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a b s t r a c t 

Background and Objectives : Dyslexia is a disorder of neurological origin which affects the learning of 

those who suffer from it, mainly children, and causes difficulty in reading and writing. When undiag- 

nosed, dyslexia leads to intimidation and frustration of the affected children and also of their family 

circles. In case no early intervention is given, children may reach high school with serious achievement 

gaps. Hence, early detection and intervention services for dyslexic students are highly important and 

recommended in order to support children in developing a positive self-esteem and reaching their max- 

imum academic capacities. This paper presents a new approach for automatic recognition of children 

with dyslexia using functional magnetic resonance Imaging. Methods : Our proposed system is composed 

of a sequence of preprocessing steps to retrieve the brain activation areas during three different reading 

tasks. Conversion to Nifti volumes, adjustment of head motion, normalization and smoothing transforma- 

tions were performed on the fMRI scans in order to bring all the subject brains into one single model 

which will enable voxels comparison between each subject. Subsequently, using Statistical Parametric 

Maps (SPMs), a total of 165 3D volumes containing brain activation of 55 children were created. The 

classification of these volumes was handled using three parallel 3D Convolutional Neural Network (3D 

CNN), each corresponding to a brain activation during one reading task, and concatenated in the last two 

dense layers, forming a single architecture devoted to performing optimized detection of dyslexic brain 

activation. Additionally, we used 4-fold cross validation method in order to assess the generalizability of 

our model and control overfitting. Results : Our approach has achieved an overall average classification 

accuracy of 72.73%, sensitivity of 75%, specificity of 71.43%, precision of 60% and an F1-score of 67% in 

dyslexia detection. Conclusions : The proposed system has demonstrated that the recognition of dyslexic 

children is feasible using deep learning and functional magnetic resonance Imaging when performing 

phonological and orthographic reading tasks. 

© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Dyslexia is a brain based condition which impacts reading, writ-

ng and spelling. It is the most prevalent learning disability [1] .

yslexia is defined by the international classification ICD-10 as “A

ognitive disorder characterized by an impaired ability to compre-

end written and printed words or phrases despite intact vision”

2019 ICD-10-CM Diagnosis Code F81.0). Unfortunately, dyslexia is

 genetic life long issue which tends to run through family mem-

ers, and may lead to the social exclusion of the affected person if
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t is not addressed properly. It is necessary to assert that dyslexia

oes not have to do with intelligence. Children with dyslexia are

ust as smart as other children with functional reading and writing

bilities. 

Related researches have shown that dyslexia’s central difficulty

ndicates a deficit in language system (Phonological theory [3–

] ). However, other theoretical sources remain cogent, such as the

erebellar theory [8] , the Magnocellular visual deficit theory of

yslexia [14–16] , the Auditory temporal processing deficit theory

7] , and the Visual attention span deficit theory [9–12] . 

Measuring phonological skills does not efficiently distinguish

yslexics, who have difficulties learning to read and translating let-

ers into phonemes, from all the other children not able to read
under the CC BY-NC-ND license. 
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for other reasons such as a poor teaching, general family stress

and lack of their support, etc... Besides, abnormal eye tracking has

also been mistakenly suspected as being a cause in reading prob-

lems. In fact, people with little to no ability to move their eyes

still can demonstrate normal reading abilities [2] . Hence, studies

have been conducted to have a closer look at the functional differ-

ences in brain activation during reading tasks [13,17] . In the study

done by Saralegui et al. [17] , a comprehensive fMRI analysis includ-

ing three different cognitive tasks was conducted: a task of lexi-

cal decision where children had to answer whether the word was

real or did not exist, and orthographic matching task where they

had to answer if the two displayed words were identical or not,

and semantic categorization task where they were asked to detect

whether all the displayed words belonged to the same semantic

category. In that way, the pathways of language were explored in

order to reproduce the neural network involved in reading. The re-

sults showed that, while reading, the pattern of activation of con-

trol children and children with monocular vision were similar, and

both of them seemed different from those of dyslexic children. In

fact, dyslexic children have less activation in the left Wernicke’s

area, both Broca’s areas and the posterior part of the visual word

form area, which are all located in the left hemisphere and are

associated to the phonological route. And to counteract for this

deficit, dyslexics tend to have more activation in the anterior part

of the VWFA as well as the posterior part of both MTG, which are

associated with the orthographic route, compared to non dyslexic

readers. Hence, using this disclosure, we decided to conduct this

study and detect dyslexic children using a classification of brain

activation with functional Magnetic Resonance Imaging (fMRI). 

Meanwhile, during the last decades, artificial intelligence has

gained a lot of popularity thanks to its successful real-world ap-

plication results. Deep learning has enabled an optimal representa-

tion of data for the problems at hand. The models of Deep learning

are merely built of cascaded layers which transform the input data

to desired outputs while learning their higher level features [45] .

