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A B S T R A C T

In Brazil, the transmission assets are remunerated for their availability regardless of the full utilization of their
capacities. The annual allowed revenue for each transmission utility is determined by the Brazilian Electricity
Regulatory Agency (ANEEL). ANEEL has been using Data Envelopment Analysis (DEA) to define the regulatory
operational expenditure (OPEX) for each utility, a key element for the annual allowed revenue assessment. Based
on the ANEEL's DEA model this work proposes improvements in representing the quality of service, transmission
capacity and transmission network length in the DEA model. Furthermore, this paper presents a more robust
methodology to evaluate the regulatory operational expenditure of transmission utilities by applying several
distinct DEA models; then a global efficiency score is defined by the geometric mean of the efficiency scores
resulting from the set of DEA models analyzed. The performance of the proposed approach is illustrated with real
data of the Brazilian transmission utilities.

1. Introduction

In several countries the economic regulation of transmission com-
panies (TRANSCOS) takes place by controlling their revenues. For ex-
ample, in Brazil, the transmission utilities are remunerated for their
availability regardless of the full utilization of their capacities. In order
to overcome the asymmetry of information between the regulator and
the TRANSCOS the Brazilian Electricity Regulatory Agency (ANEEL)
has utilized the Data Envelopment Analysis (DEA), a technique based
on Linear Programming [1], to define the regulatory operational ex-
penditure (OPEX) for each utility, a key element for the annual allowed
revenue assessment [2–4].

The DEA approach provides an ideal framework for implementing
regulation strategies based on benchmarking [5], for example, the
ANEEL's DEA model quantifies an efficient frontier that indicates the
lowest OPEX level for a given size of the transmission utility and
compute an efficiency score for each utility based on its distance to the
efficient frontier. The efficient frontier is the benchmarking for the in-
efficient utilities; so, the DEA approach identifies the best performance
standards (benchmarks and peer sets) to be followed by the inefficient
utilities.

Since 2007 the methodology adopted by ANEEL to define the effi-
cient operating expedinture levels for the Brazilian distribution and
transmission utilities has been based on the DEA approach [6]. During

this time the ANEEL's DEA model has been evolved by incorporating
improvements from public hearings. Despite the advances achieved,
some aspects can still be improved.

The objective of this work is to propose a more robust methodology
to evaluate the regulatory operational expenditure of transmission
companies by applying several DEA models with distinct return to scale
(RS) assumptions (constant - CRS, variable - VRS and non-decreasing -
NDRS) [1] as well as the cross efficiency analysis (Cross DEA approach
[7,8]). A global efficiency score is defined as the geometric mean of the
efficiency scores obtained from the set of DEA models analyzed. In
addition, a more appropriately representation of the quality of service,
transmission capacity and transmission network length in the DEA
model is suggested. The proposed approach is applied to the trans-
mission utilities database provided by ANEEL for the period 2013 to
2016.

The outline of the paper is as follows. Section II introduces the
classical DEA models CRS, VRS and NDRS. Next, section III presents the
Cross DEA approach. Section IV describes the main aspects of the
ANEEL's DEA model. The proposed model and the main results
achieved are discussed in sections V and VI respectively, Finally, section
VII presents the main conclusions.
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2. Classical DEA models

2.1. Constant return to scale – CRS

Proposed by Charnes, Cooper and Rhodes [9], the DEA approach is a
technique widely used to assess the efficiency of organizations (Deci-
sion Making Unit - DMU) in a same economic sector and that convert
quantities of multiple inputs to produce quantities of multiple outputs.
In the general case, a DMU uses multiple inputs X = (x1,…,xs) to
produce multiple outputs Y = (y1,…,ym). Under the resource con-
servation assumption (input orientation), the efficiency score θ
(0≤θ≤1) of a DMU is defined as the maximum radial contraction of
the input vector X that can produce the same vector of outputs Y:

