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ABSTRACT
When using multilevel regression models that incorporate cluster-
specific random effects, the Wald and the likelihood ratio (LR) tests
are used for testing the null hypothesis that the variance of the ran-
dom effects distribution is equal to zero. We conducted a series of
Monte Carlo simulations to examine the effect of the number of clus-
ters and the number of subjects per cluster on the statistical power
to detect a non-null random effects variance and to compare the
empirical type I error rates of the Wald and LR tests. Statistical power
increasedwith increasing number of clusters and number of subjects
per cluster. Statistical power was greater for the LR test than for the
Wald test. These results applied to both the linear and logistic regres-
sions, butweremore pronounced for the latter. The use of the LR test
is preferable to the use of the Wald test.

ARTICLE HISTORY
Received 23 January 2018
Accepted 22 July 2018

KEYWORDS
Statistical power; multilevel
analysis; multilevel model;
hierarchical model; variance
components

1. Introduction

Data with a multilevel nature occur frequently in education, public health, health ser-
vices research, behavioural research, and in social epidemiology. Examples include patients
nestedwithin primary care practices, students nestedwithin schools, and employees nested
within companies. A consequence of the clustering of subjects within clusters (e.g. patients
clustered within primary care practices) is that subjects from the same cluster may have
outcomes that are more similar than will subjects from different clusters. Researchers are
increasingly using multilevel regression models to analyse clustered data [1,2]. Multilevel
regression models incorporate cluster-specific random effects that account for the depen-
dency of the data by partitioning the total individual variance into variation due to the
cluster and the individual-level variation that remains [3].

An important question when analysing multilevel data is whether clustering exerts an
effect on subject outcomes. Formal statistical testing of the hypothesis that the variance of
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the distribution of the random effects is equal to zero permits one to assess whether cluster-
ing exerts an effect on the outcome. Two different statistical tests are used frequently to test
this hypothesis: theWald test and the likelihood ratio test [4–6]. Molenberghs and Verbeke
reviewed these tests, presented their asymptotic equivalence and showed how to compute
their p-values taking into account the one-sided nature of variance testing [4]. Considering
various statistical and computational considerations, their pragmatic guideline is that the
likelihood ratio test is ‘the easiest to evaluate’ (p.27) and they recommend to ‘consider it the
default’ (p.27). However, they acknowledge ‘we do not claim to have provided a definitive
answer, for which both additional small sample and asymptotic evaluations, accompanied
with simulations, would be needed’ (p.27). The objective of the current paper is to fill this
void with a comprehensive simulation study of small-sample settings. First, we investigate
the effect of the number of clusters and the number of subjects per cluster on the statistical
power to detect a non-zero random effects variance. Second, we compare the type I error
rate of the Wald test and the likelihood ratio test. We examine testing the random effects
variance for both the linear random effects model for use with continuous outcomes and
the logistic regression random effects model for use with binary outcomes.

The paper is structured as follows. In Section 2, we describe the regression models that
we consider. We also describe the Wald and the likelihood ratio tests for testing whether
the variance of the random effects distribution is equal to zero. In Section 3, we provide
an extensive series of Monte Carlo simulations to address our study objectives. Finally, in
Section 4, we summarize our findings.

2. Notation and statistical tests for null variance

In this section, we formally describe the linear and logistic random effects models under
consideration. We then describe the Wald and likelihood ratio tests that have been
proposed for testing whether the variance of the distribution of the random effects is
statistically significantly different from zero.

2.1. The linear and logistic random effectsmodels

2.1.1. The linear random effects model
Let Yij denote a continuous outcome measured on the ith subject in the jth cluster. Let

Yij = α0 + α0j + α1X1ij + α2X2ij + · · · + αkXkij + εij (1)

where α0j ∼ N(0, τ 2) and εij ∼ N(0, σ 2) describe a linear model in which the continuous
outcome variable is regressed on k predictor variables (X1, . . . , Xk). The model incorpo-
rates cluster-specific random effects (α0j) and subject-specific random effects (εij), both of
which are assumed to have independent normal distributions.

