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ABSTRACT
Most existing models of driver steering control do not consider the
driver’s sensory dynamics, despite many aspects of human sensory
perceptionhavingbeen researchedextensively. The authors recently
reported the development of a driver model that incorporates sen-
sory transfer functions, noise and delays. The present paper reports
the experimental identification and validation of this model. An
experimentwas carried outwith five test subjects in a driving simula-
tor, aiming to replicate a real-world driving scenario with no motion
scaling. The results of this experiment are used to identify parame-
ter values for the driver model, and the model is found to describe
the results of the experiment well. Predicted steering angles match
the linear component of measured results with an average ‘variance
accounted for’ of 98% using separate parameter sets for each trial,
and 93% with a single fixed parameter set. The identified parameter
values are comparedwith results from the literature and are found to
be physically plausible, supporting the hypothesis that driver steer-
ing control can be predicted usingmodels of human perception and
control mechanisms.
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1. Introduction

The computational tools available to automotive engineers allow vehicle dynamics to be
predicted accurately, so that quantitative metrics for vehicle design can be defined. How-
ever, driver perception and control mechanisms are still poorly understood, therefore it
is difficult to predict the effects of design changes on the closed-loop driver–vehicle sys-
tem. There is significant motivation for developing driver models which allow quantitative
analysis and optimisation of the driver–vehicle systemwithout relying on track testing and
subjective driver feedback. Various models of driver steering control exist [1,2], however
few consider the driver’s sensory dynamics. The role of sensory dynamics during driving
can be placedwithin the ‘two-level’model proposed byDonges [3]. In thismodel, a feedfor-
ward controller observes the road ahead, plans a trajectory for the vehicle and calculates
the required steering inputs, while a feedback controller corrects for disturbances about
this planned trajectory. The feedforward controller operates based on inputs from the
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visual system alone, as modelled by optimal ‘preview’ controllers [4,5]. The feedback task
involves using estimates of the vehicle states to correct for disturbances around the planned
path. Drivers cannot know all the vehicle states with complete accuracy, but instead take
noisy, filtered, delayed measurements of different sensory variables and use these to esti-
mate the information required to control the vehicle. The main sensory systems used for
the feedback task are the visual, vestibular and somatosensory systems.

Bigler [6] used results from the literature on human sensory perception to develop a
driver steering control model incorporating sensory dynamics, noise and delays. Parame-
ter values for the sensory channels were determined mainly from published experiments
performed on each channel in isolation. However, recent studies have shown that sensory
thresholds increase significantly during an active control task [7,8] and in the presence of
additional sensory stimuli [9–11]. An active control task such as driving requires atten-
tion to be shared between the task itself and the perception of concurrent sensory stimuli,
in contrast with passive perception tasks where the subject is concentrating solely on one
sensory stimulus. Nash and Cole [12], building upon the work of Bigler [6], and upon a
review of the literature [13], developed an improved driver model incorporating sensory
dynamics. Preliminary analysis of this model was carried out [14] using published results
from an experiment in a flight simulator [15] to validate the modelling approach for an
aeroplane control task.

The aim of the work described in the present paper is to identify and validate the driver
model presented in [12]. Experimental data is collected from a driving simulator exper-
iment measuring steering control behaviour. An important feature of the work is that
parameter values of the driver’s sensory channels are identified from datameasured during
an active driving task, rather than from separate passive perception tasks. The drivermodel
is described in full in [12], and is summarised in Section 2. The design of the driving sim-
ulator experiment is described in Section 3 and the identification procedure is outlined in
Section 4. The results are presented in Section 5 anddiscussed in Section 6. The conclusions
are given in Section 7.

2. Driver steering control model

The parametric driver steering control model incorporating human sensory dynamics and
reported in [12] is summarised in this section to the extent that it is necessary to under-
stand the rest of the present paper. The model is built around an optimal control strategy,
hypothesising that drivers achieve close to the best possible performance within the limita-
tions of their sensory and motor systems. Driving a vehicle is a complicated task involving
many physical and neural processes, so various simplifying assumptions are made. These
assumptions could be removed whenmore is known about the role of sensory dynamics in
the core driving task. The scope of the model does not extend to speed choice or control,
therefore only vehicles travelling at constant longitudinal speed are considered. However,
the principles behind this model could be extended to include variable-speed vehicles. The
task of trajectory planning and optimisation is also not modelled; the driver is assumed to
follow a given target path of negligible width. This limitation could be overcome by cas-
cading a trajectory planning model which calculates a desired trajectory based on the road
geometry [16] with the steering control model which attempts to follow this trajectory in
the presence of disturbances. To reduce the computational effort involved in simulating the
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model and provide efficient mathematical solutions, linear dynamics are used tomodel the
driver–vehicle system. Tyre friction characteristics are not considered, and the yaw angle
of the vehicle is assumed to be small.

The steering task described by the model is shown in Figure 1, combining the feed-
forward and feedback tasks described by the two-level model [3]. The feedforward task
involves following the target path ft, and the feedback task involves compensating for ran-
domdisturbances fv and fω. These disturbancesmay come from a variety of sources such as
wind gusts, vehicle nonlinearities and driver noise, however they can be modelled as addi-
tive disturbances referred to the vehicle lateral velocity v and yaw velocity ω. The target
and disturbance signals ft, fv and fω are collectively known as forcing functions, as under
controlled conditions they can be synthesised artificially to identify different loops of the
driver–vehicle control system [15]. It is assumed that the aim of the driver is to minimise
the tracking error between the vehicle lateral displacement and the target path.

The structure of the parametric model is shown in Figure 2. The plant describes the
system controlled by the driver, including the vehicle dynamics and the driver’s neuro-
muscular dynamics and sensory systems. The driver’s control strategy follows the linear
quadratic Gaussian (LQG) framework, combining a linear quadratic regulator (LQR) with
a Kalman filter to give statistically optimal control actions and state estimates based on the

Figure 1. Summary of steering task described by the driver model. The driver follows a target path ft
while compensating for disturbances fv and fω .

