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RESEARCH ARTICLE

Evaluation of physiological workload assessment methods using heart rate
and accelerometry for a smart wearable system

Liyun Yanga,b , Ke Lua , Mikael Forsmana,b , Kaj Lindecrantzb,c , Fernando Seoanec,d , €Orjan
Ekblome and J€orgen Eklunda

aDivision of Ergonomics, KTH Royal Institute of Technology, Huddinge, Sweden; bInstitute of Environmental Medicine, Karolinska
Institutet, Stockholm, Sweden; cSwedish School of Textiles, University of Borås, Borås, Sweden; dDepartment of Clinical Science,
Intervention and Technology, Karolinska Institutet, Huddinge, Sweden; eÅstrand Laboratory of Work Physiology, The Swedish School
of Sport and Health, Stockholm, Sweden

ABSTRACT
Work metabolism (WM) can be accurately estimated by oxygen consumption (VO2), which is
commonly assessed by heart rate (HR) in field studies. However, the VO2–HR relationship is influ-
enced by individual capacity and activity characteristics. The purpose of this study was to evalu-
ate three models for estimating WM compared with indirect calorimetry, during simulated work
activities. The techniques were: the HR-Flex model; HR branched model, combining HR with hip-
worn accelerometers (ACC); and HRþ arm-leg ACC model, combining HR with wrist- and thigh-
worn ACC. Twelve participants performed five simulated work activities and three submaximal
tests. The HRþ arm-leg ACC model had the overall best performance with limits of agreement
(LoA) of �3.94 and 2.00mL/min/kg, while the HR-Flex model had �5.01 and 5.36mL/min/kg
and the branched model, �6.71 and 1.52mL/min/kg. In conclusion, the HRþ arm-leg ACC
model should, when feasible, be preferred in wearable systems for WM estimation.

Practitioner Summary: Work with high energy demand can impair employees’ health and life
quality. Three models were evaluated for estimating work metabolism during simulated tasks.
The model combining heart rate, wrist- and thigh-worn accelerometers showed the best accur-
acy. This is, when feasible, suggested for wearable systems to assess work metabolism.

Abbreviations: ACC: accelerometer; EE: energy expenditure; HR: heart rate; LoA: limits of agree-
ment; RAS: relative aerobic strain; REE: resting energy expenditure; RHR: resting heart rate; VO2:
oxygen consumption; WM: work metabolism
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1. Introduction

Researchers and practitioners have for a long time
been using self-reports and observations to assess and
analyse work activities and the related risk factors,
with a gradual increase of technical methods over the
years (Li and Buckle 1999; David 2005; Shephard and
Aoyagi 2012). Several researchers have emphasised
the need for an increased use and development of
technical measurement methods in order to achieve
assessment with higher reliability and validity, and
better mapping of relationships between exposures
and work-related ill health, especially musculoskeletal
disorders (Winkel and Mathiassen 1994; Forsman 2017;

Holtermann et al. 2017). Technology advances in sen-
sor technologies, textile electrodes, data storage and
analytics with smart mobile devices offer possibilities
of integrating wireless miniature sensors into wearable
systems which can communicate and analyse the data
in real time. This has already been explored in many
other areas, such as the military and sports (Buttussi
and Chittaro 2008; Coyle et al. 2009; Seoane et al.
2014; Mohino-Herranz et al. 2015). There is an ongoing
research effort aiming at developing smart wearable
systems for automatic risk assessment at work, which
facilitate risk identification, communication and inter-
ventions for better work environments (Yang, Grooten,
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and Forsman 2017; Abtahi et al. 2017; Lind et al. 2019;
Eklund and Forsman 2018; Yang et al. 2018). One step
towards this aim is to evaluate methods that are
applicable for estimating work metabolism (WM) with
wearable sensors.

