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ABSTRACT 

 The use of technology in assisting educators to use student data in well-devised ways to 

enhance the instruction received by students is gaining headway and the support of federal 

dollars across the nation.  Since research has not provided insight as to whether or not reading 

coaches are using data technology tools with teachers, this mixed methods study sought to 

examine what behavioral intentions reading coaches have in using data technology tools with 

teachers, what variables may influence their behavioral intentions, and what trends may emerge 

in their views about using technology data tools with teachers.   

 A mixed methods approach was deployed via a survey embedded in an email, and data 

from 61 Florida reading coaches from elementary, middle, and high schools in a large urban 

school district were examined using an adaptation of the Technology Acceptance Model (TAM).  

The results showed that collectively all reading coaches have a high level of behavioral 

intentions towards using a data technology tool with teachers.  The study also showed that 

elementary, middle, and high school reading coaches vary in their degree of behavioral 

intentions in using a data technology tool based on different variables.  Trends in data showed 

that reading coaches think data technology tools are helpful, but that trainings are needed and 

that technology tools should be user-friendly.  Discussion is provided regarding the implications 

of the study results for all stakeholders. 
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CHAPTER ONE: INTRODUCTION  

The Problem and Its Significance 

 The concept of the use of technology for teacher development and student learning is 

receiving considerable attention in the educational community (Atkins et al., 2010; Greaves, 

Hayes, Wilson, Gielniak, & Peterson, 2010).  Data technology tools hold promise for helping 

teachers understand, analyze, and utilize student data to promote more effective teaching and 

increase student learning (Gallagher, Means & Padilla, 2008).  Reading coaches in our 

elementary and secondary schools are the individuals who assist classroom teachers in using data 

for the benefit of student achievement (Sturtevant, 2003).  However, educational research has 

provided little guidance on whether or not teachers are being equipped and supported with data 

technology tools to improve student achievement (Borman & Feger, 2006).  The present study 

addresses itself to the problem of how variance in data technology utilization is impacted by the 

behavioral intentions of reading coaches in public schools.   

Conceptual Framework 

 Data-driven decision making has become the centralized focus of federal initiatives to 

positively impact student achievement.  These federal initiatives, such as the Individuals with 

Disabilities Education Act (IDEA, 2004), No Child Left Behind legislation (NCLB, 2001), and 

Public Law 108-446, which introduced  Response to Intervention (RTI), have required school 

districts and schools receiving federal dollars to analyze, disaggregate, track, and publically 

report student achievement data.  This requirement has led to the wide-spread adoption and use 

of technology-based tools to assist in the processes required to analyze, disaggregate, track and 

report student achievement data (Mandinach, Honey, & Light, 2006). 
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 Research, however, has indicated that the kinds of data technology tools teachers have 

access to do not typically help teachers connect student data to instructional actions and 

instructional resources (Gallagher et al., 2008).  In fact in the National Educational Technology 

Trends Study, rarely did data systems incorporate model lessons, assessment data, and 

instructional materials aligned with curriculum that would benefit student achievement (Bakia, 

Yang, & Mitchell, 2008).  Nevertheless, research has emerged to indicate some data technology 

systems or data tools are starting to gain use among teachers in helping them use their student 

data to drive instruction (Pinkus, 2009). 

 Teachers are expected to use data to drive instruction.  Arne Duncan (2009), the current 

U.S.  Secretary of Education, at the Fourth Annual Institute of Education Sciences Research 

Conference, stated “In the months and years ahead…we will ask millions of teacher to use 

student achievement and annual growth to drive instruction and evaluation” (Miller, 2009, p. 1).  

Having technology data tools available for teachers to use is important because research suggests 

that teachers, if left to break down and use their data without assistance, lack the training on how 

to make informed decisions based on data to help improve student achievement in the classroom 

(Means, Padilla, DeBarger, & Bakia, 2009).  Furthermore, according to Miller (2009), research is 

indicating teachers oftentimes lack data literacy skills, such as comprehending data, interpreting 

data, finding trends in data, and using data efficiently.   

In Florida, the web-based Florida Assessments for Instruction in Reading (FAIR) are 

given to students in grades 3-12 who may be struggling readers or at risk for developing reading 

deficiencies.  Approximately 1.6 million Florida students in grades K-12 were assessed using the 

FAIR in the 2009-2010 school year (Keeler, 2010).  The FAIR system uses a set of brief literacy 
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assessments to determine and report student literacy needs.  FAIR provide educators with a large 

quantity of data that helps determine appropriate instruction.  All teachers (science, mathematics, 

social studies, reading, etc.) can have access to their students’ FAIR data because FAIR data are 

useful for instructing students in any academic setting.       

 The FAIR data are housed in an online data system called Progress Monitoring and 

Reporting Network (PMRN) that has various user capabilities which are outlined at 

http://www.fcrr.org/FAIR/index.shtm.  User 1 is always a school principal and User 2 is always a 

reading coach or the school’s reading contact.  Teachers are trained by User 2 in how to 

administer the test and use data for instructional purposes.  Anyone who has User 2 access also 

must be a FAIR Master Trainer, which means that User 2 has to have attended FAIR trainings 

and have passed a FAIR Master Trainer Test from the state making User 2 responsible for 

training the teachers at their school site.  Furthermore, it is the responsibility of User 2 to create 

classes for teachers and give user access to teachers in order for teachers to gain access to their 

students’ FAIR data (“Florida Assessments,” 2009).  Thus, reading coaches have significant 

responsibilities in determining how teachers will use the formative assessment data provided by 

the FAIR to impact student achievement at all Florida public schools.  A challenge with FAIR, 

which is administered three times a school year, is the assessments generate massive amounts of 

data.  Teachers using FAIR may experience difficulties in using the data for instructional 

purposes without the help of data technology tools.  Research from Bakia, Yang, and Mitchell 

(2008) shows that when teachers do have access to data, like FAIR data, that there typically is “a 

lack of instructional tools to help teachers act on the data provided to them” (Bakia et al., 2008, 

p.  viii).   

http://www.fcrr.org/FAIR/index.shtm
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 It is clear that teachers are the most important individuals when it comes to impacting 

student achievement (Mandinach et al., 2006).  Schools where students are showing unusual 

academic gains are directly connected to the intentional and well-devised ways that student data 

was used to deliver instruction aimed at positively impacting student achievement (Mandinach et 

al., 2006).  Additionally, formative assessment “is the only type of data use that has been shown 

to increase student achievement” (Miller, 2009, p. 5).  Since FAIR data are formative assessment 

data, the need for data technology tools that can help teachers use the FAIR data for classroom 

application in well-devised ways becomes all the more apparent.  Nationally, reading coaches are 

seen as instructional leaders at schools to help teachers access, interpret, and utilize data to 

impact instruction for the benefit of improving student literacy skills and increasing student 

achievement (Sturtevant, 2003).  In Florida, reading coaches are the instructional leaders charged 

with helping teachers understand and utilize FAIR data.  Reading coaches in Florida have an 

important role as data experts because FAIR data have the potential to help teachers to impact 

student achievement. 

 Reading coaches play a key role in school improvement, a role that has evolved over 

time.  The first mention of job responsibilities usually associated with reading coaches nowadays 

first began in the 1920’s (Hall, 2004).  More officially, in 1965 the Elementary and Secondary 

Education Act (ESEA) allocated federal funds for “Title I Teachers” to pull out and work with 

struggling readers in small groups (Dole, 2004).  Often, these teachers were reading specialists.  

In 1998, the Reading Excellence Act by President Clinton began providing federal funding 

towards reading initiatives.  In 2001, however; the most headway was seen in taking the role of 

reading specialist, giving it new focus and a new name “reading coach” when the federal 
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initiative No Child Left Behind introduced the Reading First Initiative (Dole, 2004).  Both of 

these initiatives provided funds that were designed to improve reading instruction and in many 

cases schools used the funding provided to employ reading coaches (IRA, 2004).  The role of the 

reading coach differed in some ways from the reading specialist role, in that reading coaches 

were seen as specialists who worked with teachers in improving their instructional abilities 

instead of working with small groups of children (Dole, 2004).  The International Reading 

Association (IRA) (2004) introduced a position statement regarding the role of the reading 

coach, which also detailed desired qualifications.  The IRA explains that reading coaches have a 

leadership role that involves being a reading specialist; therefore, morphing the two roles into 

one.  A reading coach has multiple jobs that include improving the practice of teachers in the 

classroom by teaching model lessons, co-teaching lessons, creating conversations focused around 

student learning, making and providing professional development, visiting classrooms, etc.  

Relevant to this study, reading coaches also have a role in assessment.  Specifically, a part of a 

reading coach’s job is to educate and guide teachers in how to utilize student data in order to 

create optimal instruction.  In fact, the IRA states that a role of the reading coach includes, 

“interpreting assessment data (helping teachers use results for instructional decision making)” 

(IRA, 2004, p.  3). 

The Importance of Literacy Skills 

 A prerequisite for success in life is having the ability to read.  According to research, 

reading is an imperative skill that will determine how most individuals advance in society, 

socially, and economically (Snow, Burns, & Griffin, 1998).  The national average for high school 

dropouts is 1.2 million students annually or roughly 7,000 students dropping out every school day, 
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which is equivalent to one out of every three students in school becoming a dropout statistic 

(Balfanz, Fox, Bridgeland, & McNaught, 2009; “The High,” 2009; “National Commission,” 

2008).  A student is at risk for dropping out of high school when demonstrating below grade 

level reading abilities (Balfanz et al., 2009).  Additionally, U.S. cities that have the highest levels 

of poverty and crime have been found to have increased high school dropout rates (Balfanz et 

al., 2009).  Alarmingly, a common characteristic of adults who live in poverty or are 

incarcerated is that they lack in basic literacy skills (Kutner, Greenberg, Jin, & Paulsen, 2006; 

Greenberg, Dunleavy, & Kutner, 2008).  High school dropouts are also likely to be 

dependent on financial assistance from the government to sustain their wellbeing and 

survive (“The High,” 2009).  Furthermore, a student who drops out of high school is 

predicted to make roughly $8,000 less money annually than a high school graduate and 

have employment interruptions throughout their lives.  Research indicates that individuals 

without a high school diploma are the hardest hit when the economy drops in experiencing 

lost jobs (“The High,” 2009).  Unfortunately, the children of high school dropouts are more 

likely to drop out of school too; perpetuating a cycle of poverty, incarceration, and 

unemployment (“The High,” 2009).  The Silent Epidemic: Perspectives of High School 

Dropouts (2006) provides recommendations for keeping students from dropping out of high 

school and one prominent recommendation is to provide struggling students with 

opportunities to improve their literacy skills. 

 Providing struggling readers with opportunities to improve their literacy skills are 

key and the impact of literacy on one’s quality of life are profound.  According to the 

Education for All Global Monitoring Report (2006), the benefits of being literate include 
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political, cultural, and social aspects.  Politically, people who have literacy skills are better 

positioned to participate and contribute to a democracy.  Culturally, literacy skills influence the 

degree to which an individual makes decisions about their culture in preservation or changes.  

Socially, literate individuals are more likely to have better health for themselves and their 

children as well and see that their children are educated.   

It is obvious that literacy is key in promoting the success and well-being of students in 

schools today and their future generations.  It is therefore to the benefit of each individual 

student, their future generations, and society to implement public education that provides 

students with the best possible reading education which begins with individual teachers in grades 

K-12 and includes reading coaches, who can positively impact the quality of instruction students 

receive from teachers day-in and day-out.    

Purpose of the Study 

 The purpose of this study is to investigate behavioral intentions reading coaches have in 

using a data technology tool with teachers.  According to Davis (1989), Venkatesh and Davis 

(2000), and Venkatesh (2000) behavioral intentions predict system use.  Hypotheses advanced 

are: 

1. Reading coaches have specific behavioral intentions when utilizing a data technology tool 

with classroom teachers. 

2. Reading coaches utilize a data technology tool with classroom teachers based on different 

behavioral variables. 
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3. There is a difference in the relationships between reading coaches’ behavioral intentions and 

utilization of a data technology tool with classroom teachers for elementary, middle, and high 

school levels. 

4. Reading coaches will have similar opinions regarding the utilization of data technology tools 

with teachers. 

 First, it is hypothesized that reading coaches have specific behavioral intentions when 

utilizing a data technology tool with classroom teachers.  This first hypothesis is based on the 

Technology Acceptance Model (TAM) Theory which indicates that individuals have specific 

behavioral intentions to use technology (Davis, 1989; Venkatesh & Davis, 2000).  The research 

question that pertains to this hypothesis is, What behavioral intentions do reading coaches have 

when utilizing a data technology tool with classroom teachers?  

The second hypothesis states that reading coaches utilize a data technology tool with 

classroom teachers based on different behavior variables.  Research by Davis (1989) and 

Venkatesh and Davis (2000) proposed that variables such as perceived usefulness, perceived 

ease of use, computer self-efficacy skills, and subjective norms influence the behavioral 

intentions individuals have in using technology.  This hypothesis seeks to answer the research 

question, To what extent do reading coaches utilize a data technology tool with classroom 

teachers based on different behavioral variables? 

 The third hypothesis is a belief that there is a difference in the relationships between 

reading coaches’ behavioral intentions and utilization of a data technology tool with classroom 

teachers for elementary, middle, and high school levels.  The hypothesis is connected to the 

research question, Is there a relationship between reading coaches’ behavioral intentions and 
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utilization of a data technology tool with classroom teachers reflected identically at the 

elementary, middle, and high school levels? 

 The fourth and final hypothesis is that reading coaches will have similar opinions 

regarding the utilization of data technology tools with teachers.  This hypothesis qualitatively 

examines the question: What are reading coaches thoughts on using data technology tools? 

Operational Definitions 

1.  Adequate Yearly Progress (AYP)-AYP refers to the way student achievement is measured 

yearly at each school that receives federal dollars.  AYP is reported into subgroups, which 

include, for example: white, black, economically disadvantaged, etc.  AYP is mentioned because 

schools have to report out AYP in order to receive federal dollars and AYP data can be tracked 

in the Teacher Data Tool. 

2.  Florida Assessments for Instruction in Reading (FAIR)-The FAIR system uses a set of brief 

literacy assessments to determine and report student literacy needs.  The FAIR provides 

educators with data that helps determine appropriate instruction.  For the purpose of this study, 

any mention of the FAIR is referring only to the computer adaptive assessments given to 

students in grades 3-12 that are web-based.  Students in grades K-2 also take the FAIR, but not 

the same web-based version taken by students in grades 3-12. 

3.  FAIR reading profiles-The FAIR reading profiles are determined by three scores on the 

FAIR, which include the Reading Comprehension, Maze, and Word Analysis scores.  The FAIR 

reading profiles reflect student needs regarding curriculum and recommended strategies that may 

assist a student in each respective profile.  Every student who takes the FAIR will have a FAIR 

reading profile. There are five FAIR reading profiles students can score into and these include 
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box 1, box 2+4, box 2+5, box 3+4, and box 3+5.  Student progress can be monitored by the 

FAIR reading profile a student’s scores generate over the three FAIR assessment periods per 

school year.  Box 1 is the highest scoring reading profile followed in descending order by box 

2+4, box 2+5, box 3+4, and box 3+5.   

4.  FAIR quick-links and modules-The district-adopted FAIR quick-links and modules are 

documents with correlating videos and strategies that provide educators with streamlined 

resources for each of the FAIR reading profiles.  The FAIR modules also explain the state-

adopted reading tool that is embedded in the Teacher Data Tool, the Teacher Data Tool, and 

specifically link to the Informal Diagnostic/Progress Assessment for Grades 3-12 Tool Kit for 

each FAIR reading profile.  The FAIR quick-links and modules were developed by the 

researcher, district reading specialists, district RTI specialists, and reading coaches. 

