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ABSTRACT
Missing data form a ubiquitous problem in scientific research, espe-
cially since most statistical analyses require complete data. To
evaluate the performance of methods dealing with missing data,
researchers perform simulation studies. An important aspect of these
studies is the generation of missing values in a simulated, complete
data set: the amputation procedure. We investigated the method-
ological validity and statistical nature of both the current amputa-
tion practice and a newly developed and implemented multivariate
amputation procedure. We found that the current way of practice
may not be appropriate for the generation of intuitive and reli-
ablemissing data problems. Themultivariate amputation procedure,
on the other hand, generates reliable amputations and allows for
a proper regulation of missing data problems. The procedure has
additional features to generate any missing data scenario precisely
as intended. Hence, the multivariate amputation procedure is an
efficient method to accurately evaluate missing data methodology.
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1. Introduction

Missing data form a ubiquitous problem in scientific research, especially since most sta-
tistical analyses require complete data. Of all possible methods for dealing with missing
data (e.g. weighting procedures, likelihood-based methods), multiple imputation is an
appealing solution since it results in complete data sets without losing information. This
is because multiple imputation replaces the missing values with estimated values based on
the observed data [1–3]. Because multiple imputation is now available in several statistical
software packages such as SPSS, Stata, SAS and R, the application of multiple imputation
has become straightforward.

For a proper usage of methods dealing with missing data, a thorough and valid evalua-
tion of the performance of these methods is vital. Because scientific research increasingly
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relies on missing data methodologies, it is important to understand under which circum-
stances a certain technique can and should be used. In addition, newmissing datamethods
are continuously being developed and improved (e.g. [4–6]). An accurate evaluation pro-
cedure is essential to know whether such a methodology functions properly. In this paper,
we will focus on the process of generatingmissing values; a key procedure in the evaluation
of the performance of missing data techniques.

In general, a missing data methodology is evaluated by means of simulations. Such
simulation studies generally have four steps:

(1) A multivariate, complete data set is simulated and considered the population of
interest.

(2) This data set is then made incomplete.
(3) The incomplete data are estimated by means of the missing data method.
(4) Statistical inferences are obtained for the original, complete data set and after dealing

with the missing values. A comparison of these inferences gives an indication of the
performance of the missing data method.

A key part in the evaluation of a missing data methodology is step 2; the generation of
missing values. We refer to the process where missingness is induced in complete data as
amputation.

In current simulation studies, missing values are generated one variable at a time. With
this univariate amputation approach, it can be difficult to appropriately control the char-
acteristics of a missing data problem. For instance, [7,p.11] intended to generate missing
values for 70% of the cases, but as a result of their approach 77% of the cases were made
incomplete. Another issue, that we will return to, is that the missing data structures do
not reflect what was intended by the researcher. As a result, missing data methods may
be evaluated under the wrong conditions and invalid conclusions about their inferential
performance may be drawn.

A valid amputation procedure is critical for the evaluation of missing data methods
as it defines the missing data problem. Hence, we will put the methodological validity
and the statistical nature of the current amputation practice under close investigation.
Further, we will outline an alternative approach for generating any kind of missingness
in any data set. Because our amputation procedure generates missing values in a multi-
variate way, issues with unreliable and inconsistent missing data generation can be over-
come. Additionally, to make the multivariate amputation procedure available to a broad
audience, we implemented the methodology as the function ampute [8] in R-package
mice [9].

In the next section, we will explore the way researchers currently generate missing
values (Section 2.1) and the reason why this approach may be inappropriate for gener-
ating reliable missing data problems (2.2). We will then explain the methodology of the
multivariate amputation procedure (3.1) and detail our argument that the multivariate
amputationmethod overcomes the problems with the current practice (3.2). Furthermore,
we will demonstrate the performance of amputewith simulation research (Section 4) and
make its improvement on the current practice evident (Section 5). We will conclude and
discuss additional applications of ampute in Section 6.
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2. Univariate amputation

2.1. Univariate amputation

In current evaluations of missing data methodologies, every researcher has to develop
an ad-hoc approach to generating missing values. Most of these amputation methods are
designed for a particular data set. For instance, Sullivan et al. [10,p.4] simulated data ‘from
themodelYi = 0.30Ti + β2Xi + ei, withX and e ∼ N(0, 1)’ while others use real data such
as ‘the complete SHS data set [with variables] age, gender, history of diabetes, CVD status,
and three serial measures of Scr [i.e. serum creatinine]’ [11,p.3]. Because the variables of
these data sets have a specific covariance structure and tailor-made amputation approaches
are used, the missing data situations these researchers study are unique.

All ad-hoc amputation techniques have in common that missing values are generated
in a univariate way. Univariate amputation means that missingness is generated one vari-
able at a time. For example, Sullivan et al. [10] generated missing values in variable Y. For
Shara et al. [11,p.3], ‘the outcome variable of interest was CVD’ and variable Scr was the
incomplete variable.

In almost all real datasets, missingness is present for multiple variables. When such a
situation needs to be mimicked in a simulation study, researchers repeatedly use a univari-
ate amputation procedure for every variable that needs missing values. Missing values are
generated first in Y1, second in Y2, and so on. In other words, the missingness on one vari-
able is generated separately and independently from themissingness on any other variable.
An example is the simulation study of [12,p.3] who describe that ‘In the MAR setting, the
probability to be missing for each of X, Y or Y’ was independently set to be conditional on
the exposure E with OR = 5.’ Other examples of studies where this procedure is followed
are [13–15]. From here on, we will continue to refer to this class of approaches as stepwise
univariate amputation.

