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A B S T R A C T   

This paper proposes a procedure for the optimal siting and sizing of energy storage systems (ESSs) within active 
distribution networks (ADNs) hosting a large amount of stochastic distributed renewable energy resources. The 
optimization objective is to minimize the ADN’s day-ahead computed dispatch error. The allocation of ESS is de-
termined while taking advantages from their operational features regarding the ADN’s dispatchability. The proposed 
ESS planning is defined by formulating, and solving, a scenario-based non-linear non-convex optimal power flow 
(OPF). The OPF problem is converted to a piecewise linearized OPF (PWL-OPF). The ESS control strategy is designed 
to fully exploit the energy capacity of the ESS. It is integrated within the PWL-OPF to achieve the ADN’s dispatch-
ability regarding all operating scenarios. The Benders decomposition technique is employed to tackle the compu-
tational complexity of the proposed planning problem. The problem is decomposed into two sub-ones: a master 
problem where the allocation of the ESSs is decided, and several subproblems where the dispatchability of ADN with 
the support of the allocated ESS is evaluated through the scenario-based OPF. To validate the proposed method, 
extensive simulations are conducted on a real Swiss grid embedding significant PV generation capacity.   

1. Introduction 

The constant increase of spinning reserve in nowadays power sys-
tems is one of the technical concerns related to the increasing propor-
tion of electricity production from distributed stochastic resources [1]. 
The security of the power system has been traditionally sustained by 
central procurement of regulating power from fast generating units. 
However, the growing uncertainty associated to power generation of 
stochastic resources calls for higher expenses for the procurement of 
conventional reserve. In this respect, the recent literature has advocated 
the provision of flexibility from active distribution networks (ADNs) 
such as demand-side management and energy storage systems (ESSs)  
[2]. In particular, there has been increasing interest in using ESSs in 
ADNs to compensate for the uncertainty of non-dispatchable local re-
sources (e.g., [3,4]). Efforts have been made to achieve dispatchability of 
the ADNs in view of the inherent advantages such as reduction of the 
bulk system reserve provision [1] and mitigation of the imbalance 
penalty charges imposed on distribution system operators (DSOs) [5,6]. 

The dispatchability signifies the capability of the ADN active power 
flow through the grid connecting point (GCP) with the transmission 
netowrk to strictly follow a day-ahead power schedule composed of 

discrete intervals, henceforth called dispatch plan. Due to the inherent 
stochasticity of prosumption1, the realized active power infeed at the 
GCP varies from the dispatch plan. The magnitude of the difference is 
defined as dispatch error. When ESSs are exploited to compensate the 
dispatch error, a DSO of an ADN can have a sufficient capability to 
control the network infeed through the GCP close to the dispatch plan, 
thereby avoiding high penalties for power imbalance [7]. Based on the 
probabilistic forecast of the prosumption and forecast errors, the Au-
thors of [5] computed an optimal dispatch schedule by minimizing the 
power exchange through the GCP, while limiting the occurrences of 
dispatch error during the total operation horizon. Meanwhile, a robust 
optimization approach with an emphasis on control strategy for ESS 
was proposed in [6]. The Authors suggested an operational procedure 
to obtain a dispatch plan taking into account the ESS control strategy 
that can maximize the ESS exploitation to cope with the prosumption 
forecasting uncertainty. However, the algorithm proposed in [5,6] did 
not take into account the network model and associated operational 
constraints, which may lead to solutions that are physically inapplic-
able during the real operation. The operational constraints were ad-
dressed to compute an optimal dispatch plan in [8], but the model did 
not involve any control strategy of ESS. In [9], the Authors presented a 
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control-aware optimal placement and sizing of ESSs by embedding re-
ceding horizon control strategies within a linearized optimal power 
flow (OPF). However, the objective of the problem was to maximize the 
photovoltaic utilization, rather than achieving the dispatchability of the 
targeted grid. 

Notably, the above mentioned studies clearly state that the feasi-
bility of the formulated problems regarding the imbalance constraint is 
heavily dependent on the ESS capacity. There have been papers in 
probabilistic estimation of the required ESS capacity to compensate the 
renewable generation uncertainty to pre-defined extent from the pro-
sumer’s side [10,11]. However, regarding the purpose of achieving the 
dispatchability of the ADN, it is necessary to evaluate the optimal al-
location of ESS in the view of DSOs’ economic profit by considering the 
trade-off between its investment cost and the expected advantages, 
while respecting the technical requirements for the preferred opera-
tional condition of the ADN. 

Based on this fundamental observation, the Authors of this paper 
proposed an OPF-based ESS planning strategy to achieve the dis-
patchability of ADNs in [12]. The objective of the ADN is defined as to 
minimize the dispatch error during the ADN operation horizon. The 
optimization problem regarding the ESS allocation consists of a two- 
stage decision process. The first-stage decision is associated with the 
investment of ESS which is determined by the location and the capacity 
of the ESSs energy reservoirs and power ratings. The second-stage de-
cision is related to the daily operation of ADN with allocated ESSs 
concerning several operating scenarios. 

