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A parametric frequency response method for non-linear time-varying systems
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A new parametric frequency response algorithm is introduced to investigate linear and non-linear dynamic systems with
time-varying parameters. In the new algorithm the time-varying parameters are regarded as additional inputs of the systems
and the non-linear generalised frequency response functions for multi-input-single-output systems are then employed to
obtain Zadeh’s system functions from a differential equation representation. The parametric frequency response method
reveals how the time-varying parameters affect the behaviour of the systems through a time-varying term. The new method
can be applied to both linear and non-linear time-varying systems.

Keywords: time-varying systems; frequency domain; parametric frequency response method; Zadeh’s system function

1. Introduction

Time-varying systems occur frequently in engineering
systems, including control systems and communications.
Sometimes the time variation of parameters can be ignored,
such as in ageing and the deterioration of electronic com-
ponents. These systems can be considered to be essentially
time invariant. When the parameters change quickly and the
speed of change is comparable to the time constants of the
system the time variation of the systems cannot be ignored
and new methods for time-varying systems are needed.
In the past, different representations and techniques have
been introduced for the investigation of linear time-varying
systems (Zadeh 1950a, 1950b; Puri and Weygandt 1963;
Wierwille 1963; Kozek and Hlawatsch 1991; Shenoy and
Parks 1994; Hlawatsch 1998) and to a much lesser degree
non-linear time-varying systems (Bansal 1969; Sandberg
1982; Sandberg 1983; Yuan and Opal 2001). The stability
of time-varying systems has also been studied by several
authors (Bongiorno 1964; Sandberg 1964; Zames 1966;
Brockett and Lee 1967; Zhu and Johnson 1988). These rep-
resentations and methods for time-varying dynamic sys-
tems mainly fall into three classes: differential equation or
Volterra series based time domain methods, Zadeh’s system
functions-based frequency domain methods and the Wigner
distribution and ambiguity function-based time-frequency
domain methods.

The system functions introduced by Zadeh (1950b) are
a natural extension of the traditional frequency response
function to linear time-varying systems. Zadeh’s system
function is a two-dimensional function of both frequency
and time which defines a time-varying frequency response
function. The system function represents a frequency
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relationship between the input and output at an instant in
time. Zadeh showed that a system function satisfies a dif-
ferential equation and the system function can be expanded
as a series of fixed (time-invariant) frequency response
functions by approximating the solution using perturbation
methods. Taking the Fourier transform with respect to
the time parameter of the system functions then yields
bi-frequency system functions. The bi-frequency system
functions have subsequently been developed by Bayan
and Erfani (2005), and have been extended to non-linear
time-varying cases by some authors (Bansal 1969; Yuan
and Opal 2001). Correlation functions and power spectra
in variable networks have also been studied (Zadeh 1950a).

Although Zadeh’s system functions inherit many merits
of frequency response functions and have a clear physical
meaning, the application of this representation is limited.
The primary drawback to this method is that it is limited
to slowly varying systems or small variations so that per-
turbation methods can be used (Gibson 1963). These dif-
ficulties become much worse when this idea is applied to
non-linear time-varying systems. In this paper a new para-
metric frequency response (PFR) method is introduced to
study time-varying systems based on results from GFRF
(generalised frequency response function) methods. A new
algorithm is introduced where the time-varying parameters
are regarded as additional inputs to the systems and re-
sults for MISO (multi-input-single-output) time-invariant
systems are used to obtain the system function representa-
tions for time-varying systems. A related idea can be found
in Lawrence’s paper (1979) which was used to solve time-
varying linear differential equations. In this paper the rela-
tionships between the system function representation, the
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Volterra series and the associated GFRFs will be studied.
Generalised frequency response functions represent exten-
sions of the classical linear frequency response function to
non-linear systems. It is shown that the probing method
for MISO non-linear systems (Worden, Manson, and Tom-
linson 1997; Swain and Billings 2001) can be used to de-
rive the system functions. One advantage of the new para-
metric frequency response method is that it can provide
deep insight into time-varying systems. The new paramet-
ric method separates the effects of inputs and time-varying
parameters to reveal how time-varying parameters imposed
at different positions in a differential equation representa-
tion affect the behaviour of the system through the non-
linear terms. In addition, the new parametric frequency re-
sponse method applies to non-linear time-varying systems
because all the techniques used are based on non-linear
representations.

The new parametric frequency response method could
be applied for example in the design of aircraft control
systems based on the gain-scheduling method (Leith and
Leithead 2000). Using this method a family of linear time-
invariant controllers are designed at different operating
points and the parameters in the controllers are often fitted
as a function of the scheduling variables, such as altitude
and Mach number. Information on how a control parameter
affects the performance of the systems can be very useful
and is often crucial for system design. The new paramet-
ric frequency response method provides a clear path to an
explanation of this kind of information.

This paper is organised as follows: Section 2 briefly
reviews Zadeh’s system functions for linear time-varying
dynamic systems and the extension to non-linear time-
varying systems. The new parametric frequency response
method is introduced in Section 3 to exploit the use-
ful information in the system function representations.
Two illustrative examples are given in Section 4 to illus-
trate the new method. Conclusions are finally drawn in
Section 5.

2. System functions and bi-frequency system
functions

Consider a continuous time LTV (linear time-varying) sys-
tem denoted as

y (t) = L (t, u (t)) , (1)

where L (t, •) represents the time-varying system and u (t)
and y (t) are the input and output of the system, respectively.

