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ABSTRACT
The use of the Cox proportional hazards regression model is wide-
spread. A key assumption of the model is that of proportional haz-
ards. Analysts frequently test the validity of this assumption using
statistical significance testing. However, the statistical power of such
assessments is frequently unknown. We used Monte Carlo simu-
lations to estimate the statistical power of two different methods
for detecting violations of this assumption. When the covariate was
binary, we found that a model-based method had greater power
than a method based on cumulative sums of martingale residu-
als. Furthermore, the parametric nature of the distribution of event
times had an impact on power when the covariate was binary. Sta-
tistical power to detect a strong violation of the proportional haz-
ards assumption was low to moderate even when the number of
observed events was high. In many data sets, power to detect a
violation of this assumption is likely to be low to modest.
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1. Introduction

Survival or time-to-event outcomes occur frequently in the medical literature [1]. In the
medical and epidemiological literature, the Cox proportional hazards regression model
is the most common regression model for examining the effect of covariates on survival
outcomes. Thismodel allows one tomodel the effect of explanatory variables on the hazard
of the outcome [2]. A key assumption of this model is that of proportional hazards: the
relative effect of a covariate on the hazard function does not change over time.

Applied analysts often assess the validity of the proportional hazards assumption when
fitting hazardmodels. However, the statistical power of such assessments has received little
attention. The objective of this paper was to examine the statistical power to detect vio-
lations of the proportional hazards assumption when fitting a Cox proportional hazards
model. In order to conduct simulations to assess the statistical power of different statistical
methods for detecting violations of the proportional hazards assumption, there is a need
to describe a data-generating process for the Cox proportional hazard model in the pres-
ence of time-varying covariate effects. The paper is structured as follows. In Section 2, we
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describe a data-generating process for settings in which there is a time-varying covariate
effect (i.e. for settings in which the proportional hazards assumption is violated). We con-
sider scenarios in which the distribution of event times follows one of three distributions:
exponential,Weibull, andGompertz. In Section 3, we conduct a series ofMonte Carlo sim-
ulations to investigate the statistical power of different methods to detect violation of the
proportional hazards assumption when fitting a Cox regression model. Finally, in Section
4 we summarize our findings and place them in the context of the existing literature.

2. Data-generating processes for models with time-variant covariate effects
or non-proportional hazards

In this section we describe data-generating processes for models with time-varying covari-
ate effects. For simplicity, we assume that there is a single covariate whose effect on the
hazard function varies over time,while the remaining covariates have time-invariant effects
on the hazard function. Our results easily generalize to more complex settings with mul-
tiple covariates with time-varying covariate effects. We consider the setting in which the
regression coefficient changes as a linear function of time. In Section 2.1, we provide rele-
vant background information. In Section 2.2, we summarize previous work on generating
time-to-event data for a Cox model with time-invariant covariate effects. Data-generating
processes for models with time-varying covariate effects, which are extension of these
methods, are described in Section 2.3.

2.1. Background and notation

Let h(t|x) = h0(t) exp (β′x) denote the conventional Cox proportional model with time-
invariant covariate effects, where t denotes time, x is the vector of time-invariant covariates,
β is the vector of time-invariant regression coefficients, and h0(t) denotes the baseline haz-
ard function. The model can also be written in additive form: log(h(t|x)) = log(h0(t)) +
β′x. The model can be modified to incorporate time-varying covariate effects as follows:
h(t|x) = h0(t) exp (β(t)′x).

The survival function of the model with time-invariant covariate effects is S(t|x) =
exp(−H0(t) exp (β′x)), where H0(t) is the cumulative baseline hazard function, which is
defined as H0(t) = ∫ t

0 h0(u) du. The distribution function of event times under the Cox
proportional hazards model is F(t|x) = 1 − exp(−H0(t) exp (β′x)).

2.2. Generating data with time-invariant covariate effects

In the setting with time-invariant covariates and time-invariant covariate effects, both
Leemis and Bender et al. showed that an event time, T, can be generated by T =
H−1
0 [−log (u) exp (−β′x)], where u ∼ U(0,1) (whereU(0,1) denotes the standard uniform

distribution) [3,4]. Both sets of authors had the key insight that simulating event times from
a Cox model with time-invariant covariates requires inverting the survival function.

Bender et al. note that among the commonly-used distributions for survival times, only
the exponential, theWeibull, and the Gompertz distributions also share the assumption of
proportional hazards with the Cox model. The parameters required for each distribution,
the hazard function, the cumulative hazard function, the inverse of the cumulative hazard
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Table 1. Characterization of the exponential, Weibull, and Gompertz distributions.