Meanwhile, the control strategy of ESS can profoundly influence the 
ESS allocation by providing an efficient way to use their capacity for 
handling the local resources’ uncertainties [13]. Therefore, it is worth 

exploring the impact of the control aspect of ESSs while optimizing 
their capacity. However, to the best of the Authors’ knowledge, the 
previous literature has not focused on this specific problem. In this 
respect, this paper is an extension of [12] with an emphasis on the 
integration of ESS control scheme within the planning problem. 

The operation of ESS must adhere to the chosen control strategy 
while ensuring operational conditions of the ADN to be technically 
feasible. Therefore, the performance and reliability of the planning 
tools for ADNs can be guaranteed only when the operational conditions 
of the system are accurately modeled through a proper OPF model. 
Among various approaches, we focus on convex AC-OPF models in view 
of their superiority in guaranteeing the optimality of the solution. 

One of the consolidated approaches for the convexification of the 
AC-OPF is provided by relaxation methods, such as semi-definite pro-
gramming (SDP) [14] or second-order cone programing (SOCP) pro-
posed for radial grids [15]. The SOCP relaxation is preferred in several 
studies for solving the ESS sizing problem thanks to its computational 
efficiency and tractability [16,17]. The Author of [18] pointed out the 
drawbacks of the SOCP relaxation method such as the possible in-
exactness of the solution in the cases of reverse line power flows and the 
cases where the upper bound of nodal voltage and line ampacity con-
straints are binding. Then, the Authors proposed the so-called Aug-
mented Relaxed OPF (AR-OPF), which is capable to guarantee the ex-
actness of the solution by constructing an augmented conservative set 
of constraints. In [12], the AR-OPF model has been leveraged for sol-
ving the optimization problem of the ESS allocation by achieving the 
ADN dispatchability. The objective function for the given problem has 
been deliberately modified to comply with a prerequisite condition of 
the AR-OPF objective function in order to guarantee the exactness of 

Nomenclature 

Sets and Indices 

l up l, ( ) Index and set of nodes 
t Index and set of timesteps 
ϕ  ∈  Φd Index and set of scenarios for day d 
d Index and set of days 
m Index and set of benders iterations 

Index of discretization step for piecewise linearization 

Variables 

Ul ∈  {0, 1} Installation status of the ESS at node l 
Cl Energy reservoir of the ESS at node l 
Rl Power rating of the ESS at node l 
p̃lt Average of the active load over all scenarios at node l for 

time t 
Δplϕt Deviation of prosumption for scenario ϕ and time t from 
p̃lt
f̃lt Average of squared current causing losses over all sce-

narios in line l for time t 
Δflϕt Deviation of squared current causing losses for scenario ϕ 

and time t from f̃lt
DPt Dispatch plan for time t at the grid connecting point (GCP) 
Flt

E Offset profile for the ESS at node l for time t 
ωlϕt Compensated error by the ESSs at node l for scenario ϕ and 

time t 
ϵlϕt Uncovered error at node l for scenario ϕ and time t 
fl Squared current causing losses in line l 
vl Squared voltage magnitude at node l 

= +s p jql l l Aggregated prosumption at node l 
= +S P jQl

t
l
t

l
t Upstream complex power flow to line l 

= +S P jQl
b

l
b

l
b Downstream complex power flow to node l from line 

l 
= +s p jql

E
l
E

l
E Complex power flow of the ESS at node l 

El t
E State-of-energy of the ESS at node l for scenario ϕ and time 

t 
μld, ϑld Dual values at line l and day d for the ESS power rating 

and the energy reservoir 

Parameters 

ϒ Number of discretizations in the piecewise linear approx-
imation function 

y Value of the -th slope used in the discretization of y 
ȳ Maximum value of y. 
bl Half of the total shunt susceptance of line l 

= +z r jxl l l Total longitudinal impedance of line l 
Īl Squared current upperbound of line l 
P Q¯ , ¯l l Maximum value of active and reacitve power flows for line 

l 
v̄\v Upper bound\lower bound of the squared nodal voltage 

magnitude 
Ēl\El Max.\min. state-of-energy levels of ESS at node l 
λϕd Probability of scenario ϕ on day d 
αd Proxy subproblem costs for day d 
¯l\ l Max.\min. ESS energy reservoir at node l 
¯ l\ l Max.\min. possible ESS power rating capacity at node l 
CR Minimum power ramping rate of ESS 

, ,c e p ESS investment costs (fixed installation, energy reservoir, 
power rating) 

wl, wf, we Weight coefficients for the grid losses, offset profile, and 
dispatch error, respectively 

Nd Number of days in each day-type in a year 
Y ESS planning horizon 
T dispatch horizon   
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the solution. The condition states the objective function should strictly 
increase with the grid losses. 