2.1.2. The logistic random effects model
Let Yij denote a binary outcome measured on the ith subject in the jth cluster. Let

Yij ∼ Bernoulli(pij), where

logit(pij) = α0 + α0j + α1X1ij + α2X2ij + · · · + αkXkij, where α0j ∼ N(0, τ 2) (2)
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describe a logistic regressionmodel in which the binary outcome variable is regressed on k
predictor variables (X1, . . . , Xk). The model includes cluster-specific random effects (α0j)
which are assumed to follow a normal distribution.

2.2. TheWald and likelihood ratio tests

Let τ 2 denote a variance parameter. The hypothesis testH0 : τ 2 = 0 versus Ha : τ 2 > 0
is a constrained one-sided test. Variances are, by definition, constrained to be non-negative.
The value of the variance under the null hypotheses (τ 2 = 0) lies on the boundary of the
space of all possible variances (0,∞)). Constrained one-sided tests require that conven-
tional methods for hypothesis testing be modified. Molenberghs and Verbeke provide an
overview of the likelihood ratio, score, and Wald tests for constrained one-sided tests [4].

In the context of multilevel regression models that incorporate random intercepts, the
likelihood ratio test statistic is equal to twice the logarithm of the difference between the
likelihood of the fittedmodel and the likelihood of themodel in which random effects have
been omitted (i.e. the model in which the intercept is fixed across clusters). The Wald test
statistic is equal to the square of the estimated variance of the random effects divided by
an estimate of its standard error.

Molenberghs and Verbeke note that the likelihood ratio test and the Wald test are
asymptotically equivalent. Given that these are constrained one-sided tests, the distribution
of the test statistic under the null hypothesis is a mixture of the χ2

0 (with all the probability
mass at zero) and χ2

1 , with each of the two components of the mixture having an equal
probability of 0.5 [7]. The correct p-value can, therefore, be obtained by simply dividing
the ‘naïve’ p-value based on χ2

1 by 2.

3. Monte Carlo simulations of power and type I error rates

We conducted an extensive series of Monte Carlo simulations to examine the effect of the
number of clusters and the number of subjects per cluster on the statistical power to detect a
non-zero variance of the random effects distribution.We also compared the empirical type
I error rates of the Wald test with that of the likelihood ratio test. This is done separately
for both the linear regression model and the logistic regression model.

3.1. Methods

We simulated data for subjects clustered in Ncluster clusters with Nsubjects subjects within
each cluster. For each subject in the simulated dataset, we simulated a continuous predictor
variable. This can be thought of as either a single continuous covariate such as age or as
a continuous risk score that summarizes a set of covariates (which can be continuous or
categorical). We used a variance components model to simulate this continuous covariate
so that its distribution differed systematically across clusters:

xij = xsubjectij + xclusterj (3)

where xsubjectij ∼ N(0, 1) and xclusterj ∼ N(0, σ 2 = 1/19). In doing so, the intraclass correla-
tion coefficient (ICC) or variance partition coefficient (VPC) for the continuous covariate
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was equal to 0.05 (0.05 = 1/19/(1 + 1/19)). Thus, 5%of the total variation in the covariate
was due to systematic between-cluster variation.

We then simulated a continuous outcome for each subject. To do so, we first sim-
ulated a cluster-specific random effect for each cluster from a normal distribution:
α0j ∼ N(0, τ 2continous)and a subject-specific random effect: εij ∼ N(0, 1). We then sim-
ulated a continuous outcome for each subject: Yij = −1 + α0j + Xij + εij. The value
of τ 2continuous was selected to result in a desired VPC [3]. The VPC was defined as
τ 2continuous/(τ

2
continuous + 1). The value of the VPC was one of the factors that were allowed

to vary in the simulations (see below for different values that this factor was allowed to
take).