= ∈θ θX YEfficiency Min{ |( , ) production possibility set} (1)

The optimization problem in (1) is modeled by the linear pro-
gramming problem (LPP) in (2), where the variables X and Y corre-
spond, respectively, to the input and output data from N DMUs, and j0
is the index of the evaluated DMU.
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The LPP in (2) is called CRS DEA model in the input-oriented en-
velopment formulation. The DMUj0 is efficient if and only if θ=1 and
all slacks variables are equal to zero. However, if θ=1 and any slack
variable is non-zero, DMUj0 is weakly efficient [10]. If θ<1 DMUj0 is
inefficient, in this case the efficient DMUs are associated with the dual
variables λj> 0 ∀ j = 1,N and form the peer set of the DMUj0.

Alternatively, the efficiency score can be defined by the following
ratio:

= = +…+ +…+θ u y u y v x v xEfficiency ( )/( )m m s s1 1 1 1 (3)

where U=(u1,…,um) and V=(v1,…,vs) correspond to the weight vectors
assigned to the outputs and inputs, respectively.

From the linear programming duality theory and based on (3), we
have that the dual of the LPP (2) is the LPP in (4), which corresponds to
the input-oriented CRS DEA model in the multipliers formulation. LPP
(2) or LPP (4) must be solved for each DMU in order to calculate its
efficiency score. In the case of LPP (4), the DMUj0 is fully efficient if
θ=1 and all weights in U and V are positive in the optimal solution.
However, if θ=1, but some weights are zero, DMUj0 is considered
weakly efficient; otherwise if θ<1 the DMUj0 is inefficient.
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2.2. Variable return to scale - VRS

The CRS DEA model was originally developed for comparing a set of
reasonably homogenous DMUs and then faces difficulty to be applied to
the Brazilian transmission utilities due to the existence of larger and
smaller DMUs, thus forming a heterogeneous set [11]. The DEA model
with variable returns to scale (VRS) [12] overcomes this difficulty [13]
by introducing a convexity constraint (λ1+λ2+…+λN=1) in LPP (2)
or by including an unconstrained variable in LPP (4). Nevertheless, the
VRS model classifies as efficient the DMUs with the lowest input levels
or the highest output levels at least in one variable. For example, in the
DEA VRS model, it is enough for a transmission utility to present the
largest network extension to be classified as efficient, regardless of its
OPEX. However,the fact that an utility has the largest network or the
largest installed capacity does not mean that it is efficient.

2.3. Non-Decreasing return to scale - NDRS

A criticism of the DEA VRS model is that, due to the convexity
hypothesis, the VRS efficiency frontier is not characterized by constant
or increasing returns to scale across the entire frontier, but decreasing
returns to scale if the level of activity increases beyond the optimal
scale. Such characteristic of the VRS frontier can lead to optimistic ef-
ficiency assessments, making it difficult to meet the objectives of an
incentive regulation scheme, whose purpose is to build mechanisms
that stimulate productivity gains [6].

An alternative is the non-decreasing return to scale model - NDRS, a
variant of the VRS model where the convexity constraint λ1+λ2+…
+λN=1 is replaced by the inequality λ1+λ2+…+λN≥1. The NDRS
DEA model recognizes that smaller DMUs operating in the range of
increasing returns to scale (operate on a suboptimal scale) should not be
penalized by imposing the CRS frontier. For these utilities the frontier is
defined by the VRS model. In other hand, for larger DMUs (operating in
the range of decreasing returns to scale), the NDRS model imposes the
CRS frontier as a way of encouraging their cost reduction.

2.4. Frontiers according to CRS, VRS and NDRS models

Classic DEA models assume that the production possibility set (PPS)
is convex. As illustrated in Fig. 1 for the case with one input and one
output, the shape of the PPS under the efficiency frontier depends on
the assumptions for the return to scale regime. The point D in the in-
terior of the PPS represents an inefficient DMU under all assumptions
for the return to scale. The DMU at point C is efficient only under VRS
assumption, while DMU at B is efficient under NDRS or VRS assump-
tions. Under CRS assumption only DMU at point A is efficient. This

Fig. 1. Efficiency frontier for different return to scale assumptions.
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simple example shows that θVRS≥θNDRS≥θCRS.