2.2. Problemswith stepwise univariate amputation

Probabilities to be missing on one or multiple variables can be independent, be related to
each other, depend on values of covariates, or depend on the variables themselves. The
situation where the missingness does not depend on any other variable in the dataset is
referred to as Missing Completely At Random i.e. MCAR, [16]. Alternatively, the proba-
bility of being missing in a certain variable, say Y1, can be based on the values of another
variable, say X1. This situation is called Missing At Random [i.e. MAR, 16] [3,p.63,64]
advised to relate the missingness on variable Y1 to the values of X1 by means of a continu-
ous probability function, such as a logistic distribution function. However, in practice it is
common to use the X1 values to divide the participants into groups. Then, a specific prob-
ability value is specified for each of these groups (e.g. [12,17,18]). A third type of missing
data problem is created when the missingness in a variable is based on the variable val-
ues themselves. In that situation, the probability of a case being missing in variable Y1
depends on its value on Y1. We call this a Missing Not At Randommechanism i.e. MNAR,
[1,3,p.31,32]. In practice, researchers aim at generating at least one of the threemissingness
mechanisms to evaluate missing data methodology.

Problems with stepwise univariate amputation appear especially – but not only – when
multiple variables are amputed. The stepwise univariate amputationmethod is problematic



2912 R. M. SCHOUTEN ET AL.

for a proper regulation of the characteristics of missing data problems. For instance, con-
sider a simple characteristic of any missing data problem: the percentage of cases with
missing values. When a researcher generates 50% MCAR missing values in variable Y1,
each case has a probability of 0.5 of being missing in Y1. When the same procedure is fol-
lowed for a second variable, say Y2, the probability that a case has missing values on both
Y1 andY2 is 0.5 · 0.5 = 0.25. Hence, to reach a certain overlappingmissingness percentage,
a different individual probability has to be used. Fortunately, with MCARmissingness it is
quite straightforward to estimate that probability (see Appendix 1).

With MAR missingness, on the other hand, it is challenging to determine how the
probabilities should be adapted. For example, consider a situation where we induce miss-
ingness in variables Y1 and Y2 and base our amputations on the values of a normally
distributed variable X1. When we use the standard right-tailed logistic distribution func-
tion of Figure 1, we will induce 50% missingness in variable Y1 and 50% in variable Y2.
However, the joint missingnes percentage (i.e. the percentage of cases with missing val-
ues on both Y1 and Y2) will become 29% instead of the intuitive 25% (Appendix 2). To
obtain the desired missingness percentage, we can move the logistic distribution function
horizontally. For instance, the right-tailed distribution function can be shifted with 0.922
(Figure 1) which will result in 50% joint missingness (Appendix 2). Unfortunately, this cal-
culation requires extensive mathematical knowledge and becomes even more complicated
when missingness is created in three or more variables.

Moreover, any shift of the logistic distribution function also influences other parameters
of the missing data problem, such as the impact of the missing values on the statistical
outcome. Since the logistic distribution function has an asymptote at y=1, a certain part of
the distribution of Y will almost definitely be amputed. With the right-tailed distribution
function, cases with extreme X1 values will have P(missing) = 0.99. Depending on the
correlation betweenX1 andY1, thismeans that highY1 valueswill almost certainly bemade
missing. When the logistic distribution function is shifted, not only will more values be

Figure 1. Standard (b= 0) and shifted (b= 0.922) right-tailed logistic distribution functions.
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amputed, but the largest part of thesemissings will occur in the right tail of the distribution
of Y1. This causes the observed distribution of Y1 to become more skewed than initially
intended.

When researchers are not aware of the consequences of using a stepwise univariate
amputation procedure, simulation results may not be interpreted in the right context.
For instance, when missingness is created in a data set with low correlations, intended
MARmissingness patterns may more reflect a MCARmechanism [19]. In such situations,
the performance of the missing data method may be evaluated as sufficient when in fact
the evaluation procedure – and not the missing data method – leads to the finding. The
opposite could be true as well, when a researcher shifts the right-tailed logistic distribu-
tion function to the left to obtain a certain multivariate missingness percentage, but is not
aware that this shift increases the severity of theMARmechanism. Hence, themissing data
method may be falsely categorized as underperforming.

3. Multivariate amputation

3.1. Multivariate amputation

In an ideal situation, a missing data methodology is tested with a realistic missing data
problem. For the generation of multivariate missing data scenarios that mimic real-life
missingness, [20,p.110–113] proposed an idea for a multivariate amputation that has only
been briefly discussed twice [21,22]. We build upon this method and in this paper develop
an amputation procedure that can generate sophisticated missing data problems.

Figure 2 shows a schematic overview of the resulting multivariate amputation proce-
dure. The procedure requires a multivariate, complete data set of n participants and m
variables. The result of the procedure, as can be seen on the right-hand side of Figure 2,
consists of multiple subsets with either incomplete or complete data. These subsets are
merged to obtain an incomplete version of the original data set.

The amputation procedure starts with the researcher deciding what kind of missing
data patterns he desires to establish. A missing data pattern is a particular combination of
variables with missing values and variables remaining complete. For instance, a researcher
may wish for some participants to have missing values on the first two variables, while
for other participants values should be missing on variables 1 and 3. A practical example
of a missing data pattern is a situation where some participants do not show up for the
second round of a longitudinal study. Hence, part of the cases should have missing values
on specifically the variables of the second wave.

Based on the number of missing data patterns k, the complete data set is randomly
divided into k subsets. The size of these subsets may vary. For example, we can assign a
frequency value of 2

3 to a first missing data pattern and a value of 1
3 to a second missing

data pattern. As a result, 2
3 of the cases becomes part of subset 1. These participants are

then called candidates for missing data pattern 1. Since all cases are allocated to a subset
and every case is candidate for one pattern only, the sum of the frequency values should be
1. Note that at this stage it is not yet decided whether the participants will receive missing
values; they are merely candidates for one of the kmissing data patterns.

