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ABSTRACT
The linear mixed model with an added integrated Ornstein–Uhlenbeck
(IOU) process (linearmixed IOUmodel) allows for serial correlation and esti-
mation of the degree of derivative tracking. It is rarely used, partly due
to the lack of available software. We implemented the linear mixed IOU
model in Stata and using simulations we assessed the feasibility of fitting
themodel by restrictedmaximum likelihoodwhen applied to balanced and
unbalanced data. We compared different (1) optimization algorithms, (2)
parameterizations of the IOU process, (3) data structures and (4) random-
effects structures. Fitting themodelwaspractical and feasiblewhenapplied
to large and moderately sized balanced datasets (20,000 and 500 observa-
tions), and large unbalanced datasets with (non-informative) dropout and
intermittent missingness. Analysis of a real dataset showed that the linear
mixed IOUmodel was a better fit to the data than the standard linearmixed
model (i.e. independent within-subject errors with constant variance).
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1. Introduction

Linear mixed models, proposed by Laird and Ware [1], are commonly used for the analysis of lon-
gitudinal clinical markers (‘biomarkers’) of disease; for example HIV research on the time course
of CD4 counts [2] and time course of progesterone in a menstrual cycle [3]. In such settings the
data are typically unbalanced: the number of measurements differs among subjects and the time
interval between consecutive measurements differs within and between subjects. The variance of
the biomarker may be nonstationary (vary over time) and, when measurements on the same individ-
ual are recorded close together in time, within-subject measurements may be serially correlated (also
known as autocorrelation). Typically, the linear mixed model is applied assuming no within-subject
serial correlation (‘conditional independence’). However, the conditional independence model can
allow for nonstationary variance through between-subject random effects: for example, a model with
a random intercept and a random linear slope implies that the variance is a quadratic function of
time. The stochastic linear mixedmodel is the conditional independencemodel with an added Gaus-
sian stochastic process to model within-subject serial correlation. Diggle [4] proposed a stochastic
linear mixed model where the covariance structure was assumed to be stationary and modelled by
a random intercept, independent measurement errors and a stationary Gaussian stochastic process
(the Gaussian correlation function). Taylor et al. [5], Zhang et al. [6] and Stirrup et al. [7] allowed
for a nonstationary covariance structure by including in their model random effects other than the
random intercept and a nonstationary stochastic process (the integrated Ornstein–Uhlenbeck (IOU)
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process, the nonhomogeneous Ornstein–Uhlenbeck process and the fractional Brownian Motion
process respectively). This paper focuses on the model proposed by Taylor et al., which we shall refer
to as the linear mixed IOU model.

Based on model fit statistics (Akaike Information Criterion and log-likelihood) Taylor et al. [5]
and Wolbers et al. [8] concluded that, compared to a conditional independence model, the linear
mixed IOUmodel gave an improved fit to longitudinal CD4 counts. Based on a simulation study, Tay-
lor and Law [9] concluded that, when predicting futuremeasurements in subjects, a linearmixed IOU
model was more robust than a conditional independence model (with a random linear or quadratic
slope) to incorrect specification of the true covariance structure of the data. However the linearmixed
IOU model is rarely used in practice, due to the lack of available software.

The purpose of this paper is to describe the estimation and implementation of the linear mixed
IOUmodel within Stata, and to evaluate, using simulations, the feasibility and practicality of estimat-
ing the linear mixed IOUmodel by restricted maximum likelihood (REML) estimation.We compare
REML estimation of the model under different: (1) parameterizations of the IOU stochastic process,
(2) longitudinal data structures, (3) optimization algorithms and (4) random effects structures. We
also evaluate our implementation when applied to unbalanced data typically seen in large cohort
studies. In Section 2 we describe the linear mixed IOU model, the estimation procedure and our
implementation in Stata 13.1 [10]. Sections 3 and 4 present the methods and results of our simulation
study respectively. In Section 5 we apply the linear mixed IOU model to height measurements from
Christ’s Hospital Study and we conclude with a general discussion in Section 6.

2. Computational methods and theory

2.1. Linearmixed IOUmodel

The linear mixed IOU model implies that a subject’s biomarker trajectory is a realization of an IOU
process. Taylor et al. [5] hypothesized that in the short term a subject’s biomarker process may main-
tain the same trajectory but over long periods of time the biomarker’s trajectory may vary. A special
feature of the IOU process is that it allows for differing levels of derivative tracking; that is, the degree
to which a subject’s biomarker measurements maintain the same trajectory over long periods of time.
The linear mixed IOU model estimates the degree of derivative tracking from the data as opposed
to assuming a fixed level via a particular covariance function. Two limiting cases of the model are
(1) a specific conditional independence model (strong derivative tracking) and (2) a stochastic linear
mixed model with a Brownian Motion process (no derivative tracking).

Consider a dataset of m subjects, where subject i has ni repeated measurements recorded at
time-points ti = {tij} (i = 1, . . . ,m; j = 1, . . . , ni). For subject i, yi = {yij} is a ni-vector of responses,
Xi = {Xij} is a ni × p design matrix for the p-vector of fixed effects β (i.e. population regression
coefficients), Zi is a ni × q design matrix for the q-vector of random effects ui (i.e. subject-specific
regression coefficients), wi = {wij} is a ni-vector of realized values of the IOU stochastic process and
ei is a ni-vector of independentmeasurement errors. The random effects ui, IOU processwi andmea-
surement errors ei are assumed to be mutually independent. We assume independence of responses
yi between subjects.

The linear mixed IOU model can be written as

yi = Xiβ + Ziui + wi + ei,

where ui,wi and ei are independently, normally distributed with zero means and covariances G, Hi
and σ 2Ini , respectively.G is unstructured andHi is defined as follows, for j1 = 1, . . . , ni, the variance
of wi at time-point tij1 is

Hj1j1
i = τ 2

α3 [αtij1 + exp(−αtij1) − 1],
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and, for j1, j2 = 1, . . . , ni and j1 �= j2, the covariance of wi between time-points tij1 and tij2 is

Hj1j2
i = τ 2

2α3 [2αmin(tij1 , tij2) + exp(−αtij1) + exp(−αtij2) − 1

− exp(−α|tij1 − tij2 |)].

The covariance matrix of yi is Vi = ZiGZT
i + Hi + σ 2Ini [11] and we denote the vector of

unknown variance parameters by θ , which consists of the unique components of G, α, τ and σ 2.
When a linear mixed IOU model only contains a single random effect (a random intercept) we shall
refer to the model as a ‘random intercept IOU’ model. Similarly, we shall refer to a linear mixed IOU
model with a random intercept and random slope as a ‘random slope IOU’ model.

The IOU stochastic process is parameterized byα and τ . According to Taylor et al. [5] theα param-
eter can be interpreted as a measure of the degree of derivative tracking, where a small value of α

indicates a strong degree of derivative tracking (i.e. a subject’s measurements closely follows the same
trajectory over long periods). The parameter τ serves as a scaling parameter.