3. Cross-Evaluation - CEA

The classical DEA models described in section II can assign zero or
unrealistic weights to inputs and outputs and it may result in over-
estimated efficiencies [7]. One way to mitigate this problem is to in-
clude weight constraints in the DEA LPP model. However, the weight
constraints intrinsically bring with some degree of arbitrariness and
relies on the discretion of the regulator to interpret the relative im-
portance of each variable. An alternative is the Cross Efficiency Analysis
(CEA) [7,8], where the efficiency of a DMU is assessed according to the
optimal weight schemes of the other DMUs, i.e., efficiency scores are
assessed from the point of view of the other utilities (peer appraisal
evaluation). In this case, the cross-efficiency of a DMU q based on the
weights of a DMU k is defined by the following ratio:

∑ ∑=
= =

E u y v x/kq
i

outputs

ik iq
j

inputs

jk jq
1 1 (5)

where uik and vjk are the optimal weights for DMU k applied to the yiq
outputs and xjq inputs of the DMU q.

In a set with N DMUs, the efficiency scores calculated by the CRS
model and the cross-efficiency can be arranged in a matrix, as shown in
Table 1. The resulting efficiencies from the CRS model are arranged in
the diagonal. The k-th row shows the cross-efficiencies scores computed
with the weights for DMU k , while the k-th column holds the cross-
efficiencies scores of the k-th DMU calculated with the weights of the
other DMUs.

In order to improve the discrimination between DMU efficiencies,
aggressive formulation [14] is recommended. The same formulation
was used to assess the efficiency of Taiwan's electricity distribution
utilities [15] and to evaluate the efficient operating expenditure of the
Brazilian distribution utilities [16]. In the aggressive formulation, the
cross-efficiency score for the DMU q, under the point of view of DMU k
(Ekq), is based on the weights u and v determined by the optimal so-
lution of the LPP (6). Note that LPP (6) considers the DMU efficiency
score (Ekk) calculated by the DEA CRS model. The constraint (6.1) is
part of the linearization of the CRS model, the constraint (6.2) is the
linearization of Eq. (5) for q = k, the constraints (6.3) ensure that all
cross-efficiencies are less than or equal to 1 and constraints (6.4)
guarantee non-negative weights. The benevolent version of cross-as-
sessment corresponds to the maximization of LPP (6).
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In the CEA approach, the efficiency of a DMU k corresponds to the
average of all values in column k of the cross-efficiency matrix, but
without taking into account the self-efficiency Ekk, i.e., the average of
cross-efficiencies in (7). The efficiencies resulting from the CEA ap-
proach are generally lower than those obtained by the classical DEA
models.
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4. ANEEL's DEA model

The first tariff review cycle of the Brazilian transmission utilities
was in 2007 [6,11]. Since then four tariff review cycles have passed
while the ANEEL has been improved the DEA model for the definition
of efficient operating expenditure levels of the transmission utilities
[11]. Basically, the operational cost drivers of a transmission utility are
related to the operation and maintenance actions to keep the trans-
mission capacity available, represented by the amounts of four physical
assets: transformation capacity (MVA), network length (km), number of
substation equipment (power transformers and reactors) and number of
switching modules. These physical assets characterize the size of the
transmission network, a proxy of the available capacity, which is the
main output of a TRANSCO. For a given output level, a TRANSCO
should produce it at the lowest operational expenditures (OPEX).
Therefore, in order to achieve an efficiency score that indicates how
much each TRANSCO should reduce its OPEX, ANEEL proposed an
input-oriented DEA model, in which the total OPEX is the only input
and the quantities of the physical assets mentioned above are the out-
puts [6,11]. With respect to return to scale, ANEEL has adopted non-
decreasing return to scale (NDRS).