In this paper, embedding the ESS control strategy requires the op-
timization problem to have more flexibility with repsect to the objective 
function. It should be noted that integrating the control scheme within 
the AR-OPF problem might violate the prerequisite condition on the 
objective function for the exactness of the solution. In this regard, we 
choose to utilize an alternative convexification approach through linear 
approximation of the original power flow equations. The linear ap-
proximated model makes the OPF problem more tractable at the ex-
pense of the exactness of the formulation (i.e., the optimal solution of 
the approximated model may not be equivalent to the optimal solution 
of the original OPF problem). The first approach employs the linear 
approximation of nodal voltages and current flows as function of nodal 
power injections [19], [20]. Another approach relies on approximating 
the nonlinear terms in the power flow equations, such as piecewise 
linearized OPF (PWL-OPF). The piecewise linearization method is 
widely used in tackling various research interests in power system 
thanks to its flexibility of implementation [21–23]. It can achieve the 
optimal solution of reasonable quality, with minor approximation error 
from the original OPF solution. 

In this context, PWL method is employed for the ESS control-aware 
planning problem. Moreover, it is noteworthy that the proposed plan-
ning strategy can be applicable not only in radial grids but also in 
meshed grids by using PWL-OPF model. Unlike the existing work re-
lying on the PWL method, we take into account the shunt element of the 
lines in the PWL-OPF model, which can bring a significant impact on 
line current especially in the networks with underground coaxial 
cables. Moreover, we embed the operational strategy for ESS to utilize 
its energy capacity optimally to cope with uncertainty in the power 
flow through the distribution feeder. The planning problem is for-
mulated as a mixed-integer linear programming (MILP) problem, which 
is notorious for its computational intractability. In this respect, the 
Benders decomposition is employed [24]. The contributions of the 
paper are listed below.  

1. The optimal allocation of ESSs is determined based on an piecewise 
linear approximation of the full AC-OPF to achieve the dispatch-
ability of an ADN hosting a high capacity of stochastic renewable 
generation.  

2. The control-aware approach embeds the maximum exploitation of 
ESSs capacity, and is integrated into the ESSs planning problem. 

The structure of the paper is as follows: in Section 2, we describe the 
proposed method and the differences with respect to our former work  
[12]. In Section 3, the proposed problem formulation and solution 
approach are described, followed by a specific case study illustrated in  
Section 4. Finally, Section 5 concludes the paper. 

2. The method 

In this section, the main characteristics of the proposed method are 
described. The formulation of the operational strategy to achieve dis-
patchability of ADN is recalled and then followed by the description of 
the modified PWL-OPF model. 

2.1. Key differences with AR-OPF planning approach [12] 

In spite of the shared objective and the similar decision making 
stages, [12] and this paper have significant differences in the solution 
approach for the OPF problem and the overall structure of the problem 
formulation. 

The right-hand side of Fig. 1 depicts the full algorithm for the ESSs 
planning scheme presented in [12]. In [12], the primary interest lies in 
obtaining an exact optimal solution regarding the operating points for 
the considered operation horizon. Therefore, the construction of the 

problem is centered around the compliance with the condition for 
guaranteeing the exactness of the optimal solution of the AR-OPF 
model, which requires the objective function to be strictly increasing 
with the total grid losses. However, the dispatch error2 does not in-
crease while the total grid losses increase. 

In this regard, we separately treated the objective of minimizing the 
dispatch error apart from the AR-OPF problem by introducing it into 
the objective function of the first block problem. It solves the optimal 
planning problem of ESS with a simplified linear OPF neglecting the 
line losses. The role of the 1st block is to yield the optimal leftover 
dispatch error rate (LDER) considering both the ESSs investment cost 
and their operational benefit. The LDER then serves as an operational 
constraint for the OPF problem formulated with the non-approximated, 
but convex, AR-OPF model in the second block. The second block is 
decomposed into a master problem and several parallel subproblems. 
The master problem seeks for the optimal allocation taking into account 
the subproblem costs, which evaluate the suffciency of the ESS capacity 
to comply with the LDER constraint over all prosumption scenarios. 
Through the Benders decomposition, the allocation of ESS is de-
termined such that the LDER constraint can be satisfied with negligible 
or no load curtailment. It is worthwhile to know that the OPF problem 
defined in each subproblem lacks the inclusion of ESS control strategy. 

In this paper, we put our attention primarily on maximizing the 
controllability of the allocated ESS asset by implementing the control 
strategy of ESSs within the OPF problem. In this respect, the PWL-OPF 
model is selected to approximate the full AC-OPF. It enables enhancing 
the flexibility regarding the choice of objective by relaxing the exact-
ness of the solution, so that the control strategy for ESS can be added to 
the objective function of the PWL-OPF problem along with the objective 
term regarding the minimization of dispatch error. Unlike in [12], the 
decision process of the ESS allocation can start directly with the initial 
stage of the Benders decomposition (see the left-hand side of Fig. 1). As 
the Benders iteration progresses, the optimal LDER is determined 
within the subproblems in terms of the operational benefit brought by 
the ESS allocation. 

2.2. Construction of the dispatch plan 

As described in (1) and (2), the active prosumption and the grid 
losses are respectively expressed by two components: prediction, and 

Fig. 1. The full algorithm: (a) This paper, (b) [12].  

2 The associated mathematical formulation is further discussed in Section 2.2. 
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deviation from the prediction point (we would define it as error here-
after). The total error of prosumption and line losses over all nodes and 
lines is equivalent to dispatch error in case of no ESS. Once an ESS gets 
installed, the total error can be compensated by the installed ESSs as 
much as their capacity allows. In order to quantify the error covered 
and not covered by the ESSs, we express the dispatch error as (3). ωlϕt 

and ϵlϕt represent the error covered by ESS and the leftover error that 
cannot be covered at each node l with respect to scenario ϕ and time t, 
respectively. The sum of leftover error over all nodes corresponds to the 
observed dispatch error in each operating scenario. 