Figure 2. Structure of driver steering control model. Target and disturbance signals are input as white
noise wt, wv and wω , then filtered in the plant. The plant input δ̂ and outputs y are perturbed with pro-
cess and measurement noise w and v, so a Kalman filter estimates the plant states x̂. An LQR controller
computes an optimal plant input δ̂.
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driver’s internal model of the plant. Previous studies have used an LQR controller to model
driver steering control while following a target path [4,5], hypothesising that an experi-
enced driver will learn to steer in an approximately optimal fashion. Various studies have
found evidence that humans combine visual and vestibular information optimally [17–19],
and humans have been found to use internal models to assist withmotor control tasks [20].
A Kalman filter uses an internal model to achieve optimal state estimation in the presence
of additive white noise. Sections 2.1 to 2.4 describe the various components of the driver
model; a full mathematical derivation is presented in [12].

2.1. Plant

The plant describing the dynamics of the system controlled by the driver is shown in
Figure 3. The driver’s internal model is assumed to be a perfect representation of the true
plant. The plant input δ̂ plus process noise w is filtered by the driver’s neuromuscular
dynamics, giving the steering angle δ. Forcing functions ft, fv and fω are generated by fil-
tering white noise plant inputs wt, wv and wω, and added to the vehicle’s lateral velocity
v and angular velocity ω. The driver previews the upcoming target ft, with measurements
delayed by a visual delay τvi to give perceived displacements evi. The vehicle lateral accelera-
tion and angular velocity are sensed through the otoliths and semi-circular canals (SCCs),
with a vestibular delay of τve in both cases, giving perceived lateral acceleration ave and
angular velocity ωve. The plant is modelled in discrete time with sample time Ts, allowing
delays to be implemented explicitly using a shift register.

A ‘preview’ model is used to describe the driver’s visual perception of the upcoming
target path [4,5]. The driver previews future values of the target path up to the preview
horizon Tp as shown in Figure 4. The previewed displacements epn(k) for n = 0, 1, . . . ,Np,
where Np = Tp/Ts, are:

epn(k) = ft(k + n)− y(k)− nUTsψ(k) (1)

assuming small yaw angles ψ . The vehicle is defined in [12] as a two degree-of-freedom
single-track model moving at constant speed, discretised using a zero-order-hold method.

Figure 3. Structure of plant in the driver model. The plant describes the dynamics controlled by the
driver, including the vehicle dynamics, driver’s neuromuscular and sensory dynamics, and target and
disturbance filters.
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Figure 4. Model of the driver’s visual preview of the target path. The driver measures lateral displace-
ments of the target path relative to a line projected forward from the vehicle. Measurements are taken
at intervals of UTs up to a prediction horizon Np = Tp/Ts time steps ahead.

2.2. LQR controller

For a time-invariant linear plant, an LQR controller can be calculated, consisting of a gain
vectorKLQ which acts on the plant states to give an optimal plant input δ̂, whichminimises
a cost function J. Additive white noise does not affect the optimal solution, so the white
noise plant inputs w, wt, wv and wω can be ignored. The cost function incorporates costs
on the tracking error ep0 and the plant input δ̂, weighted by qe and qδ :

J =
∞∑
k=0

{
qeep0(k)2 + qδδ̂(k)2

}
(2)

Previous studies have included costs on yaw angle error [4,5], and it is also possible to
add additional terms such as steering velocity to the cost function. However for simplicity
only two costs are included. The optimal solution only depends on the relative weightings,
therefore qe is set to 1m−2. As the steering cost is placed on δ̂ rather than δ, the cost on
steering inputs is shaped by the neuromuscular transfer functionHnm(s). The optimal gain
KLQ can be found using the Matlab function dlqr.

2.3. Kalman filter

The LQR gain KLQ multiplies the plant states x(k) to give an optimal plant input δ̂. How-
ever, the driver only has access to measurements of the plant outputs y, perturbed by
process and measurement noise w and v. Therefore, a Kalman filter is used to compute
an optimal estimate of the plant states based on the computed plant input and noisy
measurements of the plant outputs. The noise covariance matrices are given by:

QKF = diag
([
W2 W2

v W2
ω W2

t
])

(3)

RKF = diag
([
V2
p × 1(1, Np+1) V2

a V2
ω

])
(4)
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whereW2,W2
v ,W2

ω andW2
t are the variances of the process noise w and the disturbance

and target white noise inputs wv , wω and wt; V2
p, V2

a , and V2
ω are the variances of the mea-

surement noise added to the plant outputs evi, ave, andωve; and 1(1, Np+1) is a column vector
of (Np + 1) ones.

Thismodel assumes that themeasurement noise has the same variance for all previewed
target path displacements evi. Previous studies have accounted for an increase in noise with
distance from the observer and eccentricity from the gaze direction [6], however there is
a lack of research into how drivers view the geometry of an upcoming target path. The
assumption of constant measurement noise Vp across all previewed displacements, while
clearly a simplification, is not found to affect the fit to experimental results significantly.
A time-invariant Kalman filter HKF(s) can be calculated for this system using the Matlab
function kalman. The state estimate x̂ can then be found from:

x̂(s) = HKF(s)
{
δ̂(s) y(s)

}T (5)

2.4. Model transfer functions and parameters

As explained in Section 1, previous studies reviewed in [13] have shown that measure-
ments of sensory perception taken in passive conditions may not be applicable to active
control tasks such as driving [7–11]. Therefore, most of the parameters of the model are
found using an identification procedure to fit to experimental results. However, the forms
of some of the transfer functions can be fixed using results from the literature. Models of
the vestibular system are taken from [21]:

HSCC(s) = 458.4s2

(80s + 1)(5.73s + 1)
(6)

Hoto(s) = 0.4(10s + 1)
(5s + 1)(0.016s + 1)

(7)

Drivers’ neuromuscular dynamics are approximated by a second-order filter:

Hnm(s) = ω2
nm

s2 + 2ζnmωnms + ω2
nm

(8)

Pick and Cole [22] studied drivers’ neuromuscular dynamics by applying torque distur-
bances to a steeringwheel and found values ofωnm = 5.65 rad/s and ζnm = 0.43 for drivers
with relaxed arms and ωnm = 23.2 rad/s and ζnm = 0.24 with tensed arms. It is unclear
which is more appropriate for driver steering models, as drivers’ arms may be partially
tensed, therefore ωnm and ζnm are identified to fit experimental data.

