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ABSTRACT
Sensitivity analysis is an essential tool in the development of robust
models for engineering, physical sciences, economics and policy-
making, but typically requires running the model a large number
of times in order to estimate sensitivity measures. While statistical
emulators allow sensitivity analysis even on complex models, they
only performwell with a moderately low number of model inputs: in
higher dimensional problems they tend to require a restrictively high
number of model runs unless the model is relatively linear. There-
fore, an open question is how to tackle sensitivity problems in higher
dimensionalities, at very low sample sizes. This article examines the
relative performance of four sampling-based measures which can
be used in such high-dimensional nonlinear problems. The mea-
sures tested are the Sobol’ total sensitivity indices, the absolutemean
of elementary effects, a derivative-based global sensitivity measure,
and a modified derivative-based measure. Performance is assessed
in a ‘screening’ context, by assessing the ability of each measure to
identify influential and non-influential inputs on a wide variety of
test functions at different dimensionalities. The results show that the
best-performing measure in the screening context is dependent on
the model or function, but derivative-based measures have a sig-
nificant potential at low sample sizes that is currently not widely
recognised.
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1. Introduction

Models are becoming more complex and computationally demanding: they may include
dozens or even hundreds of inputs and analyse asmany outputs. Knowledge of the inputs is
often limited and, when dealing with numerous uncertain inputs, sensitivity analysis (SA)
is widely employed to quantify the contribution to the uncertainty in the model output
from individual inputs and groups of inputs.

One way of classifying problem types faced in sensitivity analysis is by dimensionality
(the number of inputs of a model), and model run-time (the computational time required
to execute a computer model for a given set of inputs) – see Figure 1. When the dimen-
sionality and run-time of a model are both low, performing sensitivity analysis is relatively
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Figure 1. A classification of problems in sensitivity analysis by dimensionality and run time.

straightforward – a typical approach would be to run the model many thousands of times
in order to estimate Sobol’ sensitivity indices via the Monte Carlo method [1]. If the run
time of the model is low, but the number of inputs is high, the Monte Carlo method is
usually still appropriate since its cost scales well with dimensionality. On the other hand,
if the dimensionality is low, but the run-time of the model is high, an emulator-based
approach is usually adopted (also known as ‘surrogatemodels’, ‘metamodels’ and ‘response
surfaces’). This involves building a mathematical approximation of the model (typically a
Gaussian Process [2,3], Polynomial Chaos Expansion (PCE) [4] or state-dependent param-
eter regression [5]) using a limited number ofmodel runs as ‘training data’, then estimating
sensitivity indices using the emulator, which can be run a great number of times for a
negligible computational cost.

Although there is extensive literature on the emulator problem in sensitivity analysis,
there is relatively little that deals with the very common situation where one has both
a high dimensionality and a high run time. In such cases, fitting an emulator is gener-
ally impractical because the number of sample points required to successfully emulate the
model becomes prohibitively high. Furthermore, the model cannot be run enough times
for an accurate estimation of sensitivity indices.

Although some recent approaches such as ‘sparse PCE’ have been successfully applied
in some limited cases to high-dimensional problems at low sample sizes [6], the models
tested were linear with few interactions. In tests on several emulators on analytical func-
tions, emulators were not found to provide reasonable estimations of sensitivity indices
unless the sample size needed to train the emulator was dramatically increased (and were
generally out-performed by sample-based measures) [7]. Thus, emulator approaches are a
viable option in high dimensions only if themodel or function is sufficiently ‘well-behaved’
(linear and few interactions), or the available sample size for training the emulator is high.

In general then, one is left with one of two approaches: either to somehow streamline the
model to make it run faster, thereby bringing it within reach of Monte Carlo estimation of
sensitivity indices, or to somehow reduce the dimensionality of the problem. Although the
first approach can often be fruitful, it is only a viable option if one is the developer of the
model; besides, the run time might already have been minimised. This paper focuses on
the second strategy, which is often called ‘screening’, ‘factor fixing’ or ‘freezing variables’.
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Screening aims to answer the question, ‘ Which inputs could be fixed to an arbitrary
value within their range of uncertainty such that the expected reduction in output uncer-
tainty would be small?’ [8]. Screening is usually associated with the elementary effects
method, which is a sensitivity analysis approach based on finite differences [9,10], but to
the knowledge of the authors there is no theoretical or empirical evidence which shows
that the elementary effects method consistently performs better at low sample sizes than
other measures of sensitivity. The objective of this paper is therefore to compare the per-
formance of the absolute mean measure μ∗ from the elementary effects method, on a
high-dimensional problem at small sample size, against two other measures of sensitiv-
ity, the well-known Sobol’ total sensitivity indices ST [11] and a derivative-based global
sensitivity measure (DGSM) ν [12,13]. In this work we discuss the links between the three
measures, and additionally investigate a variation of the DGSMmeasure which is included
in the testing. It should be emphasised that, for the reasons discussed previously, emulator-
based approaches to estimating these measures are not tested in this work because they do
not provide reasonable estimates at the very small sample sizes investigated. Therefore, this
study focuses solely on estimation of ‘sampling-based’ screening measures (those that do
not rely on data modelling).

Because screening and factor fixing is primarily interested in distinguishing between
influential and non-influential inputs, we assess the performance of eachmeasure in terms
of the proportion of ‘influential’ inputs correctly identified in the test functions examined
in this paper, rather than using the error between estimated and analytical values of each
measure, as for example in [14]. We use analytical test functions rather than physical mod-
els because the analytical functions allow us to define a priori the set of influential and
non-influential inputs, thus allowing an evaluation of the performance of the screening
measures against a given pattern of importance.