= +p p p l t˜ , , ,lt l t l t d (1)  

= +r f r f r f l t˜ , , ,l lt l l t l l t d (2)  

+ = +p r f t( ) ( ), ,
l

l t l l t
l

l t l t d
(3)  

The daily dispatch plan is determined by the predicted point of the 
total prosumption considering the grid losses. The prediction profile of 
prosumption is calculated by averaging the scenario profiles [6], con-
sidering that the prosumption scenarios for each day are generated 
assuming the prosumption profile follows a normal probability dis-
tribution. More importantly, the daily dispatch plan also includes ESSs 
control term, namely the so-called offset profile, to maximize the ex-
ploitation of the ESSs capacity to cover the uncertainty of the pro-
sumption [6]. The objective of the offset profile is to restore an ade-
quate ESSs state-of-energy (SoE) so that enough flexibility is available 
within ESSs to compensate upcoming error between the predicted and 
the realized prosumption during operation. For example, assume that 
the current SoE of the ESS is near SoE limit, and the high uncertainty 
(i.e. the realized prosumption deviates from the forecasted prosumption 
with large magnitude.) is expected in upcoming time intervals. Then, 
the offset profile assigned to each allocated ESS takes value to bias the 
dispatch plan to charge/discharge to/from the ESS, such that the SoE 
level of the ESS is adjusted to a state capable to compensate for the 
largest realizations of prosumption forecast errors. It makes the ESS 
have a high capability of compensating for the uncertainty projected up 
to the end of the dispatch horizon. 

Eq. (4) indicates that the offset profile Flt
E is assigned to the ESS 

allocated at node l, where Z stands for a big number. The ESS active 
power dispatch at node l is determined at every time interval t with the 
offset profile and the power compensating the error at the GCP, as 
shown in (5). 

F Z U l t| | * , ,lt
E

l (4)  

= +p F l t, , ,l t
E

lt
E

l t d (5) 

Each offset profile assigned to an ESS is added into the dispatch plan. In 
this way, the energy required to restore the appropriate SoE can be 
embedded in the dispatch plan. The dispatch plan for an ADN con-
sidering grid losses is finally expressed as (6) by incorporating (1) and  
(2), along with the offest profiles. 

= + +DP F p r f t( ˜ ˜ ),t
l

lt
E

l
lt l lt

(6)  

Finally, achieving the dispatchability during the operation horizon 
can be mathematically expressed by minimizing the sum of the absolute 
value of the uncovered dispatch error for all the considered prosump-
tion scenarios in set Φd during the dispatch horizon T. On top of that, in 
order to leverage the ESSs control strategy, the sum of the absolute 
value of the offset profiles associated to ESSs over all time intervals is 
embedded in the minimization problem. In this way, the dispatch plan 
is optimally determined such that the dispatch error is minimized with 
the maximum exploitation of ESS controlled by the offset profile. 

2.3. Piecewise linear optimal power flow 

The operational benefit of ESS allocation for the ADN is evaluated 
through solving daily OPF problems. The OPF formulation for a radial 
power network is derived by applying the Kirchhoff’s law to Fig. 2, 
which depicts the line model for a radial power network. The power 
flow equations are given in (7a)-(7d). G is the adjacency matrix of the 
network, where Gk,l is defined for k l, and =G 1k l, if =k up l( ) or 0 
if not. The grid security constraints regarding nodal voltages and the 
line ampacity are expressed with (7e) and (7f), (7g) respectively. 

= + + +S s S z f v v b lG ( ) ,l
t

l
m

l m l
t

l l up l l l, ( )
(7a)  

= +S s S lG ,l
b

l
m

l m l
t

,
(7b)  

= + +v v z S jv b z f l2 ( * ( )) | | ,l up l l l
t

up l l l l( ) ( )
2R (7c)  

=
+ +

= +f
P Q v b

v
P Q v b

v
l

| | | | | | | | ,l
l
t

l
t

up l l

up l

l
b

l
b

l l

l

2
( )

2

( )

2 2

(7d)  

v v v̄l l l (7e)  

+P Q
v

I l| | | | ¯,l
t

l
t

up l
l

2 2

( ) (7f)  

+P Q
v

I l| | | | ¯ ,l
b

l
b

l
l

2 2

( ) (7g)  

(7d), (7f), and (7g) contain quadratic terms and fraction terms 
which make them non-convex, and thus computationally burdensome. 
Therefore, we apply a piecewise linearization and simplification on the 
non-linear terms. The first stage is to slimplify the fraction term by 
replacing the denominator variables associated with the nodal voltage 
magnitude in (7d), (7f), and (7g) with the voltage lowerbound (vl). This 
results in upper approximation on the line current and the current 
causing the grid losses. In this way, the simplification ensures the fea-
sible operation of ADN over the operating scenarios by building con-
servative constraint on the line ampacity. Taking only the first part of  
(7d), the equation is simplified to (8a). (7f) and (7g) is replaced with  
(8b) and (8c). 