The values of some of the remaining parameters, such as the vehicle dynamics and the
spectra and amplitudes of the forcing functions, are given by the experimental conditions.
However various other parameters values must be identified, including the steering cost
weight qδ , preview time Tp, the visual and vestibular delays τvi and τve, noise amplitudes
W,Va,Vω andVp, and neuromuscular parametersωnm and ζnm. If the driver previews the
upcoming target path they should be able to compensate for their internal latencies to fol-
low the target without any delay. However, preliminary analysis of the experimental results
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showed that drivers sometimes steered earlier than expected, as if they were following a
‘shifted’ version of the target ft. This could be because the drivers aligned a different part
of the car with the target other than the centre of mass. An additional time constant Tt is
therefore included to model this effect, such that the driver attempts to follow ft(t − Tt)

rather than ft(t). In total there are eleven parameters which are neither determined by the
experimental conditions nor fixed using results from the literature, and these are found
using the identification procedure described in Section 4.

3. Steering control experiment

A model of driver steering behaviour based on the dynamics of human sensory systems
is presented in Section 2. To investigate how sensory information is used during driv-
ing, an experiment was carried out to provide data which can be used to identify values
for the parameters of this model. A similar parameter identification procedure has previ-
ously been used in [14] to fit the model to an experiment carried out by pilots in a flight
simulator [15]. The new experiment was designed following similar principles to mea-
sure driver steering control in a combined target-following and disturbance-rejection task.
The experiment was carried out in a driving simulator, rather than a real vehicle on a test
track, due to the control that this allows over the experimental set-up. Driving simula-
tors have limited available travel, so the vehicle motion is usually scaled down or filtered
to fit within these physical limitations. This results in a conflict between the information
perceived by the visual and vestibular systems. There is some disagreement in the litera-
ture as to how sensory conflicts are perceived by humans [13]. Therefore, to ensure that
the drivers used their sensory systems in the simulator in the same way as they would
in a real vehicle, the vehicle motion was designed to fit within the simulator limits with-
out any scaling or filtering. (A separate set of experiments was performed to investigate
and model the effect of sensory conflicts on driver steering behaviour, these are reported
in [23].)

3.1. Steering control task

The steering control task carried out in the experiment was the same as the task described
by the model in Section 2 (shown in Figure 1). The vehicle moved at constant longitudinal
speed U and the drivers were asked to follow a target lateral displacement ft as closely as
possible. Disturbances fv and fω were added to the lateral velocity and yaw angular velocity
of the vehicle as shown in Figure 3. The target and disturbance forcing function signals ft,
fv and fω were generated by filtering Gaussian white noise to match the assumptions made
in the driver model. White noise signals wt, wv and wω were generated in discrete time by
choosing random numbers from a zero-mean normal distribution. The variancesW2

t ,W2
v

andW2
ω of these signals were adjusted between trials, as discussed in Section 3.3.

The forcing functions were tuned during preliminary testing to ensure that the ampli-
tudes were as large as possible without exceeding the simulator limits, and to ensure that
a large range of frequencies was included without becoming uncomfortable for the driver.
The spectrum of the target forcing function ft was defined by combining a high-pass filter,
to attenuate low frequencies and ensure that the target path was within the simulator limits,
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Figure 5. First 40 s of the forcing functions used in Trial A7. Disturbance forcing functions are filtered to
show their effect on the vehicle lateral displacement.

with a low-pass filter to restrict the bandwidth of the target:

Hf t(s) =
(

s
s + 0.1

)2 ( 2
s + 2

)2
(9)

The spectra of fv and fω were chosen so that, in the absence of any steering, the vehicle’s lat-
eral displacement y would have the same spectrum as ft. This was achieved by multiplying
Hf t(s) by s and Hf t(s) by s2/U, however this resulted in large-amplitude high-frequency
components which caused very large velocities and accelerations. Therefore, the spectra
were multiplied by an additional low-pass filter with cutoff frequency 3 rad/s:

Hf v(s) =
(

3
s + 3

)2
sHf t(s) (10)

Hfω(s) =
(

3
s + 3

)2 ( s2

U

)
Hf t(s) (11)

Examples of the forcing functions used in one of the trials are shown in Figure 5.

3.2. Simulation conditions

A moving-base driving simulator was used for the experiment, with a high-fidelity visual
display and a high-bandwidth motion platform which applied physical feedback to the
driver. The lateral and yaw motion applied to the driver by the platform was not scaled or
filtered in any way during the experiment. Therefore the lateral and yaw motion that was
sensed visually, and the lateral and yaw motion that was sensed by the vestibular organs,
were identical. In contrast, no longitudinal motion was applied to the driver by the plat-
form, although longitudinal motion was presented on the visual display. However, because
the human sensory system cannot detect constant longitudinal motion except visually, the
driver would not have been aware of the absence of longitudinal motion of the platform,
and their driving strategy would not have been affected. Simulated engine noise was played
to mask the sounds of the motion platform. Suitable vehicle parameter values were found
by fitting the steering response of the single-track model to the high-accuracy nonlinear
vehicle model employed on the simulator. The aim was to find a linear model with a real-
istic overall steering response, rather than choosing each parameter separately based on
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Table 1. Vehicle parameter values used in experiment, for the single-track model defined in [12]. G is
the steering gear ratio.

m lf lr Cf Cr I G U

Units kg m m kN/rad kN/rad kgm2 – m/s
Slow (S) 650 1.85 1.65 100 230 450 30 10
Fast (F) 650 1.85 1.65 100 230 450 150 40

measurements of a vehicle’s physical properties. For the experiment, two vehicle speeds
were chosen, a ‘fast’ vehicle with U=40m/s and a ‘slow’ vehicle with U =10m/s, which
gives larger amplitudes of yawmotion without exceeding the lateral displacement limits of
the simulator. The parameter values for the two vehicles are given in Table 1.