The relationship between the input and output of the
system can be described by a convolution of the input and
the weighting function

y (t) =
∫ ∞

−∞
h (t, τ ) u (τ ) dτ (2)

For a causal system with a zero initial condition,
Equation (2) becomes

y (t) =
∫ t

0
h (t, τ ) u (τ ) dτ (3)

because h(t, τ ) = 0, when t < τ . In the remainder of this
paper, all the systems under study are assumed to be
causal.

The weighting function h (t, τ ) is also known as the
unit impulse response function which defines the response
of a linear time-varying system at time t to an impulse
input imposed at τ . This provides a two-dimensional repre-
sentation of the system involving the observed time t and
the application time τ . For an LTI (linear time invariant)
system L (•) the two time-dimensions are related and the
behaviour of the system depends only on the difference
t − τ . The Fourier transform of the time-invariant impulse
response function with respect to the value t − τ , denoted
as H (jω), is the well-known linear frequency response
function of the system. Signal ejωt is an eigenfunction of
the LTI system and H (jω) is the associated eigenvalue,
that is

L
(
ejωt

) = H (jω) ejωt (4)

When the system is linear time-varying although the super-
position applies the system exhibits behaviour quite unlike
LTI systems. A new representation, a system function, was
introduced by Zadeh (Zadeh 1950b) for LTV systems

W (t, jω) =
∫ ∞

−∞
h (t, τ ) e−jω(t−τ )dτ (5)

The system function representation transfers the ap-
plication time τ of the impulse response function into
the frequency domain providing a time-frequency descrip-
tion of the system. Zadeh’s system function is a natu-
ral extension of the frequency response function for LTI
systems.

The response of the LTV system with respect to input
ejωt is

y (t) =
∫ t

0
h (t, τ ) ejωτ dτ = W (t, jω) ejωt (6)

Therefore, the system function can be alternatively de-
fined as:

H (jω, t) = response of an LTV system to ejωt

ejωt
. (7)

Substituting the input in (2) with an inverse Fourier
transform, the output of an LTV system can then be
expressed using the new defined system function as:
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y (t) =
∫ t

0
h (t, τ )

1

2π

∫ ∞

−∞
U (jω) ejωτ dωdτ

= F−1 (W (t, jω) U (jω)) . (8)

Now, the output of the LTV system becomes an inverse
Fourier transform of the product of the system function and
the Fourier transform of the input W (t, jω) U (jω).

The frequency domain output of the system can be given
as follows by applying the Fourier transform to both sides
of (8)

Y (jμ) =
∫ ∞

−∞
y (t) e−jμtdt=

∫ ∞

−∞
� (jω, jμ) U (jω) dω,

(9)
where

� (jμ, jω) =
∫ ∞

−∞
W (t, jω) ejωt e−jμtdt

=
∫ ∞

−∞
W (t, jω) ej (ω−μ)t dt . (10)

Equation (10) gives the definition of the bi-frequency
system function. The bi-frequency system function is es-
sentially the Fourier transform of W (t, jω) ejωt .

System functions have been extended to non-linear
time-varying systems by several authors (Bansal 1969;
Yuan and Opal 2001). Consider the time-varying non-linear
system which can be expanded in a convergent Volterra
series

y (t) =
∞∑

k=1

yk (t) =
∞∑

n=1

∫ t

0
· · ·

∫ t

0
wk (t, τ1, . . . , τk)

× u (τ1) · · · u (τk) dτ1 . . . dτk, (11)

where wk (t, τ1, . . . , τk) represent the time-varying Volterra
kernels. The study of Volterra series expansions of time-
varying non-linear systems can be found in the papers by
Sandberg (1982, 1983).

The generalised system functions (or high-order system
functions) can then be defined as:

Wk (t, jω1, jω2, . . . , jωk)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
wk (t, τ1, . . . , τk) e−jω1(t−τ1) . . . e−jωk (t−τk)

× dτ1 . . . dτk.

(12)

Similarly the corresponding bi-frequency system func-
tions can be defined as:

�k (jμ, jω1, jω2, . . . , jωk)

=
∫ ∞

−∞
Wk(t, jω1, jω2, . . . , jωk)ej(

∑k
i=1 ωi−μ)t dt. (13)

Notice that although there are more than two frequen-
cies involved, the name ‘bi-frequency system function’ is
used for convenience of expression.

3. The parametric frequency response method

In this section a new general form of the high-order system
functions for non-linear time-varying systems will be de-
rived using the new parametric frequency response method.
System functions for LTV systems are particular cases of
general results when k = 1.

Consider a time-varying system expressed as the fol-
lowing model:

R∑
r=1

αr,p (t, c1, c2, . . . , cr )
p∏

i=0

y(ci ) (t)
r∏

i=p+1

u(ci ) (t) = 0,

(14)

where
∏p

i=0 y(ci ) (t)
∏r

i=p+1 u(ci ) (t) represents the rth order
non-linearities composed of the input and output and the as-
sociated derivatives; αr,p (t, c1, c2, . . . , cr ) represents time-
varying coefficients. The term

∏p
i=0 y(ci ) (t)

∏r
i=p+1 u(ci ) (t)

reduces to a pure input non-linearity when p = 0 and a pure
output non-linearity when p = r . System (14) reduces to
a linear time-varying system when R = 1 and the associ-
ated multi-input time-varying system becomes a bi-linear
form.

The non-linear model is composed of a linear com-
bination of non-linear terms and is linear-in-the param-
eters. In practical applications, the time-varying model
is often derived from the first principles or obtained us-
ing a system identification method such as the wavelet-
NARMAX algorithm (Billings and Wei 2005). In this
model, the time-varying parameters αr,p (t, c1, c2, . . . , cr )’s
can be considered as additional inputs so that the sys-
tem becomes a time-invariant system with more than one
input.

