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ABSTRACT 

Vertebrate males frequently carry higher numbers of parasites than females. This bias 

in parasite loads could be a consequence of sexual selection. Grouping species are also 

assumed to be afflicted with larger numbers of parasites than solitary animals and associated 

costs of this parasitism could vary with group size or structure. I examined sex-biased 

parasitism and the influence of group size on parasite loads in Cape ground squirrels (Xerus 

inauris), a highly social species that occurs in the arid regions of southern Africa. Males 

carried three times as many ectoparasites as females, but females harbored nearly three times 

more endoparasites than males. Amount of time spent (per hour) autogrooming was similar 

between males and females, but amount time spent allogrooming by adult female was over 

eleven times that of adult males. Longer allogrooming of group members could be decreasing 

the numbers of ectoparasites of group members and ultimately the group. Males infrequently 

give or receive allogrooming and travel in very large home ranges, potentially increasing 

their exposure to ectoparasites. However, movement throughout a large home range may 

result in males foraging in areas with lower densities of fecal pellets, which could explain the 

lower endoparasite loads observed in males. When I considered the age class of group 

members, female age classes were similarly parasitized but male age classes were not. Sub-

adult males carried similar ectoparasite loads to adult males and similar endoparasite loads to 

adult females. This result is of particular interest because sub-adult males are becoming 

scrotal but typically remain in the group until adulthood. Sexual selection does appear to 

influence parasite loads in this species, and parasite removal or avoidance potentially 

mitigates individual parasite loads and their associated costs. 
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Parasites can be detrimental to the health, longevity, and reproduction of their hosts, 

but these costs are rarely quantified. I removed ectoparasites and endoparasites from Cape 

ground squirrels for three months and evaluated changes in female body mass, reproduction, 

burrow use, and grooming in response to parasite removal. Female body mass did not 

increase with parasite removal, but reproductive success (per capita offspring raised to 

emergence) increased nearly four-fold, while allogrooming by treated females decreased. 

Since breeding is highest in the late winter dry season when fewer resources are available, 

the impact of parasites may be highest during this season. Lactation and gestation are the 

most physiological stressful processes that females undergo, and the dramatic increase in 

reproductive success in treated females suggests that these females are able to allocate more 

resources to reproduction than females afflicted with parasites. These results suggest that 

studies investigating reproduction and fecundity must consider the vulnerability of the host to 

parasite infection and the potential impact on reproductive success. 
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GENERAL INTRODUCTION 

 
 

Parasites can have a myriad of physiological and behavioral effects on their hosts 

(Hoogland and Sherman 1976, Altizer et al. 2003, Hart, George-Nascimento et al. 2004, Poulin 

and George-Nascimento 2007). Parasites can cause blood loss, increased chance of infection, and 

increased time spent on grooming, which decreases time vigilant and foraging (Kollars et al. 

1997, Neuhaus 2003, Johnson et al. 2004). These and other effects of parasitism can be 

detrimental to survival and reproduction. For example, daily survival may decrease as parasitism 

increases (Brown and Brown 2004), and female reproduction can be negatively impacted by 

parasites (Haim et al. 1987, Van Vuren 1996, Decker et al. 2001, Neuhaus 2003, Nilsson 2003, 

Brown and Brown 2004). Such effects can vary with degree of sociality, grouping, host size, sex, 

and age (Folstad and Karter 1992, Mooring et al. 1996, Rolff 2002, Altizer et al. 2003, Ferrari et 

al. 2004, Mooring et al. 2004, Perez-Orella and Schulte-Hostedde 2005, Isomursu et al. 2006, 

Fauchald et al. 2007).  

Sex and age, in particular, are very important influences on parasite infestation in 

vertebrates (Sheldon and Verhulst 1996, Zuk and Johnsen 1998, Verhulst et al. 1999, Bilbo and 

Nelson 2001, Rolff 2002, Brei and Fish 2003, Hoby et al. 2006, Isomursu et al. 2006). Males are 

typically parasitized at a higher rate than females, and differences among sex and age classes 

have been ascribed to hormonal or behavioral influences based on sexual selection (Schalk and 

Forbes 1997, Deviche et al. 2001, Isomursu et al. 2006, Fauchald et al. 2007). Androgens, 

specifically testosterone (a male sex hormone), generally inhibit immune function and influence 

ornamentation and behavior (Folstad and Karter 1992, Verhulst et al. 1999, Bilbo and Nelson 

2001, Hughes and Randolph 2001a, Kakuma et al. 2003, Deviche and Parris 2006, Hoby et al. 
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2006). Because of the links between hormones and behavior, interpreting patterns of parasite 

infestation may not be difficult. 

In this thesis I investigated patterns of parasite infestation related to sexual selection and 

group size in a social African ground squirrel (Chapter 1). I also examined the impact of 

parasites on reproduction, body mass, and behavior by removing ectoparasites and endoparasties 

from adult females (Chapter 2). The results from this study highlight the strong influence that 

parasites can have on reproductive success and social interactions in free-ranging mammals. 
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CHAPTER 1: PARASITE LOAD, SEX BIAS, SOCIALITY AND ANTI-
PARASITE BEHAVIOR 

 

Introduction 
 
 

Different reproductive strategies of males and females have led to the evolution of many 

differences in their physiology, morphology, and behavior (Mooring et al. 1996, Rolff 2002, 

Tella 2002, Mooring et al. 2006a, Stoehr and Kokko 2006). In many species, sexual selection has 

produced males with larger body size (to compete for females), larger home ranges (to find 

females), or large ornaments (to attract females; Dobson 1992, Deviche and Cortez, 2005, Perez-

Orella and Schulte-Hostedde, 2005, Deviche and Parris, 2006, Hoby et al. 2006, Nunn and 

Dokey 2006, Poulin and Lefebvre 2006). However, this heavy investment by males to compete 

for females may carry a cost of increased vulnerability to predators or parasites (Folstad and 

Karter 1992, Moller et al. 1999, Moore and Wilson 2002, Rolff 2002, Ottova et al. 2005, 

Kilpimaa et al. 2007). 

 In vertebrates, males frequently carry higher parasite loads than females (Schalk and 

Forbes 1997, Deviche et al. 2001, Freeman-Gallant et al. 2001, Moore and Wilson 2002, Ferrari 

et al. 2004, Perez-Orella and Schulte-Hostedde 2005, Deviche and Parris 2006, Isomursu et al. 

