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A B S T R A C T

Forecasts of residual demand curves (RDCs) are valuable information for price-maker market agents since it
enables an assessment of their bidding strategy in the market-clearing price. This paper describes the application
of deep learning techniques, namely long short-term memory (LSTM) network that combines past RDCs and
exogenous variables (e.g., renewable energy forecasts). The main contribution is to build up on the idea of
transforming the temporal sequence of RDCs into a sequence of images, avoiding any feature reduction and
exploiting the capability of LSTM in handling image data. The proposed method was tested with data from the
Iberian day-ahead electricity market and outperformed machine learning models with an improvement of above
35% in both root mean square error and Frèchet distance.

1. Introduction

Electricity price forecasting, in different time horizons (intraday,
day-ahead, mid-term, etc.), is fundamental for advanced bidding stra-
tegies. This motivated research in the last 20-years about point and
probabilistic forecasts for the market-clearing price [1]. Moreover,
modelling and forecasting competitors’ bidding curves is also very va-
luable to optimize bidding strategies. This information is captured by
the residual demand curve (RDC), which, for a generation company, is
the difference between the demand curve and the aggregated curve of
all the competitors’ supply offers [2]. RDC expresses the market-
clearing price as a function of the quantity of energy that the agent is
willing to buy or sell, which is particularly valuable for price-maker
companies since it enables an assessment of their bidding strategy in the
market-clearing price

Different authors explored information from forecasted or estimated
RDC in order to build advanced bidding strategies [3]. Regarding the
supply side, Wolak proposed an optimal bidding strategy that used an
analytical function for the RDC [4]; Contreras et al. proposed a
Cournot-based model to find the optimal bids of a company with
thermal and hydro units, using an RDC represented by a Taylor’s linear
approximation around the clearing price [5]; Ugedo et al. described a
stochastic programming formulation that used RDCs constructed
through clustering and approximated by a linear regression [6]. In the
demand side, Herranz et al. applied genetic algorithm in order to

optimize the demand bids using a sliding-window and Monte Carlo si-
mulation of residual offer curves – ROC (i.e., RDC from the energy
buyer viewpoint) [7]; Philpott et al. studied different bidding strategies
by using an analytical ROC that provides the probability of having a
demand offer accepted [8].

All these works either applied a naive estimation of the RDC or
extrapolated future RDC by clustering past data and do not solve a
typical forecasting problem. More advanced RDC forecasting strategies
were proposed in the literature. Aneiros et al. described two functional
data analysis (FDA) models to forecast hourly RDC [9], one non-para-
metric autoregressive model and a semi-functional partial linear model
that integrates exogenous scalar variables. Portela et al. extended the
seasonal ARIMA model to the FDA framework by using parametric
Hilbert operators with kernel surfaces to integrate exogenous vari-
ables [10]. Other models based on FDA for residual curve forecasting
can be found in [11]. Portela et al., for the Iberian electricity market
data, showed that principal component analysis combined with transfer
function outperformed FDA in terms of forecasting accuracy [12].

In this context, the present paper provides the following original
contributions: (a) builds up on the idea of transforming the temporal
sequence of RDC into a sequence of images, avoiding any feature re-
duction; (b) proposes a hybrid approach that combines one dimensional
and convolutional long short-term memory (LSTM) networks to pro-
duce highly accurate day-ahead forecasts and to outperform traditional
machine learning models (e.g., gradient boosting trees).
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The rest of the paper proceeds as follows. Section 2 details the
formulation and forecasting methodology, while Section 3 validates the
forecasting model for the Iberian market. Finally, Section 4 presents the
conclusions and future work.

2. Deep learning forecasting methodology

This section describes an RDC day-ahead forecasting framework
based on recent developments in the deep learning field, namely long
short-term memory (LSTM) networks capable of handling input time
series of data with one or two-dimensional representation.

