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A B S T R A C T

In short-term load forecast (STLF), forecasting holiday load is one of the most challenging problems. Aimed at
this problem, a hybrid prediction model based on pattern sequence-based matching method and extreme gra-
dient boosting (XGBoost) is presented. It divides holiday STLF problem into the predictions for proportional
curve and daily extremum of electricity demand, which are relatively independent and relate to different factors.
It is benefit for holiday STLF by task decomposing. Based on the shape similarity measured by Euclidean dis-
tance, the proportional curve is predicted by pattern sequence-based matching method. Daily extremum of
electricity demand is predicted by XGBoost considering holiday classification. Finally, the predicted holiday load
profile is synthesized from the above two prediction results with segment correction. The proposed methodology
can analyze holiday load characteristics more effectively and get a higher prediction accuracy independent of
sufficient data and expert experience. We evaluate our methodology with many algorithms on a real data set of
one provincial capital city in eastern China. The results of case studies show that the proposed methodology
gives much better forecasting accuracy with an average error 2.98% in holidays.

1. Introduction

Short-term load forecast (STLF) plays a decisive role in maintaining
the security and economy of power system. As a complex nonlinear
problem, STLF is closely related to the social changes, economic factors
and weather change [1,2]. Various methods have been applied to im-
prove the forecasting accuracy, such as linear auto-regressive (AR)
model, neural network (NN), fuzzy technology, support vector machine
(SVM), etc. [3-7]. With the relatively sufficient data, the methods
mentioned can get satisfactory prediction results on the normal days.
However, holiday load is usually atypical and can create significant
predicted error easily, which is viewed as a challenging problem in
STLF.

Recently, an enormous amount of research effort goes into im-
proving holiday STLF techniques. Ref. [8,9] present a state space
forecast method with multiple seasonal patterns and a forecast method
with double seasonal auto-regressive moving average mechanism, re-
spectively. Because of the restriction of linear statistical models, they
are only built based on load data without other factor data. In Ref.
[10,11], a Mahalanobis distance based fuzzy polynomial regression
method and a fuzzy expert system with similar day method are pre-
sented for holiday STLF problem. Ref. [12,13] focus on the expert rules
that are summarized from historical data and used in recognizing the

similar mode. Although good results are achieved, the principal diffi-
culty is the generation for many fuzzy/expert rules required. In Ref.
[14,15], the similar day methods are applied, which usually select the
historical samples due to the similarity with some typical factors to sort.
However, more different factors will have different impacts on holiday
load so that the selected historical similar sample is hard to reflect the
comprehensive effect of all holiday factors. Ref. [16,17] adopt NN
model in holiday STLF problem and get the proper results. But NN
performance are strongly related to model parameters, which are often
determined by experience. More importantly, the number of holiday
samples to train NN is usually insufficient.

Until now, it is still challenging to predict the holiday load accu-
rately, mainly in the following reasons: (1) Compared with normal day,
holiday load is more complicated and has no adequate and effective
data. Thus, conventional intelligent algorithm trained by large samples
is difficult to achieve a high precision. (2) Different holidays vary in the
load shape and load base. It is because all the factor effects on holiday
load are quite different. Therefore, it is so hard for conventional ana-
lysis to excavate the hidden laws that the characteristic analysis of
holiday load profile is often given by expert experience.

In view of the problems above, this paper presents a novel hybrid
prediction model based on pattern sequence-based matching method
and extreme gradient boosting (XGBoost). It divides holiday STLF
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problem into the predictions for proportional curve and daily extremum
of electricity demand. Through the shape similarity measured by
Euclidean distance, the former is obtained from pattern sequence-based
matching method. After holiday classification, the latter is obtained
from XGBoost trained by samples with regard to holiday effect and
other common effects. Then, the predicted holiday load profile is syn-
thesized from the above two prediction results and is corrected in the
segment of early morning. The main contribution of this paper is to
convert the hidden law mining into the obvious law mining by task
decomposing in holiday STLF problem. The proposed methodology can
evaluate and estimate different factor effects on holiday load in-
dependent of sufficient data and expert experience. Through experi-
ment comparison, the proposed methodology can be applied to holiday
STLF problem due to its wide applicability. Its application in improving
the quality and accuracy of holiday STLF is novel.