We then simulated a binary outcome for each subject. To do so, we first sim-
ulated a cluster-specific random effect for each cluster from a normal distribu-
tion: α0j ∼ N(0, τ 2binary). We then simulated a binary outcome for each subject: Yij ∼
Be(pij), where logit(pij) = −1 + α0j + Xij. The value of τ 2binary was selected to result in
a desired VPC [3]. The VPC was for the binary outcome defined using the latent variable
formulation as τ 2binary/(τ

2
binary + π2/3) [1,3]. We thus simulated a continuous covariate, a

continuous outcome, and a binary outcome for each of Ncluster ×Nsubjects subjects.
For a given scenario, defined by the VPC, Ncluster, and Nsubjects, we simulated Niterations

datasets. In each simulated dataset, we regressed the continuous outcome on the con-
tinuous predictor variable using a linear model with cluster-specific random intercepts.
We also regressed the binary outcome on the continuous predictor variable using a logis-
tic regression with cluster-specific random intercepts. In each simulated dataset, we used
the Wald test and the likelihood ratio to test whether the variance of the distribution of
the random effects was statistically different from zero (computing the likelihood ratio
test statistic required that we also fit regression models in which the random effects were
omitted). We assumed that the test statistic under the null hypothesis was the mixture of
chi-squared distributions described above. We used a significance level of 0.05 to denote
statistical significance. We estimated the empirical statistical power as the proportion
of the Niterations simulated datasets in which the null hypothesis of a zero variance was
rejected.When theVPCwas equal to zero, this proportionwas equal to the empirical type I
error rate.

The following three factors were allowed to vary in the Monte Carlo simulations: the
VPC, the number of clusters (Ncluster), and the number of subjects per cluster (Nsubjects).
The VPC was allowed to take values from 0 to 0.1 in increments of 0.01 (for a total of 11
different values of the VPC). The number of subjects per clusters was allowed to take four
different values: 10, 25, 50, and 100. The number of clusters was allowed to take values from
20 to 200 in increments of 10, for a total of 19 different values. Thus, we examined a total
of 836 (11× 4× 19) different scenarios.

In each of the 836 scenarios, we simulated N iterations datasets. When the VPC was not
equal to zero, we setN iterations = 1000.When theVPCwas equal to zero, the variance of the
random effects distribution was zero and data were simulated under the null hypothesis.
Thus, in these scenarios, we were examining the type I error rate. We wanted greater pre-
cision when examining type I error rates compared to when examining statistical power.
Thus, when the VPC was set equal to zero, we simulatedN iterations = 10,000 datasets. Due
to the computational demands of these simulations, wewere unable to use 10,000 iterations
for all 836 scenarios.
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Based on 10,000 simulated data sets for VPC = 0, one would expect 95% of the type I
error rates to be in the interval 0.05 ± 1.96

√
0.05 × 0.95/10000 = (0.046, 0.054). Empiri-

cal type I error rates outside this interval will be statistically significantly different from the
nominal type I error rate.

The simulationswere conducted using the SAS/STAT (version 14.1). The randomeffects
linear model was fit using PROC MIXED using restricted maximum likelihood estima-
tion. The random effects logistic regression model was fit using PROC GLIMMIX using
maximum likelihood estimation with an adaptive Gauss-Hermite quadrature with seven
quadrature points.

3.2. Results

3.2.1. Linear random effects model
The empirical type I error rates are summarized in Figure 1. We have superimposed on
this figure a horizontal line denoting the nominal type I error rate of 0.05. The likeli-
hood ratio test tended to be slightly conservative, with empirical type I error rates that
ranged between 0.038 and 0.051. The empirical type I error rate of the likelihood ratio
test increased marginally, approaching the nominal type I error rate, with increasing num-
ber of clusters. In contrast to this, the Wald test was very conservative when the number
of clusters was low (empirical type I error rates of less than 0.02 when there were only
20 clusters). The empirical type I error rate of the Wald test increased substantially with
increasing number of clusters. When the number of clusters was large (Ncluster above 150),

Figure 1. Effect of number of clusters on Type I error rate (linear model).
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Figure 2. Effect of number of clusters on power to detect a non-zero variance (linear model).

the null hypothesis was rejected in more than 6% of the samples. The number of subjects
per cluster had no discernible impact on the empirical type I error rate of either test.