The DEA model proposed in the first tariff review of transmission
utilities has been improved through successive tariff review cycles.
Nevertheless, the latest version described in Technical Note ANEEL
204/2019 [4] preserves the key features of the first DEA model. Basi-
cally, the main differences between the current DEA model and the
model adopted in the first tariff review cycle lie in the following points
[11]:

• Introduction of the total duration of outages to represent the quality
of service as an output variable. Previously ANEEL used the inter-
rupted power as a quality proxy [2].

• The installed capacity is represented by two variables: the total MVA
(transformers) and total MVAr (reactor powers, series and shunt
capacitor banks, synchronous and static compensators and filter
banks). Previously ANEEL used the sum of MVA and MVAr [2].

• Breakdown of the transmission network length in two output vari-
ables: total length of networks with voltage up to 230 kV and total
length of networks with voltage equal or greater than to 230 kV.

• Breakdown of the number of switching modules in two output
variables: total number of switching modules with voltage up to
230 kV and total number of switching modules with voltage equal or
greater than to 230 kV.

• Breakdown of the number of substations equipment in two output
variables: total number of substation equipment with voltage up to
230 kV and number of substation equipment with voltage equal or
greater than to 230 kV.

• Introduction of weights constraints [11].

• The efficiency scores are obtained by a two-stage process.

• The rule to normalize the efficiency scores

Table 1
Cross-efficiency matrix.

DMU 1 2 3 … k … N

1 E11 E12 E13 … E1k … E1N
2 E21 E22 E23 … E2k … E2N
… … … … … … … …
k Ek1 Ek2 Ek3 … Ekk … EkN
… … … … … … … …
N EN1 EN2 EN3 … ENk … ENN
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Then the current DEA model adopted by ANEEL has eight outputs
variables and only one input variable (OPEX), as illustrated in Table 2.

The outages compromise the transmission capacity availability;
then the total duration of outages is an undesirable output, i.e. an
output that should be minimized. There are several approaches for in-
cluding undesirable outputs in a DEA model [17]. In the ANEEL's ap-
proach the total duration of outages is a non-discretionary input [13].

The latest version of the DEA model proposed by ANEEL catch the
effect of transmission line voltage levels by classifying the transmission
lines in two voltage classes: lines with voltage up to 230 kV and lines
with voltage equal or greater than to 230 kV. Therefore, the network
length, the number of switching modules and the number of substation
equipment are computed separately in each voltage range. This ap-
proach creates some output variables with null values as illustrated in
Table 2, a feature that conflicts with the assumption of positivity of
input and output variables in the DEA model [13]. In addition, in order
to avoid null and unrealistic weights ANEEL introduced the constraints
(8) to (15) on the ratios of input and output weights. Unfortunately, the
limits are based on information not disclosed by the regulatory agency
[11].
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Finally, ANEEL began defining efficiency scores through a two-stage
process [13]: in the first one, the weight-constrained DEA NDRS model
computes an efficiency score for each TRANSCO; next, in the second
stage, a regression model is fitted in which the dependent variable is the
efficiency score resulting from DEA model and the explanatory vari-
ables are environmental variables [11].

5. Proposed DEA model

Despite the advances in the DEA model adopted by ANEEL, the
authors believe that there is room for further improvements. The results

from first stage is of paramount importance once it determines the
subsequent results. In this sense, the proposal presented in this work
aims to improve the first stage of the DEA model.