Taylor et al. [5] note that there are two special limiting cases of the linear mixed IOU model.
Firstly, as α tends to ∞ (derivative tracking becomes weaker) with τ 2/α2 held constant wi becomes
a realization of a Brownian Motion process (also known as the Wiener stochastic process). Taylor
and Law [9] called this model the Brownian Motion mixed-effects model. Secondly, for a random
intercept IOUmodel, asα tends to 0 (derivative tracking becomes stronger) with τ 2/α2 held constant,
the model reduces to a conditional independence model with a random intercept and slope, and with
zero correlation between the intercept and the slope.

The IOU process is nonstationary because the covariance between wij1 and wij2 depends upon
time-points tij1 and tij2 as well as their difference. Due to nonstationarity the covariance matrix
of the random intercept IOU model would be the same if it was applied to (1) a balanced dataset
of measurements recorded at t intervals where derivative tracking is α and τ and (2) to a dataset of
measurements recorded at Qt intervals where derivative tracking is Q−1α and Q−3/2τ . A disadvan-
tage of nonstationarity is that it requires a definition of a natural time 0, which may not be feasible
in some applications. In the absence of a known time 0, Taylor et al. [5] proposed modelling dif-
ferences; for example, selecting a first measurement yiEi and modelling the differences yij − yiEi for
j > Ei. However, this also requires the selection of a ‘first measurement’ which is comparable, with
respect to the time course of the disease, for all subjects. Note that, a conditional independencemodel
with random intercept and slope (and an unstructured matrix G) is also nonstationary.

2.2. Estimation

Maximum likelihood (ML) estimators of θ are biased downwards because the estimation process does
not take into account the degrees of freedom used in the estimation of the fixed effects β [1,12–14].
For this reason Patterson and Thompson [11] introduced the restricted (or residual) maximum like-
lihood, a marginal likelihood that is a function of a linearly independent set of residual contrasts and
is free of β . For both REML and ML estimation data can be missing at random [15].

2.2.1. Optimization algorithms
Calculation of REML estimates requires an optimization algorithm such as the Newton Raphson
(NR) algorithm [16], Fisher Scoring (FS) algorithm [17], Average Information (AI) algorithm [18] or
ExpectationMaximization (EM) algorithm [19]. Only the EM algorithm is numerically stable in that
the log-likelihood is guaranteed to increase at each iteration and will always converge to estimates
within the parameter space. However, the EM algorithm does not give standard errors for the param-
eter estimates and is slow to converge compared to the NR, FS and AI algorithms [20]. Modified EM
algorithms have been proposed to improve the time to convergence; for example using conditional
maximization [21–23] and parameter expansion [24, 25].
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The FS andAI algorithms are variants of theNR algorithm. The FS algorithm replaces the observed
information matrix by the expected information matrix in the NR algorithm, and the AI algorithm
replaces the observed information matrix by the average of the observed and expected information
matrices (called the AI matrix). The convergence time for the NR algorithm is quicker than the FS
algorithm because the NR algorithm converges in fewer iterations and its cost-per-iteration is only
slightly slower than that of the FS algorithm [20]. However, the FS algorithm is more robust to poor
starting values than the NR algorithm and so Jennrich and Sampson [17] recommended starting with
a few iterations of the FS algorithm and then switching to the NR algorithm.

The AI algorithm was developed in the context of animal breeding applications, where estimation
can involve manipulation of large matrices. The observed and expected information matrices (used
in the NR and FS algorithms respectively) require evaluation of the trace of a matrix. The AI matrix
is calculated by taking the sum of squares of expected values, which is quicker to calculate than the
trace of a matrix. Gilmour et al. [18] compared the AI and FS algorithms by estimating a linear mixed
model when applied to data from a spring wheat trial. The authors concluded that the AI algorithm
‘had similar convergence properties, yet avoided the computing burdens of that approach’ [18].

2.2.2. Implementation of the estimation procedure
Following Pinheiro and Bates [26] we conducted REML estimation with respect to the parameters
of the log-Cholesky parameterization of G. Taylor et al. [5] parameterized the IOU process as α and
ω = τ 2/α2 and experienced convergence problems as α became increasingly large or small. Taylor
et al. suggested (but did not explore) reparameterizing α as lnα or as α−2 if α was suspected to be
large. We consider six different parameterizations of the IOU process (see Section 3.1.2, comparison
1): [α, τ ], [α,ω], [lnα, τ ], [lnα,ω], [α−2, τ ] and [α−2,ω].

The covariance matrix of yi can be expressed as Vi = σ 2V∗
i = σ 2(ZiG∗ZT

i + H∗
i + Ini), where

G∗ = σ−2G andH∗
i = σ−2Hi. Therefore, we profile the restricted log-likelihood with respect to σ 2

and so reduce the number of parameters to be optimized. We denote the reduced vector of unknown
parameters by θ∗, which consists of the unique elements of G̃∗ (log-Cholesky parameterization of
G∗), α (or lnα or α−2) and τ/σ (or ω/σ 2). We estimate θ∗ such that it minimizes the negative of
twice the profiled restricted log-likelihood for θ∗. Ignoring the constant terms (and given statistical
independence among subjects) the contribution to this function for subject i is

−2lR(θ∗|yi,Xi) = ln |V∗
i | + rTi (V∗

i )
−1ri + ln |XT

i (V∗
i )

−1Xi|,

where ri = yi − Xiβ̂ and β̂ = (
∑m

i=1 Xi(V∗
i )

−1Xi)
−1(

∑m
i=1 Xi(V∗

i )
−1yi) is the estimate of β given

the latest estimate of θ∗.
Onceminimization with respect to θ∗ is completed, we transform these parameters such that their

ranges are (−∞,∞). (θ∗, σ 2) is reparameterized to θ̆ = (ğ, lnα, lnω, ln σ), where ğ is a vector of
the unique elements of Ğ, which is a reparameterization of G such that the diagonal elements are
the logarithms of standard deviations (i.e. Ğ[j1, j1] = ln

√
G[j1, j1]) and the off-diagonal elements are

hyperbolic arctangents of the correlations (i.e. Ğ[j1, j2] = tanh−1G[j1, j2] ÷ (
√
G[j1, j1]

√
G[j2, j2]) for

j1 �= j2). We obtain the information matrix with respect to θ̆ , calculate 95% confidence intervals and
then transform the endpoints to the required scale (i.e. G, α, ω and σ ).

The optimization algorithms require evaluation of the REML log-likelihood and its first and sec-
ond partial derivatives. When a dataset contains a large number of measurements computation of
these quantities can be prohibitively computer-intensive due to the manipulation and inversion of
large matrices. As we assume statistical independence between subjects we computed these quanti-
ties separately on each subject, which requires the manipulation of (dimensionally) smaller matrices
and so improves computational efficiency. To further improve efficiency, we computed these quanti-
ties using the method of Wolfinger et al. [27], which avoids direct computation of V−1

i by using an
extension of the W-transformation [28,29] and the sweep operator [30].
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We programmed the estimation procedure in Stata 13.1 using its matrix programming language
Mata [31]. We used the inbuilt Mata optimize function to perform the optimization.