For example, a specific instance of the non-linear ODE
(ordinary deferential equation) model in (14)

ÿ + ẏ + ρ cos (μt) yẏ + y = bu (15)

can be produced from the general form by setting the coef-
ficients as

α1,1 (t, 2) = 1, α1,1 (t, 1) = 1, α1,1 (t, 0) = 1,

α2,2 (t, 0, 1) = ρ cos (μt) , α1,0 (t, 0) = b. (16)

Assume the time-varying system admits a Volterra se-
ries. Volterra series representation has been widely stud-
ied and many results on the properties, including conver-
gence analysis are available (Ku and Chin Chun 1967;
Brockett 1976; Gilbert 1977; Lesiak and Krener 1978;
Sandberg 1982; Sandberg 1983). GFRFs are defined as
the Fourier transform of the Volterra kernels and GFRFs
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of MISO time-invariant systems have been studied by Wor-
den et al. (1997) and Swain and Billings (2001). GFRFs
can easily be obtained from non-linear differential equation
models using a harmonic probing method. Recent stud-
ies have shown that the Volterra series representation can
also be obtained using an Adomian method when the time-
varying system is analytic with respect to the output and
linear with respect to the input (Guo, Guo, Billings, Coca,
and Lang 2012).

The new parametric frequency response method ex-
ploits the connection between the direct representation for
time-varying systems and representations for associated
multi-input time-invariant systems. This allows results for
MISO time-invariant systems to be used to investigate the
behaviour of time-varying systems.

3.1. Derivation of system functions from the Volterra
series representation

Consider the time-varying system (14) and assume the sys-
tem has a zero equilibrium point, that is, the response of
the system is zero when the input u(t) is set as zero. Notice
that this means that zero is also an equilibrium point of the
MISO system when the time-varying parameters are treated
as additional inputs. It is also assumed that both input and
the time-varying parameters have finite energy so that the
Fourier transform can be applied.

Assume the time-varying system admits a Volterra se-
ries representation and the time-varying Volterra series is
expressed as

y (t) =
∞∑

n=1

∫ t

0
· · ·

∫ t

0
wn (t, τ1, . . . , τn) u (τ1) · · · u (τn)

× dτ1 . . . dτn (17)

where the kernels wn (t, τ1, . . . , τn) are time-dependent.
Assume that there is a total of d time-varying parameters

in system (14) denoted as α1 (t), . . ., αd (t) and one input
u (t). The system is also assumed to have a zero equilibrium
point, which means the response of the system is zero when
the input is set as zero. When the time-varying parameters
are considered as additional inputs the system becomes a
time-invariant system with many inputs. The time-invariant
Volterra series representation can then be given as a sum of
direct-kernels of each input and the cross-kernels between
different inputs.

y(t) =
∞∑

n=1

yn(t) =
∞∑

n=1

∫ t

0
· · ·

∫ t

0
hn(t − τ1, . . . , t − τn)

× u(τ1) · · · u(τn)dτ1 . . . dτn

+
∞∑

n=1

∫ t

0
· · ·

∫ t

0
hn(t − τ1, . . . , t − τn)α1(τ1) · · ·

×α1(τn)dτ1 . . . dτn+ · · ·

+
∞∑

n=1

∫ t

0
· · ·

∫ t

0
hn(t − τ1, . . . , t − τn)

×αd (τ1) · · · αd (τn)dτ1 . . . dτn

+
∞∑

n=1

∫ t

0
· · ·

∫ t

0
hn(t − τ1, . . . , t − τn)

×αk1 (τ1) · · · αkm
(τm)u(τm+1) · · · u(τn)

×dτ1 . . . dτn, (18)

where k1 ∼ km can be any integer between 1 and d.
Rearrange the Volterra series in (18) according to the

order of the input.

y(t) =
∞∑

k=0

yk(t) = y0(t) +
∞∑

k=1

∫ t

0
· · ·

∫ t

0

×hk(t − τ1, . . . , t − τk)u(τ1) · · · u(τk) dτ1 . . . dτk

+
∞∑

k=1

∞∑
m=1

∫ t

0
· · ·

∫ t

0

×hk+m(t − σ1, . . . , t − σm, t − τ1, . . . , t − τk)

×α(σ1) · · ·α(σm)u(τ1) · · · u(τk)dσ1 . . . dσm

× dτ1 . . . dτk. (19)

The first term on the right-hand side of (19) is

y0(t) =
∞∑

n=1

∫ t

0
· · ·

∫ t

0
hn(t − τ1, . . . , t − τn)

×α1(τ1) · · · α1(τn)dτ1 . . . dτn

+ · · ·+
∞∑

n=1

∫ t

0
· · ·

∫ t

0
hn(t − τ1, . . . , t − τn)

×αd (τ1) · · · αd (τn)dτ1 . . . dτn, (20)

which is composed of direct and cross kernels of the total
of d-varying parameters. This term will be zero because
zero is an equilibrium point of the system.

The second term, which is composed of direct kernels
with respect to the input u (t), represents the contribution
purely from the input. The last terms represent the combined
contributions from both the input and the time-varying pa-
rameters.

Therefore, Equation (19) can further be written as fol-
lows by combining the second and the third terms.

y (t) =
∞∑

k=1

∞∑
m=0

∫ t

0
· · ·

∫ t

0

×hk+m (t − σ1, . . . , t − σm, t − τ1, . . . , t − τk)

×
m∏

i=1

αki
(σi)

k∏
i=1

u (τi)dσ1 . . . dσmdτ1 . . . dτk.