Work with high metabolic demand can lead to
physical and mental fatigue, increase in work injuries
and decrease in work performance, higher risk for car-
diovascular diseases and early retirement (Karpansalo
et al. 2002; Krause et al. 2007; Wigaeus Tornqvist 2011;
Wultsch et al. 2012; Krause et al. 2014). The
International Labour Organisation (ILO) recommends
that the relative aerobic strain (RAS) level, which is cal-
culated as the ratio between average oxygen con-
sumption at work and the individual’s maximal
aerobic capacity (VO2max), should not exceed 33% for
an 8-h workday (Smolander and Louhevaara 2011).
Considering the various characteristics of muscular
work, task-dependent RAS levels have been suggested
as below 30–35% for mixed physical work including
manual materials handling (Jorgensen 1985), and pro-
posed limits vary between 18.5 and 29% for lifting
tasks (Legg and Myles 1981; Genaidy et al. 1985;
Asfour, Genaidy, and Mital 1988).

WM can be assessed by various methods, including
observations, self-reports, motion sensing, monitoring
of heart rate (HR), minute ventilation or oxygen con-
sumption (VO2) (Shephard and Aoyagi 2012). Among
them, HR monitoring has been used in many field
studies for workload assessment because of its usabil-
ity and relatively high accuracy (Kemper et al. 1990;
Bernmark et al. 2006; Vogel and Eklund 2015; Preisser
et al. 2016). The estimation is based on the fact that
there is a strong positive relationship between HR and
VO2, and WM can be calculated with reasonable accur-
acy from VO2 data in occupational studies, where the
subjects metabolise mostly non-protein for energy
and reach a steady state of gas exchange during the
occupational activities (Shephard and Aoyagi 2012).
However, difficulties using HR to assess VO2 include
that (i) the relationship between HR and VO2 varies
between persons depending on their endurance cap-
acity; (ii) the slope of the relationship changes
depending on how and what muscle groups are uti-
lised; and (iii) HR is also affected by other factors, such
as stress, food intake and environmental conditions
(Haskell et al. 1993; Faria and Faria 1998; Leonard
2003; Åstrand et al. 2003). By doing calibration tests,
the individual relationship between HR and VO2 under
certain conditions can be obtained, but the feasibility
suffers because of increased need for time and resour-
ces. Motion sensors, e.g. accelerometers (ACC), have

also been explored in estimating energy expenditure
(EE) during daily activities and showed good applic-
ability for monitoring physical activities (Tapia 2008;
Bonomi et al. 2009; Bonomi 2013; Altini, Penders et al.
2015). This type of method using solely ACCs can be
performed with (i) counts-based estimation model, (ii)
activity recognition with EE lookup tables or (iii)
activity recognition with activity specified regression
models (Altini, Penders et al. 2015). However, ACC has
its inherent limitations in not being able to detect dif-
ferent resistance or exerted effort (Tapia 2008), which
are important factors in estimating physical workload
and the related risks. It is also not feasible to validate
models using ACC for activity recognition of all work
tasks, which have high variation within and between
occupations. Moreover, the different physiological
response of different individuals performing the same
task cannot be assessed by ACC itself.

Several techniques using HR to estimate WM have
been proposed to improve the estimation accuracy.
The HR-Flex method was first proposed by Spurr et al.
and thereafter has been tested for its validity and reli-
ability (Spurr et al. 1988; Ekelund et al. 2002; Leonard
2003). By identifying an HR threshold point (known as
the ‘flex-HR’) between resting and active levels, the
period below flex-HR is estimated using resting energy
expenditure (REE, calculated as mean EE spent while
lying, sitting and standing), and the period above flex-
HR is estimated based on the HR–VO2 equation.
Therefore, the method has shown to improve the esti-
mation during low activity levels when the HR–VO2