2.1. Formulation of the RDC forecasting problem

The publication of the regulation 543/2013 in the European Union
increased the amount of publicly available data from the electricity
market, including access to individual offers from market players (in
general, available with a few months delay). Moreover, aggregated
supply and demand curves are publicly available on a daily basis and
can be forecasted as RDC (i.e., difference between the two curves).

The goal of the RDC forecasting problem is to use the past sequence
of RDCs observations from the day-ahead market, combined with exo-
genous variables (e.g., renewable energy sources – RES generation,
load), in order to forecast the 24 RDCs for the next day ( +D 1).
Mathematically, it can be represented as follows:
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output (forecasted) sequence up to time horizon L. It is important to
underline that Eq. 1 represents a sequence forecast (or structural fore-
cast), and not a single-step forecast like in traditional time series fore-
casting problems.

In contrast to the spot price variable, an RDC is represented in a
two-dimensional variable space (energy quantity in the x-axis, price in
the y-axis), which has two alternative representations from a machine
learning perspective: (a) 1-Dimensional (1D), discretization of the RDC,
using a fixed range for the price, into a set of K independent time series;
(b) 2-Dimensional (2D), convert the full RDC curve into a black and
white image represented by a single matrix of pixel values that contains
the “spatial” dependency structure between energy and price.

The 1D representation is a matrix of K numerical time series, while
in the 2D we have a tensor Y ∈ ℜM × J × P where M and J are rows and
columns of grid representing the RDC image and P is the pixel value
that only takes 0 or 1 values and vary over time.

2.2. RDC forecasting structure

This section starts by discussing the advantages and disadvantages
of the 1D and 2D representations.

In the 1D, the time series are forecasted independently by a multi-
output model. This means that, while temporal dependencies can be
captured during the forecasting process (i.e., dependency between past
and future RDCs), the “spatial” shape of the curve is not properly
modelled. Through an increase in the value of K, it is possible to re-
present each curve with a higher number of samples, thus enhancing
the representation quality. However, this increases the number of time-
series and consequently the computational requirements. The main
advantages of the 1D representation are: (a) simplicity of the fore-
casting process (e.g., traditional machine learning algorithms can be
applied); (b) it is easy to include multiple exogenous variables besides
the past RDC; (c) the forecasted curve can be obtained with a linear

interpolation of the output vector.
In the 2D, the quantity-price relationships of RDC are embedded in

2D images through an initial pre-processing phase (explained in
Section 2.4). With this representation, it is possible to structure the
forecasting problem as a video (or motion) forecasting problem where
every RDC image represents a video frame and multi-frame sequences
can be used to predict the subsequent video frames. Thus, it is possible
to exploit the superior capacity of Convolutional LSTM (ConvLSTM)
[13] and 3D convolutional neural-networks (3D CNN) [14] to capture
both temporal and spatial dependencies encoded in sequences of RDC
images, in contrast to the independent time-series processing provided
by the 1D representation. The main disadvantages of this representation
are: a) processing steps required to convert the original sequences of
RDC matrices into sequences of images (and vice-versa) which might
introduce additional noise in the final forecasts; b) the inclusion of
relevant exogenous scalar variables (e.g., forecasted wind power) is not
straightforward; c) higher computational requirements and processing
times compared to the 1D approach. In this work, the LSTM processing
times were reduced by taking advantage of a graphics processing unit
(GPU) through computational frameworks like Keras [15] and Ten-
sorFlow [16].

