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High-order fully actuated system approaches: Part I. Models and basic procedure
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ABSTRACT
The state-space approaches have stayed in an absolutely dominant position in the field of sys-
tems and control for over a half century. Although a state-space representation is more suitable for
deriving the state-response solution and observation (estimation), it does not provide as much con-
venience as desired for the control problem. In this paper, the concept of high-order fully actuated
(HOFA) systems is firstly revisited, and it is pointed out that HOFA systems serve really as models
for control systems rather than representing a small portion of physical control systems. Based on
the HOFA model, a basic procedure is proposed for control of nonlinear systems satisfying certain
conditions, whose first step converts the nonlinear systems into a pseudo strict-feedback system,
and the second step establishes the HOFA model of the system. Once an HOFA model is derived, a
controller can be immediately designed to make the closed-loop system a constant linear one with
a desired eigenstructure. All the design degrees of freedom existing in the closed-loop system are
also provided, which can be further utilised to achieve additional system performance. An example
demonstrates the design procedure and shows the effect of the proposed HOFA approach.

ARTICLE HISTORY
Received 29 July 2020
Accepted 20 September 2020

KEYWORDS
Nonlinear control;
full-actuation; high-order
systems; strict-feedback
systems; closed-loop
eigenstructure

1. First-order systems approaches

Most physical systems in the world are really gov-
erned by a series of physical laws, such as, Newton’s
Law, Lagrangian Equation, Theorem of Linear and
Angular Momentum, Kirchhoff ’s Laws of Current and
Voltage, etc.Modelled by these physical laws, themod-
els of these physical systems are mostly described
by differential equations of second- or high order.
Therefore, second- and high-order systems are natu-
ral. Yet in the long developing period of control sys-
tems theory, these second- or high-order systems were
mostly turned into first-order systems and treated in
the first-order system framework. This produces the
so-called first-order system approaches for the anal-
ysis and design of control systems. In contrast, high-
order system approaches are those dealing with anal-
ysis and control of high-order systems using features
of the high-order system representation (Duan, 2020a,
2020b, 2020c).

1.1. A brief history

First-order system approaches for control systems
can be traced back to the year of 1750, when Euler

CONTACT Guangren Duan g.r.duan@hit.edu.cn

proposed the order-reduction method for solving
a high-order nonhomogeneous ordinary differential
equation (Cui, 2010; Morris, 1990). Such an early
contribution is in fact somehow equivalent to today’s
problem of state-response analysis of a control sys-
tem represented by a state-space model. This precon-
ceived fact has then led the way of the development of
first-order system approaches for control systems.

In 1892, Aleksandr M. Lyapunov completed his
Ph.D. thesis (Lyapunov, 1992), in which he proposed
a complete stability theory for systems described by
first-order ordinary differential equations and laid a
firm theoretical base for stability analysis and design
of control systems. Lyapunov stability theory was pro-
posed for first-order systems and eventually and basi-
cally provides applications within the first-order sys-
tem framework.

Themiddle of the last centurywas a very prosperous
period for systems and control. Several very notable
and significant contributions emerged.

Firstly, the well-known Bellman dynamic program-
ming was proposed during the period of 1952–1957,
which converts the problem of optimal control
of discrete-time systems described by first-order
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difference equations into a problem of solving the
well-known Hamilton–Jacobi–Bellman (HJB) equa-
tions (Bellman, 1952, 1954, 1957).

Secondly, the well-known Pontryagin’s Maximum
Principle was proposed in the period of 1956–1958
(Boltyanskĭı et al., 1956, 1960; Pontryagin, 1959, 1960).
Parallel to Bellman’s dynamic programming, Pon-
tryagin’s Maximum Principle solves the problem of
optimal control of a continuous-time nonlinear sys-
tem, and the solution is given through a continu-
ous HJB equation (Pontryagin et al., 1962; Rozonoer,
1959).

Thirdly, several great contributions were con-
ducted by Rudolf E. Kalman. In 1959, he published
the epoch-making paper Kalman (1960a) (see, also
Kalman, 1960b) and proposed the celebrated state-
space approaches for analysis and design of con-
trol systems described by the so-called state-space
model represented by a first-order ordinary differ-
ential equation. One year later, he published the
famous result, known as theKalmanfilter, which solves
the problem of state estimation in a linear discrete-
time stochastic system described also by a first-order
state-space model (Kalman, 1960c). This work was
later generalised to linear continuous-time stochas-
tic systems by himself and his coauthor, establishing
the so-called Kalman-Bucy filtering theory (Kalman
& Bucy, 1961). These results have been also extended
to nonlinear systems (Julier & Uhlmann, 1997;
Sunahara, 1970). Rudolf E. Kalman was a pioneer
and advocator in bringing mathematics into con-
trol systems theory (Kalman, 2008; Kalman et al.,
1969).

Guided by the above-mentioned significant devel-
opments in control systems theory, most later
endeavours were also laid on the first-order state-space
approaches, and consequently a great deal of contribu-
tions were made within the first-order system frame-
work (Duan & Yu, 2013; Isidori, 1995; Khalil, 2002;
Krstic et al., 1995). State-space approaches have
remained dominant for over a half century. To an
extent, today’s world of control systems is the world
of first-order system approaches. Although there are
some results which adopt high-order system mod-
els, e.g. the polynomial approach for linear systems,
they only occupy a rather small portion in the liter-
ature as compared with those within the state-space
framework.

1.2. Deficiencies

A state-spacemodel of a dynamical system emphasises
on the state vector by integrating the state variables
together and is probably the best choice for solving
the problem of response analysis. However, differ-
ent from the problem of seeking the state solution,
controller design emphasises on the control vector.
Towards this goal, a state-space representation does
not provide very much convenience. For over a half
century of research, results with the first-order state-
space approaches have been numerous, but today we
are still facing too many unsolved nonlinear control
problems (Blongdel et al., 1995).