In the next section, we discuss the holiday load characteristics.
Section 3 presents the hybrid prediction model based on pattern se-
quence-based matching method and XGBoost. Section 4 provides the
experimental results. Section 5 concludes this paper.

2. Holiday load characteristics

Holidays generally belong to the specific days when the behavioral
changes happen due to social institutions and national policy [18,19].
For discussing holiday load characteristics, the hourly electricity de-
mand of one provincial capital city in eastern China is used in this
section. Respectively from two essential properties, proportional curve
and daily extremum of electricity demand are further analyzed [20].
Proportional curve describes the load shape, standing for load operation
mode while daily extremum of electricity demand represents the load
base.

2.1. The characteristic analysis for load profile

Fig. 1 shows the hourly electricity demand in 2015. The days
plotted by green circle represent New Year Day, Spring Day, Qingming
Festival, May Day, Dragon Boat Festival, Mid-Autumn Festival and
National Day, respectively. It can be found that some downward trends
happen during holidays.

Fig. 2 presents the load profiles of different holidays and normal
days. It can be found that holiday load profiles are different from the
normal days in load shape and load base. Compared with normal
weekday, the power-intensive industrial load is reduced much in
holiday, which leads to a huge difference in load profile. Although the
composition of holiday load (e.g. residence and service industry) is si-
milar to that of normal weekend, there still exists some differences in
load profile owing to holiday tourist impact by national policy.

2.2. The characteristic analysis for proportional curve

Fig. 3 plots the load profiles of New Year day across three years.
Load base has been increasing year after year but their load shapes are
similar on the whole. For further analysis, proportional curve is ex-
tracted from the linear mapping of load profile based on daily ex-
tremums. The formula of proportional curve is as follows:

=p
P P

P P
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max( ) min( )h t
h t h t

h t h t
,

, ,

, , (1)

where Ph,t and ph,t represent the hourly electricity demand and hourly
load percentage corresponding to a certain holiday h, respectively.

Fig. 4 shows the proportional curves of New Year day during the
same period. These proportional curves are very similar, only varying
slightly in the medium load period and evening peak period. It means
that there exists the similarity in holiday load composition.

2.3. The characteristic analysis for daily extremum of electricity demand

According to holiday length, two kinds of holidays usually happen
in China, 3-days holiday and 7-days holiday. New Year Day, Qingming
Festival, May Day, Dragon Boat Festival and Mid-Autumn Festival be-
long to 3-days holiday while Spring Day and National Day belong to 7-
days holiday.

Fig. 5 shows daily extremums of electricity demand in May Day 3-
days holiday from 2015 to 2017. The day with a green circle is the legal
holiday. It can be seen that daily extremums of electricity demand
follow their own laws during holidays. For daily maximum of electricity
demand, there are three tendencies, including uptrend (2015), down-
trend (2017) and ``V''-shaped trend (2016). For daily minimum of
electricity demand, there are two tendencies, including downtrend
(2016 and 2017) and ``V''-shaped trend (2015). The events above,
which also can be seen in other 3-days holidays, are mainly caused by
the position of legal holiday in 3-days holiday.

Fig. 6 shows daily extremums of electricity demand in Spring Day 7-
days holiday from 2015 to 2017. Because of the legal holiday in a fixed
position during 7-days holiday, the tendencies for daily extremums of
electricity demands are relative stables. Daily maximum of electricity
demand shows a trend of "first decreased and then rose" while daily
minimum of electricity demand has a wave-like increasing tendency.
This kind of characteristic also can be seen in National Day.

3. The proposed methodology

Due to Section 2, it is beneficial for law mining to decompose the
prediction for load profile into the predictions for proportional curve
and daily extremum of electricity demand in holiday STLF problem.

