 shows propeller scars can range 0.3 – 7.0 m in width, and 10 – 40 cm in depth.  

Previously documented scars can be far more severe than the most severe scars (Type 1) I have 

documented in Mosquito Lagoon, with mean size of 32 cm wide x 9 cm deep. 

The measurements of existing scars were analyzed to not only understand the severity of 

propeller scarring in Mosquito Lagoon, but to design experiments to test the recovery of  
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H. wrightii from all propeller scar types.  The first objective in planning the experiments was to 

document if different scar types exist, and the frequency of each type in Mosquito Lagoon.  Four 

different scar severities were documented (Figure 5).  Out of the 110 scars measured in the field, 

the most severe scar type was the most common (Figure 6).   

My second objective was to identify mean measurements for each scar type, and use them 

to make experimental scars.  Only the mean dimensions from the four scar types were used in 

testing the recovery time of H. wrightii.  Multi-severity scars were not included in the experiments 

because they were very rare in the landscape, only 2 scars out of 110 were found to have multiple 

severities.  Since 99% of all seagrass measured was H. wrightii, it was the only seagrass measured 

for recovery time in the experiments. 

My third objective was to determine if sediment composition was an important factor in 

identifying scar types, and if sediment types were distributed in a pattern or gradient in the 

landscape.  The distribution of sediment types was used to decide if the experiment should be 

planned in more than one location.  Canonical Discriminant Analysis results showed that sediment 

type was not a good predictor of scar type, and no clear sediment patterns were found in the 

landscape.  Sediments were heterogeneously distributed, and were predominantly composed of 

fine sediments (< 1 mm), with 2% mean organic matter (Figure 7).  Since sediment types were not 

found in a specific pattern or at specific locations, only one location was used for the manipulative 

experiments. 

In summary, my study documented propeller scar dimensions and individual scar severities 

for the first time in Mosquito Lagoon.  I found that there were four main areas with intense 

scarring, three of which were within the Pole-Troll Zone boundaries (Figure 3).  All scars in these 

areas were measured, and the most common scars found were the most severe scars (Type 1).  If 
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regulations were strictly enforced, then the majority of the scars in the seagrass would be made by 

trolling motors.  Trolling motors have adjustable mounts for changing propeller depth in shallow 

water to avoid hitting the sediment.  Trolling motors are battery powered, and are not powerful 

enough to plow through the sediment creating less severe scars (Type 4).  According to Engeman 

et al. (2008), seagrass restorations are far more expensive than prevention methods that involve 

adding signage and law enforcement officers.  I would recommend that the Pole-Troll Zone should 

have more than 2 signs (a sign at each channel entrance), especially since Scheidt and Garreau 

found that 80% of boaters in transit do not use the marked channels (2007).  New signs would only 

cost an average of $192 each (Engeman et al. 2008).  I also recommend that there be more than one 

officer to patrol the 1200 ha Pole-Troll Zone.  More patrol officers would each cost an average of 

$59,400 per year (Engeman et al. 2008).  To put costs into perspective, a single patrol officer’s 

annual salary was equivalent to the value of 0.42 ha of seagrass in the Florida Keys (Engeman et 

al. 2008).  For every seagrass hectare in the IRL protected to allow recovery, or protected to 

prevention boat scarring, an additional $14,000 is gained in fisheries resources (IRL NEP 2008).  

More than 119 species of fishes have been documented in the IRL, and seagrass percent cover is an 

important factor in determining fish assemblages (Kupschus and Tremain 2001).  Many fish 

species in the lagoon reproduce in the ocean, but rely on estuarine juvenile phase to complete the 

reproductive cycle (Kupschus and Tremain 2001).  Seagrass ecosystems should be protected 

because they are critical in creating habitat in areas of barren sediment, enhancing community 

diversity, establishing intricate food webs, and stabilizing coastal sediments (Beck et al. 2001, 

Burfeind and Stunz 2006, Duffy 2006).  Seagrass beds in the Indian River Lagoon provide a 

critical habitat for over 2000 species of invertebrates, fishes, birds and mammals, and are a key 
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reason why the IRL is the most productive and species-rich estuaries in North America (IRL NEP 

2008, Smithsonian Institution 2007). 
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CHAPTER 3: MANIPULATIVE EXPERIMENTS 

Methods  

Using the mean measurements for each scar type from Chapter 2, two complimentary 

manipulative experiments were conducted to examine and potentially maximize Halodule wrightii 

recovery from propeller scars in shallow Mosquito Lagoon waters.  The first experiment evaluated 

the natural recovery rate of H. wrightii in the four scar types.  I hypothesized that different severity 

in individual propeller scars would cause different recovery times for H. wrightii.  The second 

experiment assessed the success of known restoration methods for the most severe scar type  

(Type 1).  I hypothesized that the addition of different restoration methods would cause Type 1 

scars to recover faster than natural recovery. 

Study area 

The location for my manipulative experiments was in an area with minimal boat traffic.  In 

order to reduce the likelihood of boats running over the experiments, experiments were placed in 

the Pole-Troll Zone where boaters were not allowed to use their main combustion engines  

(Figure 1).  Experiments were placed in a dense seagrass bed between the barrier island of 

Canaveral National Seashore and an island west of the barrier island within the Pole-Troll Zone, 

which effectively blocked boat traffic in two directions (Figure 1). The seagrass bed’s mean depth 

(± S.E.) was 56 ± 4 cm.  The seagrass bed was dominated by H. wrightii, with occasional small 

patches of Ruppia maritima in spring (personal observation).  The GPS coordinates for this 

seagrass bed location were N28.48.702 and W80.45.705. 
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Layout and monitoring of experiments 

The experimental treatments described below were placed in a randomized block design to 

control for natural landscape variation (Figure 10).  For the randomized block design, one replicate 

of each treatment was placed in a block, with a total of eight treatments per block (Figures 10, 11).  

There were 10 replicates for each treatment, and thus 10 blocks total.  Each block was 18 x 18 m 

and was divided into nine equal 6 x 6 m sections.  Eight of the nine sections contained a single scar 

treatment (Figure 10).  In the center of each section, each experimental scar was placed a minimum 

of 2 m away from all other scars.  All experimental scars were 200 cm long x 32 cm wide.  

Treatment location and scar direction within each block were randomized using Excel.  Each 

experimental scar was marked with an aluminum tag on a PVC pole one meter away from each 

end.  All PVC poles were pushed down into the sediment leaving 15 cm remaining above the 

sediment surface (Figure 12). 

All experimental scars were measured in the center for new seagrass recruitment and 

growth.  Measurements included scar width, depth, scar slope angle, H. wrightii canopy height 

inside scar, H. wrightii canopy 1 m away from scar side, H. wrightii shoot density per 25 x 25 cm 

inside scar, and H. wrightii shoot density per 25 x 25 cm at 1 m away from scar side.  Also, the 

percent cover of H. wrightii inside the scar, the percent cover of H. wrightii 1 m away from the 

scar, percent leaf litter cover, and drift algae cover were measured.  Water measurements were 

collected on each sampling date and included: salinity, temperature, and water clarity depth 

(measured before entering water with a turbidity tube in cm).  Also, any erosion that occurred in 

the scars was documented.  All measurements were taken immediately prior to digging the 

experimental scars, then after 2 weeks, 1 month, 2 months, 3 months, 6 months, 9 months, and 12 
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months.  The initial measurements were taken on 17 July 2007, and final measurements were taken 

on 3 August 2008. 

Natural recovery of seagrass in experimental propeller scars 

To document the natural recovery time of H. wrightii in each scar type, 10 replicates of 

each type of scar were created and measured for recolonization at set intervals over one year.  

Treatments included: (1) Type 1 scars with a depth of 9 cm, no roots and no shoots inside the scar, 

(2) Type 2 scars with no depth, no roots, and no shoots, (3) Type 3 scars with no depth and no 

shoots, but with intact roots, and (4) Type 4 with roots, shoots, and blades cut from mean canopy 

height of 44 cm to 12 cm high.  The controls for this experiment were areas of dense seagrass of 

the same dimensions (200 cm long x 32 cm wide) as the experimental scars within larger seagrass 

beds.  Type 1 scars were created using a 32 cm PVC plow, so that the depth (9 cm), width (32 cm), 

and scar angle (45o) in all experimental Type 1 scars remained constant (Table 6).  The plow 

consisted of a diagonally cut and sharpened piece of 32 cm diameter PVC with aluminum mesh 

attached at the end with rivets, and fitted with an aluminum rod through the center for handles 

(Figure 13).  The PVC plow created uniform scar depth and slope angle for all Type 1 scars, which 

could not be done using a hand shovel or boat propeller (Table 6).  Type 2 scars were created by 

severing the seagrass roots with a garden spade and raking out the seagrass inside scars with a  

32 cm long rake.  Type 3 scars were created by trimming all above-ground biomass to the benthos 

within 200 cm x 32 cm areas using grass shears.  Type 4 scars were created by trimming all 

seagrass blades to 12 cm above the benthos within 200 cm x 32 cm areas using grass shears  

(Table 6). 

All measurement data were initially tested for normality using Shapiro-Wilks test, and 

homogeneity of variance using Levene’s test.  Due to non-normality, experiments were analyzed 
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using separate Kruskal-Wallis tests (the non-parametric equivalent of a one-way ANOVA) to test 

for significant differences among treatment means for each growth measurement and scar 

dimension variable separately for each time period.  Since Kruskal-Wallis tests were repeated eight 

times for each measured variable, the Bonferroni method was used to correct the significance level 

from p= 0.05 to p = 0.00625. 

Restoration of experimental propeller scars 

To test restoration methods to potentially reduce the recovery time of H. wrightii, I tested 

three known protocols with the most severe scar type and measured recolonization at set intervals 

over one year.  

Halodule wrightii is considered the ideal transplant species since it is more tolerant to a 

wide range of conditions than other seagrass species (Buckholder et al. 1994; Dunton 1996). 

Halodule wrightii can recover faster than other species of seagrass because it has a greater density 

of shoot and rhizome nodes, providing the ability to branch more often and produce more shoots 

with blades (Durako et al. 1992; Sargent et al. 1995).  Halodule wrightii is often used to stabilize 

the sediment for climax seagrass species such as T. testutinum; this technique is called 

“compressed succession” (Hall et al. 2006b).  Halodule wrightii has been successfully replanted 

using staples (Hall et al. 2006b), peat pots (Sheridan et al. 1998), planted in sand tubes  

(Hall et al. 2006b) and large sod squares (Thorhaug 1986).  I decided to use restoration methods 

shown to be successful transplanting H. wrightii in other areas of Florida.  Hall et al. was 

successful in using the staple method to transplant H. wrightii and sand tubes to fill in scars in both 

Tampa Bay and the Florida Keys (2006b).  The scars in both places recovered in one year to 

control H. wrightii densities (Hall et al. 2006b).  Since this was successful, I decided to use the 

staple method to transplant H. wrightii, and use fine sand to fill scars.  I did not use sand tubes 
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because commercially available tubes were larger than the experimental scars were deep, and the 

current flow was minimal in Mosquito Lagoon. 