1.2.1. Control design
The basic step involved in Lyapunov stability analy-
sis and design is to find a proper Lyapunov function.
Since the condition is only sufficient for general non-
linear systems, in certain cases, it might not be able
to give a definite conclusion. Furthermore, even if a
Lyapunov function can be found, often a local stabil-
ity result is obtained. It is generally difficult to realise
global stabilisation of a general nonlinear system. The
cases with Bellman dynamic programming and Pon-
tryagin’s maximum principle are similar, noting that
the HJB equations which determine the solutions may
be not solvable for complicated nonlinear systems.

1.2.2. Controllability and observability
Like Lyapunov stability, the concepts of controlla-
bility and observability are restricted to systems in
state-space representations only (Duan, 2020b, 2020c).
Unlike Lyapunov stability, controllability and observ-
ability for systems in non-state-space representations
can not be defined by those of the converted state-
space models, since it is well-known that a system
in an input–output representation may possess, at
the same time, a controllable (observable) realisation,
and also an uncontrollable (unobservable) realisation
(Duan, 2020b). Therefore, sticking to the state-space
approaches, the concepts of controllability and observ-
ability for non-state-space systems are vacant. How-
ever, a dynamical system in a non-state-space model
representation obviously also deserves the concepts of
controllability and observability. Such a phenomenon
clearly reveals a serious defect of the first-order state-
space framework.
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1.2.3. Physical background
All practical systems have physical backgrounds.
When modelling a system using some physical laws,
such as Lagrangian Equation or Theorem of Momen-
tum, a second- or higher-order model is obtained,
and this original model also reflects in some ways the
physical backgrounds of the system. In certain situ-
ations, the background information may help in the
analysis and design. However, with the first-order sys-
tem approaches, the system model is reduced to a
first-order state-space model, and all the background
information is then removed from the original model.

1.2.4. Full-actuation
Physically, there aremany fully actuated systems in the
world, and their original systemmodels established by
certain physical laws are of second- or higher-order.
For such systems, the control can be realised in an
extremely simple way, since the full-actuation prop-
erty allows us to eliminate all the nonlinear dynamics.
As a consequence, a desired constant linear closed-
loop system can be obtained, and the theories and
techniques for analysis and design of linear systems
can then be applicable. Furthermore, with the help
of the full-actuation feature, many design problems,
such as system decoupling, can also be solved very
easily. Nevertheless, when converted into first-order
state-space models, such systems no longer possess
the full-actuation property, and the nonlinear dynam-
ics needs then to be tackled with Lyapunov stability
design approaches. In certain complicated cases even
local stabilisation of the system can not be realised,
to say nothing of giving a global stabilisation result or
obtaining a constant linear closed-loop system.

1.3. A better solution

What makes the problem of nonlinear control so dif-
ficult? The answer surely is the nonlinearities. Com-
plex nonlinearities make the analysis of the Lyapunov
function very complicated, and also may create insur-
mountable difficulties in deriving the solutions to the
concerned HJB equations. As long as nonlinearities
stand, the general problem of nonlinear control can
hardly be completely solved with the present state-
space approaches, say, in the sense that closed-loop
global stability is achieved.

Fortunately, besides the state-space models, there
exists another type of system models, namely, the

HOFAmodel (Duan, 2020a), withwhich the nonlinear
term, no matter how complicated, can be easily elimi-
nated using the full-actuation structure as long as the
nonlinear term is measurable. Eventually, a constant
linear closed-loop system is obtained.

Fully actuated systems physically exist, but only
as a minor part of the set of control systems. How-
ever, when this concept is mathematically generalised,
an HOFA system becomes a general model for con-
trol systems. As a matter of fact, most nonlinear sys-
tems can be either physically modelled as or converted
into HOFA systems. This fact has been demonstrated
in Duan (2020a, 2020b) and now is further demon-
strated in this paper.

The main contribution of this paper is an HOFA
system approach for control of a nonlinear system
subject to certain mild conditions. The system con-
sidered is relatively general in the sense that the well-
knownmethods of backstepping and feedback lineari-
sation are not directly applicable. The procedure of this
HOFA system approach is composed of four steps. The
key steps of the approach are concerned with deriva-
tion of an HOFA model for the considered system
under different circumstances. Once the set of HOFA
models are obtained, the controllers of the subsystems
are then immediately written out. As a consequence,
the closed-loop system resulted in by the designed
controller is composed of several independent con-
stant linear subsystems with desired eigenstructures.
Furthermore, all the design degrees of freedom in each
of the closed-loop linear subsystems are also provided,
which can be further utilised to achieve additional
system requirements.

For x ∈ R
m, and Ai ∈ R

m×m, i = 1, 2, . . . , n, the
following symbols are frequently used in the
paper:

x(0∼n) =

⎡
⎢⎢⎢⎣

x
ẋ
...

x(n)

⎤
⎥⎥⎥⎦ ,

x(0∼n)
i∼j =

⎡
⎢⎢⎢⎢⎣
x(0∼n)
i
x(0∼n)
i+1
...

x(0∼n)
j

⎤
⎥⎥⎥⎥⎦ , j ≥ i,

A0∼n = [
A0 A1 · · · An

]
,
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�(A0∼n) =

⎡
⎢⎢⎢⎣

0 I
. . .

I
−A0 −A1 · · · −An

⎤
⎥⎥⎥⎦ .

2. HOFA systems

2.1. Definition

“Full-actuation” is originally a physical concept. Phys-
ically, a fully actuated system is of the following form

M (x, ẋ, t) ẍ + D (x, ẋ, t) ẋ + K (x, ẋ, t) x = u, (1)

where x, u ∈ R
r are the elementary state vector and

the control vector, respectively, M(·), D(·) and K(·) ∈
R
r×r are, respectively, the generalised mass matrix,

the generalised damping matrix, and the generalised
stiffness matrix. This type of systems describe a vari-
ety of practical systems in the field of robot control,
spacecraft control (Duan, 2020e, 2020f), etc.

