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ABSTRACT
With new developments in sensor technology, a new generation of
vehicle dynamics controllers is developing, where the braking and
steering strategies use more information, e.g. knowledge of road
borders. The basis for vehicle-safety systems is how the forces from
tyre–road interaction is vectored to achieve optimal total force and
moment on the vehicle. To study this, the concept of attainable
forces previously proposed in literature is adopted, and here a new
visualisation technique is devised. It combines the novel concept
of attainable force volumes with an interpretation of how the opti-
mal solution develops within this volume. A specific finding is that
for lane-keeping it is important to maximise the force in a certain
direction, rather than to control the direction of the force vector,
even though these two strategies are equivalent for the friction-
limited particle model previously used in some literature for lane-
keeping control design.More specifically, it is shown that the optimal
behaviour develops on the boundary surface of the attainable force
volume. Applied to lane-keeping control, this observation indicates
a set of control principles similar to those analytically obtained for
friction-limited particle models in earlier research, but result in vehi-
cle behaviour close to the globally optimal solution also for more
complex models and scenarios.

ARTICLE HISTORY
Received 26 April 2018
Revised 12 February 2019
Accepted 3 April 2019

KEYWORDS
Active safety; force vectoring;
vehicle dynamics control;
tyre–road interaction; vehicle
manoeuvre strategy

1. Introduction

Development of autonomous functions for vehicles is currently an active research area.
This process includes the development of new active vehicle-safety systems, building on
partial or full autonomywithout human intervention. Themain enablers for this promising
development is more sensors installed in the vehicle and significantly increased onboard
computing power. One main objective for achieving autonomy of the vehicle is situation
awareness, and more specifically the ability for the vehicle to map the environment and
have knowledge of the lane borders of the road for a certain look-ahead distance. This
information can then be employed in the motion planning and control of the vehicle, in
particular to the purpose of achieving optimal lane-keeping control [1,2]. Realisation of
such control principles can give close to optimal performance, which has been described
in, e.g. [3,4] (see further references on the subject in Section 1.1). Alternative approaches
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compared to those presented in Section 1.1 when addressing mitigation and control for
challenging manoeuvres are methods based onmodel predictive control (MPC) [5–7] and
methods based on path tracking [8–10].

For the development of optimal lane-keeping control systems, it is critical to understand
how the available tyre forces from interaction with the road can be used in the best pos-
sible way, given the information from the situation-awareness systems in the vehicle. This
understanding is interesting from a number of perspectives, in particular to evaluate how
close to optimal tyre utilisation a particular manoeuvre is, and perhaps more importantly,
to devise new control strategies for optimal vehicle control in time-critical situations that
are possible to realise for online execution.

With the perspectives indicated in the two previous paragraphs, we introduce a new
visualisation technique based on the previously proposed concept of attainable forces [11].
It combines how the attainable forces develop over time with an optimal solution for a
particular manoeuvre, resulting in a volume of attainable forces (see Section 4). The objec-
tive with this visualisation is to obtain insight from how the optimal manoeuvre develops
within the attainable force volume. The information extracted from the plots of the attain-
able force volumes and an optimal solution can provide a basis for the development of
strategies on how to vector the force and the moment on the vehicle. In the scenarios con-
sidered in this paper, it is observed that a local control approach for the given geometry and
vehicle state, perhaps surprisingly, results in vehicle behaviour close to the globally optimal
solution. This observation is important, since it indicates a set of control strategies that can
be implemented and executed online.

1.1. Background

Analytical solutions of optimal control problems related to safety-critical manoeuvres exist
for certain models and scenarios. In [3], a control law referred to as the parabolic path
reference strategy (PPR) was proposed. The PPR strategy is based on optimal control of a
friction-limited particle model and was shown to result in good performance compared to
conventional yaw control. The PPR strategy was integrated and developed into a complete
control design in [4], which is able to account for nonlinear models of the tyre forces. In
[12], the solution from optimal control of a friction-limited particle model was used for
lane-change control.

To find optimal solutions for problems that are analytically intractable to solve, numer-
ical optimal control techniques can be used. By the use of numerical optimal control,
the maximum initial velocity that can be handled in a left-hand turn was examined
in [1], showing that braking to reduce speed was given priority over braking to con-
tribute to a turn-in yaw moment. A continuous family of braking patterns was found
in [2], by using a weighted cost function of initial and final velocity. There, signifi-
cant similarities in the optimal trajectories were found between different safety-critical
scenarios. In [13], different actuator configurations of a vehicle were examined using
numerical optimal control for the same scenarios as in the current paper. It was noted
that in the trade-off between reducing speed and cornering, full braking is initially
required at the expense of the steering ability. Torque vectoring for minimum-time
cornering was examined in [14] by using optimal steering inputs given by numeri-
cal optimal control. It was demonstrated that the performance of a vehicle capable of
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torque vectoring is largely insensitive to the uncontrolled understeer behaviour of the
vehicle.

One interesting perspective with numerical optimal control is to find general charac-
teristics in the obtained solutions, which can be used in future control systems. In [11],
attainable forces from applying wheel forces were computed at selected time instants of a
manoeuvre to evaluate the potential of different actuator configurations in vehicles. The
results visualised, when compared with individual wheel drive, that there was less poten-
tial to contribute to the turn-in yawmoment with individual wheel brakes only. Numerical
optimal control was used in [15] to investigate mitigation of secondary collisions post
impact. By examining the attainable forces in optimal manoeuvres, the trade-off between
yaw-moment control and lateral force control was examined. From the findings in [15], a
subsequent control design was presented in [16]. Plots of the attainable forces were used
to evaluate the similarity of the closed-loop control compared to the optimal solution.
The papers [17,18] extend the results from [15,16] by also considering front-axle steer-
ing control in addition to individual braking, to minimise the lateral deviation. Attainable
forces can thus be a powerful tool in the search for new control principles when analysing
numerical solutions.

The research cited in the previous paragraphs demonstrate the feasibility of finding
inspiration for new control principles based on optimal control. In particular, it is inter-
esting to investigate if strategies similar to those analytically obtained for friction-limited
particle models in certain scenarios can be found for more complex vehicle models and
scenarios. The scenario considered in [15–18] can be interpreted as a particular case of
lane-keeping control, i.e. staying on a straight road under challenging initial conditions.
This is encouraging for the use of attainable forces to analyse other manoeuvres related to
lane keeping.