In the DEA model adopted by ANEEL the transmission lines are
segregated into two voltage ranges: <230 kV and ≥ 230 kV. However,
some TRANSCOS do not operate in voltage levels below 230 kV; thus,
some DMUs present null value for the output variable network length
< 203 kV, which conflicts with the assumption of positivity of the input
and output variables. Therefore, in order to avoid this problem, it is
proposed to replace the output variables network length below and
above 230 kV by only one output variable defined by the Weighted Sum
of Network Length (WSNL):

∑ ⎜ ⎟= ⎛
⎝

⎞
⎠=

WSNL
construction cost per km at i kV

construction cost per km at kV
km

69i kV

kV

i
69

750

(16)

where kmi is the network length at voltage level i ∀ i = 69 kV,…,
750 kV.

In (16) the transmission lines lengths (km) are weighted by the
coefficients in Table 3 [6] whose values are based on the reference costs
for construction by voltage levels in Fig. 2.

Furthermore, the output variables corresponding to the number of
substation equipment and number of switching modules, in the voltage
ranges <230 kV and ≥ 230 kV, are replaced by only two variables: the
total number of substation equipment and total number of switching
modules. This also avoid output variables with null values.

The second proposal aims to improve the representation of the
outages duration (quality) in the DEA model. The outage is a typical
example of undesirable output [17]. As illustrated in Table 2 there is a
DMU with null value in the output variable reactive power lower than
230 kV. Then, we propose replace the variables transformation capacity
(MVA) and reactive power (MVAr) by the Expected Installed Capacity
(EIC) in (17) where we introduce an unavailability factor based on the
total outage duration.

Table 2
Inputs and outputs statistics - ANEEL´s model.

Variable Unit Min Mean Max

Total duration of outages min/year 71 35,354 212,779
Network extension < 230 kV km 0 880 6,533

≥230 kV km 687 6,388 17,759
Reactive Power MVAr 0 7,610 37,734
Substation equipment < 230 kV units 0 97 376

≥230 kV units 24 263 661
Switch modules < 230 kV units 6 425 1,676

≥230 kV units 20 344 982
Transformation capacity MVA 1,407 24,376 93,031
OPEX 1000 R$ 12,295 364,143 1,394,273

Table 3
Coefficients per voltage level.

Voltage Weight

69 kV 1.0000
88 kV 1.0013
138 kV 1.2906
230 kV 1.7657
345 kV 2.2472
440 kV 3.0369
500 kV 3.5946
600 kV 3.9621
750 kV 4.8070

Fig. 2. Reference costs for construction, adapted from [6].
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In (17) Δ is the total outage duration (hours) in the period of study
and the 8,760 corresponds to the total hours in a year. Then, the ratio
Δ/8,760 is an unavailability factor. The sum of transformation capacity
and reactive power in a single variable means that implicitly the pro-
posed DEA model assigns the same weights for these two output vari-
ables. Thus, the proposed DEA model has only one input - the OPEX,
and four outputs - weighted sum of network length (16), expected in-
stalled capacity (17), number of switching modules and number of
substation equipment.

Finally, in order to overcome the lack of information to define the
limits of the weight constraints we propose to include the cross-eva-
luation (CEA) in the computation of a global efficiency score defined as
the geometric mean of the efficiency scores obtained from the set of
DEA models analyzed.

6. Results

The proposed approach is applied to the annual panel data over the
period 2013–2016 provided by ANEEL [4] for 14 Brazilian TRANSCOS.
The DEA models analyzed include the CRS, VRS, NDRS, and CEA
models. In this case study, each TRANSCO in a given year correspond to
one DMU. Thus, for example, the performance of a utility in 2016 is
compared with the performance of its counterparts over the four years
and also with its own performance in the remaining years. In all, 56
DMUs were analyzed. This approach allows the analysis of the evolu-
tion of each utility, considering that significant technological change
was not observed over the analyzed period, a plausible hypothesis for
the electricity transmission business [6].

Tables 4–6 show the efficiency scores from the CRS, VRS and CEA
models respectively. The results were generated with the aid of the
Benchmarking and MultiplierDEA packages available for the R project
[18].