In the experiments performed here, the input variables are assumed to be indepen-
dent. While there is an increasing body of literature on sensitivity analysis of models with
dependent inputs, dependence significantly complicates the analysis because (apart from
practical considerations) the influence of an input on the output can be due to its own
effect, plus effects due to other inputs with which it is correlated (or anti-correlated). This
creates an ambiguity in the ranking, and results in a non-unique variance decomposition.
The idea of screening correlated variables may be investigated in future work.

The remainder of this paper is organised as follows: in Section 2 the four SA measures
considered in this study are briefly introduced. We refer however to the vast literature
available for further details on the measures, limiting the description to the most rele-
vant features with respect to the present topic. In Section 3, the numerical experiments
are described along with the approach used to measuring screening error. In Section 4,
the test functions are introduced and the results of the sensitivity measures are given with
some discussion. Finally, an overview of the main findings and conclusions is in Section 5.

2. Measures of sensitivity

For all sensitivity measures described in this paper we assume that the inputs are indepen-
dent. Let us denote by x1, x2, . . . , xk the inputs of a test function f, defined over the unit
hypercube Hk, with y being the output of the function, such that y = f (x1, x2, . . . , xk).
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Further, assume that the uncertainty in the model inputs is expressed by a joint indepen-
dent uniform probability distribution, p(x1, x2, . . . , xk) = U(0, 1)k. Note that (apart from
the assumption of independence), this incurs no loss of generality because any distribu-
tion can be transformed onto the unit interval. As a result of the input uncertainty, the
uncertainty in the output y is correspondingly expressed as p(y).

Any point xj = x1j, x2j, . . . , xkj in the hypercube represents a given set of values for the
k inputs, for which the output yj can in turn be evaluated by executing the test function
(we talk in this case of function evaluations, or model runs). In general, physical models
cannot be expressed in closed form, so estimation of p(y) and sensitivity analysis involves
calculating many values of y at different x. Each point sampled in the hypercube will be
used for one model run and will provide one value of y; in the case of a physical model
this evaluation can take very different computational time, from nanoseconds to hours, or
even days. Hence, it is important, especially in the latter case, to be able to obtain accurate
sensitivity measures with the minimum number of runs. In this paper we use analytical
test function in place of real physical models, as this allows us to run the test function in
negligible time and, above all, because we can define a priori a given importance structure
to enable a proper performance assessment of the screening measures.

One approach to sensitivity analysis is to decompose the variance of p(y) into portions
attributable to inputs and sets of inputs:

V(y) =
∑

i
Vi +

∑

i

∑

j>i
Vi,j + · · · + V1,2,...,k, (1)

where

Vi = V[E(y|xi)]
Vi,j = V[E(y|xi, xj)] − V[E(y|xi)] − V[E(y|xj)]

and so on for the higher order terms. Here, V(·) denotes the variance operator, and
the terms are used directly as sensitivity indices, e.g. the first-order sensitivity index Si =
Vi/V(y) measures the contribution of the input xi to V(y), without including interactions
with other inputs [1]. The sum

∑
Si = 1 (i = 1, . . . , k), for purely additivemodels whereas∑

Si � 1 for models with strong interactions.
The variance-based measure that is used in this work is denoted STi, and is called the

total order sensitivity index, which is defined as [11],

STi = 1 − V[E(y | x∼i)]
V(y)

= E[V(y | x∼i)]
V(y)

, (2)

where V(·) denotes the variance operator, E(·) the expected value, and x∼i the set of all
inputs except xi. The total order sensitivity index measures the contribution to V(y) of a
given input xi, as well as all its interactions of any order with other inputs.

In order to estimate STi, we generate a set of N sampling points, x1, x2, . . . , xN , suitably
sampled fromHk. This may be expressed in a design matrix X of N rows and k columns,
which is used to estimate all the sensitivity measures here. Letting xj and x(i′)

j be, respec-

tively, a point in the input space, and a point that differs from x(i)
j only in the value of xi,
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an estimator of the numerator of STi (VTi) is as follows [15,16]:

V̂Ti = 1
2N

N∑

j=1
|f (x(i′)

j ) − f (xj)|2. (3)

The absolute value notation here is used for consistencywith the other estimators presented
here. The xj therefore correspond to the points fromX, and the x(i′)

j represent random shifts
in the xi direction. Normally, this estimator is used with large values ofN in order to more
accurately estimate STi. Here, we investigate its utility at very low sample sizes.

Another widely-used measure of sensitivity is the mean of absolute elementary effects,
which is estimated as follows [17]:

μ̂∗
i = 1

N

N∑

j=1

|f (x(i′)
j ) − f (xj)|

|x(i′)
ji − xji|

. (4)

Here, xji denotes the ith coordinate of xj, so that the denominator of Equation (4) is equal to
the difference in xi between xj and x

(i′)
j . The elementary effects measure is most commonly

used in the screening setting [17]. Note however that it cannot be interpreted in terms of
variance in the same way as STi.

The final measure used in this study is part of a set of sensitivity measures called
‘derivative-based global sensitivity measures’ (DGSM). The measure is the integral of
squared partial derivatives, i.e. νi = ∫

H(∂y/∂xi)2 dx. Thismay be estimated as follows [13]:

ν̂i = 1
N

N∑

j=1

|f (x(i′′)
j ) − f (xj)|2

|x(i′′)
ji − xji|

, (5)

where x(i′′)
j is a point that differs from xj only by a small increment δ of xi, in order to give

an estimate of ∂y/∂xi at each point xj. This increment, and the method of estimation of
partial derivatives, has been studied in more detail in [18,19], in which it was concluded
that DGSM provides the same quality of information as the Sobol’ indices while being
significantly less computationally demanding, aswell as the fact that the computational effi-
ciency of DGSM depends on the parameter. Methods of automatic differentiation applied
to DGSM have also been proposed in [19,20], which can further increase the computa-
tional efficiency. In this work, however, we use the original approach which takes a fixed
increment of δ = 1 × 10−5 when sampling with respect to the unit hypercube.