Before we explain how to calculate a so-called weighted sum score for each candidate,
it is important to know that the weighted sum scores are used to determine whether a data
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Figure 2. Schematic overview of the multivariate amputation procedure.
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Figure 3. Four variants of the logistic distribution function based on [3,p.64].

cell becomes missing or not: based on his weighted sum score, each candidate receives
a probability of being missing for a given variable. For the allocation of these probabil-
ities, we apply one of four possible logistic distribution functions on the weighted sum
scores (Figure 3). It is possible to choose a different logistic distribution function for every
missing data pattern. For instance, if a right-tailed (RIGHT) type of missingness is used,
candidates with high weighted sum scores will receive a high probability of being missing.
With a left-tailed (LEFT), centred (MID) or both-tailed (TAIL) missingness type, higher
probability values are given to the candidates with low, average or extreme weighted sum
scores respectively. Since the weighted sum scores determine themissingness probabilities,
the calculation of weighted sum scores is an important part of the amputation procedure.

Weighted sum scores are calculated as the outcome of a linear regression equationwhere
the coefficients are determined by the researcher. The weighted sum score of case i is
calculated as follows:

wssi = w1 · y1i + w2 · y2i + · · · + wm · ymi,

where {y1i, y2i, . . . , ymi} is the set of variable values of case i and {w1,w2, . . . ,wm} are the
corresponding pre-specified weights. One weight per variable governs the impact of that
variable on the formation of the sum score. Variables with higher weights will have a larger
influence on the size of the weighted sum score than variables with lower weights. For
instance, if variables Y1 and Y2 have weight values of 4 and 2, respectively, the importance
of Y1is twice as large as that of Y2. The sign of the weight values influences whether a
weighted sum score increases or decreases. A positive weight will increase the weighted
sum score while a negative weight will have a decreasing effect. Furthermore, the weight
values can value by missing data pattern. For example, variable Y1 can have a weight value
of 4 in the first pattern, but a weight value of −2 in the second pattern.

An important feature of the multivariate amputation procedure lies in the possibility
to choose a weight value of zero. A zero weight indicates that the values of that variable
play no role in the calculation of the weighted sum scores. Consequently, the generation of
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MCARmissingness can be seen as the situation where all weight values are zero. Since the
probability of being missing with MAR missingness by definition depends on the values
of observed variables, we can generate MAR missingness by assigning weights of zero to
all variables that will be amputed. In contrast, if we choose to give a non-zero weight to
one or more of the variables that will be amputed, the generated missingness mechanism
becomes MNAR. In the last step of the multivariate amputation procedure, the assigned
probabilities are used to generate missing values. Because we use a probabilistic model,
some cases will remain complete, while other will receive missing values (Figure 2).

3.2. Benefits ofmultivariate amputation

With themultivariate amputation approach, we have a procedure to accurately mimic real-
isticmissingness problems. It is straightforward to define variousmissing data patterns, the
relative occurrence of these patterns (by defining the size of the subsets) and to manipu-
late the total missingness percentage for different variables. By offering the possibility to
specify weight values, the multivariate amputation procedure also enables the fine-tuning
of missing data mechanisms.

With the availability of R-function ampute, we deliver a means to overcome potential
problems that may occur with the current way of practice. ampute’s default settings will
generate 50% MAR-RIGHT missingness. Further, all aspects of the multivariate amputa-
tion methodology as discussed above can be regulated for different types of data (cate-
gorical data will be made numeric). Moreover, a smart use of the weight matrix enables
the generation of both MAR and MNARmechanisms within the same data set. These and
other features of ampute ensure the generation of complex – but realistic – missing data
problems. For a detailed explanation about ampute’s arguments, we refer to [8].

The next two sections will answer two research questions. First, we will evaluate the per-
formance ofampute. Bymeans of a simulation study, wewill studywhetherampute gen-
erates legitimate missingness mechanisms. Next, Section 5 will compare the performance
of stepwise univariate amputation and multivariate amputation.

4. Evaluation of ampute

4.1. Simulation conditions

We perform a model-based simulation by repeatedly drawing N=1000 cases from a mul-
tivariate normal distribution with mvrnorm in the package MASS [23] in R [24]. We use
mean structure

μ =
Y1
Y2
X1

⎛
⎝ 5

5
10

⎞
⎠ ,

and covariance structure

Y1 Y2 X1

∑
=

Y1
Y2
X1

⎛
⎝1 ρ ρ

ρ 1 ρ

ρ ρ 1

⎞
⎠ .
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Table 1. Five simulation conditions for the evaluation of ampute.

pattern weights

condition Y1 Y2 X1 Y1 Y2 X1

mcar 0 0 1 0 0 0
mar 0 0 1 0 0 1
weak mar 0 0 1 0 0 0

0 0 1 0 0 1
mnar 0 0 1 1 0 0
weak mnar 0 0 1 1 0 5

Notes: The pattern column displays whether variables are amputed (0) or remain
complete (1). The weights column displays whether the variables influence the
amputations.

We vary the correlation ρ ∈ {0.1, 0.2, . . . , 0.9}. The number of Monte Carlo simulations is
1000.

Wewill examine the five differentmissing data scenarios fromTable 1. For each scenario,
we will generate joint missingness in variables Y1 and Y2 for 20% of the cases. Note that
this means that there are no cases with missing values on either Y1 or Y2. Rather, a case is
complete or has missing values on the two Y variables together. We leave X1 an observed
covariate (Table 1).

We categorize the five missing data scenarios as a MCAR, MAR, weak MAR, MNAR
and weak MNAR kind of missingness. With MCAR missingness, the probability of being
missing is 0.2 for each case. For the MAR and MNAR scenarios, the probabilities of being
missing are based on the values of X1 and Y1, respectively, indicated by 1 in weights
column in Table 1. In case of weak MAR missingness, one part of the cases will be
MCAR while the other part is based on the values of X1. For the weak MNAR simu-
lation condition, the weighted sum scores are determined by variables Y1 and X1 with
ratio 1:5. For all scenarios, we generate right-tailed (RIGHT) missingness as displayed in
Figure 3.