Previous experiments carried out by pilots used a visual display consisting of a screen
which showed a line representing the target aeroplane pitch angle and a cross-hair showing
the actual pitch angle [15]. This display did not give the pilots any information about future
values of the target angle. In contrast, drivers are usually able to see the road ahead of them,
previewing the upcoming target path as shown in Figure 4. This allows them to compensate
for delays in the visual feedback loop by planning steering actions in advance. Two types of
visual display were designed for the experiment, one which allowed the driver to preview
the upcoming target path in order to replicate a more realistic driving scenario, and one
without preview to allow delays in the visual system to be investigated. Examples of the
two displays are shown in Figure 6. In both cases, the vehicle moved along a straight road,
with objects such as trees and buildings next to the road for use as visual cues to speed
and depth. In the ‘no preview’ case, a straight target line moved laterally across the road,

Figure 6. Visual display examples, with andwithout preview. Note that the simulator display wasmuch
higher fidelity than these examples.
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with the lateral displacement of each point on this line equal to ft(t) at time t. This allowed
the driver to see the current value of ft without any information about future values of the
target. In the preview case, the target line was fixed to the road, allowing the driver to see
the upcoming target.

In a real vehicle, lateral forces generated by the tyres on the front axle are communi-
cated to the driver through torque at the steering wheel, and this can give the driver useful
information about the vehicle states. The driver model does not currently take account of
steering torque feedback, therefore the steering systemwasmodelled as parallel spring and
damper, with transfer function:

HSTF(s) = kSTF + cSTFs (12)

between steering angle and resistive torque. This provided some resistance to steering,
however it did not give the driver any information about the vehicle states. The stiffness
kSTF was set to 8 Nm/rad and the damping coefficient cSTF to 1Nms/rad. The reason for
omitting feedback of lateral tyre forces at this stage of themodel development is to limit the
number of model parameters required to be identified; experimental identification gener-
ally becomesmore difficult as the number of unknown parameter values increases. Drivers’
perception of more sophisticated torque feedback will be investigated in the future and
incorporated into the driver model.

3.3. Experiment procedure and trials

The experiment consisted of fourteen trials, each of 120 s duration, with a range of condi-
tions designed to explore different aspects of the driver’s control strategy. The conditions
are summarised in Table 2. Various forcing function combinations were tested with the
slow and fast vehicles, with or without preview. For trials with no target (marked 0 in
the preview column) the ‘preview’ and ‘no preview’ models are equivalent. There were
five test subjects in total, all male and aged between 24 and 30. All five drivers possessed
driving licences and had at least six years experience of driving cars on public roads.
Drivers 1–4 all had a small amount of experience driving in a simulator. Driver 5 was a

Table 2. Experimental conditions for each trial (data also appears in [23]).

Forcing function amplitudes

Trial Wt (m*) Wv (m/s*) Wω (rad/s*) Vehicle Preview

A1 1.58 0 0 F χ

A2 1.58 0 0 F �
A3 0 1.58 0 F 0
A4 0 0 1.58 F 0
A5 0 1.11 1.11 F 0
A6 0.79 0.79 0.79 F χ

A7 0.79 0.79 0.79 F �
A8 1.58 0 0 S χ

A9 1.58 0 0 S �
A10 0 1.58 0 S 0
A11 0 0 1.58 S 0
A12 0 1.11 1.11 S 0
A13 1.11 1.11 1.11 S χ

A14 1.11 1.11 1.11 S �
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professional test driver with a great deal of experience driving simulated and real cars. The
number and demographic range of test subjects is not sufficient to quantify the steering
control behaviour of the population of drivers. However, this was not the objective of the
experiments. The driver model is intended to predict the behaviour of individual drivers.
Increasing the number and demographic range of test subjects would increase confidence
that the model could fit any driver from the population, but it is considered that the five
subjects tested so far give sufficient confidence for further development of the model.

Practice runs of several of the trials were carried out before the experiment to familiarise
the drivers with the steering task and the different disturbances and vehiclemodels. During
the experiment, the order of the trials was randomised. Before the experiment began each
subject was told how the conditions may vary between the trials, however to avoid biasing
their expectations they were not told anything about the specific conditions of each trial.

4. Identification procedure

An identification procedure can be used to find values for the parameters of the new driver
model presented in Section 2which give the best possible fit to the results of the experiment
described in Section 3. The identification procedure consists of two stages: Box–Jenkins
identification to fit general polynomial transfer functions to the experimental results; and
parametric identification to find a set of parameter values for the new driver model. The
procedure is run separately for each of the five drivers. In addition, the measured steering
angles are averaged over the five drivers to give a set of ‘averaged data’, which is also used
for identification. The averaged data should contain less random noise compared with the
data for the individual drivers, allowing an average set of parameter values to be foundmore
reliably. However, it relies on the assumption that the drivers were using similar control
strategies. The first 15 s of each trial are excluded from the data used for identification, as
the drivers may have taken some time to work out the conditions of the trial and settle on
a control strategy. The final 30 s of each trial are also excluded, so that the fit of the last 30 s
can bemeasured to validate the predictive power of the model and to check for over-fitting
(see Section 5.2).