The optimization algorithm requires starting values for θ∗. We derived the starting values from
the data by calculating, across subjects, variances of the response at measurement time-points and
covariances of the response between measurement time-points. For example, for the random inter-
cept IOUmodel the slope of the variances over time is a reasonable approximation forω. We used the
same method for balanced and unbalanced longitudinal data. However, for unbalanced data we first
‘regularized’ the dataset. For example, if measurements were intended to be recorded every 3 months
we rounded the ‘observed’ time points to the nearest multiple of 3 months.

3. Simulation study design

The aim of the simulation study was to evaluate our Stata implementation of the linear mixed IOU
model. The design of the simulation study was based on Taylor et al.’s [5] analysis of the Los Angeles
seroconverters cohort of the Multicentre AIDS Cohort Study. The study recruited homosexual and
bisexual men in Los Angeles between 1984 and 1985. The cohort consisted of subjects with a known
date of seroconversion (i.e. change from HIV antibody negative to HIV antibody positive) and so
the natural time zero (for the time course of the HIV biomarkers) was the time of seroconversion.
The biomarker of interest was CD4 count (cells/mm3) and all CD4 counts were transformed by a
fourth-root power to approximate a constant within-subject variance. In the notation of Section 2.1
yij = 4

√
CD4 count at time j in subject i. Taylor et al.’s analysis includes all observations before the

introduction of AZT treatments. Therefore, CD4 counts tend to decrease with increasing time since
seroconversion.

We conducted separate simulation studies based on balanced and unbalanced longitudinal data.

3.1. Balanced longitudinal data

The simulation study based on balanced longitudinal data evaluated estimation of the linear mixed
IOU parameters under different: (1) parameterizations of the IOU process, (2) data structures, (3)
optimization algorithms and (4) random slope IOU models.

3.1.1. Datamodel
Consider a dataset withm subjects, each with n responses (CD4 counts transformed by a fourth-root
power) observed at regular kmonthly intervals (i.e. response yij was observed j × kmonths since time
of seroconversion). For subject i the n responses yi = (yi1, . . . , yin)T were generated under a linear
mixed IOU model with a linear population slope

yi = β0 + β1ti + u0i + u1iti + wi + ei,

where β0 and ui0 respectively denote the fixed and random intercept, β1 and ui1 respectively denote
the fixed and random slope, and wi and ei respectively denote realizations of the IOU and measure-
ment error processes. For all settings β0 = 5.195, β1 = −0.222 and σ = 0.234, where ei ∼ N(0, σ 2).
For comparisons (1) parameterizations of the IOU process, (2) data structures and (3) optimization
algorithms, data were generated under a random intercept IOU model (i.e. u1i = 0 for all subjects)
and the variance of the random intercept u0i was set to 0.1156. The values of the random effects
covariance parameters of the random slope IOU models are discussed in Section 3.1.2 (Compar-
ison 4). For all comparisons we repeated the simulations for three levels of derivative tracking:
α = 1.31 andω = 0.1 (strong derivative tracking),α = 3 andω = 0.5 (moderate derivative tracking),
and α = 20.7 and ω = 1 (weak derivative tracking). These values were based on analyses reported
in [5, 9].
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3.1.2. Comparisons
For all comparisonswe generated 1000 datasets and to each simulated dataset we fitted the same linear
mixed IOU model that was used to generate the data.

Comparison 1: Parameterization of the IOU process.We compared six different parameterizations
of the IOU process: [α τ ], [α ω], [lnα τ ], [lnα ω], [α−2 τ ] and [α−2 ω]. We generated data (under
a random intercept IOU model) for m= 1000 subjects each with n= 20 measurements recorded
every k= 3 months. The values ofm,k and n are typical of large HIV cohort studies. Estimation was
performed using the NR algorithm.

Comparison 2:Data structures: We considered how the estimation process was influenced by: 2(a)
the number of subjects versus the number of measurements per subject (whilst keeping the time
interval between consecutive measurements the same), and 2(b) the time interval between consec-
utive measurements (whilst keeping the number of subjects and the number of measurements per
subject constant).

2(a): For a large dataset of 5000 observations in total we compared the following two data struc-
tures: m= 1000 subjects, n= 5 measurements, k= 3 months and m= 250 subjects, n= 20 measure-
ments, k= 3 months. Also, for a moderately sized dataset of 500 observations in total we compared
data structures: m= 100 subjects, n= 5 measurements, k= 3 months and m= 25 subjects, n= 20
measurements, k= 3 months.

2(b): As discussed at the end of Section 2.1, the degree of derivative tracking depends upon the
time interval k. By choosing values for α and ω we were able to change the time interval k whilst
keeping the degree of derivative tracking the same across comparisons. We compared the following
three settings (which result in the same IOU covariancematrix): monthly intervals with α = 20.7 and
ω = 1, 3-monthly intervals with α = 6.9 andω = 1

3 and yearly intervals with α = 1.725 andω = 1
12 .

We repeated the simulations for a large dataset of 1000 subjects each with 20 measurements and for
a moderately sized dataset of 100 subjects each with 5 measurements.

For both data structure comparisons, estimation was performed using the NR algorithm and the
optimal IOU parameterization based on the results from comparison 1.

Comparison 3: Optimization algorithms: We compared three optimization algorithms: the NR
algorithm, a combination of c iterations of the AI algorithm followed by the NR algorithm, and a
combination of c iterations of the FS algorithm followed by the NR algorithm. We repeated the sim-
ulations for c= 3 and c= 10. We compared the algorithms on two different data structures: a large
dataset of m= 20,000 subjects each with n= 20 measurements recorded every k= 3 months and on
a moderately sized dataset of m= 100 subjects each with n= 5 measurements recorded every k= 3
months, where starting values (calculated from the data)may be further from the truth for the smaller
dataset. Estimationwas performed using the optimal IOUparameterization based on the results from
comparison 1.

Comparison 4: Random slope IOU models: We investigated the conditions under which it was fea-
sible to estimate a model with a random intercept, random slope effect and the IOU process. We
compared three random slope IOU models with different values for the random effects covariance
matrix. Model RS1: Var[u0i] = 0.12, Cov[u0i, u1i] = −0.010, Var[u1i] = 0.010 (smallest variances
and covariance), model RS2: Var[u0i] = 0.5, Cov[u0i, u1i] = −0.25, Var[u1i] = 0.25 andmodel RS3:
Var[u0i] = 1.0, Cov[u0i, u1i] = −0.50, Var[u1i] = 0.50 (largest variances and covariance). Estima-
tion was performed using the NR algorithm and the optimal IOU parameterization based on the
results from comparison 1.

3.2. Unbalanced longitudinal data design

We evaluated our implementation of the linear mixed IOU model when applied to unbalanced data.
We allowed the number of measurements per subject and the times of the measurements to vary
between subjects. Also, the time intervals between consecutive measurements were allowed to vary
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between subjects and within a subject. The features of the unbalanced data were based on a UK HIV
cohort [32].

3.2.1. Datamodel
We simulated data on 1489 subjects with 20,000 observations in total: 150 subjects with 2 measure-
ments, 224 subjects with 5 measurements, 372 subjects with 10 measurements and 743 subjects with
20 measurements. We considered two scenarios regarding the time intervals between consecutive
measurements.