relationship often deviates from the calibration equa-
tion (Leonard 2003). However, the HR-Flex method has
a limitation in that it may underestimate EE in daily
living activities (Johansson et al. 2006). Another type
of method using combined motion data with HR has
been explored by researchers proposing various mod-
els, such as multiple regression analysis (Haskell et al.
1993); the branched equation model, a decision tree
combining HR with one hip-worn ACC (Brage et al.
2004); or the HRþ arm-leg ACC model, a decision tree
combining HR with one wrist-worn and one thigh-
worn ACC (Strath et al. 2001). The limitations of these
methods include the complexity required for data ana-
lysis and the need of individual calibration tests that
represent the type of activities accordingly. Several
studies have tested and validated these HR and ACC
combined models in laboratory settings during phys-
ical exercises or in the field during free-living activities,
showing significantly improved accuracy compared to
HR alone (Haskell et al. 1993; Strath, Brage, and
Ekelund 2005; Strath et al. 2002; Johansson et al. 2006;
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Thompson et al. 2006; Brage et al. 2007; Brage et al.
2015). However, no studies have yet evaluated them
during occupational activities, when different tasks are
performed with different muscle mass, i.e. using
mainly arm, mainly leg or mixed muscle groups,
and with various characteristics of static or
dynamic movements.

The main aim of this study was to evaluate differ-
ent modelling techniques for WM estimation during
occupational activities using HR combined with or
without ACC signals. A second aim was to evaluate
different calibration procedures used in these models.

2. Methods

2.1. Participants

Twelve participants (three women and nine men)
were involved in a laboratory study. All participants
were informed of the general aims of the study and
provided written informed consent. Ethical approval
for the study was obtained from the Regional Ethics
Committee in Stockholm (Dnr 2016/724-31/5).

The participants were met in the morning and
asked to refrain from eating, smoking, drinking tea,
coffee or alcohol for at least 2 h, and to refrain from
exercise for 12 h, before the study. The participants’
characteristics are shown in Table 1, the VO2max of
which were obtained by a submaximal treadmill test
as described in Section 2.3.

2.2. Equipment

The participants were asked to wear a set of wearable
sensors, including: (i) a commercial HR belt (Zephyr
HxM BT, Zephyr Technology Corporation, Annapolis,
USA), (ii) sport trousers with two ACCs (AX3, Axivity
Ltd, Newcastle, UK) fixed in small pockets on the front
of the right mid-thigh and the left waist, and (iii) two
ACCs of the same model worn on both wrists with
rubber wrist bands. The VO2 was measured by a com-
puterised metabolic system (Jaeger Oxycon Pro,
Hoechberg, Germany) with a facemask, as a gold
standard method.

2.3. The experimental protocol

The protocol consisted of three main components:
resting, work task simulations and submaximal tests.
To start with, the participants were asked to rest for
20min while lying, 5min while sitting and 5min while
standing. Then the participants performed five differ-
ent simulated work tasks according to the instruction

(see Table 2). Each task lasted 8–10min with breaks
for around 5–10min in between, to allow HR to return
to within 10% of the resting heart rate (RHR).

In the end, the participants performed three sub-
maximal tests, which were terminated if HR reached
80–85% of age-predicted maximal HR (calculated from
HRmax=220�Age) or if the participant was unable to
continue. A break separated each submaximal test to
allow HR to return to within 10% of RHR. The first sub-
maximal test performed was the Chester step test
(Sykes and Roberts 2004). The second was a submaxi-
mal arm ergometer test, consisting of successive 3-
min stages at a constant cadence of 50 rev/min, fol-
lowing the protocol used by Strath et al. (2005).
Briefly, the initial resistance of the arm ergometer
was set at 0 kilograms (kg) and then increased by
0.25 kg for each stage. The third test was performed
by walking on a treadmill consisting of continuous
3-min stages, also following the protocol by Strath
et al. (2005). The initial speed was set at 4 km/h and
then increased to 6 km/h, after which the speed
remained while the grade was raised by 2% for
each stage.

2.4. Data processing

The HR from the heart rate belt was registered every
second and then averaged by every 15 s. The VO2 was
measured by Oxygen Pro using a mixing-chamber
with breath-by-breath mode and registered in 15-s
epochs. The accelerometer data were sampled at
100Hz with a range of ±2.5 g and a 13-bit resolution.
The total acceleration from three axes was calculated
by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x þ a2y þ a2z

q
and then band-pass filtered with a

pass band of 0.25–6Hz. A mean value was taken for
every 15 s.