Fig. 1 depicts the two methods employed to produce day-ahead
forecasts of RDCs. It considers two alternative paths (compared in
Section 3): a) 1D path (left) where past RDC observations are combined
with exogenous variables in a sequence-to-sequence learning frame-
work (i.e., 1D-LSTM described in Section 2.3) to produce RDC forecasts;
b) 2D path (right) where temporal and spatial correlations of con-
tiguous RDCs images are first modeled by a stack of ConvLSTM and 3D
CNN. The output tensor of this intermediate model is then converted
into the 1D representation and combined with the past RDCs data and
exogenous information to produce high quality forecasts (2D-
ConvLSTM described in Section 2.4);

The main motivation for the final hybrid model (i.e., 2D path of
Fig. 1) is to first exploit the superior capability of LSTM cells enhanced
by embedded convolution operations to handle the quantity-prices re-
lationships of RDC images sequences and then use the 1D-LSTM ar-
chitecture in order to combine the past and future RDCs with exogenous
variables, which have a relevant impact in the forecasting skill (as il-
lustrated in Section 3).

2.3. 1-Dimensional LSTM model (1D-LSTM)

As mentioned before, RDCs are temporal sequences and this moti-
vates the use of LSTM as a natural extension of deep neural networks to
time series data since, like a traditional recurrent neural network
(RNN), it employs loops that allow information from previous temporal
intervals to persist. This section will present the 1D-LSTM forecasting
methodology as intuitively as possible and a more detailed description
of the mathematics behind LSTM can be found in [17] and Appendix A.

A major limitation assigned to RNN is that, in practice, when the
gap between past relevant information and each forecast time grows,
the performance of RNN tends to decline, thus resulting in a short-term
memory that is known as vanishing gradient problem [18]. LSTM were
proposed in [17] in order to overcome the long-term dependency pro-
blem and have mechanisms (i.e., called gates) to regulate the flow of
information and that are able to learn which data in the sequence are
important to keep or discard. In order to apply LSTM, as illustrated in
Fig. 1, a certain number of reference prices are selected as fixed
quantities making it possible to sample the curves in the selected points
while reducing them to one-dimensional vectors of the corresponding
energy values.

The LSTM model is capable of exploring the information en-
compassed in the autocorrelation structure of these RDC time series.
However, as shown in [19], spot price is dependent on different vari-
ables, such as system load, weather variables and conventional gen-
eration. For instance, wind and solar energy can bid at very low prices
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(in most cases zero), creating a horizontal displacement in the RDC.
Thus, LSTM should be able to process not only the past RDC, but also
the exogenous variables. Moreover, in order to capture the daily,
weekly and yearly seasonality from spot prices, the following calendar
features have been included and decomposed in sine and cosine com-
ponents: a) month of the year (i.e., values from 1 to 12); b) day of the
month; c) hour of the day; d) day of the week (i.e., values from 0 to 6,
where 0 is Monday).

These three groups of input data (i.e., RDC time series, exogenous
variables and calendar variables) are combined in the 1D-LSTM net-
work structure, as depicted in Fig. 2.

In the upper part, the 1D-LSTM is composed of three parallel
branches (one for each group of variables) followed by a stack of three
LSTM layers and a fully-connected set of feedforward units as the final
output layer.

Processing different input variables in independent branches has
been previously used in order to improve the performance of deep
learning models since it allows the network to capture intermediate
representations of each original group of variables [20]. In this case,
each branch is characterized by a set of independent weights (i.e.,
weights connected to one branch do not influence the activation of
neurons on neighbor branches) that are adjusted to map the relations

Fig. 1. RDC forecasting framework with long short-term memory (LSTM) as core forecasting method.
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between their own input data and the common desired output.
As depicted in Fig. 2, the output from each branch has the same

dimensionality as the corresponding input structures, i.e., tensors with
NS samples, each sample composed of 24 sequences of K, NC or NE

features, depending on the group of variables. These intermediate
output structures are then combined in order to create a single tensor

∈ × ×Y N T24sR where = + +T K N NC E. This information is then pro-
cessed by a stack of three LSTM layers and a fully connected layer with
K feedforward units in order to match the number of time series of the
observed RDC and to compute the loss function.