Fig. 1. Hourly electricity demand time series of provincial capital city in 2015.
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Thus, this paper presents a hybrid prediction model based on pattern
sequence-based matching method and XGBoost. Its process is shown in
Fig. 7.

3.1. Prediction for proportional curve

3.1.1. Pattern sequence-based matching method
Holiday proportional curve is mainly influenced by load composi-

tion, local customs and life style, which are the non-quantifiable factors.

Fig. 2. Load profiles of New Year Day (1st Jan), Spring Day (19th Feb), Qingming Festival (5th Apr), May Day (1st May), Dragon Boat Festival (20th Jun), Mid-
Autumn Festival (27th Sep), National Day (1st Oct), Normal Monday (4th Aug) and Normal Saturday (8th Aug).

Fig. 3. Load profiles of new year day from 2015 to 2017.

Fig. 4. Proportional curves of new year day from 2015 to 2017.
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It is hard for the methods trained by load and meteorology data to
predict the proportional curve. For solving this problem, pattern se-
quence-based matching method is adopted [21,22]. Its core idea is that
the future trend of one time series can be inferred from the historical
trend under the similar conditions. Thus, the proportional curves in two
consecutive days can be seen as one pattern. Load regularity in the first
day will have a significant impact on the load regularity in the second
day with probabilities. Because of the non-quantifiable holiday factors
contained in the proportional curve, day-ahead proportional curve can
be suitable for predicting the proportional curve of the predicted
holiday. So this method is built by the following assumption:

Proportional curve is defined as ph = [ph,1, …, ph,T]. T represents
the total number of discrete time steps in one day. [ph-1, ph] and [ph*−1,
ph*] represent two different proportional curves of two consecutive
days, respectively. h and h* represent different holidays. h−1 and h*−1
represent the days ahead of h and h*, respectively. If the known se-
quence ph−1 is similar to the historical sequence ph*−1, then the pre-
dicted sequence ph is similar to the historical sequence ph*.

Fig. 8(a) shows day-ahead proportional curve ph−1 of the predicted
holiday and similar historical day-head proportional curves ph*−1.
Fig. 8(b) shows the proportional curve ph of the predicted holiday and
the proportional curves ph* behind ph*−1. It can be found that ph* are in
the neighborhood of ph for the predicted holiday, which proves the
feasibility of pattern sequence-based matching method.

3.1.2. Prediction algorithm
Because proportion curves are normalized in interval of [0, 1] and

their turning points are at the similar time, the Euclidean distance is
used for measuring the similarity between two proportion curves. There
exist the predicted holiday h and the historical holidays h*. According
to pattern sequence-based matching method, the similarity S between

day-ahead proportion curve of the predicted holiday ph−1 and the
historical one ph*−1 is formulated as follows:

=
=

p pS p p( , * ) ( * )h h
t

T

h t h t1 1
1

1, 1,
2

(2)

The smaller S(ph−1, ph*−1) is, the smaller the difference between
ph−1 and ph*−1 is. Then, the historical holidays h* is sorted by the si-
milarities S(ph−1, ph*−1) and the history similar date set H is selected
from the most similar historical holidays:

=H h h[ , ..., ]M1 (3)

where: hM represents the historical holiday selected from h*; M re-
presents the number of the selected historical holidays.

So, the predicted proportional curve p̂h is obtained from the mean of
the proportion curves in the history similar date set H:

=
=

p p
M
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h

m

M

h
1
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It can be found that M has a significant impact on the prediction for
proportional curve. Thus, the optimal value of M is determined by cross
validation. During cross validation, the training data set H is divided
into c subsets. In the each validation, one distinct subset is selected for
validating the model trained by the remaining c-1 subsets. This proce-
dure is repeated c times. The final estimation is obtained from the mean
of the c validation results. Mean squared error (MSE) is selected as the
model performance evaluation index:

= =p p
c

M mMSE 1 ( ^ ) { }m
h H

h h
2

(5)

Then, the optimal value of M is the one that minimizes MSE:

Fig. 5. Daily extremums of electricity demand in May Day 3-days holiday from 2015 to 2017 (left: daily maximum; right: daily minimum).