Notice that the three measures share a number of similarities. The first is that they are
all estimated using random samples in Hk, with perturbations in each xi direction. This
results in a so-called radial designwhich consists ofN ‘stars’ in the input space, each having
a point fromX at its centre (see Figure 2). Hence, forN radial samples, the total number of
sample points (and therefore of model runs) is NT = N(k + 1). In the cases of STi and μ∗

i ,
the perturbations are large and random, whereas in the estimator of νi they are small and
kept constant. Some alternative estimation techniques for these measures can reduce the
number of model runs required, such as metamodelling [21] or automatic differentiation
for DGSM [20].
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Figure 2. An illustration of a radial sampling design with large perturbations, with N= 5 and k= 3.

Next, all three measures use the difference between f (xj) and f (x(i′)
j ) (or f (x(i′′)

j )) as a
basis for measuring sensitivity – for STi and νi this is the squared difference, whereas forμ∗

i
it is the absolute difference. Finally, the estimators for μ∗

i and νi both use the difference in
xi as a denominator, whereas STi does not use this information. In [13], it was shown that
νi is an upper bound on VTi, such that they are related by the inequality VTi ≤ νi/π

2.
The similarities and differences between these three measures led us to consider a

fourth measure which is a variation of νi, which we denote ξi. This is defined as ξi =∫
H |∂y/∂xi| dx and is estimated as follows:

ξ̂i = 1
N

N∑

j=1

|f (x(i′′)
j ) − f (xj)|

|x(i′′)
ji − xji|

, (6)

i.e. it uses the absolute value in the numerator, rather than the squared value. The aim here
is simply to see whether the use of the absolute value, as opposed to the squared value, can
help in screening in high dimensions. Note that this measure was also mentioned in [13],
in which it was shown that it is the limit of the Morris measure as N → ∞ and |x(i′′)

ji −
xji| → 0; furthermore, it was pointed out that ξi ≤ √

νi, and νi ≤ Cξi if |∂y/∂xi| ≤ C. The
measure was also investigated in numerical experiments in [12], however, the focus was
on lower dimensional problems up to k=10. Here, the focus is on the screening context
where dimensionality is high and sample size is low.

3. Methodology

The aim of the tests performed here is to simulate as closely as possible the setting for a
screening analysis. Screening is a technique commonly employed in sensitivity analysis,
usually motivated by the following two problem constraints:
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(1) The number of inputs is high, i.e. there are at least around 30 variables, and possibly
hundreds (or even thousands).

(2) The number of runs that can be performed is low, perhaps in the region of a few
hundred at most.

The combination of these two conditions precludes the use of Monte Carlo approaches
and the use of emulators, since both would require a restrictively high number of runs. In
such a setting, a common approach in sensitivity analysis is to perform a two-step analysis.
In the first (screening) step, a rough first sensitivity analysis is performed using a very lim-
ited number of runs and a sampling-based approach such as the elementary effects method
[9].While this does not give precisemeasures of sensitivity, it is enough to divide the inputs
into an influential set and a non-influential set. Then a more detailed sensitivity analysis
can be performed on the remaining set of influential inputs, since inmany cases the dimen-
sionalitywill nowbe reduced to a sizewhich is feasible for eitherMonteCarlomethods (see,
e.g. [17]), or emulators (see [22]). The idea of finding a small set of inputs that explain the
majority of the output uncertainty is based on the principle of factor sparsity, also known
as the Pareto Principle [23], which is an observation that in many situations, 80% of the
effects are due to 20% of the causes.

Notice that in the screening step, we are not primarily interested in obtaining precise val-
ues of sensitivity measures; rather, the key objective is to split the inputs into two groups:
the influential group, and the non-influential group. For this reason, to judge the success of
a screeningmethod it is not appropriate to examine the convergence of themeasures to the-
oretical values, for example. Our approach to measuring screening performance therefore
consists of a range of analytical test functions, in which the inputs can be set to be influen-
tial or non-influential, and a measure of screening error which is based on the number of
influential variables incorrectly identified as being un-influential (i.e. a mis-classification).
This latter is explained in more detail in Section 3.2.

3.1. Test functions

Since the success of one screening method over another is dependent on the type of
model/function to be investigated, the approach taken here is to use several test functions
as the basis of comparison that have different characteristics regarding dimensionality,
nonlinearity, continuity and so forth. Test functions are used rather than physical mod-
els because with test functions we can set inputs to be influential or non influential by
controlling parameters’ values that we can set a priori. Additionally, the test functions are
very cheap to evaluate, and are conceptually no different from physical models, in that they
are simply a function of a number of uncertain inputs. In the case of a physical model, we
would actually not know the true importance of the inputs, so it would be difficult to draw
conclusions on the success of a given screening analysis.