2006). Ecological and morphological mechanisms for this sex difference in parasite load include 

differences in movement patterns, habitat choice, diet, body size, and ornamentation (Verhulst et 

al. 1999, Sheridan et al. 2000, Rolff 2001, Ferrari et al. 2004, Hoby et al. 2006, Stoehr and 

Kokko 2006). Differences in male home range or territory size can affect parasite load and 

transmission. Males with larger home ranges carry more parasites than female conspecifics 

because they encounter more parasite-dense areas (Greenwood 1980, Ims 1987, Nunn and Dokey 
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2006). However, sex-biased parasite loads could be an artifact of sexual size dimorphism 

because body size is often associated with degree of parasitism. Larger males may be able to 

tolerate higher parasites loads (Schalk and Forbes 1997, Moore and Wilson 2002), as the 

energetic pressure (measured by basal metabolic rate) exerted by parasites on smaller hosts 

appears greater, per gram of body mass (George-Nascimento et al. 2004). Yet even when 

accounting for differences in body size and home range, sex-biased parasite loads are often 

higher in species with strong sexual selection (Moore and Wilson 2002). 

Sex-biased parasitism may be due to a trade-off between investment in sexually selected 

traits and immune function (Folstad and Karter 1992, Sheldon and Verhulst 1996, Hosken and 

O'Shea 2001). The immunocompetence handicap hypothesis suggests that male sexual traits may 

lower the ability to resist pathogens and parasites through steroid suppression of the immune 

system (Folstad and Karter 1992). Testosterone directly suppresses immune function and 

indirectly influences many physical and behavioral attributes, resulting in higher male parasite 

loads (Sheldon and Verhulst 1996, Schalk and Forbes 1997, Deviche et al. 2001, Moore and 

Wilson 2002, Deviche and Parris 2006, Hoby et al. 2006, Isomursu et al. 2006). However, 

testosterone and parasite loads are not correlated in all species (Bilbo and Nelson 2001, Hughes 

and Randolph 2001). An alternative explanation for this trade-off is that the energetic costs of 

maintaining many sexually selected traits conflict directly with the cost of fighting off infection 

(Sheldon and Verhulst 1996, Hosken and O'Shea 2001) or that, males just invest less in 

immunity than females (Rolff 2002). 

Parasites also could be a major cost of sociality (Hoogland and Sherman 1976, VanVuren 

1996, Loehle 1997, Tella 2002, Altizer et al. 2003, Brown and Brown 2004 Johnson et al. 2004, 

Hoby et al. 2006). As group size increases, there are more individuals carrying parasites into the 
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group in close quarters, augmenting parasite transmission (Hoogland and Sherman 1976, 

Hoogland 1995). However, no relationship between grouping and parasites is expected if social 

mammals mitigate the increased costs of parasitism with grouping through direct behavioral 

strategies such as autogrooming (self grooming) and allogrooming (grooming another individual; 

Mooring and Hart, 1992, Hart 1994, Kollars et al. 1997, Johnson et al. 2004, Hawlena et al. 

2006). 

Intense sexual selection in Cape ground squirrels (Xerus inauris) is evident from several 

aspects of their mating system and morphology, including 1) a short and intense period of female 

receptivity (Waterman 1996), 2) a high operational sex ratio on day of mating (Waterman 1998), 

and 3) extremely large testes, suggesting sperm competition is an important determinant of male 

reproductive success (Waterman 1998, 2007). Cape ground squirrels are also highly social. 

Females allogroom more than males and therefore may influence group ectoparasite loads 

(Waterman 1995). In this study I determined if degree of parasitism is related to sex, dispersal, 

group size, and/or behavior. I hypothesized that variation in parasitism of Cape ground squirrel 

populations is influenced by: 1) group size; because increase in parasite transmission is expected 

in larger groups, 2) male dispersal; because larger home range size can expose males to larger 

numbers of ectoparasites and decrease time foraging in fecal contaminated areas 3) group 

composition (i.e. number of males, females, adults, sub-adults, and juveniles); because of sex 

and age differences in home range size, behavior, and sex hormones can influence parasites, and 

4) time spent autogrooming or allogrooming. I predicted that 1) ecto- and endoparasite loads 

would increase with group size; 2) dispersed males would have greater numbers of ectoparasites 

than non-dispersed males, but would have similar endoparasitism 3) groups with more females 
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will have fewer ectoparasites; adult males would carry more ectoparasites than females but fewer 

endoparasites; 4) an increase in ectoparasitism will increase autogrooming and allogrooming. 

Methods 

 

Biology of the study animal 
 

Cape ground squirrels live in the arid regions of southern Africa (Waterman 1995) and 

have high potential for parasite transmission due to their sociality and communal living. Females 

live in matrilineal groups with other related adult females and their sub-adult young. These 

groups usually contain one to three adult females and up to nine sub-adults of either sex 

(Waterman 1995). Within a female group, animals share a communal sleeping burrow (part of 

one burrow system), which may allow external parasites to transfer to another individual through 

bedding and direct contact (Hoogland 1995, Altizer et al. 2003). Adult females allogroom more 

than adult males (Waterman 1995). 

Adult males are slightly larger than females (1.08:1.0; Waterman 1996) and usually 

disperse by 16 months of age to join all-male bands that travel and sleep together independent of 

female groups (Waterman 1997). Home ranges of these males are 3 times the size of female 

home ranges (Waterman 1995). However, some males delay dispersal and remain with their 

natal group for 2-4 years (resident males; Waterman 1995) even though they are reproductively 

active. Breeding occurs year-round and adult males spend much of their time searching for 

receptive females (Waterman 1997, 1998); thus adult males are fully scrotal year-round. 

Documented parasites of Cape ground squirrels include Ctenocephallaes connatus, 

Echidniphaga bradyta, Echidniphaga gallinacea, Neohaematopinus faurei, and Synosternus 
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caffer (Straschil 1975), Rhipicephalus theileri (Waterman 2002), and Xeroxyuris parallela, 

which is exclusive to this species of ground squirrel (Hugot 1995). 