The number of neurons for each layer was fine-tuned by an ex-
haustive exploratory process combining grid-search techniques with a
sensitivity analysis to fine-tune the number of units for specific inter-
mediate layers and to enhance the feature learning capabilities of the
network. All neurons used a hyperbolic tangent activation function and
a dropout regularization value of 0.2 has been chosen to prevent
overfitting. The LSTM weights of every layer were initialized from a
Grolot uniform initializer [21].

The LSTM weights and bias were optimized using the adaptive
learning rate method “RMSprop” [22]. A batch train that was per-
formed over the full training samples and the number of training epochs
was determined via early stopping with a validation set (20% from the
training sample). Then, an online learning method was used to update
internal parameters of the LSTM by retraining it over each new ob-
served sample of 24 RDCs, once they became available.

2.4. 2-Dimensional LSTM model (2D-ConvLSTM)

In the 2D presentation, the first step is to define the image dimen-
sions, and consequently the resolution that the pixel matrices should
have. Since all RDC-based images need to have the same size in order to

be processed inside the 2D-ConvLSTM network (mathematical details
can be found in [13] and Appendix B), the global maximum and
minimum energy of all the curves was calculated to define the RDC
energy span in GWh and the adopted resolution is one pixel per 1 GWh.
The image height is analogously defined by the price span on which all
the RDC lie and the adopted resolution is one pixel per 1 € /MWh.

After transforming the original RDCs into a 2D image, it is possible
to use complex structures such as convolutional layer to extract low
dimensional features from the original image data and properly capture
the “spatial” shape of the RDCs.

The CNN architecture used in this work is illustrated in Fig. 3 and is
composed of a stack of three convolutional LSTM layers followed by a
single 3D CNN layer. Equal-sized convolution windows (11x11 kernels)
were defined for all the ConvLSTM layers with the number of kernels
varying (i.e., 40 for the first layer and 30 for the second and third
layers). Finally, the 3D CNN layer applies a 3 dimensional filter that is
able to move over the 3-axis so that both spatial and temporal dimen-
sions are captured.

It is important to underline that an half padding technique (see [23]
for more details) is applied to the feature map output of each con-
volutional layer in order to preserve the same input/output dimensions.
This facilitates the loss computation and avoids the use of extra layers
to reshape the output tensors to the same dimensionality of the target.

Since the 2D-ConvLSTM training is extremely time-consuming (de-
scribed in Section 3.6), only minimal tuning of the LSTM parameters
and number of ConvLSTM layers were performed, exclusively based on
a trial-error analysis.

The weights and biases were optimized using the adaptive learning
rate method “ADADELTA” [24] and a binary cross-entropy loss. A batch
train was applied (and only once) to the 2D-ConvLSTM and online
learning process is only considered for the final 1D-LSTM model

Fig. 2. Inner structure of 1D-LSTM network; NS represents the total number of samples (days) in each tensor and K, NC and NE represents the number of input features
of each branch. The second dimension of each tensor represents the length of each sample sequence.
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(trained independently).
As previously mentioned, in 2D-ConvLSTM model, a post-processing

step is required to convert the forecasted RDC image back to a point-
wise representation. Besides, this post-processing also includes a cor-
rection for the 3D CNN output, as illustrated in Fig. 4. This figure shows
that pixel matrices obtained directly from this convolutional layer, do
not translate into a neat pixel curve, but into a ”blurry” version of it.
Thus, in order to obtain point-wise representation, a correction is per-
formed to every row of each matrix (i.e., price pixel axis) that keeps and

rounds the value of pixel with the highest intensity to one and sets the
remaining pixels value to zero.

As interesting development for future work is to study if this
“blurry” image output can be used to construct an uncertainty forecast
for the RDC, e.g. multiple short-term scenarios for the curves, quantile
curves.

Finally, as mentioned in Section 2.2, the RDCs forecasted by the 2D-
ConvLSTM are then used by a final 1D-LSTM with a structure similar to
Fig. 2, but with a fourth branch to process these forecasts as input data.