= + +v f P Q v b l| | | | ,l l l
t

l
t

up l l
2

( )
2 (8a)  

+P Q v I l| | | | ¯ ,l
t

l
t

l l
2 2 (8b)  

+P Q v I l| | | | ¯,l
b

l
b

l l
2 2 (8c)  

Then, we linearize (8a)-(8c) by applying the PWL method on the 
quadratic terms: P P Q Q| | ,| | ,| | , | | ,l

t
l
b

l
t

l
b2 2 2 2 and +Q v b| | ,l

t
up l l( )

2 by utilizing a 
piecewise linear approximation function [21] formulated by the equa-
tions below. 

P f P P l| | ( , ¯ , )l
t

l
t

l
2 (9a)  

Q f Q Q l| | ( , ¯ , )l
t

l
t

l
2 (9b)  

P f P P l| | ( , ¯ , )l
b

l
b

l
2 (9c)  

Q f Q Q l| | ( , ¯ , )l
b

l
b

l
2 (9d)  

Fig. 2. Classic two-port Π model of a transmission line adopted for the for-
mulation of the OPF relaxed constratins [18]. 
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+ +Q v b f Q v b Q l| | ( , ¯ , )l
t

up l l l
t

up l l l( )
2

( ) (9e) 

where P̄l and Q̄l are chosen as the maximum active power flow and 
reactive power flow over all scenarios and timesteps for each line, 
which are obtained by running a preliminary load flow with the se-
lected stochastic prosumption scenarios. The piecewise linear approx-
imation function f y y( , ¯, ) approximates the quadratic curve of y as 
shown in (10a). 

=
=

f y y( , ¯, ) y y

1 (10a)  

= + + +y y y y y, , (10b)  

+ =+

=
y y y

1 (10c)  

= …y0 ¯/ 1, ,y (10d)  

= = …y(2 1) ¯/ 1, ,y (10e)  

(10b) says that y is expressed by subtracting two non-negative 
variables +y and y , which represent the positive value of y and the 
negative value of y, respectively. In this way, the absolue value of y can 
be expressed by the two variables as shown in the left-hand side of  
(10c). An auxilary variable y is introduced to determine the step size 
for the piecewise discretization of the aboslute value of y. Each step size 
is optimally decided within the range specified in (10d), which is 
governed by the number of discretized segments and ȳ which stands for 
the maximum value of y. With each discretization step, ,y which is the 
slope of each discretized line, is determined by (10e) is assigned to 
construct the set of line segments, which all together approximate the 
quadratic value of y (see (10a)). 

By using the piecewise linear approximation function, all the 
quadratic terms indicated in the OPF formulation can be replaced. 
Therefore, (8a) can be replaced with (11a), and (8b), (8c) with (11b) 
and (11c). 

= + +v f f P P f Q v b Q l( , ¯ , ) ( , ¯ , ),l l l
t

l l
t

up l l l( ) (11a)  

+f P P f Q Q v I l( , ¯ , ) ( , ¯ , ) ¯,l
t

l l
t

l l l (11b)  

+f P P f Q Q v I l( , ¯ , ) ( , ¯ , ) ¯,l
b

l l
b

l l l (11c)  

In this paper, we chose = 30, and the corresponding approximation 
error is evaluated by calculating the difference in the longitudinal line 
current causing losses between the approximated value ( fl ) and actual 

value ( + +P Q v b
v

| | | |l
t

l
t up l l

up l

2 ( ) 2

( )
). The mean value was 4.85e-4 p.u. and the 

maximum value was 4.2e-3 p.u. where the base current value is 165 A. 
For the sake of keeping the paper readable, the power flow Eqs. (7a)- 

(7c), (11a), and security constraints (7e), (11b) and (11c) employing the 
PWL method are grouped and synthetically expressed as 

l( , ) 0, where = + S v f s{ , , , , , , , , }Pl
t Ql

t Pl
b Ql

b Ql
t vup l bl

l
t

l l l
( ) is 

the set of variables and the set of parameters is given as =
+z b v v I{ , , ¯ , , ¯, , , , , , }l l l l l

P Q P Q Q v bl
t

l
t

l
b

l
b

l
t up l l( ) . 

3. Problem formulation 

The objective of the problem is to determine the optimal sizes and 
sites of ESSs so that the power flow through the ADN GCP follows a 
daily dispatch plan with a minimal deviation. As previously mentioned, 
by embedding the offset profile within the dispatch plan, we can 
maximize the exploitation of the installed ESSs to cope with the un-
certainty caused by stochastic nature of the resources. The problem is 
formulated as a two-stage stochastic MILP model. The first stage is as-
sociated with the ESS investment. With the allocation of ESS fixed by 
the solution obtained from the first stage, the second stage minimizes 
the expected penalty cost on the uncovered dispatch error with respect 

to the operating scenarios for during the daily operation. For the 
computational efficiency, we select a number of typical days that can 
reflect the seasonal variation of the prosumption over a year. 