The efficiency scores from NDRS model are similar to the results
shown in Table 4, as illustrated by the high correlation between the
results from CRS and NDRS models in Table 7.

It is noteworthy that in the CEA approach a constant return of scale
is considered [19]. Figs. 3 and 4 show the boxplots and histograms of
the efficiency scores from different DEA models. As illustrated in Fig. 3,
the VRS model presented the most optimistic efficiency estimates, while
the CEA provides the most pessimistic ones. Table 7 shows the negative
correlation between the OPEX and the efficiency score, but in the VRS
model this correlation has no statistical significance. It shows the ex-
tremely optimistic behavior of VRS models. Additionally, there is a
large similarity between the results from the CRS and NDRS models,
this shows that few DMUs operate in the efficiency frontier region with

increasing returns to scale and that they are evaluated with higher ef-
ficiency score by the NDRS model. The histograms in Fig. 4 highlight
the differences between the scores computed by the CEA and VRS
model and the similarity between the results from CRS and NDRS

Table 4
Efficiency scores from DEA/CRS model.

Utility 2013 2014 2015 2016

A 0.603 1.000 0.929 0.949
B 0.583 0.784 0.769 1.000
C 0.922 0.849 0.994 1.000
D 0.865 0.821 0.667 0.594
E 0.591 0.672 0.789 1.000
F 0.421 0.467 0.464 0.475
G 0.456 0.619 0.606 0.528
H 0.893 0.891 1.000 0.879
I 0.387 0.398 0.404 0.288
J 0.322 0.443 0.417 0.399
K 0.341 0.426 0.416 0.446
L 0.910 0.963 0.785 0.859
M 0.402 0.452 0.852 0.861
N 0.620 0.766 0.953 1.000

Table 5
Efficiency scores from DEA/VRS model.

Utility 2013 2014 2015 2016

A 0.603 1.000 0.929 0.958
B 0.584 0.785 0.770 1.000
C 0.923 0.850 0.996 1.000
D 0.866 0.841 0.667 0.599
E 0.601 0.686 0.795 1.000
F 0.721 0.851 0.969 1.000
G 0.457 0.620 0.607 0.529
H 0.900 0.896 1.000 1.000
I 0.421 0.430 0.433 0.318
J 0.375 0.542 0.544 0.529
K 0.788 0.948 0.937 1.000
L 0.945 1.000 0.833 0.931
M 0.479 0.498 1.000 1.000
N 0.632 0.773 0.953 1.000

Table 6
Efficiency scores from CEA model.

Utility 2013 2014 2015 2016

A 0.543 0.900 0.836 0.814
B 0.313 0.426 0.420 0.542
C 0.741 0.694 0.793 0.807
D 0.621 0.614 0.494 0.442
E 0.546 0.623 0.735 0.948
F 0.336 0.376 0.364 0.383
G 0.377 0.506 0.495 0.435
H 0.773 0.774 0.870 0.761
I 0.300 0.309 0.316 0.247
J 0.269 0.367 0.350 0.342
K 0.289 0.358 0.350 0.374
L 0.733 0.782 0.625 0.680
M 0.309 0.353 0.657 0.665
N 0.496 0.604 0.759 0.799

Table 7
Correlation between OPEX and efficiency scores.

CRS VRS NDRS CEA OPEX

CRS 1.0000
VRS 0.7285 1.0000
NDRS 0.9999 0.7278 1.0000
CEA 0.9362 0.6990 0.9354 1.0000
OPEX −0.6531 −0.0675 −0.6546 −0.5994 1.0000

Fig. 3. Boxplots of the efficiency scores of the 56 DMUs.
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models. Table 8 shows the proposed global efficiency score, i.e., the
geometric means (GM) of the efficiency scores for each DMU.