Fig. 3. Inner structure of 2D-ConvLSTM network. Hyperbolic tangent functions are used in each ConvLSTM layer and sigmoid in the final 3D CNN layer.

Fig. 4. 2D-ConvLSTM post-processing: (a) original forecast; (b) post-processed forecast (white) and observed curves (grey).
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3. Numerical results

3.1. Dataset description: Iberian electricity market

The RDC forecasting methods are tested in data from the Iberian
day-ahead electricity market (MIBEL), which makes aggregated supply
and demand curves available in a public repository every day1. Since
the day-ahead session receives offers for day D+1 until noon, the RDC
are forecasted with the information available until 11h00 in day D,
which are the exogenous variables listed in Table 1.

Historical data was gathered from the ENTSO-E Transparency
platform2. RES and load forecasts were extracted from the REN and REE
data platforms3. The historical period considered in this work ranges
between 1st November 2015 and 30th November 2018: (a) the period
between 1st November 2015 and 24th March 2018 is divided in 70%
for training and the other 20% for validation; (b) the period between
25th March 2018 and 30th November 2018 is used for testing.

The price in MIBEL is between 0 and 180.3 € /MWh, which was
used to set =K 182 in the 1D approach (i.e., 1 € /MWh increment
between 1D time series). For the historical period under analysis, the
RDC energy values range between -69.1 GWh and 41.6 GWh, which
means that, in the 2D approach, an energy range of 110.8 GWh is used
to define the images resolution of 1 pixel per 1€ /MWh and 1 GWh.

3.2. Forecasting benchmark models

In order to evaluate the forecasting skill of the proposed deep
learning approach, the following benchmark models of different com-
plexity were implemented:

• Naïve 1: forecast equal to the RDC observed for day D.

• Naïve 2: average RDC from the three previous days.

• Artificial Neural Network (ANN): single-layer neural network that
uses the 1D input data.

• Principal Components Analysis (PCA) and ANN (PCA+ANN): ap-
plies PCA to the RDCs by reducing them to only three principal
components (95% of the variance), which are combined with ca-
lendar and exogenous variables in an ANN.

• PCA and Gradient Boosting Trees Regressor (PCA+GBTR): applies
GBTR over the PCA representation of the RDC.

The grid search function with cross-validation from scikit-learn
machine learning Python library [25] was applied to optimize the
hyper-parameters (number of layers, number of neurons, etc.) of all
these models.

3.3. Forecasting skill metrics

The RDCs forecasting skill is evaluated through two metrics: root
mean square error (RMSE) and Frèchet distance.

The RMSE, traditionally used to measure forecast accuracy, corre-
sponds to the square root of the mean square error between forecasted
and observed values. Since the vector of prices is fixed between 1 and
182 € /MWh (1 € /MWh increment), RMSE is only applied between the
real and the forecasted energy values and normalized by the maximum
energy value.

The Frèchet distance measures the similarity between observed and
forecasted RDC by taking into account the location and ordering of the
points along the curves. In this metric, RDCs are piecewise linear curves
with K vertices.

Considering two RDCs A and B, the vertices in A are represented by
α ∈ [0, K] and the ones in B by β ∈ [0, K]. Thus, the associated Frèchet
distance will be the smallest distance among all the maximum distances
found by varying the position of α or β, between [0,K], while keeping
the other one constant. The mathematical formulation between A and B
is as follows:

⎜ ⎟= ⎧
⎨⎩

⎛
⎝

⎞
⎠

⎫
⎬⎭∈ ∈

δ d A α B βmin max ( ), ( )F
α K β K[0, ], [0, ] (2)

where d(A(α), B(β)) is the Euclidean distance between A(α) and B(β).
For both metrics, a percentage of improvement (Imp) over a re-

ference model (REF) is computed as follows:

= −RMSE RMSE RMSEImp ( )/REF LSTM REF (3)