2. Scenarios

Two common safety-critical scenarios are used in this paper to illustrate the developed
method. The first scenario is a left-hand turn with constant curvature. The second scenario
is a double lane-change based on the ISO standard 3888-2 [19]. To simplify the constraints
introduced by the scenarios, only one point in the volume spanned by the vehicle is con-
sidered in the path constraints, rather than ensuring that no part of the vehicle volume
violates any constraints.

2.1. Left-hand turn scenario

The left-hand turn scenario is illustrated in Figure 1, where the vehicle enters the turn at
the centre of the lane from the left-hand side. For the optimal control problem (OCP) to
be solved in Section 3.2, the initial state of the vehicle is set to the position and orientation
marked by OCP start in Figure 1. The manoeuvre is considered to end at the time tf when
the deviation from the centre of the lane, denoted e, stops increasing, i.e. when ė(tf ) ≤ 0.
The turn has a radius of 30m and the vehicle position (Xp,Yp) is constrained by a maxi-
mum deviation from the centre of the lane, |e| ≤ d, where d is the half width of the lane
that is chosen as 1m.
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Figure 1. Illustration of the left-hand turn scenario. The dashed line marks the centre of the lane and
the black curves mark the borders for the vehicle position (Xp, Yp).

Figure 2. Illustration of the double lane-change track. The black bars mark the placement of the cones
according to the ISO standard 3888-2 and the black curves mark the borders for the vehicle position
(Xp, Yp).

2.2. Double lane-change scenario

The double lane-change scenario is illustrated in Figure 2. The numerical track parameters
used are chosen based on the ISO standard 3888-2 [19]; the parameters are collected in
Table 1. The starting position of the vehicle is selected to be centred in the lane and 10m
from the left-hand side of the track. Since only the vehicle position (Xp,Yp) is constrained,
the boundaries are made more narrow than the cone placement specified by the standard
to compensate for the vehicle width. Mathematically, the track is modelled using top and
bottom lane constraints according to

Yp ≤ Yt(Xp) = a + c(H(Xp − Xt1)− H(Xp − Xt2)), (1)

Yp ≥ Yb(Xp) = −a + c(H(Xp − Xb1)− H(Xp − Xb2)), (2)

H(x) = 0.5
(
1 + tanh

(
2πx
τ

))
, (3)

whereH is a sigmoid function and a, c, Xt1, Xt2, Xb1, Xb2, and τ are numerical parameters
defined in Table 1.
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Table 1. Parameters used for the double lane-change
track. All of the parameter units are in metres.

Notation Value (m)

A 12
B 13.5
C 11
D 12.5
E 12
wlane 3
wcar 1.7
τ 2
a (wlane − wcar)/2
c wlane + 1
Xt1 A + τ/2
Xt2 A + B + C + D − τ/2
Xb1 A + B − τ/2
Xb2 A + B + C + τ/2

3. Modelling and optimisation

This section provides a description of the adopted vehicle model and the optimisation
approach employed for computing the optimal manoeuvres to be analysed using attainable
force volumes.

3.1. Vehiclemodel

The vehiclemodel is a double-trackmodel (see Figure 3), with longitudinal and lateral load
transfer between the different wheels included. A nonlinear tyre model based on Pace-
jka’s Magic Formula [20] is employed, and weighting functions as suggested in [20] are
used for describing the tyre forces under combined longitudinal and lateral tyre slip. In the
employed tyre model with parameters originating from [20], the tyre forces scale linearly
with the normal force acting on the tyre, which is a simplification of the actual tyre char-
acteristics but is considered justified based on previous tyre-model investigations in the
context of optimisation [21]. The vehicle is moving in a globally fixed coordinate system,
defined by the position (Xp,Yp), marking the vehicle centre of rotation in the vehicle frame,
and the heading angleψ (see Figure 3). The inputs to themodel are the steering angle δ and
the commanded wheel torques Tu,i, i=1,2,3,4, each acting on the applied wheel torque Ti
for the corresponding wheel through a first-order system. For the torques, Tu,i, only brak-
ing is considered, i.e. no positive commanded torques, and the time constant of the braking
system is selected as 0.1 s. The highest allowed commanded braking torques are selected as
Tu,i,min = −μx,imgRw, where μx,i is the longitudinal friction coefficient of tyre i, m is the
vehicle mass, g is the gravitational acceleration constant, and Rw is the wheel radius. The
steering angle and steering rate are limited to δmax = 0.5 rad and δ̇max = 1 rad/s, respec-
tively. A summary of the inputs to the model and the vehicle states is given in Table 2. The
model equations and model parameters are specified in [21], where the model employed
in this paper is referred to as DT-WF.

3.2. Optimal control problem

The problem of finding optimal steering and braking sequences is stated as finding the
solution to an optimal control problem (OCP). The approach from [2] is adopted, where a
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Figure 3. Double-track vehicle model and its associated global coordinate system.

Table 2. Vehicle states and inputs in the adopted double-
track model with a nonlinear tyre-friction model.

Description Notation

Position and orientation Xp , Yp ,ψ
Velocity and yaw rate vx , vy , r
Roll and pitch motion φ, φ̇, θ , θ̇
Steer angle δ

Rotational wheel speeds ω1,ω2,ω3,ω4
Wheel slip angles α1,α2,α3,α4
Applied wheel torques T1, T2, T3, T4
Commanded wheel torques Tu,1, Tu,2, Tu,3, Tu,4

continuous family of optimal braking patterns in autonomous manoeuvres was presented.
More specifically, an optimisation criterion to be minimised, with a weighted combina-
tion of the initial velocity v0 and the final velocity vf of the manoeuvre, was introduced
according to

J = −ηv0 − (1 − η)vf , 0 ≤ η ≤ 1. (4)