Three models for estimating VO2 were used and
compared with the criterion measurement. The details
of each model are described below, and the decision
tree diagrams are shown in Figure 1.

2.4.1. The HR-Flex model

The HR-Flex model uses an individually calibrated lin-
ear HR–VO2 relationship when the HR is above flex-HR

Table 1. Descriptive characteristics of the participants
(median [range]).

Men (N¼ 9) Women (N¼ 3) All (N¼ 12)

Age (year) 27 (21–65) 44 (25–61) 27 (21–65)
Height (cm) 181.5 (171–199) 169.5 (164–173) 176.7 (164–199)
Weight (kg) 77.0 (51–89) 59.3 (58–62) 75.0 (51–89)
BMI (kg/m2) 22.8 (17.4–25.6) 21.2 (20.7–22.0) 22.5 (17.4–25.6)
VO2max (mL/min/kg) 42.9 (32.1–54.6) 30.9 (27.8–40.3) 39.9 (27.8–54.6)
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and the REE value when the HR is below flex-HR (see
Figure 1(a)). In our study, the flex-HR point was chosen
as the average of the highest HR during the three
resting periods and the lowest HR during walking on
a treadmill after 30 s.

2.4.2. The branched equation model

The branched equation model uses a quadratic
HR–VO2 and a bi-linear ACC–VO2 relationship obtained
during individual calibration with different weightings

applied in different conditions (Brage et al. 2004).
Following its principles, when the HR is above RHR, a
quadratic HR–VO2 regression was used which was cali-
brated during the treadmill test and forced through
the point of RHR and REE. When the HR is below RHR,
the VO2 was assumed to be equal to REE. For the
ACC–VO2 relationship, a bi-linear relationship was
used, when the ACC was below the flex point (defined
as 50% of the mean waist-worn ACC value during the
first level treadmill test), the ACC–VO2 regression was
built between the flex-ACC point and the point of REE

Figure 1. Model structure illustrations drawn as decision trees. The flow goes to the dashed branch if the decision condition is
not met. (a) The HR-Flex model. (b) The HR branched equation model: the parameter x was set at 0.027g, and the flex-HR and
transition-HR were individual calibrated. (c) The HRþ arm-leg ACC model: the parameter a and ratio were set at 0.013 g and 1.5,
which were adapted to our study. The HR and ACC equations were obtained from individual calibration tests. For more details,
the readers are referred to the text, HR: heart rate; REE: resting energy expenditure; ACCbody: output from the accelerometer worn
at the body part accordingly.

Table 2. Description of the simulated work activities.
Work activities Duration Type of work Description

1. Office work 10min Static, arm work The participant sits beside a table and types in a text on a laptop computer
2. Painting work 10min Dynamic, arm work The participant stands and raises up-and-down a painting pole with 0.5 kg weight

on the top to mimic painting a wall at their own pace
3. Postal delivery work 10min Dynamic, leg work The participant sits on a cycle ergometer and cycles at a pedal frequency of

60 rev/min with a resistance of 0.75 kg
4. Meat cutting work 4þ 4min Dynamic, arm work The participant repetitively pulls a training resistance band towards the torso every

2 s following a metronome, starting with 4min with the right arm and then
4min with the left

5. Construction work 4þ 1þ4min Dynamic, mixed arm and
leg work

The participant repeats lifting and lowering a box (6 or 4.5 kg) by squatting from
floor to table every 6 s for 4min, marked as ‘construction work – mix’. After
1min break, the participant repeats lifting a box (9 or 6.5 kg) from side to side
on a table every 5 s for 4min, marked as ‘construction work – arm’
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and zero ACC. When the ACC was above the flex-ACC
point, the regression was built during the step test
using waist-worn ACC and measured VO2. The a priori
parameters in the original study were adapted to our
study following its original criteria, where the x was
set to 0.027 g (to ensure cycling was not classified
below the cut-off), and y and z was set individually to
the flex-HR and the transition HR between the second
and third stage during the treadmill test (see
Figure 1(b)).