From a pragmatic point of view, it is often difficult to justify the
most appropriate return to scale regime. In these situations, a good
approach is to compute the geometric mean (GM) of efficiency scores
from the different DEA models in order to combine the results in a
unique efficiency score for each TRANSCO. This proposal was suc-
cessfully used when analyzing railway performance in Europe [20]. As
illustrated by Figs. 3 and 4 there is a similarity between the efficiency
scores from ANEEL´s DEA model and the geometric mean (correlation
0.972) of the efficiency scores from CRS, VRS, NDRS and CEA models.

The final efficiency scores from the different approaches are sum-
marized in Fig. 5 where we can observe the extremely optimistic effi-
ciency scores from VRS model to DMUs F and K, the two DMUs have the
highest values in at least one output. In the same Fig. 5 we observe that
the CEA approach are very pessimist for all DMUs, in special for DMU B.
However, the geometric mean mitigates the extremely optimistic and
pessimistic views of the VRS and CEA approaches respectively. Thus,
the geometric mean of the efficiency scores from the four DEA models
leads to a more robust and practical methodology, where the risk of
unduly rewarding agents and penalizing efficient ones is minimized.

The efficiency scores from geometric mean and the ANEEL's DEA
model [4] for the first stage are presented in Table 9 per TRANSCO
across the years. The results achieved are comparable with the effi-
ciency scores from ANEEL`s DEA model before the 2nd stage and nor-
malization [4], but in the proposed approach the assumption of positive

outputs is met and the weight constraints are not necessary.

7. Conclusion

In order to improve the Data Envelopment Analysis model adopted
by ANEEL in the regulation of the operational expenditures of the
Brazilian transmission utilities, the present work propose an alternative
specification. Initially, new definitions for the output variables related
to the installed capacity and network extension were proposed in order
to incorporate the effects of the quality of service and voltage levels. In
addition, the efficiency score were computed considering the different
returns to scale regimes, i.e., the CRS (constant), VRS (variable) and
NDRS (non-decreasing) models. In order to overcome the problem of
unrealistic weighting assigned to the outputs variables without the need
to include weight constraints, the cross-evaluation technique was used.
Then, the efficiency scores were computed by four DEA models. Aiming
a more robust methodology, the final efficiency scores for each utility
are defined by the geometric mean of the efficiency scores resulting
from the four analyzed models. The results achieved are comparable
with the efficiency scores from ANEEL`s DEA model before the 2nd
stage DEA model and normalization, but the assumption of positive
outputs is now met. Finally, the proposed approach offers a practical
alternative to the DEA model with weights constraints.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Fig. 4. Histograms of the efficiency scores for the 56 DMUs.

Table 8
Geometric mean of efficiency scores.

Utility CRS VRS NDRS CEA GM

A 0.854 0.856 0.854 0.759 0.830
B 0.770 0.771 0,771 0.417 0.661
C 0.939 0.940 0.939 0.757 0.890
D 0.728 0.734 0.734 0.537 0.678
E 0.748 0.757 0.748 0.698 0.737
F 0.456 0.878 0.456 0.364 0.508
G 0.548 0.549 0.549 0.450 0.522
H 0.914 0.948 0.914 0.793 0.890
I 0.366 0.397 0.366 0.292 0.353
J 0.393 0.492 0.393 0.330 0.398
K 0.405 0.915 0.405 0.341 0.476
L 0.877 0.925 0.877 0.703 0.841
M 0.604 0.699 0.604 0.467 0.587
N 0.820 0.826 0.820 0.653 0.776

Fig. 5. Efficiency averages for each TRANSCO over 2013–2016.

Table 9
Efficiency scores.

Utility Geometric Mean ANEEL 1st stage

A 0.830 0.865
B 0.661 0.547
C 0.890 0.947
D 0.678 0.747
E 0.737 0.744
F 0.508 0.443
G 0.522 0.522
H 0.890 0.899
I 0.353 0.375
J 0.398 0.379
K 0.476 0.476
L 0.841 0.764
M 0.587 0.576
N 0.776 0.799
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