(21)
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Comparing Equations (21) and (17), the relationship
between representations (17) and (18) can be expressed as

wk (t, τ1, . . . , τn)

=
∞∑

m=0

∫ t

0
· · ·

∫ t

0
hk+m(t − σ1, . . . , t− σm, t − τ1, . . . ,

t − τk)
m∏

i=1

αki
(σi)dσ1 . . . dσm. (22)

Generalised system functions can then be defined as

Wk (t ; jω1, . . . , jωk)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
wk (t, τ1, . . . , τk) e−jω1(t−τ1) · · · e−jωk (t−τk )

× dτ1 . . . dτk (23)

and the output of the system can be expressed using the
system functions as

y (t) =
∞∑

k=1

(
1

2π

)k ∫ ∞

−∞
· · ·

∫ ∞

−∞
Wk (t ; jω1, . . . , jωk)

×U (jω1) · · · U (jωk) ej
∑k

i=1 ωi tdω1 · · · dωk (24)

For the linear time-varying system the only system func-
tion will be W1 (t ; jω1), usually written as W (t, jω), which
agrees with Zadeh’s definition.

Substituting (22) into the definition of the system func-
tion in (23) yields

Wk (t ; jω1, . . . , jωk)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞

( ∞∑
m=0

∫ t

0
· · ·

∫ t

0
hk+m (t − σ1, . . . , t − σm,

t − τ1, . . . , t − τk)
m∏

i=1

αki
(σi) dσ1 . . . dσm

)

× e−jω1(t−τ1) · · · e−jωn(t−τn)dτ1 . . . dτn

=
∞∑

m=0

∫ t

0
· · ·

∫ t

0
Hk+m (t − σ1, . . . , t − σm, jω1, . . . , jωk)

αk1 (σ1) · · ·αkm
(σm) dσ1 . . . dσm. (25)

Equation (25) provides an explicit expansion for the
new generalised systems functions. The computation of
the expansion is much simpler compared with perturba-
tion methods when the Volterra kernels of the multi-input
time-invariant system are known. Furthermore, the new ex-
pansion provides more detail about the position of the time-
dependent parameters within the model.

Equation (25) shows that the response of the system
consists of two parts: the time-invariant response and the
time-varying response. The first term on the right-hand side

of (25) presents the time-invariant part of the system when
m = 0 and represents the output of the system purely under
the effect of the input when the time-varying parameters are
zero. Notice that the first term in (25) is Hk (jω1, . . . , jωk)
when m = 0. This means that the generalised system func-
tions reduce to frequency response functions when all the
time-varying parameters are equal to zero. This agrees with
the generalised frequency response function representation
of a time-invariant system. When the parameters change
periodically the expansion becomes much simpler and easy
to understand

Wk (t ; jω1, . . . , jωk)

=
∞∑

m=0

ej
∑m

i=1 μki
tHk+m(jμk1 , . . . , jμkm

, jω1, . . . , jωk).

(26)

In this case it is easy to observe that the system func-
tion can be expanded as a summation of a series of time-
invariant frequency response functions. This is coincident
to the conclusions in Zadeh’s paper.

However, the calculation of the Volterra kernels directly
from a differential equation model could be very difficult,
whereas the computation of the associated generalised fre-
quency response functions is much simpler using results
based on the harmonic probing method (Worden et al. 1997;
Swain and Billings 2001; Worden and Tomlinson 2001;
Peyton Jones 2007). A new expansion of the generalised
system functions for non-linear time-varying systems with
generalised frequency response functions will therefore be
derived next.

Express the time-varying parameters in a Fourier trans-
form form:

αki
(σi) = 1

2π

∫ ∞

−∞
Aki

ejμiσi dμi (27)

and substitute (27) into (25). The generalised system func-
tion becomes

Wk (t ; jω1, . . . , jωk)

=
∞∑

m=0

(
1

2π

)m ∫ ∞

−∞
· · ·

∫ ∞

−∞
Hk+m(jμ1, . . . , jμm,

×jω1, . . . , jωk)
m∏

i=1

Aki
(jμi) ej

∑m
i=1 μi tdμ1 . . . dμm.

(28)

Equation (28) provides a different form of expansion of
the generalised system functions where now the generalised
frequency response functions are used instead of Volterra
kernels. The new expansion of system functions can now
be interpreted. The new expansion shows how the time-
dependent information from the time-varying parameters is
packed into the kth order system function. The generalised
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system functions can also be regarded as a kind of time-
dependent generalised frequency response function. Addi-
tionally, Equation (28) is a generalisation of Equation (26)
for a more general form of time-varying parameters.

According to the definition (13), the kth order bi-
frequency system functions can be defined as

�k (jυ, jω1, . . . , jωk)

=
∫ ∞

−∞
Wk (t ; jω1, . . . , jωk) ej

∑k
i=1 ωi t−jυtdt

(29)

and the output of system can be given in the frequency
domain as

Y (jυ) =
∞∑

k=1

∫ ∞

−∞
· · ·

∫ ∞

−∞
�k (jυ, jω1, . . . , jωk)

×U (jω1) · · · U (jωk) dω1 . . . dωk. (30)

Although the definition of the bi-frequency system
function was given by Zadeh he did not give much explana-
tion of the new introduced frequency υ. The (generalised)
bi-frequency system functions are recognised as important
for the frequency domain study of time-varying systems
especially for the study of the output properties of systems.
The next section will reveal the importance underlying the
(generalised) bi-frequency system functions using the new
parametric frequency response method.

3.2. Derivation of bi-frequency system functions from
the generalised frequency response functions

In this subsection the kth bi-frequency system function will
be derived from the generalised frequency response func-
tion representations.