The empirical estimates of statistical power are reported in Figure 2. There is one panel
for each of the 10 non-null values of the VPC. For a given value of the VPC, statistical
power increased with both an increasing number of clusters and with an increasing num-
ber of subjects per cluster. When the magnitude of the effect of clustering was very weak
(VPC = 0.01 or 0.02), then, for a given number of clusters, the effect of the number of
subjects per cluster on statistical power was dramatic. For example, when the VPC was
equal to 0.01, the statistical power was approximately 20% when there were 200 clusters
with 10 subjects per cluster, whereas statistical power exceeded 90% when there were 50
or 100 subjects per cluster. When the magnitude of the effect of cluster was much stronger
(VPC = 0.10), a low number of clusters (e.g. 20) combined with a low number of subjects
per cluster (e.g. 10) still resulted in suboptimal statistical power (< 80% power). Finally,
for any given combination of conditions the likelihood ratio test tended to have modestly
greater statistical power than did the Wald test.

3.2.2. Logistic random effects model
The results for the logistic random effects model are summarized in Figure 3 (empirical
type I error rate) and Figure 4 (empirical estimates of statistical power). Patterns similar to
those observed for the linear random effects model were observed.
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Figure 3. Effect of number of clusters on Type I error rate (logistic model).

Figure 4. Effect of number of clusters on power to detect a non-zero variance (logistic model).
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Figure 5. Comparison of LRT type I error rate: linear vs. logistic models.

Figure 6. Comparison of LRT power for linear vs. logistic model.
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We explored some differences between the empirical type I error rates for the linear
model and the logistic model. Given the preceding results showing that the likelihood ratio
test was superior to the Wald test, we restricted this comparison to empirical type I error
rates for the likelihood ratio test.

In Figure 5, we compare the empirical type I error rates for the likelihood ratio tests for
the linear and logistic random effects model. While the likelihood ratio test was conserva-
tive for both models, we observed that for a given number of clusters and a given number
of subjects per cluster, the empirical type I error rate for the logistic model was lower than
that for the linear model. The likelihood ratio test for the linear model had empirical type
I error rates closer to the nominal level than did the likelihood ratio test for the logistic
model.

In Figure 6, we compare estimates of empirical statistical power when using the like-
lihood ratio test with the linear model and the logistic model for the four lowest values
of the VPC (0.01, 0.02, 0.03, and 0.04). We observed that for a given VPC, number of
clusters, and number of subjects per cluster, the likelihood ratio test applied to a linear
model had greater statistical power than did the likelihood ratio test applied to a logistic
model.

4. Discussion

We conducted an extensive set of Monte Carlo simulations to examine the effect of the
number of clusters and the number of subjects per cluster on the statistical power to detect
a non-zero variance of the distribution of the random effects.We also compared the empir-
ical type I error rate of theWald test with that of the likelihood ratio test.We examined both
the linear random effects model for use with continuous outcomes and the logistic random
effects model for binary outcomes. We found that statistical power increased with both an
increasing number of clusters and an increasing number of subjects per cluster. When the
random effects variance was very low (VPCs of 0.05 or smaller), increasing the number of
subjects per cluster had a substantial effect on power. The likelihood ratio test was slightly
conservative, with empirical type I error rates that ranged between 0.038 and 0.051 for the
linear random effects model over the range of conditions we explored. The Wald test had
very low empirical type I error rates when the number of clusters was low (50 or below),
and type I error rates that exceeded 0.05 when the number of clusters was large (150 or
above).

Our finding that the statistical power increases with an increasing number of clusters
is not surprising. Intuitively, as the number of clusters increases, one is able to estimate
the between-cluster variation in outcomes more precisely, implicitly leading to increased
power. It is less obvious that statistical power would increase with the number of subjects
per cluster. However, intuitively, as the number of subjects per cluster increases, the clus-
ter random intercepts are estimated more precisely and so their variance, in turn, is also
estimated more precisely.