The intuition behind this formulation is that in order to stay in lane, all-wheel braking
is typically performed when at the maximum entry speed possible to handle, whereas if
the entry speed is below the maximum, it can be advantageous to not brake more than
necessary, which can be formulated as maximising the exit speed (see [2] for further moti-
vation and discussion). TheOCP includes constraints on the control inputs u, i.e. the wheel
torques Tu,i and the steering angle δ. In addition, the path constraints introduced for the
scenarios in Section 2 are represented by the function f. Mathematically, the OCP is stated
over the time interval [t0, tf ] as follows (where the final time tf is unknown a priori):

minimise J, (5a)

subject to Tu,i,min ≤ Tu,i ≤ 0, i ∈ {1, 2, 3, 4}, (5b)

|δ| ≤ δmax, |δ̇| ≤ δ̇max, f (Xp,Yp) ≤ 0, (5c)

Fcx(0) = x̃0, Gcx(tf ) = x̃f , g(x(tf )) ≤ 0, (5d)

ẋ = G(x, z, u), h(x, z, u) = 0. (5e)
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ThematricesFc andGc specify the stateswhere initial and terminal constraints are enforced
(denoted with x̃0 and x̃f , respectively). Further, the function g specifies possible terminal
inequality constraints on the states. The functions G and h define the vehicle dynamics
with the dynamic state vector x, algebraic variable vector z, and input vector u. In the opti-
mal manoeuvres computed in this paper, the OCP is solved for the optimisation criterion
given by extreme points of (4), i.e. η = 1 or η = 0. This implies that J is chosen as either
J = −v0 or J = −vf . As illustrated in [2], these two cases correspond to optimal lane keep-
ing and optimal yaw control, respectively. The intuition behind these interpretations is that
maximum entry speed corresponds to optimal lane keeping, whereas optimising exit speed
turns out to avoid braking on the outer wheels, i.e. only braking of the inner wheels is
performed, similar to traditional yaw control (see Figure 5 in Section 5).

The resulting optimisation problem is solved numerically using the JModelica.org sim-
ulation and optimisation platform [22] with the methodology presented in [21]. The
numerical method for solving the continuous-time optimisation problem (5) is based on
direct collocation [23]. The collocation procedure handled by JModelica.org results in a
large nonlinear optimisation program, where the optimisation variables correspond to the
interpolation values of the collocation polynomials at the collocation points for the tra-
jectories of the inputs, states, and algebraic variables of the model. In the solution of the
resulting nonlinear program, IPOPT [24] with the linear solver HSL MA57 [25] is used.
In JModelica.org, the CasADi tool [26] is used for computing the necessary Jacobians and
Hessians using algorithmic differentiation.

4. Forces

The resulting forces on the vehicle from the employed actuation in an at-the-limitmanoeu-
vre are of particular importance to study. Forces acting in certain globally fixed directions
during an optimal manoeuvre can give intuition for control design, and a close investiga-
tion of the computed optimal manoeuvres is thus beneficial for design of future functions
for vehicle safety and autonomy. In this section, the tools used for analysing and visual-
ising the behaviour of vehicle manoeuvres are defined. Firstly, forces of interest for the
scenarios considered in this paper are defined. Secondly, the procedure used here for com-
puting attainable forces is defined. Finally, a new visualisation of the attainable forces is
introduced.

4.1. Global forces

In [15], the optimisation criterion was to minimise the deviation from the straight centre-
line of a road during a vehiclemanoeuvre, and in that paper the force acting in the direction
that opposes the path deviation was noted to be of particular interest. Moreover, in [3] an
analytical solution of an optimal control problem to minimise the maximum deviation
from the centreline of the road during a left-hand turn scenario was derived for a friction-
limited particle model of the vehicle. The particular globally fixed force vector that was
found to contribute to lane keeping was later used for designing a controller for vehicle
stabilisation [4]. Also in [3], it was noted that for optimal control of a double-track vehicle
model in a left-hand turn, the direction of the acceleration vector in globally fixed coor-
dinates is largely constant during the manoeuvre. Further, related analytical solutions of
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an optimal control problem have been derived for friction-limited particle models in [27]
in single-obstacle avoidance scenarios. These observations and control designs in previ-
ous research motivate the interest for certain global forces on the vehicle arising during
manoeuvring scenarios.

4.1.1. Control force vector
In a lane-keeping scenario, the force lateral with respect to the road can bemore important
to control in order to reduce the lateral error of the vehicle than the lateral forcewith respect
to the vehicle ego orientation. For at-the-limit manoeuvres where the focus is to avoid
driving off the road or crash into another vehicle rather than staying close to the centre
of the lane, forces that are especially important to control can analogously be found. The
force vector that includes the components important for control purposes is here named
the control force vector Fc and is theoretically justified in Section 4.1.2. In order tomake an
analysis of global forces of interest for the scenarios considered in this paper (see Section 2),
it is for a single turn assumed that tf is the time when the vehicle stabilises – i.e. the vehicle
no longer decreases its distance to themost immediate obstacle. The particular global force
component of interest, in this paper denoted Fc,y, is then acting in a globally fixed direction
that points into the curve and perpendicular to the direction of the final velocity vectorψv .
Also the global force acting in the direction of the final velocity vector is of interest; this
force is here named Fc,x. Intuitively, Fc,y is the force that stops the approach of the vehicle
toward the obstacle whereas Fc,x influences the final velocity. For further reference and
clarity, some key concepts and notations in this paper are introduced as definitions. The
first definition concerns the selected global forces of interest.

Definition 4.1 (Control force vector Fc): The components of the control force vector Fc,
Fc,x and Fc,y, are acting in the directions of interest for lane-keeping control as illustrated
in Figure 4. Expressed in terms of the forces Fp,x and Fp,y in the globally fixed coordinate
system, or in terms of the local vehicle longitudinal and lateral forces, Fx and Fy, the control
forces Fc,x and Fc,y are calculated according to the expression

[
Fc,x(t)

(−1)nFc,y(t)

]
=

[
cos(ψv(tf )) sin(ψv(tf ))

− sin(ψv(tf )) cos(ψv(tf ))

] [
Fp,x(t)
Fp,y(t)

]
(6)

=
[
cos(ψv(tf )) sin(ψv(tf ))

− sin(ψv(tf )) cos(ψv(tf ))

] [
cos(ψ(t)) − sin(ψ(t))
sin(ψ(t)) cos(ψ(t))

] [
Fx(t)
Fy(t)

]
,

(7)

where tf is the time when the vehicle no longer decreases its distance to the obstacle, ψv is
the angle defining the direction of the velocity vector, and n is 0 for a left-hand turn and 1
for a right-hand turn. �

For more complex manoeuvres than a single turn, different definitions of Fc could
be made along the path to mirror the varying road geometry. This generalisation of
Definition 4.1 is illustrated in Figure 4. Note that in the general case, the angle ψv(tf ) is
unknown a priori. This angle is known in hindsight, after the OCPs for the particular sce-
narios have been solved. This fact does not imply any limitation for the offline evaluation
in this paper.