Scenario 1: Target visits: All subjects were intended to be measured every 3 months. For subject
i, the time intervals between consecutive measurements were modelled in days as N(90, 302) so that
95% of the time intervals would be between 1 and 5months duration. All time intervals were required
to be at least 7 days.

Scenario 2: Intermittent dropout: Data were simulated allowing for long gaps between consecu-
tive measurements thus generating data with intermittent dropout. For those subjects with 2 or 5
measurements the time intervals between consecutive measurements were modelled as 365 days +
90 × std-lognormal, where std-lognormal denotes the standardized form of the lognormal distri-
bution exp{N(0, 0.52)}. So, 95% of the time intervals would be between 6 and 18 months long. We
simulated under the positively skewed lognormal distribution to avoid negative time intervals. For
those subjects with 10 or 20 measurements the time intervals were modelled in days as N(90, 302).
All time intervals were required to be at least 7 days. Under both scenarios, the responses yi of subject
i were generated under a random intercept IOUmodel with a linear population slope using the same
parameters values as discussed in Section 3.1.1.

3.3. Evaluation criteria

We used the same evaluation criteria for the simulation studies on balanced and unbalanced longitu-
dinal data.We classified the estimation process as converged if the optimization algorithm converged
to a solution within 100 iterations and the information matrix with respect to θ̆ (used to calculate
standard errors) was positive definite (i.e. all eigenvalues of the matrix were greater than 1 × 10−8).
Among the datasets where the estimation process converged we calculated themedian and interquar-
tile range (IQR) of the number of iterations to reach convergence. For each variance parameter ν we
evaluated: (i) bias of the estimates, (ii) empirical standard deviation of the estimates of its transfor-
mation ν̆, (iii) median and IQR of the estimated standard errors of ν̆ and (iv) coverage percentage of
the 95% confidence interval for ν. Note, we were unable to use the Delta method to approximate the
standard errors of θ from θ̆ because for some values of θ̆ the matrix of first derivatives of the transfor-
mation function had zero entries, resulting in zero standard errors. Based on 1000 simulations, the
Monte Carlo standard error for the true coverage percentage of 95% is

√
95(100 − 95)/1000 = 0.689

(3 d.p.) [33], implying that the estimated coverage percentage (to nearest whole percent) should lie
within the range 94% and 96% (with 95% probability).

4. Simulation results

4.1. Balanced longitudinal data

In this section we present the results for the comparisons of the parameterizations of the IOU pro-
cess and the random effects structures when derivative tracking was weak (α = 20.7 and ω = 1).
The results for the remaining comparisons (structures of the data and optimization algorithms), and
moderate and strong derivative tracking are summarized in the text below. All results not reported
are available upon request from the authors.

Across all comparisons, the majority of the fixed effects (linear slope and constant) were unbiased.
For those biased estimates the magnitude of the bias was very small; for example, 0.0011 (MCSE
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0.0005). Note that, theory tells us that fixed effects REML (and ML) estimators from multivariate
normal models are unbiased even when the covariance matrix is misspecified [34]. The confidence
intervals for the fixed effects had coverage levels between 93% and 96%.

4.1.1. Parameterizations of the IOU process
Table 1 presents the results of estimation under different parameterizations of the IOU process, where
the degree of derivative tracking was weak (α = 20.7 and ω = 1). The only IOU parameterization
where all estimation processes converged was [α ω]. The number of failed estimations due to a non-
positive definite information matrix, so that standard errors could not be calculated, was 374,177,13
and 411 for IOUparameterizations [α τ ], [lnα τ ], [α−2 τ ] and [α−2 ω] respectively.When examining
these failed estimation processes, the estimate for α was considerably larger than its true value (e.g.
estimate was 51.5 when the truth was 20.7) and the likelihood slice for α, with the other parameters
held constant at their REML estimates, was flat around the REML estimate ofα. For parameterizations
[lnα ω] and [α−2 ω] seven estimation processes failed because either the NR algorithm did not reach
a solution within 100 iterations or the NR algorithm failed due to a non-positive definite Hessian
matrix.

Among the estimation processes that converged, the median number of iterations to reach a solu-
tion for IOU parameterization [α−2 τ ] was more than double the median number for the other IOU
parameterizations.

Consider the estimation results of the variance parameters for IOU parameterization [α ω]. The
estimates of the random intercept variance, Var[u0i], were unbiased and the magnitude of the bias of
ωwas small. Confidence interval coverage for both parameters was close to the nominal level. The dis-
tribution of the estimates ofα and the distribution of its standard errors (of lnα) were bimodal. In 469
datasets α was overestimated (bias 28.9) and the standard errors of lnα were very large (i.e. median
standard error was 14.5 and the standard deviation of the estimates of lnα was 0.0972), giving 100%
confidence interval coverage. An examination of the likelihood slice for α showed a nearly flat like-
hood around the REML estimate of α, which would explain the large standard error. In the remaining

Table 1. Comparing parameterizations of the IOU process for balanced data (m= 1000, n= 20 and k = 3) simulated under the
random intercept IOU model with weak derivative tracking (α = 20.7,ω = 1).

Parameterizations
ατ αω lnατ lnαω α−2τ α−2ω

Converged N 626 1000 823 993 987 582
Opt. Iter. Median (IQR) 8(3) 9(12) 12(29) 9(7) 25(54) 8(4)
Var[û0i] Bias×1000 (MCSE ×1000) 9.3(0.78) 0.45(0.68) 3.9(0.73) 0.18(0.69) 1.3(0.67) 10(0.8)

Empirical SD 0.083 0.096 0.091 0.097 0.093 0.081
Median SE (IQR) 0.083(0.07) 0.2(0.66) 0.1(1.3) 0.2(0.74) 0.18(0.94) 0.081(0.053)
CP % 91% 94% 93% 94% 94% 90%

α̂ Bias×1000 (MCSE ×1000) −1400(590) 9600(590) 4200(570) 11000(640) 6400(490) −3700(500)
Empirical SD 0.55 0.70 0.64 0.73 0.63 0.47
Median SE (IQR) 0.4(0.85) 1.9(14) 0.71(27) 2(16) 1.5(17) 0.38(0.62)
CP % 68% 80% 76% 80% 80% 66%

ω̂ Bias×1000 (MCSE ×1000) 11(0.9) 6.4(0.70) 8.3(0.78) 6.3(0.70) 6.3(0.70) 12(0.94)
Empirical SD 0.022 0.022 0.022 0.022 0.022 0.022
Median SE (IQR) 0.025(0.00098) 0.024(0.0059) 0.025(0.006) 0.024(0.0059) 0.024(0.0059) 0.025(0.00084)
CP % 95% 95% 95% 95% 95% 94%

σ̂ Bias×1000 (MCSE ×1000) 17(0.97) −1.1(0.95) 5.9(1) −1.8(0.98) 0.98(0.9) 20(0.88)
Empirical SD 0.1 0.13 0.12 0.13 0.12 0.089
Median SE (IQR) 0.089(0.18) 0.41(1.7) 0.16(3.5) 0.42(1.9) 0.33(2.3) 0.086(0.14)
CP % 69% 81% 76% 81% 80% 67%

Optimization performed using NR algorithm. Over 1000 simulated datasets: number converged, median and IQR of the number of opti-
mization iterations (Opt. Iter.) and for each variance parameter ν: bias of the estimates of ν with Monte Carlo standard error (MCSE),
standard deviation of the estimates of its transformation ν̆, median and IQR of the estimated standard error (SE) of ν̆ and empirical
coverage percentage (CP) of the 95% confidence interval for ν. Results reported to two significant figures.
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531 datasets α was underestimated (bias −7.52) and the standard errors of lnα were moderate (i.e.
median standard error was 0.352 and the standard deviation of the estimates of lnα was 0.233), giving
62% confidence interval coverage. So, over the 1000 datasets there was 80% coverage for α. For the
same reason the confidence intervals for σ undercovered. For the other five IOU parameterizations
the results of the variance parameters followed similar patterns as noted for [α ω].