2.4.3. The HRþ arm-leg ACC model

The HRþ arm-leg ACC model uses two linear HR–VO2

relationships obtained during an arm ergometer test
and a treadmill test accordingly (Strath et al. 2001).
The outputs from the wrist- and thigh-worn ACCs are
used to classify the condition as inactivity, arm-mainly
activity, leg-mainly activity or mixed activity (see
Figure 1(c)). A modification was made implicitly later
which included a lower limit of the estimated VO2 as
REE (Strath et al. 2005). In our study, following the
model’s modified principles, the value of threshold a
was adapted to 0.013 g to differentiate periods of
activity and inactivity, a ratio of 1.5 was used to
decide if the arm or the leg activity was dominant,
when both wrist and thigh ACC exceeded the thresh-
old, and a lower limit of REE was included in both the
arm and leg calibrated HR–VO2 equations (Strath et al.
2001; Strath et al. 2005).

2.5. Statistical analysis

All data were analysed by 15-s average values.
The mean and standard deviation of the estimated
oxygen consumption from the three models
were compared against the criterion for all partici-
pants during each work task, of which the first 2min
were left out. The bias and root-mean-square
errors (RMSEs) were also calculated for each work
task. Additionally, the total oxygen consumption
for the five work tasks was summed up and
compared. Bland-Altman plots were presented to
show the bias and limits of agreement (LoA)
between the criterion and the estimate for all work
tasks from the models calibrated with two different
tests, i.e. the treadmill submaximal test and
Chester step test, for calibrating the individual
HR–VO2 equations.Ta
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3. Results

3.1. Simple linear regression from individual
calibrations

To better examine the characteristics of relationships
between VO2 and HR as well as between VO2 and hip-
worn ACC during various work tasks, criterion and esti-
mates of oxygen consumption based on simple linear
regression calibrated individually during submaximal
tests are shown in Table 3. For calibration of HR–VO2

relationships, the condition using the treadmill and
measured VO2 from indirect calorimetry had the high-
est accuracy during all work tasks, except meat cut-
ting. The condition using arm ergometer had the
highest accuracy during meat cutting (RMSE = 0.9mL/
min/kg) but worse accuracy during the other tasks.

This effect of different types of muscular work on
HR–VO2 relationships is further illustrated for two sub-
jects in Figure 2, where the HR and measured VO2 are
shown during simulated work tasks together with two
calibration lines obtained from the arm ergometer
(marked as ‘Arm calibration’) and treadmill (marked as
‘Leg calibration’) submaximal tests. Individual differen-
ces were observed among subjects. A clear distinction
between the work tasks that use mainly the arm, leg
or mixed muscle groups can be observed in
Figure 2(a), where the tasks using mainly the arm
followed the arm calibration and the rest followed the
leg calibration. However, there are also individual

differences in the physiological response when
participants performed the simulated work tasks.
For example, no clear distinction between arm or leg
muscle work is observed for the participant in
Figure 2(b).

The relationships between VO2 and hip-worn ACC
had worse accuracy in all work tasks except office
work. The estimated VO2 were distinctively underesti-
mated, especially in tasks at higher intensities such as
postal delivery (RMSE = 9.1mL/min/kg for calibration
by step test) and construction work (RMSE = 8.2mL/
min/kg).

3.2. Models using HR or combined HR and ACC

The criterion and estimates of oxygen consumption
during simulated work tasks using three models based
on HR or both HR and ACC, as described in
Section 2.4 are shown in Table 4. The HR-Flex had the
highest accuracy during office work (RMSE¼ 0.7mL/
min/kg) and painting (RMSE = 2.1mL/min/kg). The HR
branched equation combining HR and hip-worn ACC
had a distinctive underestimation during postal deliv-
ery (bias and RMSE: �3.5 and 4.0mL/min/kg) and con-
struction work (bias and RMSE: �3.4 and 4.1mL/min/
kg). The HRþ arm-leg ACC model had the highest
accuracy in postal delivery, meat cutting and construc-
tion work (RMSE = 2.2, 0.9 and 2.1mL/min/kg
accordingly).