Trapping and handling 

The study was conducted at the S.A. Lombard Nature Reserve near Bloemhof, South 

Africa (27°35’S, 25°23’E) from May - September 2004. This period coincides with the dry 

season, peak breeding, and time of lowest available food resources (Herzig-Straschil 1978, 

Waterman 2002). Social groups were located on a natural floodplain, where the habitat is 

uniform short grass (Van Zyl 1965). I trapped all squirrels in eighteen social groups with 

Tomahawk live traps (15x15x50cm) using trapping and handling techniques described in 

Waterman (1996, 2002). I recorded body mass, reproductive condition, and sex. For 

identification from a distance, animals were dye-marked (Rodol D, New York) and freeze-

marked (Quik-freeze®, Miller-Stephenson Product, Morton Grove, Illinois, Rood and Nellis 

1980). Animals were also tagged with small transponders under the skin for permanent 

identification (AVID Inc., Folsom, Louisiana). Squirrels were classified as juveniles up to 6 

months after first emergence from the natal burrow. If first emergence was not observed, age was 

estimated from a regression of age against body mass (Waterman 1996). Squirrels were 

classified as sub-adults from 6 months of age until reaching sexual maturity (around 8 months 

for males and 9 months for females; Waterman 1996, Pettitt 2006). At maturity (first estrus) 

female nipples swell and remain permanently elongated (Waterman 1996). Male maturity is 

evident from descent of the testes; adult males are scrotal year-round, while sub-adult males are 

partially or non-scrotal (Waterman 1996, 2002). Scrotal development most likely is facilitated by 

large increases in androgens (Deviche et al. 2001, Deviche and Cortez 2005, Hoby et al. 2006). 
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Ectoparasites were collected from each captured squirrel by combing all individuals with 

a metal flea comb using three strokes on each plane of the back (left, middle, and right), from the 

shoulders to the base of the tail. Ectoparasites (fleas, ticks, and lice) were collected in 95% 

ethanol in a petri dish and counted immediately. Endoparasite loads were estimated from fecal 

samples. Feces were collected using plastic tarp sections placed under live traps (Pettitt et al. 

2007). Feces were collected with forceps dipped in 95% ethanol and sealed in labeled plastic 

bags. Subsequently, 0.5g of fecal matter was weighed out and frozen. These frozen samples were 

later thawed and prepared by fecal floatation in magnesium sulfate solution (McCurin and 

Bassert 2002), which caused eggs released by adult endoparasites to float. Prepared samples 

were then observed under a compound microscope for endoparasite egg identification and count. 

Some squirrels did not defecate in the traps, decreasing the sample size for endoparasite data, 

relative to ectoparasite data. 

Behavioral observations 

Cape ground squirrels are diurnal and live in open habitats (Smithers 1971, Herzig-

Straschil 1978). The low vegetative cover on the floodplain allowed for relatively easy 

observation from hides on the roof of vehicles or observation towers. Observations focused on 

morning and evening hours (700 - 1000hrs and 1500 – 1800hrs) when the squirrels are nearest 

the burrows (Waterman 1995). I arrived before squirrels emerged from burrows for morning 

observations, and evening observations continued until all squirrels immerged for the night. 

Behavioral data were collected using all-occurrences methods (Altmann 1974) to record 

autogrooming and allogrooming (Waterman 1995), including the occurrence and duration 

(seconds) of the behavior and the identity of any squirrel being allogroomed (Waterman 1995). 



 9

The amount of time (sec) spent allogrooming (or autogrooming) was divided by the total amount 

of time that animal was observed (hrs). This produced the proportion of time (sec/hr) that an 

individual spent allogrooming (or autogrooming). To examine differences among group 

members whom received allogrooming, for each squirrel I calculated the allogrooming 

proportion for each age class receiving allogrooming and divided by the number of squirrels of 

that age class within that social group; i.e., # of allogrooms of squirrels in age class a / total 

observation time (hrs) / # of squirrels in age class a in the group (where a = adult male, adult 

female, sub-adult male, or sub-adult female). 

Analysis 

I used trapping data from June to analyze body mass, parasite loads and reproductive 

condition. Behavioral data were collected from June to September. All data were checked for 

homogeneity and normality, and transformed if necessary. Data that could not be normalized or 

homogenized were analyzed with non-parametric statistics (Fry 1993). I used social group 

identity as a main factor in my analyses (e.g., 2-way ANOVA) to account for potential 

differences among groups and influence of males on ectoparasite loads. Total group size was 

considered in data analysis as well as the number of adult females in the group. Due to high adult 

female allogrooming rates that could influence the results (e.g., number of ectoparasites and 

group size, allogrooming rate and group size correlations), I compared proportion of time spent 

autogrooming and allogrooming for all individuals with a minimum total observation time of 60 

minutes. One group that disbanded in June was excluded from behavioral analyses. Friedman’s 

χ2 test requires balanced data; thus, only squirrels that both allogroomed and had at least 1 group 

member in every sex/age class were included in the comparison of allogrooming by sex and age.  
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To test my predictions 1) I tested correlations between group size and ecto- and 

endoparasites; 2) dispersal and ecto- and endoparasitism was tested using a T’-test and Mann-

Whitney U; 3) the relationship of ectoparasitism and endoparasitism with sex and age was 

analyzed using body mass a covariate and colony location as a main factor in an ANCOVA; 4) 

allogrooming and autogrooming were analyzed using a 2-way ANOVA, Mann-Whitney U-test, 

and Friedman’s χ2. A 0.05 probability of a Type I error was considered significant (SPSS 11.0, 

The Software MacKiev Company). 

Results 

 
Body mass of adult males (mean ± SE; 703 ± 8 g) and females (638 ± 7 g) differed 

(ANOVA F1,96 = 35.79, P < 0.001), although the male-female body mass ratio was low (1.1:1). 

Groups consisted of at least one adult female (range 1 – 6) and their sub-adult and juvenile 

offspring. Many groups had 1-2 adult males (resident males) sleeping in the burrow cluster with 

the group but these males rarely remained at the cluster during morning observations. Adult 

males, resident and dispersed, carried endoparasites including roundworms (15.0%), hookworms 

(25.0%), coccidian (20.0%), and other types (40.0%).  

Parasite loads 

Group size did not affect numbers of ectoparasites (Spearman’s correlation R = 0.14, P = 

0.35, N = 49) or endoparasites (R = 0.18, P = 0.28, N = 37; Fig. I). Number of adult females or 

resident males in the group showed no effect on parasite loads (ectoparasites, females: R = -0.09, 

P = 0.53, N = 49, resident males: R = 0.19, P = 0.19, N = 49; endoparasites, females: R = 0.14, P 

= 0.40, N = 37, resident males: R = -0.01, P = 0.96, N = 37).  
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Resident (N= 23) and dispersed (N= 20) adult males did not differ in total ectoparasite 

loads (T-test t’= 1.38, df = 32.48, P = 0.18) or specific ectoparasites (fleas U = 191.0, P = 0.33; 

ticks U = 204.5, P = 0.46; lice U = 213.5, P = 0.68). Resident and dispersed males also had 

similar endoparasite loads (mean ± SE; resident 1.3 ± 0.5 eggs, dispersed 1.2 ± .4 eggs; Mann-

Whitney U = 72.00, P = 0.36, N = 28). Thus, data from all adult males were pooled for 

subsequent analyses.  