To tackle the complexity of the problem, the Benders decomposition 
technique is employed to decompose the problem into two problems: 
the master problem which determines the sites and sizes of the ESSs, 
and the several subproblems that represent the daily operation for 
different day types where the fitness of the determined allocations is 
evaluated with respect to the grid losses and the dispatch error. The 
whole stucture is illustrated in the left-hand side of Fig. 1. The Benders 
decomposition algorithm starts with the evaluation of the operational 
condition of ADN in a default configuration (i.e., configuration with no 
ESS allocation). The evaluation is fed back into the master problem to 
re-decide on the optimal ESS allocation in the view of improvement on 
the operational condition. The decomposition procedure goes through a 
number of iterations between solving the master problem and several 
subproblems until it reaches a convergence. 

3.1. Master problem 

In the master problem, the optimal siting and sizing of the ESSs is 
determined considering the investment cost and the proxy subproblem 
costs. The formulation of the master problem is given in (12a), mini-
mizing the total planning cost computed by adding the investment cost, 
which consists of fixed installation costs, power rating costs, and energy 
reservoir costs, with the sum of lower approximations for the sub-
problem costs with respect to the determined ESSs allocation. The op-
timization variables of the problem are given in (12g) and the con-
straints are given as (12b)-(12f). 

+ + +U R Cmin ( )
l

c l p l e l
d

d1
(12a)  

U R U l
Subject to:

¯ , ,l l l l l (12b)  

U C U l¯ , ,l l l l l (12c)  

R C
CR

l, ,l
l

(12d)  

d, ,d (12e)  

d m, , .d d
m( ) (12f)  

= U C R l d{ , , , }, ,l l l d1 (12g)  

= + + +LB U R C( * * *) *
l

c l p l e l
d

d
(13)  

The constraints related to the ESS allocation are given as (12b)-(12d). 
Possible energy reservoir and power rating capacities are limited due to 
manufacturing and geographical restrictions, as described in (12b) and  
(12c). Typically, the maximum power discharged from an ESS is gov-
erned by the maximum capacity with a certain rate (such as C-rate for 
batteries) (see (12d)). In the initial stage of Benders decomposition, the 
approximated cost of the subproblem associated with day d, or αd, is 
assigned with the pre-defined lower bound for the subproblem cost α. As 
the decomposition procedure progresses, it improves the approximation 
by the set of Benders cuts ( d m, ,d

m( ) ), which is added at 
every benders iteration as shown in (12f) (see (18)). After solving the 
master problem, the lower bound for the total planning cost, or LB, is 
updated with the optimal objective value as shown in (13) (* indicates 
that it is the identified optimal solution). 

3.2. Subproblem 

In the subproblem associated with day d, a daily PWL-OPF model 
evaluates the operational benefits of ESSs with respect to the 
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dispatchability and losses minimization under the compliance with the 
grid constraints. The dispatch plan embedding the offset profile is 
computed to follow the prosumption scenarios. Meanwhile, the dis-
patchability of CGP with respect to the dispatch plan is evaluated in 
terms of uncovered dispatch error while maximizing the exploitation of 
the determined ESS for compensation of the dispatch error. 

3.2.1. Modeling of ESSs operation 
The operational characteristics of an ideal ESS are modeled to re-

flect the behavior of the allocated ESSs during the daily operation of 
ADN. The active and reactive power outputs of the ESS are governed by 
the capability curve defined by the maximum apparent power of the 
ESS. We linearize the associated circular capability curve by con-
structing an inscribed square within the original curve (see (14a)).  
(14c) describes the dynamic behavior of SoE level of each ESS de-
pending on the charge/discharge power flows at every time interval. Δt 
stands for the time resolution. (14d) indicates that the SoE level of the 
ESS should be within the upper and lower SoE limits. 

R p R R q R

l t
2 2

,
2 2

,

, ,

l
l t
E l l

l t
E l

d (14a)  

= ++E E t p l t* , , ,l t
E

l t
E

l t
E

d( 1) (14b)  

E C E E C l t¯ , , ,l l l t
E

l l d (14c)  

To consider the ESS for the daily operation of ADN, the model of ESS 
operation should be included in the set of power flow equations defined 
for all scenarios and time intervals within the daily dispatch horizon. 
Henceforth, the equations of the PWL-OPF model, including the ESSs 
are re-defined as: 

l t( , ) 0, , , ,t d (15) 

where =
+

{ , , , , ,t
P Q P Q Q v bl t

t
l t
t

l t
b

l t
b

l t
t up l t l( ) S ,l t

t vlϕt, flϕt, 
= + + +s p p j q q( ) ( )}l t l t l t

E
l t l t

E is the set of variables and 

= z b v v I{ , , ¯ , , ¯, ,l l l l l
Pl

t
, , ,Q P Ql

t
l
b

l
b + ,Q v bl

t up l l( ) Υ} is the set of para-
meters. 

3.2.2. Mathematical formulation 
As indicated in (16a), the objective of the subproblem is to minimize 

the uncovered dispatch error, the absolute value of the offset profile, 
and the grid losses, with the set of optimization variables defined as  
(16e). The constraints include power flow equations and security con-
straints (see (15)) along with the set of equations associated with 
achieving dispatchability (see (1)-(6)) described in Section 2.2. More-
over, the constraints (16c) and (16d) describe that the ESS power rat-
ings and the energy reservoirs are fixed to the optimal solution of the 
master problem. 