For reasons of brevity, we focus our evaluation on the mean value of Y1 (EY1). We
calculate EY1 for every incomplete data set with complete case analysis (CCA) and after
multiple imputation (MI) with predictive mean matching as the imputation technique
(PMM; mice.impute.pmm). This last step, of imputing the variables again, is cru-
cial to see whether exisiting missing data methodologies can recover the missing data
we generate. For every replication, we generate m=5 multiply imputed data sets and
combine the m completed data means into a single inference following Rubin’s rules
[1,p.76,77].

We study the coverage rate of the 95% confidence intervals for the mean (i.e. in how
many of the 1000 replications does the 95% confidence interval of EY1 contain the true
population value ofEY1 = 5), the average width of that confidence interval and the average
bias with respect to the true population value of EY1 = 5.

4.2. Hypotheses

When MCAR missingness is generated, the observed distribution of Y1 will be thinned.
Consequently, CCA will yield unbiased estimates and the coverage rates will be around
0.95. When the MAR and MNAR mechanisms are generated as intended, CCA estimates
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will be negatively biased and the coverage rates will be under 0.95. Because we induced
right-tailed missingness, the right side of the distribution of Y1 will be amputed. As a
result, the observed distribution of Y1 becomes skewed which leads to a negative bias in
the CCA estimates ofEY1 . The same holds for the weakMAR and weakMNAR simulation
conditions.

Because we know that MI yields valid inference when the observed data contains
the information about the missing part, we expect that after imputation, estimates of
EY1 are unbiased and efficient for the MCAR, MAR and weak MAR simulation con-
ditions. In case of MNAR missingness, the information about the true data model is
not available from the observed data. Thus, a MNAR missingness mechanism will still
give biased estimates and coverage rates will be under 0.95. For the same reason, weak
MNARmissingness will yield invalid statistical inferences, but because the observed infor-
mation of the weak MAR condition partly contains the information about the missing
values, the deviation from the true population value may be smaller than with MNAR
missingness.

4.3. Results

Figure 4 shows the coverage rate, average bias and average confidence interval width of
the estimates of EY1 for CCA and MI. We will discuss the results by examining Figure
4(a)/4(c), 4(d)/4(d) and 4(e)/4(f), respectively. Note that a numerical representation of this
information is available from Table A1 in Appendix 3.

As expected, MCAR missingness results in unbiased estimates (Figure 4(a)) and cov-
erage rates around 0.95 (Figure 4(c)). In line with our hypotheses, all MAR and MNAR
missingness mechanisms produce negatively biased estimates (Figure 4(a)) and cause a
drop in the coverage rates (Figure 4(c)). It is interesting to see that for missing data sce-
narios where X1 governs the amputation procedure (i.e. with MAR, weak MAR and weak
MNARmissingness), the size of the bias has a linear relation with data correlation ρ. This
is not the case for MCAR andMNARmissingness, as these mechanisms do not depend on
the values of X1.

Figure 4(b, d) show that when the observed data holds the information about the miss-
ingness (i.e. with MCAR, weak MAR and MAR missingness), MI results in unbiased
estimates and coverage rates around 0.95. In contrast, when the missingness is based on
the missing values themselves (i.e. with weak MNAR and MNAR missingness), the esti-
mates of EY1 are biased and coverage rates are under 0.95. These results are in line with
what we know from theory. Furthermore, Figure 4(d) shows that when the correlations
between X1, Y1 and Y2 are high, the coverage rates of these mechanisms increase towards
0.95. It is promising to see that MI can utilize the observed information to solve (part of)
the missing data problem.

Because the percentage of cases with missing values is similar in all simulation con-
ditions (20%), the width of the 95% confidence interval should be seen as a measure of
the variance of the observed distribution of Y1. For MCAR missingness, this variance
is larger than for MNAR missingness (see Figure 4(e)). Besides, we see that compared
with CCA, the confidence interval widths after MI start with a higher value. This effect
is expected because MI produces between imputation variance on top of the data variance
[1]. Nonetheless, when data correlation ρ increases, MI decreases the confidence interval
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Figure 4. Evaluation of R-function ampute. Coverage rate, bias and confidence interval width of EY1
estimates are shown for CCA (a, c, e) and multiple imputation by predictive meanmatching (b, d, f ). The
x-axis shows the data correlation ρ ∈ {0.1, 0.2, . . . , 0.9}.

widths (Figure 4(f)). In fact, the competence of MI to simultaneously reduce the bias and
the variance of statistical estimates makes this missing data method the fantastic method
we know it is.

In sum, we find that ampute produces the five evaluated missing data scenarios
exactly according our hypotheses. Without any doubt we can conclude that ampute
produces legitimate MCAR, MAR and MNAR missingness and any desired variation
thereof.
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5. Comparison of amputation procedures

5.1. Simulation conditions

To compare the performance of stepwise univariate amputation (SUA) and multivariate
amputation (MA), we perform a model-based simulation study. Similar to section 4, we
repeatedly draw N=1000 cases from a multivariate normal distribution with the same
mean and covariance structures. We vary the data correlation ρ ∈ {0.2, 0.5, 0.8} and again,
replicate the simulations 1000 times.

It is our intention to generate missing values for 50% of the cases. The incomplete cases
will have missing values on both variables Y1 and Y2. Note that we will not permit cases to
have missing values on either Y1 or Y2. Rather, 50% of the cases has joint missingness on
variables Y1 and Y2 while the other 50% remains complete. Besides, we leave X1 to be an
always observed covariate.