Body mass had no effect on ectoparasite loads in either adult males or adult females 

(males; R2 = 0.002, F1,43 = 0.086, P = 0.77; females; R2 = 0.010, F1,51 = 0.473, P = 0.50; Fig. I 

A&B). Also, ectoparasite numbers (square root transformed) were not influenced by body mass 

(as a covariate) when controlling for social group and sex (N = 128; body mass ANCOVA F1,67 = 

0.01, P = 0.96). Adult males were more parasitized by fleas, ticks and lice than adult females 

(fleas Mann-Whitney U = 600.0, P < 0.001; ticks, U = 941.0, P = 0.039 lice, U = 724.5, P = 

0.001; Table I). Overall, total numbers of ectoparasites (square root transformed) were also 

significantly higher on males than females (Fig. IIA) for adults (2-way ANOVA F1,62 = 23.22, P 

< 0.001, N = 96) and sub-adults (F1,8 = 5.79, P = 0.043, N = 26), but not in juveniles (2-way 

ANOVA juveniles F1,1 = 2.05, P = 0.39, N = 11). 

Adult females (N= 41) had greater total endoparasite loads than adult males (N = 30) 

(Mann-Whitney U = 406.50, P = 0.012; Fig. IIB). Although, specific endoparasites including 

roundworms, hookworms, coccidia, and other endoparasites were not different between adult 

males and adult females (roundworms U = 2.00, P = 0.35, N = 18; hookworms U = 2.00, P = 

0.35; coccidia U = 2.50, P = 0.43; other U = 4.50, P = 1.00; Table I). No sex difference was 

found in sub-adult or juvenile endoparasite loads (sub-adults, U = 26.50, P = 0.74, N = 19; 

juveniles, U = 3.00, P = 1.00, N = 5).  
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Age class did not affect number of specific ectoparasites (i.e., fleas, ticks, or lice) on 

males (N = 57; df = 2) or females (N =76; df = 2 Table I). Likewise, total ectoparasite loads did 

not differ among age class for females (F2,73 = 0.41, P = 0.66) but total male ectoparasite loads 

tended to differ among age classes (F2,54 = 2.90, P = 0.064), with adult males carrying more 

ectoparasites than juvenile males (Tukey’s HSD = 1.37, P = 0.050). Total endoparasite loads did 

not differ among age classes for either males (χ2 = 0.97, df = 2, P = 0.62, N =36) or females (χ2 = 

0.79, df = 2, P = 0.67, N = 59; Fig. IIB). 

Behavioral observations 

Autogrooming (sec/hr; square root transformed) did not differ among age class (F2,58 = 

2.12, P = 0.14, N = 64) or sex (F1,58 = 0.39, P = 0.54, Fig. IV). Dispersal did not affect 

autogrooming (F1,20 = 0.946, P = 0.34). 

Resident and dispersed males did not differ in time spent allogrooming (Mann-Whitney 

U = 33.0, P = 0.14, N = 23). However, adult females allogroomed significantly more than adult 

males (U = 163.0, P = 0.008, N = 51, Fig. IV) and these adult allogrooming data were positively 

correlated to female group size (Spearman’s rho, R = 0.41, P = 0.014, N = 35) but showed no 

relationship to overall group size (R = -0.10, P = 0.55). Sub-adult males were preferentially 

allogroomed, by females (U = 62.00, P = 0.039, N = 33), at a higher rate (frequency per hour) 

than any other sex/age class (Friedman’s χ2 = 8.36, df = 3, P = 0.039, N = 14). 

Discussion 

 
Ectoparasite loads were highest in males (adults and sub-adults), but endoparasite loads 

were greatest in adult females. These differing patterns of sex-biased parasitism suggest that 
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different mechanisms may be operating, depending on the life-history characteristics of the 

parasites. For ectoparasites, the extensive daily movements of males through grass and brush and 

interactions with multiple female groups may expose them to greater numbers of ectoparasites. 

However, home range differences cannot explain the high ectoparasite loads of sub-adult males, 

whose home range size is the same as their female group members (Waterman, 1995). The sex-

biased ectoparasite load in the sub-adult age class persists even though sub-adult males are 

preferentially allogroomed by the adult females in the group. Thus, there appears to be a 

physiological basis to sex-biased parasitism in this species.  

Male and female differences in androgens (typically testosterone) can indirectly affect 

behavior or directly inhibit immune function, thereby influencing parasite loads (Moller et al. 

1999, Bilbo and Nelson 2001, Rolff 2002, Khokhlova et al. 2004, Hawlena et al. 2006, Hoby et 

al. 2006). Males generally have higher concentrations of testosterone and under the 

immunocompetence handicap hypothesis should then be more susceptible to parasitic infections 

than females (Folstad and Karter 1992, Bilbo and Nelson 2001, Deviche et al. 2001, Hughes and 

Randolph 2001, Rolff 2002). Age-related and seasonal changes in testosterone have been related 

to parasitic infections in a variety of taxa (Schalk and Forbes 1997, Deviche et al. 2001, 

Isomursu et al. 2006). For example, experimentally increasing testosterone levels increased 

parasite prevalence in dark-eyed Juncos (Juncos hyemalis; Deviche et al. 2001). In a free-ranging 

ungulate, androgen and cortisol output levels were correlated to high lungworm larvae estimates 

(Rupicapra rupicapra rupicapra; Hoby et al. 2006). Folstad and Karter (1992) empirically 

determined that testosterone can decrease immunocompetence but an increase in immune 

function can also inhibit expression of secondary sexual characteristics (male ornamentation). 

This androgen/immune function feedback loop was also observed in meta-analysis by 
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Muehlenbein and Bribiescas (2005). In Cape ground squirrels, reproduction is not seasonal, and 

males’ continued investment in reproduction could come with a cost of higher parasite loads 

year-round. This investment begins when males mature during the sub-adult age class (the 

transition age from non-scrotal to fully scrotal) and testosterone increases (Bilbo and Nelson 

2001, Hughes and Randolph 2001, Hoby et al. 2006, Isomursu et al. 2006).  