All treatments and the control started by creating a Type 1 scar trench (200 x 32 x 9 cm).  

Restoration methods tested were: (1) planting H. wrightii in the scar trench, (2) filling the scar 

trench with commercially available sand, and (3) filling the scar trench with commercially 

available sand followed by planting H. wrightii.  The control was a Type 1 scar with no added 

restoration.  All treatments and the control were replicated 10 times.  For the fill only and the fill 

and plant treatments, scars were filled with 0.57 m3 of KolorscapeTM extra fine play sand (1 mm 

grain size).  Each bag was opened underwater and poured directly into the scars.  After all bags 

were poured, the scar surfaces were smoothed flat by hand.  All planting of H .wrightii used the 

staple method described in NOAA’s Guidelines for the Conservation and Restoration of Seagrasses 

in the United States and Adjacent Waters (Fonseca et al. 1998).  Each transplant unit of H. wrightii 

was composed of a three-shoot fragment with a growing tip.  The rhizome of each transplant was 

attached to a metal garden staple with a paper twist tie (Figure 14).  Fragments with three shoots 

were used because it is the most common fragment size produced from natural H. wrightii 

fragmentation in the IRL (Hall et al. 2006a).  Three-shoot fragments can attach to substrate and 

root within 2 weeks (Hall et al. 2006a).  Each planted scar contained 16 transplant units, in a 4 x 4 

array.  Each row was spaced approximately 25 cm apart within the scar.  All seagrass was collected 

and transplanted within 4 hours.  

All measurement data were initially tested for normality using Shapiro-Wilks tests, and 

homogeneity of variance using Levene’s tests.  Due to non-normality, experiments were analyzed 

using separate Kruskal-Wallis tests to test for significant differences among treatment means for 

each growth measurement and scar dimension variable separately for each time period.  Since 
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Kruskal-Wallis tests were repeated eight times for each measured variable, the Bonferroni method 

was used to correct the significance level from 0.05 to 0.00625. 

Sediment core analysis 

One sediment sample per experimental scar was collected before the creation of the scar 

and at the end of the experiments to test if composition changed over time.  Each sediment core 

was analyzed for grain size fractions and organic content.  All sediment samples were dried for 48 

hours at 80o C and then ground with mortar and pestle.  Samples were sieved into five fractions:  

> 5 mm, 5 mm, 2 mm, 1 mm, and < 1 mm.  Each fraction was weighed and percentages were 

calculated.  After sieving, complete sediment samples were dried at 80o C for 24 hours prior to 

being placed in a muffle furnace for organic content analysis (Parker 1983, Fabiano et al. 1995).  

Samples were weighed before and after being placed in a muffle furnace for 2 hours at 450o C 

(Parker 1983, Fabiano et al. 1995).  The organic content was calculated from the change in weights 

and expressed as percent organic matter.  Kruskal-Wallis tests were used to document if there were 

significant differences among initial and final sediment fractions, and organic content in samples. 

Results  

Site consistency 

Water temperature ranged from 18-30o, salinity ranged from 33-44 ppt, and water clarity 

depth ranged from 36-60 cm among blocks (Figures 15-17).  The mean water depth (± S.E.) was 

56 (± 4) cm for all blocks (Figure 18).  Water clarity may have been greater if measured with a 

different device because my turbidity tube was 60 cm long; the maximum measurement possible 

was 60 cm (Figure 17). 
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Halodule wrightii density, percent cover and canopy height of the seagrass surrounding 

scars were not significantly different from the between blocks over one year (Figures 19-21).  

Mean density (± S.E.) of H. wrightii surrounding scars and in control plots ranged from 77 (± 4) to 

235 (± 10), however some areas had densities as high as 469 shoots per 25 x 25 cm in the spring 

(Tables 6, 8).  Mean canopy height (± S.E.) of H. wrightii surrounding scars and in control plots 

ranged from 21 (± 1) to 47 (± 1) cm over one year (Tables 6, 8). Mean percent cover (± S.E.) of H. 

wrightii surrounding scars and in control plots ranged from 28 (± 2) to 87 (± 2)%, including half of 

the scars in the spring and summer having 100% cover (Tables 6, 8).   

Natural recovery experiment 

Type 4 scars recovered to the H. wrightii density, percent cover, and canopy height of the 

control treatment in 3 months, and was the only scar type to completely recover within one year 

(Figures 22-24, Table 6).  First colonization by a single rhizome across the width of the most 

severe (Type 1) scars was observed at nine months.  After 12 months, mean H. wrightii shoot 

density (± S.E.) increased from zero to 116 (± 21) in Type 1, 115 (± 20) in Type 2, and 154 (± 31) 

in Type 3 scars (Figure 22, Table 6).  Types 1, 2, and 3 were significantly different from the 

control at 12 months (Kruskal-Wallis: p < 0.001; Table 7).  If scars continue to increase in shoot 

density at the same rate, then I would expect to see recovery to control density in 28 months for 

Type 1 and 2 scars, and 21 months in Type 3 scars.   

Percent cover of H. wrightii (± S.E.) increased from zero initial cover to 46 (± 9)% in  

Type 1, 47 (± 9)% in Type 2, and 58 (±12)% in Type 3 scars at 12 months (Figure 23).  Scar Types 

1, 2, and 3 were significantly different from the control at 12 months (Kruskal-Wallis: p < 0.001;  

Table 7).  If scars continue to increase in percent cover at the same rate, then I would expect to see 

recovery to control levels in 25 months for Type 1 and 2 scars, and 20 months in Type 3 scars.   
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Scar canopy height for Types 1, 2, and 3 was not significantly different from the mean 

control height (± S.E.) of 38 (± 2) cm (Kruskal-Wallis: p = 0.001; Table 7).  However, all 

increased in mean canopy height (± S.E.) from initial values of zero to 25 (± 2) cm in Type 1,  

26 (± 3) cm in Type 2, and 30 (± 2) cm in Type 3 (Figure 24).  If scars continue to increase in 

canopy height at the same rate, then I would expect to see recovery to control values in 18 months 

for Type 1 and 2 scars, and 15 months in Type 3 scars. 

There was a significant difference between scar root density for scar Types 1-3 and control 

and Type 4 at one year (Table 7).  Mean percent root cover (± S.E.) in Type 4 scars recovered to 96 

(± 3)%, Type 2 to 57 (± 12)%, Type 3 to 53 (± 10)%, and Type 4 to 54 (± 11)% (Figure 25).   

In the recolonization of scars that had depth, leaf litter acted as a natural fill for rhizomes.  

Rhizomes from the surrounding H. wrightii extended toward the center of the scar and attached on 

top of the leaf litter.  Leaf litter percent cover was higher in the scar Types 1-3 than control and 

Type 4 (Figure 26).  Type 1 scars initially had a significantly greater proportion of leaf litter after 

the second month than all other treatments (Kruskal-Wallis: p < 0.001; Table 7).  At 12 months, 

percent leaf litter cover was low and there was no significant difference in leaf litter cover among 

all treatments.   

Scar dimension measurements were compared with control values of zero depth, zero 

width, and zero scar angle.  Only Type 4 scars were not significantly different from the control in 

all measurements after one year (Table 7).  Although significantly different from the control after 

one year, the mean scar depth was reduced from 9 cm initially to 4 (± 1) cm in Type 1 scars, and 

increased to 2 (± 1) cm in Type 2 and 3 scars (Kruskal-Wallis: p = 0.001; Figure 27, Table 7).  If 

scars continue to decrease in scar depth at the same rate, then I would expect to see recovery in 22 

months for Type 1 scars, and 15 months for Type 2 and 3 scars.  Scar width also decreased from 32 
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cm to 22 (± 3) cm in Type 1, 18 (± 3) cm in Type 2, and 20 (± 7) cm in Type 3.  All were 

significantly different from the control at the end of one year (Kruskal-Wallis: p < 0.001;  

Figure 28, Table 7).  If scars continue to decrease in scar width at the same rate, then I would 

expect to see recovery in 38 months for Type 1 scars, 27 months for Type 2 scars, and 32 months 

for Type 3 scars.  Scar slopes in Type 2-4 scars were not significantly different from the control 

after one year.  Type 1 scars were significantly different from the control, however the slope was 

reduced from 45 o to 13 (± 3)o over 1 year (Kruskal-Wallis: p < 0.001; Figure 29, Table 7).  If scars 

continue to decrease in scar angle at the same rate, then I would expect to see recovery in 17 

months for Type 1 scars. 

Sediment fractions among scar Types 1-4 and control were not significantly different at 1 

year.  There was a significant difference between initial and final sediment in fraction sizes:  

> 5 mm, 5 mm, 1 mm, and < 1 mm (Kruskal-Wallis: p < 0.007; Figure 30).  Sediment fractions 

sizes 1 mm, and < 1 mm were the largest in all samples, with all other sizes composing less than 

10% of the sample.  Initial fine sediments ranged from 11-65 % in size < 1 mm, and 23-87% in 

size 1 mm.  Initial sediment samples mean percent fraction sizes (± S.E.) were 0.8 (± 0.1)% for 

 > 5 mm, 5.7 (± 0.4)% for 5 mm , 10.3 (± 0.4)% for 2 mm, 31.7 (± 1.3)% for 1 mm, and 51.4  

(± 1.3)% for < 1 mm.  Final fine sediments ranged from 30-63% in size < 1 mm, and 26-50% in 

size 1 mm.  Final sediment samples mean percent fraction sizes (± S.E.) were 2.0 (± 0.2)% for > 5 

mm, 8.3 (± 0.5)% for 5 mm , 10.5 (± 0.3)% for 2 mm, 35.3 (± 0.8)% for 1 mm, and 43.9 (± 1.1)% 

for < 1 mm.  There was no significant difference in organic among all final sediment samples, and 

between initial and final sediment samples (Figure 31).  Mean percent organic matter (± S.E.) in 

initial samples was 4.9 (± 0.4)%, and 3.8 (± 0.1)% in final samples.  
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Seasonal variations in natural recovery 

Seasonal variations were observed in H. wrightii density.  Initially, shoot density slightly 

increased in controls and all scar treatments until fall November 2007,  then dropped to a 

significantly lower shoot density in winter (February 2008) (Kruskal-Wallis: p < 0.001; Figure 22).  