As noted in the Introduction, Molenberghs and Verbeke noted that while the likelihood
ratio test and theWald test are asymptotically equivalent, the former is easier to implement
and should be considered the default [4]. However, they suggested that additional evalu-
ations and simulations were necessary in order to evaluate the performance of these tests
in small samples (p.27). The simulations provided in the current study address this void
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identified by Molenberghs and Verbeke. While these two tests are asymptotically equiva-
lent, we have shown that they perform differently from one another when the number of
clusters is less than or equal to 200 and the number of subjects per cluster is less than or
equal to 100. Thus, in settings similar to those encountered by many applied researchers,
these two tests should not be viewed as asymptotically equivalent. Instead, the likelihood
ratio test should always be preferred.

We examined two different tests for a non-null variance of the random effects distri-
bution. These two tests were selected as they appear to be the most commonly used. In
SAS PROC GLIMMIX, the default output includes estimates of the covariance parameters
and their asymptotic standard errors (thereby allowing the construction of a Wald test).
We note that the mixed and melogit multilevel linear and logistic regression commands
in Stata automatically report the results of the likelihood ratio test comparing the fitted
model to its constrained counterpart and so the reader does not need to manually fit the
constrained model each time. We provide SAS code for evaluating the likelihood ratio test
for a linear model (Appendix A) and for a logistic regression model (Appendix B).

Fitzmaurice and Lipsitz proposed a permutation test for the variance components in
multilevel generalized linear models. In this approach, the estimated variance is compared
to the distribution of estimated variances generated when repetitively refitting the model
to different versions of the original data where the cluster indices have been randomly per-
muted [8]. They demonstrated this method had the correct type I error rate under the
null hypothesis that the variance is zero. We did not consider this test for three reasons.
First, due to the rarity with which it is employed (the article has been cited only 10 times
in the non-methodological literature since its publication 10 years ago [Source: Science
Citation Index, date accessed: 18 October 2017]). Second, because it is not implemented
in standard software for fitting multilevel models. Third (and most importantly), because
it would have increased the computational complexity of the simulations by a factor of
200 (since they recommended using 200 permutations of the data to estimate the distri-
bution of the test statistic under the null hypothesis). The current simulations required
approximately 237 hours of computer time (approximately 9.9 days). Using 200 resam-
plings per simulated dataset would increase this by approximately 1975 days. Given that
the permutation-based approach is not implemented in several popular statistical software
packages, there is value in knowing in which situations the likelihood ratio test performs
well.

We observed that the likelihood ratio test wasmore conservative for the logistic random
effects model than it was for the linear random effects model. As noted above, the sampling
distribution of the likelihood ratio test statistic under the null hypothesis is 0.5χ2

0 + 0.5χ2
1

[4]. However, Fitzmaurice et al. suggest that this sampling distribution is only under the
linear mixed model, and suggest that the appropriate mixture of chi-square distributions
has yet to be derived for the generalized linear mixed model [8,p.945]. If indeed the sam-
pling distribution of the likelihood ratio statistic under the null hypothesis does not follow
a 0.5χ2

0 + 0.5χ2
1 distribution, this might explain why the empirical type I error rate for the

logistic model is further from the nominal value than it is for the linear model. Similarly,
this may explain why, for a given value of the VPC, number of clusters and number of sub-
jects per cluster, statistical power was greater when using the likelihood ratio test with the
linear model compared to with the logistic model. Another explanation for the differences
in the empirical type I error rates differed between the logistic model and the linear model
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is the different estimationmethods that were used. The linear models were estimated using
restricted maximum likelihood estimation, while the logistic models were estimated using
maximum likelihood estimation.