Fig. 6. Daily extremums of electricity demand in Spring Day 7-days holiday from 2015 to 2017. (left: daily maximum; right: daily minimum).
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= =M MSE m Marg min{ }( 1, ..., )m max (6)

where Mmax is the setting value.

3.2. Prediction for daily extremum of electricity demand

Due to Section 2.3, daily extremum of electricity demand in holiday
is mainly influenced by holiday effect, apart from climatic effect, load
trend effect and temporal effect. Moreover, the holiday effects on daily
extremum of electricity demand vary among holiday types, as shown in
Figs. 5 and 6. Thus, the prediction for daily extremum of electricity
demand is summarized in the following steps:

1) Data normalization;
2) Feature engineering: select the common features and create the

holiday features;
3) Classify holiday by holiday length; select the historical samples with

the same holiday type;
4) Build the XGBoost model trained by the selected historical samples;
5) Output daily maximum P̂h,max and minimum P̂h,min of electricity

demand for the predicted holiday.

3.2.1. Data normalization
Considering the difference among data magnitudes, it is essential to

normalize the data set, which can strengthen the model performance.
Min-max normalization is used in mapping data between zero and one,
described by Eq. (7):

=x x x
x x

˜ min

max min (7)

where x̃ and x are the normalized and original value of indicator, re-
spectively; xmax and xmin are the maximum and minimum value of the
indicator, respectively.

3.2.2. Feature engineering
Feature engineering is vital to STLF, which directly affects the

predictive result [23]. In this paper, we select features primarily ac-
cording to the analysis of holiday load characteristics. Table 1 shows
the features required for predicting holiday daily extremum of elec-
tricity demand. The inputs contains load vector, temperature vector,
temporal vector and holiday vector. Input 1–3 represent the trend
characteristics of load sequence. Input 5–8 can capture the temperature
effects on load sequence during the same period. Input 9 and 10 re-
present the temporal characteristics of holiday load, which has a sig-
nificant impact on holiday load base. Input 4 and Input 11–13 is new

Fig. 7. The structure of the proposed methodology.
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feature created for holiday prediction. Input 4 represents the upper
limit of holiday load. Input 11 classifies the holiday type by holiday
length. In this paper, there exists two holiday types due to Section 2.3.
Input 12 and 13 can capture the inflection points of holiday load, which
determines the trend of holiday load. The above 13 inputs are expected
to recognize the dynamic characteristics of holiday load.

3.2.3. The modeling of XGBoost
There are many matured predictive methods, such as SVM, NN and

deep learning. However, these methods may not be suitable to the
prediction for daily extreme of electricity demand in holiday. SVM has
the advantages of high precision and strong generalization ability, but

not robust to outliers. Although NN has strong ability of self-learning
and non-linear expression, it has the shortcomings of the parameters of
network, the uncertain unit number of the hidden layer and easily
trapped to the local minimal, etc. The good performance of deep
learning only lies in the massive high-dimensional data.

In recent years, a new ensemble learning algorithm XGBoost is
proposed [24], which adopts decision tree as the base learner. It is a
supervised algorithm that stacks all base learners into a strong learner.
The predictive result by XGBoost is equal to the sum of all base learners.
Inspired by the above idea, given the input xi normalized by Eq. (7), the
final predictive value ŷi is formulated as follows:

Fig. 8. The holiday demo for pattern sequence-based matching method.

Table 1
Features required for predicting holiday daily extremum of electricity demand.

Input Type Name Value / Unit

1 Relative to the previous holiday Daily extremum of electricity demand MW
2 Daily extremum of electricity demand before 24 h MW
3 Daily extremum of electricity demand before 168 h MW
4 The last daily extremum of electricity demand before holiday MW
5 Temperature extremum °F
6 Temperature extremum before 24 h °F
7 Temperature extremum before 168 h °F
8 Relative to the predicted holiday Temperature extremum °F
9 Season 1 - spring; 2 - summer; 3 - autumn; 4 - winter;
10 Day type 1–7 - Mon.~Sun.
11 Holiday type 1 - short; 0 - long
12 Holiday position 1–3 / 1–7
13 Legal holiday 1 - yes; 0 - no
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where fk represents the kth decision tree; K is the number of decision
tree; F is the space that contains a set of decision trees.