The large die-back during winter reduced densities to 6 (± 2) shoots per 25 x 25 cm in Type 1 

scars, 13 (± 5) in Type 2 scars, 28 (± 9) in Type 3 scars, 73 (± 12) in Type 4 scars, and 80 (± 28) in 

the control (Figure 22, Table 6).  However, H. wrightii increased exponentially in all scar types 

during spring and summer (February through August 2008), ending with mean densities (± S.E.) of 

116 (± 21) shoots per 25 x 25 cm in Type 1 scars, 115 (± 20) in Type 2 scars, 154 (± 31) in Type 3 

scars, 244 (± 21) in Type 4 scars, and 271 (± 16) in the control seagrass plots (Figure 22, Table 6).  

Mean shoot density among treatments in winter was significantly lower in all treatments than in 

summer 2008 (Kruskal-Wallis: p < 0.001; Figure 22, Table 6).  A similar seasonal pattern of 

significantly lower mean H. wrightii percent cover (Kruskal-Wallis: p < 0.001) and canopy height 

(Kruskal-Wallis: p < 0.001) was observed among all treatments. 

Seasonal variations in scar dimensions were also observed.  Scars increased in depth during 

the fall and maintained a significantly deeper depth of 12 (± 1) cm in Type 1, 7 (± 1) cm in Type 2, 

and 5 (± 2) cm in Type 3 during the winter (Kruskal-Wallis: p < 0.001; Figure 27, Table 6).  Scar 

width erosion was worst in winter, scars significantly increased in width to 41 (± 4) cm in Type 1 

scars, to 51 (± 12) cm in Type 2 scars, 32 (± 9) cm in Type 3 scars (Kruskal-Wallis: p < 0.001; 

Figure 28, Table 6).  Type 4 scars were not eroded.  The slope angle eroded creating a significant 

increase scar angle slope of 29 (± 9)o in Type 2, and 12 (± 7)o in Type 3 over 12 months (Kruskal-

Wallis: p < 0.02; Figure 29, Table 65). 
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Restoration experiment 

There was 100% mortality of the 320 transplants after 60 days (4 observation periods) 

(Table 9).  The two treatments having H. wrightii planting units lost almost half of the planting 

units after 2 weeks, and all after 2 months.  Transplants on staples were lost from either sediment 

burial or from sediment erosion under staples.  Many of the planting units were buried in the scars, 

possibly due to the staple sinking through the fine sediment, or fine sediments settling out of the 

water column.  After 2 weeks, about half of the planting units in each plant-only treatment were 

buried to a mean depth (± S.E.) of 6 (±2) cm.   

Many transplants lived for a short period (up to 2 months) while attached to an eroded or 

elevated staple, however all transplants died after 2 months.  Many of the garden staples with 

transplants in both the plant-only and fill and plant treatments had the sediment eroded out from 

under the staple exposing the transplants between 2 and 12 cm above the benthos.  Despite none of 

the transplants contributing to scar colonization, the fill and plant, and plant-only treatments were 

colonized naturally from the adjacent seagrass bed (Figure 32).  The plant-only treatment showed 

initial seagrass recolonization after 2 months despite the mean scar depth of 10.5 cm (Table 8).  

The fill and plant treatment did not show any sign of recolonization after 3 months (Table 8). 

The sand fill treatment survived the longest, with 5 of 20 scars retaining sand throughout 

the entire year (Table 9).  The sand fill treatment did provide stable sediment for surrounding H. 

wrightii to colonize from the adjacent seagrass bed. 

None of the restoration treatments significantly differed from the natural recovery of  

Type 1 scars for all H. wrightii measurements, including H. wrightii shoot density, percent H. 

wrightii cover, canopy height, percent root cover, and percent leaf litter cover (Figures 32-36, 

Tables 8, 10).  Scar depth, width, and angle were reduced over time in all restoration treatments, 
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and none of the treatments significantly differed from Type 1 scars (Figures 37-39, Tables 8, 10).  

Only the seagrass control was significantly different from all restoration treatments and Type 1 

scars in all measured variables (Table 10). 

Sediment fractions among restoration treatments, Type 1 scars and control were 

significantly different in fraction size 5 mm after 1 year (Kruskal-Wallis: p = 0.031; Figure 40).  

There was a significant difference between initial and final sediment in fraction sizes: > 5 mm,  

5 mm, 1 mm, and < 1 mm (Kruskal-Wallis: p < 0.002; Figure 40).  Sediment fractions sizes 1 mm, 

and < 1 mm were the largest in all samples, with all other sizes composing less than 10% of the 

sample.  Initial fine sediments ranged from 11-65 % in size < 1 mm, and 23-87% in size 1 mm.  

Initial sediment samples mean percent fraction sizes (± S.E.) were 0.8 (± 0.1)% for > 5 mm,  

5.7 (± 0.4)% for 5 mm , 10.3 (± 0.4)% for 2 mm, 31.7 (± 1.3)% for 1 mm, and 51.4 (± 1.3)% for  

< 1 mm.  Final fine sediments ranged from 13-55% in size < 1 mm, and 25-81% in size 1 mm.  

Final sediment samples mean percent fraction sizes (± S.E.) were 2.5 (± 0.3)% for > 5 mm,  

8.1 (± 0.7)% for 5 mm , 9.7 (± 0.5)% for 2 mm, 40.5 (± 2.1)% for 1 mm, and 39.4 (± 1.5)% for 

 < 1 mm.  There was a significant difference in organic among restoration treatments, Type 1 scars 

and control sediment samples (Kruskal-Wallis: p = 0.041; Figure 41).  Also there was a significant 

difference in organic content between initial and final sediment samples (Kruskal-Wallis:  

p = 0.028; Figure 41).  Mean percent organic matter (± S.E.) in initial samples was 4.9 (± 0.4)%, 

and 3.5 (± 0.2)% in final samples.  

Erosion observations 

Many of the scars in both experiments suffered from erosion at the scar edges, away from 

the scar center where measurements were taken.  Erosion at scar edges was separated into three 

categories: (1) holes, (2) wash-outs, and (3) sand patches (Figure 42).  A hole was defined as any 
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circular erosion that occurred within, and did not extend beyond the initial dimensions of the width 

or length of scar edge (Figure 42).  A wash-out was a type of erosion that extended beyond the 

width or length of the scar and removed H. wrightii on 1 to 3 sides surrounding the scar  

(Figure 42).  A sand patch was the result of losing the top fine-sediment layer that created depths 

ranging 15-30 cm deep, along with losing all four sides of H. wrightii surrounding the scar to 

erosional forces (Figure 42).  Overall, mean scars that had holes was 11, mean scars that were 

washed out was 8, and mean scars that were turned into sand patches was 2 for each measurement 

period (Table 11).  Out of both experiments, the control and Type 4 scars had significantly fewer 

holes and washouts (Kruskal-Wallis: p < 0.001).  The fill-only and fill and plant treatments had the 

highest, having three times more holes and washouts than all other scar treatments (Table 11).  The 

fill only and fill and plant treatments also had significantly more scars that turned into sand patches 

(Kruskal-Wallis: p = 0.007).  Some scars likely started with one or more holes, possibly caused by 

stingrays, which expanded into a wash out and over time turned into a sand patch (Figure 43).  

Bioturbation from stingrays was not the only erosional force; it is likely that additional boat 

scarring and boat traffic wakes also contributed to scar erosion (Figure 44). 

Every time I measured the experiments, I witnessed 2 to 3 boats that disregarded the 

channel signs and illegally used their combustion engines to transverse regulated seagrass flats, 

potentially creating new scars.  Some of these scars were in the area of my experiments.  Of the 70 

experimental scars and the 10 controls in my experiment, 14 were bisected by a new propeller scar 

over the course of the year (Figure 44).  Some boaters severed pvc marker poles with their main 

engine motor propeller (Figure 45).  Six of 160 poles were damaged due to boat traffic over one 

year.  Boat activity and bioturbation of scars from rays were the most common disturbances to 

scars and were likely the key erosional forces during the experiment. 



31 
 

Discussion 

Natural recovery 

By far the most successful way to restore all types of scars is to protect seagrass from boat 

traffic and let it naturally recover.  I predicted that different severities in individual propeller scars 

would cause different recovery times for H. wrightii, and different recovery times were observed.  

In the natural recovery experiment, the scars that had the highest recovery within a year were those 

that started with intact H. wrightii rhizomes and cut blades (Type 4 scars) (Figure 9).  The Type 4 

scars grew to the control H. wrightii density within 2 months and were equal to the control in all 

seagrass and scar measurements after 3 months.  Types 1, 2, and 3 did not recover by the end of  

1 year to control densities of percent cover, percent root cover, canopy height, scar width, slope 

angle, and depth.  Since there was depth and width remaining in scar Types 1-3, H. wrightii 

colonization was reduced.  Recovery of Type 1 scars which had depth was not significantly 

different in seagrass measurements from that of Type 2 and 3, which did not have depth, showing 

that depth of 9 cm does not slow seagrass recolonization in scars in Mosquito Lagoon.  The lack of 

difference between seagrass recolonization of Type 1 scars, and Types 2 and 3 maybe due to leaf 

litter acting as a natural fill in scars having depth.  If the current rate of recovery continues in each 

measured variable, the mean estimated recovery time for H. wrightii is 25 months for Type 1, and 

19 months in Types 2 and 3. 

Seagrass restoration 

Seagrass restoration is a challenging endeavor, and few studies have had success in 

establishing new seagrass growth from transplants (Fonseca et al. 1998).  Low survival and failure 

of seagrass transplants is all too common (Fonseca et al. 1998).  Fonseca et al. (1998) documented 

that the mean transplant survival was 47% out of 53 published restoration studies.  Campbell 
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(2002) documented that less than 22% of published transplantation efforts in Australia were 

successful in achieving 50% transplant survival.  However, Hall et al. (2006b) showed that the 

staple method was successful in transplanting H. wrightii into scars in Tampa Bay and the Florida 

Keys, where transplants established 100% H. wrightii cover after 1 year in both locations.  In my 

experiment, I tested a combination of two previously successful and cost-effective restoration 

methods used by Hall et al. (2006): filling the scar with sand, and placing transplants of H. wrightii 

in the scar using garden staples.  I predicted that the addition of different restoration methods 

would cause Type 1 scars to recover faster than natural recovery, however none of the restoration 

methods enhanced the recovery time.  Many of my scars filled with sand were eroded over time.  

After 2 months, 25% lost all fill sand and after one year 75% of scars lost all fill sand completely 

(Table 9).  I had hoped to have high transplant success, since (1) H. wrightii removed from the 

experiment was replanted in the same area, (2) transplants were replanted within 1 to 4 hours the 

same day, and (3) all transplant units of H. wrightii included a growing tip at one end of the 

rhizome.  However, all transplant units were lost within 2 months.  Knowing that stress to the 

transplants was minimized and the control treatments showed no signs of die-off from water 

quality or sediment conditions, I hypothesize the main cause of mortality was erosion, as evidenced 

by the mean (± S.E.) sediment erosion depth of 7 (±3) cm under staples.  Boat activity and 

bioturbation of scars from rays were the most common disturbances to scars and were likely the 

key erosional forces during the experiment. 