Characteristic Exponential distribution Weibull distribution Gompertz distribution

Parameter Scale parameter λ > 0 Scale parameter λ > 0 Scale parameter λ > 0
Shape parameter ν > 0 Shape parameter−∞ < α < ∞

Hazard function h0(t) = λ h0(t) = λνtν−1 h0(t) = λ exp(αt)

Cumulative hazard function H0(t) = λt H0(t) = λtν H0(t) = λ

α
(exp(αt) − 1)

Inverse cumulative hazard
function

H−1
0 (t) = λ−1t H−1

0 (t) = (λ−1t)1/ν H−1
0 (t) = 1

α
log

(α

λ
t + 1

)

Simulating survival times with
time-invariant covariates
and time-invariant covariate
effects (u∼ U(0, 1))

T = − log(u)

λ exp(β ′x)
T =

(
− log(u)

λ exp(β ′x)

)1/ν

T = 1

α
log

(
1 − α log(u)

λ exp(β ′x)

)

function, and the formula for simulating survival times from each distribution in the set-
ting of time-invariant covariates are described in Table 1 (see Bender et al. [4] for further
details). While there are different parameterizations of theWeibull distribution, we use the
parameterization of Bender et al.

2.3. Generating data with time-varying covariate effects

We let the vector of covariates be decomposed as follows: (x, z), where x denotes the vector
of covariates whose effects on the hazard function are constant or time-invariant, while z
denotes the single covariate whose effect on the hazard function varies over time. In each
scenario we consider three distributions of event times: exponential, Weibull, and Gom-
pertz. While the data-generating function is described in the text, complete derivations for
all distributions are reported in Appendices A1.1–A1.3.

We used the framework described by Leemis and by Bender et al. [3,4], whose key obser-
vation was that survival times could be generated by inverting the survival function. This
approach has been modified elsewhere for simulating time-to-event data from a model
with time-varying covariates [5]. Each of our derivations follows the same pattern. First,
we integrate the hazard function to determine the cumulative hazard function. Second,
we compute the survival function as the exponential function evaluated at the negative of
the survival function. Third, we invert the survival function. This method for simulating
event times with time-dependent effects has been described previously by Crowther and
Lambert [6].

Throughout this section we assume that the regression coefficient associated with z is a
linear function of time: β(t)z = (β0 + β1t)z.

2.3.1. Exponential distribution of event times
If event times follow an exponential distribution, an event time can be simulated by
evaluating

T =

⎧⎪⎪⎨
⎪⎪⎩

1
β1z

log
(
1 − β1z log (u)

λeγ xeβ0z

)
, provided that β1z �= 0,

−log(u)
λeγ xeβ0z

, if β1z = 0,
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where u ∼ U(0,1) (see Appendix A1.1 for derivation).
R and SAS code for simulating data from this distribution is described in Appendix

A2.1.

2.3.2. Weibull distribution of event times
If event times follow an exponential distribution, then generation of event times requires
determining the inverse of the survival function: exp[−λυeγ xeβ0z(tυ(−β1tz)−υ(�(υ) −
�(υ,−β1tz)))] (where�(x) and�(x, a) denote the Gamma and Incomplete Gamma func-
tions, respectively), and evaluating it at u ∼ U(0, 1) (see Appendix A1.2 for derivation).

A closed-form expression for the inverse of the survival function does not exist. Instead,
numerical methods would need to be used to approximate the inverse of this function. For
a given value of u, one can define a new function: S(t) – u and then find the roots of this
function. Two options for finding roots are the Brent method and the Newton–Raphson
method for root finding. Crowther and Lambert found that the former tended to have
superior performance to the latter [6]. R code for simulating data from this distribution is
described in Appendix A2.2 (SAS code is not provided due to limitations to implementing
Brent’s root finder in SAS).

2.3.3. Gompertz distribution of event times
If event times follow a Gompertz distribution, then event times can be simulated by
evaluating

T =

⎧⎪⎪⎨
⎪⎪⎩

1
α + β1z

log
(
1 − (α + β1z)

λeγ xeβ0z
log(u)

)
, if α + β1z �= 0,

−log(u)
λeγ xeβ0z

if α + β1z = 0,

where u ∼ U(0, 1) (see Appendix A1.3 for derivation).
R and SAS code for simulating data from this distribution is described in Appendix

A2.3.

3. Monte Carlo simulations to assess statistical power to detect violation of
the proportional hazards assumption

We used Monte Carlo simulations to estimate the statistical power to detect violation of
the proportional hazards assumption when fitting a Cox proportional hazards regression
model. We allowed the covariate for which the proportional hazards assumption was vio-
lated to be either binary or continuous. We examined the effect of the following three
factors on statistical power to detect this violation: (i) number of observed events; (ii) the
magnitude of deviation from proportionality; (iii) the prevalence of the binary covariate.

3.1. Methods

3.1.1. The proportional hazards assumption was violated for a binary covariate
Weassumed that therewas a binary covariate with a time-varying covariate effect, such that
its regression coefficient varied as a linear function of time after adjusting for a continuous
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covariate. The single continuous covariate can be thought of either as a single covariate
(e.g. age) or as a risk score summarizing the contribution of a vector of covariates. Further-
more, conditional on the covariates, we assumed that event times followed a Gompertz
distribution with parameters α = 0.025 and λ = 0.001.