Following the discussion as the end of Section 2, the
bi-frequency system function �k (jυ, jω1, . . . , jωk) and
Wk (t ; jω1, . . . , jωk) ej

∑k
i=1 ωi t are a pair of Fourier trans-

forms, that is

Wk (t ; jω1, . . . , jωk) ej
∑k

i=1 ωi t

=
∫ ∞

−∞
�k (jυ, jω1, . . . , jωk) ejυtdυ. (31)

Substituting (28) into (24), the output of the system can
be calculated by

y (t) =
∞∑

k=1

(
1

2π

)k ∞∑
m=0

(
1

2π

)m ∫ ∞

−∞
· · ·

∫ ∞

−∞

×Hk+m (jμ1, . . . , jμm, jω1, . . . , jωk)

×
m∏

i=1

Aki
(jμi) dμi

k∏
i=1

U (jωi)e
j

∑k
i=1 ωi t+j

∑m
i=1 μi t

× dω1 . . . dωk. (32)

Define a new frequency denoted as υ

υ =
k∑

i=1

ωi +
m∑

i=1

μi. (33)

The frequency represents a combination of the frequen-
cies from both input and time-varying parameters.

Replace the variable μm = υ − ∑k
i=1 ωi − ∑m−1

i=1 μi

and the left-hand side of (31) can be written as

Wk (t ; jω1, . . . , jωk) ej
∑k

i=1 ωi t

=
∞∑

m=0

(
1

2π

)m ∫ ∞

−∞
· · ·

∫ ∞

−∞
Hk+m(jμ1, . . . , jμm,

jω1, . . . , jωk)
m∏

i=1

Aki
(jμi) ej

∑m
i=1 μi t ej

∑k
i=1 ωi t

× dμ1 . . . dμm =
∞∑

m=0

(
1

2π

)m ∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
Hk+m

×
(

jμ1, . . . , j

(
υ−

k∑
i=1

ωi −
m−1∑
i=1

μi

)
, jω1, . . . , jωk

)

×
m−1∏
i=1

Aki
(jμi)Akm

(
j

(
υ −

k∑
i=1

ωi −
m−1∑
i=1

μi

))

× dμ1 . . . dμm−1e
jυtdυ =

∫ ∞

−∞

∞∑
m=0

(
1

2π

)m ∫ ∞

−∞
· · ·

∫ ∞

−∞

×Hk+m

(
jμ1, . . . , j

(
υ−

k∑
i=1

ωi −
m−1∑
i=1

μi

)
, jω1, . . . , jωk

)

×
m−1∏
i=1

Aki
(jμi)Akm

(
j

(
υ −

k∑
i=1

ωi −
m−1∑
i=1

μi

))

× dμ1 . . . dμm−1e
jυtdυ. (34)

Compare Equation (34) with (31). The kth order bi-
frequency system function can be written as

�k (jυ, jω1, . . . , jωk)

=
∞∑

m=0

(
1

2π

)m ∫ ∞

−∞
· · ·

∫ ∞

−∞
Hk+m

(
jμ1, . . . , j

×
(

υ−
k∑

i=1

ωi −
m−1∑
i=1

μi

)
, jω1, . . . , jωk

)

×Ak1 (jμ1) · · ·Akm

(
j

(
υ −

k∑
i=1

ωi −
m−1∑
i=1

μi

))

× dμ1 . . . dμm−1. (35)

According to the results in Lang and Billings (1996),
the integral in (35) can be written as a surface inte-
gral on the hyper-plane D : μ = μ1 + μ2 + · · · + μm−1 +
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∑k
i=1 ωi , that is,

�k (jυ, jω1, . . . , jωn)

=
∫

D

(
1

2π

)m

Hk+m

(
jμ1, . . . , j

(
υ−

k∑
i=1

ωi −
m−1∑
i=1

μi

)
,

jω1, . . . , jωk) A (jμ1) · · ·A

×
(

j

(
υ−

k∑
i=1

ωi −
m−1∑
i=1

μi

))
ds. (36)

The new parametric frequency response method pro-
vides additional insight into bi-frequency system functions.
The frequency υ represents the output frequency that is
a combination of all the frequencies from both the input
and the time-varying parameters. Equations (35) and (36)
provide an explicit expansion of the kth order bi-frequency
system function in the generalised frequency response func-
tions, which give an interpretation about how the frequency
components from the input and the time-varying parameters
make a contribution to the final output frequency through
the time-varying terms.

As a result, the output of the system can be written as

y (t) =
∞∑

k=1

∫ ∞

−∞
· · ·

∫ ∞

−∞
Wk (t ; jω1, . . . , jωk) ej

∑k
i=1 ωi t

×U (jω1) · · · U (jωk) dω1 . . . dωk

=
∞∑

k=1

∫ ∞

−∞
· · ·

∫ ∞

−∞

∫ ∞

−∞
�k (jυ, jω1, . . . , jωk) ejυt

×dυU (jω1) · · · U (jωk) dω1 . . . dωk

=
∫ ∞

−∞

∞∑
k=1

∫ ∞

−∞
· · ·

∫ ∞

−∞
�k (jυ, jω1, . . . , jωk)

×U (jω1) · · · U (jωk) dω1 . . . dωke
jυtdυ

=
∫ ∞

−∞
Y (jυ) ejυtdυ. (37)

This is coincident with the results in (30). When the in-
put and time-varying parameters have a discrete spectrum
the integrals in (35) and (36) become a summation of these
discrete frequencies which satisfy (33) and the results be-
come simpler. These results are not given here but can be
seen in the first example in Section 4.