= + +

SC

YN w F w w r f

min :

| | | |

d

d
t

f
l

lt
E

d e
l

l t l
l

l l t
d

2

(16a)  

Subject to:(1) (6), (14), (15), (16b)  

=R R µ l*: , ,l l ld (16c)  

=C C l*: , .l l ld (16d)  

= F E C R l t{ , , , , , }, , ,t lt
E

l t l t l l d2 , (16e) 

where wf, we and wl are the weight coefficients for the offset profile, 
dispatch error, and grid losses, respectively. μld and ϑld are the dual of 
constraints related to the fixed ESS capacities. m is the index of 
benders iterations. The dual values obtained in mth iteration are pro-
vided as inputs to the master problem in next iteration to form Benders 
cuts (see (18)). The upper bound of the total planning cost UB is cal-
culated by adding the optimal investment cost obtained from the master 
problem and the sum of parallel subproblem costs over all days as 
shown in (17). 

= + + +UB U R C SC( * * *) *
l

c l p l e l
d (17)  

= SC µ R R C C d m* ( ( *) ( *)) , ,d
m

d
l

ld l l ld l l
( )

(18)  

4. Case study 

4.1. Simulation configuration 

In this section, the proposed method is tested with an existing Swiss 
distribution network hosting a large capacity of renewable generation (see  
Fig. 3). The base voltage is 21kV, and the base 3 phase power is 6MVA. The 
total capacity of the PV generation is 2.7MWp, whereas the total capacity of 
hydropower generation is 805kVA. The planning horizon is set as 10 years. 
All the parameters related to the investment of ESS are listed in Table 1. The 
stochastic nature of load consumption and PV injections is considered by 
generating operating scenarios based on the historical data provided by the 
local DSO.3 In order to mitigate the computational burden, we assume that 
the seasonal variation of the prosumption over the year can be represented 
with 8 typical days. All the days are independent and thus not linked to each 
other. For each day type, the uncertainty of the forecast is modeled by 
generating 1000 prosumption scenarios, which are reduced to 10 scenarios 
based on K-medoids clustering algorithm [25]. The dispatch time interval 
for a daily operation is set as 15 min. The penalty cost for the dispatch error 
is set as $700/MWh. It is worth observing that this price is intentionally set 
to be substantially higher than the typical imbalance cost observed in power 
energy markets [26] to put a high priority on achieving dispatchability of 
the distribution grid. 

4.2. Simulation result 

To verify the effectiveness of the ESS control scheme, we demon-
strate the simulation results considering two cases that differ in control 
approaches: case 1 with the offset profile embedded into a dispatch plan 

Fig. 3. Considered real 55 node distribution feeder.  

3 Since the proposed method relies on a scenario-based approach, the modeler 
can use generic parametric and non-parametric distributions to model the 
prosumptions. In this paper, the active and reactive prosumption scenarios for 
each day are generated assuming the prosumption profile follows a normal 
distribution. 
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and case 2 without it. The optimal siting and sizing of ESSs are shown in  
Table 2 followed by Table 3, where the operational advantages of the 
ESS allocation are indicated in terms of penalty cost for the dispatch 
error and grid losses. At Node 4, both of the ESS energy reservoirs and 
power ratings are bigger in case 1 than in case 2, whereas at Node 27, 
the ESS energy reservoir is bigger in case 1 but the power ratings are 
similar in both cases (see Table 2). The overall investment cost is $0.15 
Million larger in case 1, and the annual uncovered dispatch error is 
51.77 MWh lower in case 1 (see Table 3), leading to reduction of $0.2 
Million in the total cost. This difference in allocation and the dispatch 
result can be associated with the efficiency of the ESS control scheme. 
Thanks to the offset profile, the utilization of the energy reservoir ca-
pacity of each dispatch interval can be optimized considering not only 
the dispatch error observed at the corresponding time interval but also 
the error anticipated in upcoming intervals by controlling the power 
injection into ESS and adjusting the SoE at each time interval. 

The operational advantage of the ESS allocation and the superiority 
of case 1 over case 2 are well visualized in Fig. 4, which illustrates the 
operation simulation for typical day-type 1, showing the prosumption 
prediction based on 10 prosumption scenarios, the dispatch plan, and 
the active power flow through GCP (Node 1) for each scenario in the 
case of no ESS (see Fig. 4.(a)), and in the two cases of the optimal ESS 
allocation with and without the offset profile (see Fig. 4.(b) and (c), 
respectively). Due to the prediction error of the prosumption forecast, 
the significant magnitude of power deviation from the scheduled power 
is observed, especially in the time when the PV power production is 
high. Therefore, without the support of ESS for compensating the dis-
patch error, the DSO is expected to pay a substantial amount of penalty 
cost. On the contrary, in the cases with the ESS allocated, the ESS ef-
fectively reduces the possible dispatch error, enforcing the active power 
flow through the GCP for each scenario to follow the dispatch plan. The 
difference in case 1 and case 2 is shown in the dispatch plan. In case 2, 
the dispatch plan is equivalent to the total prosumption profile con-
sidering grid losses. On the other hand, the dispatch plan in case 1 
deviates from the total prosumption prediction profile, especially 
during the daytime because of the implementation of the offset profile. 
The offset profile takes value, particularly at the time intervals when 
the notable amount of dispatch error at the GCP is anticipated at the 

following time intervals successively. The power charge/discharge of 
the ESS corresponding to the offset profile can adjust the SoE level to 
have enough flexibility to cope with the imminent uncertainties. In this 
way, the uncovered dispatch error can be additionally reduced com-
pared to the case 2. 