5.  Informal Diagnostic/Progress Assessment for Grades 3-12 Tool Kit –The kits contain further 

pencil and paper assessments that can be given to students depending on their FAIR reading 

profiles, if more data are needed.  The kits also contain teaching resources. 

6.  Teacher Data Tool-The district-adopted tool, created for educators by the researcher and her 

husband, utilizes FAIR data.  The tool allows teachers to progress monitor student achievement, 

input teaching actions, and graph student fluency scores over time.  The purposes of the tool are 

to help teachers actively use FAIR data to shape instruction in a flexible manner which is 

intended to positively impact student success and promote reflective, action-oriented teaching.  

Importantly, this tool received a positive review by educators at the Florida Department of 

Education.  In the survey the Teacher Data Tool is referred to as the Teacher Progress 

Monitoring Tool for FAIR. 
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7.  Reading Certification-A master’s degree in reading education or at least 30 semester 

graduate-level hours in reading and a passing score on the state Reading Subject Area Test.  

Reading certified teachers can teach reading in grades K-12. 

8.  Reading Coach-A reading coach is the primary individual at a school site responsible for 

providing professional development, coaching, and support to teachers in understanding, 

interpreting, analyzing, and using data.  In Florida, reading coaches help teachers use FAIR data 

for the intention of bettering student literacy skills and promoting student achievement. Reading 

coaches may sometimes be referred to as “coaches” in this study. 

9.  Reading Contact-In lieu of a reading coach, a reading contact (usually an individual who is a 

resource teacher with the assigned duties of a reading coach) is the primary individual at a school 

site responsible for providing professional development, coaching, and support to teachers in 

understanding, interpreting, analyzing, and using FAIR data for the purpose of bettering student 

literacy skills and promoting student achievement.  In this study, “reading contacts” will be 

called “reading coaches” since they have the responsibilities of reading coaches regarding the 

use of FAIR data by teachers. 

10.  Reading Endorsement-300 hours of reading courses through a district or 15 college-level 

semester hours in reading.  This endorsement allows educators to teach reading in grades K-12. 

11.  Subjective Norms- Subjective norms refer to people’s perceptions that important others 

think they should or should not engage in a said task.   

12.  Technology Acceptance Model (TAM)-The Technology Acceptance Model was developed 

to predict usage of technologies. 
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CHAPTER TWO: REVIEW OF LITERATURE 

 The purpose of this study is to ascertain how reading coaches assist teachers in utilizing 

data technology tools for the purpose of providing students with impactful instruction.  Reading 

coaches are hired to optimize the effectiveness of teachers and how they instruct students.  A part 

of reading coaches’ jobs is to educate and guide teachers in how to utilize student data in order to 

create optimal instruction (IRA, 2004).  The literature review will highlight the benefits of using 

data technology tools to shape student data in ways that are useful in helping teachers plan 

strategic instruction for students.  Additionally, research will be reviewed suggesting the need for 

teacher technology tools that will help teachers reflect on data, quickly organize data, identify 

trends in data, progress monitor student achievement, and make decisions based on student data 

to improve the quality of instruction students need to receive in order to be successful.  The 

review of literature will further indicate the importance of a reading coach’s role in assisting 

teachers in the use of data to drive instructional decision-making and the role data technology 

tools may play in assisting educators in their endeavors to positively affect student achievement. 

The Role of Assessment 

 According to the International Reading Association, testing students to determine their 

knowledge and skills is “an important part of education” (IRA, 1998, p.  2).  Furthermore the 

International Reading Association (1998) reports that assessment data helps provide educators 

with information that has the potential to guide impactful instruction.  Thus, a student’s reading 

achievement is most likely to be positively affected by a teacher who uses student assessment 

data to create appropriate reading instruction tailored to the student’s needs (Heilman, Blair, & 

Rupley, 2002).  The National Council on Teacher Quality (2012) found that in a typical school 
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year teachers make approximately 11,000 important decisions regarding the instruction students 

receive.  Hence, informed decision-making based on student data becomes all the more 

important in helping students increase their reading abilities because without informed decision-

making “literacy instruction can be irrelevant…for all concerned” (Heilman et al., 2002, p.  35). 

 Teacher effectiveness in reading instruction is a significant determinant in impacting 

student achievement (Heilman, et al., 2002).  Teachers are a crucial factor in affecting student  

learning because they are the ones who have interactions with students (Wayman, Cho &  

Johnston, 2007).  In fact, when student achievement data are used by teachers to shape teaching  

based on student needs, there can be a positive outcome of increased student achievement (Black 

& Williams, 1998).  Schools that are successful in attaining the positive assessment results of 

children attribute success to assessment used in ways to promote student learning by classroom 

teachers (Roehrig, Duggar, Moats, Glover, & Mincey, 2008; Lezotte, 1991).  Furthermore, 

Roehrig et al.  (2008) indicated assessment that is frequent in nature and used to provide 

guidance on instructional changes is powerful in positively affecting the achievement of 

struggling readers.  Assessment has historically been a driving force in helping teachers provide 

good reading instruction. 

History of Reading Assessment 

In the 1880s reading assessment was informally conducted by teachers through 

observations of the written and oral performances of students (Tierney, Moore, & Valencia, & 

Johnston, 2000; Sableski, 2008).  In 1901 the U.S.  National Bureau of Standards, made the 

recommendation for standardized reading assessments (Tierney et al., 2000).  Thus, norm-

referenced assessments and standardized tests that measured oral and silent reading level became 
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popular between 1910-1930 (Sableski, 2008).  Students during this time were required to read 

unfamiliar passages and respond to questions to determine comprehension (Tierney et al., 2000).  

In 1917 Thorndike produced one of the first attempts to measure a person’s reading 

comprehension abilities in his article called “Reading as Reasoning.” In “Reading as Reasoning,” 

Thorndike theorized the thought processes that he assumed must lead to reading comprehension 

(Sarroub & Pearson, 1998).  Thorndike believed that assessment was instrumental in determining 

whether or not teaching instruction was working in improving student achievement (Sableski, 

2008).  From approximately 1910 to the late 1940s various kinds of assessment flourished, 

including short answer responses, bubbling in answers, essays, and debate-like activities in 

measuring reading comprehension (Sarroub & Pearson, 1998).  Beginning in the 1940s informal 

reading inventories emerged and evolved as time moved forward to eventually include oral 

miscue analysis, which was introduced by Goodman and Burke in the 1970s (Sarroub & Pearson, 

1998).  Unlike formal assessment, informal reading inventories helped teachers pinpoint student 

reading needs so teachers could provide more impactful instruction.  Later, in the late 1960s 

criterion-referenced assessments emerged as a way of gauging mastery of content taught 

(Sarroub & Pearson, 1998).  Consequently, criterion-referenced assessments began appearing in 

the basals of the 1970s and 1980s (Sarroub & Pearson, 1998; Sableski, 2008).  Then in 1969 

Title One reauthorization heralded in an accountability movement that has continued to have a 

lasting impact on accountability measures of student achievement nationwide and the movement 

was also the impetus of state assessments (Sarroub & Pearson, 1998).  The theory that whatever 

was assessed would become what teachers would focus their instruction on soon took root with 

state assessments where student data became shared information for stakeholders (Smith, 2002).  
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While standardized assessment gained headway in the 1970s, other kinds of classroom formative 

assessments, in addition to the informal reading inventories, become more prevalent including 

think alouds (where students shared their thinking processes while trying to understand text) and 

retelling.  In the late 1970s Durkin’s landmark study revealed that comprehension was being 

assessed, but not taught (Durkin, 1978).  Her study impacted how teachers prepared students to 

comprehend text and was the catalyst for more comprehension focused instructional practices 

making headway into classes across the nation (such as reciprocal teaching and graphic 

organizers) (Sarroub & Pearson, 1998).  The impact of Durkin’s landmark study is still felt in 

classrooms today.  While formative assessment and comprehension focused instruction were 

moving along in tandem, the 1980s and 1990s briefly saw a decline of interest in criterion-

referenced assessment; however, currently criterion-reference assessments have come back into 

the limelight (Sableski, 2008).  The 1980s and 1990s also saw an increase of the use of portfolios 

as a measure of formative assessment used by classroom teachers (Sarroub & Pearson, 1998).  

Currently, norm-referenced assessments where student achievement can be compared nationally 

have swept the nation (Tierney, et al., 2000).  Sableski (2008) noted that reading assessment will 

continue to evolve based on the ever-changing definition of reading, kinds of literacies, and the 

values of society.  It is apparent that assessment and instruction have a close relationship that is 

both dynamic and interdependent in impacting student reading abilities. 

Historical View of Reading Coaches 

 Reading coaches are an essential ingredient to school reform and federal dollars have 

been allocated to ensure that schools have the opportunity to reap the benefits of having a site-

based reading coach (IRA, 2004).  Research on coaching emerged with the work of Joyce and 
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Showers (1982) when they presented a peer coaching model that involved teachers coaching 

teachers.  The research of Joyce and Showers (1982) eventually showed that teachers who 

worked with other teachers in a coaching model utilized new best practices and strategies as 

opposed to teachers who did not participate in a coaching model.  This breakthrough research 

opened the eyes of educators and policy holders nationally to the power of having a coach work 

with teachers to improve student achievement. 

 The Reading Excellence Act of 1998 and the No Child Left Behind federal legislation of 

2001, which introduced Reading First, were instrumental in promoting reading as a national 

priority and reading coaches as a part of the solution to the literacy epidemic in the United States 

(Dole, 2004; IRA, 2004).  Dole, Liang, Watkins, and Wiggins (2006) found in their data 

collection across 48 states that when the term “reading coach” was brought up it was associated 

with Reading First, another indicator of the effects of federal legislation, and especially the 

Reading First Initiative.  As a mandatory component of Reading First, states have spent huge 

amounts of their literacy initiative budgets to fund reading coaches in schools (Snow, Ippolito, 

Schwartz, 2006).  For example, 31 million dollars was allocated to fund reading coaches in 

Pennsylvania by the Annenberg Foundation and Florida dedicated over 30 million of its 90 

million dollar literacy initiative budget for reading coaching (Snow et al., 2006). 

 Reading coaches were mandated in schools servicing students in grades K-3; however, it 

is well-noted that the success in those grades related to coaching prompted states to also allocate 

funds for secondary reading coaches where sometimes there seems to be less hope for students 

struggling with reading to experience success (Snow et al., 2006).  The presence of reading 

coaches in secondary schools, where students who are struggling readers are at a high risk for 
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dropping out of school, indicates the importance of a reading coach role as a beacon of hope 

(Balfanz et al., 2009).  Overall, reading coaches are an important part of school reform and many 

times are federally funded or district funded positions based on the need for such change agents 

in schools (Nelsestuen, Hanita, Robinson, Coskie, & Regional Educational Laboratory at 

Education Northwest, 2009). 

 Reading coaches have multiple responsibilities associated with their position.  One such 

role is in helping teachers utilize student data to improve and strategize the instruction provided 

for students in the classroom.  Reading coaches are typically former teachers who were 

successful at their jobs as teachers and therefore are considered to be skilled enough to improve 

the instructional practices of other educators (Sturtevant, 2003).  According to a study by the 

National Center for Education Evaluation and Regional Assistance, 73% of new and experienced 

elementary teachers felt that reading coaches aided them with utilizing their data (Nelsestuen et 

al., 2009).   

 Importantly, reading coaches are seen as critical instructional leaders at schools to help 

teachers access, interpret their data, and utilize data to impact instruction for the benefit of 

improving student literacy skills and increasing student achievement.  Reading coaches help 

teachers plan their instruction by using data (Walpole & Blamey, 2008).  Furthermore, reading 

coaches are instrumental in assisting teachers in determining if their instructional strategies and 

practices are working by guiding them in progress monitoring their data and by coaching them 

on other strategies that may work better when data shows their current practices are not working 

(Walpole & Blamey, 2008) However, research has not provided guidance on whether or not 

reading coaches, who are typically former teachers, have the necessary skills to help teachers 
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utilize data tools for the purpose of promoting student success (Sturtevant, 2003); therefore, 

research will be examined regarding the technology acceptance of reading coaches in utilizing 

data technology tools with teachers. 

Reading Coaches’ Relationship to Classroom Teachers 

 Reading coaches are thought to be change agents in schools.  The Reading First Initiative 

promoted reading coaches as key to promoting stronger teaching capacities of teachers (Dole, 

2004).  In one meta-analysis it was found that “Teachers credit their coaches with helping them 

try new practices, incorporate more authentic assessments, ground their decisions in professional 

literature, and create curriculum that was more student-centered” (Vanderburg & Stephens, 2010,  

p.  1).  In the same meta-analysis teachers were reported as thinking the value of coaches was 

most relevant in data analysis, test administration, and modeling lessons.  According to research 

reported by the U.S.  Department of Education, teachers feel that coaches improve their teaching 

practices and open them up to trying new ideas (Deussen, Coskie, Robinson, & Autio, 2007).  

This research echoes the initial research findings of Joyce and Showers (1982).  Elish-Piper and 

L’Allier (2010 and 2011) reported research that shows teacher literacy environments are more 

enhanced by teachers who have worked with coaches than those who have not.  A study 

conducted by Bean, Draper, Hall, Vandermolen, and Zigmond (2010) found that teachers had a 

more positive view of coaches that deepened as coaches spent more time with teachers.  Finally, 

in a case study conducted by Coburn and Woulfin (2012), reading coaches had more of an 

influence on the instructional practices of teachers than principals or district and state leaders; a 

compelling finding that deserves more attention and study. 
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Reading Coaches and Student Achievement 

 According to the Handbook of Reading Research (2011), there is little empirical evidence 

regarding the effects reading coaches have on student achievement.  However, there are some 

studies that indicate positive findings regarding reading coaches’ impact on student achievement.  

For example, in a study of Florida middle school reading coaches, Marsh et al.  (2008) reportedly 

found that student achievement was higher in schools where reading coaches were allocated 

more time in analyzing and using student data with teachers.  L’Allier, Elish-Piper, and Bean 

(2010) reported in two separate studies on reading coaches that when reading coaches spend time 

with teachers, student achievement is higher.  Walpole and Blamey (2008) linked schools with 

higher AYP scores as being schools that have reading coaches compared to schools without 

reading coaches.   

 Several studies reported in the U.S.  Department of Education funded guide Reading 

First Coaching: A Guide for Coaches and Reading First Leaders (2004), provided evidence that 

reading coaches are associated with positive student achievement.  These studies involved the 

Foundations for California Early Learning model, a study by Lyons and Pinnell (1999) which 

found a positive relationship between reading coaches and student reading and writing 

achievement; Norton’s (2001) research regarding a reporting from the Alabama Reading 

Initiative that reading coaches contributed to the significant growth of student achievement; and 

a California study reported by Lapp, Fisher, Flood, and Frey (2003) that reported student reading 

achievement connected to reading specialists endeavors to provide part-time peer coaching and 

part-time student tutoring for students from three low socioeconomic schools.  A study by 

Swartz (2005) revealed that students in grades K-4 showed reading gains that were attributed, in 
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part, to the involvement of reading coaches.  Finally, Bean et al.  (2010) reported in their 

research that there was a significant correlation between student achievement and schools where 

coaching occurred often.  Their study examined twenty reading coaches in Pennsylvania Reading 

First Schools through interview analysis and by examining student data.   