Endoparasite loads were also sex-biased, but in the opposite direction predicted by the 

immunocompetence handicap hypothesis. Females had more endoparasites than males, but this 

difference was significant only in adults (Fig. 1B). This sex bias may be due to the life cycles of 

intestinal parasites, where inoculation occurs generally through ingestion of contaminated food 

or debris (oral-fecal contracted; Gemmell 1990, Ferrari et al. 2004). Cape ground squirrel 

females have smaller home ranges than males (Waterman 1995) and are therefore more 

frequently exposed to conspecific fecal pellets found in foraging areas around their burrow 

clusters. Adult males, however, move over large areas and sleep in vacant burrow clusters 

(Waterman 1995), avoiding lengthy exposure to areas with high concentrations of endoparasites. 

In this species male avoidance of endoparasites and thus lower endoparasite loads, may be a 

positive consequence of sexual selection. 

I expected male dispersal to affect parasite load because dispersed males with their larger 

home ranges (Manjerovic unpubl. data) would be exposed more frequently to ectoparasites 

(Nunn and Dokey 2006). However, neither ecto- nor endoparasite loads were affected by male 

dispersal. Since dispersed and resident males have similar circulating testosterone concentration 

(Scantlebury et al. submitted), but different ranging patterns, these data also support a hormonal 

basis for sex biases in parasite loads in Cape ground squirrels. 
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In mammals, promiscuous mating systems, social contact, and coloniality increase 

exposure to parasites, with transmission of ectoparasites through social contact and endoparasites 

primarily through feces (Hoogland and Sherman 1976, Gemmell 1990, Arnold and Lichtenstein 

1993, Loehle 1995, Tella 2002, Altizer et al. 2003, Ferrari et al. 2004, Johnson et al. 2004). 

However, group size and parasite (both ecto- and endoparasites) were not correlated (Fig. III). 

While exposure to ectoparasites may increase in larger groups, social groups may reduce 

ectoparasite load by auto- and allogrooming to combat higher transmission rates (Mooring and 

Hart 1997, Mooring et al. 2006a, Mooring et al. 2006b). Although autogrooming was not related 

to group size in Cape ground squirrels, females allogroomed longer than males (Fig. III). Adult 

allogrooming rates also increased with the number of females in the group, suggesting that 

female allogrooming is a means to reduce group ectoparasite loads (Hoogland and Sherman 

1976, Rolff 2002, Neuhaus 2003, Brown and Brown 2004).  

My results indicate that the life history of parasites strongly affect the likelihood of 

infection. Investigating either ectoparasite or endoparasite infections alone would have led to 

very different conclusions about sex-biased parasitism in this species, as only patterns of 

ectoparasite infection were consistent with the immunocompetence handicap hypothesis. In male 

Cape ground squirrels, parasite resistance may be suppressed directly by androgens affecting 

leucocyte production or merely may be a trade-off between investments in reproduction versus 

immune function. In females, parasitism may suppress metabolism (Scantlebury et al. 2007). To 

determine the evolutionary costs of parasitism in this species I need to determine both if 

physiological effects exist and the potential impact on reproductive success. 
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Tables and Figures 

 

Table I: Parasite loads (mean ± SE) of Cape ground squirrels by sex and age (sample size 

in parentheses, italicized letters were compared as follows for ectoparasites and 

endoparasites: Males (a) Kruskal-Wallis χ2 =3.83, P = 0.15, (b) χ2 =4.59, P = 0.101, (c) χ2 = 

1.62, P = 0.45, Females (A) χ2 = 0.05, P= 0.98, (B) χ2 = 5.42, P = 0.067, (C) χ2 = 0.06, P = 0.97; 

Endoparasites (d) Mann-Whitney U = 2.00, P = 0.35, (e) U = 2.00, P = 0.35, (f) U = 2.50, P = 

0.43, (g) U = 4.50, P = 1.00). 

Age class   Males   Statistics Females   Statistics 
Adult Fleas 3.0 ± 0.6 (44)        a 0.9 ± 0.2 (52) A 
  Lice 2.5 ± 0.5   b 1.0 ± 0.3   B 
  Ticks 1.5 ± 0.5   c 0.2 ± 0.1   C 
  Roundworm 0.7 ± 0.6 (9) d 1.4 ± 0.6 (9) d 
  Hookworm 1.1 ± 0.4   e 2.0 ± 1.3   e 
  Coccidia 0.8 ± 0.3   f 0.7 ± 0.3   f 
  other 1.6 ± 1.4   g 1.3 ± 0.6   g 

    
Sub adult Fleas 4.4 ± 1.3 (9) a 1.0 ± 0.3 (17) A 
  Lice 0.9 ± 0.3   b 0.8 ± 0.3   B 
  Ticks 0.4 ± 0.2   c 0.2 ± 0.1   C 

    
Juvenile Fleas 1.0 ± 0.4 (4) a 1.4 ± 0.9 (7) A 
  Lice 0.5 ± 0.5   b 0.0 ± 0.0   B 
  Ticks 0.0 ± 0.0   c 0.1 ± 0.1   C 
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Figure I: Relationship between mean number of parasites (± SE) and group size. Each 

point represents a different social group (Ectoparasites, Spearman’s correlation R =0.14, P 

= 0.35; endoparasites R = 0.18, P = 0.28).
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Figure II: Body mass and ectoparasite numbers on A) Males. B) Females. Slopes of 

regression lines were non-significant for both males and females (A) R2 = 0.002, P = 0.77; 

(B) R2 = 0.01, P = 0.50. 

A 

B 
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Figure III: Mean (± SE) number of parasites collected from male and female Cape ground 

squirrels by age class. A) Ectoparasites. B) Endoparasites. (* P <0.05, NS = non-significant, 

error bars = SE, numbers on bars are sample sizes).
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Figure IV: Time spent grooming by males (N = 23) and females (N = 24) autogrooming and 

allogrooming. (* P <0.05, NS = non-significant; error bars = SE) 
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CHAPTER 2: PARASITE IMPACTS ON REPRODUCTION 
 

Introduction 

 
Costs associated with parasitism vary highly depending on social structure, age, and sex 

of the host, as well as the type of parasite (VanVuren 1996, Deviche et al. 2001, Rolff 2002, 

Skorping and Jensen 2004, Deviche and Parris 2006, Fauchald et al. 2007). Even though males 

typically carry greater numbers of parasites, the impact of parasites is often greatest on female 

reproduction (Arnold and Lichtenstein 1993, Hoogland 1995, VanVuren 1996, Neuhaus 2003, 

Skorping and Jensen 2004). Potential costs of parasitism to a host include delayed reproduction 

as in marmots (Marmota spp) (Arnold and Lichtenstein 1993, VanVuren 1996) and decreased 

reproductive success as in prairie dogs (Cynomys ludivcianus; (Hoogland 1995), as well as blood 

loss, increased chance of secondary infection, and increased time spent autogrooming 

(decreasing time vigilant or foraging), which can translate into loss of lifetime reproductive 

success (Kollars et al. 1997, Rolff 2002, Neuhaus 2003, Johnson et al. 2004).  