When derivative tracking was moderate (α = 3, ω = 0.5) all estimation processes converged for
IOU parameterizations involving τ and, for IOU parameterizations involving ω between 18 (for
[α ω]) and 28 estimation processes did not converge due to failure of the NR algorithm. When
derivative tracking was strong (α = 1.31, ω = 0.1) all estimation processes converged for all IOU
parameterizations. For strong and moderate derivative tracking the medium number of iterations to
reach convergence was between 4 and 7 and the results of the variance parameters were very similar
across the 6 IOU parameterizations. The estimates of Var[u0i], ω and σ were unbiased, and under
moderate derivative tracking α was unbiased whereas under strong derivative tracking α was only
slightly biased (i.e. largest magnitude was 0.0115). For all variance parameters confidence interval
coverage was close to the nominal level (95–96 %).

In summary, for weak derivative tracking the preferred IOU parameterization was [α ω], for mod-
erate derivative tracking the preferred IOUparameterizationwas either [α τ ], [lnα τ ] or [α−2 τ ], and
for strong derivative tracking all IOU parameterizations performed equally well. For the remaining
comparisons we estimated the model with respect to the [α ω] parameterization.

4.1.2. Data structures
Comparison 2(a): Number of subjects versus number of measurements: We estimated the model’s
parameters when applied to two data structures with 5000 observations in total: m= 1000 subjects
eachwithn= 5 observations andm= 250 subjects eachwithn= 20 observations.Underweak deriva-
tive tracking all estimation processes converged for both data structures. The variance parameter
results followed the same patterns as described in Section 4.1.1 for IOU parameterization [α ω] (col-
umn 4 of table 1; data structure [m = 1000 n = 20]). The only notable difference between the data
structures was that the confidence interval coverage for Var[û0i] was 89% for [m = 1000 n = 5] and
96% for [m = 250 n = 20]. Under strong derivative tracking all models converged for data structure
[m = 250 n = 20], all variance estimates were either unbiased or slightly biased and confidence inter-
val coveragewas between 94%and 96%.However, for data structure [m = 1000n = 5] 114 estimation
processes did not converge within 100 iterations of the NR algorithm. (The same problem occurred,
117 failed estimations, whenwe used alternative starting values for the optimization algorithm, which
were generated assuming strong derivative tracking; that is, the starting values forG and σ were esti-
mated from a standard linear mixed model, and we set α = 1 and ω = 0.1.) Among the converged
processes the estimates for α and ω were biased and confidence interval coverage was 100% and 88%
respectively. The estimates forVar[u0i] andσ were unbiasedwith close to nominal confidence interval
coverage.

We also applied the model to smaller datasets (of 500 observations in total):m= 100 subjects each
with n= 5 observations and m= 250 subjects each with n= 20 observations. Under weak deriva-
tive tracking, estimation processes were less likely to converge when the number of subjects was low
(4 estimations failed for [m = 100 n = 5] compared to 51 failures for [m = 25 n = 20]). However,
under strong derivative tracking estimation processes were less likely to converge when the number
of measurements per subject was low (107 estimations failed for [m = 100 n = 5] compared to five
failures for [m = 25 n = 20]). The estimation results of the variance parameters followed the same
patterns as noted for the data structures with 5000 observations.

In summary, for datasets of 5000 and 500 observations, the variance parameter results were poorer
when the number of measurements per subject was 5 compared to 20 measurements per subject.

Comparison 2(b): Time intervals between consecutive measurements: For datasets of 1000 sub-
jects each with 20 observations, we compared estimation of the model when measurements were
spaced monthly (k = 1), every three months (k = 3) and yearly (k = 12). The IOU covariance
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matrix, Hi, was the same for all three comparisons and equivalent to weak derivative tracking
(α = 20.7,ω = 1 with k= 1). All estimation processes converged for k= 1 but 10 and 53 estimations
failed for k= 3 and k= 12 respectively. The estimates of Var[û0i] were unbiased for k= 1,3 and 12.
All estimates of α were biased and the magnitude of this bias decreased with increasing time inter-
val (i.e. 0.562,0.199 and 0.0546 for k= 1,3 and k= 12 respectively). Note that, the true value of α

was 20.7, 6.9 and 1.725 for k= 1,3 and 12 respectively and, as seen in Section 4.1.1, the magnitude
of the bias of α was proportional to its true value. Therefore, the magnitude of this bias decreased
with increasing time interval because the true value of α decreased with increasing time interval.
For all time intervals the estimates of ω were unbiased and the estimates for σ were slightly biased
(largest value 0.0045). Confidence interval coverage was close to 95% for all parameters and all time
intervals.

For moderately sized datasets of 100 subjects each with five observations, all estimation processes
converged for k= 1 but 7 and 1 estimations failed for k= 3 and k= 12 respectively. The parame-
ter results followed the same patterns as described for the larger datasets, but the differences in the
magnitude of the biases of α were larger.

In summary, convergence was most successful whenmeasurements were spaced at monthly inter-
vals. Only the results of parameter α differed between the time intervals, where a larger bias occurred
for higher values of α.

4.1.3. Optimization algorithms
For datasets of 1000 subjects each with 20 observations spaced at 3 monthly intervals, we compared
estimation of the model using different optimization algorithms. Under weak derivative tracking,
all estimation processes converged when using only the NR algorithm. There were convergence
problems with the combination algorithms: 38 estimations failed when the optimizing algorithm
was 3 iterations of FS then NR and 60 estimations failed for 3 iterations of AI then NR. Conver-
gence improved when the number of FS and AI iterations preceding NR were increased from 3
to 10, with only 1 failed estimation for 10 iterations of FS then NR and 13 failed estimations for
10 iterations of AI then NR. The median time to convergence was 54 (IQR 89) seconds for NR
only, 118 (IQR 93) seconds for 10 iterations of FS then NR, and 136 (IQR 88) seconds for 10 iter-
ations of AI then NR. The results of the parameter estimates of all combination algorithms were
almost identical to the results for estimation using only the NR algorithm (column 4 of Table 1).
Under strong derivative tracking all estimation processes converged for all optimization algorithms
(NR algorithm only and all combination algorithms). The only notable difference between the opti-
mization algorithms was the median time to convergence: 20 (IQR 9) seconds for NR only, 99
(IQR 8) seconds for 10 iterations of FS then NR, and 47 (IQR 4) seconds for 10 iterations of AI
then NR.