 Overall, the research is pointing to reading coaches having positive effects on student 

achievement.  Importantly, a study by Blachowicz et al.  (2010), interviews revealed a trend that 

hundreds of educators, including  principals, district leaders, teachers, and others felt that “the 

coach’s effect on the instruction and infrastructure of the school emerged as one of the top three 

influences for change cited by all participants” (Blachowicz et al., 2010, p.  348). 

Professional Development for Reading Coaches 

 Reading coaches were hired to provide long-term professional development at school 

sites as a way to extinguish one-shot professional development that teachers were receiving at 

schools across the nation.  In this light, it is recommended that reading coaches also receive long-

term professional development (Deussen et al., 2007; Blachowicz et al., 2010; Stephens, et al., 

2011). 

 Not until 2005, however did the National Center for Reading First Technical Assistance 

provide “Leading for Reading Success: An Introductory Guide for Reading First Coaches,” to 

assist coaches (Deussen et al., 2007).  Prior to 2005 most reading coaches were doing the best 

that they could, allocating their own resources for professional development and relying on other 

professionals for development (Deussen et al., 2007).  Deussen et al. (2007) reported that state 

level and district level trainings did commence thereafter and many districts offer monthly coach 

trainings and/or summer professional development opportunities for coaches (Deussen et al., 
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2007).  Additionally, many states provide reading coaches with reading improvement plans, 

checklists, and to-do lists to aid them in their roles. 

 Marsh et al.  (2008) argued that reading coaches need on-going professional development 

in order to coach others effectively.  The authors further contend that this ability to help teachers 

to continually grow professionally can only happen by continuing the professional development 

of reading coaches.  Reading coaches are expected to have a strong foundation of specialized 

knowledge to layer their on-the-job professional development upon.  In fact, reading coaches are 

recommended to have more specific knowledge and it is suggested by the IRA (2004) that 

reading coaches have a master’s degree with a specialization in reading that leads to reading 

certification, intensive year-long professional development in reading provided by a school 

district, or participate in other reading-focused programs.  Two studies by L’Allier and Elish-

Piper (2006) and Elish-Piper and L’Allier (2007) indicate that a strong reading background does 

make a difference in the quality of a reading coach and their abilities to impact student reading 

achievement.  Dole (2004) points out that reading coaches need to be more knowledgeable and 

skilled than the teachers they are working with at schools.  Furthermore, professional 

development must be experienced in an on-going manner by coaches.   

 However, the content of the professional development recommended for reading coaches 

is sparingly mentioned.  Blachowicz et al.  (2010) report that coaches are at different levels of 

knowledge and skill and would benefit from differentiated instruction in terms of professional 

development, but guidance on what should be learned by the reading coaches is not mentioned.   

     Research lacks a clear picture of the professional development reading coaches are receiving.  

Overall, it appears that reading coaches may benefit from professional development centered on 
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data analysis tasks since teachers are indicated to have a need in this area and considering that 

reading coaches are typically former teachers, they may need to grow their knowledge in the area 

as well. 

Florida Reading Coaches 

 September 7, 2001 was a significant day for the State of Florida as governor Jeb Bush 

heralded in Florida’s reading initiative as reported by the Just Read Florida website at 

http://www.justreadflorida.com/.  As a result, Florida showed a dramatic increase of reading 

coaches as it embraced Reading First implementation.  In fact, reading coaches ranged from 318 

in the 2002-2003 school year (the year reading coaches were designated roles in Florida schools) 

to approximately 2,441 coaches in the 2009-2010 school year as reported by districts’ K-12 

Comprehensive Reading Plans found at https://app1.fldoe.org/Reading_Plans/ (Miller, 2010).  

Furthermore, Florida statute1001.215, recommends school systems, “Train highly effective 

reading coaches.”   

 Florida tracks the time coaches spend in various designated areas by using a reporting log 

that each coach enters into in the Progress Monitoring and Reporting Network (PMRN) system.  

The 13 areas that represent where the time coaches spend are: whole faculty professional 

development, small group professional development, planning, modeling lessons, coaching, 

coach-teacher conferences, student assessment, data reporting, data analysis, meetings, 

knowledge building, managing reading materials, and other.  The “other” category includes 

responsibilities not related to the job of coaching, such as bus duty, lunch duty, etc.  (Marsh et 

al., 2008; Miller, 2010).   

https://app1.fldoe.org/Reading_Plans/


23 

 It is the expectation of the State of Florida that reading coaches spend at least 75 percent 

of their time in five areas, including providing small group professional development, modeling 

lessons, coaching, holding coach-teacher conferences, and data analysis.  The State of Florida 

put an emphasis on the coaches’ role as data experts (Miller, 2010).  Interestingly, when the state 

examined their data for the 2009-2010 school year, none of the five regions of Florida were 

spending 75% of their time on the expected five areas (Miller, 2010).  The state average showed 

that reading coaches were spending only 39% of their time in the five areas (Miller, 2010).  

These actual percentages in the five areas only add up to slightly more than half of the 75 percent 

of time expected for these areas.  Most of the regions reported spending only about 6%-7% of 

their time analyzing data (Miller, 2010).  This percent of time would be less than two hours a 

week approximately, which is much lower than the national average indicating approximately 

five hours per week is spent on tasks related to analyzing data as reported by the IRA in a 2006 

survey (Bean, Draper, Hall, Vandermolen, & Zigmond, 2010).  Another study by the U.S.  

Department of Education (2007) found that coaches spent 25% of their time working on data-

analysis activities.  These statistics indicate a large difference in how much time Florida reading 

coaches engage in data analysis activities compared to reading coaches nationally. 

 A major question asked at the Florida Reading Association Conference during a 

presentation by Miller (2010) was, “What do you believe to be the barriers to coaches using their 

time most effectively?” A reason this question was posed is that the Florida reading coach 

PMRN logs are indicating that reading coaches are not spending enough time analyzing data and 

having discussions with teachers about how to use data constructively in classrooms (Miller, 

2010).  Florida reading coaches feel that time is a barrier to their effectiveness as coaches 
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(Roehrig et al., 2008).  The possible positive impact of reading coaches in schools is lessened 

when they are assigned to unrelated “other” duties, which are in direct opposition to the state’s 

guidelines (Marsh et al., 2008).  Thus, Florida reading coaches frequently have disruptions in 

their days that take them away from their roles as change agents at schools.  It becomes apparent, 

that reading coaches may not have the time they need to work with data to have valuable 

discussions with teachers that can impact student needs in the classroom.  Marsh et al. (2008) 

reported lack of time as a key roadblock , especially when “we found higher student achievement 

in schools where coaches spent more time working with reading teachers to analyze and use 

student data” (Marsh et al., 2008, p.  504).  Thus, finding the time for reading coaches to work 

with teachers in analyzing and using student data is important, and when this practice is limited 

or not happening frequently it seems that missed opportunities to improve student achievement 

may be occurring.  Despite time being of key concern, the authors sparingly mentioned ideas for 

creating ways for reading coaches to be able to orchestrate this aspect of their jobs.  The authors 

did suggest that administrators and policy makers attempt to find solutions that would involve 

finding more time for reading coaches to spend time in classrooms (Marsh et al., 2008).  The 

authors do note that “To support this data analysis and support role, administrators should 

continue providing professional development for coaches in this area, with a particular focus on 

responding to these results” (Marsh et al., 2008, p.  505).  However the question remains, is there 

a solution to the problem of time and the “other” assigned duties many reading coaches are 

experiencing that take them away from their critical role? 

 A possible solution to the problem would be introducing a data technology tool for 

coaches and teachers to utilize in making instructional decisions.  Since a goal of Reading First is 
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to “encourage and support teachers’ efforts to use assessment data to help them individualize 

instruction” a data technology tool would be a resource to improve instruction (Roehrig et al., 

2008, p.  378). 

Florida Assessments for Instruction in Reading (FAIR) 

 The FAIR provide teachers with data that outlines a student’s literacy needs.  FAIR are 

given to most struggling readers in the state of Florida and those most at risk for having reading 

problems.  FAIR data are useful to all reading, content area teachers, and specialists or problem-

solving teams, such as speech pathology specialists and RTI teams because FAIR provides 

curriculum and strategy recommendations specific to each student’s needs.  For example, 

students who score into a certain FAIR reading profile (box 1) may benefit from being taught to 

use the recommended strategy SQ3R, a research-based strategy that can be employed in the 

content areas to increase reading comprehension (Huber, 2004).  PMRN also provides teachers 

with a parent letter so that parents can be informed of student progress, which provides teachers 

with an opportunity to share with parents or caregivers ways to help their child be successful, as 

a partner with the teacher.  So, for example, teachers could teach parents the SQ3R strategy so 

they can help reinforce their child learning and using the strategy when studying at home.  

Secondary content area teachers may especially benefit from using FAIR data because these 

teachers do not typically think it is their job to embed literacy strategies in their instructional 

practices (Sturtevant, 2003).  FAIR data are connected to FAIR resources found on www.fcrr.org 

and Literacy Essentials and Reading Network (LEaRN) at http://www.justreadflorida.com/learn/ 

.  These sites provide teachers with instructional strategies and resources that explain how to use 

http://www.fcrr.org/
http://www.justreadflorida.com/learn/
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research-based strategies and link them to video demonstrations to promote the literacy skills of 

students. 

 Florida reading coaches are the instructional leaders charged with helping teachers 

understand and utilize FAIR data .  The state has identified reading coaches and district personal 

as those who need to become master trainers for FAIR at school sites as indicated at 

http://www.fldoe.org/faq/default.asp?Dept=4&ID=1330#Q1330.  Reading coaches in Florida use 

this system because it, “identifies students who are not performing as expected based on the 

performance of other children at the same grade level, identifies the skills they are struggling 

with, and makes suggestions for student grouping” (Roehrig et al., 2008, p.  265).  Reading 

coaches in Florida have been given a role as data experts to help teachers positively affect 

student achievement in the classroom by strategically using FAIR data to create optimally 

designed instruction.  In Florida, Statute 6A-6.053, K-12 Comprehensive Research-Based 

Reading Plan, indicates that part of a reading coaches’ job is to, on an on-going basis, provide 

professional development and training for all teachers in analyzing data and using data to 

differentiate student instruction.   

 The FAIR has been found to predict Florida Comprehensive Assessment Test (FCAT) 

scores in grades 3-12 (Foorman & Petscher, 2010; Florida Department of Education, 2005). The 

FCAT consists of a criterion-referenced test that is administered to students in grades 3-11 in all 

Florida Public Schools in order to measure the academic progress of students in subjects such as: 

reading, mathematics, science, and writing (“FCAT Briefing,” 2005).  The FAIR has been 

evaluated by the Buros Center for Testing (Greenberg, 2010).  The Buros Center is a credible, 

http://www.fldoe.org/faq/default.asp?Dept=4&ID=1330#Q1330
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independent evaluation center at the national level which has given credence to using the FAIR 

to assess students (Buros, 2010; Greenberg, 2010).   

 The Buros Center’s (2010) report on FAIR stated that FAIR has the primary purpose of 

providing assessment that can be utilized to shape instruction.  The Buros Center report further 

explained that the FAIR’s primary purpose is to improve student reading skills.  According to the 

Buros Center (2010), “for Grades 3-12, the FAIR was developed in response to the recognized 

need for formative assessment throughout the academic year, the results of which can be used to 

indentify instructional needs, monitor progress, and assist instructional efforts that will increase 

reading ability toward grade-level standards”  (Buros, 2010,  p.  39).   

 The FAIR for grades 3-12 indicates reliability of scores for the FCAT Success 

Probability Score (a predictor of FCAT), where “the coefficients across grades are very high,” all 

around .90 (Buros, 2010, p.  43).  The validity, using the negative predictive power, of the grades 

3-12 also was high, at a median of .925 for all with the exception of grade 10 which only showed 

a negative predictive power of .54.  Overall, in the summary offered by the Buros Center (2010) 

they noted “in general, psychometric evidence is relatively complete and supports the test’s 

intended uses” (Buros, 2010, p.  55).   

 The FAIR therefore is a powerful vehicle in promoting student achievement and each 

reading coach has the responsibility of teaching teachers how to use the data generated by FAIR 

in classrooms to assist in providing differentiated instruction to students.  Important to this study, 

the Florida Department of Education also includes in all of the FAIR trainings for the FAIR 

Master Trainer/reading coach a data technology tool to help teachers utilize FAIR data.  The data 
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technology tool, found on the www.fcrr.org website, helps teachers quickly calculate student 

FAIR reading profiles, trend out data, and create small groups for differentiated instruction.  The 

state-adopted tool was developed by the researcher and her husband.  The state-adopted tool 

provides suggested curriculum and strategies specific to the needs of students based on the FAIR 

reading profiles.  It is the expectation of the state, therefore that reading coaches teach teachers 

how to use this data technology tool to assist them in effectively utilizing data. 

Data Technology Tools and Systems 

 Districts and schools that use the federal dollars associated with No Child Left Behind 

have a legal responsibility attached to receiving those dollars to report and track student 

achievement publically.  In fact, more than a half billion federal dollars have been used by states 

in order to build longitudinal technology systems that contain student data in order to “support 

data-driven decision making” (“What Teacher,” 2012, p.  1; http://dataqualitycampaign.org).  In 

Florida, the public has access to AYP reports, which categorize FCAT achievement data and 

graduation rate information by subgroups year to year on the School Accountability Report site 

of the Florida Department of Education (http://schoolgrades.fldoe.org/), therefore demonstrating 

whether NCLB requirements have been met or not.  These reporting demands have led districts 

and schools to purchase data technology tools to assist in the required data tracking and reporting 

requirements of NCLB (Mandinach et al., 2006; Mesmer & Mesmer, 2008; Fuchs & Fuchs, 

2006). 

 Although NCLB in 2001 spurred the growth of data technology tools or systems being 

utilized nationally by districts and schools, the data technology and data were not usually 

accessible to teachers to use for classroom instruction (Miller, 2009; Wayman & Cho, 2009).  

http://www.fcrr.org/
http://dataqualitycampaign.org/
http://schoolgrades.fldoe.org/
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Historically, teachers are not likely to receive data that can help them improve student 

achievement in the classroom, despite states and districts collecting data and housing it in data 

bases (Miller, 2009 & Wayman, 2005).  Wayman and Cho (2009) explained that states and 

districts have been using data tools and systems to comply with mandates in reporting student 

data and only more recently have data tools and systems been shared with teachers for the 

purpose of improving the instruction that students receive.   

 In 2005, Wayman argued that it is crucial for districts and schools to go beyond the 

requirements of using data in the ways set forth by NCLB and provide student data to teachers.  

Wayman (2005) found that student data are often stored in ways that make it hard for teachers to 

obtain, manipulate, and understand.  Wayman (2005) states, “although schools have been “data 

rich” for years, they were also “information poor” because vast amounts of available data they 

had were often stored in ways that were inaccessible to most practitioners” (Wayman, 2005, p.  

296).   

 The U.S.  Department of Education’s National Educational Technology Trend Study 

found that data systems are being used by schools in attempts to improve schools; however, the 

data have had minimal impact on teacher’s day-to-day instructional decisions (Bakia et al., 

2008).  The study further found that it is uncommon for district and state data systems to be 

fused together with classroom data (Bakia et al., 2008).   

 Research clearly highlights that teachers need assistance in utilizing technology tools.  