For each of N subjects, a continuous covariate was simulated from a standard normal
distribution: x ∼ N(0, 1) and a binary covariate was simulated from a Bernoulli distribu-
tion with parameter pbinary: z ∼ Be(pbinary). Time-to-event outcomes were simulated from
the following model using methods described in the previous section: log (h(t|x, z)) =
log(h0(t)) + log(1.5)x + (log(1.1) + t log(hrinteraction))z, where the baseline hazard func-
tion h0(t) = λ exp (αt). Thus, a one-standard deviation increase in the continuous covari-
ate is associated with a 50% increase in the hazard of the outcome. The effect of the
binary covariate varies with time. At t = 0, the presence of the condition indicated by z
is associated with a 10% increase in the hazard of the outcome, while at t = 365, the pres-
ence of the condition is associated with an exp(log(1.1) + 365 log (hrinteraction)) increase in
the hazard.

The values of the time-specific hazard ratios are described in Figure 1 for 12 values
of hrinteraction: 1.0001 to 1.0010 in increments of 0.0001, and 1.002 and 1.003. Each of
the 12 lines shows the value of the time-specific hazard ratio as time ranges from 0 to
730 (i.e. two years). For all values of hrinteraction, the value of the hazard ratio was 1.1 at
t = 0. When hrinteraction = 1.003, the value of the hazard ratio for the binary exposure
variable was 9.8 at two years (t = 730). When hrinteraction = 1.002, the value of the hazard
ratio was 4.7 at two years. In the simulations that follow, we made the subjective decision
to use hrinteraction = 1.003 to denote a very strong violation of the proportional haz-
ards assumption and hrinteraction = 1.002 to denote a strong violation of the proportional
hazards assumptions.

In each simulated data set, we fit the following hazard regressionmodel: log(h(t|x, z)) =
log(h0(t)) + γ x + (β0 + β1t)z. We tested the statistical significance of the time-varying
effect of z: H0 : β1 = 0. The proportional hazards assumption was rejected if the signifi-
cance of this component was less than or equal to 0.05. This process was repeated 1000
times for each of the scenarios. The estimated statistical power was the proportion of the
simulated data sets in which the proportional hazards assumption was rejected.

The methods described above permit an assessment of the statistical power of a
model-based approach to assessing the validity of the proportional hazards assumption.
We also examined the statistical power of an alternative approach based on cumulative
sums of martingale residuals over time that was described by Lin et al. [7]. We used a
Kolmogorov-type supremum test that was computed on 1000 simulated patterns. When
using this method, the following model was fit in each simulated data set: log(h(t|x, z)) =
log(h0(t)) + β1x + β2z. For this method, 500 iterations were conducted for each of the
scenarios due to the increased computational complexity of each individual analysis.

We then repeated the above analyses simulating data such that the distribution of event
times was exponential with parameter λ = 0.01.

We conducted three separate sets of simulations. In the first set of simulations, we exam-
ined the effect of the observed number of events on statistical power to detect violation of
the proportional hazards assumption. We fixed hrinteraction in the above data-generating
process at 1.002 (to denote a strong violation of the proportional hazards assumption) and
the prevalence of the binary covariate at 0.25. We then allowed the sample size to range
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Figure 1. Hazard ratio as a function of time.

from 100 to 1000 in increments of 100. We did not induce censoring in the simulated data
set, so that the number of events would equal the sample size. In the second set of sim-
ulations, we examined the effect of the magnitude of the change in the hazard ratio over
time on statistical power to detect violation of the proportional hazards assumption. We
fixed the sample size at 1000 subjects (and did not induce censoring, so that the num-
ber of observed events would equal 1000) and the prevalence of the binary covariate at
0.25. When then allowed hrinteraction to take 12 values: 1.0001 to 1.0010 in increments of
0.0001, and 1.002 and 1.003 (see text above and Figure 1 for illustration of the magnitude
of the violation of the proportional hazards assumption). In the third set of simulations, we
examined the effect of the prevalence of the binary covariate on statistical power to detect
violation of the proportional hazards assumption.We fixed the sample size at 1000 subjects
(and did not induce censoring, so that the number of observed events would equal 1000)
and hrinteraction at 1.002 (to denote a strong violation of the proportional hazards assump-
tion). We then allowed the prevalence of the binary covariate to range from 0.05 to 0.50 in
increments of 0.05.