VEHICLE SYSTEM DYNAMICS 1109

Figure 4. Geometric description of the control forces Fc,x and Fc,y in Definition 4.1 in an example sce-
nario. The curved line describes the vehicle path with arrowheads where the individual turns end. The
variableψv defines the angle between the x-component of the global force, Fp,x , and the velocity vector.
Note that the angle of the final velocity vector isψv(tf2) = 0 in the above scenario.

4.1.2. Motivation of control force vector by analytical optimal control
For friction-limited particle models, analytical solutions of OCPs can be found for a num-
ber of different scenarios, see, e.g. [3,12,27,28]. While analytical solutions to the OCP (5)
are intractable, an approximate partial solution can be analytically derived to motivate the
control force vector in Definition 4.1. This intuitive derivation is done by using Pontrya-
gin’s maximum principle [29] with the same methodology as used for a friction-limited
particle model in [3], but for a more general model and scenario. For simplicity, the vehi-
cle states in Table 2 are reduced to the vehicle position and orientation (defined in globally
fixed coordinates) and their time derivatives according to

x = [
Xp, Yp, ψ , Ẋp, Ẏp, ψ̇

]T . (8)

To simplify further, it is assumed that the available vehicle forces andmoment are primarily
affected by the vehicle orientation. The system dynamics can then be modelled as the first-
order ordinary differential equation

ẋ = f (x, u) = [
Ẋp, Ẏp, ψ̇ , Fp,x(ψ , u)/m, Fp,y(ψ , u)/m, Mz(ψ , u)/Izz

]T , (9)

where u is the constrained system input, Fp,x(ψ , u) and Fp,y(ψ , u) are the vehicle forces in
the globally fixed coordinate system, m the vehicle mass, Mz(ψ , u) the yaw moment, and
Izz the moment of inertia about the z-axis. For optimal control with focus on lane-keeping
or avoiding obstacles, the terminal objective that represents fulfilling all obstacle or lane
constraints is

maximise J = maximise
1
2

(
�X2(tf )+�Y2(tf )

)
, (10)

where �X and �Y are the distances from the obstacle along the Xp and Yp axes, respec-
tively, where the obstacle could be the lane border of the road. If the obstacle constraints
are not fulfilled, the value of J is zero and otherwise positive. The final time tf is when the
vehicle stops approaching the obstacle as per Definition 4.1 – i.e. the distance and velocity
vectors are orthogonal – resulting in the terminal constraint

�X(tf )Ẋp(tf )+�Y(tf )Ẏp(tf ) = 0. (11)
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To solve (10), the system dynamics (9) are extended with the co-states λ(t) to the
Hamiltonian

H(x, u, λ) = λTf = λ1Ẋp + λ2Ẏp + λ3ψ̇ + λ4

m
Fp,x(ψ , u)+ λ5

m
Fp,y(ψ , u)+ λ6

Izz
Mz(ψ , u).

(12)
For optimality for an arbitrary tf , the following relations have to be satisfied [30]:

max
u

H(x∗(t), u, λ(t)) = H(x∗(t), u∗(t), λ(t)) = H∗, 0 ≤ t ≤ tf , (13)

λ̇(t) = −∂H
∗

∂x
, (14)

λ(tf ) = ∂J
∂x

∣∣∣∣
t=tf

. (15)

The relation (13) gives for the Hamiltonian (12) that the optimal HamiltonianH∗ and the
optimal input u∗ are given by

H∗ = max
u

(
λ1Ẋp + λ2Ẏp + λ3ψ̇︸ ︷︷ ︸

H0(x,λ)

+ λ4

m
Fp,x(ψ , u)+ λ5

m
Fp,y(ψ , u)+ λ6

Izz
Mz(ψ , u)︸ ︷︷ ︸

H1(x,u,λ)

)

= max
u

H1(x∗, u, λ)+ H0(x∗, λ), (16)

u∗ = argmax
u

H1(x∗, u, λ), (17)

where H0(x, λ) is the part of the Hamiltonian independent of the input u and H1(x, u, λ)
is the part of the Hamiltonian dependent on the input u. Since Fp,x, Fp,y, and Mz appear
linearly in H1, the optimal input u∗ should be selected such that the linear combination
of the available forces and moment maximises H1. If the system is over-actuated such that
the available forces and moment form a volume, this observation implies that the optimal
solution is on the boundary surface of this volume (see [16]). The conditions (14) and (15)
are used to find an expression for λ. The terminal value for λ is computed from (15), which
gives

λ(tf ) = [
�X(tf ), �Y(tf ), 0, 0, 0, 0

]T . (18)

The co-state dynamics are computed from (14) and are integrated as follows:

λ̇ =
[
0, 0,− ∂H1

∂ψ
,−λ1,−λ2,−λ3

]T
, (19)

λ =
[
C1, C2, − ∫

∂H1
∂ψ

dt, − ∫
λ1dt, − ∫

λ2dt, − ∫
λ3dt

]T

=
[
C1, C2, − ∫

∂H1
∂ψ

dt, C3 − C1t, C4 − C2t,
∫ (∫

∂H1
∂ψ

dt
)
dt

]T
, (20)

where Ci are integration constants. In (16)–(17), it is seen that to find an expression for the
optimal input u∗, only the co-states λ4, λ5, and λ6 are of interest. Inserting the terminal
values from (18) to find the integration constants gives

λ4 = (tf − t)�X(tf ), (21)
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λ5 = (tf − t)�Y(tf ), (22)