Theoretically, wemay define a general second-order
fully actuated system as follows:

Eẍ = f (x, ẋ, t)+ B (x, ẋ, t) u, (2)

where E ∈ R
r×r is a constant matrix, which is usu-

ally the identity matrix, but may be sometimes sin-
gular (Duan, 2010), f (·) ∈ R

r and B(·) ∈ R
r×r are

some sufficiently differentiable vector andmatrix func-
tions, respectively, and B(·) satisfies the following full-
actuation condition:

detB (x, ẋ, t) �= 0, ∀x, ẋ ∈ R
r, t ≥ 0.

Parallelly, we can also define, in spite of its physi-
cal meaning, an HOFA system. Consider a nonlinear
system in the following form

Ex(m) = f (x(0∼m−1), ζ )+ B(x(0∼m−1), ζ )u, (3)

where m ≥ 1 is an integer, x ∈ R
n is the state vector,

u ∈ R
r is the system input vector, ζ ∈ R

p is an external
vector, E ∈ R

n×n is a constant matrix, which is usually
the identity matrix, but may be sometimes singular,
f (x(0∼m−1), ζ ) ∈ R

n is a sufficiently differentiable vec-
tor function, and B(x(0∼m−1), ζ ) ∈ R

n×r is a matrix
function.

Let �i ⊂ R
n, i = 0, 1, . . . ,m − 1, be a series of

open sets and denote

� = �0 ×�1 × · · · ×�m−1.

Then the formal definition is given as follows.

Definition 2.1: Given system (3) and the above sets
�i ⊂ R

n, i = 0, 1, . . . ,m − 1 and�, if

rankB
(
x(0∼m−1), ζ

)
= r = n, ∀t ≥ 0, (4)

• holds for all x(i) ∈ �i, i = 0, 1, . . . ,m − 1, then the
system (3) is called fully actuated on �;

• does not hold only on a hyperplane in �, then the
system (3) is called sub-fully actuated on�;

• does not hold only on a set of isolated points in �,
then the system (3) is called almost fully actuated
on�;

• does not hold only at a finite number of points in�,
then the system (3) is called basically fully actuated
on�;

• holds for all x(i) ∈ R
r, i = 0, 1, . . . ,m − 1, then the

system (3) is called (globally) fully actuated. In par-
ticular, the system (3) is called a standard fully
actuated system when B(·) ≡ Ir.

Regarding the verification of the condition (4) in
large dimensional cases, symbolic computation tech-
niques may be called into use.

Remark 2.1: In the case that the condition (4) is
replaced by

rankB
(
x(0∼m−1), ζ

)
= n < r, ∀t > 0, (5)

the system (3) is called over-actuated. In the high-
order system representation, over-actuated systems
may be occasionally encountered. Such systems can
be similarly treated as fully actuated ones in terms of
control.

The importance of fully actuated systems (where
r = n) lies in the following simple fact (Duan, 2020a).

Proposition 2.2: Let Ai ∈ R
r×r, i = 0, 1, . . . ,m − 1,

be a set of given matrices, then the following controller{
u = −B−1 (

x(0∼m−1), ζ
) (
A0∼m−1x(0∼m−1) + u∗)

u∗ = f
(
x(0∼m−1), ζ

) − v,
(6)

for the fully actuated system (3) produces the following
constant linear closed-loop system

Ex(m) + A0∼m−1x(0∼m−1) = v. (7)
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When expanded, the above linear system (7) can be
also written as

Ex(m) + Am−1x(m−1) + · · · + A1ẋ + A0x = v.

Due to the arbitrariness of the series of matri-
ces Ai, i = 0, 1, . . . ,m − 1, closed-loop systems with
desired performance can be obtained by properly
selecting these matrices. A parametric approach for
solving these Ai, i = 0, 1, . . . ,m − 1 has been given
in Duan (2020a), which also provides all the design
degrees of freedom (see also Section 3.5).

A generalised form of system (3) appears as follows
(Duan, 2020b):

Ex(m) = f
(
x(0∼m−1), ζ

)
+ g

(
x(0∼m−1), ζ , u

)
, (8)

where g(·) ∈ R
n is also a sufficiently differentiable vec-

tor function. In the case of m = 1,E = Ir and p = 0,
the system turns into the following well-known form:

ẋ = f (x)+ g (x, u) . (9)

The above more general system (8) is called fully
actuated on �, if n = r and for t ≥ 0, the mapping
w = g(x(0∼m−1), ζ , u) forms a differential homeomor-
phism from u to w for all ζ ∈ R

p and x(i) ∈ �i, i =
0, 1, . . . ,m − 1; it is called (globally) fully actuated if
w = g(x(0∼m−1), ζ , u) ∈ R

r forms a differential home-
omorphism from u to w for all ζ ∈ R

p and x(i) ∈
R
n, i = 0, 1, . . . ,m − 1. Sub-full-actuation on � can

also be similarly defined.
For the more general fully actuated system (8), a

result similar to Proposition 2.2 still holds. In this case,
the controller corresponding to (6) becomes{

w = − ∑m−1
i=0 Aix(i) − f

(
x(0∼m−1), ζ

) + v
u = g−1 (

w, x(0∼m−1), ζ
)
,

(10)

and the same closed-loop system as in (7) is achieved.