3.1.2. The proportional hazards assumption was violated for a continuous covariate
Wemodified the simulations described above in order to examine scenarios in which there
was a continuous covariate with a time-varying covariate effect, such that its regression
coefficient varied as a linear function of time after adjusting for a second continuous covari-
ate. The following minor modification was made to the simulations described above: for
each subjects a continuous covariate was simulated from a standard normal distribution:
x ∼ N(0, 1) and a second continuous covariate was simulated from a standard normal dis-
tribution: z ∼ N(0, 1). The two normal distributions were assumed to be independent of
one another. Apart from this modification, the simulations and analyses were identical to
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those described above (with the obvious exception that we only examined the effect of the
number of events and the magnitude of the interaction with time on statistical power and
did not consider prevalence). The values of the time-specific hazard ratios for the con-
tinuous covariate are described in Figure 1 for 12 values of hrinteraction. For this set of
simulations, the hazard ratios can be interpreted as the relative change in the instantaneous
hazard of the event associated with a one standard deviation increase in the continuous
covariate.

3.2. Results

3.2.1. Results – binary covariate with a time-varying effect
The effect of the number of observed events on the statistical power of each of the two
methods for assessing the validity of the proportional hazards is described in Figure 2 for
each of the two distributions of event times. We have superimposed on the figure a hor-
izontal line denoting statistical power of 0.8 (or 80%). As would be expected, statistical
power increased with increasing number of events. For a given distribution of event times,
the model-based test of the proportional hazards assumption had greater power to detect
violation of this assumption than did the method based on sums of cumulative martin-
gale residuals. Differences in statistical power between the twomethods were greater when
event times followed an exponential distribution than when event times followed a Gom-
pertz distribution. Interestingly, for a givenmethod of assessing non-proportionality, there
was greater statistical power to detect a violation of the proportional hazards assumption
when event times followed an exponential distribution than when the distribution was
Gompertz. Despite the fact that the effect of the covariates on the hazard function was the
same between the twomodels, the underlying distribution of event times had a substantial
impact on the statistical power to detect a violation of the proportional hazards assump-
tion. For both distributions, statistical power to detect a strong violation of the proportional
hazards assumption (hrinteraction = 1.002) was low to moderate. When the distribution of
event times was exponential and the number of events was equal to 1000, statistical power
was 0.63 when using a parametric test.When the distribution of event times was Gompertz
and the number of events was 1000, statistical powerwas 0.28when using a parametric test.
In no scenarios was the empirical estimate of statistical power close to 0.80, which is often
used as the minimally acceptable power when designing studies.

The effect of the magnitude of the time-covariate interaction (i.e. hrinteraction) on the
statistical power of each of the two methods for assessing the validity of the proportional
hazards is described in Figure 3 when the number of observed events was 1000 and the
prevalence of the binary covariate was 0.25. As would be expected, for a given statistical
method and distribution of event times, statistical power increased as the magnitude of
the deviation from proportionality (hrinteraction) increased. As above, for a given distribu-
tion of event times, the model-based test of the proportional hazards assumption tended
to have greater power than did the method based on sums of cumulative martingale resid-
uals (when the interaction was weak and the distribution of event times was Gompertz,
then the method based on sums of cumulative martingale residuals had slightly greater
power; however, the power of both methods was very low in these settings). As above,
there was greater statistical power to detect a violation of the proportional hazards assump-
tion when event times followed an exponential distribution than when the distribution
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Figure 2. Effect of number of events on power to detect violation of the proportional hazards assump-
tion (binary covariate).

was Gompertz. When the distribution of event times was exponential, statistical power
to detect non-proportionality exceeded 80% only once the value of hrinteraction was 1.003,
which, as illustrated above, is a very strong violation of the proportional hazards assump-
tion (Figure 1). When the distribution of event times was Gompertz, then neither method
had statistical power that exceeded 80% even when there was a very strong violation of
the proportional hazards assumption. When the magnitude of the violation of the propor-
tional hazards assumption was weak to moderate, statistical power to detect this violation
was low.

The effect of the magnitude of the prevalence of the binary covariate on the statistical
power of each of the two methods for assessing the validity of the proportional hazards
is described in Figure 4 when the number of observed events was 1000 and the value of
hrinteraction was 1.002 (which, as described above, is a strong violation of proportionality).
Statistical power to detect violation of proportionality increased as the prevalence of the
binary covariate increased from 0.05 to 0.50. As above, for a given parametric distribution
of event times, the model-based test of the proportional hazards assumption had greater
power than did the method based on sums of cumulative martingale residuals. Similar
to above, there was greater statistical power to detect a violation of the proportional haz-
ards assumption when event times followed an exponential distribution than when the
distribution was Gompertz. Even with a large number of observed events (N = 1000) and
a strongly non-proportional effect (hrinteraction = 1.002), statistical power was still below
80% regardless of the prevalence of the binary covariate and the distribution of event times.
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Figure 3. Effect of magnitude of interaction with time on power to detect violation of the proportional
hazards assumption (binary covariate).

Statistical power approached 80%when the prevalence of the binary covariate was 0.50 and
the distribution of event times was exponential.