Finally, the system functions and the bi-frequency sys-
tem function can be approximated with a truncated series
when the generalised frequency response function repre-
sentation of the MISO system converges. Results on the

convergence of the GFRF representations can be found in
the references (Tomlinson, Manson, and Lee 1996; Peng
and Lang 2007).

4. Illustrative examples

In this section two illustrative examples are studied to
demonstrate the new parametric response method for a
time-varying system with a discrete spectrum, that is, the
time-varying parameters take a simple form as the summa-
tion of a finite number of frequencies.

4.1. A linear time-varying system

A first-order linear time-varying system which was used in
Zadeh’s paper will be considered.

de2

dt
(t) + e2 (t) + ρ cos μ0t · e2 (t)

= e1 (t) + ρ cos μ0t · e1 (t) . (38)

Rewriting the system in a more general form by replac-
ing the time-varying parameters with a function of time
yields

de2

dt
(t) + e2 (t) + α (t) e2 (t) = e1 (t) + α (t) e1 (t) , (39)

where e1 (t), e2 (t) represent the input and output of the sys-
tem, respectively and α (t) represents the time-dependent
parameters.

Consider the time-varying parameter as an additional
input so that the system becomes a time-invariant MISO
system. Using the harmonic probing method for MISO sys-
tems (Worden et al. 1997; Worden and Tomlinson 2001),
the first few direct and cross generalised frequency response
functions can be calculated as follows:

H
e1
1 (jω) = 1

jω + 1
. (40)

Hα
1 (jμ) = 0. (41)

H
e1e1
2 (jω1, jω2) = 0. (42)

Hαα
2 (jμ1, jμ2) = 0. (43)

H
αe1
2 (jμ, jω) = 1 − H

e1
1 (jω)

(jω + jμ) + 1

= jω

(jω + 1)2 + jμ (jω + 1)
. (44)

H
ααe1
3 (jω) = H

αe1
2 (jμ1, jω) + H

αe1
2 (jμ2, jω)

(jμ1 + jμ2 + jω) + 1
= jω (2jω + jμ1 + jμ2 + 2)

(jω + 1) (jω + jμ1 + 1) (jω + jμ2 + 1) (jμ1 + jμ2 + jω + 1)
.

(45)
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Observe that the higher order direct gener-
alised frequency response functions about the input
H

e1···e1
k (jω1, . . . , jωk), k ≥ 2 are zero. This is because the

system is a linear system and the non-linearity arises from
the multiplication of the time-varying parameters with the
input and output. All the direct generalised frequency re-
sponse functions with respect to the time-varying parameter
α (t) are zero because e2 (t) = 0 when e1 (t) = 0 no matter
how the parameter α (t) changes.

The time-varying parameter can be decomposed as a
pair of frequency components.

α (t) = ρ cos μ0t = ρ
(
ejμ0t + e−jμ0t

)
2

. (46)

According to the results in (26) the system function can
be expanded as

W (t, jω)=
∞∑

m=0

H1+m

(
jμk1 , · · · jμkm

, jω
)(ρ

2

)m

e
∑m

i=1 μki
t ,

(47)

where μki
= μ0 or −μ0.

Substituting the first few GFRFs into (47) yields

W (t, jω) = H1 (jω) + H2 (jμ0, jω)
(ρ

2

)
ejμ0t

+H2 (−jμ0, jω)
(ρ

2

)
e−jμ0t

+H3 (jμ0, jμ0, jω)
(ρ

2

)2
e2jμ0t

+H3 (−jμ0,−jμ0, jω)
(ρ

2

)2
e−2jμ0t

+ 2H3 (jμ0,−jμ0, jω)
(ρ

2

)2
+· · ·

= 1

jω + 1
+ρ cos (μ0t)

jω

(jω + 1)2−(jμ0)2

+ ρμ0 sin (μ0t)
jω

(jω+1)
(
(jω+1)2−(jμ0)2)

+ · · · (48)

Observe that the result obtained using the parametric
frequency response method is exactly the same as the re-
sult that Zadeh obtained (Zadeh 1950b) where two different
perturbation methods were used. However, the parametric
frequency response method is more straightforward even
when a higher order approximation is needed. The new
parametric frequency response method also provides a se-
rial expansion of bi-frequency system functions which re-
veal an important insight into the output properties of the
system.

The bi-frequency system function can be calculated us-
ing the expansion given in the last section

� (jυ, jω)

=
∑

υ=ω+∑m
i=1 μki

(ρ

2

)m

H1+m

(
jμk1 , . . . jμkm

, jω
)
. (49)

The results shows that, the output can only take a dis-
crete spectrum with the output frequency υ = ω + pμ0

where p is any integer when the input frequency ω is fixed.
The magnitude and phase of the output of a certain fre-
quency is determined by the expansion of the bi-frequency
system function.

Denote the sum of all the H1+m

(
jμk1 , . . . jμkm

, jω
)

with a total number of p frequency jμ0 and (m − p)
frequency −jμ0 in the parameters as H1+m,p ×(
jμk1 , . . . jμkm

, jω
)
.

For example

H1+3,1
(
jμk1 , jμk2 , jμk3 , jω

)
= H4 (jμ0,−jμ0,−jμ0, jω)

+H4 (−jμ0, jμ0,−jμ0, jω)

+H4 (−jμ0,−jμ0, jμ0, jω) . (50)

Therefore, the bi-frequency system
� (j (pμ0 + ω) , jω) can be expanded as

� (j (pμ0 + ω) , jω)

=
∞∑

m=p

(ρ

2

)m

H1+m,p

(
jμk1 , . . . jμkm

, jω
)

(51)

and the output of the system is

Y (j (pμ0 + ω))

=
∞∑

m=p

(ρ

2

)m
∫ ∞

−∞
H1+m,p

(
jμk1 ,. . .jμkm

, jω
)
U (jω) dω.