λ6 =
∫ tf

t

(∫ tf

t′

∂H1(x(t′′), u(t′′), λ(t′′))
∂ψ

dt′′
)
dt′, (23)

where it is observed that the ratio between the co-states λ4 and λ5 is constant and that
λ6 depends on how much future H1 can be increased by changing the orientation ψ . The
optimal input is now more explicitly written by substituting the expressions for λ4 and λ5
into (17), which gives

u∗ = argmax
u

(
(tf − t)

m
(
�X(tf )Fp,x +�Y(tf )Fp,y

) + λ6

Izz
Mz

)
. (24)

To get closer to expression (6) in Definition 4.1 the ratio between the forces Fp,x and Fp,y
should be expressed in terms of the final velocity vectorψv(tf ). Assuming that tf fulfills the
terminal constraint (11), the distance vector from the obstacle at time tf can be rewritten
in terms of the angle of the velocity vector ψv(tf ) according to

[
�X(tf )
�Y(tf )

]
=

√
�X2(tf )+�Y2(tf )

[
cos(ψv(tf )+ (−1)nπ/2)
sin(ψv(tf )+ (−1)nπ/2)

]

=
√
�X2(tf )+�Y2(tf )

[−(−1)n sin(ψv(tf ))
(−1)n cos(ψv(tf ))

]
, (25)

where n is 0 or 1 depending on the direction of the turn, see Definition 4.1. Using
the expression for Fc,y given by (6) in Definition 4.1, the optimal input (24) can be
expressed as

u∗ = argmax
u

⎛
⎝ (tf − t)

√
�X2(tf )+�Y2(tf )

m

[−(−1)n sin(ψv(tf ))
(−1)n cos(ψv(tf ))

]T [
Fp,x
Fp,y

]
+ λ6

Izz
Mz

⎞
⎠

= argmax
u

⎛
⎝ (tf − t)

√
�X2(tf )+�Y2(tf )

m
Fc,y + λ6

Izz
Mz

⎞
⎠ . (26)

The optimal input u∗ should thus be selected such that the linear combination of Fc,y and
Mz maximises H1. If the available Fc,y andMz form a surface, the optimal solution should
at each time instant be on its boundary. Additionally, since the termmultiplied with Fc,y is
always positive, the optimal solution is always on the side of this surface where Fc,y is larger.
The same conclusions hold true if the vehicle forces andmoment in (9) are also dependent
on the yaw rate ψ̇ .

4.2. Attainable forces from individual braking

It is of interest to study when, or if, creating a yaw moment Mz about the vehicle z-axis
is given priority over momentarily maximising the control forces Fc,x or Fc,y (defined in
Definition 4.1) during the studied manoeuvres. Further, it is illustrative to study how pri-
ority of Fc,x influences Fc,y, and vice versa. A further quantity of interest is the contribution
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�M to the total yaw moment Mz from the individual braking forces on each wheel. This
quantity is defined, equivalently to in [1], as follows.

Definition 4.2 (Yaw-moment contribution �M from braking): For each wheel i ∈
{1, 2, 3, 4}, the expression for�Mi is

�Mi = [
lx,i ly,i

] [
Fx,i sin(δi)+ (Fy,i − Fy0,i) cos(δi)
(Fy,i − Fy0,i) sin(δi)− Fx,i cos(δi)

]
, (27)

where lx,i and ly,i are the longitudinal and the lateral distance from the centre of rotation in
the vehicle frame to wheel i, respectively, Fx,i and Fy,i are the longitudinal and the lateral
force on wheel i, respectively, and Fy0,i is the nominal lateral force on wheel i in the absence
of braking. The total yaw-moment contribution is then given by

�M =
4∑

i=1
= �Mi. (28)

�

As proposed and employed in [11], the combination of the force and yaw moment at
a particular time instant during a computed vehicle manoeuvre can be plotted together
with all the possible momentarily attainable forces (arising for different combinations of
individual actuator actions), see Figure 6 for an example. The term attainable forces from
[11,15–18] in this context refers to the global force and yaw moment that can be obtained
by variations of the tyre forces, under the assumption that the vehicle states affecting the
tyre forces can instantaneously change. The plot concept presented in those papers is in
this paper extended in two different directions. Firstly, the forces Fc,x and Fc,y, which act in
directions dependent on the optimalmanoeuvring path and trajectory, are used in the plots
to compare with the yawmoment�M. Secondly, three-dimensional plots of the attainable
force volume are introduced, see Section 4.3.

4.2.1. Computing attainable forces from individual braking
As in [11], an approximation of the attainable forces arising from different degrees of indi-
vidual braking from all four wheels is created with a computational method that explores
combinations of contributions from the individual tyre forces. As in [15], the attainable
forces are computed for selected time instants during optimalmanoeuvres. Out of the vehi-
cle states and inputs in Table 2, the wheel speed ωi for each wheel i ∈ {1, 2, 3, 4} is made
to change instantaneously to compute attainable forces from individual braking. The other
states and inputs, e.g. the steering angle δ and the slip angle αi, are given by their original
values, i.e. the solution to the OCP (5). Changing the wheel speed ωi influences the slip
ratio κi for each wheel i, and thus also influences the longitudinal and lateral tyre forces.

The attainable forces are computed according to the following definition.

Definition 4.3 (Attainable forces): To compute the attainable forces at a particular time
instant t, the longitudinal slip κi for each wheel i ∈ {1, 2, 3, 4} is changed to different values
in the interval κi = [κmin, . . . , κmax]. The slip interval is discretised using a grid with N
points. For each of the different combinations of wheel slips, certain wheel forces, and thus
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global vehicle forces, are obtained. The set of the so obtained vehicle forces defines the
attainable forces at time instant t. �

The longitudinal slip κi for each wheel is discretised in the plots presented in Sections 6–7
using N=30 points. The maximum κ is set to κmax = 0, since with no driving-wheel
moment the maximum possible value of κ is close to zero. A minimum κ of κmin = −0.3
is used, which is enough for the tyre parameters used to include the interesting regions
of the force–slip curve. An approximation of the attainable forces resulting from different
degrees of individual braking from all four wheels can thus be created by combinations of
the individual tyre forces, yielding in total 304 discrete combinations for the considered
forces and yaw moment.