Maas and Hox conducted a series of simulations to determine sufficient sample sizes
for fitting multilevel linear models [9]. They allowed the number of clusters to take three
values (30, 50, and 100), the number of subjects per cluster to take three values (5, 30, and
50), and the intraclass correlation coefficient to take three values (0.1, 0.2, and 0.3). Their
focus was on the effects of these factors on the accuracy of estimated regression coeffi-
cients and variance components and their associated standard errors. They found that
regression coefficients and variance components were estimated without bias. However,
the standard errors of the estimated variance components tended to be too small. With 30
clusters, the standard errors were approximately 15% too small. Their paper focused solely
on the estimation of regression parameters, while the focus of the current paper was on sta-
tistical power. In their paper, Maas and Hox reviewed a series of unpublished manuscripts
and conference proceedings that examine issues related to sample size and estimation of
multilevelmodels. These unpublishedmanuscripts appeared to focus primarily on the esti-
mation of regression parameters. The novel contribution of the current study is its focus
on the effect of number of clusters and number of subjects per cluster on statistical power
to detect a non-null variance component.

The primary objective of the paper was to examine the effect of the number of clusters
and the number of subjects per cluster on the statistical power to detect a non-zero variance
component. As a secondary objective, we compared the performance of theWald test with
that of the likelihood ratio test. Our finding that the performance of the Wald test was
suboptimal is not novel. Raudenbush and Bryk suggest that the normality approximation
of the sampling distribution of the Wald test statistic may be very poor when the random
effects variance is close to zero [6,p.64]. A similar caution is echoed by Hox [5,p.47]. While
many researchers with experience withmultilevel analysismay be aware that the likelihood
ratio test is preferable to the Wald test, many applied analysts may be unaware of this.
Maas and Hox suggest that the use of the Wald test to test random effects variances is
widespread [9]. A novel contribution of the current paper is to examine the performance
of the likelihood ratio test in small-sample settings when either the number of clusters or
the number of subjects per cluster is small.

In conclusion, both increasing number of clusters and increasing number of subjects
per cluster are associated with increased statistical power to detect a non-null variance of
the random effects. The likelihood ratio test had greater power than the Wald test. The
likelihood ratio test had empirical type I error rates that were slightly conservative. These
patterns of results applied to both the linear and logistic regressions, but were more pro-
nounced for the latter. The likelihood ratio test should be used instead of the Wald test for
testing whether the variance of the random effects is different from zero.
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Appendices

Appendix A. SAS code for evaluating the likelihood ratio test for a linear
regressionmodel

proc mixed data=cohort;
/* Linear model with no random effects */
class cluster_id;
model y = x;
ods output FitStatistics = MLinfo1;

run;
data MLinfo1;
set MLinfo1;
if Descr = "-2 Res Log Likelihood" ;
Deviance_LM = Value;
keep Deviance_LM;

run;
proc mixed data=cohort covtest;
/* Linear model with random effects */
class cluster_id;
model y = x;
random intercept /subject=cluster_id;
ods output FitStatistics = MLinfo2;

https://doi.org/10.1111/j.1541-0420.2007.00775.x
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run;
data MLinfo2;
set MLinfo2;
if Descr = "-2 Res Log Likelihood" ;
Deviance_LMM = Value;
keep Deviance_LMM;

run;
data results;
merge MLinfo1 MLinfo2;
LRT = abs(Deviance_LM - Deviance_LMM);
pvalue = (1 - probchi(LRT,1))/2;

run;
proc print data=results;
run;

Appendix B. SAS code for evaluating the likelihood ratio test for a logistic
regressionmodel

proc logistic data=cohort descending;
/* Fit logistic regression model with no random effects */
model y = x;
ods output FitStatistics = MLinfo1;

run;
data MLinfo1;
set MLinfo1;
if Criterion = "-2 Log L" ;
Deviance_LR = InterceptAndCovariates;
keep Deviance_LR;

run;
proc glimmix data=cohort method=quad (qpoints=7);
/* Fit logistic regression model with random effects */
class cluster_id;
model y = x /dist=binomial;
random intercept /subject=cluster_id;
ods output FitStatistics = MLinfo2;

run;
data MLinfo2;
set MLinfo2;
if Descr = "-2 Log Likelihood" ;
Deviance_GLMM = Value;
keep Deviance_GLMM;

run;
data results;
merge MLinfo1 MLinfo2;
LRT = abs(Deviance_LR - Deviance_GLMM);
pvalue = (1 - probchi(LRT,1))/2;

run;
proc print data=results;
run;
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