2.2. Model for control

It is observed from the above that full-actuation pro-
vides a great deal of convenience in the control of an
HOFA system. Unfortunately, this great advantage was
not given enough attention in the past century. The
reason behind this fact might be that, affected by the
physical concept, fully actuated systems are considered
to be a very minor part of control systems, hence do
not deserve more extensive investigation. While the

fact is, when the physical concept is generalised as
above, HOFA system representation (3) or (8) is able to
describe most nonlinear control systems, and can thus
be taken as a model for control. This point of view is
briefly evidenced by the following two aspects.

2.2.1. Physical modelling
Due to the existence of the many well-known physi-
cal laws, such as, Newton’s Law, Lagrangian Equation,
Theorem of Linear and Angular Momentum, Kirch-
hoff ’s Current and Voltage Laws, etc., many practical
systems are really originally modelled as second-order
fully actuated systems (Duan, 2020f). However, almost
all of such fully actuated systems are converted into
first-order state-space models in order to apply exist-
ing theories and methods for state-space systems, and
yet, as pointed out in the introduction Section 1.2, the
results are far more from satisfactory.

In a system modelling process, once we get a series
of subsystems in second-order system form using cer-
tain physical laws, on the one hand, we can further
obtain a system in the first-order state-space form by
variable extension, or equivalently, by defining a state
vector; on the other hand, we can often finally derive
anHOFA system throughways of variable elimination.

2.2.2. Model conversion
Objectively speaking, there are indeed many under-
actuated systems in the world (Fantoni & Lozano,
2002), but most of them can be converted into higher-
order fully actuated systems as long as they obey a
certain kind of controllability property (Duan, 2020b).
These include, but are certainly not limited to, the
following (Duan, 2020a):

• all controllable linear systems (Duan, 2020b);
• nonlinear systems in a kind of controllable canoni-

cal forms (Duan, 2020b);
• strict-feedback nonlinear systems (Duan, 2020a);

and
• all linearisable systems by state feedback

(Duan, 2020a).

Such facts have been unlikely thought of by those who
are extensively absorbed in the first-order state-space
approaches.

Very seldoma state-space system is originally (at the
modelling stage) in the first-order system form, it is
often converted from second- or high-order systems
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through variable extension. For about a century time
of dominance, state-space models have been regarded
as universal. Most control scientists and practitioners
have been accustomed to convert any system encoun-
tered into state-space representation. Anyhow, due to
the physical laws mentioned above, first-order state-
space systems which are originally (at the modelling
stage) of first-order are very few, at least much fewer
than HOFA systems which are originally of second- or
high-order.

Since most systems can be modelled as, or con-
verted into HOFA systems, in spite of the physical
meaning, like the state-space models for dynamical
control systems, the HOFA system representation (3)
or (8) also deserves to be a model for control systems.
The former is more suitable for deriving the state solu-
tion and observation, while the latter, as shown above,
is extremely convenient for dealing with the control,
hence is truly a model for control.

In the next section, we further propose a gen-
eral procedure for the control of a nonlinear system
through deriving the HOFA model, the process indi-
cates the power of the HOFA approach.

3. HOFA systems approach

Consider the normal case of nonlinear system (3), that
is,

x(m) = f (x(0∼m−1), ζ )+ B(x(0∼m−1), ζ )u, (11)

where the matrix B(x(0∼m−1), ζ ) ∈ R
n×r satisfies the

following full-actuation assumption:

Assumption 3.1: For arbitrary ζ ∈ R
p, x(0∼m−1) ∈

R
mn, there holds

rankB(x(0∼m−1), ζ ) = r < n. (12)

In the case of r = n, the system (11) is already an
HOFA system, and the controller can be immediately
written out.

In the case ofm = 1, and ζ does not exist, the above
system (11) reduces to the following well-known affine
nonlinear system

ẋ = f (x)+ B(x)u, (13)

In this section, we aim to provide a basic procedure of
the so-called HOFA systems approach for the control
of the above system (11). The procedure contains the
following steps.

3.1. The pseudo strict-feedback system

Under Assumption 3.1, there exists an unimodular
matrixQ(x(0∼m−1), ζ ), that is, a matrix with a nonzero
constant determinant, such that

Q(x(0∼m−1), ζ )B(x(0∼m−1), ζ )

=
[

0
G(x(0∼m−1), ζ )

]
, (14)

where G(x(0∼m−1), ζ ) ∈ R
r×r satisfies

detG(x(0∼m−1), ζ ) �= 0, ∀ζ ∈ R
p, and

x(i) ∈ R
n, i = 0, 1, . . . ,m − 1. (15)

For simplicity, in this paper let us consider a simple
case and impose the following assumption:

Assumption 3.2: There exists a constant nonsingular
matrix Q(x(0∼m−1), ζ ) = Q satisfying (14).

The general case will be addressed elsewhere, while
the idea is illustrated in Example 2.

Under Assumption 3.2, we can define the following
transformation

z =
[
z1
z2

]
= Qx, z1 ∈ R

n−r. (16)

Partitioning the matrix Q as

Q =
[
Q1
Q2

]
, Q2 ∈ R

r×n,

and using (11) and (14), we have[
z(m)1
z(m)2

]
=

[
Q1f (x(0∼m−1), ζ )
Q2f (x(0∼m−1), ζ )

]

+
[

0
G(x(0∼m−1), ζ )

]
u, (17)

which can be equivalently decomposed, in view of
the invertibility of the transformation (16), into two
subsystems of the following forms:

z(m)1 = g(z(0∼m−1), ζ ), (18)

z(m)2 = f2(z(0∼m−1), ζ )+ G(z(0∼m−1), ζ )u. (19)

Further, assume that the above system (18) is in the
following form

z(m)1 = f1(z
(0∼m−1)
1 , ζ )+ B1(z

(0∼m−1)
1 , ζ )z2, (20)

then the above system (20) is again in the form of (11)
when z2 ∈ R

r is looked upon as the control input. If
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n − r > r, by repeating the above process (if repeat-
able), the system (20) can also be divided into the
following two subsystems:

z(m)11 = g1(z
(0∼m−1)
1 , ζ ), (21)

z(m)12 = g2(z
(0∼m−1)
1 , ζ )+ G2(z

(0∼m−1)
1 , ζ )z2. (22)