We compare three simulation conditions: two SUA approaches and MA. For the first
SUA approach, we repeat the standard right-tailed (RIGHT) type of logistic distribution
function for variables Y1 and Y2 (cf. Figure 1). For the second simulation condition, we
take the same approach but with a shifted probability distribution (cf. Figure 1). We deter-
mined b to be 0.922. This can be calculated with Equation (A6) in Appendix 2. Third, we
jointly generate missing values for variables Y1 and Y2 with the implementation of MA in
R-function ampute. The specifications of the arguments of the function are attached in
Appendix 4.

Weperform simulations for bothMARandMNARmissingness. For the two SUAcondi-
tions, we distinguish betweenMAR andMNARmissingness by choosing eitherX1 (MAR)
or Y1 (MNAR) as the x-axis variable in Figure 1. With ampute, we made the according
specifications for the weight values (see Appendix 4). In addition, we repeat the process
for a data set with four variables (Y1, Y2, Y3 and X1) where we intent to generate 50% joint
missingness on variables Y1, Y2 and Y3.

Equivalent to the simulation study of Section 4, we evaluate the mean value of
Y1 (EY1) with CCA and after multiple imputation (MI) with predictive mean match-
ing as the imputation technique (PMM; mice.impute.pmm). We choose for PMM
because this imputation technique samples from the observed data and thus, may be
more sensitive to amputing part of the true data distribution than other imputation
methods [25]. By comparing the actual obtained missingness percentage, the aver-
age bias, the average width of the 95% confidence interval and the coverage rate of
these intervals, we can evaluate and compare the performance of the three amputation
approaches.

5.2. Hypotheses

Although we intent to generate missing values for 50% of the cases, we expect to see that
standard SUA gives amissingness percentage smaller than 50. By definition, SUA generates
the missing values in Y1 separately from the missingness in Y2. Therefore, it is difficult
to regulate the percentage of joint missingness. In contrast, as we manually shifted the
distribution function for the second simulation condition, we anticipate a jointmissingness
percentage of 50 for this simulation condition. With MA, regulation of the missingness
percentage is no issue and we expect to see a neat 50% there as well.
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When it is the intention to generate 50% right-tailed missingness in a normally dis-
tributed variable, the observed distribution of this variable is supposed to get a steady, fixed
degree of skewness.With CCA, we can observe this level of skewness by evaluating the bias
in the estimates of EY1 . Because it is logical that the actual obtained missingness propor-
tion is of influence on the size of this bias as well, we expect that the estimates of standard
SUA will have smaller bias values than the other two simulation conditions. These small
biases induce the generated missing data problem to be less severe. Furthermore, as shift-
ing the distribution function will engender a ceiling effect (see Section 2.2), we expect that
shifted SUA will generate too much bias in the estimates of EY1 . Hence, shifted SUA will
generate a too severe missing data problem. In contrast, MA works such that not only the
intended 50% of the cases will be made incomplete but the procedure will also produce the
legitimate degree of skewness.

We examine the consequences of the three amputation approaches for the evaluation
of a missing data methodology by investigating the estimates of EY1 after imputation. The
performance of MI depends on (1) whether the observed information contains the infor-
mation about the missing part and (2) the severity of the generated missing data problem.
As a result of the first, we expect that for MAR missingness MI returns unbiased and effi-
cient estimates. With a MNAR mechanism, the information about the missingness lies
outside the observed data and therefore, we expect to see biased estimates. Fortunately,
MI uses the observed data to reduce the bias as much as possible. Furthermore, because
standard SUA produces too small biases, shifted SUA produces too large biases and MA
returns the intended biases, an evaluation of the performance of MI will be too optimal for
standard SUA, too pessimistic for shifted SUA and legitimate for MA.

5.3. Results

First of all, the obtained missingness percentages are precisely as expected. Furthermore, 2
shows that although the missingness percentages of shifted SUA andMA are similar, there
is a difference in the generated bias. For instance, when the correlations betweenX1,Y1 and
Y2 are 0.2, the average bias with shifted SUA is −0.092 while it is −0.081 with MA. These
findings show that although shifting the logistic distribution function results in the desired
missingness percentage, the severity of the missing data problem has changed as well. In
addition, the higher the correlation in the simulated data, the more apparent this effect
becomes. For instance, compare the difference between −0.233 and −0.207 for ρ = 0.5
with the difference between −0.372 and −0.331 for ρ = 0.8. All these findings are in line
with our hypotheses. Furthermore, 2 displays a relatively small confidence interval width
for standard SUA (0.147 for ρ = 0.2). The other two approaches have larger and compara-
ble confidence interval widths because their missingness percentages are larger. However,
due to their difference in bias, the coverage rates of shifted SUA and MA have become
different. An example of this situation occurs for ρ = 0.2. There, shifted SUA results in a
coverage rate of 0.455 while it is 0.552 for MA.

What we know from theory - MI yields valid inference for MAR missing data - can
clearly be seen in Table 2. MI decreases the biases to zero. Interestingly, we notice that
although the missingness proportions for shifted SUA and MA are similar, the 95% confi-
dence intervals do not always have an equal width. Probably, our finding that shifted SUA
increases the severity of the missing data problem affects the performance of MI. Based on
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Table 2. Generation of MAR missingness on two variables with standard and shifted stepwise
univariate amputation (SUA) and multivariate amputation (MA).