Wayman, Cho, and Johnston (2007) found in their research that it is typical that teachers are not 

assisted with effectively utilizing data into their workdays.  Research indicates that teachers 
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“lack the data analysis skills necessary to use data to make sound instructional decisions” 

(Nelsestuen et al., 2009, p.  12).  The need for teachers receiving data in usable ways is important 

as it has become an expectation that teachers use data to shape instruction.  Technology can be 

an ally for teachers in this endeavor, as Arne Duncan stated at the American Enterprise Institute 

in 2010, “Technology can play a huge role in increasing educational productivity” (Greaves et 

al., 2010, p. vi). To assist in this mammoth endeavor, the Data Quality Campaign was formed by 

interested stakeholders, including the Bill & Melinda Gates Foundation, AT&T, and others.  The 

Data Quality Campaign is a “national collaborative effort” to provide resources and assistance 

for states in implementing effective data systems that can track student data longitudinally for the 

purpose of increasing student achievement (http://dataqualitycampaign.org/about, para.  1).  

Additionally, they focus on improving the data literacy skills of educators (“What Teacher,” 

2012).  Still, research is indicating that most of data that teachers have access to in technology 

tools or systems are most likely to be access to student grades and attendance, and not data that 

teachers need to make for making data-based decision making to help student perform optimally 

(Gallagher et al., 2008; Means et al., 2009; Miller, 2009).      

 One data system that has shown promise is New York’s Grow Network, which can be 

used by educators to provide student data and pinpoint exactly what a student is having difficulty 

mastering, in relation to skills and standards, and then provides links to instructional resources a 

teacher can use to impact student achievement.  The resources include suggested teaching 

strategies and activities to help teachers teach students in ways that will improve their standards-

based learning.  The Grow Network data system helps teachers differentiate student data by 

providing different levels of data focus (Brunner et al., 2005).  Other similar technology systems 

http://dataqualitycampaign.org/about
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and tools that may vary slightly from the Grow Network are being utilized in states such as 

Alaska, Arizona, Indiana, and Texas (Pinkus, 2009; Brunner et al., 2005).   

 Technology data tools may be a solution to assist teachers who lack data literacy skills, 

such as comprehending data, interpreting data, finding trends in data, and using data efficiently 

(Means et al., 2009; Miller, 2009; Wayman, 2005).  The research is pointing to a need for data 

technology tools to help teachers perform optimally.  Vygotsky’s sociocultural theory of learning 

supports the use of tools to grow knowledge.  According to Vygotsky’s theory, people use tools 

(mental tools or physical tools) to take in information and mediate it into meaning and action 

(Gee, 2000).   

Technology Acceptance Model (TAM)  

 The TAM has been used to determine how external factors affect or influence teacher’s 

use of technology.  The TAM was designed to predict “computer usage behavior” (Teo, Lee, 

Chai, & Wong, 2009, p.  1).  The TAM model has been shown to be empirically successful when 

predicting if a user will use a technology according to the authors of Understanding pre-service 

teachers’ computer attitudes: Applying and extending the Technology Acceptance Model (TAM).  

In fact, according to the authors, TAM has two particular variables that predict an individual’s 

probability of using a technology; perceived ease of use and perceived usefulness (Teo, Lee, & 

Chai, 2007).   

 In Understanding pre-service teachers’ computer attitudes: Applying and extending the 

Technology Acceptance Model (TAM) the authors reveal that perceived ease of use and perceived 

usefulness determined pre-service teachers’ attitudes towards computer use (Teo et al., 2007).  

External factors that affect the perceived ease of use and perceived usefulness include attitudes, 
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beliefs, and experiences (Pynoo et al., 2011).  Additionally, computer self-efficacy is a factor 

that impacts perceived ease of use (Venkatesh, 2000).   

Computer self-efficacy is a person’s belief that they have the abilities to successfully use 

a technology (Compeau, Higgins, & Huff, 1999).  The concept of self-efficacy stems from the 

work of Bandura (Compeau et al., 1999; Bandura, Adams, &Bayer, 1977).  Bandura, Adams, 

and Bayer (1977) found that “perceived self-efficacy influences level of performance by 

enhancing intensity and persistence of effort” in completing a task (P 125).   Furthermore, 

Bandura et al.  (1977) found that behavioral change is dependent on cognitive mechanisms, such 

as perceived self-efficacy.  Research by Compeau, Higgins, and Huff (1999) found a relationship 

between computer self-efficacy and computer use, which showed that the higher a person’s 

computer self-efficacy the more likely they were to use a computer.  Hu, Clark, and Ma (2003) 

found that perceived computer self-efficacy does directly affect the behavioral intentions an 

individual has to use or accept a technology.  Thus, computer self-efficacy may play a major role 

in determining how much effort and perseverance individuals may apply in using a data 

technology tool. Furthermore, finding ways to improve computer self-efficacy may be crucial in 

the technology acceptance one has towards utilizing a data technology tool.   

Teo, Lee, and Chai, (2008) found in their study that pre-service teacher attitudes 

predicted computer usage.  Subjective norms also predicted pre-service teacher computer usage 

(Teo et al., 2007).  An example of a subjective norm would be administrative support in using a 

technology tool.  This is important as the research indicates that trainings, relevant materials, and 

support from administrators influence the use of computer technologies (Pynoo et al., 2011).   
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 Hu et al.  (2003) believe that many public school teachers world-wide are resistant to 

technology.  Their research indicates that perceived ease of use and perceived usefulness are 

factors that heavily influence whether or not teachers will use technology.  One influence, job 

relevance, was regarded as a large factor in predicting perceived usefulness (Teo, Lee, & Chai, 

2008).  As an indication of the lack of agreement on teacher usage of technology, a teacher 

survey study by the Bakia et al.  (2008), found that most teachers possess positive outlooks 

regarding receiving support in utilizing data from data technology systems.   

 Smarkola (2007) argued that student teachers and experienced teachers will favor using 

the internet over technology tools that are designed to specifically impact their instructional 

practices.  This research presented by Smarkola (2007) found that, in agreement with the 

National Educational Technology Trends Study (2009) survey, teachers needed support from 

resources, administrators, and computer-integrated hands-on practice in order for them as a 

collective group to be more open to technology tools.  She believes, as Davis (1989) the inventor 

of the TAM model, that “an individual’s technology acceptance is a crucial factor in determining 

the success or failure of a computer systems project” (Smarkola, 2008, p.  1197).  It is apparent 

that variables, such as perceived usefulness, perceived ease of use, computer self-efficacy, and 

subjective norms affect whether or not educators will use a technology tool or application.   

Summary 

 The literature review has revealed that reading coaches need to spend more time helping 

teachers analyze and use student data to create optimal instruction and that technology data tools 

may be able to assist in this endeavor.  These findings have helped fuel the study.  Since research 

has not provided insight about the technology acceptance level reading coaches have in using 
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technology data tools with teachers, it is important to learn how data technology tools may be 

received and used by reading coaches to improve their job performance and assist teachers in 

providing timely instructional assistance. 

 Furthermore, it is imperative to learn what schools, districts, and states can do to support 

reading coaches and teachers in helping them use technology tools or systems to impact student 

achievement.  The research has revealed that teachers may benefit from utilizing data tools; 

however the research also revealed that educators may need support, guidance, and trainings in 

using data tools in order for them to be successful in impacting student achievement.  Overall, 

there are insufficient research data on reading coaches using data technology tools with teachers.  

The primary purpose of this study is to add to this research base by investigating the behavioral 

intentions reading coaches have in using a data technology tool with teachers.   
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CHAPTER THREE: METHODOLOGY 

 The purpose of this chapter is to report all phases of the methodology utilized in the 

study.  It is divided into the following five sections describing: 1) research design, 2) sampling 

method, 3) instrumentation, 4) method of data analysis, and 5) assumptions and delimitations of 

the study.   

Research Design 

 The district-adopted Teacher Data Tool, developed by the researcher and her husband, 

was created for the purpose of providing all teachers of grade three through twelve students with 

assistance in utilizing Florida Assessments for Instruction in Reading (FAIR) data for the benefit 

of promoting student literacy skills and achievement.  Reading coaches who participated in this 

study completed the Behavioral Intentions Survey (BI Survey in Appendix B) to determine their 

behavioral intentions towards using the Teacher Data Tool with teachers.  Furthermore, the BI 

Survey design was designed to help determine what variables (perceived ease of use, perceived 

usefulness, computer self-efficacy, and subjective norms), may influence behavioral intentions 

and whether there is a difference in the behavioral intentions of coaches at various school levels 

(elementary, middle, or high).  According to Davis (1989) and Venkatesh and Davis (2000), 

behavioral intentions predict system use.  The model in Figure 1 shows the adaptation of the 

Technology Acceptance Model (TAM) that will guide the study. 
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Figure 1: Adaptation of the Technology Acceptance Model (Davis, 1989; Venkatesh & Davis, 

2000; Venkatesh, 2000) 

 The Teacher Data Tool is primarily driven by FAIR data, but also student AYP data, and 

data teachers collect can be entered into the tool.  Some of the functions of the Teacher Data 

Tool include: immediately calculating student FAIR reading profiles and recommended further 

assessments; an interactive graph that can track student oral reading fluency over time; a place to 

document actions, such as instructional settings and strategies utilized; a progress monitoring 

feature that can track student progress and teacher actions throughout the school year; and ways 

to manipulate and trend out data for differentiated instruction purposes. 

 The main focus of this research is to study how reading coaches assist teachers in 

utilizing data technology tools, such as the Teacher Data Tool.  Reading coaches are hired to 

optimize the effectiveness of teachers (Sturtevant, 2003).  Reading coaches are expected to show 

teachers how data technology tools can be utilized to understand, analyze, and use student data.  
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Improvement in the use of technology by classroom teachers is vital to improving student 

achievement (Wayman, 2005).    

 This study attempted, in part, to discover reading coaches’ behavioral intentions toward 

utilizing a data technology tool with teachers in an effort to help teachers understand and use 

student data to drive instruction.  Reading coaches are critical players in helping teachers use 

data tools to drive classroom instruction.  If reading coaches did not have behavioral intentions 

toward using a technology tool to assist teachers in utilizing data, then teachers may not be 

receiving the kind of help and resources they may need in making data-based decisions to 

improve instruction in a quicker and more efficient manner.   

 Further value in this study has been in determining what variables may affect reading 

coaches’ behavioral intentions to use a tool.  For example, if the variable computer self-efficacy 

affected coaches using the tool with teachers then it may be possible to find ways to improve 

their perceptions of their own computer self-efficacy skills in the hopes of increasing their 

behavioral intentions. 

 The Teacher Data Tool relies mostly on the data provided by the FAIR.  The FAIR 

provides educators with a large quantity of data that helps determine appropriate instruction.  

FAIR assessments are given to nearly all struggling readers in the state of Florida and those most 

at risk for having reading problems.  Data produced through FAIR are applicable in many 

content areas including science, math, social studies, and reading. 

 The FAIR made its debut in Florida public schools in August of 2009 for students in 

grades K-12.  The assessment was created by the collaborative efforts of Just Read, Florida! and 

the Florida Center for Reading Research (“Florida Assessments,” 2009).  The FAIR provides 
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educators with screening, diagnostic and progress monitoring data that are intended to help 

educators shape the instruction students receive (“Florida Assessments,” 2009).  The screening 

data provided by FAIR helps educators identify students that are reading below grade level.  The 

diagnostic data that FAIR provides is helpful to educators because it reports the specific reading 

needs a student possesses.  Progress monitoring data provided by the FAIR enables educators to 

determine if instruction and intervention is working which is accomplished by the formative data 

FAIR reports during the three times a year it is administered to students (“Florida Assessments,” 

2009).   

 For students in 3-12 grades, the main FAIR assessments include the Reading 

Comprehension/Broad Screen, Maze, and Word Analysis which are assessed on a computer 

(“Florida Assessments,” 2009).  During the computer-adaptive Broad Screen assessment students 

answer questions for one to three passages (“Florida Assessments,” 2009).  The Broad Screen 

yields many scores for students including, but not limited to, an FSP (FCAT Success Probability) 

score, a reading comprehension score, and a breakdown of how the student is predicted to score 

on each area assessed by the reading FCAT, including the following clusters: vocabulary, 

reading application, literary analysis for both fiction and nonfiction, and informational 

text/research process (“Florida Assessments,” 2009).  The FSP score predicts the likelihood a 

student will obtain a 3 or above score on the reading FCAT; anything less than a score of 3 

indicates the student is reading below grade level.  The reading comprehension score indicates 

the current reading comprehension abilities a student possesses (“Florida Assessments,” 2009).  

FCAT cluster scores provide information indicated by a “low” “medium” “high” or “NA” score 

that indicates the level of mastery for each cluster (“Florida Assessments,” 2009).  “NA” scores 
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are reported if there are a lack of questions that could generate a score for a student (“Florida 

Assessments,” 2009).   

 If a student scores into a range indicating there is a reading deficit within the Broad 

Screen then the student takes the Targeted Diagnostic Inventory which is comprised of the Maze 

and Word Analysis inventories (“Florida Assessments,” 2009).  During the Maze assessment 

students read two grade-level passages that are timed.  Three minutes are allotted for students to 

enter answer selections for each passage during the Maze (“Florida Assessments,” 2009).  

During the Maze assessment students read a text and while reading encounter places embedded 

within the text that require the student to select a word, from a word bank, that makes the most 

sense in the text as they read (“Florida Assessments,” 2009).  There is a 1 to 7 ratio of Maze 

items per words in each passage (“Florida Assessments,” 2009).  The Maze assessment provides 

information about a student’s silent fluency and low level comprehension abilities (“Florida 

Assessments,” 2009).  Fluency is a determinant that can impact reading comprehension 

(“National Reading,” 2000).  The percentile rank is one score generated by the Maze, which 

provides educators with a score that compares a student to other students of the same grade level 

who took the assessment in Florida (“Florida Assessments,” 2009).   

 Finally, the Word Analysis assesses the student’s spelling abilities, as spelling is 

correlated to reading abilities (Foorman & Petscher, 2010).  The computer-adaptive Word 

Analysis part of the assessment requires students to listen to words and spell them (“Florida 

Assessments,” 2009).  A few scores are yielded from the Word Analysis, one being a percentile 

rank score that reports how the student scored compared to other students in Florida in the same 
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grade level (“Florida Assessments,” 2009).  The Word Analysis is helpful in determining a 

student’s orthographic, morphological, and phonological word knowledge.  The words students 

are required to spell for the Word Analysis assessment are given in isolation of any text (“Florida 

Assessments,” 2009).   

 According to http://www.fcrr.org/FAIR/3-12_Decision_Tree.pdf three scores, the 

Reading Comprehension, Maze, and Word Analysis are used to create FAIR reading profiles that 

each student will score into when taking the FAIR. FAIR reading profiles are useful to educators 

because they provide curriculum recommendations and strategy suggestions that can be used in 

any reading and content area class. Students can also receive differentiated instruction and have 

their progress monitored over the three assessment periods of FAIR using the FAIR reading 

profiles. Some benefits of the Teacher Data Tool are that it will automatically calculate student 

FAIR reading profiles once scores are entered into the tool, organize the data for differentiation 

purposes, and monitor how students progress according to FAIR reading profile scores for each 

of the three assessment periods. Thus, the Teacher Data Tool helps teachers quickly determine 

student needs and provides guidance to teachers as to what curriculum and strategies may be 

beneficial to each student in order to promote learning. 