Despite erosion forces, the majority of the 70 experimental scars exhibited H. wrightii 

recolonization during the year.  Eight scars (10%), recovered to 100% H. wrightii seagrass cover 

within 1 year.  Nineteen scars (20%) recovered to greater than 75% cover.  Twenty-nine scars 

(40%) recovered to greater than 50% cover.  Only four scars (5%) did not show any recolonization 
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or recovery inside the scar within 1 year (Figures 26, 34). Of those four scars, three were fill and 

plant treatments and one was a Type 2 scar.  

My experiment has provided helpful information for resource managers.  First, the staple 

method was not a productive transplant method for H. wrightii in Mosquito Lagoon.  Only one 

transplant out of 320 deployed in the experiment survived at 2 months.  Second, although the sand-

filled scars provided a solid substrate on which seagrass could colonize, there were no significant 

differences in any growth measurements between filled treatments and the natural recovery of 

Type 1 scars.  Thus, using sand to fill trenches did not enhance recovery and was not an effective 

restoration method for H. wrightii in Mosquito Lagoon.  Third, despite the slow currents of 

Mosquito Lagoon and the protection of the seagrass bed by Pole-Troll Zone regulations, erosion 

may have played a key role in why the restoration failed.   

Management recommendations 

My results suggest that if the Pole-Troll Zone regulations were strictly enforced, new scars 

would not be created and all current scars would recover in 3 years or less.  If Pole-Troll Zone 

regulations were effective, then the majority of the scars in the seagrass would be made by trolling 

motors.  Trolling motors have adjustable mounts for changing propeller depth in shallow water and 

have less power than combustion engines which create less severe scars.  Most trolling motors stop 

rotating if they reach the bottom, and are not powerful enough to plow through the sediment and 

impact seagrass root structure as combustion engines can.  These less severe scars (Type 4) could 

completely recover in 3 months or less.   

For areas of seagrass that are more intensely scarred, creating temporary, no-motor zones 

that park management could rotate every 3 years would allow enough time for the impacted 
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seagrass beds to recover.  Along with the recovery of seagrass in a no-motor zone, various species 

that depend upon seagrass would likely increase, such as commercially important fish stock  

(Duffy 2006).  More than 119 species of fishes have been documented in the IRL, and seagrass 

percent cover is an important factor in determining fish assemblages (Kupschus and Tremain 

2001).  Many fish species in the lagoon reproduce in the ocean, but rely on estuarine juvenile phase 

to complete the reproductive cycle (Kupschus and Tremain 2001).  For every seagrass hectare in 

the IRL protected to allow recovery, or protected to prevention boat scarring, an additional $14,000 

is gained in fisheries resources (IRL NEP 2008).  

Restoration versus prevention 

According to Engeman et al. (2008), seagrass restorations are far more expensive than 

prevention methods that involve adding signage and law enforcement officers.  The damage to 

seagrass beds between 1994 and 2005 in the Florida Keys was valued at $28 million dollars, and 

estimated to increase $1 million in value each consecutive year (Engeman et al. 2008).  However, 

this huge loss could have been prevented with additional signs that cost an average of $192 each, 

and patrol officers costing an average of $59,400 per year (Engeman et al. 2008).  To put costs into 

perspective, a single patrol officer’s annual salary was equivalent to the value of 0.42 ha of 

seagrass (Engeman et al. 2008). Previous seagrass restorations in the Florida Keys have been very 

costly at $940,000 per ha to restore (Fonseca et al. 2002, Lewis et al. 2006).  Besides the hefty 

price tag, seagrass restorations can take over 10 years to complete, and there is no guarantee that 

they will be successful (Engeman et al. 2008).  For example, a seagrass mitigation project for 

renovation of Port Manatee in Tampa Bay compared many seagrass restoration techniques, few of 

which were successful (Lewis et al. 2006).  The cost to transplant 2.94 ha of seagrass and restore 

1.86 ha of seagrass was $3.3 million per ha of seagrass restored (Lewis et al. 2006).  The 2.94 ha of 
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seagrass was mitigated as transplants to enhance areas of degraded seagrass from boat traffic 

(Lewis et al. 2006).  The restoration methods of hand-transplanting individual shoots, hand-

planting shoot bundles, hand-planting bundles in peat pots, mechanized transplanting, modified 

manual shovel planting, and prevention methods of creating a no motor zone combined were 

successful in establishing and preserving 1.86 ha of seagrass (Lewis et al. 2006).  The least costly 

and most successful method used to restore seagrass beds was to create a no motor zone in which 

0.77 ha of seagrass recolonized propeller scarred areas in 18 months (Lewis et al. 2006).  

Future of seagrass in Mosquito Lagoon 

Seagrass ecosystems are critical in creating habitat in areas of barren sediment, enhancing 

community diversity, establishing intricate food webs, and stabilizing coastal sediments (Beck et 

al. 2001, Burfeind and Stunz 2006, Duffy 2006).  Seagrass beds in the Indian River Lagoon 

provide a critical habitat for over 2000 species of invertebrates, fishes, birds and mammals, and are 

a key reason why the IRL is the most productive and species-rich estuaries in North America  

(IRL NEP 2008, Smithsonian Institution 2007).  In my study, I looked at a major threat to seagrass 

ecosystems, boat propeller scarring.  I documented for the first time the severity of boat propeller 

scarring in the IRL.  In my manipulative experiments, I found that natural recovery was faster than 

any restoration attempted method.  Natural recovery of propeller scars can be as quick as 3 months 

if some of the root structure and blades remain intact.  Though my restoration methods were not 

effective for scars in Mosquito Lagoon, the scars were naturally recolonized.  Erosion was a 

problem in both experiments, but despite bioturbation from rays and additional boat scarring, 40% 

of all experimental scars returned to greater than 50% H. wrightii cover after 1 year.  I agree with 

Engeman et al. (2008) that more resources should focus on the prevention of scarring seagrass beds 

than which restoration methods would work best, especially for Mosquito Lagoon where there are 
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thousands of hectares of healthy seagrass beds to recolonize scarred areas.  Enhanced vigilance is 

required from users, managers, and enforcers to protect the seagrass beds that are critical to the 

biodiversity of Mosquito Lagoon and the IRL.  Surely, prevention is the best way to preserve our 

seagrass beds and the associated biodiversity for the future. 
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Figure 1: Map of experimental scar locations in the Pole-Troll Zone of Mosquito Lagoon, 
Florida.  Boundary of the Pole-Troll Zone is marked by a dotted line with black circles.  
Channels include: the Atlantic Intercoastal Waterway (ICW) as a solid black line, and the inner 
Pole-Troll Zone channels are dotted lines within the Pole-Troll Zone boundaries. 
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Figure 2: Halodule wrightii seagrass bed in Mosquito Lagoon, FL. 
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Figure 3: Location of 110 propeller scars measured in Mosquito Lagoon, FL.  Scar type is color 
coded to show the frequency of each scar type.  From this view, the entire range of measured 
scars is demonstrated, however not all scars can be seen due to overlap. 
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Figure 4: Canonical Discriminant Analysis classification of 110 propeller scars in Mosquito 
Lagoon.  Scars were sorted into four groups. Type 1 scars are white circles, Type 2 scars are 
black squares, Type 3 scars are black triangles, and Type 4 scars are white diamonds. 

  

1 

Scar dimensions 

S
e

a
g

ra
s
s
 a

b
u

n
d

a
n

c
e

 



42 
 

 

Figure 5: Scar types identified from measuring 110 scars in Mosquito Lagoon. Above diagram 
simplifies what was seen in each of the photographs below. 

 
 

 

 

 

Figure 6: Frequency of scar types in Mosquito Lagoon (n = 110). 
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Figure 7: Regression of Type 1 scar width versus scar depth.  Scar Type 1 was used to show the 
best correlation (r2 = 0.476, p < 0.001), because other scar types (2-4) did not have depth. 
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Figure 8: Mean percent of sediment grain size fractions and organic content per scar type. 
Percent sediment fraction sizes are listed in order < 1mm is light grey cross hatch, 1 mm is dark 
grey cross hatch, 2 mm is solid black, 5 mm is solid white, > 5mm is solid light grey, and percent 
organic content is solid dark grey.  Using a one-way ANOVA, only scar Type 1 and 4 were 
significantly different in all fraction sizes, and size < 1mm showed the greatest difference. 
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Figure 9: Canonical Discriminant Analysis classification of 110 propeller scars sediment 
fractions and distance measurements.  Type 1 scars are white circles, Type 2 scars are black 
squares, Type 3 scars are black triangles, and Type 4 scars are white diamonds.  Sediment types 
did not show a pattern in relation to distance. 
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Figure 10: Layout of one block of experimental scars.  Each block was 18 x18 m and was divided 
into 9 squares, of which only 8 had a scar treatment.  A square was 6 x 6 m containing a single 
scar treatment in the center. 

 

 

Figure 11: Setup of a one set of treatments in a large grid (block).  An 18 x 18 m perimeter was 
marked off with yellow rope, and a PVC pole was placed every 6 m.   Scars were created in the 
center of each 6 x 6 m square and marked with a short PVC pole at each end.  All PVC grid 
poles were marked with a GPS location and then removed.  After the scars were created, only the 
2 PVC scar markers remained to mark the ends of each scar. 
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Figure 12: PVC stake marking the end of an experimental scar. 