4.3. Attainable force volumes

The attainable forces, as defined in Definition 4.3, change over time during a vehicle
manoeuvre. To visualise this, the concept of attainable force volumes and their boundaries
are defined.

Definition 4.4 (Attainable force volume): The boundary of the attainable forces as
defined in Definition 4.3 is computed at different instants of time t during the manoeuvre
and are subsequently connected, thus forming a three-dimensional surface. This surface
is denoted ∂F . The corresponding volume enclosed by ∂F and the endpoints of the time
interval t is denoted F . The volume F can be illustrated using different global forces and
yaw moments; this dependency is indicated with the notation F(·, ·). �

In light of the defined control forces Fc,x and Fc,y given by (7) in Definition 4.1, and the yaw
moment �M given by (28) in Definition 4.2, two different illustrations of the attainable
force volumes are considered in this paper. These volumes are denoted F(�M, Fc,x) and
F(�M, Fc,y), respectively.

5. Control forces during the left-hand turn

This section analyses the trajectories of the control forces defined in Section 4.1, retrieved
by solving the OCP (5). For an analysis of the corresponding individual resulting state
trajectories obtained by solving the OCP, the reader is referred to [2]. As mentioned in
Section 3.2, optimal lane-keeping control and optimal yaw control are embedded as the
boundary values of (4), corresponding to the optimisation criteria J = −v0 and J = −vf ,
respectively. The optimal lane-keeping solutions (J = −v0) were shown to brake all four
wheels to reduce the vehicle velocity, while the optimal yaw control solutions (J = −vf )
were shown to brake only the wheels on one side of the vehicle for additional turn-in yaw
moment. In Figure 5, the trajectories of the control forces Fc,y and Fc,x are shown together
with the steering angle δ, the wheel torques Ti, i=1,2,3,4, and the moment �M resulting
from the braking forces. The orientations of the control force vector Fc in the solutions
obtained for the two optimisation criteria differ, since the manoeuvres have different final
velocity vectors ψv(tf ).
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Figure 5. Optimal trajectories for different optimisation criteria during the left-hand turn scenario:
δ, steering angle;�M, moment resulting from braking torques; T1, applied wheel torque on the front-
left wheel; T2, applied wheel torque on the front-right wheel; T3, applied wheel torque on the rear-left
wheel; T4, applied wheel torque on the rear-right wheel; Fc,y , y-component of the control force vector
(Definition 4.1); Fc,x , x-component of the control force vector (Definition 4.1).

There are several interesting aspects to point out in the results shown in Figure 5.
The steering angle can be seen to be limited by a steering-rate constraint at the begin-
ning of the manoeuvre for both solutions. Differences in actuation between the two
solutions are thus initially only in terms of braking. The solution for J = −v0 utilises
four-wheel braking, whereas J = −vf results in braking torques only on the inner wheels.
It is seen that the value of Fc,y is comparably greater for J = −v0 than for J = −vf
for most of the manoeuvre, whereas the value of Fc,x is comparably greater for J =
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−vf than for J = −v0. These results are intuitive considering the difference in opti-
misation criteria. Perhaps not as intuitive is the moment �M resulting from braking
for the optimisation criterion J = −v0. Here, the moment �M contributes to the total
moment with a turn-out moment, whereas for the optimisation criterion J = −vf , the
moment �M is a turn-in moment instead. The reason for this behaviour is explained in
Section 7.1.2.

6. Attainable forces during the left-hand turn

In this section, the left-hand turn scenario is analysed with respect to the attainable forces
as defined by Definition 4.3 in Section 4.2. The attainable forces are illustrated with two-
dimensional cloud plots in Figure 6, employing the plot style proposed in [11]. Figure 6
shows the attainable Fc,y and �M for the left-hand turn scenario with J = −v0 at differ-
ent time instants in two-dimensional plots. The optimal solution is marked in the gray
cloud of attainable forces as a black filled circle. In the beginning of the manoeuvre, the
attainable forces are almost shaped like a diamond. During this part of the manoeuvre,
the interpretation of the different parts of the diamond is as follows. The bottom cor-
ner corresponds to no braking, the top corner corresponds to close to maximum braking
forces, the left corner corresponds to maximum braking forces on the right wheels, and
the right corner corresponds to maximum braking forces on the left wheels. Consider-
ing the vehicle path schematically illustrated in Figure 4, the vector corresponding to the
control force Fc,y will eventually be orthogonal to the velocity vector of the vehicle and
the vehicle orientation, and the possibility to increase Fc,y by braking will thus decrease.
At the end of the manoeuvre, the top of the area instead corresponds to no braking. Fol-
lowing the manoeuvre along the time evolution, it is seen that the optimal control inputs
tend to maximise Fc,y, except at t=0. It is clear from Figure 6 that to achieve maximum
Fc,y at the plotted time instants, there is limited room to also perform yaw control by
manipulating�M.

7. Attainable force volumes during critical manoeuvres

The illustration using attainable force volumes defined by Definition 4.4 in Section 4.3
is used in this section for visualisation of the computed optimal trajectories. The optimal

Figure 6. Attainable �M and Fc,y for the left-hand turn scenario with the optimisation criterion
J = −v0. The optimal solution is marked with a black filled circle.
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Figure 7. Plots of the attainable force volume F(�M, Fc,y) during the left-hand turn scenario for the
optimisation criteria J = −v0 and J = −vf . The optimal trajectory is shown as a solid line. The trajectory
corresponding tomaximum attainable Fc,y is shown as a dashed line. Projections are cast on the Fc,y and
�M axes to make it more visible how close the optimal trajectory is to the respective attainable limit.

Figure 8. Plots of the attainable force volume F(�M, Fc,x) during the left-hand turn scenario for the
optimisation criteria J = −v0 and J = −vf , which are the samemanoeuvres as in Figure 7. The optimal
trajectory is shown as a solid line. The Fc,x trajectory corresponding tomaximum attainable Fc,y is shown
as a dashed line. Projections are cast on the Fc,x and �M axes to make it more visible how close the
optimal trajectory is to the respective attainable limit.

trajectory is shown as a solid line traversing in the attainable force volumeF . The trajectory
corresponding to the maximum attainable Fc,y is shown as a dashed line.