Formoderately sized datasets (m = 100, n = 5, k = 3)with weak derivative tracking theNR only
algorithm had fewer failed estimations: 4 estimations failed for NR only, 10 and 9 estimations failed
respectively for 3 and 10 iterations of FS then NR, and 29 and 30 estimations failed respectively for
3 and 10 iterations of AI then NR. The median time to convergence was 1 (IQR 1) second for NR
only and 3 (IQR 1) seconds for 10 iterations of FS or AI then NR. When the derivative tracking was
strong the algorithm with the least number of failed estimations was 10 iterations of AI then NR:
107 failed estimations for NR only, 85 and 73 failed estimations respectively for 3 and 10 iterations
of FS then NR, and 76 and 65 failed estimations respectively for 3 and 10 iterations of AI then NR.
Among the 107 datasets where the NR only algorithm failed the median starting value of α was 10
(IQR 0), where the true value was 1.31. (The starting values for the other parameters were reasonably
close to the truth).When we started the NR algorithm using the alternative starting values (generated
assuming very strong derivative tracking) the number of failed estimations for the NR only algorithm
decreased to 79. Among the converged estimation processes, the median time to convergence was 2
(IQR 10) seconds for NR only, 4 (IQR 11) seconds for 10 iterations of FS then NR and 3 (IQR 11)
seconds for 10 iterations of AI then NR.
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In summary, for large datasets with regular and frequentmeasurements the preferred optimization
algorithm was NR only, with respect to convergence and the time taken to reach convergence (on
average NR only took at least half the time to reach convergence compared to 10 iterations of FS or AI
then NR). In circumstances, such as a moderately sized dataset with a low number of measurements
per subject, where starting values are far from the truth the combination of 10 iterations of FS or AI
and then NR can improve convergence.

4.1.4. Random slope IOUmodels
Table 2 presents the results of estimating random slope IOU models when derivative tracking was
weak.When themagnitude of the variances and covariance of the random intercept and random slope
were small (column RE1 in the table) 122 estimation processes failed to converge: 5 estimations did
not converge within 100NR iterations, 48 NR algorithms failed due to a non-positive definite Hessian
matrix, and 69 estimations failed because the information matrix was not positive definite (and so
standard errors could not be calculated). For the 122 failed estimations we re-estimated the model
using the alternative starting values (generated assuming very strong derivative tracking).Out of these
122 re-estimations 116 converged and the estimated values for the covariance term were very close to
zero (median 1 × 10−27). As described by the Stata manual, when an estimated variance component
is close to 0 ‘a ridge is formed by an interval of values near 0, which produce the same likelihood and
look equally good to the optimizer’ [10]. When this occurs, then the estimation process can fail to

Table 2. Comparing random slope IOU model for balanced data (m= 1000, n= 20 and k = 3) simulated with weak derivative
tracking (α = 20.7,ω = 1).

Random slope IOUmodels

RE1 RE2 RE3

Converged N 878 1000 1000
Opt. Iter. Median (IQR) 20(14) 12(13) 11(13)
Var[û0i] Bias×1000 (MCSE×1000) 0.3(0.72) 0.97(1.1) 0.91(1.8)

Empirical SD of ν̆ 0.095 0.036 0.028
Median SE of ν̆ (IQR) 0.23(0.64) 0.055(0.12) 0.035(0.05)
CP % 95% 97% 97%

Cov[û0i , û1i] Bias×1000 (MCSE×1000) −0.26(0.31) 0.28(0.65) 0.44(1.1)
Empirical SD 2.1 0.076 0.053
Median SE (IQR) 0.51(5.1) 0.093(0.17) 0.059(0.068)
CP % 95% 96% 96%

Var[û1i] Bias×1000 (MCSE×1000) 0.59(0.3) −2.4(0.68) −2.8(1)
Empirical SD 0.97 0.043 0.032
Median SE (IQR) 0.57(0.831) 0.043(0.0031) 0.032(0.0011)
CP % 93% 95% 95%

α̂ Bias×1000 (MCSE×1000) 9100(610) 8600(580) 8800(580)
Empirical SD 0.68 0.70 0.70
Median SE (IQR) 2.5(14) 1.7(14) 1.7(14)
CP % 81% 79% 79%

ω̂ Bias×1000 (MCSE×1000) 5.9(0.79) 9(0.81) 9.1(0.82)
Empirical SD 0.023 0.025 0.025
Median SE (IQR) 0.025(0.008) 0.029(0.0088) 0.029(0.0089)
CP % 96% 96% 95%

σ̂ Bias×1000 (MCSE×1000) −1.3(0.98) 0.16(0.95) 0.01(0.96)
Empirical SD 0.12 0.13 0.13
Median SE (IQR) 0.48(1.7) 0.37(1.7) 0.36(1.7)
CP % 82% 79% 79%

Note: Optimization performed using NR algorithm and IOU parameterization [α ω]. Over 1000 simulated datasets: number con-
verged, median and IQR of the number of optimization iterations (Opt. Iter.) and for each variance parameter ν: bias of the
estimates of ν with Monte Carlo standard error (MCSE), standard deviation of the estimates of its transformation ν̆, median and
IQR of the estimated standard error (SE) of ν̆ and empirical coverage percentage (CP) of the 95% confidence interval for ν. Results
reported to two significant figures.
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converge within a reasonable number of iterations, or fail due to an unstable Hessianmatrix, or fail to
calculate reliable standard errors [10]. All estimation processes converged when the random effects’
variances and covariances were larger (columns RE2 and RE3) and the median number of iterations
to reach convergence was almost half the median number required when the random effects were
small. For all random slope IOUmodels, the random effects (co)variance estimates and estimates for
ω were mostly unbiased (slightly biased in one case) and confidence interval coverage was close to
nominal. The results for α and σ follow the same patterns as noted for the random intercept model
when the true value of α was large (see Section 4.1.1).

When derivative tracking wasmoderate and strong convergence problems weremore common for
the random slope IOUmodel with small random effects variances and covariance (RE1) than for the
models with larger random effects’ variances and covariance (RE2 and RE3): for moderate derivative
tracking 84,25 and 16 estimations failed for RE1, RE2 and RE3 respectively and for strong deriva-
tive tracking 10 estimations failed for RE1 and all estimations converged for RE2 and RE3. (Under
moderate derivative tracking, convergence improved for all models when we estimated with respect
to IOU parameterization [α τ ]. There were more failed estimations for the RE1 model; models RE2
and RE3 had one failed estimation). With respect to the variance parameter results, under moderate
derivative tracking, the only notable difference between the random slope IOU models was that the
confidence interval coverage for the variance of the random slope term, Var[u1i], was 89% for RE1,
and 95% for RE2 and RE3. This confidence interval undercoverage was due to underestimation of the
standard errors. Otherwise, under moderate and strong derivative tracking, all parameter estimates
were either unbiased or slightly biased (magnitude less than 0.017) and confidence intervals had close
to nominal coverage.

In summary, the linear IOUmixedmodel with a random slope effect can be successfully estimated
provided the random effects variances and covariances are not close to zero.