(52)

4.2. A non-linear example: the Duffing equation

The Duffing equation is often used as a typical prototype
of non-linear dynamic systems and has been widely used
as an example for the study of the Volterra approxima-
tion of non-linear systems. The Duffing equation admits a
Volterra series representation around the zero equilibrium
point when the input is within the radius of convergence.
Since only a third-order non-linearity is included in the
Duffing equation, all the Volterra kernels of an even-order
are zeros.

A Duffing oscillator with a time-varying non-linear
restoring force will be considered

mẍ + cẋ + k1x + k3x
3 + α (t) x3 = u (t) , (53)

where α (t) represents the time-varying coefficient of the
non-linear restoring force.

The time-varying Volterra series expansion of the Duff-
ing oscillator is given as

x (t) =
∞∑

k=1

xk (t) =
∞∑

k=1

∫ t

0
· · ·

∫ t

0
hk (t, τ1, . . . , τk)

× u (τ1) · · · u (τk) dτ1 . . . dτk. (54)
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Table 1. Non-zero GFRFs of System (53).

H1 – H3 – H5 – H7 – H9 – . . .
– – – Hα

4 – Hα
6 – Hα

8 – Hα
10 . . .

– – – – – – Hαα
7 – Hαα

9 – . . .
– – – – – – – – – Hααα

10 . . .

– – – – – – – – – –
. . .

Regarding α (t) as an additional input, then the first few non-zero generalised frequency response functions can be
calculated as follows using the probing method for MISO systems (Swain and Billings 2001; Worden et al. 1997).

Hu
1 (jω) = 1

m (jω)2 + c (jω) + k1

. (55)

Huuu
3 (jω1, jω2, jω3) = −k3H

u
1 (jω1) Hu

1 (jω2) Hu
1 (jω3)

m (jω1 + jω2 + jω3)2 + c (jω1 + jω2 + jω3) + k1

. (56)

Huuuuu
5 (jω1, jω2, jω3, jω4, jω5) = −k3H

u
1 (jω1) Hu

1 (jω2) Huuu
3 (jω3, jω4, jω5)

m
(
j

∑5
i=1 ωi

)2
+ c

(
j

∑5
i=1 ωi

)
+ k1

. (57)

Hu···u
7 (jω1, . . . , jω7) =

(−k3H
u
1 (jω1) Huuu

3 (jω2, jω3, jω4) Huuu
3 (jω5, jω6, jω7)

−k3H
u
1 (jω1) Hu

1 (jω2) Hu···u
5 (jω3, jω4, jω5, jω6, jω7)

)

m
(
j

∑7
i=1 ωi

)2
+ c

(
jμ + j

∑7
i=1 ωi

)
+ k1

. (58)

Hαuuu
4 (jμ, jω1, jω2, jω3) = −Hu

1 (jω1) Hu
1 (jω2) Hu

1 (jω3)

m (jμ + jω1 + jω2 + jω3)2 + c (jμ + jω1 + jω2 + jω3) + k1

. (59)

Hαuuuuu
6 (jμ, jω1, jω2, jω3, jω4, jω5) =

(−k3H
αuuu
4 (jμ, jω1, jω2, jω3) Hu

1 (jω4) Hu
1 (jω5)

−Huuu
3 (jω1, jω2, jω3) Hu

1 (jω4) Hu
1 (jω5)

)

m
(
jμ + j

∑5
i=1 ωi

)2
+ c

(
jμ + j

∑5
i=1 ωi

)
+ k1

. (60)

Hααu···u
7 (jμ1, jμ2, jω1, . . . , jω5) =

(−Hu
1 (jω1) Hu

1 (jω2) H
μuuu
4 (jμ1, jω3, jω4, jω5)

−Hu
1 (jω1) Hu

1 (jω2) H
μuuu
4 (jμ2, jω3, jω4, jω5)

)

m
(
jμ1 + jμ2 + j

∑5
i=1 ωi

)2
+ c

(
jμ1 + jμ2 + j

∑5
i=1 ωi

)
+ k1

. (61)

Notice that some of the direct and cross GFRFs are zeros, such as Huu
2 (jω1, jω2), Hαu

2 (jμ1, jω1),
Hαuuuu

5 (jμ, jω1, · · · , jω4) and so on. This happens because only the third-order pure output non-linearity x3 and the fourth-
order input output non-linearity α (t) x3 are included in the system. For example, Hαuuuu

5 (jμ1, jω1, . . . , jω4) is known as the

coefficient of term ejμt+j
∑4

i=1 ωi t in the GFRF expansion of the system output x (t) when a harmonic input is applied. The terms
arising from x3 are Hα

1 (jμ) Hu
1 (jω1) Huuu

3 (jω2, jω3, jω4) ejμt+j
∑4

i=1 ωi t and Hu
1 (jω1) Hu

1 (jω2) Hαuu
3 (jμ, jω3, jω4)

ejμt+j
∑4

i=1 ωi t and the term arising from α (t) x3 is ejμtHu
1 (jω1) ejw1tHu

1 (jω2) ejw2tHuu
2 (jω3, jω4) ej (w3+ω4)t . The GFRF

Hαuuuu
5 (jμ1, jω1, . . . , jω4) is zero because the related GFRFs Hα

1 (jμ), Hαuu
3 (jμ, jω3, jω4) and Huu

2 (jω3, jω4) are zero.
The GFRFs of even-order above the fourth appear in the results because of the introduction of the new fourth-order non-
linearity α (t) x3, such as Hαuuu

4 (jμ, jω1, jω2, jω3) arises from the term ejμtHu
1 (jω1) ejω1tHu

1 (jω2) ejω2tHu
1 (jω3) ejω3t

which is shown in the numerator of (59). This is different from the results observed in a time-invariant Duffing oscillator
where all the even order GFRFs are zero. The non-zero GFRFs for the Duffing Equation (53) is given in Table 1 where a
shorter notation is used; Hα

4 denotes Hαuuu
4 , Hα

6 denotes Hαuuuuu
6 , so on and so forth.