4.1. Box–Jenkins identification

The first identification stage involves fitting general transfer functions to themeasured data
to estimate the contribution of linear control behaviour to the measured steering actions.
This gives an approximate upper bound on how well the parametric driver model could be
expected to fit. The Box–Jenkins method is used to estimate polynomial transfer functions
between each of the model inputs (ft, fv , fω) and the model output (δ) [24]. The method
also finds a model of the noise spectrum Hn(s). Polynomial transfer functions of order 5
are used to give a good fit to the measurements without over-fitting [25]. The Box–Jenkins
method can also make allowances for time delays between each input channel and the out-
put, however the method does not estimate these directly from the data so they have to
be known in advance. To find optimal values of these time delays, Box–Jenkins identifica-
tion is carried out with a range of different delays and a genetic algorithm is used to iterate
towards values which give the best fit to the experimental results.
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4.2. Parametric identification

The parametric driver model depends on eleven variable parameters which are neither
fixed in advance nor taken from the experimental conditions. Ljung [24] presented two
methods for identification of systems operating in closed-loop: direct identification where
the system is simulated in open-loop and indirect identification where the system is simu-
lated in closed-loop. As the feedback transfer function (the vehicle) is known in this case
the indirect method is the most appropriate, and should result in lower bias than the direct
method. The simulated steering angle δsim can be compared with the measured steering
angle δexp and themean-square differenceminimised to find the optimum set of parameter
values. This difference is composed ofmodelling error, which can be reduced by improving
the accuracy of the model, and random noise introduced by the driver, which cannot be
reduced.

If the driver noise is not white, bias may be introduced into the identification of the
driver model. This bias can be reduced by filtering the prediction error so that the noise
termapproximateswhite noise [24]. This requires filtering by the inverse of the noisemodel
Hn(s) (found in the Box–Jenkins identification procedure) to give a weighted prediction
error ε. This amplifies the high frequencies, however the bandwidth of a driver’s steering
control is physically limited. Therefore a low-pass filter is included, with a cutoff frequency
of 30 rad/s, so that high-frequency errors are not penalised excessively:

ε(s) = 1
Hn(s)

(
30

s + 30

)2
(δsim(s)− δexp(s)) (13)

Previous studies have carried out simulations of similar identification procedures for driver
models and shown that filtering by the inverse of the noise model is effective in reducing
bias in the identified parameter values [25].

Finding the optimum set of parameter values involves minimising the mean-square
weighted prediction error ε. Due to the number of parameters involved a stochasticmethod
is required to explore the entire search space and find the global minimum solution. A
genetic algorithm is therefore used, starting with a population of 100 random solutions
and using principles of natural selection to ‘mate’ and ‘mutate’ the best solutions, allowing
the population to converge towards the global minimumover 100 iterations [26]. A second
minimisation stage is then carried out to focus in on the minimum using a gradient search
method, taking the genetic algorithm solution as the starting point. The Matlab function
fmincon is used for this stage with the SQP algorithm.

Initially, single sets of parameter values are identified for each driver to fit the results
of all trials. Minimisation over a multidimensional search space can be difficult, there-
fore the identification procedure is carried out in several steps to reduce the number of
parameters identified at any one time. The conditions for each step are given in Table 3. In
step 1 parameter values are identified for the trials without preview, with Tt and Tp held
constant at 0 and 0.1 s. Parameters W, Va, Vω and Vp affect not only the linear compo-
nent of the modelled control strategy, but also the predicted amplitude and distribution
of the random noise introduced by the driver. It is desirable for the noise amplitude pre-
dicted by the model to match the noise amplitude found in the experiment. The modelling
error is assumed to be small, so that the driver noise is given by the difference between the
measured steering angle δexp and the modelled steering angle δsim. Simulations show that
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Table 3. Parameters held constant for each step of the parametric identification procedure. (sn) refers
to the value identified in step n.

Values of parameters held constant

Step Trials qδ Va Vω Vp W τvi τve Tt Tp ωnm ζnm

1 A1, A3–A6, A8, A10–A13 0 s 0.1 s
2 A1, A3–A6, A8, A10–13 (s1)×(noise ratio) 0 s 0.1 s
3 A2, A7, A9, A14 (s2) (s2) (s2) (s1)×(noise ratio) (s2) (s2) (s2) (s2)
4 A1–A14 (s1)×(noise ratio) (s3) (s3)

the predicted noise amplitude is affected much more by the process noise than the mea-
surement noise. Therefore, after step 1 the average ratio of the measured to the modelled
noise amplitudes is found and used to scale W. In step 2, W is then held constant while
the remaining parameter values are identified to fit the results of the non-preview trials
once more.

In step 3, optimal values of Tt and Tp are found from the trials with preview. The value
of Vp is also allowed to vary, because the overall level of uncertainty in the visual mea-
surements depends on the number of preview points. The target shift Tt was found to be
unnecessary for trials with the fast vehicle, so Tt is set to zero for trials A2 and A7. The
other eight parameters are held constant at the values found in step 2. In step 4 a further
optimisation is carried out, holding Tt, Tp andW constant at the values found previously
and identifying the remaining eight parameter values to minimise the average weighted
prediction error across all fourteen trials.

Once a single set of parameter values is found to fit all of the trials as well as possible,
separate parameter sets are identified for each trial individually. To reduce the number of
parameters needing to be optimised, the values ofTp,Tt andW are held constant, using the
values found for the single parameter set.When running the parametric identification pro-
cedure for the averaged data, the value ofW is given by the average of the values identified
for the separate drivers, to give a realistic predicted noise amplitude.

5. Results and analysis

In the following subsections, the results of the experiment and the identification pro-
cedure are analysed in various ways. In Section 5.1 the agreement between the para-
metric driver model and the results of the experiments is investigated. In Section 5.2
the results are checked for signs of over-fitting to validate the model. The identified
parameter values are compared between drivers in Section 5.3, and the noise levels pre-
dicted using these parameters are compared with those found in the experiment in
Section 5.4.