Figure 2. The relationships between heart rate (HR) and measured oxygen consumption (VO2) during different work tasks in
1-min average values, with two simple linear regressions calibrated during submaximal tests performed with treadmill (leg calibra-
tion) and arm ergometer (arm calibration): (a) example of one participant with a clear distinction between types of work using
arm, leg or mixed muscle groups following the respective calibration regression lines; (b) example of another participant showing
a vague distinction between types of work tasks.
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Table 4. Estimates of oxygen consumption (mL/min/kg) during simulated work tasks using three models including HR-Flex, HR
branched equation and HRþ arm-leg ACC model.

Estimation models

Office work Painting Postal delivery Meat cutting Construction work
Average for all
work tasks

Mean ± SD Bias RMSE Mean ± SD Bias RMSE Mean ± SD Bias RMSE Mean± SD Bias RMSE Mean ± SD Bias RMSE Mean ± SD Bias RMSE

Criterion 4.0 ± 0.8 – – 8.3 ± 1.1 – – 14.0 ± 2.0 – – 7.5 ± 1.7 – – 12.4 ± 2.5 – – 9.1 ± 1.2 – –
HR-Flex 3.5 ± 0.9 �0.4 0.7 8.0 ± 2.5 �0.3 2.1 11.8 ± 3.5 �2.2 3.2 9.8 ± 3.9 2.3 3.7 13.8 ± 3.5 1.5 2.4 8.9 ± 2.4 �0.2 1.5
HR branched equation 3.7 ± 0.4 �0.2 0.8 5.2 ± 1.2 �3.2 3.5 10.5 ± 1.6 �3.5 4.0 4.8 ± 1.0 �2.7 3.2 9.0 ± 2.3 �3.4 4.1 6.6 ± 1.1 �2.5 2.8
HRþ arm-leg ACC 3.8 ± 1.2 �0.2 1.0 6.3 ± 1.4 �2.0 2.2 12.3 ± 2.9 �1.7 2.2 7.5 ± 1.5 0.0 0.9 11.5 ± 2.6 �0.9 2.1 8.0 ± 1.2 �1.1 1.2

RMSE: root mean square error; HR-Flex: heart rate flex model
HR branched equation: Heart rate branched equation model combining HR and one accelerometer placed on the hip.
HRþ arm-leg ACC: Model combining heart rate and accelerometer data from two accelerometers placed on the wrist and thigh.

Figure 3. Bland–Altman plots of the oxygen consumption (VO2) estimated by three models with two different calibration proce-
dures, in five simulated work tasks. Two calibration methods were used, the Chester step test (CST, to the left in each model
row), and a submaximal treadmill test (TM, to the right in each model row); the three estimation models were, top to bottom
row, the HR flex model (HR-Flex), the HR branched equation (Branch) and the HRþ arm-leg ACC model (Arm-leg).
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Bland–Altman plots are presented to further illus-
trate the estimation from the three models against the
criterion VO2 during five simulated work tasks with dif-
ferent calibration procedures (see Figure 3). The HR-
Flex model calibrated with Chester step test had the
smallest bias (�0.03mL/min/kg) while quite a large
LoA (�5.81 and 5.74mL/min/kg). The HR branched
equation underestimated under both of the conditions
calibrated with Chester step test (�2.64mL/min/kg)
and treadmill (�2.59mL/min/kg). The HRþ arm-leg
ACC model calibrated with treadmill test had the
smallest LoA (�3.94 and 2.00mL/min/kg) while a
slight underestimation (�0.97mL/min/kg).