%mis cca mi

cor condition int obt bias ciw cov bias ciw cov

standard SUA 50 29 −0.061 0.147 0.630 −0.004 0.166 0.947
0.2 shifted SUA 50 50 −0.092 0.175 0.455 0.001 0.223 0.938

MA with ampute 50 50 −0.081 0.175 0.552 −0.001 0.219 0.936
standard SUA 50 29 −0.146 0.144 0.028 −0.002 0.156 0.940

0.5 shifted SUA 50 50 −0.233 0.172 0.000 −0.007 0.204 0.917
MA with ampute 50 50 −0.207 0.172 0.002 −0.005 0.193 0.936
standard SUA 50 29 −0.235 0.139 0.000 −0.007 0.137 0.936

0.8 shifted SUA 50 50 −0.372 0.164 0.000 −0.013 0.157 0.913
MA with ampute 50 50 −0.331 0.166 0.000 −0.010 0.157 0.912

Notes: Estimates ofEY1 are evaluated with complete case analysis (cca) andmultiple imputation (mi). Comparisons are
done for the intended (int) and obtained (obt) missingness percentage (%mis), the bias, confidence interval width
(ciw) and coverage rate (cov) for correlations ρ ∈ {0.2, 0.5, 0.8} (cor).

these results, a direct consequence for the coverage rates cannot be justified. However, we
do see that it is possible that the performance of MI is different for shifted SUA than for
MA. For instance, the coverage rate after MI is 0.917 for shifted SUA and 0.936 for MA
when ρ = 0.5.

Table 3 displays the results for MNAR missingness. Our findings are in line with our
hypotheses and comparable with the trends discussed above. Further, the results presented
in Table 4 confirm our hypothesis that MA enables the generation of reliable missing data
problems. That is to say, when the required adaptation of the logistic distribution func-
tion is not executed, the missingness percentages of SUA quickly drop below the intended
percentage. Table 4 shows that standard SUA generates missing values for merely 19% of
the cases and the shift of b=0.922 induces 39% joint missingness. In contrast, MA exactly
generates the intended 50% missingness. Moreover, we see that with MA the average bias
with CCA is similar to the bias we saw earlier. Namely, when ρ = 0.8, the bias is−0.331 in
Tables 2 and 4. This finding shows that MA allows for the adjustment of one feature with-
out disturbing other missing data characteristics. In sum, MA performs the amputation
procedure according the intentions.

Table 3. Generation of MNAR missingness on two variables with standard and shifted stepwise
univariate amputation (SUA) and multivariate amputation (MA).

%mis cca mi

cor condition int obt bias ciw cov bias ciw cov

standard SUA 50 29 −0.291 0.134 0.000 −0.282 0.142 0.000
0.2 shifted SUA 50 50 −0.465 0.158 0.000 −0.451 0.178 0.000

MA with ampute 50 50 −0.415 0.160 0.000 −0.401 0.182 0.000
standard SUA 50 29 −0.289 0.134 0.000 −0.227 0.137 0.000

0.5 shifted SUA 50 50 −0.465 0.158 0.000 −0.369 0.169 0.000
MA with ampute 50 50 −0.412 0.160 0.000 −0.325 0.169 0.000
standard SUA 50 29 −0.292 0.134 0.000 −0.121 0.129 0.064

0.8 shifted SUA 50 50 −0.466 0.158 0.000 −0.199 0.148 0.000
MA with ampute 50 50 −0.415 0.160 0.000 −0.175 0.148 0.009

Notes: Estimates ofEY1 are evaluated with complete case analysis (cca) andmultiple imputation (mi). Comparisons are
done for the intended (int) and obtained (obt) missingness percentage (%mis), the bias, confidence interval width
(ciw) and coverage rate (cov) for correlations ρ ∈ {0.2, 0.5, 0.8} (cor).
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Table 4. Generation of MAR missingness on three variables with standard and shifted stepwise
univariate amputation (SUA) and multivariate amputation (MA).

%mis cca mi

cor condition int act bias ciw cov bias ciw cov

standard SUA 50 19 −0.042 0.138 0.776 0.001 0.147 0.950
0.2 shifted SUA 50 39 −0.078 0.158 0.507 −0.003 0.195 0.947

MA with ampute 50 50 −0.084 0.175 0.521 −0.004 0.221 0.937
standard SUA 50 19 −0.108 0.135 0.128 −0.002 0.140 0.942

0.5 shifted SUA 50 39 −0.193 0.154 0.003 −0.005 0.173 0.940
MA with ampute 50 50 −0.209 0.172 0.003 −0.008 0.196 0.939
standard SUA 50 19 −0.172 0.131 0.001 −0.004 0.131 0.951

0.8 shifted SUA 50 38 −0.310 0.148 0.000 −0.015 0.145 0.901
MA with ampute 50 50 −0.331 0.166 0.000 −0.017 0.155 0.904

Notes: Estimates ofEY1 are evaluatedwith complete case analysis (cca) andmultiple imputation (mi). Comparisons are
done for the intended (int) and obtained (obt) missingness percentage (%mis), the bias, confidence interval width
(ciw) and coverage rate (cov) for correlations ρ ∈ {0.2, 0.5, 0.8} (cor).

6. Conclusion and discussion

6.1. Conclusion

A valid amputation procedure is essential for an accurate evaluation of the performance of
missing data methodology. We showed that the approach of stepwise univariate ampu-
tation may not be appropriate for the generation of intuitive and reliable missing data
problems. Namely, stepwise univariate amputation does not allow for a precise manipula-
tion of missing data characteristics. For instance, one of the most basic features of missing
data problems – the missingness percentage – requires the solving of complex integrals.
These calculations can be done for situations with two or three variables, but for larger
data sets a proper generation of any realistic missing data problem becomes impossible. In
addition, we showed that an increase of the missing data proportion leads to an inflated
observed data skewness. Hence, the evaluation of missing data methodology may hap-
pen under the wrong simulation conditions and missing data methodology can be falsely
judged to under- or overperform.

We implemented a multivariate amputation procedure into R-function ampute. We
showed that ampute generates any missing data scenario precisely as desired. With mul-
tivariate amputation, missing data characteristics such as the missingness percentage and
the number of incomplete variables are easy to manipulate. Furthermore, the amputa-
tions induce a missing data problem which behaves exactly as intended. In other words,
whenMARmissingness is intended, MARmissingness is generated. Moreover, we showed
that the degree of observed data skewness is not sensitive to the number of amputed
variables. This indicates that multivariate amputation allows for a separate regulation of
missing data parameters. All in all, the multivariate amputation procedure is an intu-
itive and reliable amputation method which enables valid evaluations of missing data
methodology.