Continue the above process, under certain conditions,
we obtain a pseudo strict-feedback system in the fol-
lowing form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(m)0 = g(z(0∼m−1)
0∼1 , ζ )

z(m)1 = f1(z
(0∼m−1)
0∼1 , ζ )+ B1(z

(0∼m−1)
0∼1 , ζ )z2

z(m)2 = f2(z
(0∼m−1)
0∼2 , ζ )+ B2(z

(0∼m−1)
0∼2 , ζ )z3

...
z(m)q−1 = fq−1(z

(0∼m−1)
0∼q−1 , ζ )+ Bq−1(z

(0∼m−1)
0∼q−1 , ζ )zq

z(m)q = fq(z
(0∼m−1)
0∼q , ζ )+ Bq(z

(0∼m−1)
0∼q , ζ )u,

(23)
where zi ∈ R

r, i = 1, 2, . . . , q, z0 ∈ R
n0 , (n0 < r), with

q and n0 being integers satisfying

n = qr + n0,

and the coefficient matrices Bi(z
(0∼m−1)
0∼i , ζ ) ∈ R

r×r,
i = 1, 2, . . . , q, satisfy the following assumption:

Assumption 3.3: For all ζ ∈ R
p, and z(0∼m−1)

k ∈ R
mr,

there hold

detBi(z
(0∼m−1)
0∼i , ζ ) �= 0, k = 0, 1, . . . , q.

Remark 3.1: It is clearly observed that the linear part
in each subsystem of the pseudo strict-feedback sys-
tem (23) has relation with zi but not its derivatives.
If this is not the case in an application, we can con-
vert certain related subsystems into lower order ones in
order to eliminate this phenomenon. It is easily noted
that in the extreme case that the related subsystems
are converted into first-order systems, such derivative
terms do not appear. On the other hand, it should be
noted that this operation naturally changes the pseudo
strict-feedback system with a fixed order into the one
withmixed orders (Duan, 2020d), but this change does
not affect our treatment.

3.2. The HOFAmodel, case of n0 = 0

The last q equations in (23) form a strict-feedback
system of order m. As shown in Part II of the paper

Duan (2020d), this strict-feedback system is equivalent
to a high-order system of the following form:

z(mc)
1 = h(z(0∼mc−1)

0∼1 , ζ )+ L(z(0∼mc−1)
0∼1 , ζ )u, (24)

where mc = qm, h(z(0∼mc−1)
0∼1 , ζ ) ∈ R

r is some vector
function, L(z(0∼mc−1)

0∼1 , ζ ) ∈ R
r×r is a matrix function

satisfying

det L(z(0∼mc−1)
0∼1 , ζ ) �= 0, (25)

for all z(0∼mc−1)
0 ∈ R

mcn0 , z(0∼mc−1)
1 ∈ R

mcr and ζ ∈
R
p. Therefore, the above pseudo strict-feedback sys-

tem is equivalent to⎧⎨
⎩
z(m)0 = g(z(0∼m−1)

0 , z(0∼m−1)
1 , ζ )

z(mc)
1 = h(z(0∼mc−1)

0∼1 , ζ )+ L(z(0∼mc−1)
0∼1 , ζ )u.

(26)
When n is a multiple of r, which is always true in the
case of r = 1, we have n0 = 0, thus the first subsystem
in the above (26) vanishes. In this case the whole prob-
lem reduces to the control of the HOFA system (24),
and the controller can be designed as
{
u = −L−1(z(0∼mc−1)

0∼1 , ζ )
(
A0∼mc−1z

(0∼mc−1)
1 + u∗

)
u∗ = h(z(0∼mc−1)

0∼1 , ζ )− v,
(27)

where v is an external signal. The closed-loop system
is obtained as

z(mc)
1 + A0∼mc−1z

(0∼mc−1)
1 = v. (28)

3.3. The HOFA subsystem, case of n0 �= 0

Let us now continue to consider the case of n0 �= 0.
For simplicity, in this paper we impose the following
assumption:

Assumption 3.4: The first subsystem in (26) is in the
following form:

z(m)0 = g(z(0∼m−1)
0 , ζ )+ B0z1, (29)

where B0 ∈ R
n0×r is a full-row rank matrix.

This assumption restricts the subsystem to be lin-
ear with respect to z1, but is independent on the
derivatives of z1. The general nonlinear case will be
addressed elsewhere.
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Taking the derivative of order mc on both sides
of (29), and using (24), yield

z(m+mc)
0 = g(mc)(z(0∼m−1)

0 , ζ )+ B0z
(mc)
1

= g(mc)(z(0∼m−1)
0 , ζ )+ B0 [h(·)+ L(·)u]

(30)

which gives the following higher-order system

z(m+mc)
0 = ψ(z(0∼m+mc−1)

0 , z(0∼mc−1)
1 , ζ (0∼mc))

+ B0L(·)u, (31)

where

ψ(z(0∼m+mc−1)
0 , z(0∼mc−1)

1 , ζ (0∼mc))

= g(mc)(z(0∼m−1)
0 , ζ )

+ B0h(z
(0∼m−1)
0 , z(0∼mc−1)

1 , ζ ).