Parasite loads are expected to increase with increasing numbers of individuals in a group 

(Brown and Brown 2004), but individuals may mitigate increasing costs of parasites by 

grooming themselves (autogrooming; Hart 1992, 1994, Kollars et al. 1997) and other 

conspecifics (allogrooming; Hart 1992, 1994, Johnson et al. 2004), or by moving away from 

infested areas (Hausfater and Meade 1982, Mooring and Hart 1992, Johnson et al. 2004). 

Previous research on patterns of parasitism in the Cape ground squirrel (Xerus inauris) 

found no effect of group size on parasite loads (Chapter 1) and concluded that increased 

allogrooming in larger groups reduces the costs in larger groups. This conclusion assumes that 
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parasites are costly; however, whether these parasite loads actually impact behavior and 

reproduction in this species has not been investigated. In this study I measured the costs of 

parasitism by determining the impact of parasite removal on body mass, reproductive success, 

grooming, and burrow use of adult female Cape ground squirrels. I predicted squirrels treated for 

parasites would increase in body mass and reproductive success because parasites are 

energetically taxing to the host, decreasing the resources available to the host for growth and 

reproduction. Anti-parasite treated squirrels should decrease time spent grooming because they 

will harbor fewer ectoparasites to stimulate grooming. Finally, shifting between sleeping 

burrows will decrease for treated than untreated squirrels if parasite accumulation in burrows and 

nesting material is causing these shifts. 

 Biology of the species 

Cape ground squirrels are a highly social semi-fossorial species inhabiting the arid areas 

of southern Africa. Females live in matrilineal groups with other related adult females and their 

sub-adult and juvenile young, sharing a communal sleeping burrow (part of one burrow system; 

Waterman 1995). High social activity and communal burrows can enhance external parasite 

transfer between animals. Cape ground squirrels move frequently from one burrow system to 

another within their home range (Waterman unpubl.data). Burrow movement may serve to 

decrease high ectoparasite loads accruing in bedding and sleeping burrows. Female groups 

forage near their burrows during the day where fecal matter is found frequently (Hillegass 

unpubl. data). Mode of endoparasite transmission (fecal matter at or near food sources; Gemmell 

1990, Ferrari et al. 2004) indicates a potential for large numbers of endoparasites in female Cape 

ground squirrels Adult females can have up to four estrus cycles annually with a maximum of 
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two for those who successfully gestate and lactate (only about 30% are successful; Waterman 

1996, 1998). Gestating females isolate from their group prior to parturition and return after 

offspring are weaned (typically 7 days after emergence; Waterman 1996). Gestation and 

lactation are approximately 50 and 52 days, respectively (Zumpt 1970, Waterman 1996) 

producing 1or 2 offspring per litter (Herzig-Straschil 1978, Waterman 1996). 

Methods 

 
This study was performed on S. A. Lombard Nature Reserve near Bloemhof, South 

Africa (27°35’S, 25°23’E) from May to September 2004. Cape ground squirrel social groups 

were located in burrow clusters on a floodplain, where the habitat is uniform short grass (Van 

Zyl 1965). Austral winter is May through September, coinciding with the dry season, peak 

breeding, and time of lowest available food resources (Herzig-Straschil 1978, Waterman 2002). 

This reduction in resources at a time when reproduction is high suggests that physiological stress 

on squirrels may be highest, and the impact of parasites on the animals should be the most 

apparent (Soler et al. 1999, Villanua et al. 2007).  

Using trapping and handling techniques described in Waterman (1995, 2002) all squirrels 

in eighteen social groups were trapped using Tomahawk live traps (15x15x50cm) and marked in 

May 2004. Squirrels were re-trapped each month from June to September, and at each capture I 

recorded body mass and reproductive condition. Adult females were identified by their long, 

swollen nipples (swelling occurs after first estrus and remains over lifetime; Waterman 1996). 

Animals were tagged with small transponders (AVID Inc., Folsom, Louisiana) under the skin for 

permanent identification. Identification at a distance was achieved through dye marking (Rodol 

D, New York) and freeze marking animals (Quik-freeze®, Miller-Stephenson Product, Morton 



 24

Grove, Illinois, Rood and Nellis 1980). Ectoparasites were quantified for every squirrel monthly 

using techniques described in Scantlebury et al. (2007). Each squirrel’s dorsal surface was 

divided into three planes (left, middle, and right) and combed with three strokes on each plane, 

from the shoulders to the tail base using a metal flea comb. Ectoparasites were collected in 95% 

ethanol and then counted for each captured squirrel once a month. All squirrels were handled in 

accordance with the animal care guidelines of the American Society of Mammalogists (Gannon 

and Sikes 2007) and the Animal Care and Use Committee of the University of Central Florida. 

 Endoparasite egg counts from feces were used to estimate endoparasite loads (Villanua 

et al. 2007). Two fecal samples were collected, one in June and one in July, using plastic tarp 

sections placed under live traps (Pettitt et al. 2007). Feces from captured squirrels were collected 

with forceps and placed in labeled plastic sealable bags. Forceps were then placed in 95% 

ethanol for cleaning and 0.5 g of feces were weighed out and frozen for later use in endoparasite 

quantification. Fecal samples were thawed, ground, and combined with a solution of magnesium 

sulfate and allowed to sit for 5 minutes in a cuvette, which caused eggs shed by adult 

endoparasites to float (McMurin and Bassert 2002). Prepared samples were then observed under 

a compound microscope (100x) for endoparasite egg count.  