 Other components of the FAIR that may be administered between the three FAIR 

assessment windows and do not occur on the computer are the Ongoing Progress Monitoring 

option and the Informal Diagnostic/Progress Assessment for Grades 3-12 Tool Kit (“Florida 

Assessments,” 2009).  The Ongoing Progress Monitoring option allows educators to evaluate 

oral reading fluency every three to four weeks by using provided Oral Reading Fluency probes 

http://www.fcrr.org/FAIR/3-12_Decision_Tree.pdf


41 

(“Florida Assessments,” 2009; “Use of,” n.d.).  The Teacher Data Tool provides teachers with a 

graph where they can record and track student fluency scores over time.  The Informal 

Diagnostic/Progress Assessment for Grades 3-12 Tool Kit provides teachers with further 

assessments (if FAIR computer scores indicated a need for further assessment to pinpoint 

reading needs), such as a Phonics Assessment and also provides passages and templates for 

helping students practice using reading strategies, such as Question-Answer Relationships 

(QAR) (“Florida Assessments,” 2009).  The Teacher Data Tool was created for the purpose of 

providing all teachers, not just reading teachers, with assistance in utilizing FAIR data for the 

benefit of promoting student achievement.  It is important to note that content area teachers in 

secondary schools typically do not have the kind of data to help them improve their students’ 

literacy skills and achievement in their respective areas (Gallagher et al., 2008; Means et al., 

2009; Miller, 2009).  Therefore, the Teacher Data Tool provides all teachers, and those who 

typically do not have access to the kinds of student data that is helpful for instructional purposes, 

with the following specific functions:  

 provides ways to assist educators in determining student FAIR reading profiles in a 

quick and effective manner and provide an option to group students with like needs 

  indicates which students need to take further assessments from the Informal 

Diagnostic/Progress Assessment for Grades 3-12 Tool Kit and provides a place to 

document results and correlating resources to help improve student literacy skills 

  supplies resources (strategy explanations and examples, short videos demonstrations 

of strategies, etc.) that can be used to teach students, based on their needs according 

to data 
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 provides a progress monitoring options 

 supplies an action log for teachers connected to the FAIR that allows teachers to input 

four actions: instructional settings, strategies used, professional development, and 

coach involvement with  a fifth column available to enter notes about a specific 

student 

  offers an interactive graph that can graph student oral reading fluency with 

technology 

 provides filter functions that allow for teachers to organize data, manipulate data in 

different ways, and identify trends in data (for example, five students who are in the 

same FAIR reading profile can be quickly determined and used to create a small 

group) 

 When taking into consideration what teachers need a technology tool to do, research 

suggests that teachers need a flexible technology tool like the Teacher Data Tool that is designed 

to help them understand data, organize data, analyze data, and provide them with quick links to 

readily available resources aligned to state standards, curriculum, and strategies that will propel 

student achievement further (Gee, 2000; Brunner et al., 2005). 

 Research emphasizes that there is much importance in understanding a learner’s 

background and needs when designing for a learner (Telg et al., 2005).  When creating a tool for 

users it is important to consider the user.  The Cognitive Load Theory was utilized when 

devising the Teacher Data Tool. The Cognitive Load Theory can aid a designer in the process of 

design by providing a theoretical framework for understanding a learner’s cognitive intake 

abilities (Cook, 2006).   
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 The Cognitive Load Theory emphasizes the importance of understanding the cognitive 

structures of a learner’s brain, including the working memory and long-term memory.  The 

theory explains that the working memory of an individual is limited, while the long-term 

memory is unlimited; however, they interact with each other to form meaning.  This is because 

the long-term memory is used by the brain to retrieve information (prior knowledge) that helps 

make meaning out of what is presented in the working memory (Cook, 2006).   

 The Cognitive Load Theory further explains that the working memory can be bogged 

down by too much information at one time and rendered less effective and less able to transfer 

information to the long-term memory banks (Cook, 2006).  However, Kirschner (2002) explains 

that using more than one way of presenting the same data to the working memory expands the 

capacity of the working memory and thus its likelihood of transferring information to the long-

term memory.  This process is referred to as multiple representations (Kirschner, 2002).   

 By using prior knowledge and tapping into the long-term memory, to assist the working 

memory in understanding a concept, and by using multiple representations of concepts, the 

Teacher Data Tool is aimed to be more useful and memorable to teachers.  To accomplish this 

task, the Teacher Data Tool has a component that is identical to a data tool adopted by the 

Florida Department of Education, which is featured on their fcrr.org website as well as in all 

FAIR trainings for teachers, reading coaches, and administrators.  The Florida Department of 

Education encourages educators to use the state-adopted tool when calculating student reading 

profiles and organizing them for differentiation purposes.  

 When considering how the brain processes information in the framework of the Cognitive 

Load Theory, one does not want to overload the user with too many options.  In order to avoid 



44 

cognitive overload, there are ways of simplifying the data so that the user can select what data to 

view in organized ways (Ludwig, Pritchard, & Walker, 2009).  This sustainable design principle 

embodied the 80/20 rule of design (Lidwell, Holden, & Butler, 2010).  The 80/20 rule of design 

helps a user focus on the important elements of a tool instead of overloading a user with too 

much information at once and is featured in the Teacher Data Tool when filters are used to allow 

an educator to view just the information they want to see, such as only those students who scored 

into the FAIR reading profile of 2+4 or the FAIR reading profiles of those who are in a specific 

AYP subgroup. (Lidwell et al., 2010).   

 Another sustainable design outlined by Ludwig, Pritchard, and Walker (2009) is 

implanting into design a control when the creator does not want the user to change a part.  This 

design principle is called the constraint principle (Lidwell et al., 2010) and is evident in the 

Teacher Data Tool when drop boxes limit the input choices a user can enter into a data field to 

ensure that only the language desired is used to for descriptive data purposes.  A similar, but 

more flexible example of design control is also utilized in the Teacher Data Tool, and it is 

referred to as the forgiveness principle of design (Lidwell et al., 2010).  The forgiveness 

principle is apparent in the Teacher Data Tool when areas that identify a student are grayed out 

so that when a user inputs data on a new page the user will know immediately to assign data to a 

corresponding student identified row. 

 Important to a learner are the visual aesthetics present in a design that enable the learner 

to understand presented information in a more effective manner (Parrish, 2007).  According to 

Dewey (1934/1989), aesthetic experiences are meaningful and create immersion.  So, color has 
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been used in design of the tool to increase the aesthetics of the tool in order to highlight 

meaningful information for classifying or viewing.   

 Importantly, effective design has a focal point or underlying theme (Frey & Pumpian, 

2006; Parrish, 2007).  The focal point or theme of the Teacher Data Tool is to give educators a 

data tool that they can use to positively impact student achievement.  The tool is a cause and 

effect instrument designed to promote teacher action based on student data and their own teacher 

actions throughout the school year as documented after each assessment period.  The tool allows 

teachers to reflect if current practices are working and impacting student success positively or if 

they need to change their actions (such as increase small group time or introduce a new way of 

learning material through a different strategy) to move students into a path of success.   

The goals of the Teacher Data Tool are to help teachers actively use FAIR data to shape 

instruction in a flexible manner that is intended to positively impact student success and promote 

reflective, action-oriented teaching.  Another goal is to save teacher the time it may otherwise 

take in best utilizing student data.  Time is a commodity in short demand that teachers need most 

to plan, prepare, and implement quality instruction (Means et al., 2009). 

 Imperatively and according to research by Miller (2009), teachers need help reading 

interpreting their data and clearly seeing patterns, and the Teacher Data Tool is designed to assist 

teachers in this need by helping teachers identify patterns in data, such as students who may be 

grouped by like needs (Means et al., 2009). 
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 Finally, the design of the Teacher Data Tool enables teachers to do what the federal 

government, state, district, and all stakeholders are expecting them to do: create instruction that 

is specific to student needs according to data.   

The design of the BI Survey enabled stakeholders to learn how reading coaches’ 

behavioral intentions may impact teacher development in utilizing a data technology tool that is 

designed to aid teachers in creating relevant and impactful instruction to students based on their 

needs. Furthermore, the design of the BI Survey helped identify what variables play a role in 

determining reading coaches’ behavioral intentions to use a technology data tool with teachers. 

Finally, the design of the BI Survey provided insight into what reading coaches felt are important 

for the researcher to know about when using technology data tools with teachers.  Since the 

Teacher Data Tool is providing the very kind of assistance that is being recommended by 

research to help teachers devise strategic and impactful instruction, the results of this study, 

enabled by the BI Survey, are relevant to the field of education. 

Sampling Method 

 The unit of sampling in this study was the reading coach.  The survey was sent to all 

reading coaches in a large urban school district in Florida.  A census of the population of the 

estimated 163 reading coaches was taken.  The 2011-2012 K-12 Comprehensive Research Based 

Reading Plan for the district reading coaches examined in this study does not provide 

information as to how many reading coaches were from high school, middle school, or 

elementary school levels, although it is assumed that because there are a much greater amount of 

elementary schools in the district that the population of elementary reading coaches represented 

in the 163 estimation of reading coaches is the highest represented group.  All reading coaches of 
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various ages, backgrounds, and experiences were invited to take the survey.  The responses were 

classified as elementary, middle, and high school reading coaches depending on their indication 

of school level mostly served.   

 61 reading coaches or 37% of the estimated population of reading coaches responses 

were included in this study, even though 69 responded.  Responses were not included if a reading 

coach indicated that they had not viewed the tool prior to the survey, if the individual answered 

“I don’t know” in response to questions, and if a coach did not answer many questions.  Of the 

61 individuals included in the study, 32 of them were elementary school reading coaches, 16 

were middle school reading coaches, and 13 were high school reading coaches. 

 After receiving permission to conduct the study from the University’s IRB found in 

Appendix A and the district’s research department, an email was sent to two of the district’s 

administrators who oversee the district’s reading coaches.  Then the two district administrators 

sent out the survey with an invitation to take it via an e-mail to the entire reading coach 

population in the county.  The data was collected using Survey Monkey.  In the email, the 

participants read through a consent form to participate waiver prior to taking the survey.  The 

survey was deployed over a two-week time period after Thanksgiving.  All reading coaches 

received a reminder email after one week from the initial email to let them know they still had 

time to participate if they were interested in being a part of the study. 

Instrumentation 

 The BI Survey was created to determine coaches’ perceptions of behaviorable variables 

including perceived usefulness, perceived ease of use, computer self-efficacy, subjective norms, 

and behavioral intentions.  It is estimated that the survey took five minutes of time to complete.  
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The quantitative instruments and corresponding item stems aimed at predicting reading coaches’ 

behavioral intentions towards using the Teacher Data Tool in an effort to determine what factors 

will predict the use of this technology.  Survey Monkey was selected because of its ability to 

track answers, transfer data into SPSS, and due to the ease of nature in using links that are easily 

inserted into emails.  SPSS was utilized to generate the statistics presented in this section and to 

help answer the research questions.  There was only one qualitative question that was analyzed 

by the researcher in a coding method.   

 The BI Survey (Appendix B) was utilized to determine reading coaches’ perceptions of 

behavioral variables including perceived ease of use, perceived usefulness, computer self- 

efficacy, subjective norms, and behavioral intentions.  The quantitative survey questions were 

designed using instruments and item stems by Davis (1989), Venkatesh and Davis (2000), and 

Venkatesh (2000).  In the survey, five instruments are represented, including perceived 

usefulness, perceived ease of use, computer self-efficacy, subjective norms and behavioral 

intentions.  The item stems that are used to quantify each of the instruments range from two to 

six items.  Each item stem used language directly from Davis (1989), Venkatesh and Davis 

(2000), and Venkatesh (2000) or in, some cases their language was modified slightly to fit the 

data tool being studied.  Content validity and construct validity were established with the item 

stems used to construct the BI Survey based on the research of Davis (1989), Venkatesh and 

Davis (2000), and Venkatesh (2000).   

 The BI Survey was piloted with secondary reading coaches in March, 2011 in a large 

urban school district in Florida.  The dependent variables in the survey yielded strong reliability 

indicators according to Cronbach’s Alpha, ranging from .752 to .956.  A score of more than .70 
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indicates a reasonable relationship or measure amongst variables for Cronbach’s Alpha 

(Nunnally & Bernstein, 1994).   

 As mentioned, the BI item stems were either not altered or modified slightly to fit the tool 

being evaluated.  For example, one of the behavioral intention item stems in the BI Survey states, 

“I predict I will use this tool in the future,” and in an article by Venkatesh (2000) he used the 

behavioral intention item stem, “Given that I have access to the system, I predict I would use it” 

(Venkatesh, 2000,  p.  360).  Another example from the BI Survey for an item stem in the 

perceived usefulness states, “Using the Teacher Data Tool saves time in planning for student 

instruction,” while in the Davis (1989) article, the item stem that inspired the BI Survey item 

stem for perceived usefulness was, “Using electronic mail saves me time” (Davis, 1989, p.  324).  

Finally, an example from the Venkatesh and Davis (2000) article would be the use of their item 

stem for perceived ease of use, “I find it easy to get the system to do what I want it to do,” which 

inspired the BI Survey item stem for perceived ease of use, “I find it easy to get the tool to do 

what I want it to do” (Venkatesh & Davis, 2000, p.  201).  Permission to use the item stems in 

the BI Survey was gained from both authors through emails (found in Appendices D and E).  

Additionally, the BI Survey collected demographic information; including years as an educator, 

reading background, years in current role, and assigned school level(s).  These independent 

variables were used to learn about possible correlations with the dependent variable “behavioral 

intentions” and to share information about those individuals being studied. 

 Finally, one qualitative question was asked in the survey to determine and trend out any 

like thoughts reading coaches shared regarding using data tools in helping teachers.  This 

question was analyzed by the researcher in a coding method where data trending was applied for 
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like responses.  The terms that were identical or phrases that conveyed a similar meaning were 

coded together and frequent terms use was used to form a title for a trend, such as “user-

friendly.”  Since surveys are quantitative by nature, the qualitative question enabled the 

researcher to gain information about reading coaches’ thoughts on using a data technology tool. 

Method of Data Analysis 

 A reliability analysis was utilized to determine internal consistency of dependent 

variables using Cronbach’s Alpha for all coaches combined.  The survey mean and median 

values of the dependent variables (using the Likert scale) as they stand alone were examined.  

The Likert Scale scores were: 1=strongly disagree, 2=disagree, 3=neutral, 4=agree, 5=strongly 

agree.       

 When analyzing dependent variables using Cronbach’s Alpha for reliability measures, the 

process was done with two data sets (Tests 1 and 2) and all results from both data sets yielded 

higher than .70 for Cronbach’s Alpha for all reading coaches combined.  The first data set 

generated the highest Cronbach’s Alpha scores and the second data set yielded the second 

highest Cronbach’s Alpha scores for all reading coaches combined.  The researcher removed 

item stems within an instrument in some cases to yield the highest Cronbach’s Alpha scores and 

used the same item stems when analyzing every group including all reading coaches, elementary 

school reading coaches, middle school reading coaches, and high school reading coaches.  No 

item stems were removed from behavioral intentions, which only had two item stems that 

yielded over .90 for reliability.  To show the item stems that were included in each of the data 

sets, please see Appendix C.  The reliability analysis is noted in Table 1.  
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 Pearson’s correlation was used when examining the relationships between the dependent 

variables to behavioral intentions (also a dependent variable), as well as independent variables to 

behavioral intentions.  The further the Pearson’s correlation from zero, either positive or 

negative, the stronger the relationship between variables (Vaughan, 2001).  P values were also 

used and assisted in determining whether to “reject” or “fail to reject” the null hypothesis for 

each pair correlated.  Rejecting a null hypothesis indicates that there is a relationship between 

variables and failure to reject a null hypothesis indicates that there is not a relationship between 

variables.  The r scores provided information regarding the degree to which one variable 

impacted another, which was denoted by an asterisk(s) when a significant relationship was 

generated.  The R-Squared scores allowed for percentages to be generated, allowing for 

predictions to occur for how much each variable influenced behavioral intentions.   