3.2.2. Results – continuous covariate with a time-varying effect
In this section we present the results for the simulations in which the variable that had a
non-proportional effect was continuous. The effect of the number of events on statistical
power is described in Figure 5. As onewould expect, statistical power increased as the num-
ber of events increased. Apart from this unsurprising observation, someof the observations
differed from the setting in which a binary covariate had a time-varying effect. First, sta-
tistical power tended to be modestly higher when the covariate was continuous compared
to when the covariate was binary. When the number of events was large (≥900) then the
statistical power to detect a non-proportional covariate effect exceeded 80% for some dis-
tributions of event times and some methods of testing non-proportionality. Second, for a
given testing method (model-based or sums of cumulative of Martingale residuals), statis-
tical power was not always higher when event times followed an exponential distribution
compared to a Gompertz distribution. Indeed, the distribution that resulted in the greatest
statistical power depended on themethodused to test for non-proportionality. Third,when
the distribution of events was exponential, the method based on the sums of cumulative of
Martingale residuals resulted in greater statistical power than did themodel-basedmethod
of testing (whereas the converse was true when the distribution of events was Gompertz).

The effect of the magnitude of the time-covariate interaction (i.e. hrinteraction) on the
statistical power of each of the two methods for assessing the validity of the proportional
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Figure 4. Effect of prevalence on power to detect violation of the proportional hazards assumption
(binary covariate).

Figure 5. Effect of number of events on power to detect violation of the proportional hazards assump-
tion (continuous covariate).
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Figure 6. Effect of magnitude of interaction with time on power to detect violation of the proportional
hazards assumption (continuous covariate).

hazards is described in Figure 6 when the number of observed events was 1000. As would
be expected, statistical power increased as themagnitude of the deviation fromproportion-
ality (hrinteraction) increased. However, some differences were observed from the scenario
with a binary covariate. First,when event times followed an exponential distribution, the
use of the method based on the sums of cumulative of Martingale residuals had greater
statistical power to detect non-proportionality compared to themodel-basedmethod. Sec-
ond, for a given statistical method of assessing non-proportionality, statistical power was
not consistently greater under the exponential distribution than under the Gompertz dis-
tribution. When the deviation from proportionality was weaker, greater statistical power
was observed under the exponential distribution than under the Gompertz distribution.
However, the reverse was true when the deviation from proportionality was stronger.

4. Discussion

The analysis of survival data is pervasive in modern biomedical and epidemiological
research and the use of the Cox proportional hazards regression model is ubiquitous in
modern biostatistical applications. One of the assumptions of the Cox proportional haz-
ards models is that the effect of a given covariate on the hazard function is proportional
over time. Applied biomedical investigators often assess the validity of this assumption in
their analyses. While this assumption is often tested (either at the analyst’s initiative or at
the request of a reviewer after submission of a manuscript for peer-review), the statistical
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power of such assessments have not beenwell described.We usedMonte Carlo simulations
to assess the statistical power to detect violation of the proportional hazards assumption.

We found that even when the number of events that were observed was large (e.g. 1000)
statistical power was low to modest to detect a strong violation of the proportional haz-
ards assumption when the covariate in question was binary. Statistical power tended to
be higher when the covariate was continuous. Statistical power was very low to moder-
ate (<80%) to detect a weak to modest violation of the proportional hazards assumption.
We suspect that in many clinical data sets, statistical power to detect violations of the pro-
portional hazards assumption would be poor. However, in studies conducted using large
electronic health care administrative databases, which typically have much larger sample
sizes, statistical power to detect such a violation is likely substantially higher. However,
when studying rare outcomes, even large electronic administrative databases may result in
sub-optimal power to detect violation of the proportional hazards assumption. From our
simulations it would appear that three conditions need to be met simultaneously in order
for statistical power to exceed 80%: (i) a large number of events, (ii) a strong deviation
from proportionality, and (iii) a binary covariate that has a prevalence close to 0.50. When
the covariate is continuous then one requires both a large number of events and a strong
deviation from proportionality.

We explicitly described data-generating processes for simulating data with a non-
proportional effect of a given covariate on the hazard of the outcome. We have provided R
and SAS code for implementing these data-generating processes in the Appendices. This
will allow analysts to estimate the statistical power in scenarios that are representative of
their research setting. The simulations described in this paper can be customized to specific
settings to permit an investigation of statistical power in diverse settings.

We compared the empirical estimates of statistical power of two different approaches
to detect violation of the proportional hazards assumption. The first approach was model-
based and was based on testing the statistical significance of the interaction between time
and the regression coefficient for the variable of interest. The second approach was the
method proposed by Lin et al. that used cumulative sums of martingale residuals over time
[7].When the covariate that a non-proportional effect was binary, we found that themodel-
based approach had higher statistical power to detect violation of the proportional hazards
assumption. However, when the covariate that had a non-proportional effect was continu-
ous, the statistical method for assessing non-proportionality that had the highest statistical
power depended on the distribution of event times.When the covariate was binary the dis-
tribution of event times had a moderate impact on statistical power. Statistical power was
moderately greater when event times followed an exponential distribution compared to
when event times followed a Gompertz distribution. However, this was not the case when
the covariate was continuous.