In order to reflect a screening setting, for each function we set a certain fraction γ of the
inputs to be of higher influence on themodel output (the influential set), and the remaining
fraction 1 − γ of inputs to be of lower influence (the uninfluential set). At a given sample
size of the experimental design, each screening method attempts to correctly separate the
two sets.
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Our experiments are then set as follows. For a function with k inputs, let khigh = 
γ k�,
i.e. the number of inputs that belong to the influential set, and klow = k − khigh, the number
of inputs that belong to the uninfluential set. In each test function, the inputs are set as
important or non important by selecting suitable values of the parameters ai (see details in
the next section). In other words, the first khigh inputs, comprising the influential set, are
set to have equal and high importance, and the remainder (the uninfluential set) to have
equal and low importance.

We aim to investigate a variety of function types and dimensionalities which are typ-
ically used to test the performance of sensitivity analysis methods. For this reason, we
use three different test functions: one is a sum of simple polynomial functions which is
a smooth nonlinear additive function; the second is a more complex nonlinear function
with strong interactions and a discontinuity in the first derivative; and the last function
has a near-discontinuity in its response (details can be found in Section 4. We investigate
dimensionalities of k = {30, 50, 75, 100} and change the proportion of influential variables
between γ = 0.2 and γ = 0.5. Additionally, for each test function, we investigate different
parameter values ai to provide a wide range of scenarios.

3.2. Ameasure of screening error

In order to sort between influential and uninfluential input variables, there are two main
steps. The first is to estimate a sensitivity measure for each input variable, which will
result in a ranking. The second step is to somehow use a threshold value, or classifica-
tion/clustering procedure, to define which sensitivity values to identify as influential and
which as uninfluential. Clearly, the first step is a prerequisite for the second.Whatever clas-
sification method or threshold value is used, a necessary (but not sufficient) condition to
correctly classify the variables is that the high-importance variables all have higher sensi-
tivity scores (and therefore ranks) than all of the low-importance variables. If this is not the
case, then whatever threshold value is used, there will be some classification error. Since
there are many possible methods of classification and/or threshold values, the measure of
screening performance used here focuses on exactly this prerequisite, as opposed to the
results of a classification procedure, which would make the results dependent on which
classification procedure we choose.

Following this logic, the measure of screening error proposed here is based on the num-
ber of influential variables that are ranked below un-influential variables. In the following,
this is explained in more detail and links to similar measures are given.

At any given sample size, by employing one of the aforementioned screening methods,
each input xi is characterized by an estimated measure of its sensitivity, si (we use si as a
generic notation for a sensitivity measure, which could be STi, μ∗

i , νi or ξi. Accordingly, a
ranking ri can be defined for each input xi, where ranking runs in descending order, i.e.
ri = 1 ranks xi as the input with the highest si, whereas ri = k corresponds to the input
with the lowest si. Given that we know a priori the true ranking of the k inputs, thus which
of them belong to the influential set, we define our measure of error Z as follows:

Z = 1
khigh

khigh∑

i=1
1(ri > khigh), (7)
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where 1(·) is the count function. Recall that in all the experiments here, the set of influen-
tial variables are the first {1, 2, . . . , khigh} indices. The sum

∑khigh
i=1 1(ri > khigh) therefore

counts the number of false-negative inputs, i.e. the number of influential variables incor-
rectly identified as being in the un-influential set. Equivalently, since this is a binary
classification problem, this is also equal to the number of un-influential variables incor-
rectly classified in the influential set, i.e. the number of false positives. By dividing by khigh,
the number of influential variables, the final measure Z is the fraction of false positives.
In summary, it is a measure of inaccuracy of the screening method in individualizing the
influential set, such that Z=0 indicates that all influential inputs have been correctly iden-
tified, and Z=1 indicates that none of the influential variables have been identified (based
on the ranking).

The measure Z can also be interpreted in other ways: for example, 1−Z measures the
fraction of true positives: inputs that are correctly estimated as belonging to the influential
set. In pattern recognition and binary classification, this is known as the recall. Similarly,
Zkhigh/klow is the fraction of false negatives, and 1 − Zkhigh/klow is the fraction of true
negatives.

This methodology is purely a measure of sorting the inputs into high- and low-
importance groups, and gives no regard to precise rankings or possible cut-off values that
might be used to select high-importance from low-importance inputs, since in our expe-
rience, what is a ‘ high-importance’ input is usually problem-dependent and is decided by
the analyst. Instead, the Z measure relies on the basic logic that whatever the cut-off val-
ues that might be used, the first criterion for effective screening is that the most influential
inputs are ranked before the less influential ones. A practical example of computation of
the Z measure is offered in Section 3.4

3.3. Sampling and replications

All the measures of sensitivity discussed here require a random sample inHk as a basis.1

In practice however, many practitioners of sensitivity analysis use quasi-random numbers
in place of pseudo-random numbers, to increase the rate of convergence of the estimators
(see, for example, [24]). In the last decades, many techniques have been studied. Among
these, latin hypercube sampling (LHS) [25,26] and latin supercube sampling (LSS) [27]
were developed for the design of real experiments, whereas low-discrepancy sequences
such as the Sobol’ sequence [28] were conceived to address the problem of numerical
integration. Recent studies have compared these experimental designs with regard to the
convergence rates of sensitivity indices; Sobol’ sequences have proved to be more efficient
than both LHS [29], LSS [14] and simple Monte Carlo sampling at low sample size. More-
over, Sobol’ sequences can be enhanced by adding new sampling points in the experimental
design while keeping the sampling inHk as uniform as possible – as such they have prob-
ably become the sequence of choice for the majority of practitioners of global SA. In this
work, we therefore test both the Sobol’ sequence as well as (pseudo-) random numbers as
a basis for comparison.