 

 

 

Figure 13: PVC plow 32 cm in diameter.  Device used to make experimental propeller scars the 
same width, depth, and scar slope angle. 
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Figure 14: Arrow points to H. wrightii attached to garden staple with a twist tie in a scar filled 
with sand.  This is an eroded staple, making it is easier to see how H. wrightii was attached with 
a red twist tie. 
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Figure 15: Mean water temperature on sampling dates (± S.E.) at location of manipulative 
experiments (n = 3). 
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Figure 16: Mean salinity (± S.E.) at location of manipulative experiments on sampling dates  
(n = 3). 
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Figure 17: Mean water clarity depth (± S.E.) at location of manipulative experiments on 
sampling dates (n = 3).  Maximum measurement possible using turbitdity tube was 60 cm. 
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Figure 18: Mean water depth (± S.E.) of experimental scar locations of manipulative experiments 
(n = 10).  Measurements were analyzed with Kruskal-Wallis rank test with a Bonferroni 
correction of p < 0.006.  Treatments that were significantly different on a single day are shown 
with different letters. 
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Figure 19: Mean surrounding scar H. wrightii density (± S.E.) per 25 x 25 cm area in 
experimental scar replicate blocks.  Measurements were analyzed with Kruskal-Wallis rank test 
with a Bonferroni correction of p < 0.006.  Treatments that were significantly different on a 
single day are shown with different letters. 
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Figure 20: Mean surrounding scar H. wrightii percent cover (± S.E.) per 25 x 25 cm area in 
experimental scar replicate blocks.  Measurements were analyzed with Kruskal-Wallis rank test 
with a Bonferroni correction of p < 0.006.  Treatments that were significantly different on a 
single day are shown with different letters. 
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Figure 21: Mean surrounding scar H. wrightii canopy height (± S.E.) in experimental scar 
replicate blocks.  Measurements were analyzed with Kruskal-Wallis rank test with a Bonferroni 
correction of p < 0.006.  Treatments that were significantly different on a single day are shown 
with different letters. 
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Figure 22: Natural recovery experimental scar H. wrightii shoot density per 25 x 25 cm area  
(± S.E).  Type 1 are black circles, Type 2 are white triangles, Type 3 are black squares, Type 4 
are white diamonds, and control are black triangles.  Measurements were analyzed with Kruskal-
Wallis rank test with a Bonferroni correction of p < 0.006.  Treatments that were significantly 
different on a single day are shown with different letters. 
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Figure 23: Natural recovery experimental scar H. wrightii percent cover per 25 x 25 cm area 
 (± S.E).  Type 1 are black circles, Type 2 are white triangles, Type 3 are black squares, Type 4 
are white diamonds, and control are black triangles.  Measurements were analyzed with Kruskal-
Wallis rank test with a Bonferroni correction of p < 0.006.  Treatments that were significantly 
different on a single day are shown with different letters. 
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Figure 24: Natural recovery experimental scar H. wrightii canopy height (± S.E).  Type 1 are 
black circles, Type 2 are white triangles, Type 3 are black squares, Type 4 are white diamonds, 
and control are black triangles.  Measurements were analyzed with Kruskal-Wallis rank test with 
a Bonferroni correction of p < 0.006.  Treatments that were significantly different on a single day 
are shown with different letters. 

  



56 
 

A ug07   O c t07   D ec07   F eb08   A p r08   Jun08   A ug08   

%
 r

o
o

t 
c

o
v

e
r

0

20

40

60

80

100

b

a

a

a

b

b

b

a

a

a

c

b

b

a

a

b

b

 

Figure 25: Natural recovery experimental scar percent root cover per 25 x 25 cm area (± S.E).  
Type 1 are black circles, Type 2 are white triangles, Type 3 are black squares, and Type 4 are 
white diamonds.  Measurements were analyzed with Kruskal-Wallis rank test with a Bonferroni 
correction of p < 0.006.  Treatments that were significantly different on a single day are shown 
with different letters. 
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Figure 26: Natural recovery experimental scar percent leaf litter cover per 25 x 25 cm area  
(± S.E).  Type 1 are black circles, Type 2 are white triangles, Type 3 are black squares, and Type 
4 are white diamonds.  Measurements were analyzed with Kruskal-Wallis rank test with a 
Bonferroni correction of p < 0.006.  Treatments that were significantly different on a single day 
are shown with different letters. 
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Figure 27: Natural recovery experimental scar depth (± S.E).  Type 1 are black circles, Type 2 
are white triangles, Type 3 are black squares, and Type 4 are white diamonds.  Measurements 
were analyzed with Kruskal-Wallis rank test with a Bonferroni correction of p < 0.006.  
Treatments that were significantly different on a single day are shown with different letters. 
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Figure 28: Natural recovery experimental scar width (± S.E).  Type 1 are black circles, Type 2 
are white triangles, Type 3 are black squares, and Type 4 are white diamonds.  Measurements 
were analyzed with Kruskal-Wallis rank test with a Bonferroni correction of p < 0.006.  
Treatments that were significantly different on a single day are shown with different letters. 
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Figure 29: Natural recovery experimental scar slope angle density (± S.E).  Type 1 are black 
circles, Type 2 are white triangles, Type 3 are black squares, and Type 4 are white diamonds.  
Measurements were analyzed with Kruskal-Wallis rank test with a Bonferroni correction of  
p < 0.006.  Treatments that were significantly different on a single day are shown with different 
letters. 
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Figure 30: Natural recovery experiment mean percent sediment fractions (± S.E.) from before 
scar creation and from within scars after 1 year (Kruskal-Wallis: p < 0.05).  Bar sections are 
labeled in order from left to right: initial, Type 1 (final), Type 2 (final), Type 3 (final), Type 4 
(final), and control (final). 
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Figure 31: Natural recovery experiment mean percent organic content (± S.E) from before scar 
creation and from within scars after 1 year (Kruskal-Wallis: p < 0.05). 
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Figure 32: Restoration experimental scar H. wrightii density shoot density per 25 x 25 cm  
(± S.E).  Controls are white triangles, Type 1 are black circles, plant-only are black squares, fill 
only are white diamonds, and plant and fill are black triangles.  Measurements were analyzed 
with Kruskal-Wallis rank test with a Bonferroni correction of p < 0.006.  Treatments that were 
significantly different on a single day are shown with different letters. 
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Figure 33: Restoration experimental scar H. wrightii percent cover per 25 x 25 cm area (± S.E).  
Control are white triangles, Type 1 are black circles, plant-only are black squares, fill only are 
white diamonds, and plant and fill are black triangles.  Measurements were analyzed with 
Kruskal-Wallis rank test with a Bonferroni correction of p < 0.006.  Treatments that were 
significantly different on a single day are shown with different letters. 
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Figure 34: Restoration experimental scar H. wrightii canopy height (± S.E).  Control are white 
triangles, Type 1 are black circles, plant-only are black squares, fill only are white diamonds, and 
plant and fill are black triangles.  Measurements were analyzed with Kruskal-Wallis rank test 
with a Bonferroni correction of p < 0.006.  Treatments that were significantly different on a 
single day are shown with different letters. 
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Figure 35: Restoration experimental scar percent root cover per 25 x 25 cm area (± S.E).  Type 1 
are black circles, plant-only are white triangles, fill only are black squares, and plant and fill are 
white diamonds.  Measurements were analyzed with Kruskal-Wallis rank test with a Bonferroni 
correction of p < 0.006.  Treatments that were significantly different on a single day are shown 
with different letters. 
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Figure 36: Restoration experimental scar percent leaf litter cover per 25 x 25 cm area (± S.E).  
Type 1 are black circles, plant-only are white triangles, fill only are black squares, and plant and 
fill are white diamonds.  Measurements were analyzed with Kruskal-Wallis rank test with a 
Bonferroni correction of p < 0.006.  Treatments that were significantly different on a single day 
are shown with different letters. 
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Figure 37: Restoration experimental scar depth (± S.E).  Control are white triangles, Type 1 are 
black circles, plant-only are black squares, fill only are white diamonds, and plant and fill are 
black triangles.  Measurements were analyzed with Kruskal-Wallis rank test with a Bonferroni 
correction of p < 0.006.  Treatments that were significantly different on a single day are shown 
with different letters. 
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Figure 38: Restoration experimental scar width (± S.E).  Control are white triangles, Type 1 are 
black circles, plant-only are black squares, fill only are white diamonds, and plant and fill are 
black triangles.  Measurements were analyzed with Kruskal-Wallis rank test with a Bonferroni 
correction of p < 0.006.  Treatments that were significantly different on a single day are shown 
with different letters. 
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Figure 39: Restoration experimental scar slope angle density (± S.E).  Control are white 
triangles, Type 1 are black circles, plant-only are black squares, fill only are white diamonds, and 
plant and fill are black triangles.  Measurements were analyzed with Kruskal-Wallis rank test 
with a Bonferroni correction of p < 0.006.  Treatments that were significantly different on a 
single day are shown with different letters. 
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Figure 40: Restoration experiment mean percent sediment fractions (± S.E.) from before scar 
creation and from within scars after 1 year (Kruskal-Wallis: p < 0.05).  Bar sections are labeled 
in order from left to right: initial, control (final), Type 1 (final), plant only (final), fill only 
(final), and plant and fill (final). 
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Figure 41: Restoration experiment mean percent organic content (± S.E) from before scar 
creation and from within scars after 1 year (Kruskal-Wallis: p < 0.05). 
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Figure 42: Types of erosion observed in experimental scars: A) holes, B) washouts, and C) sand 
patches.  The black rectangle represents the original scar dimensions, brown is bare sediment, 
dark brown represents depth, and the green represents seagrass. 

 

  

 

Figure 43: Bioturbation caused by a stingray.  Stingray created a hole and unburied a row of 
Halodule wrightii transplants on staples, then left behind a pile of feces.  In the left picture the 
arrow points to a close-up of excrement pile in hole, and in right picture the arrow points to a 
close up of the eroded staples next to the excrement pile. 
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Figure 44: Boater illegally using main engine motor in Pole-Troll Zone and running directly over 
the experiment site. 

 

 

Figure 45: A PVC pole marking an experimental scar that was hit by main engine boat motor in 
less than 0.5 m of water. 
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Table 1: Studies documenting existing and experimental propeller scar damage and recovery of seagrasses.  No information = “-”. 