If we divide the control vector as

u =
[
u1
u2

]
, u1 ∈ R

n0 , (32)

and partition L(z(0∼mc−1)
0 , z(0∼mc−1)

1 , ζ ) as

L(z(0∼mc−1)
0 , z(0∼mc−1)

1 , ζ ) = [L1 L2] , L1 ∈ R
r×n0 ,
(33)

then the system (31) can be written as

z(m+mc)
0 = ψ(z(0∼m+mc−1)

0 , z(0∼mc−1)
1 , ζ (0∼mc))

+ B0L1u1 + B0L2u2, (34)

Without loss of generality, let us assume

det
(
B0L1(z

(0∼mc−1)
0 , z(0∼mc−1)

1 , ζ )
)

�= 0, (35)

for all z(0∼mc−1)
0 , z(0∼mc−1)

1 and ζ , since otherwise we
can apply a transformation to the control u, which
equals to applying a series of elementary column trans-
formations to the matrix L. Under the condition (35),
system (34) is clearly a fully actuated system with
respect to u1, while u2 and z1 can be treated as external
vectors which will be given later. Thus we can design

the controller for the above HOFA system (34) as⎧⎪⎪⎨
⎪⎪⎩
u1 = −(B0L1)−1

(
Az
0∼m+mc−1z

(0∼m+mc−1)+ u∗
1

)
u∗
1 = ψ(z(0∼m+mc−1)

0 , z(0∼mc−1)
1 , ζ (0∼mc))

+ B0L2u2 − vz,
(36)

which produces the following constant linear closed-
loop system

z(m+mc)
0 + Az

0∼m+mc−1z
(0∼m+mc−1)
0 = vz, (37)

where vz is an external signal of dimension n0.

3.4. The leftover system

Note that the dimension of system (29) is n0, while that
of system (24) is r > n0. Thus in the above process, not
the whole system (24) contributes to the higher-order
system (31), but only a part of it does. We now need to
separate out the leftover part in system (24) which has
not contributed to (31).

Let P be a nonsingular matrix such that

B0P = [M 0] , (38)

whereM ∈ R
n0×n0 is nonsingular. We then can define

the transformation

y =
[
y1
y2

]
= P−1z1, y1 ∈ R

n0 . (39)

Correspondingly, partition the matrix P−1 as

P−1 =
[
N1
N2

]
, N1 ∈ R

n0×r. (40)

Then, the system (24) is equivalently transformed into

y(mc)
1 = N1h(z

(0∼m−1)
0 , y(0∼mc−1), ζ )

+ N1L(z
(0∼m−1)
0 , y(0∼mc−1), ζ )u, (41)

y(mc)
2 = N2h(z

(0∼m−1)
0 , y(0∼mc−1), ζ )

+ N2L(z
(0∼m−1)
0 , y(0∼mc−1), ζ )u. (42)

Note that

B0z
(m)
1 = B0PP−1z(mc)

1

= [M 0] y(mc)

= My(mc)
1 ,
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it is clearly seen from (30) that only the subsystem (41)
has contributions to the higher-order system (31),
while the subsystem (42) is leftover, and thus should
be taken into consideration for control.

To summarise, in the case of n0 �= 0, the pseudo
strict-feedback system (23) with the first equation
replaced by (29 ) is equivalently converted into the
two subsystems (42) and (31) under certain condi-
tions. The control of system (31) has been realised in
the above subsection, now let us consider the control
of system (42).

In view of (32) and (33), the system (42) can be
written as

y(mc)
2 = N2h(z

(0∼mc−1)
0 , y(0∼mc−1), ζ )

+ N2L1u1 + N2L2u2. (43)

If

det
(
N2L2(z

(0∼mc−1)
0 , y(0∼mc−1), ζ )

)
�= 0, (44)

for all z(0∼mc−1)
0 , y(0∼mc−1) and ζ , then system (43)

can be viewed as fully actuated with respect to u2,
while with u1 and z0 treated as external vectors. There-
fore, we can design the controller for the above HOFA
system (43) as follows:⎧⎪⎪⎨
⎪⎪⎩
u2 = − (N2L2)−1

(
Ay
0∼mc−1y

(0∼mc−1)
2 + u∗

2

)
u∗
2 = N2h(z

(0∼mc−1)
0 , y(0∼mc−1), ζ )

+ N2L1u1 − vy,

,

(45)

which produces the following linear closed-loop sys-
tem

y(mc)
2 + Ay

0∼mc−1y
(0∼mc−1)
2 = vy, (46)

where vy is an external signal of dimension r − n0.
If the above condition (44) is not met, we can re-

organise system (43) into the form of (11), with certain
elements of u2 being the control, while with u1 being
taken as an external vector, and then design the con-
troller u2 by starting over all of the above steps. It
should be noted that by now we are handling a system
in the form of (11) with very small values of n and r.

3.5. The closed-loop system

Different from many other nonlinear control
approaches, the above procedure of the HOFA sys-
tem approach produces a constant linear closed-loop

system, given by (28), or by (37) and (46). This huge
advantage eventually allows most of the theories and
techniques for linear control systems design to be
applicable.

The above linear systems (28), (37) and (46 ) can
all be easily made stable by properly choosing the
matrices A0∼mc−1,A

z
0∼m+mc−1 and Ay

0∼mc−1. Here we
present a simple complete parametric approach for
designing these matrices.

These closed-loop systems are all of the following
form, when the external signal is removed:

x(m) + A0∼m−1x(0∼m−1) = 0,

which can be equivalently written in the following
state-space form:

ẋ(0∼m−1) = �(A0∼m−1)x(0∼m−1).

The problem is to seek a matrix A0∼m−1 such that
�(A0∼m−1) is stable. For a solution to this problem,
we have the following result, which is the Corollary 1
in Duan (2020a) (see, also Duan, 2005).

Proposition 3.5: For an arbitrarily chosen F ∈
R
mn×mn, all the matrix A0∼m−1 and the nonsingular

matrix V ∈ R
mn×mn satisfying

�(A0∼m−1) = VFV−1

are given by

A0∼m−1 = −ZFnV−1 (Z, F) ,

V = V (Z, F) =

⎡
⎢⎢⎢⎣

Z
ZF
...