For simplicity, assume that the time-varying coefficient is of a simple form such as

α (t) = ρ cos (μ0t) = ρ

2

(
ejμ0t + e−jμ0t

)
. (62)
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Figure 1. Synthesised output using generalised system functions.

The first few generalised system functions can then be
calculated as

W1 (t, jω) = H1 (jω) . (63)

W2 (t, jω1, jω2) = 0. (64)

W3 (t, jω1, jω2, jω3)

= H3 (jω1, jω2, jω3)

+Hαuuu
4 (jμ, jω1, jω2, jω3) ejμt . (65)

W4 (t, jω1, jω2, jω3, jω4) = 0. (66)

W5 (t, jω1, jω2, jω3, jω4, jω5)

= Huuuuu
5 (jω1, jω2, jω3, jω4, jω5)

+Hαuuuuu
6 (jμ1, jω1, jω2, jω3, jω4, jω5)

+Hαuuuuu
6 (jμ2, jω1, jω2, jω3, jω4, jω5)

+Hααu···u
7 (jμ1, jμ1, jω1, . . . , jω5) ej (μ1+μ1)t

+Hααu···u
7 (jμ2, jμ2, jω1, . . . , jω5) ej (μ2+μ2)t

+Hααu···u
7 (jμ1, jμ2, jω1, . . . , jω5) ej (μ1+μ2)t . (67)

It is interesting to observe that although even-order
GFRFs appear in the results all the even-order system func-
tions are still zero. This shows that the system function

representation reveals new information which cannot eas-
ily be observed using the traditional GFRF representation.
The system functions represent a time-dependent gener-
alised frequency response function which envelops all the
time-varying information into the time parameter in the
representation.

Substitute the input u (t) = A cos(ω0t) =
A
2

(
ejω0t + e−jω0t

)
into (17) and the response of the

system can be written as

x (t) =
∞∑

n=1

∫ t

0
· · ·

∫ t

0
wn (t, τ1, . . . , τn)

× A

2

(
ejω0τ1 + e−jω0τ1

) · · · A

2

(
ejω0τn + e−jω0τn

)
× dτ1 . . . dτn =

∞∑
n=1

(
A

2

)n

(Wn (t, ω0, . . . , ω0)

+ · · · + Wn (t,−ω0, . . . ,−ω0)) . (68)

When the Volterra series representation of the output con-
verges, the response of the system can be approximated by

x̃ (t) =
N∑

n=1

(
A

2

)n

(Wn (t, ω0, . . . , ω0)

+ · · · + Wn (t,−ω0, . . . ,−ω0)) . (69)
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Equation (69) shows that the steady-state response of
the system to a harmonic input can be approximated using
a truncated series of generalised system functions. Based
on this idea the steady-state output of the Duffing oscil-
lator is synthesised using the obtained generalised system
functions. The comparison of the simulated output and the
synthesised output is shown in Figure 1 where the param-
eters are set as m = 1, c = 1.4, k1 = 1, k3 = 4, A = 2.4,
ω0 = 2.5 rad/s, ρ = 2, μ0 = 1.7 rad/s. Figure 1 shows the
synthesised output approaching the simulated output when
N increases.

From the top to bottom Figure 1 shows how the re-
sponse of the system distorted gradually and approached
the final output. The topmost subplot shows the linear
part of the system response which is a stationary sinu-
soidal signal with a phase delay. Under the effects of the
time-varying parameters the response of the system be-
comes non-stationary. Notice that in this example the time-
varying parameter α (t) = ρ cos (μ0t) is neither small nor
slowly varying. However the parametric frequency response
method works very well.

5. Conclusions

A new methodology has been introduced to investigate both
linear and non-linear time-varying dynamic systems. The
new parametric frequency response method which treats
time-varying parameters as additional inputs and uses well-
developed techniques for multi-input-single-out non-linear
systems is easy to operate. The new method provides an
explicit expansion of the system functions. The new form
expansion encapsulates the time-varying information scat-
tered in the traditional generalised frequency response func-
tion representation and extends the generalised frequency
response function representation to a wide class of time-
varying dynamic systems. The new method gives a remark-
able insight into how time-varying parameters affect the
output of a system through time-varying terms.

The new algorithm has been compared with the pertur-
bation methods used by Zadeh. Results show that the new
method yields the same results as the perturbation methods
but is more efficient avoiding the solution of differential
equations. In addition, the time-varying parameters need
not to be periodic in the new method. Another obvious ad-
vantage is that the new method can be applied to non-linear
time-varying systems.

The new parametric frequency response method also
reveals information underlying in the bi-frequency sys-
tem functions. The expansion of the bi-frequency sys-
tem functions in this paper is a powerful tool for the
analysis of the output frequency of time-varying systems.
The new parametric frequency response method applies
to a wide class of systems and can be an important and
generic tool for the analysis and design of time-varying
systems.
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