5.1. Agreement betweenmodel andmeasurements

It is possible to quantify the agreement between themeasured andmodelled steering angles
by calculating the ‘variance accounted for’ (VAF). This value represents the percentage of
the variance in the measured signals δexp which is matched by the model prediction δsim,
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Figure 7. Agreement between driver model predictions and experimental data. VAF values are plotted
for all five drivers and for the averaged data. The fit of the Box–Jenkins model is compared with the fit of
the parametric driver model, either using separate parameter sets fit to each trial or a single parameter
set to fit the results of all trials.

and is given by:

VAF =
(
1 −

∑
k
{
δexp(k)− δsim(k)

}2
∑

k
{
δexp(k)

}2
)

× 100% (14)

VAF values are plotted in Figure 7 to quantify the agreement between the predicted and
measured steering angles for each of the five drivers as well as the averaged data.

As expected, VAFs are largest for the Box–Jenkins model, giving an approximate upper
bound on the percentage of the steering signal which is linear. VAFs are lowest for the sin-
gle parameter sets, as the separate parameter sets are able to get closer to the optimum for
each individual trial. In general the VAFs for the separate parameter sets are very close to
the VAFs for the Box–Jenkins model, indicating that the parametric model structure can
explain the observed linear driver steering behaviour verywell. VAFs for the single parame-
ter sets are reasonably close to the VAFs for the separate parameter sets. For the individual
drivers, there are some trials where the single parameter sets do not fit as well, showing
that the drivers’ individual control performance may change between trials, however the
results using the single parameter set fit much better for the averaged data. The VAFs are
higher for the averaged data than for the individual drivers, which is expected as averaging
should reduce the amount of noise in the results. These VAF values are on average 98% of
the Box–Jenkins upper bound using separate parameter sets, and 93% of the upper bound
with a single set of parameters.

5.2. Model and procedure validation

Measurements from the last 30 s of each trial are not used in the identification procedure,
but are kept to validate the predictive power of the different models and to check for over-
fitting. If over-fitting had occurred, the model would fit the experimental results better for
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Table 4. Average VAFs for signals between (a) 15 s and 90 s; (b) 90 s and 115 s.

Box–Jenkins Parametric (separate) Parametric (single)

Driver (a) (b) (a) (b) (a) (b)

1 76.6 69.7 71.1 64.7 59.7 59.6
2 81.1 80.6 79.3 78.3 70.8 71.7
3 74.0 71.2 70.6 66.3 64.0 61.8
4 64.2 68.3 59.5 63.7 52.4 58.0
5 79.2 72.4 77.2 66.6 69.7 63.6
Averaged data 88.6 88.8 86.6 86.2 81.8 83.4

the data that was used for identification. To check this, average VAF values are calculated
over all the trials for each driver, either for (a) the signals between 15 s and 90 s (which are
used for identification) or (b) the signals between 90 s and 115 s. The results are compared
for all three models in Table 4.

Table 4 shows evidence of some over-fitting in the Box–Jenkins results and the results
for the separate parameter sets, as the average VAF is lower in the final 30 s for all drivers
except driver 4 using these models. This is not seen for the averaged data, showing that
the reduction in driver noise when averaging the measurements reduces the level of over-
fitting. These results show that the VAFs given in Figure 7 for the Box–Jenkins model and
single parameter setsmay include a portionwhich is spuriously fitting to randomvariations
in each trial. It also indicates that the separate parameter sets found for each trial may not
always be reliable. In contrast, the results for the single parameter sets do not show any
evidence of over-fitting. VAFs are lower in the last 30 s for drivers 3 and 5, but higher for
drivers 2 and 4 and very similar for driver 1. This shows that by optimising over all of the
trials any random variations are evened out, allowing a single set of parameter values to be
found without fitting to noise in the results.

Simulatedmeasurements were used to check that the identification procedure described
reliably converges to the correct parameter values. Representative steering angles were cre-
ated for each trial using the driver model with the parameter values identified for the
averaged data over all trials. Measurement and process noise were added with the iden-
tified amplitudes, to give results with similar noise levels to the real measurements. An
ensemble of ten sets of simulated results for each trial was created with different random
noise signals, and the identification procedure was run for each set. The resulting identi-
fied parameter values demonstrated that in general the procedure does reliably converge to
the correct parameter values. There was some slight variation, as to be expected when the
measurements contain a significant amount of noise, however the identified parameters
did not deviate substantially from their true values.

5.3. Identified parameter values

A comparison of the single parameter sets identified for each of the drivers is shown in
Figure 8. In general, the parameter values are similar between the different drivers, showing
that the drivers were using similar control strategies. The parameter values found using
the averaged data all fall within the range of the parameter values found for the individual
drivers, so the averaged data appears to be a valid representation of a typical driver’s steering
control strategy.
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Figure 8. Single parameter sets found to fit all the trials. Values found for the individual drivers are
shownbymarkers, and values found for the averageddata are shownbyhorizontal lines. Separate values
of the steering cost qδ are identified for the fast and slow vehicles.

The identified parameter values highlight various trade-offs between different param-
eters, which have similar effects on the modelled steering action. Comparison of the
identified visual delay τvi and neuromuscular frequencyωnm shows that drivers with lower
values of one parameter also had lower values of the other. Decreasing the neuromuscular
frequency increases the lag in the neuromuscular system, therefore this is compensated
for by a reduction in the visual delay, although the vestibular delay is not affected. The
neuromuscular damping ζnm is also seen to decrease with ωnm.

One of themost significant differences between the drivers is in the steering cost qδ . This
parameter describes the trade-off between steering effort and path-following error, and is
a choice made by each of the drivers rather than a physical limitation. Some difference
between the drivers is also seen in the process noiseW, and this is discussed in Section 5.4.
Due to the complexity of themodel and the number of parameters, as well as the amount of
noise in the measurements for each driver, the fact that the parameter values are a similar
order ofmagnitude and inmost cases close in value for the different drivers is encouraging.
Further discussion is given in Section 6 to determine whether the identified values are
physically appropriate.

5.4. Measured andmodelled driver noise amplitudes

One of the objectives of the identification procedure described in Section 4.2 is to find
a set of parameter values which predicts driver noise levels similar to those seen in the
experiments. This is achieved by scaling the process noise amplitudeW based on the ratio
between themeasured andmodelled noise amplitudes. Themeasurement noise amplitudes
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Va, Vω and Vp are not scaled; while the Kalman filter is able to reduce the effects of mea-
surement noise by using other measurements and an internal model of the system, the
process noise is added immediately before the plant so cannot be reduced as effectively
by the driver. Simulations confirm that most of the noise in the modelled steering action
originates from the process noise.