Table 1 
ESS parameter and candidate nodes for simulation.      

Maximum power rating per site 3MW Maximum energy reservoir per site 4MWh 
Installation cost for energy reservoir $300/kWh Installation cost for power rating $200/kVA 

Capital investment cost per site $0.1Million 
Candidate nodes for ESS 4, 16, 27, 41, 45 

Table 2 
ESS allocation result.      

Case Location Power rating Energy reservoir  

1 4 1.03MVA 1.99MWh 
27 521kVA 853kWh 

2 4 915kVA 1.57MWh 
27 523kVA 773kWh 

Table 3 
Cost and operational advantage comparison.       

Horizon  Case 0 Case 1 Case 2  

10 yrs Total cost ($Million) 9.48 1.54 1.74 
Investment cost ($Million) – 1.36 1.19 
Penalty cost ($Million) 9.48 0.18 0.55 

1 yr Uncovered error (MWh) 1354.27 26.91 78.68 
Grid losses (MWh) 55.24 45.09 46.03 
Consumed energy (GWh) 7.357 7.488 7.419 

Fig. 4. Prosumption prediction, dispatch plan and active power through the 
GCP in each scenario (sc): (a) Case 0 (No ESS), (b) Case 1 (With ESS integrated 
with offset profile), (c) Case 2 (With ESS and without offset profile). 

Table 4 
ESS allocation and cost results for Case 3.      

ESS allocation Node Power rating Energy reservoir 
4 598kVA 473kWh  

Cost result 10 yrs Total cost ($Million) 0.53 
Investment cost ($Million) 0.36 
Penalty cost ($Million) 0.17 

Operational result 1 yr Unserved error (MWh) 383.06 
Grid losses (MWh) 48.06 
Consumed energy (GWh) 7.317 
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The effectiveness of the optimal ESS allocation accompanying the 
control scheme is assessed quantitatively by comparing the annual 
uncovered dispatch error in different cases. The difference in energy is 
then translated into a considerable gap in the total cost for 10 years of 
operation: $9.48 Million with the default system configuration, and 
$1.54 Million with the optimal ESS allocation integrating the offset 
profile. Consequently, the result shows the economic and technical 
excellence of investing in ESS for the interest of the DSO in attaining the 
controllability of the active power infeed through the GCP. Moreover, 
we successfully demonstrate that the implementation of the offset 
profile improves the potential of ESS to handle the uncertainties by 
maximizing its flexibility. 

4.3. Comparison with the case of realistic imbalance price 

The results of cases 1 and 2 are based on the adoption of an artifi-
cially high imbalance price to achieve the sufficient dispatchability of 
the ADN. It is worth to observe the change of the ESS allocation and 
resulting operational benefit when the imbalance penalty is set in a 
realistic market price. Therefore, we add another simulation result 
(case 3), where all the conditions are identical to those of case 1 with 
the exception of the imbalance penalty replaced with a realistic im-
balance price (i.e., $43.5/MWh, obtained by averaging the imbalance 
prices in Swiss wholesale electricity market from 2013 to 2015 [26]). 
The optimal siting and sizing for case 3 are shown in Table 4, along 
with the corresponding cost and operation results. In comparison to 
case 1 (see Tables 2 and 3), we can observe a significant difference in 
ESS size that, however, results in $1 Million difference in investment 
costs and 356.15 MWh difference in uncovered dispatch errors. 

5. Conclusion 

In this paper, we have proposed an effective tool for the optimal al-
location of ESSs within an ADN to achieve its dispatchability. The spe-
cialty of the proposed method is the integration of an ESS control scheme 
so-called offset profile into a dispatch plan. The offset profile quantifies 
the necessary power injection to the ESS to optimize the exploitation of 
energy reservoir capacity of ESS. The operational benefit of ESSs with the 
control strategy embedded is evaluated through the daily operation of 
ADN, which is modeled by the linear approximated convex OPF, or the 
PWL-OPF model. This model is advantageous for guaranteeing the ap-
proximated global optimal solution while accounting for the operational 
conditions of the network with sufficient accuracy and small approx-
imation error. Then, Benders decomposition is applied to handle the 
computational complexity of the planning problem. The effectiveness of 
the proposed method is validated through simulations conducted on the 
real Swiss ADN comprising 55 nodes and a large capacity of distributed 
renewable generation. The result underpins that the ESS allocation 
eliminates the dispatch error, and the dispatchability can be further en-
hanced with the integration of the ESS control scheme compared to the 
ESS planning approach without the contol scheme. 
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