3.4. Sensitivity analysis with exogenous variables

A sensitivity analysis was conducted to select the group of exo-
genous variables with higher explanatory power to forecast RDC, be-
sides past RDCs and calendar variables. Due to computational time
limitations, it was not possible to test all the combinations of exogenous
variables like in [19]. Thus, the variables from Table 1 were gathered in
five groups: (1) System load forecasts – SL; (2) RES forecasts (RESf) –
FW, FSPV; (3) RES penetration forecasts (RESPen) – FWPen, FSPen; (4)
hydropower generation (HY) – HRC, HD, HRR; (5) conventional gen-
eration (Conv) – C, CC and NG.

Table 2 shows the RMSE improvement obtained with the top five
combinations of exogenous variables groups when compared to an
LSTM model without exogenous information. These results show that
the most relevant exogenous variables are RES forecasts and hydro-
power generation.

Fig. 5 depicts the RDC forecast obtained by a 1D-LSTM model
without exogenous variables (blue curve) and by an LSTM with load
and RES forecasts (green curve), and the observed RDC curve (red
curve) for hour 13h00 of 26th October 2018. This day was selected
since the RES penetration was 73% and the low bid price from RES
shifted the whole RDC to the left. From the figure, it is clear the in-
fluence from exogenous information in the RDC forecast, which con-
trasts with Fig. 6 for the first hour of the 13th November 2018 char-
acterized by a RES penetration of 22% and a higher spot price. In the
case of Fig. 6, the difference between the RDC forecasted by the two
models is marginal.

3.5. Benchmark models results

The average RMSE, Frèchet distance and the improvement of the 1D
and hybrid approaches over the benchmark models are presented in
Tables 3 and 4 for the eight months testing period. The average RMSE
and Frèchet distance of the 1D approach are 1.45% and 1.47% corre-
spondingly, and for the hybrid approach are 1.33% and 1.41%. The 1D-

Table 1
Exogenous variables for Portugal and Spain. −D 1 are values observed in the
previous day and +D 1 are day-ahead forecasts.

Availability ID Variables Country

D-1 C Coal Generation ES
CC Combined Cycle Generation ES
NG Nuclear Generation ES
HRC Hydro Reservoir Capacity PT, ES
HD Hydro Dam Generation PT, ES
HRR Hydro Run-river Generation PT, ES

D+1 SL System Load Forecasts PT, ES
FW Wind Power Forecasts PT, ES
FWPen Wind Power Penetration Forecasts PT, ES
FSPV Solar Power Forecasts PT, ES
FSPen Solar Power Penetration Forecasts PT, ES

1 OMIE website: www.omie.es
2 ENTSO-E (transparency.entsoe.eu)
3 REN Centro De Informação (www.mercado.ren.pt), REE ESIOS (www.esios.

ree.es)
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Table 2
Sensitivity analysis results.

Groups of features RMSE Improvement

SL + RESf + RESPen + HY + Conv 37.6%
RESf + RESPen + HY + Conv 36.7%
SL + RESf + RESPen + HY 33.9%
RESf + RESPen + HY 33.7%
RESf + HY 33.5%

Fig. 5. Forecasts comparison for hour 13h00 of 26th October 2018.

Fig. 6. Forecasts comparison of the 1st hour of 13th November 2018.

Table 3
Benchmark models forecasting skill - RMSE.

Model RMSE 1D Imp. Hybrid Imp.

Naïve 1 2.91% 40.1% 44.4%
Naïve 2 3.2% 45.5% 49.4%
ANN 2.75% 36.2% 40.1%
PCA + ANN 2.84% 38.7% 43.1%
PCA + GBTR 2,78% 37.4% 41.9%
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LSTM and hybrid models largely outperformed the benchmark models,
with improvements above 35% in both metrics.