Species Location 
Experimental 

Scar(s)/ 
model(s) 

n 
Recovery 

time 
(years) 

Scar 
depth 
(cm) 

Scar 
width 
(cm) 

Scar 
length 

(m) 

Scar 
area 
(m2) 

Water 
depth (m) 

Salinity 
(ppt) 

Current/tidal 
action 

Dominant 
sediment type 

Citation 

Halodule wrightii                           

  Tampa Bay, FL Yes 3 0.9 - 4.6  10 25 4 - - - - quartz-sand Durako et al. 1992 

  Tampa Bay, FL No 41 0.6 - 1.5  - - - 10 0.4 30 - 32  - - Bell et al. 1999  

  Tampa Bay, FL No 6 0.3 0 35 40 - - - - - Hall et al. 2006b 

  Florida Keys No 6 1 0 35 40 - - - - - Hall et al. 2006b 

  Laguna Madre, TX  
No - - 1 - 4 32 46 - 1 < 50  

wind driven 
currents 

- 
Martin et al. 2008 

  Mosquito Lagoon, FL 
Yes 10 2.1 9 32 2 0.64 0.56 33-44 

tidal change = 
10 cm 

fine, < 1 mm 
Grablow 2008 

Syringodium filiforme                           

  Florida Keys model - 3 10 - 20  100 1 1 - - - - Fonseca et al. 2000 

  Florida Keys Yes 5 0.3 10 50 1.5 - 0.1 - 1.5 - - - Hammerstrom et al. 2007 

  Florida Keys Yes 5 1 20 50 1.5 - 0.1 - 1.5 - - - Hammerstrom et al. 2007 

  Florida Keys Yes 5 1 40 50 1.5 - 0.1 - 1.5 - - - Hammerstrom et al. 2007 

Thalassia testudinum                           

  Biscayne Bay, FL 
Yes 2 2 -5 20 30 1 - - - 

rapid tidal 
currents 

slit-clay 
Zieman 1976 

  Tampa Bay, FL Yes 3 3.6 - 6.4  7 25 4 - - - - quartz-sand Durako et al. 1992 

  Tampa Bay, FL Yes 12 7.6 - 25 5 - 0.5 - - sand Dawes et al. 1997 

  Tampa Bay, FL No 12 4.3 - - - - 0.5 - - sand Dawes et al. 1997 

  Florida Keys model - 17.5 10 - 20 100 1 1 - - - - Fonseca et al. 2000 

  Puerto Rico 
No 10 - 3 - 12 25 - 76  - - 0.5 - 1.6 - 

tidal change = 
15 cm  

- 
Uhrin & Holmquist 2003 

  Puerto Rico No 2 60 - - - 1200 - - - - Fonseca et al. 2004 

  Florida Keys 
model - 10.5 > 20 100 - - - - - 

carbonate -
sand Fonseca et al. 2004 

  Florida Keys No 1 30 150 - - 15 - - - - Krisch et al. 2005 

  Tampa Bay, FL No 6 4 0 35 40 - - - - - Hall et al. 2006b 

  Florida Keys No 6 4 0 35 40 - - - - - Hall et al. 2006b 

  Florida Keys Yes 5 0.3 10 50 1.5 - 0.1 - 1.5 - - - Hammerstrom et al. 2007 

  Florida Keys Yes 5 3 20 50 1.5 - 0.1 - 1.5 - - - Hammerstrom et al. 2007 

  Florida Keys Yes 5 3 40 50 1.5 - 0.1 - 1.5 - - - Hammerstrom et al. 2007 
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Table 2: Canonical Discriminant Analysis results classifying 110 propeller scar measurements 
into four groups.  Table shows the percentage of scars correctly classified according to the most 
important predictor variables: shoot density, scar depth, scar % root cover, and scar canopy 
height. 

Classification Results 

    
scar 
severity 

Predicted Group Membership 

Total 1 2 3 4 

Original Count 1 58 2 1 1 62 

2 1 9 0 1 11 

3 1 0 5 1 7 

4 0 0 1 29 30 

% 1 93.5 3.2 1.6 1.6 100.0 

2 9.1 81.8 .0 9.1 100.0 

3 14.3 .0 71.4 14.3 100.0 

4 .0 .0 3.3 96.7 100.0 

91.8% of original grouped cases correctly classified. 

 

Table 3: Mean scar measurements (± S.E.) for each scar type from 110 scars. 

 

Scar 
Type 

Scar Depth 
(cm) 

Scar Width 
(cm) 

Scar Canopy 
Height (cm) 

Surrounding Canopy 
Height (cm) 

Water 
Depth (cm) 

1 9 ± 1 36 ± 2 0 ± 0 30 ± 1 44 ± 2 

2 1 ± 1 42 ± 6 0 ± 0 32 ± 2 50 ± 6 

3 1 ± 1 25 ± 6 2 ± 2 28 ± 2 36 ± 5 

4 1 ± 1 20 ± 1 12 ± 1 28 ± 2 44 ± 3 

overall 5 ± 1 32 ± 2 4 ± 1 29 ± 1 44 ± 1 
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Table 4: Mean scar density measurements (± S.E.) per 25 x 25 cm area for each scar type from 
110 scars. 

 

Scar 
Type 

H. wrightii 
Shoots In 

Scar  

H. wrightii 
Shoots 

Surrounding 
Scar  

% H. wrightii 
Cover In Scar 

% H. wrightii 
Cover 

Surrounding 
Scar 

% Root 
Cover 
In Scar 

% Drift 
Algae 
In Scar 

% Leaf 
Litter 

In Scar 

1 0 ± 0 157 ± 9 0 ± 0 54 ± 4 0 ± 0 4 ± 2 55 ± 5 

2 0 ± 0 133 ± 14 0 ± 0 38 ± 6 0 ± 0 1 ± 1 32 ± 12 

3 4 ± 4 140 ± 32 1 ± 1 39 ± 14 56 ± 15 4 ± 4 47 ± 18 

4 44 ± 6 180 ± 10 25 ± 4 62 ± 5 73 ± 7 1 ± 1 10 ± 4 

Overall 12 ± 3 160 ± 7 7 ± 2 54 ± 3 24 ± 4 3 ± 1 40 ± 4 

 

Table 5: Canonical Discriminant Analysis results from classifying sediment fractions of 110 
scars.  This table shows the percentage of scars correctly classified according to original 
identifications.  Sediment fractions were not a good predictor of scar types. 

Classification Results 

    
scar 
severity 

Predicted Group Membership 

Total 1 2 3 4 

Original Count 1 55 0 0 7 62 

2 7 0 0 4 11 

3 7 0 0 0 7 

4 11 0 0 19 30 

% 1 88.7 .0 .0 11.3 100.0 

2 63.6 .0 .0 36.4 100.0 

3 100.0 .0 .0 .0 100.0 

4 36.7 .0 .0 63.3 100.0 

67.3% of original grouped cases correctly classified. 
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Table 6: Mean experimental scar measurements (± S.E.) for scar types 1-4 and control in natural 
recovery experiment. Measurements were taken eight times from August 2007 through August 
2008. 

 

  Initial 2 weeks 1 month 2 months 

  mean SE mean SE mean SE mean SE 

Type 1 scars                 

H. wrightii density (shoots per 25 x 25 cm) 0 0 0 0 0 0 0 0 

H. wrightii canopy height (cm) 0 0 0 0 1 1 0 0 

H. wrightii % cover (per 25 x 25 cm) 0 0 0 0 0 0 0 0 

H. wrightii % root cover (per 25 x 25 cm) 0 0 0 0 0 0 0 0 

Scar width (cm) 32 0 34 2 32 1 41 5 

Scar depth (cm) 9 0 10 1 11 1 12 1 

Scar angle (degrees) 45 0 38 4 41 4 31 7 

% leaf litter cover 25 13 90 6 95 5 90 8 

% drift algae cover 4 3 0 0 0 0 0 0 

Scar side H. wrightii density (shoots per 25 x 25 cm) 144 15 132 12 147 18 163 12 

Scar side H. wrightii canopy height (cm) 46 3 47 1 41 1 30 2 

Scar side H. wrightii % cover (per 25 x 25 cm) 55 6 52 5 59 7 63 4 

Type 2 scars                 

H. wrightii density (shoots per 25 x 25 cm) 0 0 0 0 10 6 5 4 

H. wrightii canopy height (cm) 0 0 0 0 9 5 4 3 

H. wrightii % cover (per 25 x 25 cm) 0 0 0 0 2 2 1 1 

H. wrightii % root cover (per 25 x 25 cm) 0 0 0 0 8 5 5 5 

Scar width (cm) 32 0 34 3 46 8 46 9 

Scar depth (cm) 0 0 4 1 5 2 7 1 

Scar angle (degrees) 0 0 14 4 23 9 29 9 

% leaf litter cover 24 11 64 13 56 15 80 9 

% drift algae cover 1 1 0 0 0 0 0 0 

Scar side H. wrightii density (shoots per 25 x 25 cm) 135 11 132 14 146 13 177 9 

Scar side H. wrightii canopy height (cm) 46 1 49 2 41 2 36 2 

Scar side H. wrightii % cover (per 25 x 25 cm) 51 5 52 6 59 5 69 3 

Type 3 scars                 

H. wrightii density (shoots per 25 x 25 cm) 0 0 27 4 35 19 30 10 

H. wrightii canopy height (cm) 0 0 14 4 14 4 14 3 

H. wrightii % cover (per 25 x 25 cm) 0 0 6 1 11 7 8 4 

H. wrightii % root cover (per 25 x 25 cm) 91 4 80 10 45 9 25 8 

Scar width (cm) 32 0 39 4 36 4 36 6 

Scar depth (cm) 0 0 0 0 0 0 5 2 

Scar angle (degrees) 0 0 0 0 7 7 12 7 

% leaf litter cover 27 12 57 12 58 15 61 12 

% drift algae cover 0 0 0 0 0 0 0 0 

Scar side H. wrightii density (shoots per 25 x 25 cm) 155 19 135 12 136 17 185 17 

Scar side H. wrightii canopy height (cm) 44 2 47 2 42 2 35 2 

Scar side H. wrightii % cover (per 25 x 25 cm) 61 8 55 5 53 8 72 7 
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  Initial 2 weeks  1 month 2 months 

  mean SE mean SE mean SE mean SE 

Type 4 scars                 

H. wrightii density (shoots per 25 x25 cm) 151 12 92 9 127 17 143 10 

H. wrightii canopy height (cm) 12 0 24 1 31 1 26 1 

H. wrightii % cover (per 25 x 25 cm) 61 6 37 5 49 7 58 4 

H. wrightii % root cover (per 25 x 25 cm) 98 2 98 3 78 8 85 6 

Scar width (cm) 32 0 33 1 31 1 3 3 

Scar depth (cm) 0 0 0 0 0 0 0 0 

Scar angle (degrees) 0 0 0 0 0 0 0 0 

% leaf litter cover 23 10 37 13 28 13 0 0 

% drift algae cover 1 1 3 2 0 0 0 0 

Scar side H. wrightii density (shoots per 25 x25 cm) 151 12 130 8 151 16 147 24 

Scar side H. wrightii canopy height (cm) 44 1 47 1 43 1 33 2 

Scar side H. wrightii % cover (per 25 x 25 cm) 59 4 57 3 60 6 57 10 

Control (dense seagrass)                 