Given that the test functions are explored in high dimensions and at low sample sizes,
the location of sample points used to estimate sensitivity measures will have a significant
impact on the results. In order to average the performance over possible sampling designs,
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for each test function investigated, 50 replications are made. In the case of random sam-
pling, this is simply done by drawing 50 independent samples of random numbers inHk

which are used for the basis of estimation of the sensitivity measures.
For the Sobol’ sequence of quasi-random numbers, which is deterministic, the sample is

randomised by applying a random shift in each dimension, following the so-called Cran-
ley–Patterson rotation approach of Cranley and Patterson [30]. For each replication, we
generate a random k-length vector, v, such that v ∈ Hk. This vector is then used to shift
all points from the Sobol’ sequence such that for any point xj, we generate a corresponding
randomly shifted point x̃j, where

x̃j = xj + v − 
xj + v�, (8)

where 
u� denotes the greatest integer less than or equal to u. This is equivalent to shift-
ing the whole sample in a random direction, preserving points that move outside the unit
hypercube. In this way, the structure of the sample is preserved at each replication, but
a random element is introduced, which allows for an assessment of the properties of the
sample, averaged over the position of the sample in the sample space.

Note that this randomisation approach was originally proposed for standard lattice
rules, and other approaches such as the scrambling method of Owen can in theory bet-
ter preserve the properties of the Sobol’ sequence [31]. However, the computational cost of
this method is substantial, particularly in high dimensions. Moreover, research has shown
that in practical cases, the Cranley–Patterson rotation can be equally effective [32,33]. For
these reasons, and for reasons of simplicity, this was taken as the method of choice in this
study.

Additionally, in order to observe the effects of sample size, each function is tested at
values ofN = 1, 2, . . . , 10, which result in total sample sizesNT ranging fromNT = 31 (for
N=1 and k=30), to NT = 1010; (when N=10 and k=100). The dimensionality of the
test functions k, is set to k=30,50,75,100, reflecting typical numbers of inputs encountered
in screening.

3.4. Example

In summary, we investigate the performance of each sensitivity measure in a large number
of settings, using different test functions, at different dimensionalities, sample sizes, and
parameter values. For each combination of these characteristics, we calculate Z averaged
over 50 sample replications.

For the sake of clarity an example follows. Say that we have a test function comprising
k=5 independent random inputs : x1, x2, x3, x4 and x5. The parameters of the function
are set so that the influential set comprises khigh = 2 inputs, e.g. x1 and x2. Conversely, the
non-influential set comprises klow = 3 inputs, i.e. x3, x4 and x5. At a given sample size, say
NT = 6, the sensitivity measures are estimated using one of the aforementioned screening
techniques, leading to the following ranking: ŝ1 > ŝ3 > ŝ2 > ŝ5 > ŝ4. Here, the measure of
error is Z=0.5, because one of the two influential inputs is falsely estimated as belonging
to the negative set (r2 = 3 > khigh); as a consequence, one of the un-influential inputs is
misclassified in the positive set, resulting in a false positive.

A replication, applying the very same settings but with a different sample of NT = 6
experiments, provides say ŝ2 > ŝ1 > ŝ4 > ŝ3 > ŝ5. Here, themeasure of error isZ=0; none
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of the two high-sensitivity variables are falsely estimated as belonging to the negative set.
Another replication provides say ŝ5 > ŝ2 > ŝ4 > ŝ1 > ŝ3. Again, the measure of error is
Z=0.5. Then, an averageZ is computed considering the three replicas : Z̄ = 0.33.Hence, at
a sample sizeNT = 6, the average inaccuracy of the screening technique for individualizing
the influential set is 0.33 ; i.e. the screening technique is 33% inaccurate on average in
identifying the influential inputs from the non-influential ones. Clearly, in this example,
there are only three replications instead of 50, but it is intended to illustrate the procedure.

4. Test functions

In this section, the results displayed are from Sobol’s quasi-random sampling unless oth-
erwise stated. This is because the relative performance (that is, how well each measure
performs compared to the others) when using the Sobol’ sequence as opposed to ran-
dom numbers is almost identical. Additionally, Sobol’ sampling results in lower Z values
(screening error) than random sampling, at given sample sizes. In Section 4.4 we do
however briefly summarise the relative performance with random sampling.

4.1. Polynomial additive function

The first function used to compare the four measures was a simple polynomial additive
function, of the form,

y = f (x) =
k∑

i=1
aix

p
i , (9)

where p is the order of the polynomial, and the ai are the parameters whose values we
appropriately choose in order to set a priori the influential and the non-influential inputs.
A plot of this function with k=2 is found in Figure 3. To give an idea of sensitivities, at
k=30, ahigh = 2, alow = 1, p=2 and γ = 0.2 (γ is the share of influential inputs), the
first six inputs have a sensitivity of ST = 0.085, while the remainder have ST = 0.021, i.e.
around a quarter of the sensitivity of the influential inputs.

Table 1 shows the results of four configurations of the polynomial function, at different
dimensionalities. The numbers in each sensitivity measure column refer to ranks of which
measure performed best on average over all sample sizes, at the given parameter values.
Recall here that tests were performed at values of N = 1, 2, . . . , 10, which resulted in total
sample sizes NT ranging from NT = 31 for N=1 and k=30, to NT = 1010; when N=10
and k=100 (given that NT = N(k + 1) for radial sampling, as explained in Section 2). A
rank value of 1 is assigned to the measure which has the lowest Z values at the majority of
values of NT . A rank value of 2 is given to the measure which has the lowest Z values at
the majority of values of NT , if the first-ranked measure were not there, and so on. This
is simply a way to illustrate the results of a large number of experiments in a condensed
fashion.