In the process of regression, the object function of XGBoost is de-
fined as:

= +
=

Obj l y y f( , ^) ( )
i

n

i i
k

K

k
1 (9)

where l y y( , ^)i i means the loss function, measuring the difference between
the prediction ŷi and the target yi; Ω expresses the regularization term,
measuring the model complexity; n indicates the number of target yi.

The expression for Ω is as Eq. (10):

= +
=

f N( ) 1
2node

j

N

j
1

2
node

(10)

where Nnode indicates the number of leaf node in a decision tree; ωj is
the score of the jth leaf node; γ and λ represent the penalty factors.

Because of the additive model in Eq. (8), the forward stage wise
algorithm is used in simplifying the model complexity. In each cycle
when adding a decision tree, the model needs to learn the structure of
the new function for fitting the last predicted residuals. In the zth cycle,
the predictive value of xi: = +y y f x^ ^ ( )i

z
i
z

z i1
1 . Eq. (9) can be rewritten as

shown below:
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The greedy algorithm is adopted for building the decision tree based
on the above object function. Then, a full model of XGBoost is com-
pleted by adding continuously decision trees.

3.3. Prediction for holiday load profile

Finally, the predicted holiday load profile =P P P^ [ ^ , ..., ^ ]h h h,1 ,T is syn-
thesized from the prediction for proportional curve and daily extremum
of electricity demand, as Eq. (12).

= × +P p P P P^ ^ ( ^ ^ ) ^
h h h h h,max ,min ,min (12)

In order to perfectly curve link together the predictive load profile
and day-ahead load profile at 0:00 / 24:00, the segment correction
between 0:00 and the moment of daily minimum P̂h,min of electricity
demand is formulated as follows:

= + × =P P P P t t
t

t t^ ^ ( ^ ) , 1, ...,h t h h h, ,min 1,T ,min
min

min
min (13)

where tmin is the total of time step between 0:00 and the moment of
daily minimum P̂h,min of electricity demand; Ph-1,T represents the actual
load at 24:00 in the day-ahead load profile.

4. Case study

To validate the proposed methodology, a typical case study on one
provincial capital city in eastern China is carried out. Load data is se-
lected with the sample time of 1 h. The training set is from year 2015 to
2017, and the testing set is in year 2018. For evaluation, the forecasting
error is used with the following expressions:

= ×P P
P

APE
^

100% (14)

where P̂ is the predicted value and P is the actual value.

4.1. The prediction analysis for daily extremum of electricity demand

May day (1st May) and Spring Day (16th Feb) in 2018 are used for
verification in the prediction analysis for daily extremum of electricity
demand. In Fig. 9, a comparison of forecasting errors for cases con-
sidering and not considering holiday features and holiday classification
is conducted using XGBoost. It can be seen that the forecast errors are
reduced by considering holiday feature created and holiday classifica-
tion. The average errors of Case 1–4 are 1.34%, 5.16%, 4.63% and
8.25%, respectively. It demonstrates the importance of holiday features
created and the need for holiday classification.

Moreover, the forecast errors by XGBoost are computed, compared
with other algorithms, as shown in Fig. 10. This experiment is con-
ducted considering holiday features and holiday classification. The
average errors are 1.34%, 4.93%, 2.97%, and 2.83% for XGBoost, SVM,
BPNN (back propagation neural network), and RF (random forest),
respectively. This means that XGBoost outperforms other algorithms in
prediction. Despite some algorithms could perform better on certain
cases, such as BPNN in Spring Day P̂h,min, XGBoost is more stable and
reliable to predict the daily extremum of electricity demand.