It is important to note that the performance of the Naïve 1 model is
close to the one obtained with advanced models, such as ANN, which
confirms the results from [9]. Moreover, the models’ ranking changes
with the evaluation metric. For instance, the ANN model shows the
lowest RMSE value, but presents the highest Frèchet distance. The main
reason resides in the Frèchet distance ability to assess curve shape si-
milarly, thus penalizing the oscillating behavior present in the ANN
forecasts. The results also show that the dimension reduction with PCA
does not improve RMSE, but it improves the similarity between fore-
casted and observed RDC. In fact, the RDCs reduction to three principal
components prevents the oscillating behavior observed with K in-
dependent time series.

3.6. Comparison between 1D-LSTM and hybrid models

As showed in the previous section, the 1D-LSTM approach produced
high quality day-ahead RDCs forecasts. However, the missing modelling
of the dependency structure between energy and price bid led to a non-
perfect replication of the typical RDCs “stair” shape. Indeed, in the real
RDCs, the energy values with higher prices are always higher than the
ones with lower prices, while in the forecasted RDC this phenomenon is
fully captured due to the forecasts’ oscillation behavior observed in
Figs. 5–6.

The 2D-LSTM models does not include exogenous variables, which
are shown in Section 3.4 to contain relevant information that improves
forecasting accuracy. Thus, the RMSE and Frèchet distance values are
4.7% and 4.44%, which do not outperform other benchmark models.
Nevertheless, an important feature is the capacity of accurately fore-
casting the typical RDCs “stair” shape.

The hybrid approach was proposed to overcome the limitations of

2D-LSTM and presented the best forecasting skill. Figs. 7 and 8 show
the RMSE and Frèchet monthly improvement obtained with the 1D-
LSTM and hybrid approaches over the best benchmark model. It is
important to note that the RMSE improvement obtained by the hybrid
model is higher than the Frèchet one. This occurs because the hybrid
model reduces the distance between real and forecasted energy points
(measured by the RMSE), yet it does not improve so much the curve
shape forecast (measured by the Frèchet distance), which keeps having
a slight oscillating behavior.

In terms of computational time, the 1D-LSTM model’s fitting was
34,920 seconds in a server with 96 GB RAM, Intel Xeon CPU X5680 @
3.33GHz and 6 cores. During the testing period online learning is used
to update the model, which means an operational time of just a few
seconds. Conversely, the computational time of the 2D-LSTM was 8
days and 23 hours in a computer with 12GB RAM and a NVIDIA
GeForceGTX TITAN X GPU.

4. Conclusions

This work, as a proof-of-concept, demonstrates that deep learning
techniques like LSTM can be applied to forecast day-ahead RDCs by
exploring its capability to project the RDC data onto a 2-dimension
space and interpret it as image objects. In order to include exogenous
information (e.g., RES forecasts), which has a high impact in the RDC
shape, a hybrid approach combining 1D and 2D LSTM networks was
proposed. The computational time was decreased by adopting GPUs to
run the training of 2D-LSTM and applying online learning, which makes
the proposed method feasible in an industrial environment.

The proposed hybrid approach obtained excellent day-ahead fore-
casts with an RMSE below 1.5% and outperformed five benchmarks
models with an improvement over 35% in both Frèchet distance and
RMSE. These results were obtained by using publicly available data
(i.e., aggregated market curves and not offers at unit level), which
shows that highly accurate RDCs forecasts can be obtained from open-
data sources. Hence, in order to replicate this method in other elec-
tricity markets only aggregated curves from day D are required.

Future work consists in: (a) offer interpretability to decision-makers,
e.g. exogenous variables effect on the curve shape; (b) model the effect
of complex offers (e.g., minimum income condition) in the clearing
price and curves.

Table 4
Benchmark models forecasting skill - Frèchet distance.

Model Frèchet 1D Imp. Hybrid Imp.