Assuming small modelling error, the driver noise is defined as (δsim − δexp). The ratio
between the measured and modelled RMS noise amplitudes is shown in Figure 9(a), using
the single parameter sets identified for each driver. On average the noise amplitudes match
well between the model and the experiment, with a ratio close to 1. There is a reasonable
amount of variation between trials, with the experimental noise generally larger for the tri-
als with the slow vehicle (A8–A14). To investigate the reasons behind the variation in noise
amplitudes across the different trials, the values ofW are scaled by the ratio of the experi-
mental to the modelled RMS noise amplitudes (as shown in Figure 9(a)) for each trial, and

Figure 9. Ratio of measured and modelled RMS driver noise amplitudes. In (a), a constant value ofW is
used for each driver, whereas in (b) the values ofW have been adjusted for each trial to match the noise
levels more closely. In (c) adjusted values of W are plotted against RMS steering angle δ. (a) Constant
value ofW. (b) Adjusted values ofW. (c)W vs. RMS(δ).
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the simulations are run again. The agreement between the measured and simulated steer-
ing angles is not affected, with the VAFs using the adjusted values of W on average 0.4%
higher than the VAFs using a constant value ofW. The resulting ratios between measured
and modelled noise amplitudes are shown in Figure 9(b). These ratios are much closer to
1 than those found using constantW values in Figure 9(a).

The adjusted values of W are plotted against the RMS steering angle for each trial
in Figure 9(c). There is a clear linear relationship, showing that process noise is signal-
dependent rather than additive. The amplitude RMS(δ) of steering actions applied by the
driver varies between trials and depends on the task and the driver’s internal cost func-
tion. Therefore it may bemore appropriate to define a constant signal-to-noise ratio (SNR)
RMS(δ)/W between the RMS steering angle and the RMS process noise, rather than a con-
stant value ofW. Figure 9(c) shows that the SNRs are similar between the different drivers,
with a value of 0.57 on average.

6. Discussion

The results presented in Section 5 can be used to give an insight into driver steering control
behaviour and sensory systems during a realistic driving task, allowing knowledge of the
underlying mechanics of human perception to be combined with an understanding of the
higher-level control strategies used while driving.

6.1. General discussion of results

Experimental data has been used to identify parameter values for a parametric driver
model based on a physical understanding of human sensory dynamics. The VAF val-
ues presented in Section 5.1 show that the parametric model fits the experimental results
almost as well as the upper bound given by the Box–Jenkins model. This result supports
the hypothesis that driver steering control can be predicted usingmodels of the underlying
sensory mechanisms. The parametric model fits the results of all trials well with a single
fixed set of parameter values. Simplifications have been made in the modelling of human
sensory dynamics, such as neglecting visual perception of vehicle motion and assuming
constant measurement noise on each previewed lateral displacement. The good agreement
between the parametric model and experimental results shows that these assumptions are
reasonable.

Another assumption made in the model is that the measurement and process noise is
Gaussian, white and additive. In Section 5.4 the process noiseW is found to correlate lin-
early with RMS steering angle, indicating that process noise is signal-dependent rather
than additive. Signal-dependent noise could be included explicitly in the driver model [6],
however this increases the complexity and computational requirements since the standard
LQR and Kalman filter solutions are no longer optimal. As long as the conditions do not
vary significantly over time a simpler solution is to choose additive noise amplitudes based
on the expected average signal amplitudes.

Parameter values identified for each of the five drivers are found in Section 5.3 to be sim-
ilar in general. No significant differences are found between a professional driver (driver 5)
and normal drivers. This could be because the identified delays and noise amplitudes are
linked to physical limitations which are similar inmost healthy humans, so for simple tasks
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like those carried out in the experiment more experienced drivers do not necessarily have
any advantage. The advantage of a professional driver is likely to be more apparent in the
nonlinear handling regime near the limit of tyre adhesion, and in planning the optimum
target trajectory.

6.2. Comparison of parameter values with literature results

A review of relevant literature relating to sensory dynamics during driving was carried
out in [13], allowing the identified parameter values to be compared with results from the
literature to determine whether the parametric driver model gives a realistic description
of the function of sensory systems during driving. A comparison between the single set
of parameter values identified to fit the averaged data and estimates from the literature is
presented in Table 5.

There is some disagreement in the literature as to the values of delays in the visual
and vestibular systems, and it can be difficult to distinguish between pure delays, lags and
time taken to overcome threshold levels. Transmission of vestibular reflex signals has been
found to be very fast [27], however other studies have suggested that neural processing
of vestibular information may take longer than the processing of visual information [28].
The identified vestibular delay of 0.19 s is slightly longer than the visual delay of 0.16 s, sup-
porting the hypothesis that processing of vestibular information takes longer than visual
information. Both of these values are within the (somewhat large) range suggested by
results from the literature, and they can be used as a more specific estimate of sensory
delays during driving.

Soyka et al. [29] developed a signal-in-noise model of sensory thresholds, which can
be used to infer noise amplitudes from measured threshold data. Estimated noise ampli-
tudes using this approach are compared with identified values in Table 5. The identified
value of Vω is 1.4 times the value found from sensory threshold measurements, whereas
the identified value of Va is 12 times larger. Studies have found that vestibular thresholds
may increase by factors between 1.5 and 6 during an active control task [7–10], which
can explain the larger value of Vω but not of Va. However, while the angular velocities
in the experiment were very small and close to threshold levels, the accelerations were
much larger than the perception threshold. The ‘just noticeable difference’ for accelera-
tions increases with stimulus amplitude [30], so the identified noise amplitude Va may
include signal-dependent as well as additive noise. Taking this into account, the identified
noise amplitudes are plausible.