6.2. Discussion

Possible applications of multivariate amputation function ampute can be found in the
field of survey research. Many studies describe the use of so-called planned missing data
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designs (e.g. [26–28]), which are survey designs where ‘missing data are used strategically
to improve the validity of data collection.’ [29,p.426]. For instance, in order to reduce the
respondent’s burden, a large questionnaire is divided into multiple parts and each partic-
ipant receives one or two of these parts. Such a multi-form design is almost always based
on random chance (i.e. MCAR) which may give weird combinations of questions. With
ampute, it is possible to create a logical combination of variables and to investigate the
most efficient way to shorten a questionnaire.

In addition, two-method measurements designs (e.g. [29,30]) could benefit from the
availability of ampute. With this type of planned missing data designs, all participants
fill in a questionnaire but only a small part of the participants is invited for a second mea-
surement wave. Currently, the selection of these second wave participants is based on the
values of one variable. As an alternative, ampute could combine the information of mul-
tiple variables. Possibly, this could enhance the use of observed information and reduce the
number of participants without a loss of statistical power.

With the availability of a multivariate amputation procedure, systematic evaluations
of the performance of missing data methods are feasible. With R-function ampute, it
is easy to assess in which situations which missing data methods are preferred. Besides,
any usage of ampute is not restricted to evaluations of imputation techniques. Evalu-
ations of weighting procedures (e.g. [31]) and likelihood-based methods (e.g. [32,33])
can be done as well. Besides, scientific studies that examine the combination of mul-
tiple source data (e.g. [34]), different types of measurement error (e.g. [35]) or the
application of missing data methods in software tools (e.g. [36]) could benefit from
ampute.

We focused our simulations on right-tailed MCAR, MAR and MNAR missingness.
Additionally, it would be interesting to know how these and variants of these mechanisms
behave in data structures other than the multivariate normal distribution. For instance,
what happens with the accuracy of statistical estimates when variables have a nonlinear
relation? And how can ampute be used to generate a realistic multilevel missing data
problem? Especially the effect of correlations on the outcome of the amputation proce-
dure may need extra attention. Because correlations determine a large part of the effect
of missing values on statistical inferences, and because correlations are important for the
performance of missing data methods, it would be valuable to gain more insights into this
aspect of multivariate amputation.

Overall, we emphasize the importance of a greater understanding of the behaviour of
missing data mechanisms and their impact on the validity of both the generation and the
handling of missing data. After all, for an accurate evaluation strategy, an efficient and
reliable amputation procedure is just the beginning.
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Appendices

Appendix 1

Consider two discrete random variables Z1 and Z2 such that z1i is the probability of case i to be
missing on variable Y1 and that z2i is the probability of case i to be missing on variable Y2. We give
each case the same probability p and we use this probability for both variables. Hence,

z1i = z2i = p ∀i ∈ {1, 2, . . . , n}.

To know the expected proportion of missing values in Y1, we calculate the expectation of Z1. By
definition [37],

E[X] =
n∑
i=1

xi · f (x),

and therefore

E[Z1] =
n∑

i=1
p · 1

n

= 1
n

·
n∑

i=1
p

= n · p
n

= p.

We desire to choose p such that the total percentage of cases with missing values on both variables
Y1 and Y2 equals a certain value m. In other words, we desire to let E[Z1 · Z2] = m. By definition,
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because Z1 and Z2 are dependent,

E[Z1 · Z2] = Cov(Z1,Z2) + E[Z1] · E[Z2]. (A1)

Since E[Z1] = E[Z2],

Cov(Z1,Z2) = Var(Z1) = E[(Z1 − E[Z1])2] = E[Z12] − (E[Z1])2, (A2)

which gives

E[Z1 · Z2] = E[Z12] − (E[Z1])2 + E[Z1] · E[Z1] = E[Z12]. (A3)

Furthermore, by definition [37],

E[X2] =
n∑

i=1
x2i · f (x),

and therefore,

E[Z12] = m =
n∑

i=1
p2 · 1

n

= 1
n

· n · p2

= p2.

Hence,

p = √
m. (A4)

Equation (A4) can be used to calculate the required random fixed probability. For instance, when an
overlapping missingness percentage of 50% is desired, probability p should be

√
0.5 = 0.707.

Note that, as a consequence, the proportion of totally complete cases equals

E[(1 − Z1)2] =
n∑

i=1
(1 − √

0.5)
2 · 1

n

= 1
n

·
n∑

i=1
0.2932

= n · 0.086
n

= 0.086.

Appendix 2

Let X be a continuous random variable with as its probability density function,

f (x) = 1
σ
√
2π

· e−1/2((x−μ)/σ)2 .

Furthermore, let Z1 and Z2 be two continuous random variables such that z1i is the probability
of case i to be missing on a variable Y1 and z1i is the probability of case i to be missing on a variable
Y2. We relate the values of Z1 and Z2 to those of X by the logistic distribution function. Hence,

Z1 = Z2 = g(X) = 1
1 + e−αX−b .
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By definition [37], the expected value of g(X) is given by

E[g(X)] =
∫ ∞

−∞
g(x) · f (x) dx

and therefore,

E[Z1] =
∫ ∞

−∞
1

1 + e−αx−b · 1
σ
√
2π

· e−1/2((x−μ)/σ)2 dx.

Whenwe chooseσ = 1 andμ = 0 such thatX has a standard normal distribution, and chooseα = 1
and b= 0 such that g(X) is the standard logistic function,

E[Z1] =
∫ ∞

−∞
1

1 + ex
· 1√

2π
· e−1/2x2 dx

= 0.5.