7.1. Left-hand turn

Figures 7 and 8 show the obtained plots of the attainable force volumes F(�M, Fc,y) and
F(�M, Fc,x), respectively. Figure 7(a) visualises the same forces as those presented in
Figure 6 and is created from the same optimal solution.
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7.1.1. Solutions on the boundary of attainable forces
The forces and moment of the vehicle, Fx, Fy, andMz, are sometimes considered as high-
level inputs in vehicle control systems, but it is challenging to visualise the attainable
forces of all three simultaneously, especially if the evolution in time is to be included as
an additional dimension. For optimal lane-keeping, it is shown in Section 4.1.2 that for a
simplifiedmodel, the optimal solution at each time instant is on the boundary of the attain-
able control force Fc,y and moment�M. The result of this condition is seen in Figure 7(a),
where the optimal trajectory for the optimisation criterion J = −v0 is at or close to the
boundary ∂F(�M, Fc,y). The same optimal solution is in Figure 8(a) seen to be far from
the boundary ∂F(�M, Fc,x), except at the endwhere no braking corresponds to bothmax-
imum Fc,y and Fc,x. In the application of optimal lane-keeping here, it is thus possible to
reduce the two high-level force inputs Fx and Fy to the single control force Fc,y, since the
optimal trajectory tends to traverse along the boundary ∂F(�M, Fc,y). In Figure 7(b), it
can be seen that for the optimisation criterion J = −vf , the optimal trajectory is not on
∂F(�M, Fc,y) during a majority of the manoeuvre. Instead, this optimal manoeuvre tends
to traverse along the boundary ∂F(�M, Fc,x) as shown in Figure 8(b).

7.1.2. Moment generation for J = −v0
An interesting observation in Figure 7(a) is that for the optimisation criterion J = −v0,
using the braking forces to momentarily maximise the control force Fc,y is given prior-
ity over a yaw-moment contribution �M during the complete manoeuvre. In that case,
�M takes a value where Fc,y is very close to its maximum, not leaving much room for
yaw control by differential braking. From this point of view, the turn-out moment con-
tribution from braking that results from the optimisation criterion J = −v0 is intuitive,
which is not the case when investigating the trajectories shown in Figure 5. By compar-
ing the optimal trajectory with the trajectory corresponding to maximum attainable Fc,y
in Figure 7(a), it can be seen that they differ slightly early in the manoeuvre. During this
time of themanoeuvre, the top of the boundary ∂F(�M, Fc,y) is significantly flat, allowing
more turn-in moment to be generated than that given by maximising Fc,y, at very little loss
of Fc,y.

7.1.3. Initial moment generation for J = −vf
For the optimisation criterion J = −vf , it can be seen in Figure 8(b) that yaw control is
initially favored since the yaw moment�M is significantly close to its boundary, whereas
later Fc,x is increasingly given priority. This approach allows the vehicle to more quickly
reach higher Fc,y by utilising lateral tyre forces, without too much cost in terms of lower
Fc,x. This is interesting as it indicates that traditional stability control systems not only
help to reduce run-off-road accidents by keeping the vehicle closer to nominal behaviour
and indirectly reducing the velocity, but that the additional turn-in moment from braking
generated as a response to understeering is beneficial in itself.

7.1.4. Input–output dynamics
Apart from the very beginning of the manoeuvre for J = −v0 in Figure 7(a), it can be seen
that the optimal trajectory is close to the boundary ∂F(�M, Fc,y). The wheel dynamics
that were neglected in the computation of the attainable forces limit the rate at which the
forces can change. Since the other states are relatively slowly changing, it holds for this



1118 V. FORS ET AL.

manoeuvre that if the limit in terms of the attainable forces has been reached – i.e. if being
at the boundary ∂F – the rate at which the forces can change is fast enough to keep up
with the change of the surface of the volume over time.

7.1.5. Direction of resultant force
As observed in Figure 7(a), the solution for J = −v0 is close to maximum attainable Fc,y
during most parts of the manoeuvre. However, since Fc,x is non-zero, it means that the
direction of the resultant force does not point exactly in the direction corresponding to the
force component Fc,y, but rather in the direction corresponding to the maximum attain-
able Fc,y. This observation is in part the result of the inability to generate an arbitrary
lateral force, since the vehicle is limited to front-wheel steering and the steering rate is
limited. Since the braking actuators are relatively fast compared to the dynamics of the
steering, braking can be used to achieve larger Fc,y before the lateral dynamics have caught
up, which results in the maximum attainable Fc,y from individual braking not coinciding
with Fc,x = 0. Additionally, this observation is also the result of asymmetric tyre forces, i.e.
the tyre–road friction coefficients in the longitudinal and lateral directions of the tyres are
not equal (the tyre parameters used originate from measured data in [20], where the ratio
between the longitudinal and lateral tyre coefficients is 1.25).

7.2. Double lane-change

In this section, the double lane-change scenario is analysed with respect to the attainable
force volumes. In order to establish the plot of the attainable force volumeF(�M, Fc,y) for
the double lane-change scenario, the generalised definition of the control force Fc,y from
Section 4 is used as illustrated in Figure 4. The initial turn toward the left in the double
lane-change scenario (see Figure 2) starts at the beginning of the manoeuvre. The final
time for the first turn is the time instant when the vehicle is at the closest point along the
path to the corner of the first obstacle. At the point where the initial turn ends, the follow-
up turn starts. The follow-up turn toward the right ends at the position closest to the top
border of the track. In Figure 9, the volume F(�M, Fc,y) during the first two turns of the
double lane-change scenario is plotted for the optimisation criterion J = −v0.

7.2.1. Moment generation in the initial turn
In Figure 9(a), it is seen that the optimal solution for the initial turn of the double lane-
change scenario gives priority to a large Fc,y, similar to the solution obtained in the left-
hand turn scenario investigated in Section 7.1. Compared to the left-hand turn scenario in
Figure 7(a), the solution for the initial left-hand turn of the double lane-change scenario
does not use the flat section of the boundary ∂F(�M, Fc,y) to generate additional turn-in
moment from braking, even when it comes at a very small cost in terms of a smaller Fc,y.
Additionally, before the end of the initial turn, the vehicle has already rapidly started to
steer in the opposite direction.