4.2. Unbalanced longitudinal data

For unbalanced data generated under the intermittent dropout scenario, on average (i.e. taking means
over 1000 datasets), themedian (IQR), minimum andmaximum follow-up timewere respectively 4.5
years (IQR 2.4 years), 0.86 and 6.3 years, and the median (IQR), minimum andmaximum time inter-
val between consecutive measurements were respectively 3 months (IQR 1.4 months), 1 week and 2.6
years. The number of failed estimations was 78, 28 and 207 for weak, moderate and strong derivative
tracking respectively. The estimation processes failed because either the NR algorithm did not reach
a solution within 100 iterations or the information matrix was not positive definite. To the same sim-
ulated datasets we re-estimated the model using the alternative starting values. For data simulated
under strong derivative tracking all 1000 estimation processes then converged. This improvement in
convergence occurred because the alternative starting values were closer to the truth than our original
starting values. However, for weak andmoderate derivative tracking, our original starting values were
closer to the truth and so there was no improvement in convergence using these alternative starting
values.

Under the target visit scenario, on average, the median (IQR), minimum and maximum follow-
up time were respectively 3.12 years (IQR 3.29 years), 3.20 months and 6.07 years, and the median
(IQR), minimum and maximum time interval between consecutive measurements were respectively
3.00 months (IQR 1.34 months), 1.00 week and 7.01 months. Given the same degree of derivative
tracking, the number of failed estimation processes was lower for the intermittent dropout scenario
than for the target visits scenario (106, 118 and 417 failed estimations for the target visits scenario
under weak, moderate and strong derivative tracking respectively). Successful convergence of the lin-
ear mixedmodel depends upon the number of observations and coverage of the continuous time line
of measurements (i.e. from natural time zero to end of follow-up), where an estimation process is
more likely to converge the greater the coverage level. Compared to the target visits scenario, there was
greater variability (between andwithin subjects) in the times of themeasurements for the intermittent
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dropout scenario. Therefore, since data simulated under both scenarios had the same number ofmea-
surements, the level of coverage of the continuous time line was higher for the intermittent dropout
scenario, and hence a greater number of converged estimations.

Among the converged estimations, the median number of iterations to reach convergence (5– 8)
and, the estimation results of the fixed effects and variance parameters were very similar between the
target visits and intermittent dropout scenarios. The fixed effects estimates were unbiased and confi-
dence interval coverage was between 93% and 96% for weak,moderate and strong derivative tracking.
Under weak derivative tracking, the estimates of Var[û0i] were unbiased and only slightly biased for
ω, and confidence interval coverage was 96%. The magnitude of the bias for α was at most 1.06 and
confidence interval coverage for α and σ was 92– 93%. For moderate and strong derivative track-
ing, all variance estimates were either unbiased or slightly biased (e.g. 0.00313 for α) and confidence
interval coverage was close to the nominal level.

5. Application

We applied the linear mixed IOU model to a large dataset of longitudinal height measurements in
856 boys, aged 9– 18 years, who attended Christ’s Hospital School between 1936 and 1969 [35]. The
median number of measurements per boy was 60 (IQR 16) and the median time interval between
consecutive measurements (within a boy) was 1.3 months (IQR 0.26).

Figure 1 shows the observed growth trajectories for 10 boys. As the shape of the growth trajectories
were close to linear we decided to fit a linear mixed IOU model with a linear population slope.

Lampl et al. [36] state that growth in height in individuals does not necessarily follow a simple tra-
jectory but instead proceeds in a series of jumps separated by period of zero growth. The linearmixed
IOU model is ideally suited to allow for variable gradients without the need to specify a complicated
function for the growth trajectory. Also, given the frequency of measurements, the linear mixed IOU
model allows for any residual serial correlation.

We compared the model fit of a standard linear mixed with a random intercept and random
slope, a random intercept IOU model and a random slope IOU model. All models had the same
fixed effects and the models with a random slope had an unstructured random effects covariance
matrix. The Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) for
the linear mixed model, random intercept IOU model and random slope IOU model were respec-
tively AIC=−157,005 BIC=−156,954, AIC=−216,254 BIC=−216,203 and AIC=−216,397

Figure 1. Line plots of height measurements from 10 students who attended Christ’s Hospital School between 1936 and 1969.
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Table 3. Fixed effects and variance parameter results of three models fitted to longitudinal height measurements (in metres) from
Christ’s Hospital School: the standard linear mixed model with a random intercept and slope (RS RE model), the random intercept
IOU model (RI IOU model) and the random slope IOUmodel (RS IOU model). Results reported to two significant figures.

RS RE model RI IOU model RS IOUmodel

Estimate Confidence Interval Estimate Confidence Interval Estimate Confidence Interval

Age (years) 0.055 [0.054, 0.055] 0.046 [0.045, 0.046] 0.046 [0.045, 0.047]
Constant 0.83 [0.82, 0.84] 0.94 [0.93, 0.95] 0.93 [0.92, 0.95]
Var[û0i] 0.019 [0.018, 0.021] 0.0073 [0.0063, 0.0084] 0.011 [0.0093, 0.013]
Cov[û0i , û1i] −0.00087 [−0.00098, −0.00077] − − −0.00054 [−0.00066, −0.00041]
Var[û1i] 0.000063 [0.000057, 0.000070] − − 0.000026 [0.000019, 0.000037]
α̂ − − 1 [0.95, 1.1] 1 [0.98, 1.1]
ω̂ − − 0.0015 [0.0014, 0.0016] 0.0015 [0.0014, 0.0016]
σ̂ 0.026 [0.025, 0.026] 0.0086 [0.0086, 0.0087] 0.0086 [0.0086, 0.0087]

BIC=−216,329. Based on the AIC and BIC values the model with the best fit to the data was the
random slope IOU model.

Table 3 presents the results of all three models. The time scale was age in years and the natural
time zero was birth. Therefore, the constant fixed effect denotes the average height (in metres) of the
boys at birth. The estimates α̂ and ω̂ indicate strong derivative tracking. Comparing the results of the
standard linear mixed model (RS REmodel) and the random slope IOUmodel we note that the fixed
effects estimates differ and the corresponding confidence intervals do not overlap. Given the small
magnitude of the estimates for the random effects variances and covariances there was little difference
in the fixed effects results and the remaining parameter results between the random intercept IOU
model (RI IOU model) and the random slope IOU model.

6. Discussion

We have conducted the first evaluation of the feasibility and practicality of REML estimation of the
linearmixed IOUmodel, for both balanced and unbalanced data. Our simulation study demonstrated
that the preferred parameterization of the IOU process was [α ω] even when the true value of α was
large. If convergence problems occur with parameterization [α ω] then the user could try parameter-
ization [α τ ], particularly when derivative tracking is neither weak or strong. Estimation of the linear
mixed IOUmodel is feasible for large datasets (i.e. 20,000 observations in total) andmoderately sized
datasets (i.e. 500 observations). For datasets of 500 observations the model was successfully fitted to
data where each subject had 5 measurements each and also to data where the number of subjects
was 25. The NR optimization algorithm was preferred over FS and AI algorithms for datasets with
regular and frequent measurements. In circumstances, such as a moderately sized dataset with a low
number of measurements per subject, where starting values are far from the truth, the combination
of 10 iterations of FS or AI and then NR can improve convergence. When applied to a large dataset,
the convergence and estimation properties of the random slope IOU model were similar to the ran-
dom intercept IOUmodel provided the magnitude of the variance for the random slope effect and its
covariance with the random intercept were larger than 0.01. We have demonstrated that it is feasible
to apply the model to large unbalanced data with (non-informative) and intermittent dropout.