Assumptions and Delimitations 

 The following lists include assumptions and delimitations of this study. 

Assumptions 

1. Behavioral variables play a role in reading coaches’ behavioral intentions in using a data 

technology tool with teachers. 

2. The Teacher Data Tool is a valid and reliable instrument. 

3. The reading coaches’ ratings on the Teacher Data Tool are reliable. 

Delimitations 

1. This study is not seeking explanations for behavioral intentions on the part of reading 

coaches. 

2. This study looks at behavioral intentions of reading coaches in only one school system. 
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CHAPTER FOUR: FINDINGS 

 The purpose of this chapter is to report the data collected in this research.  A summary of 

the analysis of procedures and related information is presented herein. 

Description of Data Collection  

 The data was collected using the Survey Monkey system within a two-week time period 

after Thanksgiving.  The data was then uploaded into SPSS.  The instruments within Survey 

Monkey are available in Appendix C.  All responses received from participants were collected 

through the Survey Monkey system.   

Reliability Analysis 

 Cronbach’s Alpha was utilized to determine the reliability of the dependent variables 

used in the study.  A reasonable relationship is indicated by a score greater than .70 (Nunnally & 

Bernstein, 1994).  Table 1 represents the reliability indicators for Test 1 and Test 2. 
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Table 1 

Cronbach’s Alpha for Test 1 and Test 2 

Dependent Variable Test 1 Test 2 

Perceived Usefulness .871 .867 

Perceived Ease of Use .906 .901 

Computer Self-Efficacy .803 .790 

Subjective Norms .892 .832 

Behavioral Intentions .944 .944 

 

Research Question One 

 Research question one: What behavioral intentions do reading coaches have when 

utilizing a data technology tool with classroom teachers? Descriptive statistics were generated.   

 The traditional Likert Scale was used for data analysis in this study.  The Likert Scale 

scores were: 1.0=strongly disagree, 2.0=disagree, 3.0=neutral, 4.0=agree, 5.0=strongly agree, 

and “I don’t know”.  All “I don’t know” responses were excluded in the data analysis.  Also, one 

individual did not answer the majority of questions and their data was also excluded.  Scores that 

were over 3.0 indicated stronger agreement for variables. 

 In analyzing the behavioral variable mean scores, reading coaches in each group 

(elementary school coaches, middle school reading coaches, and high school reading coaches), 

collectively agreed that they have behavioral intentions toward using the data technology tool 

with teachers as noted by scores over 3.0.  Elementary coaches showed a high likelihood of using 

the technology data tool because their mean was over 4.0.  All of this data, configured using 

mean scores and standard deviation scores are represented in Tables 2 ,3, 4, and 5.  The medians 
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for all groups were four, which is a high indicator for their behavioral intentions to use the data 

technology tool.  The medians are represented in Tables 2-5.   

 Overall, the hypothesis that: Reading coaches have specific behavioral intentions when 

utilizing a data technology tool with classroom teachers, is indicated to be correct when 

examining their high median and mean scores. 

Table 2 

All Reading Coaches: Descriptive Statistics 

Behavioral Variable n Mean Median SD 

Behavioral Intentions 61 3.8770 4 .99438 

 

Table 3 

Elementary School Reading Coaches: Descriptive Statistics 

Behavioral Variable n Mean Median SD 

Behavioral Intentions 32 4.1406 4 .89112 

 

Table 4 

Middle School Reading Coaches: Descriptive Statistics 

Behavioral Variable n Mean Median SD 

Behavioral Intentions 16 3.6250 4 .80623 
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Table 5 

High School Reading Coaches: Descriptive Statistics 

Behavioral Variable n Mean Median SD 

Behavioral Intentions 13 3.5385 4 1.28228 

 

Research Question Two 

 Research question two: To what extent do reading coaches utilize a data technology tool 

with classroom teachers based on different behavioral variables? To answer the question, 

Pearson’s correlations were run for Test 1 and Test 2 data. 

Guidance was used from Cohen and Manion (1994) to analyze Pearson’s correlations and 

is illustrated in Table 6.  The farther the Pearson’s correlation from zero, either positive or 

negative, the stronger the relationship between variables (Vaughnan, 2001). 

Table 6 

Interpretation Guide for Rating the Correlations 

Correlation Range Interpretation 

Less than 0.10 No Correlation (NC) 

0.10-0.29 Small (S) 

0.30-0.49 Medium (M) 

0.50+ Large (L) 

 

 Test 1 data indicates that there are large, positive significant correlations for perceived 

usefulness and computer self-efficacy which impacts the behavioral intentions all reading 
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coaches have towards using a data technology tool.  Furthermore, there is a medium, positive 

significant correlation between perceived ease of use impacting the behavioral intentions all 

reading coaches have towards using a data technology tool.  The null hypothesis that perceived 

usefulness, perceived ease of use, and computer self-efficacy do not affect behavioral intentions 

is rejected in each case.  The p value indicated that subjective norms do not affect behavioral 

intentions because there was a failure to reject the null hypothesis.  All reading coach data 

represented are in Tables 7 and 8 for both Test 1 and Test 2 

 For Test 2 the data also showed strong, positive correlations that perceived usefulness, 

perceived ease of use, and computer self-efficacy all affect reading coaches’ behavioral 

intentions to use a data technology tool.  So, once again for perceived usefulness, perceived ease 

of use, and computer self-efficacy the null hypothesis was rejected.  The second data set also 

showed that subjective norms do not affect the behavioral intentions all reading coaches have 

toward using a data technology tool as indicated by the failure to reject the null hypothesis. 

 In examining both Tests 1 and 2 it seems as though perceived usefulness is the greatest 

variable in determining if all reading coaches will use a data technology tool with teachers as 

both Tests 1 and 2 yielded large significant correlations. 

 Both tests provided R-Squared scores that indicate perceived usefulness, perceived ease 

of use, and computer self-efficacy highly predict whether reading coaches will have behavioral 

intentions toward using a data technology tool.  Together these variables have a significant 

impact on the behavioral intentions of all reading coaches. 
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Table 7 

Test 1: All Reading Coaches: Pearson’s Correlations between Perceived Usefulness, Perceived 

Ease of Use, Computer Self-Efficacy, and Subjective Norms to Behavioral Intentions 

 

Variables n Behavioral 
Intentions  

(r) 

R-Squared  p Null 
Hypothesis 

Perceived 
Usefulness 

 

61 .542** (L) 
 

29% .000 Reject 

Perceived 
Ease of Use 

 

61 .390** (M) 
 

15% .002 Reject 

Computer 
Self-Efficacy 

 

61 .567** (L) 
 

32% .000 Reject 

Subjective 
Norms 

61    .217 (S) 
 

5% .093 Fail to Reject 

**Correlation is significant at the 0.01 level (2-tailed). 
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Table 8 

 

Test 2: All Reading Coaches: Pearson’s Correlations between Perceived Usefulness, Perceived 

Ease of Use, Computer Self-Efficacy, and Subjective Norms to Behavioral Intentions 

 

Variables n Behavioral 
Intentions  

(r) 

R-Squared  p Null 
Hypothesis 

Perceived 
Usefulness 

 

61      .600** (L) 
 

36% .000 Reject 

Perceived 
Ease of Use 

 

61       .386** (M) 
 

15% .002 Reject 

Computer 
Self-Efficacy 

 

61      .477** (M) 
 

23% .000 Reject 

Subjective 
Norms 

61 .171 (S) 
 

3% .188 Fail to Reject 

**Correlation is significant at the 0.01 level (2-tailed). 

 For elementary school coaches, every variable, including perceived usefulness, perceived 

ease of use, computer self-efficacy, and subjective norms all significantly, positively affected 

reading coaches’ behavioral intentions towards using a data technology tool for both Tests 1 and 

2.  Large influences on the elementary reading coaches’ behavioral intentions were perceived 

ease of use and computer self-efficacy for both Tests 1 and 2.  Computer self-efficacy was the 

most likely to positively affect the behavioral intentions reading coaches have towards using a 

data technology tool in Test 1.  For each variable tested the null hypothesis was rejected, 

indicating that each variable influences elementary reading coaches’ behavioral intentions to 

utilize a data technology tool.   

 In both Test 1 and Test 2 the largest significant correlations were between perceived 

usefulness and behavioral intentions and between computer self-efficacy and behavioral 
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intentions.  Both of these areas generated stronger statistical relationships than either perceived 

usefulness or subjective norms to behavioral intentions. 

Using the R-Squared scores, one can predict how each variable will impact behavioral intentions.  

This is important because each one of these variables impact behavioral intentions separately, but 

in combination they have a large and important impact on the behavioral intentions elementary 

reading coaches have toward using data technology tools.  The elementary school reading coach 

data are represented in Tables 9 and 10. 

Table 9 

Test 1: Elementary School Reading Coaches: Pearson’s Correlations between Perceived 

Usefulness, Perceived Ease of Use, Computer Self-Efficacy, and Subjective Norms to Behavioral 

Intentions 

 

Variables n Behavioral 
Intentions  

(r) 

R-Squared  p Null 
Hypothesis 

Perceived 
Usefulness 

 

32 .470** (M) 
 

22% .007 Reject 

Perceived 
Ease of Use 

 

32 .565** (L) 
 

32% .001 Reject 

Computer 
Self-Efficacy 

 

32 .660** (L) 
 

44% .000 Reject 

Subjective 
Norms 

32 .566** (L) 
 

32% .001 Reject 

**Correlation is significant at the 0.01 level (2-tailed). 
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Table 10 

Test 2: Elementary School Reading Coaches: Pearson’s Correlations between Perceived 

Usefulness, Perceived Ease of Use, Computer Self-Efficacy, and Subjective Norms to Behavioral 

Intentions 

 

Variables n Behavioral 
Intentions  

(r) 

R-Squared  p Null 
Hypothesis 

Perceived 
Usefulness 

 

32 .510** (L) 
 

26% .003 Reject 

Perceived 
Ease of Use 

 

32 .572** (L) 
 

33% .001 Reject 

Computer 
Self-Efficacy 

 

32 .552** (L) 
 

30% .001 Reject 

Subjective 
Norms 

32 .486** (M) 
 

24% .005 Reject 

**Correlation is significant at the 0.01 level (2-tailed). 

 For middle school reading coaches, Test 1 and Test 2 generated significant, large positive 

correlations for perceived usefulness and computer self-efficacy affecting the behavioral 

intentions reading coaches have toward using a technology data tool.  Subjective norms also 

demonstrated significant, strong and positive correlations for impacting reading coaches’ 

behavioral intentions toward using a data technology tool in Test 2.  Perceived ease of use did 

not affect behavioral intentions in either Test 1 or Test 2, as both p values determined a failure to 

reject the null hypothesis. 

 For middle school reading coaches the variables that correlated to the highest significant 

degree to behavioral intentions were perceived usefulness and computer self-efficacy.   
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 The R-Squared values for perceived usefulness, computer self-efficacy, and subjective norms 

(for Test 2) all demonstrated high percentages that influence behavioral intentions.  Perceive 

usefulness revealed over a 70% prediction percentage when correlated with behavioral 

intentions. 

Table 11 

Test 1: Middle School Reading Coaches: Pearson’s Correlations between Perceived Usefulness, 

Perceived Ease of Use, Computer Self-Efficacy, and Subjective Norms to Behavioral Intentions 

 

Variables n Behavioral 
Intentions  

(r) 

R-Squared  p Null 
Hypothesis 

Perceived 
Usefulness 

 

16  .842** (L) 
 

71% .000 Reject 

Perceived 
Ease of Use 

 

16 .071 (NC) 
 

1% .795 Fail to Reject 

Computer 
Self-Efficacy 

 

16 .512* (L) 
 

26% .043 Reject 

Subjective 
Norms 

16 .488 (M) 
 

24% .055 Fail to Reject 

**Correlation is significant at the 0.01 level (2-tailed). 
*Correlation is significant at the 0.05 level (2-tailed). 
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Table 12 

Test 2: Middle School Reading Coaches: Pearson’s Correlation Matrix-Correlations between 

Perceived Usefulness, Perceived Ease of Use, Computer Self-Efficacy, and Subjective Norms to 

Behavioral Intentions 

 

Variables n Behavioral 
Intentions  

(r) 

R-Squared  p Null 
Hypothesis 

Perceived 
Usefulness 

 

16      .861** (L) 
 

74% .000 Reject 

Perceived 
Ease of Use 

 

16  .150 (S) 
 

2% .578 Fail to Reject 

Computer 
Self-Efficacy 

 

16    .591* (L) 
 

35% .016 Reject 

Subjective 
Norms 

16 .591 (L) 
 

35% .016 Reject 

** Correlation is significant at the 0.01 level (2-tailed). 
*Correlation is significant at the 0.05 level (2-tailed). 
 

 For high school reading coaches, all variables including perceived usefulness, perceived 

ease of use, computer self-efficacy, and subjective norms generated statistics that indicate each 

variable did not affect high school reading coaches’ behavioral intentions to use a data 

technology tool in both Tests One and Two.  Failure to reject the null hypothesis in each case 

showed that the variables tested do not impact the behavioral intentions high school reading 

coaches have towards using a data technology tool with teachers, and in fact there were even 

medium, negative correlations for both tests when examining the relationship between subjective 

norms and their effect on behavioral intentions.  Since the Likert Scale mean and median for 

high school reading coaches having behavioral intentions to use a data technology teacher were 
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high, there is a question as to what unknown variable(s) do impact their likelihood to have 

behavioral intentions to use a data technology tool. 

Table 13 

Test 1: High School Reading Coaches: Pearson’s Correlations between Perceived Usefulness, 

Perceived Ease of Use, Computer Self-Efficacy, and Subjective Norms to Behavioral Intentions 

 

Variables n Behavioral 
Intentions  

(r) 

R-Squared  p Null 
Hypothesis 

Perceived 
Usefulness 

 

13  .429 (M) 
 

18% .144 Fail to Reject 

Perceived 
Ease of Use 

 

13 .211 (S) 
 

4% .489 Fail to Reject 

Computer 
Self-Efficacy 

 

13 .396 (M) 
 

16% .180 Fail to Reject 

Subjective 
Norms 

13 -.367 (M) 
 

13% .217 Fail to Reject 
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Table 14 

Test 2: High School Reading Coaches: Pearson’s Correlations between Perceived Usefulness, 

Perceived Ease of Use, Computer Self-Efficacy, and Subjective Norms to Behavioral Intentions 

 

Variables n Behavioral 
Intentions  

(r) 

R-Squared  p Null 
Hypothesis 

Perceived 
Usefulness 

 

13  .494 (M) 
 

24% .086 Fail to Reject 

Perceived 
Ease of Use 

 

13 .124 (S) 
 

2% .688 Fail to Reject 

Computer 
Self-Efficacy 

 

13 .235 (S) 
 

6% .439 Fail to Reject 

Subjective 
Norms 

13 -.354 (M) 
 

13% .236 Fail to Reject 

 

 The hypothesis that: Reading coaches utilize data technology tools with classroom 

teachers based on different behavioral variables, is indicated to be true by the data results.  The 

behavioral variables, including perceived usefulness, perceived ease of use, computer self-

efficacy, and subjective norms, all vary in their levels of influence or non-influence on the 

behavioral intentions reading coaches have toward using a data technology tool.  When 

analyzing what influences reading coaches’ behavioral intentions it is important not to generalize 

what variables may impact behavioral intentions of all reading coaches together because when 

looking at the reading coaches by their levels (elementary, middle, and high), different 

behavioral variables show varying influence on behavioral intentions.  For example, the data 

shows that middle school reading coaches demonstrated a remarkably higher likelihood to have 

behavioral intentions to use a data technology tool if they think the tool is going to be useful than 
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elementary and high school reading coaches.  Also, the behavioral intentions of elementary 

school reading coaches showed that perceived ease of use impacted their behavioral intentions to 

a statistically large degree in contrast to both middle and high school reading coaches whose 

behavioral intentions were not impacted by perceived ease of use.  Additionally, both elementary 

and middle school reading coaches showed a statistically significant correlation between 

computer self-efficacy and behavioral intentions compared to high school reading coaches who 

did not show a correlation between the two variables.  Furthermore, high school reading coaches’ 

results showed that none of the tested variables can be used to predict whether they will have 

behavioral intentions to use a data technology tool.   