ZFn−1

⎤
⎥⎥⎥⎦ ,

where Z ∈ R
m×mn is an arbitrary parameter matrix

satisfying

detV (Z, F) �= 0.

Remark 3.2: It is seen from the above result that as
long as the matrix F is chosen stable, the closed-loop
system is stable. Clearly, there are quite some free-
dom in the selection of F, while on the other hand
we also have the parameter matrix Z, which provides
m2n degrees of freedom. All these degrees of freedom
can be further utilised to achieve additional perfor-
mance of the system (see, e.g. Duan, 1992, 1993; Duan
et al., 2002, 2000; Duan & Zhao, 2020.
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To end this section, we give the following summing-
up points:

• In the case of n = qr, where q is an integer, the
procedure finishes as soon as we get the higher-
order fully actuated system (24). The controller
is given as in (36), and the closed-loop system is
given by (28). It is obvious that the single-input case
always belongs to this case.

• In the case of n0 �= 0, and condition (44) is met, the
procedure leads to two HOFA models of different
orders. Consequently, control of these HOFAmod-
els produces two decoupled constant linear closed-
loop systems, one is of order n0, which is given
by (37), the other is of order r − n0, which is given
by (46 ). The trick discovered for solving the prob-
lem is to divide the control into two parts, with each
one controlling an fully actuated subsystem.

• In the case of n0 �= 0, and condition (44) is not met,
we need to re-organise system (43) into the form
of (11), with certain elements of u2 being the con-
trol, while with u1 being taken as an external vector,
and start over a new round with this much smaller
scale system.

4. Example

4.1. Example 1

Consider the following system (Isidori, 1995, p. 358)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x1 + x1x4 + x3u1 + u2
ẋ2 = x2ex3 + u1
ẋ3 = x2 + x23
ẋ4 = x1 + x2 − x4 + x1x4

+ (1 + x3) u1 + u2,

(47)

which can be written in the form of (13), with

x =

⎡
⎢⎢⎣
x1
x2
x3
x4

⎤
⎥⎥⎦ , u =

[
u1
u2

]
,

f (x) =

⎡
⎢⎢⎣

x1 + x1x4
x2ex3
x2 + x23

x1 + x2 − x4 + x1x4

⎤
⎥⎥⎦ ,

and

B (x) =

⎡
⎢⎢⎣

x3 1
1 0
0 0

1 + x3 1

⎤
⎥⎥⎦ .

Let

Q =

⎡
⎢⎢⎣

−1 −1 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦ , (48)

then it can be easily verified that

QB (x) =
[
02×2
G (x)

]
,

with

G (x) =
[
1 0
x3 1

]
.

Therefore, under the transformation

z = Qx, (49)

the example system (47) is equivalently converted into
the following two subsystems:

żI = g (z) , (50)

żII = f (z)+ G (z) u, (51)

where

zI =
[
z1
z2

]
, zII =

[
z3
z4

]
,

g (z) =
[−z1 − z4 − z3ez2

z22 + z3

]
,

and

f (z) =
[

z3ez2
z4 + z4 (z1 + z3 + z4)

]
.

Taking differentials on system (50), gives

z̈I = ġ (z)

=
[−ż1 − ż4 − ez2 ż3 − z3ez2 ż2

2z2ż2 + ż3

]
. (52)

Further noting (51), we have[
ż3
ż4

]
=

[
z3ez2 + u1

z4 + z24 + z1z4 + z3z4 + z2u1 + u2

]
. (53)



432 G. DUAN

Combining (52) and (53), yields the following HOFA
model for the system:

z̈I = h
(
z(0∼1)
1∼2 , z3, z4

)
+ L

(
z(0∼1)
1∼2 , z3, z4

)
u,

where

L
(
z(0∼1)
1∼2 , z3, z4

)
=

[−z2 − ez2 −1
1 0

]
.

h
(
z(0∼1)
1∼2 , z3, z4

)
=

[−ż1 − ηz4 − z3
(
e2z2 + ez2 ż2

)
2z2ż2 + z3ez2

]
,

with

η = 1 + z1 + z3 + z4.

Therefore, the controller for the system is given by
⎧⎨
⎩
u = −L−1

(
z(0∼1)
1∼2 , z3, z4

) (
A0∼1z

(0∼1)
I + u∗

)
u∗ = h

(
z(0∼1)
1∼2 , z3, z4

)
− v,

(54)
which results in the following closed-loop system

z̈I + A0∼1z
(0∼1)
I = v,

where v is an external vector, and A0∼1 ∈ R
2×4 is a

matrix given, in view of Proposition 3.5, by

A0∼1 = ZF2V−1,

where

V =
[
Z
ZF

]
,

F ∈ R
4×4 is an arbitrary stable (Hurwitz) matrix, and

Z ∈ R
2×4 is an arbitrary parameter matrix making

the matrix V nonsingular. For this example system, a
typical choice of the matrix F may be

F =

⎡
⎢⎢⎣

−a −b 0 0
b −a 0 0
0 0 −c 0
0 0 0 −d

⎤
⎥⎥⎦ ,

where a, b, c and d are some positive scalars.
In view of (49), it is obvious that all the variables

used in the controller (54) are all available as long as
the states of the original system (47) are allmeasurable.

Remark 4.1: According to Isidori (1995, p. 358), this
example system has a zero dynamics defined on the

sub-manifold

Z∗ = {
x ∈ R

4 : x1 = x2 = 0
}
,

with the representation, expressed in the (x3, x4) coor-
dinates of Z∗, as {

ẋ3 = x23
ẋ4 = −x4.

Therefore, the approach of non-interacting control
fails. Evenwith amodified design, a stable zero dynam-
ics still exists. While in our above design, a constant
linear closed-loop system is obtained with all its four
poles arbitrarily assignable.