7.2.2. Moment generation in the follow-up turn
In the follow-up turn seen in Figure 9(b), the behaviour is different than in the initial turn;
here a large focus is on yaw control at the cost of a lower Fc,y. This observation can be
because the follow-up turn has a larger curvature than the initial turn and that the vehicle
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Figure 9. Plots of the attainable force volumeF(�M, Fc,y) during the double lane-change scenario for
the optimisation criterion J = −v0. The first turn of the manoeuvre is shown in the left plot (a) and
the follow-up turn in the right plot (b). The direction that Fc,y acts in differs between the two turns, as
illustrated in Figure 4. The optimal trajectory is shown as a solid line. The trajectory corresponding to
maximum attainable Fc,y is shown as a dashed line. Projections are cast on the Fc,y and�M axes tomake
it more visible how close the optimal trajectory is to the respective attainable limit.

enters the turn frompreviously turning in the opposite direction, thus having to counteract
the inertia. Yaw control can thus play a significant role also in lane-keeping control to keep
the vehicle on the road.

7.2.3. Solutions on the boundary of attainable forces
The same behaviour as observed for the left-hand turn in Section 7.1.1 is seen in Figure 9
for the double lane-change manoeuvre, where the solution is typically on the bound-
ary ∂F(�M, Fc,y). The exception is from the middle point of the follow-up turn until
close to the end, where the optimal trajectory is a notable distance from the boundary
∂F(�M, Fc2,y). In this time interval, the velocity is low as a result of braking (≈ 30 km/h).
A likely reason is that the braking actuators are not fast enough to stay at the boundary
∂F(�M, Fc2,y) because of rapid changes in the vehicle yaw rate and orientation. These
limitations mean that contrary to what is described in Section 7.1.4 for the left-hand turn,
the rate at which the tyre forces has to change is too fast during the follow-up turn for the
optimal trajectory to stay at the surface of the attainable force volume.

8. Global forces for controller design

An interesting aspect is to use the results obtained from the analysis of the attainable
force volumes in autonomous functions for control and safety in future road vehicles. Ide-
ally, the analysis of optimal vehicle manoeuvres can give inspiration for, and even lead
to the development of new improved autonomous functions. The analytical motivation
in Section 4.1.2 and the numerical results observed in Section 7.1.1 and Section 7.2.3,
indicate that for a given geometry and vehicle state, a local control approach to find an
appropriate solution on the boundary ∂F in fact converges toward the globally optimal
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solution. This observation holds promise for improved lane-keeping control designs based
on maximising a global force in the spirit of [4,12,16,18,31,32].

For such a control function to be applicable in online scenarios, the desired global force
needs to be possible to compute fast, given information about the traffic situation and the
environment. Assuming the availability of such information, the control task is firstly to
compute the direction that the global force on the vehicle should act in and secondly to
actuate the vehicle such that the acceleration of the vehicle is maximised in the desired
direction. In such a control design, attainable force volumes as introduced in Section 4, and
illustrated with extensive results for different optimal braking and steering manoeuvres in
Section 7, can play an important role in the development. More specifically, the observed
results can be employed to analyse the vehicle forces during optimal vehicle manoeuvres as
a comparison with theoretically attainable force–moment relations. In addition, the plots
of attainable force volumes are a useful tool for evaluation of the resulting forces from a
particular control design for an autonomous function, since the global forces andmoments
can be plotted in the volume and then be used to evaluate how the tyre forces are utilised.

An online estimation of the desired global force can be performed by using analytical
solutions from optimal control based on a friction-limited particle model. This approach
was used in [4], where a road-departure prevention systemwas developed for the left-hand
turn scenario. For optimal control of a friction-limited particle model, the solution is given
on the circular force boundary given by the friction limit and what remains is to solve for
which direction the force vector should point in. This can be interpreted as it being impor-
tant to control the direction of the force vector, but as observed for optimal control of the
more complexmodel in Section 4.1.2, themore general interpretation is that the force com-
ponent in this direction should be maximised. Further support is given by the numerical
solutions analysed in Section 7.1.5, where it was noted that while close-to-maximum Fc,y
was obtained during optimal lane-keeping, Fc,x was non-zero. This observation has impli-
cations for the implementation and evaluation of lane-keeping systems, and still applies for
a vehicle with isotropic tyre-friction coefficients, owing to differences in longitudinal and
lateral tyre-force dynamics as a result of actuator limitations.

9. Conclusions

For the development of optimal lane-keeping control systems, it is critical to understand
how the available tyre forces can be used in the best possible way. The research presented
here is an extension of previous research for a friction-limited particle model to a more
complex model and further scenarios. To extend that research, a number of important
global forces and moments were defined, and the new concept of attainable force volumes
was introduced. A specific finding is that for lane-keeping it is important to maximise
the force in a certain direction, rather than to control the direction of the force vector,
even though these two strategies are equivalent for a friction-limited particle model. To
support the findings, an analytical argument based on the maximum principle was pre-
sented. Under slight simplifications it was shown that the optimal behaviour develops
on the boundary surface of the attainable force volume. This was further supported by
numerical solutions to optimal control problems in different scenarios. Here, attainable
force volumes were introduced and turned out to provide an effective illustration of how
the achieved trajectory relates to the attainable forces over the duration of the manoeuvre.
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Another finding from this analysis was that for optimal lane keeping in both the left-hand
turn scenario and the initial turn of the double lane-change scenario, Fc,y is close to its
maximum attainable value. Further, when comparing the optimal trajectory with the tra-
jectory corresponding to maximum attainable Fc,y for these cases, it is observed that they
are very close. These findings indicate that there are somemanoeuvres requiring combined
braking and steering where close to optimal behaviour can be found by at each time instant
maximising Fc,y, leading to simplified control design. Applied to lane-keeping control, the
results indicate a set of control principles for autonomous at-the-limit manoeuvres, which
can be implemented and executed online. This set contains strategies similar to those ana-
lytically obtained for friction-limited particle models in previous research, but was shown
to result in vehicle behaviour close to the globally optimal solution also for more complex
models and scenarios.
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