Overall, the data provided insight into what variables predict or do not predict behavioral 

intentions and how specific variables, when combined, can dramatically increase the prediction 

of variables positively affecting behavioral intentions.  Furthermore, the data showed that there 

are varying degrees that a variable impacts behavioral intentions. 

Research Question Three 

 Research question three: Is there a relationship between reading coaches’ behavioral 

intentions and utilization of a data technology tool with classroom teachers reflected identically 

at the elementary, middle, and high school levels? To answer the question Pearson’s correlations 

were run using Test 1 data to correlate independent and dependent variables; discussions of the 

correlations are guided by the data results.  Test 2 data was not generated because behavioral 

intention scores would be the same, as the same two item stems were used in Test 1 and Test 2 

for behavioral intentions. 
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 In examining the data using Pearson’s correlation, correlations were determined with all 

reading coaches, elementary school reading coaches, middle school reading coaches, and high 

school reading coaches.  Guidance was used from Cohen and Manion (1994) to analyze 

Pearson’s correlations and is illustrated in Table 15.  The farther the Pearson’s correlation from 

zero, either positive or negative, the stronger the relationship between variables (Vaughnan, 

2001). 

Table 15 

Interpretation Guide for Rating the Correlations 

Correlation Range Interpretation 

Less than 0.10 No Correlation (NC) 

0.10-0.29 Small (S) 

0.30-0.49 Medium (M) 

0.50+ Large (L) 

 

 Using Pearson’s correlation, the years as an educator was correlated to behavioral 

intentions.  These correlations are represented for all reading coaches in Table 16, for elementary 

school reading coaches in Table 17, for middle school reading coaches in Table 18, and for high 

school reading coaches in Table 19.   

 For all reading coaches who have been educators for 11-20 years, the data generated 

showed that years as an educator does influence their behavioral intentions to use a data 

technology tool.  For educators who have 11-20 years of experience, there was a positive, small 

statistically significant correlation and the null hypothesis was rejected. 
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Table 16 

All Reading Coaches: Years as an Educator Correlations 

Years as an 
Educator 

n Behavioral 
Intentions 

(r) 

R-Squared p Null Hypothesis 

0-5 years 1 .016 (S) 0% .902 Fail to Reject 
6-10 years 13   -.219 (S) 5% .090 Fail to Reject 
11-20 years 24  .254* (S) 6% .049 Reject 
21+ years 24  -.075 (NC) 1% .568 Fail to Reject 

*Correlation is significant at the 0.05 level (2-tailed). 
 

 Elementary school reading coaches’ data demonstrated that years as an educator does not 

influence their behavioral intentions to use a technology data tool as indicated by the failure to 

reject the null hypothesis in each case. 

Table 17 

Elementary School Reading Coaches: Years as an Educator Correlations 

Years as an 
Educator 

n Behavioral 
Intentions 

(r) 

R-Squared p Null 
Hypothesis 

0-5 years 1  -.029 (NC) 0% .876 Fail to Reject 
6-10 years 7 .001 (NC) 0% .994 Fail to Reject 
11-20 years 9   .177 (S) 3% .332 Fail to Reject 
21+ years 15  -.151 (S) 2% .411 Fail to Reject 

 

 Middle school reading coaches’ data demonstrated that years as an educator does not 

influence their behavioral intentions to use a technology data tool as indicated by the failure to 

reject the null hypothesis in each case. 
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Table 18 

Middle School Reading Coaches: Years as an Educator Correlations 

Years as an 
Educator 

n Behavioral 
Intentions 

(r)  

R-Squared p Null Hypothesis 

0-5 years 0         - - - - 
6-10 years 4  -.271 (S) 7% .272 Fail to Reject 
11-20 years 7 .334 (M) 11% .358 Fail to Reject 
21+ years 5  -.105 (S) 1% .971 Fail to Reject 

 

 High school reading coaches demonstrated that years as an educator influenced their 

behavioral intentions towards using a data technology tool in two areas.  The null hypotheses 

were rejected for reading coaches who have been educators for 6-10 years and those who have 

been educators for 11-12 years only.  High school reading coaches who have been educators for 

6-10 years demonstrated a large negative statistically significant correlation between their years 

and their likelihood for having behavioral intentions to use a data technology tool.  Conversely, 

high school reading coaches who have been educators for 11-20 years showed a large positive 

statistically significant correlation between their years and their likelihood for having behavioral 

intentions to use a data technology tool.  The statistically significant positive finding for high 

school reading coaches that have been educators for 11-20 years was also reflected to a smaller 

degree when looking at all reading coaches, but not reflected for either elementary school 

reading coaches nor middle school reading coaches.  For high school reading coaches who have 

been educators for 21+ years, there was no correlation found between their years and behavioral 

intentions towards using a data technology tool. 
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Table 19 

High School Reading Coaches: Years as an Educator Correlations 

Years as an 
Educator 

n Behavioral 
Intentions 

(r) 

R-Squared p Null 
Hypothesis 

0-5 years 0 - - - - 
6-10 years 2 -.706** (L) 50% .007 Reject 
11-20 years 8 .666* (L) 44% .013 Reject 
21+ years 3  -.165 (S) 3% .589 Fail to Reject 

**Correlation is significant at the 0.01 level (two-tailed). 
*Correlation is significant at the 0.05 level (2-tailed). 
 

Using Pearson’s correlation, the years in current role was correlated to behavioral 

intentions.  These correlations are represented for all reading coaches in Table 20, for elementary 

school reading coaches in Table 21, for middle school reading coaches in Table 22, and for high 

school reading coaches in Table 23.   

 Pearson’s correlation found no correlation for all reading coaches between time in their 

current role and behavioral intentions.  Additionally there was a failure to reject the null 

hypothesis for each case examined. 
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Table 20 

All Reading Coaches: Years in Current Role Correlations 

Years in 
Current 

Role 

n Behavioral 
Intentions 

(r) 

R-Squared p Null Hypothesis 

0-2 years 24 -.002 (NC) 0% .804 Fail to Reject 
3-5 years 19 -.086 (NC) 1% .358 Fail to Reject 
6-8 years 9 .056 (NC) 0% .828 Fail to Reject 

9+ years 4 .086 (NC) 1% .442 Fail to Reject 

 

 Pearson’s correlation found no correlation for elementary school reading coaches 

between time in their current role and behavioral intentions.  Also, the null hypothesis failed to 

reject each case examined. 

Table 21 

Elementary School Reading Coaches: Years in Current Role Correlations 

Time in 
Current 

Role 

n Behavioral 
Intentions 

(r)  

R-Squared p Null 
Hypothesis 

0-2 years 15 -.044 (NC) 0% .813 Fail to Reject 
3-5 years 8 -.093 (NC) 1% .614 Fail to Reject 
6-8 years 3 .071 (NC) 1% .701 Fail to Reject 

9+ years 3 .071 (NC) 1% .701 Fail to Reject 

 

 Pearson’s correlation found no correlation for middle school reading coaches between 

time in their current role and behavioral intentions.  Additionally, the null hypothesis indicated a 

failure to reject each case based on p values. 
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Table 22 

Middle School Reading Coaches: Years in Current Role Correlations 

Time in 
Current 

Role 

n Behavioral 
Intentions 

(r) 

R-Squared p Null 
Hypothesis 

0-2 years 5  -.190 (S) 4% .403 Fail to Reject 
3-5 years 7 .334 (M) 11% .133 Fail to Reject 
6-8 years 3  -.275 (S) 8% .277 Fail to Reject 

9+ years 0 - - - - 

 
 Pearson’s correlation found no correlation for high school reading coaches between time 

in their current role and behavioral intentions.  For high school reading coaches the p values 

indicated a failure to reject the null hypothesis in each case analyzed. 

Table 23 

High School Reading Coaches: Years in Current Role Correlations 

Time in 
Current 

Role 

n Behavioral 
Intentions 

(r) 

R-Squared p Null 
Hypothesis 

0-2 years 4 .182 (S) 3% .552 Fail to Reject 
3-5 years 3   -.536 (H) 29% .059 Fail to Reject 
6-8 years 3  .353 (M) 12% .236 Fail to Reject 
9+ years 1    .108 (S) 1% .725 Fail to Reject 

 

 Using Pearson’s correlation, reading education background of reading coaches was 

correlated to behavioral intentions.  These correlations are represented for all reading coaches in 

Table 24, for elementary school reading coaches in Table 25, for middle school reading coaches 

in Table 26, and for high school reading coaches in Table 27.   
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 For all reading coaches there was no correlation between behavioral intentions towards 

using a data technology tool and reading background according to Pearson’s correlation.  

Furthermore, there was a failure to reject the null hypothesis based on p values for each 

correlation. 

Table 24 

All Reading Coaches: Reading Education Correlations 

Reading 
Education 

Background 

n Behavioral 
Intentions 

(r) 

R-Squared p Null 
Hypothesis 

RC 9  -.081 (NC) 1% .617 Fail to Reject 
RE 36   -.117 (S) 1% .340 Fail to Reject 

WTRE 15    .176 (S) 3% .196 Fail to Reject 
WTRC 1   .010 (NC) 0% .902 Fail to Reject 
NRB 1   .074 (NC) 1% .532 Fail to Reject 

RC=Reading Certification 
RE=Reading Endorsement 
WTRE=Working Towards Reading Endorsement 
WTRC=Working Towards Reading Certification 
NRB=No Reading Background 
 

 For elementary reading coaches there was no correlation between behavioral intentions 

towards using a data technology tool and reading background according to Pearson’s correlation.  

Additionally, p values provided information to fail to reject the null hypothesis in each case 

analyzed.   
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Table 25 

Elementary School Reading Coaches: Reading Education Correlations 

Reading 
Education 

Background 

n Behavioral 
Intentions 

(r) 

R-Squared p Null 
Hypothesis 

RC 4   .155 (S) 2% .397 Fail to Reject 
RE 15  -.115 (S) 2% .531 Fail to Reject 

WTRE 12  -.014 (NC) 0% .940 Fail to Reject 
WTRC 0 - - - - 
NRB 1  .074 (NC) 1% .689 Fail to Reject 

RC=Reading Certification 
RE=Reading Endorsement 
WTRE=Working Towards Reading Endorsement 
WTRC=Working Towards Reading Certification-None Working on It 
NRB=No Reading Background 
 
 For middle school reading coaches there was no correlation between behavioral 

intentions towards using a data technology tool and reading background according to Pearson’s 

correlation.  P values also provided information to fail to reject the null hypothesis in each 

correlation examined. 
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Table 26 

Middle School Reading Coaches: Reading Education Correlations  

Reading 
Education 

Background 

n Behavioral 
Intentions 

(r) 

R-Squared p Null 
Hypothesis 

RC 4 -.451 (M) 20% .073 Fail to Reject 
RE 11  .358 (M) 13% .146 Fail to Reject 

WTRE 1 .121 (S) 1% .731 Fail to Reject 
WTRC 0 - - - - 
NRB 0 - - - - 

RC=Reading Certification 
RE=Reading Endorsement 
WTRE=Working Towards Reading Endorsement 
WTRC=Working Towards Reading Certification 
NRB=No Reading Background 
 

For high school reading coaches there was no correlation between behavioral intentions 

towards using a data technology tool and reading background according to Pearson’s correlation.  

The p values indicated that each instance examined that there was a failure to reject the null 

hypotheses. 
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Table 27 

High School Reading Coaches: Reading Education Correlations 

Reading 
Education 

Background 

n Behavioral 
Intentions 

(r) 

R-Squared p Null 
Hypothesis 

RC 1  -.009 (NC) 0% .977 Fail to Reject 
RE 9  -.317 (M) 10% .291 Fail to Reject 

WTRE 2 .333 (M) 11% .267 Fail to Reject 
WTRC 1   .108 (S) 1% .725 Fail to Reject 
NRB 0 - - - - 

RC=Reading Certification 
RE=Reading Endorsement 
WTRE=Working Towards Reading Endorsement 
WTRC=Working Towards Reading Certification 
NRB=No Reading Background 

 

 The hypothesis is supported by the data analyzed: There is a difference in the 

relationships between reading coaches’ behavioral intentions and utilization of a data technology 

tool with classroom teachers for elementary, middle and high levels.  To explain this answer, 

demographic information, including years as an educator, years in their current role, and reading 

background, were correlated to behavioral intentions.  Although in most cases there was no 

correlation between independent variables and behavioral intentions, there were two areas for 

high school coaches that showed statistically significant information.  High school coaches who 

have taught 6-10 years showed a statistically significant negative and large correlation between 

their years as an educator and their behavioral intentions to use a data technology tool, while 

those who have taught for 11-20 years showed the opposite; a significantly positive and large 

correlation between their years as an educator and their behavioral intentions to use a data 

technology tool.  For both of these instances, there was a failure to reject the null hypotheses 
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indicating a positive or negative, respectfully, influence on years as an educator predicting the 

use or not predicting the use of utilizing a data technology tool.   

Research Question Four 

 Research question four: What are reading coaches thoughts on using data technology 

tools? To learn the thoughts of reading coaches, they were asked: From your perspective as a 

reading coach or reading contact, what would you like the researcher to know about using data 

tools in helping teachers? The responses to the question were categorized and created trends.  

Thirty-seven out of sixty-one, or approximately 61%, of the coaches responded to the qualitative 

question in the survey.   

 The trends in the qualitative question strongly predicted assumptions of the hypothesis 

that: Reading coaches will have similar opinions regarding their intentions to use technology 

tools with teachers.  Overall, three trends emerged from the data indicating the reading coaches 

believe that support in the form of trainings is needed for educators, data technology tools are 

useful, and technology tools need to be user-friendly. 

 In analyzing the data, approximately 24% of the respondents or 16% of the total 

population of the coaches believe that educators need support in the form of trainings in using 

data technology tools.  Some comments included they “Need ongoing training to share with 

other teachers,” and “The support from the district enables me to use it more effectively.” Two 

individuals wrote that hands-on training is important when it comes to training educators in how 

to use and implement a data technology tool.  Finally, one response really explained this trend 

well, “We have to be properly trained on using the tools before we are expected to use them and 

teach others to use them.” 
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 Additionally, approximately 19% of the respondents or 11% of the total population 

reported that they believe data technology tools are useful.  One noted a data tool, “makes a 

teacher's job more manageable and saves time in planning for student instruction,” while another 

commented, “I think that data tools are extremely helpful in reviewing the data to guide 

instruction.  It helps to make data analysis more manageable.” Finally, one educator summed it 

up best by stating, “Yes, I believe that using data tools in helping teachers is extremely 

important.” 

 Finally, 32% of the respondents of 20% or the total population indicated that the data 

technology tools need to be user-friendly.  Comments that helped shape this trend included “Data 

tools need to be user- friendly and help the classroom teachers/coaches use time wisely,” and 

“Keep them user-friendly; time is always an issue.” One summed it up as, “Teachers are so 

overwhelmed with day to day work that anything we can do to help simplify the data collection 

and analysis process will help streamline their jobs.” One final comment that also helped give a 

picture of the need for user-friendly tools is noted in this response, “They should be very easy to 

access and provide instructional implications with data read out.” 