The coefficients are set at ahigh = 2 and alow = 1 in all cases, but the order of the poly-
nomial is increased from 2 to 3, and the fraction of significant inputs from 0.2 to 0.5. In
these experiments, the bestmeasure is now unequivocallyμ∗, with ν being the second best,
followed by ξ , and finally ST in the last place. The results do not seem to depend on the
dimensionality k or on other combinations of parameters ai that have been investigated. To
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Figure 3. Plot of polynomial function for k= 2, ahigh = 2, alow = 1, p= 3, γ = 0.5.

Table 1. Configuration and performance rankings of experiments with polynomial additive function.

k ahigh alow p γ ST μ∗ ν ξ

30 2 1 2 0.2 4 1 2 3
50 2 1 2 0.2 4 1 2 3
75 2 1 2 0.2 4 1 2 3
100 2 1 2 0.2 4 1 2 3
30 2 1 2 0.5 4 1 2 3
50 2 1 2 0.5 4 1 2 3
75 2 1 2 0.5 4 1 2 3
100 2 1 2 0.5 4 1 2 3
30 2 1 3 0.2 4 1 2 3
50 2 1 3 0.2 4 1 2 3
75 2 1 3 0.2 4 1 2 3
100 2 1 3 0.2 4 1 2 3
30 2 1 3 0.5 4 1 2 3
50 2 1 3 0.5 4 1 2 3
75 2 1 3 0.5 4 1 2 3
100 2 1 3 0.5 4 1 2 3

see in a little more detail, Figure 4 shows two selected plots, the first showing the results of
the quadratic function, and the second of the cubic function, with γ = 0.2 in both cases.
These are representative of the relative performance of the other cases in Table 1. To briefly
explain these plots, in Figure 4(a), for example, the upper line shows that at a total cost of
around NT =100 function evaluations, ST is able to rank the inputs so that about a little
under half of the significant variables are identified (in the first khigh ranking positions),
since Z ≈ 0.58. The DGSMmeasures, at the same sample size, can identify more than half
of the significant inputs (Z ≈ 0.45). In all cases these values represent averageZ values over
50 sample replications.

It is evident first of all that there is not a huge difference between any of the measures,
but the μ∗ measure is best by a small margin, particularly at the lowest sample sizes. In
the quadratic case, the performance is overall better for all four measures compared to the
cubic function, such that we see Z=0 from NT = 400 in the former case for all measures
except ST , whereas in the latter case NT = 800 sample points are required.
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Figure 4. Convergence plots for polynomial function: (a) p= 2; (b) p= 3; In all cases k= 100, ahigh = 2,
alow = 1 and γ = 0.2.

4.2. G∗ function

The G∗ test function is a more complicated nonlinear and non-additive function, as used
in [16] among many other sensitivity analysis articles. It has the following form:

y = G∗ = G(x1, x2, . . . , xk, a1, a2, . . . , ak,α1,α2, . . . ,αk) =
k∏

i=1
g∗
i

g∗
i = (1 + αi)|2(xi − I[xi]) − 1|αi + ai

1 + ai
, (10)

where ai ≥ 0 andαi ≥ 0 are parameters which can be chosen to obtain different behaviours
of the function, and I[xi] is the integer part of xi. The relative importance of the inputs
(x1, x2, . . . , xk) in the G∗ function is controlled by the magnitude of ai (for this test
function, the smaller ai the more important is xi) and the nonlinearity by αi.

To illustrate the influence of the parameters, Figure 5 shows plots of g∗(a,α) for values
of a and α. In the left figure, a value of a=3 is used, and plots of α = {1, 2, 3} are shown,
which give linear, quadratic and cubic behaviour, respectively, centred at x=0.5. On the
right side, the same coefficients are used, except a=10. Here, it is evident that the effect
on y is of a lesser magnitude, which illustrates that the higher the value of a, the lower the
amplitude of g∗, and the lower the importance of the corresponding input. The coefficient
α acts on the curvature of the bottom part of the g∗ function, thus maximizing the slope
towards the high values.

As with the other functions, the dimensionality was set to k=30,50,75,100 to represent
dimensionalities that might be encountered in a screening analysis. The parameter α was
also set to α = 1, 2, 3 to test at different values of nonlinearity. Finally, the ai parameters
were set in two scenarios: the first a low-interaction with ahigh = 3 and alow = 10. The
second scenario set ahigh = 1 and alow = 2, with strong interactions between the inputs.
Figure 6 shows a plot of the G∗ function for k=2, using the coefficients from the latter
case.
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Figure 5. Plots of G∗ function at k= 1 and α = {1, 2, 3}, with: a= 3 (left), a= 10 (right).

Figure 6. Plot of G∗ function for k= 2, ahigh = 1, alow = 2, α = 2, γ = 0.5.

Table 2 shows the relative performance of the various sensitivity measures on different
configurations of the G∗ function. The table reveals a number of features: first of all, for
a given set of parameters, the dimensionality of the function does not generally impact
the relative performance of the sensitivity measures. One can also see that, in contrast to
the polynomial function, the DGSM measures ν and ξ are almost always the best, with ξ

having the best performance in 85% of cases. Then for all cases theμ∗ measure is the third
best, followed by ST , which is the last.