4.2. The prediction analysis for the proposed methodology

In this experiment, the proposed methodology is used in holiday
STLF of May Day 3-days holiday and Spring Day 7-days holiday in
2018. Figs. 11 and 12 show their diagrams concerning the predicted

Fig. 9. Comparison of forecast errors for cases using and not using the holiday features and holiday classification.
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and actual load curves. Their predictive results are also seen in Tables 2
and 3.

From Figs. 11 and 12, the proposed methodology can grasp the main
holiday load characteristics with a relatively high accuracy. The
average errors of 24 h load forecast errors for May Day 3-day holiday
and Spring Day 7-day holiday are in a very small range, 3.28% and
2.78%, respectively. Most errors of daily extremum of electricity de-
mand are in 2.5%. Although some days exist little gaps between the
predicted and actual load curves at some points, the main reason is that
too high holiday effects are difficult to handle with. Take 30th April and
17th Feb as examples. The midday sharp reduction rarely happens in
the history. Despite the prediction for daily extremum of electricity
demand is satisfactory, it is hard to find a historical similar proportional
curve for matching, which leads to the larger forecast errors. Another
example is 15th Feb. Despite the predicted and actual load curves are
similar in load shape, the inaccurate prediction for daily maximum of
electricity demand also influences the accuracy. But overall, the pro-
posed methodology are acceptable for holiday STLF.

Moreover, the forecast errors of all the holidays in 2018 by the
proposed methodology are computed, compared with other algorithms.
Table 4 shows the holiday comparison of 24 h load forecast errors by
different algorithms in 2018. Through comparison results can be drawn
the following conclusion:

1) The proposed methodology gives much better forecasting accuracy
with an average error 2.98%. Compared with other methods, about
1/4 to 1/2 of forecasting error is reduced.

2) Because of weak robustness, SVM can not play to its advantages in

holiday STLF. Although BPNN performs better than the proposed
methodology in some cases, it loses its stability. RF has the ad-
vantages of high prediction accuracy, strong robustness and few
parameters, avoiding over-fitting effectively. However, RF is ori-
ginally designed for classification problem, so it can not take its
advantages in STLF problem. Moreover, these algorithms are mod-
eled by holiday load profile, whose characteristics are complex and
difficult to mine directly. That is why the accuracy can not be im-
proved by these algorithms.

3) The proposed methodology divides holiday STLF problem into two
prediction problems. The prediction for proportional curve can en-
hance the shape similarity of holiday load curve and overcome the
problem of small observation set in holiday STLF problem. The
prediction for daily extremum of electricity demand takes many
factor effects headed holiday features and holiday classification into
account, which contributes to the accuracy improvement of holiday
STLF.

To verify the applicability of the proposed methodology, it has also
applied to the other surrounding cities in the same province. Table 5
provides the mean of APE (MAPE) of holiday STLF using different al-
gorithms on each city in 2018. From Table 5, we can observe that the
proposed methodology outperforms the other algorithms in most cities.
The averaged improvement of forecasting accuracy using the proposed
methodology is between 0.71% and 2.98%. Hence, our methodology is
robust and adaptive to different cities, which ensures its high precision
in holiday STLF.

Fig. 10. Comparison of forecast errors by different algorithms.

Fig. 11. Holiday load forecasting for May Day 3-days holiday in 2018.
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5. Conclusion

In this paper, a novel hybrid prediction model based on pattern
sequence-based matching method and XGBoost is proposed for holiday
STLF problem. Two essential properties of holiday load characteristics
are introduced, namely proportional curve and daily extremum of
electricity demand. The properties of each holiday load profile can be
uniquely identified by them. Then, the proposed methodology divides
holiday STLF problem into two independent prediction tasks, which
contributes to the law mining of holiday load characteristics. We mainly

compare our methodology with many algorithms on one provincial
capital city to illustrate its feasibility. The case studies show that the
performance metrics are improved. From the comparative experimental
analysis for predicting daily extremum of electricity demand, the im-
provement is due to the holiday feature created, holiday classification
and the selected XGBoost model. From the comparative experimental
analysis for predicting holiday load profile, the improvement is due to
the mechanisms of task decomposition and synthesis and pattern se-
quence-based matching method.
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