4. Discussion

In this study, three models for estimating WM by
using HR alone or combined with ACC were compared
with the gold standard measurement using indirect
calorimetry during simulated work activities. The
results showed that the HRþ arm-leg ACC model pro-
vided the most accurate estimation, especially in work
tasks involving dynamic arm and/or leg muscle activ-
ities. The HR-Flex method had a larger variance in its
estimation accuracy regarding different types of work
tasks, but a small bias when looking at the total oxy-
gen consumption for the five work tasks. It might be
used as an alternative for studies performed on a
larger scale when laboratory calibration is not access-
ible. The HR branched equation had a remarkable
underestimation in four out of five work activities and
hence might not be suitable for estimating WM.

The associations between HR and VO2 have been
studied and used for estimating oxygen consumption
in sports, daily activities or at work. The characteristics
of muscular work, i.e. small or large muscle groups
and static or dynamic components are important
factors to consider, which influence the relationships
between HR and VO2, as can be observed in Figure
2(a). In occupational settings, activities involving arm
or static work are quite common, and, therefore, the
influence on the estimation becomes more significant.
It was shown that by considering arm or leg work in
the estimation model, i.e. using the HRþ arm-leg ACC
model, the accuracy was improved in several simu-
lated work activities (see Table 4), compared to the
HR-Flex or HR branched equation. The results agree
with that of Strath et al. (2002) who compared the
HRþ arm-leg ACC model with the HR-Flex in free-liv-
ing activities. However, this result was contradictory to
Brage et al. (2015), who showed that the HR branched
equation had a more accurate estimation than the HR-

Flex model in daily activities. The difference can be
explained because different types of activities were
included in the studies. The HR branched equation
intended to improve the estimation by compensating
the errors from the HR equation with the ones from
the ACC equation (Brage et al. 2004; Crouter, Churilla,
and Bassett 2008). In Brage et al. (2015), the focus was
on daily activities during free-living conditions and the
overall intensity was low – as stated about 62% of the
time the HR was below the flex-HR point. In our study,
the estimation using the ACC equation substantially
underestimated the VO2 in most of the working tasks
(as shown in Table 3), since most of the movements
involving arm and/or leg could not be detected by
the hip-worn ACC. Therefore, with the a priori parame-
ters used in the HR branched model, it may not com-
pensate the errors from the HR equation using the
ACC equation in a different type of activity, e.g. occu-
pational activities. This was in agreement with
Edwards et al. (2010) who showed that the perform-
ance of HR branched model might be limited by the
heterogeneity in daily living activities.

The individual differences of the physiological
response to different tasks were observed among par-
ticipants, some of whom did not show a clear distinc-
tion between arm or leg work (as shown in Figure 2).
These differences might have multiple sources. First,
participants performed the tasks under the same
instruction but in their own style, and this difference
in the working technique had an influence on how
they used the muscles and how much force was
exerted. Second, the work tasks were at different
intensity levels to different participants, especially
comparing those who have a high fitness level and
those who have not. For the participants who have
high aerobic capacities, the simulated work tasks were
at a low to medium level with a small difference in HR
values, and therefore less distinction was observed
between the leg or arm work activities.

The calibration procedure using the treadmill with
measured VO2 had smaller LoA in the estimation from
all models compared to Chester step test without
measured VO2 (as shown in Figure 3). This was
expected, while it also required more time and resour-
ces to perform the treadmill test than the Chester
step test. It is worth noticing that the calibration using
treadmill also led to an underestimation of VO2 during
postal delivery (performed on a cycling station), as
shown in Tables 3 and 4, which can be explained by
the different muscle activities involved in these
two movements.
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During simulated painting, however, the VO2 was
closer to the estimation based on the leg calibration,
which was obtained during the treadmill test, rather
than the arm calibration obtained during arm ergom-
eter test (see Table 3). This was unexpected and led to
estimation errors (as shown in Table 4). Since the
wrist-worn ACC had much higher output than the
thigh-worn ACC (with a ratio >1.5) during painting,
this work task was classified as arm-mainly activity and
used the arm calibration equation in the HRþ arm-leg
ACC model. This deviation might be caused by higher
activity in trunk muscles, which have larger muscle
mass than arm muscles. Moreover, the participants
were instructed to perform the painting task with their
own style and pace, which led to the larger variance
of how the tasks were carried out among the
individuals.