Naïve 1 3.64% 53.7% 54.8%
Naïve 2 4.15% 59.4% 60.3%
ANN 3.92% 56.9% 58%
PCA + ANN 3.53% 52.2% 53.3%
PCA + GBTR 3.22% 47.5% 48.8%

Fig. 7. RMSE monthly improvement of the 1D-LSTM and hybrid models over the ANN benchmark model.
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Appendix A. Long Short Term Memory Networks (LSTM)

The description of the LSTM follows the formulation of LSTM as in [26].
Compared to RNN, a LSTM network is characterized by a different memory cell with self loops allowing it to store temporal information on the

cells state (Ct, i.e. memory from the current block). The LSTM is composed by one input layers with number of neurons equal to the size of the input
vector xt, one or more hidden layers and one output layer with the number of neurons equal to the size of the expected output.

The Ct runs straight down the entire chain, with only some minor linear operations, leaving the information to flow along it unchanged until
required. In fact, when new information pass through the block, the LSTM module can remove or add them to the cell state by activating specific
structures, called forget gate, in successive steps.

The first step takes place in the forget gate that “decides” which information needs to be discarded from the cell state, Eq. 4. The gate reads the
current input, xt, and previous output from the LSTM layer, −h ,t( 1) then, applies a sigmoid function σ that outputs a value between 0 (completely
discard) and 1 (full hold).

= + + ∘ +− −f σ W x W h W C b( )t f x t f h t f c t f, , 1 , 1 (4)

where ∘ denotes the Hadamard product, ft are activation values for the forget gates, Wf is a weights matrix and bf is the bias term for the forget gate.
The second step is to determine which information will be added to the memory from the current block, i.e. cell state Ct. A sigmoid layer, called

the input gate, is used to select which values will be updated:

= + + ∘ +− −i σ W x W h W C b( )t i x t i h t i c t i, , 1 , 1 (5)

where it are activation values of the input gates.
Meanwhile, an hyperbolic tangent function (tanh) function creates a vector of new candidate values C̃t (Eq. 12) to be added to the cell’s state.

= + ∘ +−C W x W h b˜ tanh( ).t c x t c h t i, , 1 (6)

Only by merging these two in the next step, the state update (from −Ct 1 to Ct) is actually performed as follows:

= ∘ + ∘−C f C i C̃ .t t t t t1 (7)

Note that ∘ −Ct t 1 erases the useless information and ∘i C̃t t is added to store new useful information to the cell’s state.
The final step consist in deriving the output value ht that needs to be extrapolated from the last version of Ct. Firstly, an output gate composed of a

sigmoid function is used to select which parts of the cell state will form the output:

= + + ∘ +−o σ W x W h W C b( ).t o x t o h t o c t, , 1 , 0 (8)

Secondly, the cell state is also converted into a value between -1 and 1 by passing Ct through a tanh layer and then multiplied by the sigmoid
output as follows:

= ∘h o Ctanh( ).t t t (9)

Fig. 8. Frèchet distance monthly improvement of the 1D-LSTM and hybrid models over the PCA + GBTR benchmark model.
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Appendix B. Convolutional LSTM Network

The distinguishing feature of the Convolutional LSTM (ConvLSTM) is that all the inputs x, cell states C, hidden states h and gates (i, f, o) are 3D
tensors with spatial dimensions [13] and the main difference to Eq. 4–8 is a convolution operator * in the state-to-state and input-to-state transitions
as follows:

= + + ∘ +− −f σ W x W h W C b( * * )t f x t f h t f c t f, , 1 , 1 (10)

= + + ∘ +− −i σ W x W h W C b( * * )t i x t i h t i c t i, , 1 , 1 (11)

= + +−C W x W h b˜ tanh( * * )t c x t c h t i, , 1 (12)

= ∘ + ∘−C f C i C̃t t t t t1 (13)

= + + ∘ +−o σ W x W h W C b( * * )t o x t o h t o c t, , 1 , 0 (14)

= ∘h o Ctanh( )t t t (15)
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