A Cox regression model with a time-invariant hazard ratio (i.e. a model in which the
proportional hazards assumption is satisfied) provides a simple interpretation of the effect
of the covariate: the relative effect of the covariate on the instantaneous hazard of the out-
come is constant across time. Such an interpretation is relatively simple to communicate
to non-statistical audiences. However, if this assumption is violated, then the relative effect
of the covariate on the instantaneous hazard of the outcome varies over time. Authors can
report time-specific hazard ratios (e.g. the hazard ratio at one year, two years, etc.) [8]. A
relevant question is what are the consequences of ignoring a time-varying covariate effect
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and fitting a model with a time-invariant covariate effect. Beyersmann et al. suggest that
fitting a model that assumes a time-invariant covariate effect produces a coefficient that
can be interpreted as a time-averaged effect [9] (page 144). Thus, a model that ignores
the time-varying effect of a covariate can be thought of as estimating the average instan-
taneous effect of the covariate over the duration of follow-up. In settings that are likely to
have sub-optimal statistical power to detect violations of the proportional hazards assump-
tion, the analyst may have to be satisfied with reporting time-averaged effects of the model
covariates.

In summary, statistical powerwasmodest to detect a strong violation of the proportional
hazards assumption even when the number of observed events was large. Detecting a weak
to moderate violation of the assumption would require a very large number of observed
events. Many clinical data sets may have insufficient sample size to detect meaningful
departures from the proportional hazards assumption.
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Appendix 1

A1.1. Exponential distribution of event times (covariate effect is a linear effect
of time)

If event times follow an exponential distribution, the baseline hazard function is equal to λ0(t) = λ.
Then the cumulative hazard function is equal to

H(t|x, z) =
∫ t

0
λ0(s)eγ x+β(s)z ds =

∫ t

0
λeγ xeβ(s)z ds = λeγ x

∫ t

0
eβ(s)zds

= λeγ x
∫ t

0
e(β0+β1s)z ds = λeγ x

∫ t

0
eβ0zeβ1szds = λeγ xeβ0z

∫ t

0
eβ1szds

= λeγ xeβ0z

β1z
[eβ1sz]t0 = λeγ xeβ0z

β1z
[eβ1tz − 1] (provided β1z �= 0).

The distribution function of the event times is equal to

F(t|x, z) = 1 − exp(−H(t|x, z) = 1 − exp
(

−λeγ xeβ0z

β1z
[eβ1tz − 1]

)
.

Therefore,

u = exp
(

−λeγ xeβ0z

β1z
[eβ1tz − 1]

)
∼ U[0, 1].

Solving for t gives:

log(u) = −λeγ xeβ0z

β1z
(eβ1tz − 1),

thus
−β1z log(u)

λeγ xeβ0z
= eβ1tz − 1,

thus

1 − β1z log(u)
λeγ xeβ0z

= eβ1tz ,

thus

log
(
1 − β1z log(u)

λeγ xeβ0z

)
= β1zt,

resulting in

t = 1
β1z

log
(
1 − β1z log(u)

λeγ xeβ0z

)
, provided that β1z �= 0.

If β1z = 0, then the effect of the covariate is time-invariant and methods based on those
described by Bender et al. can be used to generate an event time.

A1.2.Weibull distribution of event times (covariate effect is a linear effect of time)

The baseline hazard function is equal to λ0(t) = λυtυ−1. Then the cumulative hazard function is

H(t|x, z) =
∫ t

0
λ0(s)eγ x+β(s)z ds =

∫ t

0
λυsυ−1eγ xeβ(s)z ds =λυeγ x

∫ t

0
sυ−1e(β0+β1s)z ds

= λυeγ xeβ0z
∫ t

0
sυ−1eβ1sz ds =λυeγ xeβ0z[tυ(−β1tz)−υ(�(υ) − �(υ ,−β1tz))].

The cumulative hazard function involves a difference of a Gamma function and an Incomplete
Gamma function. Then, the cumulative distribution of event times is

F(t|x, z) = 1 − exp[−H(t|x, z),
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and
u = exp[−λυeγ xeβ0z(tυ(−β1tz)−υ(�(υ) − �(υ ,−β1tz)))] ∼ U(0, 1).

An event time can be generated by solving the above expression for t and evaluating the expres-
sion at u ∼ U(0, 1). However, a closed-form expression for the inverse of the above expression
cannot be obtained. As an alternative approach, one could use numerical methods to find an
approximate inverse to the above expression for a given value of u.