The limitations of this study included the limited
number and duration of the simulated work activities,
which represented a variety of work tasks but still did
not cover the wide range of occupations. The simu-
lated work tasks were more constrained compared to
real occupational activities. Moreover, the study was
performed in a laboratory setting where other non-
physical factors which influence HR, such as heat,
stress, and food or caffeine intake, were controlled.
However, in real life scenarios, those factors will have
a larger influence. Therefore the estimation based on
HR–VO2 relationship would suffer, while the estimation
models combined with ACC might have a buffering
effect, especially in low-intensity work activities. Dub�e
et al. looked at a method of removing the thermal
component from heart rate to improve the estimation
accuracy of work VO2 in forest workers (Dub�e et al.
2015, 2016), which showed significant improvement of
the estimation when four 10-min rest pauses were
performed and analysed. This method can be further
explored to combine with the other methods eval-
uated in this study, e.g. the HRþ arm-leg ACC model,
to improve the estimation performance in
field settings.

Another limitation of the study was the difference
in the choices of the calibration procedures and the
sensors when compared with the previous studies.
The calibration procedure used in this study was
based on Strath et al. (2002), which differed from the
one used by Brage et al. (2004). This difference might
introduce additional error in the estimation from the
HR branched equation. For the choice of the sensors,
the thresholds and parameters used in previous stud-
ies were device-dependent, i.e. the ACC counts were
calculated differently by different manufacturers, such

as the Actigraph used by Brage et al. (2004) and
Strath et al. (2001), and the Actiheart used by Crouter,
Churilla, and Bassett (2008) and Brage et al. (2015). In
our study, we calculated the thresholds based on the
raw acceleration signals and adapted the parameters
used by the original studies to ours (as shown in
Figure 1). It is worth considering the choices of the
frequency range and parameters when applying these
models to different sensors.

One recent study showed that respiratory signals
including respiratory volume and rate could contribute
to the estimation of VO2 during daily physical activities
(Gilgen-Ammann et al. 2017). In the present experi-
ments, respiratory signals were also collected. The
method combining HR, ACC and respiratory signals
using a neural network to estimate the VO2 during
occupational activities was investigated in another
study (Lu et al. 2018). Kolus et al. (2015) presented a
machine learning model using personal demographic
variables and resting HR to predict HR-Flex parameters
and VO2 without individual calibration. Moreover,
Altini, Casale et al. (2015) described a Bayesian
model using HR and ACC calibrated during daily
activities for EE estimation, which avoided the need
for laboratory protocol calibration. There is still a need
for future researches to look into the applicability
and validity of these models in occupational
settings before they can be used for assessing WM
in practice.

5. Conclusion

In this study, three methods using HR with or without
ACC were compared with the standard measurement
of WM during simulated work tasks. The HR-Flex
model calibrated by Chester step test showed a small
bias for the total WM for all work tasks and offered a
good alternative for field studies on a large scale
when recourses for individual calibration are limited.
The method of combining HR with hip-worn ACC
showed significant underestimations, especially in
tasks involving dynamic arm and/or leg movements.
Therefore, the HR branched model is not recom-
mended for estimation of WM in occupational set-
tings. The method of using HR in combination with
ACC placed on wrist and thigh showed good accuracy
in most of the work tasks and provided a valid
estimation when calibration resources are provided.
For the development of smart wearable systems,
these two models, i.e. the HR-Flex and the
HRþ arm-leg ACC model, are suitable for estimating
the WM and assessing the RAS level. The choice of
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models depends on the need for the accuracy level
and resources and opportunities to perform calibra-
tions in the field.
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