 Nine social groups were assigned as treatment groups (ecto- and endoparasites were 

removed) and nine were assigned as control groups. Treatment and control colonies were 

selected across the floodplain with two large groupings of controls alternating with three large 

areas containing treated groups. This allowed the control animals to be fairly isolated from 

treated groups and experience no affect of anti-parasite treatments. Squirrels in treatment groups 

received a monthly systemic anti-parasite treatment (0.1mL, 0.1% solution ivermectin) to 

remove endoparasites (Campbell et al. 1983). This drug is absorbed into the blood stream and 
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removes both adult and larval endoparasites from major phyla of nematodes found in the gut, as 

well as some arthropods, lasting approximately four weeks (Campbell et al. 1983, Heukelbach et 

al. 2004). To remove ectoparasites I used the topical anti-parasitic agent FRONTLINE® (fipronil 

0.29%, Merial, Duluth, Georgia) which kills fleas, ticks, and lice. Ectoparasites are concentrated 

behind the head, down the back, and around the hind regions (Nilsson 1981)1.5mL 

FRONTLINE® was sprayed topically over the back of each squirrel, protecting their entire 

bodies from parasites. FRONTLINE® (fipronil) was tested for safety and effectiveness on rats 

with a 9.7% solution oral LD50-97mg/kg and dermal LD50-2000mg/kg (Merial Material Safety 

Data Sheet-FRONTLINE® TOP SPOTTM 2001). The amount applied to Cape ground squirrels 

was thus 145 times lower than the oral LD50 and 1400 times lower than the dermal LD50. This 

drug an external treatment only as it does not move past the dermis of the animal and is effective 

for over thirty days (Metzger and Rust 2002). Due to the attachment of fipronil to the hair 

follicles in the dermal skin layer and evaporation of remaining ingredients from the epidermis 

within 24 hours (Kahn 2005), a minimal impact on grooming and allogrooming behaviors is 

expected. These anti-parasite treatments are effective against multiple ecto- and endoparasites in 

this Cape ground squirrel population (Scantlebury et al. 2007). No anti-parasite treatments were 

given to juveniles (< 6 months of age). 

Cape ground squirrels are diurnal and live in open habitats, which allowed for detailed 

behavioral data collection (Smithers 1971, Herzig-Straschil 1978). Observations from towers 

focused on morning and evening hours (700 - 1000 hrs and 1500 - 1800 hrs), when the squirrels 

were most active (Waterman 1996). I recorded identity and sleeping burrow location for all 

squirrels in a burrow cluster. Linear distance was calculated from each emergence or 

immergence site to the next consecutive location. Burrow clusters of the Cape ground squirrel 
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can range in size from 120-1500 m2 containing close to 60 burrow openings that house distinct 

burrow systems with multiple sleeping areas (Waterman 1995, Waterman and Fenton 2000). I 

considered a movement of 10 meters or greater from one emergence location to the next 

immergence location as a shift to a new sleeping burrow. I compared the minimum numbers of 

sleeping burrow shifts between treated and control groups. Behavioral data were collected using 

all-occurrences methods (Altmann 1974) focusing on any occurrence of autogrooming, 

allogrooming, and movement into and out of a burrow (Waterman 1995). Duration of 

autogrooming or allogrooming behavior was recorded in seconds. Autogrooming and 

allogrooming data were calculated from behavioral observations July through September and 

squirrels used in analysis had a minimum observation time of 60 minutes. 

All colonies were closely watched for emergence of young. Offspring born during the 

study (July to August) were used to calculate the per capita number of offspring for treated and 

control groups. Data were analyzed using SPSS 11.0, α=0.05 (The Software MacKiev 

Company). Parametric tests were used when assumptions of normality and homogeneity were 

met or data could be normalized and homogenized through transformations; otherwise non-

parametric analyses were used (Fry 1993). One treatment colony disbanded in late June, 

decreasing our sample size for behavioral and reproductive comparisons from 18 groups to 17 

groups. Occasionally not all individuals in a social group were captured at exactly the same time 

for treatment, but parasites were still substantially reduced even in these groups (Scantlebury et 

al. 2007). Four individuals that never allogroomed were not included in the allogrooming 

analysis. 
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Results 

 
Body mass of adult, non-pregnant females did not change from June to August in either 

control (Paired T-test, t16 = -1.18, P =0.26; mean ± SE, June: 593.8 ± 15.8g, August: 610.0 ± 

17.4g) or treated (t17 = -0.64, P = 0.53; June: 618.9 ± 13.4g, August: 625.3 ± 13.7g) individuals. 

However, per capita reproductive success was much higher in treated groups (U = 13.5, P = 

0.02; Fig. IV). Time spent autogrooming (sec/hr) by squirrels in control and treated groups 

differed (U = 118.0, P = 0.050, N = 38; Fig. V). Time spent allogrooming by adult females were 

also significantly lower in treated than control groups (Mann-Whitney U = 87.0, P = 0.001, N = 

38; Fig. V). The minimum number of burrow shifts made by control and treated groups did not 

differ (Mann-Whitney U = 24.0, P = 0.23, N=17; Fig. VI). 

Discussion 

 
The four-fold increase in the per capita reproductive success of treated females in our 

manipulation suggests that the reproductive costs of parasites on this species are substantial. 

Reproductive failure is common in this species, with 37.5% of females either failing to get 

pregnant or spontaneously aborting during gestation, and 27.5% of females losing litters during 

lactation (Waterman 1996). Costs of gestation and lactation can be very high (Millesi et al. 

1999), especially the demands of lactation during dry seasons in the arid areas of southern 

Africa. Litter size in this species is so constrained (only 1 or2 offspring) that differences in 

reproductive success between control and treated females was most likely due to increase in 

juvenile survival for treated females and not an increase in litter size. 
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Although removing parasites did not affect overall body mass in this study, parasite 

removal did increase percent body fat (Scantlebury et al. 2007). Animals must make trade-offs in 

the amount of time invested in feeding, avoiding predators, and reproduction. Parasites not only 

cause infection and loss of blood or mass, but also direct time away from feeding (Hart 1990). 

Removing parasites from Cape ground squirrels increased the percent of time spent feeding 

(Scantlebury et al. 2007), which could have led to the improved body condition. Furthermore, 

body condition is an important influence on the reproductive success of female mammals 

(Holmes 1988, Risch et al. 2007, Millesi et al. 1999, Temple et al. 2003). For example, condition 

affects litter size in Richardson’s ground squirrels (Risch et al. 2007) and timing of estrus and 

ovulation in European ground squirrels (Millesi et al. 1999). Costs of gestation and lactation can 

be very high, especially lactation (Millesi et al. 1999), and this cost would be even higher during 

dry seasons in the arid areas of southern Africa. The investment in feeding instead of parasite 

removal appears to have allowed female Cape ground squirrels to increase body condition and 

investment in reproduction. 