A1.3. Gompertz distribution of event times (covariate effect is a linear effect of time)

The baseline hazard function is equal to λ0(t) = λeαt . Then the cumulative hazard function is

H(t|x, z) =
∫ t

0
λ0(s)eγ x+β(s)z ds =

∫ t

0
λeαseγ xe(β0+β1s)z ds = λeγ x

∫ t

0
eαseβ0zeβ1zs ds

= λeγ xeβ0z
∫ t

0
eαseβ1zs ds = λeγ xeβ0z

∫ t

0
e(α+β1z)s ds

= λeγ xeβ0z

α + β1z
[e(α+β1z)s]t0 = λeγ xeβ0z

α + β1z
[e(α+β1z)t − 1] provided thatα + β1z �= 0.

Then the cumulative distribution of event times is

F(t|x, z) = 1 − exp(−H(t|x, z))
and

u = exp(−H(t|x, z)) ∼ U(0, 1).
To invert this function, we have that

u = exp
(

−λeγ xeβ0z

α + β1z
[e(α+β1z)t − 1]

)
,

thus

log(u) = −λeγ xeβ0z

α + β1z
[e(α+β1z)t − 1],

−(α + β1z)
λeγ xeβ0z

log(u) = e(α+β1z)t − 1,

1 − (α + β1z)
λeγ xeβ0z

log(u) = e(α+β1z)t ,

so that

log
(
1 − (α + β1z)

λeγ xeβ0z
log(u)

)
= (α + β1z)t,

so that

t = 1
α + β1z

log
(
1 − (α + β1z)

λeγ xeβ0z
log(u)

)
, provided that α + β1z �= 0.

If α + β1z = 0 then the calculation of the cumulative hazard function must be modified as follows:

H(t|x, z) = λeγ xeβ0z
∫ t

0
e0 ds = λeγ xeβ0z

∫ t

0
ds = λeγ xeβ0zt.

Then, we have that u = exp(−H(t|x, z)) = exp(−λeγ xeβ0zt). To invert this expression, we have that
log(u) = −λeγ xeβ0zt and hence that

t = −log(u)
λeγ xeβ0z

.
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Appendix 2

A2.1. R and SAS code for simulating event time data with an exponential
distribution when the log-hazard ratio of the binary variable changes linear
with time

# The following software code is provided for illustrative purposes
only and comes with absolutely no warranty.
# Simulate data from a Cox-exponential model when the effect of
# treatment
# varies as a linear function of time.

N <- 10000
# Number of subjects in each simulated dataset.

# Parameter of the exponential distribution.
lambda <- 0.01

g1 <- log(1.5)
# Log-hazard ratio for the continuous covariate.
b0 <- log(1.1)
# Log-hazard ratio for the binary covariate at t = 0.
hr <- 1.005
b1 <- log(hr)
# Effect of time on the log-hazard ratio for the binary covariate.

prev <- 0.25
# Prevalence of the binary covariate.

set.seed(1)
# Set random number seed for reproducibility.

x <- rnorm(N)
z <- rbinom(N,size=1,prob=prev)

u <- runif(N,0,1)

event.time <- ifelse(b1*z= =0,
-log(u)/(lambda*exp(g1*x)),
(1/b1*z) * log(1-b1*z*log(u)/(lambda*exp(g1*x + b0*z))))

simdata <- cbind(x,z,event.time)

write(t(simdata),ncol=3,file="exp.dat",append=T)

%macro dgp_exp(N=,lambda=,hr_cont=,b0=,b1=,prev=0,ranseed=);

*** N is the size of the simulated dataset;

*** lambda is the parameter for the exponential distribution of
event times;

*** hr_cont is the hazard ratio for the continuous covariate;

*** b0 is the hazard ratio for the binary variable at time t = 0;

*** b1 is the relative change in the effect of binary covariate
as a function;

** of time;

*** prev is the prevalence of the binary covariate;

*** ranseed is a seed for random number generation to ensure ;

*** reproducibility of the results.;

data randata;
call streaminit(&ranseed);
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do i = 1 to &N;
/* Random uniform variable for generating event times */
u = rand("Uniform");
/* The binary covariate with a time-varying covariate effect*/
z = rand("binomial",&prev,1);
/* The continuous covariate for which we are adjusting */
x = rand("normal",0,1);

/* Parameter for the exponential distribution */
lambda = &lambda;
gamma = log(&hr_cont);
/* A one-standard deviation increase in x increases the hazard

of the outcome by this amount */
b0 = log(&b0);
b1 = log(&b1);

if (b1*z=0) then
event_time = -log(u)/(lambda*exp(gamma*x));

else
event_time = (1/b1*z) * log(1 - b1*z*log(u)/(lambda*
exp(gamma*x + b0*z)));

event = 1;
output;

end;

run;

%mend dgp_exp;

%dgp_exp(N=10000,lambda=0.01,hr_cont=1.5,b0=1.1,b1=1.005,
ranseed=1,prev=0.25);

A2.2. R code for simulating event time data with aWeibull distribution when
the log-hazard ratio of the binary variable changes linear with time

# The following software code is provided for illustrative purposes
only and comes with absolutely no warranty.
# Simulate data from a Cox-Weibull model when the effect of
# treatment varies as a linear function of time.