More detail can be obtained by examining plots of the error measure Z from Equation
(7) against NT , showing the decrease of the error of each measure with total sample size.
Figure 7(a) shows the performance at k=100, ahigh = 1, alow = 2, α = 2 and γ = 0.2, in
which it can be seen that the two derivative-based measures perform much better than
ST and μ∗, with a very small difference between ξ and ν. Keeping these parameter values
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Table 2. Configuration and performance rankings of experiments with G∗ function.

k ahigh alow α γ ST μ∗ ν ξ

30 1 2 2 0.2 4 3 2 1
50 1 2 2 0.2 4 3 2 1
75 1 2 2 0.2 4 3 1 2
100 1 2 2 0.2 4 3 1 2
30 1 2 2 0.5 4 3 2 1
50 1 2 2 0.5 4 3 2 1
75 1 2 2 0.5 4 3 2 1
100 1 2 2 0.5 4 3 2 1
30 1 2 3 0.2 3 4 1 2
50 1 2 3 0.2 4 3 1 2
75 1 2 3 0.2 4 3 1 2
100 1 2 3 0.2 4 3 1 2
30 1 2 3 0.5 4 3 2 1
50 1 2 3 0.5 4 3 2 1
75 1 2 3 0.5 4 3 2 1
100 1 2 3 0.5 4 3 2 1
30 3 10 1 0.2 4 3 1 1
50 3 10 1 0.2 4 3 1 1
75 3 10 1 0.2 4 3 1 1
100 3 10 1 0.2 4 3 1 1
30 3 10 1 0.5 4 3 1 1
50 3 10 1 0.5 4 3 1 1
75 3 10 1 0.5 4 3 1 1
100 3 10 1 0.5 4 3 1 1
30 3 10 2 0.2 4 3 2 1
50 3 10 2 0.2 4 3 2 1
75 3 10 2 0.2 4 3 2 1
100 3 10 2 0.2 4 3 2 1
30 3 10 2 0.5 4 3 2 1
50 3 10 2 0.5 4 3 2 1
75 3 10 2 0.5 4 3 2 1
100 3 10 2 0.5 4 3 2 1
30 3 10 3 0.2 4 3 2 1
50 3 10 3 0.2 4 3 2 1
75 3 10 3 0.2 4 3 2 1
100 3 10 3 0.2 4 3 2 1
30 3 10 3 0.5 4 3 2 1
50 3 10 3 0.5 4 3 2 1
75 3 10 3 0.5 4 2 3 1
100 3 10 3 0.5 4 2 3 1

but setting α = 3 (which increases the nonlinearity), there is little difference in relative
performance (Figure 7(b)), although the overall Z-values for all four measures increase
somewhat.When the fraction of influential variables is increased to γ = 0.5, in Figure 7(c),
the ordering changes slightly, with ξ now performing the best, followed closely by ν. The
difference in ranking errors between the DGSMmeasures and μ∗ and ST is also markedly
less. The same is true in Figure 7(d), in which the coefficients are changed to the low-
interaction setting. In this case, ξ is the best performer, followed by the other measures in
the same order.

One general feature of these results is that, at least in the G∗ function, DGSMmeasures
seem to be more efficient at ranking functions with strong interactions, given the wide gap
between ξ and ν and the other two measures. Between the two DGSM measures them-
selves, there is little discernable difference, although ξ may have a slight advantage. Most
likely the reason thatDGSMmeasures performmuch better than the othermeasures on the
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Figure 7. Convergence plots for G∗ function: (a) ahigh = 1, alow = 2, α = 2, γ = 0.2; (b) ahigh = 1,
alow = 2, α = 3, γ = 0.2; (c) ahigh = 1, alow = 2, α = 3, γ = 0.5; (d) ahigh = 3, alow = 10, α = 2,
γ = 0.5; In all cases k= 100.

G∗ function is that they are based on a sampling strategy that uses small steps. Given that
the G∗ function is non-monotonic, it is possible for the large-step samples of μ∗ and ST to
‘miss’ the high gradient of the function in a given dimension by sampling either side of the
peak, which might output similar values. With the DGSM sample, this is much less likely
to happen because the steps are very small, so the measure is better able to estimate the
gradient of the function at a given point. A wider conclusion that can be drawn here then
is that DGSM measures should be much more efficient when screening non-monotonic
functions.

A related point here is that in the (piecewise) linear case, when α = 1, the DGSMmea-
sures can perfectly capture the importance of the inputs, giving error values of Z=0 for all
values of N. This is because first, when a function is linear, the gradient at any point can
be used to measure its global sensitivity, since the gradient does not change over the input
space. Second, although theμ∗ measure is also related to the gradient, because it measures
across large steps it suffers from the problems related to non-monotonicity, as mentioned
previously.
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Figure 8. Plot of step function for k= 2, ahigh = 3, alow = 1, γ = 0.5.

Table 3. Configuration and performance rankings of experiments with step function.

k ahigh alow γ ST μ∗ ν ξ

30 3 1 0.2 1 2 3 4
50 3 1 0.2 1 2 3 4
75 3 1 0.2 1 2 3 4
100 3 1 0.2 1 2 3 4
30 3 1 0.5 1 2 3 4
50 3 1 0.5 1 2 3 4
75 3 1 0.5 2 1 3 4
100 3 1 0.5 2 1 3 4

4.3. Step function

The final test function is a simple function with a near-discontinuity, of the form,

y = f (x) =
k∑

i=1
aierf(15(xi − 0.5)), (11)

where erf is the error function. This function has a gradient of zero in most places, except
around xi =0.5, at which point the gradient is very steep. This behaviour can be seen
in Figure 8, where the function is plotted with k=2 for illustration. For the numerical
experiments, ahigh = 3 and alow = 1, with a fraction γ from 0.2 to 0.5 as shown in Table 3.

The step function was in fact chosen as a counter-example to show the limitations of
the DGSM measures. Looking at Table 3, the results clearly reflect this. Contrary to the
previous two functions, ST performs the best at all the configurations tested except two,
with the μ∗ measure performing second-best, followed by ν and ξ .