H. wrightii density (shoots per 25 x 25 cm) 147 14 119 11 143 11 143 14 

H. wrightii canopy height (cm) 44 2 46 2 42 2 35 2 

H. wrightii % cover (per 25 x 25 cm) 59 6 58 7 57 4 56 6 
6 

  3 months 6 months 9 months 12 months 

  mean SE mean SE mean SE mean SE 

Type 1 scars                 

H. wrightii density (shoots per 25 x 25 cm) 17 4 6 3 62 10 116 21 

H. wrightii canopy height (cm) 19 2 7 3 21 2 25 2 

H. wrightii % cover (per 25 x 25 cm) 5 2 0 0 27 5 46 9 

H. wrightii % root cover (per 25 x 25 cm) 8 8 0 0 31 6 54 11 

Scar width (cm) 36 3 41 4 25 2 22 3 

Scar depth (cm) 9 1 11 1 7 1 4 1 

Scar angle (degrees) 23 2 16 2 12 2 13 3 

% leaf litter cover 88 9 88 7 28 7 35 11 

% drift algae cover 0 0 8 5 8 4 0 0 

Scar side H. wrightii density (shoots per 25 x25 cm) 145 13 79 14 229 23 229 27 

Scar side H. wrightii canopy height (cm) 37 2 18 1 28 1 37 2 

Scar side H. wrightii % cover (per 25 x 25 cm) 59 5 28 6 80 6 85 8 

Type 2 scars                 

H. wrightii density (shoots per 25 x 25 cm) 11 4 13 5 67 10 115 20 

H. wrightii canopy height (cm) 10 3 12 3 22 2 26 3 

H. wrightii % cover (per 25 x 25 cm) 2 1 2 1 27 5 47 9 

H. wrightii % root cover (per 25 x 25 cm) 2 1 2 1 31 5 53 10 

Scar width (cm) 37 7 51 12 31 4 18 3 

Scar depth (cm) 7 1 7 1 4 1 2 1 

Scar angle (degrees) 18 3 13 4 8 2 3 2 

% leaf litter cover 66 13 77 12 28 7 28 12 

% drift algae cover 0 0 0 0 3 2 0 0 

Scar side H. wrightii density (shoots per 25 x25 cm) 129 15 90 13 193 21 223 25 

Scar side H. wrightii canopy height (cm) 37 2 22 2 30 2 36 2 

Scar side H. wrightii % cover (per 25 x 25 cm) 51 6 33 6 73 8 84 7 
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  3 months 6 months 9 months 12 months 

  mean SE mean SE mean SE mean SE 

Type 3 scars                 

H. wrightii density (shoots per 25 x 25 cm) 24 7 28 9 105 34 154 31 

H. wrightii canopy height (cm) 20 1 13 4 24 3 31 2 

H. wrightii % cover (per 25 x 25 cm) 9 3 7 2 37 12 58 12 

H. wrightii % root cover (per 25 x 25 cm) 18 8 7 2 44 11 57 12 

Scar width (cm) 35 3 32 9 26 6 20 7 

Scar depth (cm) 5 1 5 2 4 1 2 1 

Scar angle (degrees) 13 4 5 2 9 2 4 2 

% leaf litter cover 70 12 60 13 23 10 25 12 

% drift algae cover 0 0 0 0 4 2 0 0 

Scar side H. wrightii density (shoots per 25 x 25 cm) 130 16 77 12 264 34 245 26 

Scar side H. wrightii canopy height (cm) 38 2 23 1 31 1 37 2 

Scar side H. wrightii % cover (per 25 x 25 cm) 50 6 25 6 84 7 88 8 

Type 4 scars                 

H. wrightii density (shoots per 25 x25 cm) 133 14 73 11 263 29 244 21 

H. wrightii canopy height (cm) 36 2 20 1 31 1 37 2 

H. wrightii % cover (per 25 x 25 cm) 54 6 25 6 89 7 89 5 

H. wrightii % root cover (per 25 x 25 cm) 76 7 25 6 92 5 96 3 

Scar width (cm) 1 1 0 0 0 0 0 0 

Scar depth (cm) 0 0 0 0 0 0 0 0 

Scar angle (degrees) 0 0 0 0 0 0 0 0 

% leaf litter cover 2 1 4 3 0 0 7 5 

% drift algae cover 7 7 0 0 0 0 0 0 

Scar side H. wrightii density (shoots per 25 x25 cm) 129 10 72 12 253 27 250 25 

Scar side H. wrightii canopy height (cm) 39 2 22 1 34 2 38 2 

Scar side H. wrightii % cover (per 25 x 25 cm) 53 3 25 6 86 7 90 5 

Control (dense seagrass)                 

H. wrightii density (shoots per 25 x25 cm) 112 16 80 15 233 28 271 16 

H. wrightii canopy height (cm) 36 2 20 2 29 2 38 2 

H. wrightii % cover (per 25 x 25 cm) 58 12 38 7 81 7 97 2 
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Table 7: Kruskal-Wallis test for mean differences in measurements among scar types in natural 
recovery experiment.  Since tests were repeated eight times (once for each time period), the 
significance level was corrected to p = 0.006 using the Bonferroni method. 

 

    Initial 2 weeks 1 month 2 months 

  df χ2
 Sig.  χ2

 Sig.  χ2
 Sig.  χ2

 Sig.  

H. wrightii density 4 45.036 0.000 44.625 0.000 36.749 0.000 40.498 0.000 

H. wrightii canopy height 
(cm) 4 48.503 0.000 44.806 0.000 36.460 0.000 39.237 0.000 

H. wrightii % cover 4 45.083 0.000 45.137 0.000 36.838 0.000 40.657 0.000 

H. wrightii % root cover 3 36.081 0.000 33.745 0.000 28.384 0.000 29.697 0.000 

Scar width (cm) 3 49.000 0.000 25.141 0.000 28.983 0.000 34.778 0.000 

Scar depth (cm) 3 49.000 0.000 41.937 0.000 35.660 0.000 33.625 0.000 

Scar angle (degrees) 3 49.000 0.000 40.889 0.000 30.627 0.000 20.809 0.000 

% leaf litter cover 3 0.079 0.994 9.514 0.023 10.891 0.012 26.631 0.000 

% drift algae cover 3 2.334 0.506 6.154 0.104 0.000 1.000 0.000 1.000 

Scar side H. wrightii density 4 2.708 0.608 0.660 0.956 0.361 0.986 4.766 0.312 

Scar side H. wrightii canopy 
height (cm) 4 2.081 0.721 1.699 0.791 1.148 0.887 6.741 0.150 

Scar side H. wrightii % cover 4 1.628 0.804 1.056 0.901 0.483 0.975 4.422 0.352 

 

    3 months 6 months 9 months 12 months 

  df χ2
 Sig.  χ2

 Sig.  χ2
 Sig.  χ2

 Sig.  

H. wrightii density 4 33.799 0.000 28.723 0.000 29.172 0.000 24.523 0.000 

H. wrightii canopy height 
(cm) 4 36.881 0.000 10.061 0.039 15.311 0.004 19.711 0.001 

H. wrightii % cover 4 36.718 0.000 31.715 0.000 28.911 0.000 24.707 0.000 

H. wrightii % root cover 3 23.692 0.000 21.120 0.000 18.628 0.000 11.397 0.010 

Scar width (cm) 3 38.062 0.000 35.831 0.000 34.696 0.000 27.320 0.000 

Scar depth (cm) 3 36.907 0.000 29.359 0.000 33.041 0.000 19.249 0.001 

Scar angle (degrees) 3 33.152 0.000 31.336 0.000 31.326 0.000 21.598 0.000 

% leaf litter cover 3 21.876 0.000 21.137 0.000 21.186 0.000 5.051 0.168 

% drift algae cover 3 3.000 0.392 6.154 0.104 5.064 0.167 0.000 1.000 

Scar side H. wrightii density 4 3.112 0.539 2.035 0.729 3.672 0.452 2.708 0.608 

Scar side H. wrightii canopy 
height (cm) 4 1.588 0.811 10.075 0.039 3.854 0.426 0.567 0.967 

Scar side H. wrightii % cover 4 2.111 0.715 2.717 0.606 3.333 0.504 3.860 0.425 
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Table 8: Mean experimental scar measurements (± S.E.) for three restoration treatments, and 
Type 1 scar control in restoration experiment. Measurements were taken eight times from August 
2007 through August 2008. 

  Initial 2 weeks 1 month 2 months 

  mean SE mean SE mean SE mean SE 

In-Scar Measurements for plant-only method                 

Rooted H. wrightii density (shoots per 25 x 25 cm) 0 0 0 0 0 0 2 2 

H. wrightii canopy height (cm) 0 0 0 0 0 0 6 4 

H. wrightii % cover (per 25 x 25 cm) 0 0 0 0 0 0 1 1 

H. wrightii % root cover (per 25 x 25 cm) 0 0 0 0 0 0 1 1 

Scar width (cm) 32 0 34 1 33 1 32 1 

Scar depth (cm) 9 0 10 1 10 1 11 1 

Scar angle (degrees) 45 0 45 4 32 5 35 9 

% leaf litter cover 26 11 85 10 100 0 90 8 

% drift algae cover 2 2 0 0 0 0 0 0 

Scar side H. wrightii density (shoots per 25 x 25 cm) 154 23 149 13 174 14 168 11 

Scar side H. wrightii canopy height (cm) 44 1 47 1 42 1 35 2 

Scar side H. wrightii % cover (per 25 x 25 cm) 56 6 59 5 68 5 67 5 

In-Scar Measurements for fill only method                 

Rooted H. wrightii density (shoots per 25 x 25 cm) 0 0 0 0 1 1 6 3 

H. wrightii canopy height (cm) 0 0 0 0 3 3 6 3 

H. wrightii % cover (per 25 x 25 cm) 0 0 0 0 1 1 1 1 

H. wrightii % root cover (per 25 x 25 cm) 0 0 0 0 0 0 6 5 

Scar width (cm) 32 0 31 1 34 4 35 3 

Scar depth (cm) 0 0 1 1 1 1 7 2 

Scar angle (degrees) 0 0 8 6 12 9 21 9 

% leaf litter cover 27 9 73 13 56 15 70 12 

% drift algae cover 2 1 0 0 3 3 0 0 

Scar side H. wrightii density (shoots per 25 x 25 cm) 140 18 138 10 161 13 150 21 

Scar side H. wrightii canopy height (cm) 46 1 45 1 41 1 33 2 

Scar side H. wrightii % cover (per 25 x 25 cm) 54 8 55 4 65 5 57 9 

In-Scar Measurements for fill and plant                 

Rooted H. wrightii density (shoots per 25 x 25 cm) 0 0 0 0 0 0 0 0 

H. wrightii canopy height (cm) 0 0 0 0 0 0 0 0 

H. wrightii % cover (per 25 x 25 cm) 0 0 0 0 0 0 0 0 

H. wrightii % root cover (per 25 x 25 cm) 0 0 0 0 0 0 0 0 

Scar width (cm) 32 0 37 3 37 2 46 7 

Scar depth (cm) 0 0 2 1 6 2 9 2 

Scar angle (degrees) 0 0 4.5 2 9 5 26 7 

% leaf litter cover 19 9 71 11 76 13 88 7 

% drift algae cover 1 1 0 0 0 0 0 0 

Scar side H. wrightii density (shoots per 25 x 25 cm) 160 17 136 12 153 12 160 27 