4.2. Example 2

Consider the following pseudo strict-feedback system⎧⎪⎨
⎪⎩
ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2)+ x3,
ẋ3 = u,

(55)

where xi ∈ R, i = 1, 2, 3, and u ∈ R are the state vari-
ables and control input, respectively, and f1(x1, x2)
and f2(x1, x2) are two differentiable functions, and
f1(x1, x2) satisfies the condition

∂f1
∂x2

�= 0, ∀x1, x2 ∈ R. (56)

Following our treatment, by taking differentials of the
second equation in (55), and substituting the third
one into the result, we obtain the following equivalent
system {

ẋ1 = f1(x1, x2),
ẍ2 = ḟ2(x1, x2)+ u.

(57)

Taking differentials of the first equation in (57), yields

ẍ1 = ∂f1
∂x1

ẋ1 + ∂f1
∂x2

ẋ2, (58)

which further gives

...x 1 =
[
∂f1
∂x1

ẋ1
]′

+
[
∂f1
∂x2

ẋ2
]′

=
[
∂f1
∂x1

ẋ1
]′

+
[
∂f1
∂x2

]′
ẋ2 + ∂f1

∂x2
ẍ2

=
[
∂f1
∂x1

ẋ1
]′

+
[
∂f1
∂x2

]′
ẋ2 + ∂f1

∂x2
ḟ2(x1, x2)+ ∂f1

∂x2
u
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= g(x(0∼2)
1 , x2, ẋ2)+ ∂f1

∂x2
u, (59)

where

g(x(0∼2)
1 , x2, ẋ2) =

[
∂f1
∂x1

ẋ1
]′

+
[
∂f1
∂x2

]′
ẋ2

+ ∂f1
∂x2

ḟ2(x1, x2). (60)

In view of (56), by the well-known Theorem of Inverse
Functions, the state variable x2 can be explicitly and
uniquely solved from the first equation in (55) as fol-
lows

x2 = g1(x1, ẋ1). (61)

Meanwhile, from (58) we obtain, in view of condi-
tion (56 ),

ẋ2 =
[
∂f1
∂x2

]−1 (
ẍ1 − ∂f1

∂x1
ẋ1

)
. (62)

With the help of the above relations (61) and (62), we
can convert g(x(0∼2)

1 , x2, ẋ2) and
∂f1
∂x2 into functions of

x(0∼2)
1 only, that is, we have{

f (x(0∼2)
1 ) � g(x(0∼2)

1 , x2, ẋ2)
B(x(0∼1)

1 ) � ∂f1(x1,x2)
∂x2 .

Therefore, it follows from (59) that the original sys-
tem (55) is equivalently transformed into the following
third-order fully actuated system model

...x 1 = f (x(0∼2)
1 )+ B(x(0∼1)

1 )u. (63)

Thus, for this system, a controller can be designed as

u = −B−1(x(0∼1)
1 )

(
a0∼3x

(0∼3)
1 + f (x(0∼2)

1 )− v
)
,

(64)

which gives the closed-loop system

...x 1 + a0∼3x
(0∼3)
1 = v,

where v is a scalar external signal, while the parameter
vector

a0∼3 = [
a0 a1 a2 a3

]
can be easily chosen to make the closed-loop system
stable.

Finally, it is pointed out that as long as the state of
the original system is measurable, the above controller

is realisable since the needed variables can be obtained
through

{
ẋ1 = f1(x1, x2)
ẍ1 = ∂f1

∂x1 ẋ1 + ∂f1
∂x2

(
f2(x1, x2)+ x3

)
.

(65)

Remark 4.2: This example system does not obey the
triangular structure of a strict-feedback system, hence
the well-know method of backstepping is generally
not applicable. Furthermore, with only the assump-
tion (56), the conditions for the well-known method
of feedback linearisation are also not met. Yet with the
proposed HOFA system approach the problem is well
solved in the sense that a constant linear closed-loop
system is obtained with a desired eigenstructure.

5. Conclusion

Nonlinear control has remained an unsolved problem
for nearly a century. Based on the universal state-space
representation, stabilisation of a nonlinear system gen-
erally leads to the problem of seeking a proper Lya-
punov function. As a result, global results are seldom
achieved, and in certain cases even local results are not
available, to say nothing of deriving a constant linear
closed-loop system.

This paper proposes an HOFA system approach
for control of nonlinear systems. Generally speak-
ing, state-space representations are more suitable for
seeking the state solution (response) and observa-
tion, while for control, the proposed HOFA system
approach is more suitable due to the following advan-
tages:

(1) the controller of a nonlinear system can be imme-
diately written out as soon as a single HOFA
model or a set of HOFA models of the system are
derived;

(2) a constant linear closed-loop system can always be
obtained, and the analysis and design approaches
for linear systems can then be applicable.

(3) a desired closed-loop eigenstructure can be
assigned, and all the design degrees of freedom are
provided, which can be further utilised to achieve
additional system design requirements;

(4) the approach solvesmany nonlinear control prob-
lems that the Lyapunov approach does not solve,
since Lyapunov approach heavily depends on the
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complexity of the nonlinear functions in the sys-
tem, while the HOFA system approach utilises
only the full-actuation structure, regardless of the
complexity of the nonlinear terms.

The proposed HOFA system approach can be gen-
eralised in many directions. Firstly, the relevant full-
actuation Assumptions 3.1 and 3.3 can be relaxed
and control of sub-fully actuated systems can be con-
sidered. Secondly, for mainly demonstrating the idea
of HOFA approach, Conditions 3.2 and 3.4 are also
imposed for simplicity in the paper, while these con-
ditions can also be relaxed. Finally, the idea can be
extended to discrete-time systems, stochastic systems,
and systems with uncertainties, etc.
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