Transmission of ectoparasites through social contact and endoparasites primarily through 

feces is very high in social mammals (Hoogland and Sherman 1976, Hoogland 1995, Altizer et 

al. 2003). Baboons will switch their sleeping nest sites in response to parasite infestations 

(Hausfater and Meade 1978, 1982), and likewise pallid bats switch sleeping roost sites in relation 

to increasing ecotoparasite loads (Lewis 1996).  The sleeping burrows of semi-fossorial species 

may also be the site of much of the transmission of ectoparasites among individuals. When 

parasites were experimentally removed in Brant’s whistling rats (Parotomys brantsii), animals 

reduced their rate of nest chamber switching (Roper et al. 2002). Likewise in European badgers 

(Meles meles), removal of parasites decreased the shifting of badgers from one set to another 
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(Butler and Roper 1996). Intense sociality and communal living of the Cape ground squirrels 

create an environment ideal for parasite transmission, both in and out of the burrow system. 

Bedding materials can accumulate ectoparasites (Hoogland 1995. However, in Cape ground 

squirrel the number of burrow shifts did not decrease with parasite removal (Fig. VI). Since Cape 

ground squirrels (particularly young animals) are frequently preyed upon by snakes (Waterman 

1997), switching sleeping burrows may be a means of avoiding predators as well as parasites. 

Autogrooming, as an asocial activity, was thought to function primarily as parasite 

removal and predicted to be significantly lower in treated squirrels than controls. Instead of 

feeding, parasitized animals may have to spend more time actively removing parasites through 

grooming (Hart 1990, 2000). The major role of grooming in the rodent Meriones crassus was to 

remove fleas, and time spent grooming increased with increasing flea infestation at the expense 

of time spent resting. Removal of parasites did decrease autogrooming in Cape ground squirrels. 

Autogrooming as a stimulus driven response to biting parasites is supported in this species (Hart 

2000, Mooring et al. 2004). Autogrooming was reduced in treated animals but persisted as 

compared to the dramatic reduction in allogrooming after treatment. Therefore, autogrooming 

may not merely be a mechanism of ectoparasite removal, but also function in this semi-fossorial 

animal for dermal hygiene (e.g., removal of dirt and other debris along hair shafts). 

I predicted allogrooming would decrease with anti-parasite treatments if parasite removal 

was the primary motivation for allogrooming behavior. However, in many species allogrooming 

is an important component in dominance and other social interactions independent of infestation 

(Spruijt et al. 1992, Stopka and Graciasova 2001, Kutsukake and Clutton-Brock 2006). In Cape 

ground squirrels there is no evidence that females form dominance hierarchies (Waterman 1996) 
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and treated females almost stopped allogrooming, suggesting the primary function of 

allogrooming in this species is to reduce ectoparasite loads. 

In conclusion, the impact of parasites on the reproductive success of female Cape ground 

squirrels is considerable. Females in this arid living species are frequently unsuccessful in raising 

offspring especially during periods of low rainfall and this failure appears to be magnified by the 

physiological costs of bearing parasites. Thus, the anti-parasite treatments of females resulted in 

a dramatic increase in per capita offspring survival. The costs of parasitism in this species appear 

to be mitigated by removal through auto- and allogrooming but not by movements away from 

high parasite sleeping sites. With these data I was unable to assess quality of offspring which 

may be a determining factor in offspring survival. This should be investigated in future research 

as well as the metabolic cost of producing offspring to directly quantify the parasite cost in 

reproducing females. 
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Figure V: Per capita number of Cape ground squirrel offspring surviving to emergence in 

treated and control groups; control N =9, treated N =8. (* P < 0.05; error bars = SE)  
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Figure VI: Time spent autogrooming and allogrooming by female Cape ground squirrels: 

control N =21, treated N =17. (* P < 0.05; error bars = SE). 
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Figure VII: Mean minimum number of burrow shifts (≥10 m) in control and treated 
colonies from July-September; control N = 9, treated N = 8. (NS = non-significant; error 
bars = SE) 
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GENERAL DISCUSSION 

 
 

I found sex-biased parasitism in both male and female Cape ground squirrels, by looking 

at both ecto- and endoparasites. Most studies in the literature have supported the hypothesis that 

males will have higher parasite loads because of the consequences of sexual selection (Schalk 

and Forbes 1997, Skorping and Jensen 2004, Hoby et al. 2006, Isomursu et al. 2006). However, 

although I found a male bias in ectoparasites, I found a female bias in endoparasite numbers. 

Home range size was not supported as the reason why ecotoparasites were higher on males, as 

sub-adult males (who are becoming reproductive but have small home ranges) also had higher 

ectoparasite loads. These data support the sex bias in ectoparasites as a consequence of hormonal 

or an increased investment in reproduction by males. A hormonal basis for sex biased parasitism 

has also been documented in avian, ungulate, and rodent species (Sheridan et al. 2000, Deviche 

et al. 2001, Hughes and Randolph 2001b, Hoby et al. 2006). The higher endoparasite loads of 

females are probably a function of ecological differences between males and females. Females 

have much smaller home ranges and forage near burrow clusters resulting in increased exposure 

to fecal material (transmitting endoparasites; Gemmell 1990, Waterman 1995). While adult 

males suffer from greater numbers of ectoparasites, their large home ranges may be a benefit to 

avoid endoparasites. 

When treated with anti-parasitic agents, female reproduction increased. The per capita 

number of offspring raised to emergence was greater in groups where parasites were reduced 

significantly. Clearly females experience large costs of parasites during peak reproduction 

(gestation and lactation are costly; VanVuren 1996, Millesi et al. 1999). This indicates that 

modes of parasite reduction are especially important to females during peak breeding. 
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Employing allogrooming and autogrooming females may decrease the detrimental effects of 

ectoparasitism.  

While ecto- and endoparasitism were unrelated to group size or number of females in a 

group, adult females allogroomed more than males and preferentially allogroomed sub-adult 

males. Some female social groups did include adult resident males. Adult males were the most 

highly parasitized and would be expected to receive the most allogrooming and autogroom more. 

My data fails to confirm either of these predictions. A possible cause of this may be that the costs 

of ectoparasitism on adult males are less than the cost of high autogrooming. Also, lack of 

allogrooming received by these males may be the result of few social interactions with females 

that decreases transmission of ectoparasites. Female groups sleep communally and bedding 

materials are then thought to accumulate ectoparasites over time (Hoogland and Sherman 1976). 

While females may be allowing the adult males to sleep in the burrow cluster it can not be 

confirmed that these groups are allowing the adult male members to sleep communally. Burrow 

mapping or tracking individuals may clarify these data. Females may focus their ectoparasite 

removal on group members with the highest parasites loads that are still sharing a sleeping 

burrow with them (e.g., sub-adult males). Quantification of androgens and quality of offspring 

may allow for more specific interpretations of adult male parasitism and female reproductive 

costs. 
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