 These trends indicate that the hypothesis: Reading coaches will have similar opinions 

regarding the utilization of data technology tools with teacher, is correct.   

Summary 

 The results of the analysis based on the hypotheses tested can be summarized as follows: 

1. Reading coaches have specific behavioral intentions when utilizing a data technology 

tool with classroom teachers.  
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2. Reading coaches utilize a data technology tool with classroom teachers based on different 

behavioral variables. 

3. There were significant differences amongst the relationships between reading coaches’ 

behavioral intentions and utilization of a data technology tool with classroom teachers 

which were not reflected identically at the elementary, middle, and high school grade 

levels. 

4. Qualitative data supported the assertion that reading coaches did hold similar opinions 

regarding the utilization of data technology tools with teachers. 
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CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS 

 The purpose of this chapter is to report the conclusions based on the findings in the 

research and the recommendations emanating from this study.  These are organized into three 

sections dealing with: 1) the conclusions of the research based on the findings, 2) a discussion of 

the conclusions and 3) recommendations emerging from the study. 

Conclusions      

 The conclusions, based on the findings of this investigation, are as follows: 1) The 

research hypothesis, which stated that: Reading coaches have specific behavioral intentions when 

utilizing a data technology tool with classroom teachers, was supported by the data.   2) The 

research hypothesis, which stated that: Reading coaches utilize a data technology tool with 

classroom teachers based on different behavioral variables, was supported by the data.   3) The 

research hypothesis, which stated that: There is a difference in the relationships between reading 

coaches’ behavioral intentions and utilization of a data technology tool with classroom teachers 

for elementary, middle, and high school levels, was supported by the data.  4) The research 

hypothesis, which stated that: Reading coaches will have similar opinions regarding the 

utilization of data technology tools with teachers, was also supported by the data. 

 Discussion of the Conclusions 

 In examining the findings, at least four rival explanations compete with the research 

hypotheses in the context of this research.  The threats to either the internal or external validity of 

the data presented and discussed include: mortality, Hawthorne effect, measurement of the 

dependent variable, and statistical regression.    
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 First, it is possible that the data may have been influenced by an internal validity threat 

referred to by Campbell and Stanley (1963) as "mortality".   That is, reading coaches either have 

left the school system or came into the school system in a pattern that might produce differences 

in the data.  To diminish the possibility of mortality, the first question in the survey was used as a 

determinant for indicating if the coaches had viewed the tool being studied.  The data of any 

coach who had not viewed the tool were immediately eliminated and not calculated into the 

results.  This action of deleting coaches whose data were invalid relates to mortality because only 

reading coaches who have been in the school system long enough to have had exposure to the 

tool would have been calculated into the results.   

 Second, it is possible that the overall high behavioral intentions of reading coaches in 

using a data technology tool with teachers demonstrates a case of what Bracht and Glass (1968) 

call the “Hawthorne effect,”  a threat to the external validity of the study.  This explanation is 

proposed because the reading coaches may assume that district personnel or their “bosses” may 

be interested in determining if they are fulfilling an expectation of their job role in using the tools 

provided to them for the intention of utilizing data with teachers that can impact student 

achievement.  In this case reading coaches could feel as though their job performances are being 

monitored and falsely indicate a high level of behavioral intentions to use a data technology tool, 

provided by the district, with teachers.  Thus indicating higher productivity in their job role than 

what is actually occurring.  Although, the Hawthorne effect may explain how reading coaches 

responded with such high behavioral intentions to use the data technology tool with teachers, this 

effect is not likely applicable in this case as an explanation for the data results because the survey 

was anonymous and all participants were informed that the survey was anonymous and not 
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mandatory.  Thus, there is no reason to doubt the conclusion that all reading coaches have high 

behavioral intentions to use a data technology tool with teachers. 

 Third, the “measurement of the dependent variable” may be a considered an external 

validity threat to the data yielded in this study (Bracht & Glass, 1968).  The measurement of the 

dependent variable as reported by Bracht and Glass (1968) is considered because an instrument 

used, in this case the BI Survey, may not accurately measure the variables tested.  Although this 

threat may be taken into consideration when examining the results, it is not likely to be an 

explanation for the data results.  The reason it is not likely to be an explanation of the data results 

is because content validity and construct validity of the item stems used in the BI Survey were 

established based on the research articles of Davis (1989), Venkatesh and Davis (2000), and 

Venkatesh (2000).  For the creation of the BI Survey each item stem was either kept the same or 

only minimally modified to be applicable for the tool being used in the study, with the 

permission of both Venkatesh and Davis.  Another reason the measurement of the dependent 

variable threat is not a likely explanation for the results is because the BI Survey was previously 

piloted with secondary reading coaches in a large urban Florida school district and in that case 

the reliability indicators using Cronbach’s Alpha ranged from .752 to .956.  Nunnally and 

Bernstein (1994) have indicated that a Cronbach’s Alpha score of more than .70 indicates a 

reasonable relationship or measure amongst variables.  For this survey, the Cronbach’s Alpha 

scores were also high, ranging from .790 to .944. 

 Fourth, “statistical regression” may be a considered threat to the internal validity of this 

study as reported by Cook and Campbell (1979).  This threat takes into consideration that data 

will move towards the mean and in this case, that may have yielded higher mean scores when 
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examining the Likert Scale scores that were used to determine reading coaches’ behavioral 

intentions towards using a data technology tool.  Perhaps this threat seems to have merit, except 

that the median scores were also reported for each level (elementary, middle, and high) and for 

all reading coaches which indicated in each instance a median score of four, a high indicator for 

having behavioral intentions to utilize the tool with teachers.  This alternative way of looking at 

the data is a second verifying factor that the behavioral intentions are high for all reading coaches 

and even when examining them according to their levels. 

Implications for Practice 

 The first finding that all reading coaches and reading coaches when examined by levels 

(elementary, middle, and high) have very good behavioral intentions towards utilizing a data 

technology tool with teachers is valuable to learn.  The finding is especially important since 

research indicates that reading coaches have a crucial role in helping teachers understand and 

utilize their student data to tailor instruction to the needs of students (Walpole & Blamey, 2008).  

The need for data technology tools seems apparent as they can be helpful in quickly organizing, 

information in usable ways for the benefit of providing teachers with usable instruction designed 

for the specific needs a student may have.  An issue of time was brought to the forefront by 

Miller (2009) whose research indicated that reading coaches do not feel they have enough time 

to do their jobs and Marsh et al.  (2008) who recommended that administrators and policy 

makers help reading coaches find more time to spend on their role of being in the classroom.  

This time issue may be alleviated to some degree by the use of data technology tools that can 

more quickly crunch data and formulate instructional plans than the hours and days it may take 

educators to do so on their own.  The time factor is important in another way because assessment 
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data needs to be used quickly to help students, data technology tools would most likely be the 

fastest way to determine instructional needs that can be implemented more immediately than 

when educators try to interpret, analyze, trend out, record for progress monitoring, and use data 

on their own.   It is apparent that data technology tools are on the rise by the millions of federal 

dollars spent on providing them to school districts as a way to help impact and monitor student 

achievement.   Furthermore, it is very promising that reading coaches are ready to take on their 

role in helping teachers use technology data tools for the benefit of student achievement 

(Mandinach et al., 2006).  The use of a data tool can allow reading coaches to determine which 

teachers need more resource allocation to assist students based on student data and trends in data 

(Pinkus, 2009). The finding that reading coaches have good behavioral intentions to use a data 

technology tool contradicts the research by Hu et al.  (2003) that public school teachers are 

technology resistant, considering that reading coaches are usually former teachers (Sturtevant, 

2003). 

 The second finding that reading coaches utilize data technology tools with classroom 

teachers based on different behavioral variables is especially insightful in providing guidance on 

the kind of professional development reading coaches should receive.  Just like our students, a 

one size fits all approach to the kind of professional development reading coaches may be 

receiving does not seem like it would make sense in light of the results of the study indicated that 

reading coaches are influenced by different behavioral variables.  The idea of providing reading 

coaches with differentiated professional development as suggested by Blachowicz et al.  (2010) 

seems like a logical approach.  For example, the study revealed that computer self-efficacy plays 

a critical factor in determining the behavioral intentions elementary and middle school reading 
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coaches have toward using a data technology tool with teachers and so it seems like addressing 

their data technology skills by providing on-going trainings, support, and practice would be 

helpful in increasing the likelihood that the reading coaches use a data technology tool with 

teachers.  Data tool “field trips” could be devised to take the reading coaches through a process 

of experimenting with their school data in an actual tool in order to gain comfort and familiarity 

with utilizing a tool so that they are more willing to use it with others.  The field trips could be 

designed for “beginner” “intermediate” and “advanced” levels so that reading coaches could 

enter in to where they think they need to grow from and continue to develop.  It would be 

beneficial if the reading coaches have a tool expert at their disposal while experimenting with the 

tools in the event support and encouragement is needed.  The data tool expert could be a well-

trained reading coach or a district reading specialist. 

 Since elementary reading coaches have higher behavioral intentions based on the 

perceived ease of use of a tool, it seems as though the field trip idea would also provide them 

with an opportunity to use a tool and gain more ease of use with the practice provided by the 

“field trip” activities.   

 The results of the study also showed that variables in combination have a greater percent 

likelihood of impacting behavioral intentions and so providing reading coaches with 

opportunities to enhance variables together may provide especially impactful professional 

development.  For example, video demonstrations of how to use a tool may also provide reading 

coaches with a way to revisit information and help improve their computer self-efficacy skills 

and perceived ease of use regarding a tool.  The benefit of video demonstrations and field trips 

are that the reading coaches may also use these teaching vehicles when educating their teachers 
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in how to use the tools, thus building teacher capacity.  Finally, these tactics of providing reading 

coaches with teaching tools to help teachers use data technology tools may provide entry points 

to work with teachers more on their data and enrich data discussions and student achievement 

since the research provided by Marsh et al.  (2008) indicated that student achievement was 

highest in schools where teachers are spending time with reading coaches in devising ways to 

use student assessment data. 

 The third finding that there is a difference in the relationships between reading coaches’ 

behavioral intentions and utilization of a data technology tool with classroom teachers for 

elementary, middle, and high levels is another important discovery.  The data reflected that all 

reading coaches who have been educators for 11-20 years showed a small positive statistically 

significant relationship to behavioral intentions; however that positive statistically significant 

relationship was only further evident when examining high school reading coaches.  The study 

showed that high school reading coaches who have been educators for 11-20 years have the only 

large positive statistically significant correlation to behavioral intentions.  Since these individuals 

seem the most likely to use a data technology tool with reading coaches it may be important to 

consider recruiting them to be data technology experts who provide support to other reading 

coaches in using data technology tools, promoting leadership opportunities for this group.   This 

group may be able to positively influence others to use a data technology tool by providing short 

testimonials to others as well.  Since high school reading coaches who have been educators for 6-

10 years indicated a strong negative correlation with behavioral intentions, it may be advisable 

for a researcher to seek out why this may be by conducting interviews or a focus group.  That 

other demographics for all other groups not mentioned did not show a correlation between their 
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demographics and behavioral intentions, these ideas may not need to be considered when 

creating professional development for those reading coaches. 

 The fourth finding that reading coaches do hold similar opinions regarding the utilization 

of data tool with teachers is important to consider when districts or policy makers are 

considering buying or creating technology data tools, when districts or policy makers are 

considering how to launch a data technology tool, and when districts and policy makers are 

determining how to set up professional development in using a data technology tool.  The trends 

in the study showed that reading coaches feel that data technology tools are useful, but need to be 

user-friendly.  Another trend noted is that reading coaches also felt that on-going professional 

development is key to the success of using a data technology tool.   

 Thus, when districts and policy makers are looking to adopt or create a data technology 

tool, it may be to their benefit to include reading coaches in their discussions and evaluations of 

tools.  Reading coaches could be studied by districts and policy makers using a “think-aloud” 

process where they share their thoughts while engaged with a data technology tool they are 

trying out.  The “think-aloud” technique may provide valuable information as to whether to 

adopt or not adopt a tool or in planning how to create a tool.    

 Additionally, when districts or policy makers are considering how to launch a tool they 

may want to make it clear how a data technology tool is user-friendly which may improve the 

way the tool is accepted and used by reading coaches and teachers.  This may involve recruiting 

reading coaches to try out the data technology tools and report back to other reading coaches 

their positive experiences.  Since subjective norms only impacted elementary reading coaches 

behavioral intentions, it may be wise for districts and policy makers to have district support 
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personal or administrators be the ones who share their endorsement of using a data technology 

tool in addition to having reading coaches provide positive testimonials when launching a data 

technology tool. For middle school and high school reading coaches it may not matter if district 

support personal or administrators share their endorsement of using a data technology tool, but 

they may be influenced by other reading coaches’ testimonials. 

 Importantly, when districts and policy makers are determining how to set up professional 

development in using a data technology tool it seems crucial that they consider the variables 

presented in this study, including computer self-efficacy, perceived ease of use, and perceived 

usefulness when creating professional development.  As previously mentioned, differentiated 

instruction based on the ways coaches at different levels are impacted by the studied variables 

may be a great way to impact reading coaches behavioral intentions towards using a data 

technology tool.  It may also be beneficial to provide reading coaches with choices about what 

kind of professional development to attend in cultivating their behavioral intentions.  For 

example, some coaches may be motivated to use a data technology tool with others if they hear 

from other coaches experiences in using data technology tools with teachers in a “what I’ve 

learned so far” kind of workshop.  In this workshop reading coaches could share what worked or 

didn’t work in helping teachers use a data technology tool.  Also, on-going monthly professional 

development sessions that provide updates on tools and successes may also be impactful.  

Furthermore, the previously presented “field trip” activity may be helpful for reading coaches 

and offered during each monthly reading coach professional development meeting.   

 Additionally, it may be wise for districts to consider allowing reading coaches to 

occasionally bring another individual from their school along to also experience the professional 
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development so that a reading coach has a support teacher or administrator on location.  

Administrators would also benefit from being invited to any reading coach meeting session so 

that they also can be aware of technology tools and be supportive to their reading coaches. 

 Finally, results of this research may have implications for the employment of reading 

coaches as districts and schools may want to consider hiring reading coaches who have 

experiences in utilizing technology tools, such as Excel or other tools.  Policy makers could 

provide web seminars for individuals interested in becoming reading coaches that teach 

individuals the basics of how to use certain technology tools that may be prevalent in a state or 

district.  These webinars could be a part of district requirements for potential reading coaches.  

Districts could create pools of qualified reading coaches for schools to choose from and taking 

data trainings may be a prerequisite if it is set up through the district.  Universities that provide 

reading endorsement or reading certification could also add in seminars to their classes that 

bolster data technology skills for pre-services teachers so that they are more highly qualified as 

teachers or future reading coaches when they graduate. 

Recommendations for Future Research 

1. This study should be replicated in rural school settings. 

2. While reasons why some reading coaches work harder than others were not a concern of 

this study, research in this area is warranted. 

3. Other variables need to be explored to explain why high school reading coaches’ 

behavioral intentions were not impacted by perceived ease of use, perceived usefulness, 

computer self-efficacy, nor subjective norms. 
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4. A recommendation for further studies related to this topic is for researchers to add more 

instruments to the survey, such as an actual use variable.  The actual use variable would 

be valuable to compare in deciding how other variables such as perceived usefulness and 

computer self-efficacy predicted actual use of a technology tool. 
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APPENDIX B 
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