In other words, the expected percentage of cases with a missing value on Y1 is 50%. The same
holds for variable Y2. However, the percentage of cases with missing values on both Y1 and Y2 will
be different. Namely, in accordance with Equations (A1) –(A3), and since

E[g(X)2] =
∫ ∞

−∞
g(x)2 · f (x) dx,

the proportion of cases with missing values on both Y1 and Y2 is

E[Z1 · Z2] = E[Z12] =
∫ ∞

−∞

(
1

1 + ex

)2
· 1√

2π
· e− 1

2 x
2
dx

= 0.29. (A5)

For α �= 1 and b �= 0, the logistic distribution will look different. Hence, if multiplied with a nor-
mally distributed variableX, the obtainedmissingness percentages will become different as well. The
joint missingness percentage for two variables can be determined with:

E[Z1 · Z2] = E[Z12] =
∫ ∞

−∞

(
1

1 + e−αx−b

)2
· 1√

2π
· e−1/2x2 dx. (A6)

For instance, to obtain an overlapping missingness percentage of 50 with α = 1, b should be
shifted with 0.922, as can be calculated with

E[Z1 · Z2] = E[Z12] =
∫ ∞

−∞

(
1

1 + e−x−0.922

)2
· 1√

2π
· e−1/2x2 dx

= 0.50.

In addition, an extension of Equation (A6) to a certain number of variables r is possible by solving

E[Z1 · Z2 · . . . · Zr] = E[Z1r] =
∫ ∞

−∞

(
1

1 + e−αx−b

)r
· 1√

2π
· e−1/2x2 dx.
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Appendix 3

Table A1. Evaluation of R-function ampute.

cca mi

mechanism cor bias ciw cov bias ciw cov

0.1 −0.000 0.139 0.955 −0.001 0.145 0.956
0.2 0.002 0.139 0.950 0.002 0.143 0.940
0.3 0.002 0.139 0.948 0.002 0.143 0.941
0.4 0.002 0.139 0.945 0.001 0.140 0.947

mcar 0.5 0.002 0.139 0.944 0.002 0.138 0.943
0.6 0.002 0.139 0.941 0.002 0.137 0.946
0.7 −0.001 0.139 0.949 −0.001 0.133 0.945
0.8 0.002 0.139 0.935 0.001 0.131 0.942
0.9 −0.001 0.139 0.955 −0.001 0.127 0.939
0.1 −0.016 0.139 0.937 0.000 0.149 0.962
0.2 −0.033 0.138 0.847 0.001 0.145 0.960
0.3 −0.053 0.138 0.671 −0.001 0.144 0.940
0.4 −0.071 0.138 0.476 −0.002 0.142 0.946

mar 0.5 −0.084 0.137 0.333 0.001 0.141 0.941
0.6 −0.103 0.136 0.148 −0.001 0.138 0.937
0.7 −0.121 0.135 0.063 −0.002 0.134 0.936
0.8 −0.138 0.134 0.027 −0.002 0.131 0.944
0.9 −0.155 0.132 0.005 −0.002 0.127 0.946
0.1 −0.009 0.139 0.949 −0.001 0.145 0.953
0.2 −0.017 0.139 0.931 0.000 0.144 0.959
0.3 −0.025 0.139 0.897 0.001 0.142 0.947
0.4 −0.035 0.138 0.825 −0.000 0.141 0.945

weak mar 0.5 −0.045 0.138 0.753 −0.002 0.139 0.949
0.6 −0.052 0.138 0.686 −0.001 0.136 0.950
0.7 −0.060 0.137 0.580 −0.001 0.134 0.951
0.8 −0.070 0.137 0.490 −0.001 0.131 0.938
0.9 −0.078 0.136 0.403 0.000 0.127 0.947
0.1 −0.172 0.131 0.004 −0.171 0.137 0.005
0.2 −0.173 0.131 0.000 −0.168 0.135 0.000
0.3 −0.170 0.131 0.002 −0.156 0.134 0.011
0.4 −0.173 0.131 0.000 −0.149 0.133 0.011

mnar 0.5 −0.172 0.131 0.000 −0.133 0.131 0.025
0.6 −0.174 0.131 0.001 −0.118 0.130 0.063
0.7 −0.175 0.131 0.002 −0.096 0.128 0.180
0.8 −0.173 0.131 0.001 −0.069 0.126 0.432
0.9 −0.174 0.131 0.001 −0.040 0.125 0.762
0.1 −0.050 0.138 0.703 −0.038 0.149 0.831
0.2 −0.066 0.138 0.543 −0.036 0.146 0.827
0.3 −0.080 0.137 0.367 −0.033 0.143 0.838
0.4 −0.094 0.137 0.226 −0.029 0.142 0.877

weak mnar 0.5 −0.109 0.136 0.123 −0.028 0.140 0.877
0.6 −0.124 0.135 0.065 −0.025 0.136 0.883
0.7 −0.137 0.134 0.032 −0.021 0.134 0.896
0.8 −0.148 0.133 0.008 −0.014 0.130 0.915
0.9 −0.160 0.132 0.003 −0.009 0.127 0.938

Notes: Bias, confidence interval width (ciw) and coverage rate (cov) ofEY1 estimates are
shown for complete case analysis (cca) and multiple imputation by predictive mean
matching (mi). Data correlations are ρ ∈ {0.1, 0.2, . . . , 0.9} (cor).
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Appendix 4

ampute(data = sample, prop = 0.5, mech = ‘MCAR’, patterns =
c(0, 0, 1))$amp

ampute(data = sample, prop = 0.5, mech = ‘MAR’, type =
‘RIGHT’, patterns = c(0, 0, 1), weights = c(0, 0, 1))$amp

ampute(data = sample, prop = 0.5, mech = ‘MNAR’, type =
‘RIGHT’, patterns = c(0, 0, 1), weights = c(1, 0, 0))$amp
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