In our example the linear mixed IOU model was a better fit to the data than the standard linear
mixed model and, importantly, inference for the fixed effects coefficients differed between the two
models. Taylor et al. [5] showed that the linear mixed IOU model and the Brownian Motion mixed
model gave amuch better fit to the data (from theMulticenter AIDS Cohort Study) than the standard
linear mixed model, but concluded that the choice of the covariance structure made little difference
to the point estimates and standard errors of the fixed effects. Using simulations, Taylor and Law [9]
compared the linear mixed IOU model, the Brownian Motion mixed model and the standard linear
mixedmodel with respect to the robustness of subject-level predictionswhen the covariance structure
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was incorrectly specified. They concluded that the linear mixed IOUmodel was the preferred model
because of its efficiency and robustness properties.

Ourmethod for deriving starting values can only be used when the variance structure is that of the
random intercept IOUmodel or the random slope IOUmodel. We also considered a general method
that can be applied to all linear mixed IOU models, which assumes strong derivative tracking. The
rationale behind this method is analogous to the way some commercial software (e.g. SAS, Stata)
chooses starting values for a conditional independence model (for example the starting value for σ 2

is obtained by fitting a linear regression model to the data using ordinary least squares (OLS) and
starting values for the parameters of G are either 0 or a multiple of the OLS estimate for σ 2). For the
linear mixed IOUmodel we first fitted a conditional independence model (using the EM algorithm).
The estimates from this model then form the starting values for the measurement error variance
σ̂ 2 and the random effect parameters of G. The starting values of α and ω were set to 1 and 0.1
respectively.

Estimation problems occurred when derivative tracking was weak with large α. The most likely
cause was a flat likelihood surface near the optimum so that either the optimization algorithm had
difficulties converging to a global optimum or it converged with an observed informationmatrix that
was not positive definite, and so standard errors (for the variance parameters) could not be com-
puted. Convergence with valid standard errors given a flat likelihood surface was most likely when
the dataset was large and the IOU process was parameterized as [α ω]. However, estimates of α were
substantially overestimated with large standard errors (since they were computed from the reciprocal
of the curvature of the REML log-likelihood at the optimum). Taylor et al. [5] also reported a very flat
likelihood surface for estimates of α > 2.5 with profile likelihood 95% confidence intervals where the
upper limit was∞, with α = ∞ corresponding to one of the special limiting cases of the linearmixed
IOUmodel: the BrownianMotionmixed-effects model. For an estimation process that converges one
can diagnose a flat likelihood surface by starting the estimation process with two or more different
sets of starting values. If the resulting sets of estimates differ greatly then this indicates a flat likeli-
hood surface near the optimum [37]. The strength of the derivative tracking, as mentioned earlier,
depends upon the values of α and ω and the time intervals between consecutive measurements. For
large datasets, these numerical problems did not occur for the scenario of monthly measurements
with α = 20.7 and ω = 1; however, these problems were prominent when measurements were every
3 months and derivative tracking was α = 20.7 and ω = 1, which is equivalent to an IOU covariance
matrix based on monthly measurements with α = 62.1 and ω = 3.

Convergence problems may be overcome by simplifying the model; for example, removing one
or more random effects (apart from the random intercept) from the model, or fitting the Brownian
Motion mixed model, which has one less parameter than the linear mixed IOU model, and may be
preferable when derivative tracking is suspected to be weak. When convergence problems are sus-
pected to be caused by difficulties in estimating α, one suggestion is to derive starting values (of
the variance parameters) that are closer to the truth using a computer-intensive approach as follows:
first, select values for α over an interval that is expected to contain its true value. Second, for each α

value: fix α equal to this value and perform REML estimation with respect to the remaining variance
parameters, and record the deviance (−2 x REML log-likelihood). Third, for the model with the low-
est deviance use the α value and the corresponding estimated parameters as starting values and refit
the model where all variance parameters, including α, are estimated. This is a simple and, almost,
automatic approach that can be easily implemented. However, the approach is likely to be time con-
suming, especially when searching over many potential values for α. Also, setting the interval of α to
be too narrow and/or too coarse (i.e. large gaps between consecutive α values) may omit the true (or
close to true) α value, thereby generating poor starting values.

Future work could include: (1) a comparison of the fit and subject-level predictions of the linear
mixed IOUmodel and the BrownianMotionmixedmodel when derivative tracking is very weak and
the likelihood surface of the linear mixed IOUmodel tends to be flat; (2) Evaluation of the estimation
and fit of the linear mixed IOU model when the population slope is nonlinear (e.g. slope described
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by a fractional polynomial); and (3) provision of software for the estimation of the BrownianMotion
mixed model.

The linear mixed IOU model is a flexible modelling approach but makes parametric assumptions
that may not always be well supported by the data. Alternative, non-parametric or semiparamet-
ric methods, may be preferred in some situations. For example, the Functional Data Analysis (FDA)
approach to longitudinal data provides non-parametricmethods, such as smoothing splines, formod-
elling trajectories [38], where the trajectory (or curve) is the basic unit of data analysis. In general,
FDA requires a large number of regularly spaced measurements, such as data on electrical activ-
ity of the heart (electrocardiography), electrical activity along the scalp (electroencephalography),
and continuous activity monitoring through accelerometers. [39]. However, the development of FDA
methodology for longitudinal data, with relatively small numbers of measurements per subject and
irregularly spaced, is an area of ongoing research [40], and has been used to model trajectories of
prostate specific antigen (a biomarker of prostate cancer) [41, 42]. Also, under certain conditions, the
linear mixed model corresponds to a smoothing spline model [43–45], and this connection has been
used to develop methods that exploit both features of linear mixed models and FDA [43, 46].

In conclusion, the linear mixed IOU model can provide a better fit to the data than the standard
linear mixed model with estimates and confidence intervals for the fixed effects. We recommend
estimation of the linear mixed IOU model with respect to the [α ω] parameterization and using the
NR algorithm. If estimation problems occur the user can try our alternative method for deriving
starting values and/or estimation with respect to IOU parameterization [α τ ]. The model can be
applied to moderately sized balanced datasets and large balanced and unbalanced datasets. However,
estimation problems may occur when the number of measurements per subject is less than 5. One
can successfully estimate a linear IOUmixedmodel with a random slope effect, provided the random
effects variances and covariances are not close to zero.Whenderivative tracking isweak it is important
to check for a flat likelihood surface. We have created a Stata command xtmixediou, that fits the
linear mixed IOUmodel, and an accompanying command, predict, to generate predictions under
the model. Both of these commands are publicly available from the Statistical Software Components
archive.
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