More detail can be seen in Figure 9: ST performs better in both plots (averaged over
sample size), although only by a small margin compared to μ∗. The two DGSMmeasures
perform very similarly to each other, with poor performance at lower sample sizes, but
a rapid reduction in Z as sample size increases, such that by NT = 800 they both give
Z=0. The reason for this ranking is the same as why the ranking is the opposite for the



2106 W.E. BECKER ET AL.

Figure 9. Convergence plots for step function: (a) ahigh = 3, alow = 1, γ = 0.2; (b) ahigh = 3, alow = 1,
γ = 0.5; In all cases k= 100.

G∗ function – the DGSMmeasures use small steps in each xi direction, whereas the other
two measures use large steps. The small steps are a disadvantage for a function such as
the step function, because the sample points need to be very close to the ‘discontinuity’
to see a non-zero gradient (see again Figure 8). Indeed, if there were a true discontinu-
ity, the DGSM measures would return sensitivity measures of zero unless the xj and xi

′′
j

happened to fall either side of the discontinuity. The measures ST and μ∗, on the other
hand, are much more likely to see a change in the function output as a result of their larger
steps.

4.4. Results with random sampling

The previous results have only shown the performance of the sensitivitymeasures using the
Sobol’ quasi-random sequence, since the relative performance of each is nearly identical to
that when using random numbers. However it is worth briefly examining the differences
between using random sampling and the Sobol’ sequence. Figure 10 shows three selected
plots. Clearly, in almost all cases, the use of the Sobol’ sequence improves the performance
of the sensitivity measures at a given sample size, relative to simple random sampling.

For the polynomial function, the difference is quite stark, with a practically error-free
performance at sample sizes of around 800 upwards (except STi, for 100 variables, for the
Sobol’ sequence, and significantly worse performance with random numbers. A lesser,
but still significant difference is obtained with the G∗ function, but only for the DGSM
measures. Finally, the case of the step function is quite interesting. First, the rate of conver-
gence is considerably improved for the DGSM measures, such that at higher sample sizes
they actually perform the best. Strangely however, the use of the Sobol’ sequence does not
actually improve the performance of the ST measure: on the contrary, it actually makes it
worse.

Still, the overriding conclusion is that the Sobol’ sequence performs better in almost all
cases, and can lead to significant computational savings.
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Figure 10. Convergence plots for three selected cases, all with k= 100 and γ = 0.2: (a) G∗ function
at ahigh = 3, alow = 10 and α = 3; (b) polynomial function at ahigh = 2, alow = 1 and p= 3; (c) Step
function at ahigh = 3, alow = 1.

5. Discussion and conclusions

By far the most evident conclusion of this work is that there is no ‘one size fits all’ solution
to sensitivity analysis, and that the best-performing sensitivity measure in the screening
context is very dependent on the type of function or model that is being analysed. This
should come as no surprise to those who have experience in sensitivity analysis, or indeed
in data analysis as a wider discipline, yet some studies still draw conclusions on the results
of a single test function. It is clear from this work that a range of test functionswith differing
linearity, monotonicity, continuity and interactions should be investigated. Of course, our
tests could be extended yet further, but on the basis of this work some useful conclusions
can be drawn.

The first thing to note is that DGSMmeasures perform surprisingly well at low sample
sizes, a feature which we do not believe has been specifically investigated to date. On func-
tions such as the G∗ function, they actually have a clear advantage, whereas on smoother
functions such as the polynomial function, they exhibit comparable performance with the
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μ∗ measure. When the function is linear, or piecewise linear, they also provide a much
faster convergence than the othermeasures, and also performwell in the presence of strong
model interactions. Although the step function is a clear counter-example where DGSM
measures have more difficulty, it is probably safe to say that this kind of response surface is
not too common in physical models. In any case, the tests show that as sample size is mod-
erately increased (around 800 model runs in 100 dimensions), DGSM measures actually
perform better than other measures. Therefore, it is only in the very low sample sizes that
they are worse than other measures in this particular example.

The total Sobol’ index is not generally efficient at low sample size, and is outperformed
by the DGSM measures and the μ∗ measure in most cases, with the exception of the step
function. It is not therefore recommended to be used as a screening tool.

The modified DGSM measure proposed in this work had some reasonable success –
giving at least comparable performance to the standard DGSMmeasure, and possibly sur-
passing it depending on the function. However, the performance of the two was generally
quite close, therefore, it is not possible to say that one is necessarily better than the other
without a considerable amount of further testing.

Overall, DGSM measures would seem to be a very useful tool in a screening analy-
sis, as long as their caveats are kept in mind. A safe strategy would be to try to estimate
both DGSM measures andST , although this would require a larger sample which may be
impractical.

A further general observation is that the rate of convergence for all the measures here
is quite good – even with 100 variables, they can be mostly sorted into high- and low-
influence groups with some few hundreds of runs. Additionally, the test functions here are
designed to be taxing – in practice, many physical models do not exhibit strongly nonlinear
behaviour. Substantial further computational savings can be obtained by using the Sobol’
sequence in place of random numbers, and perhaps further by grouping variables – see,
for example, Morris [9] and citing literature, and [19,34] in relation to derivative-based
sensitivity measures.

In summary, this investigation indicates that sampling-based measures provide a solu-
tion to screening in high dimensions, at very low sample sizes; i.e. in cases where emulators
would not be applicable. Derivative-based measures offer a particularly useful tool in this
respect.

Note

1. Strictly speaking, these are pseudo-random numbers because computer algorithms cannot
output truly random numbers, but they exhibit most of the properties of random numbers.
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