# There is not a closed-form expression for the inverse of the
# survival function (S).
# Numerical methods are used to invert the survival function.
# We use Brent’s method for root finding to invert the function.

library(pracma)
# pracma package has a function for Brent’s method for finding
# roots and a function for the incomplete Gamma function.

N <- 10000
# Number of subjects in each simulated dataset.

# Parameters of the Weibull distribution.
lambda <- 0.001
nu <- 1

g1 <- log(1.5)
# Log-hazard ratio for the continuous covariate.
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b0 <- log(1.1)
# Log-hazard ratio for the binary covariate at t=0.
hr <- 1.001
b1 <- log(hr)
# Effect of time on the log-hazard ratio for the binary covariate.

set.seed(1)
# Set random number seed for reproducibility.

simdata.matrix <- NULL

# Define the survival function
S2 <- function(t){
exp(-lambda*nu*exp(g1*x + b0*z) * ((tˆnu) * (-b1*t*z)ˆ(-nu) *
(gamma(nu) - gammainc(-b1*t*z,nu)[2]) ) ) - u

}
for (i in 1:N){
u <- runif(1,0,1)
x <- rnorm(1)
z <- rbinom(1,size=1,prob=0.25)
if (z= =0){
event.time <- (-log(u)/(lambda*exp(g1*x)))ˆ(1/nu)

} else {
brent.sol <- brent(S2,0.001,250000)
event.time <- brent.sol$root

}
simdata <- c(x,z,event.time)
simdata.matrix <- rbind(simdata.matrix,simdata)

}
write(t(simdata.matrix),ncol=3,file="weibull.dat",append=T)

A2.3. R and SAS code for simulating event time data with a Gompertz
distribution when the log-hazard ratio of the binary variable changes linear
with time

# The following software code is provided for illustrative purposes
only and comes with absolutely no warranty.
# Simulate data from a Cox-Gompertz model when the effect of
# treatment varies as a linear function of time.

N <- 10000
# Number of subjects in each simulated dataset.

# Parameters of the Gompertz distribution.
lambda <- 0.0001
alpha <- 0.025

g1 <- log(1.5)
# Log-hazard ratio for the continuous covariate.
b0 <- log(1.1)
# Log-hazard ratio for the binary covariate at t=0.
hr <- 1.005
b1 <- log(hr)
# Effect of time on the log-hazard ratio for the binary covariate.
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prev <- 0.25
# Prevalence of the binary covariate.

set.seed(1)
# Set random number seed for reproducibility.

x <- rnorm(N)
z <- rbinom(N,size=1,prob=prev)

u <- runif(N,0,1)

event.time <- ifelse(alpha+b1*z= =0,
-log(u)/(lambda*exp(g1*x + b0*z)),
(1/(alpha + b1*z)) * log(1 - (alpha + b1*z)*log(u)
/(lambda*exp(g1*x + b0*z))))

simdata <- cbind(x,z,event.time)

write(t(simdata),ncol=3,file="gompertz.dat",append=T)

%macro dgp_gompertz(N=,lambda=,alpha=,hr_cont=,b0=,b1=,
prev=0,ranseed=);

*** N is the size of the simulated dataset;

*** lambda and alpha are the parameters of the Gompertz
distribution;

*** hr_cont is the hazard ratio for the continuous covariate;

*** b0 is the hazard ratio for the binary variable at time t = 0;

*** b1 is the relative change in the effect of binary covariate
as a function;

** of time;

*** prev is the prevalence of the binary covariate;

*** ranseed is a seed for random number generation to ensure;

*** reproducibility of the results.;
data randata;
call streaminit(&ranseed);

do i = 1 to &N;
/* Random uniform variable for generating event times */
u = rand("Uniform");
/* The binary covariate with a time-varying covariate effect*/
z = rand("binomial",&prev,1);
/* The continuous covariate for which we are adjusting */
x = rand("normal",0,1);

/* Parameters for the Gompertz distribution */
lambda = &lambda;
alpha = &alpha;
gamma = log(&hr_cont);
b0 = log(&b0);
b1 = log(&b1);

if alpha + b1*z = 0 then
event_time = -log(u)/(lambda * exp(gamma*x + b0*z));

else
event_time = (1/(alpha + b1*z)) * log(1 - (alpha + b1*z)

*log(u)/(lambda*exp(gamma*x + b0*z)));
event = 1;
output;
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end;

run;

%mend dgp_gompertz;

%dgp_gompertz(N=10000,lambda=0.0001,alpha=0.025,hr_cont=1.5,
b0=1.1,b1=1.005,prev=0.25,ranseed=1);
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