Scar side H. wrightii canopy height (cm) 47 2 49 2 40 2 31 2 

Scar side H. wrightii % cover (per 25 x 25 cm) 63 7 62 7 62 5 59 10 
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  Initial 2 weeks 1 month 2 months 

  mean SE mean SE mean SE mean SE 

In-Scar Measurements for Control, Type 1 scar                 

Rooted H. wrightii density (shoots per 25 x 25 cm) 0 0 0 0 0 0 0 0 

H. wrightii canopy height (cm) 0 0 0 0 0 0 0 0 

H. wrightii % cover (per 25 x 25 cm) 0 0 0 0 0 0 0 0 

H. wrightii % root cover (per 25 x 25 cm) 0 0 0 0 0 0 0 0 

Scar width (cm) 32 0 34 2 32 1 41 5 

Scar depth (cm) 9 0 10 1 11 1 12 1 

Scar angle (degrees) 45 0 38 4 41 4 31 7 

% leaf litter cover 25 13 90 6 95 5 90 8 

% drift algae cover 4 3 0 0 0 0 0 0 

Scar side H. wrightii density (shoots per 25 x 25 cm) 229 27 132 12 147 18 163 12 

Scar side H. wrightii canopy height (cm) 46 3 47 1 41 1 30 2 

Scar side H. wrightii % cover (per 25 x 25 cm) 55 6 52 5 59 7 63 4 

 
  3 months 6 months 9 months 12 months 

  mean SE mean SE mean SE mean SE 

In-Scar Measurements for plant-only method                 

Rooted H. wrightii density (shoots per 25 x 25 cm) 2 1 9 3 62 13 91 8 

H. wrightii canopy height (cm) 8 3 9 3 21 2 27 2 

H. wrightii % cover (per 25 x 25 cm) 0 0 1 1 25 6 35 3 

H. wrightii % root cover (per 25 x 25 cm) 0 0 1 1 30 7 44 4 

Scar width (cm) 29 3 35 3 27 3 25 3 

Scar depth (cm) 12 3 9 1 6 1 4 1 

Scar angle (degrees) 20 3 15 2 11 2 11 4 

% leaf litter cover 95 5 90 9 19 6 47 10 

% drift algae cover 0 0 0 0 14 10 0 0 

Scar side H. wrightii density (shoots per 25 x 25 cm) 141 13 81 9 238 19 238 18 

Scar side H. wrightii canopy height (cm) 39 3 22 1 28 2 37 1 

Scar side H. wrightii % cover (per 25 x 25 cm) 57 5 28 5 88 5 91 5 

In-Scar Measurements for fill only method                 

Rooted H. wrightii density (shoots per 25 x 25 cm) 8 3 8 4 59 16 109 19 

H. wrightii canopy height (cm) 15 3 8 5 18 3 29 3 

H. wrightii % cover (per 25 x 25 cm) 3 1 2 1 24 7 42 8 

H. wrightii % root cover (per 25 x 25 cm) 3 1 2 1 28 8 50 8 

Scar width (cm) 34 2 38 4 37 9 24 4 

Scar depth (cm) 9 1 7 2 7 1 4 1 

Scar angle (degrees) 17 3 12 4 8 2 9 3 

% leaf litter cover 93 5 90 9 41 11 41 12 

% drift algae cover 0 0 0 0 4 3 0 0 

Scar side H. wrightii density (shoots per 25 x 25 cm) 150 10 58 9 229 32 210 23 

Scar side H. wrightii canopy height (cm) 37 2 21 1 29 2 35 2 

Scar side H. wrightii % cover (per 25 x 25 cm) 59 4 20 4 78 8 80 7 
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  3 months 6 months 9 months 12 months 

  mean SE mean SE mean SE mean SE 

In-Scar Measurements for fill and plant                 

Rooted H. wrightii density (shoots per 25 x 25 cm) 12 8 3 2 55 12 62 21 

H. wrightii canopy height (cm) 8 4 3 2 20 3 19 4 

H. wrightii % cover (per 25 x 25 cm) 3 2 1 1 22 6 23 8 

H. wrightii % root cover (per 25 x 25 cm) 5 5 0 0 28 7 25 9 

Scar width (cm) 33 3 43 8 43 9 40 13 

Scar depth (cm) 7 2 10 1 8 1 8 2 

Scar angle (degrees) 26 9 18 4 13 2 16 3 

% leaf litter cover 77 8 95 5 56 11 70 14 

% drift algae cover 0 0 1 1 3 3 0 0 

Scar side H. wrightii density (shoots per 25 x 25 cm) 136 17 81 11 242 33 213 23 

Scar side H. wrightii canopy height (cm) 34 3 22 1 29 2 39 1 

Scar side H. wrightii % cover (per 25 x 25 cm) 55 6 29 5 79 8 82 7 

In-Scar Measurements for Control  
(Type 1 scar)                 

Rooted H. wrightii density (shoots per 25 x 25 cm) 17 4 6 3 62 10 116 21 

H. wrightii canopy height (cm) 19 2 7 3 21 2 25 2 

H. wrightii % cover (per 25 x 25 cm) 5 2 0 0 27 5 46 9 

H. wrightii % root cover (per 25 x 25 cm) 8 8 0 0 31 6 54 11 

Scar width (cm) 36 3 41 4 25 2 22 3 

Scar depth (cm) 9 1 11 1 7 1 4 1 

Scar angle (degrees) 23 2 16 2 12 2 13 3 

% leaf litter cover 88 9 88 7 28 7 35 11 

% drift algae cover 0 0 8 5 8 4 0 0 

Scar side H. wrightii density (shoots per 25 x 25 cm) 144 15 79 14 229 23 229 27 

Scar side H. wrightii canopy height (cm) 37 2 6 3 28 1 37 2 

Scar side H. wrightii % cover (per 25 x 25 cm) 59 5 28 6 80 6 85 8 

 

Table 9: Survival of three restoration treatments for Type 1 scars between August 2007 and 
August 2008.  

  Initial 2 weeks 1 month 2 months 3 months 6 months 9 months 12 months 

Plant-only method                 

Mean (± S.E.) 
planting units per scar 

16 ± 0 10 ± 2 1 ± 0 0 0 0 0 0 

Fill only method                 

Scars retaining sand 10 10 9 7 6 4 4 4 

Fill and plant method                 

mean (± S.E.) 
planting units per scar 

16 ± 0 10 ± 2 5 ± 2 1 ± 0 0 0 0 0 

Scars retaining sand 10 10 9 8 6 6 6 1 
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Table 10: Kruskal-Wallis test for mean differences in measurements among three restoration 
treatments, the Type 1 scar control, and the seagrass control in restoration experiment.  Since 
tests were repeated eight times (once for each time period), the significance level was corrected 
to p = 0.006 using the Bonferroni method. 

 

    Initial 2 weeks 1 month 2 months 

  df χ2
 Sig.  χ2

 Sig.  χ2
 Sig.  χ2 

Sig.  

H. wrightii density  
(shoots per 25 x 25 cm) 4 48.205 0.000 48.205 0.000 35.937 0.000 37.769 0.000 

H. wrightii canopy height 
(cm) 4 48.209 0.000 48.205 0.000 45.046 0.000 36.363 0.000 

H. wrightii % cover  
(per 25 x 25 cm) 4 48.209 0.000 48.205 0.000 35.660 0.000 37.789 0.000 

H. wrightii % root cover  
(per 25 x 25 cm) 3 0.000 1.000 0.000 1.000 8.531 0.036 6.128 0.106 

Scar width (cm) 3 49.000 0.000 31.142 0.000 27.981 0.000 25.628 0.000 

Scar depth (cm) 3 49.000 0.000 40.950 0.000 28.122 0.000 21.858 0.000 

Scar angle 3 49.000 0.000 36.084 0.000 29.703 0.000 11.431 0.000 

% leaf litter cover 3 0.545 0.909 2.270 0.518 8.899 0.031 2.109 0.550 

% drift algae cover 3 0.712 0.870 0.000 1.000 3.000 0.392 0.000 1.000 

Scar side H. wrightii density 
(shoots per 25 x 25 cm) 4 0.791 0.940 2.069 0.723 3.942 0.414 1.485 0.829 

Scar side H. wrightii canopy 
height (cm) 4 2.791 0.593 3.577 0.466 5.518 0.238 5.510 0.239 

Scar side H. wrightii % 
cover (per 25 x 25 cm) 4 0.875 0.928 1.587 0.811 4.009 0.405 1.122 0.891 

 
    3 months 6 months 9 months 12 months 

  df χ2
 Sig.  χ2

 Sig.  χ2
 Sig.  χ2

 Sig.  

H. wrightii density  
(shoots per 25 x 25 cm) 4 29.970 0.000 25.392 0.000 22.318 0.000 25.583 0.000 

H. wrightii canopy height 
(cm) 4 28.728 0.000 18.018 0.000 13.797 0.008 17.175 0.002 

H. wrightii % cover  
(per 25 x 25 cm) 4 32.811 0.000 28.582 0.000 22.611 0.000 25.735 0.000 

H. wrightii % root cover  
(per 25 x 25 cm) 3 13.557 0.004 2.637 0.451 0.124 0.989 5.647 0.130 

Scar width (cm) 3 26.306 0.000 24.504 0.000 25.985 0.000 21.467 0.000 

Scar depth (cm) 3 24.277 0.000 22.528 0.000 25.059 0.000 15.900 0.003 

Scar angle 3 24.932 0.000 23.063 0.000 24.975 0.000 14.907 0.005 

% leaf litter cover 3 6.163 0.104 2.194 0.533 6.535 0.088 3.889 0.274 

% drift algae cover 3 0.000 1.000 2.393 0.495 2.600 0.457 0.000 1.000 

Scar side H. wrightii density 
(shoots per 25 x25 cm) 4 3.532 0.473 3.082 0.544 0.293 0.990 5.192 0.268 

Scar side H. wrightii canopy 
height (cm) 4 1.944 0.746 4.077 0.396 1.105 0.893 2.143 0.709 

Scar side H. wrightii % 
cover (per 25 x 25 cm) 4 1.322 0.858 3.538 0.472 0.582 0.965 5.775 0.217 
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Table 11: Mean (± S.E.) number of scars having a type of erosion per time period in each 
treatment. 

  

Scar Erosion Types: Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Total 

Mean number of scars 
with washouts  
per time period  

1 ± 0 1 ± 0 1 ± 0 0 ± 0 0 ± 0 1 ± 0 2 ± 0 2 ± 1 8 

Mean number of scars 
turned into sand patches 
per time period  

0 ± 0 1 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 1 ± 0 2 

Mean number of scars 
with holes  
per time period 

1 ± 0 1 ± 0 1 ± 1 0 ± 0 0 ± 0 1 ± 0 3 ± 1 3 ± 1 11 
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