Studies measuring drivers’ gaze direction have found that drivers tend to look around
1 s ahead [3,31,32]. The identified preview time Tp is 0.85 s, which is slightly shorter than
the 1 s found in the literature. This may be a result of the small target lateral displacements
and the assumption of constant visual noise Vp, when in reality the target would become

Table 5. Comparison of identified parameter values with estimates from literature. Identified values are
found using the averaged data.

Parameter qδ (fast) qδ (slow) Va Vω Vp W τvi τve Tt Tp ωnm ζnm

Units rad−2* rad−2* m/s2* rad/s* m rad* s s s s rad/s –
Identified 0.13 0.087 0.46 0.033 1.1 0.32 0.16 0.19 −0.55 0.85 10 0.54
Literature – – 0.038 0.023 – – 0.10–0.56 0.05–0.44 – 1 5.65–23.2 0.24–0.43
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more difficult to see as the preview distance increases. The identified target shift Tt (which
is only used for the slow vehicle) is 0.55 s, implying that the drivers steered 5.5m ahead
of the target on average. They may have aligned the front of the vehicle with the target
rather than the centre of mass, although this cannot account for the full distance. Another
explanation is that at low speeds the assumption of constant preview time could be invalid,
and drivers look further ahead so that the preview distance isn’t too short.

The identified neuromuscular frequency ωnm is between values found for relaxed and
tensed arms [22], however the identified damping ratio ζnm is higher than the values found
in both cases. In reality the driver’s neuromuscular system interacts in closed-loop with the
spring-damper torque feedback of the steering wheel, however this interaction is not cap-
tured in themodel. Therefore, the identified neuromuscular transfer function incorporates
this complete closed-loop system, which acts as a low-pass filter between δ̂ and δ. While
the transfer function for the neuromuscular dynamics in the model is intended to corre-
spond to the dynamics of the driver’s arm muscles, it also plays a role in shaping the cost
function. The steering cost is applied to δ̂, based on the hypothesis that the driver aims to
minimise control inputs to the neuromuscular dynamics. However, the driver may have
other costs, for example derivatives or filtered versions of δ̂, and these may come across in
the identified neuromuscular parameter values.

Overall, the comparison of the identified sensory parameter values with values found in
the literature shows the identified values to be physically plausible. Although the identified
noise amplitudes are larger than values inferred from sensory threshold measurements,
this aligns with expectations during an active control task with multimodal sensory stim-
uli. The aim of the parametric driver model is to predict driver steering behaviour based
on considerations of the physiological processes involved, so it is encouraging that the
identified parameter values give a reasonable description of human sensory systems.

6.3. Implications and limitations

Amodel of driver steering control has been developed based on an optimal control strategy,
incorporatingmodels of the driver’s sensory dynamics. Themodel fits experimental results
well, and identified sensory parameters are physically plausible when compared with mea-
surements from the literature. These results support the hypothesis that drivers achieve
close to the best possible control performance within the limitations of their sensory and
motor systems. Experienced drivers will have spent many hours driving, allowing them
to learn how best to use sensory information to control a vehicle. Increasing the number
and demographic range of test subjects would increase confidence that the model could fit
any driver from the population, but it is considered that the five subjects tested so far give
sufficient confidence for further development of the model.

The model gives a physical basis for the driver’s control decisions which is lacking
in many existing models. Furthermore, this work has more general implications for the
understanding of neuronal information processing during active control tasks. The iden-
tified time delays and noise parameters give an insight into the limitations of human
sensorimotor systems in such a task, and how they compare with previous studies which
have generally taken measurements under controlled, passive conditions. It is also shown
that the processing carried out in the brain during an active control task such as driving
can be modelled reliably by an optimal controller and state estimator.
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The driver model presented in this paper has several limitations. The model is only
derived for constant speed vehicles, and the yaw angle of the vehicle is assumed to be
small. A linear vehicle model is used, which is a reasonable approximation for regular driv-
ing, however under more extreme conditions, drivers may operate in the nonlinear region
close to the limit of adhesion of the tyres. Driving simulator experiments with varying vehi-
cle speed and nonlinear tyres may reveal greater differences in control behaviour between
drivers than observed in the present experiments. The current optimal control approach to
modelling the driver will likely require an extension to represent the measured behaviour
and differences between drivers. Nonlinear model predictive control is one possibility [12]
but account may also need to be taken of non-optimal behaviour when the driver has not
fully learnt the vehicle dynamics.

The current model is derived for random targets and disturbances, however further
work is necessary to determine how drivers deal with more predictable or transient condi-
tions. The derivation of the driver model assumes that there are no conflicts between the
senses, and the experiment was carefully designed to allow the vehicle motion to be repli-
cated at full scale. However, it is necessary to investigate how drivers behave when there
are sensory conflicts, in particular when the motion is scaled or filtered. These limitations
are addressed in further work [23].

7. Conclusion

A parametric model of driver steering control has been developed, incorporating human
sensory dynamics and hypothesising that the driver’s control strategy is close to optimal
within the limitations of their sensory andmotor systems.Model predictionsmatch exper-
imental results from five test subjects well, with a ‘variance accounted for’ on average 98%
of the upper bound on linear behaviour using separate parameter sets for each trial, and
93% of the upper bound with a single fixed parameter set. The identified parameter val-
ues are physically plausible compared with values from the literature. Identified vestibular
delays are longer than visual delays, supporting previous studies which have suggested that
processing of vestibular information takes longer than visual information. The identified
process noise amplitude W is linearly correlated with the RMS steering angle δ, showing
that process noise is signal-dependent. The signal-to-noise ratio RMS(δ)/W is consistent
across the different trials and drivers, at around 0.57. Differences between the test subjects
mainly resulted from different cost function weightings, and similar parameter values are
identified for a professional driver to those found for less experienced drivers. Furtherwork
is necessary to address the limitations of the current model, considering nonlinear vehi-
cles, more realistic road profiles and the effects of sensory conflicts on a driver’s control
performance.
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