Convolutional Neural Networks (CNNs), also known as ConvNets,

are feed-forward neural networks composed of a sequence of con-

volution and pooling layers, optionally followed by fully connected

layers. They are the most efficient type of models for image analy-

sis and have been proven to be very adequate for object detection

[43,44] , pattern recognition and image segmentation [46,47] , and

more precisely in medical imaging. For instance: Brain image anal-

ysis (Disorder classification [18,19] , tissue/anatomy/lesion/tumor

segmentation [20–22] , survival/disease activity/development pre-

diction [23] , image construction/enhancement [24,25] ), Chest (x-

ray and CT images) [27–29] , abdominal [30] , cardiac [31,32] , der-

matological [33–35] , etc... These architectures can also be applied

on 3D images and thus are called 3D CNNs. The latest research has

proven that these architectures efficiently enable the segmenta-

tion or classification of diseases from medical volumes and stacked

scans such as multi-channel MRI patient data as presented by

Kamnitsas et al. [48] . In this paper, the authors present DeepMedic,

a 3D CNN architecture for automatic brain lesion segmentation

that outperformed the state-of-the-art techniques on challenging

data. Dolz et al. [49] demonstrated also the usability of 3D CNN

for the subcortical brain structure segmentation using MRI scans.

As for classification, the work by Lian, Zou et al. [42] demonstrated

the efficiency of 3D CNN model to detect people with Attention

deficit hyperactivity disorder (ADHD) using MRI scans. Their ap-

proach achieved the state-of-the-art accuracy of 69.15% and outper-

formed the methods in the literature. Also, schizophrenia detection

was conducted by Qureshi et al. [52] and Oh, Kanghan, et al. [53] .

Both studies asserted that 3D CNN models were the best perform-

ing models, far more than what classical machine learning meth-

ods achieved, even on limited datasets. Furthermore, 3D CNNs have

been applied on other medical volumes such as chest CT scans
or lung nodule detection, as presented by Gu, Yu et al. [50] , or

ulmonary nodules classification presented by Jiang, H. et al. [51] .

ased on these promising results of this architecture, we decided

o use the 3D convolutional neural networks to solve the classifi-

ation problem in hand. Hence, our approach consists in develop-

ng a deep learning architecture based on parallel 3D CNN applied

n the three volumes containing the brain activation areas during

ach one of the three reading paradigms. 

The rest of this paper is constructed as follows: Section II.A

ill discuss the dataset used for this study including participants

nd data acquisition protocol. Section II.B will discuss the proposed

ramework which is composed of a preprocessing step followed by

he designed 3D CNN architecture. In Section III, we will present

he validation metrics and discuss the experiment results of the

roposed method. Finally, Section IV will conclude this paper. 

. Materials and methods 

This section presents the dataset used to conduct this research,

nd our proposed approach to detect children with dyslexia from

he analysis of their brain areas of activation. 

.1. Dataset 

.1.1. Participants 

A total of number of 66 children aged between 9 and 12 years

ere recruited from the University Hospital of Cruces paediatric

phthalmology and neurology departments, as well as schools also

n Bilbao (Spain) in the case of control children. Additionally, the

ecruited participants were all Spanish and right-handed. 

Children were distributed in three different groups: Control

roup (TDR), Dyslexia group (DXR) and Monocular vision group

MVR), conforming to the exclusion and inclusion criteria listed be-

ow: 

Inclusion criteria : Dyslexic children were admitted in the

tudy only when they had a diagnosis of dyslexia and did not re-

eive treatment or psycho-pedagogical help for literacy. The Wech-

ler Intelligence Scale - Fourth edition (WISC-IV) score also needed

o show that their Intelligence Quotient (IQ) fell within the normal

ange, ( > 75). The participants within the monocular vision group

id not show any reading disabilities, and those of control group

id not show any literacy weakness due to ocular pathology. 

Exclusion criteria : Participants were not allowed to join the

tudy if they had previously one of the following diseases: a neu-

ological disease or serious head trauma, psychiatric illness, im-

aired sensory-motor coordination, chronic drug treatment, inad-

quate schooling, social deprivation or intolerance to MRI scanning

claustrophobia, lack of cooperation, etc.). Dyslexic children were

creened to check the presence of any vision or motility abnor-

ality, and only subjects with refractive error were admitted af-

er their diagnosed abnormality was corrected with normal visual

cuity. 

After checking the concordance of the participants with the in-

lusion and exclusion criteria stated above, 55 children were fi-

ally accepted to take part in the study. They were divided into

he three groups as follows: Dyslexia group, 19 (8 female); Monoc-

lar Vision group, 17 (8 female); Control group, 19 (8 female), as

hown in Table 1 . 

This research was constantly conducted in agreement with the

ode of Ethics of the World Medical Association (Declaration of

elsinki) and requirements specified by the Galdakao Hospital

thics Committee of Clinical Research. Authentically, the children

oined the study after their parents and guardians received and

igned an informed written consent which explained the aims and

rotocols of the study. 
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Table 1 

Participants’ characteristics [17] . 

TDR DXR MVR p ∗

Sample size 19 19 17 

Age (years) ∗∗ 10 ± 0.9 10.5 ± 1.1 10.4 ± 0.9 
0.220 

(9-12) (9-12) (9-12) 

Gender (Female/Male) 8/11 8/11 7/10 0.998 

Attention deficit hyperactivity disorder 2 2 1 0.858 

Corrected visual acuity 1 1 1 

IQ 

∗∗

Full scale 108.3 ± 12.0 94.6 ± 14.3 103.1 ± 7.7 
0.004 

(92-131) (76-126) (90-113) 

Verbal comprehension index 110.6 ± 14.0 91.0 ± 15.5 101 ± 10.8 
< 0.001 

(91–134) (65–123) (83–126) 

Perceptual reasoning index 107.4 ± 10.3 101.0 ± 19.8 103.5 ± 13.1 
0.455 

(87–123) (65–132) (76–124) 

Processing speed index 97.2 ± 9.5 96.5 ± 7.9 101.9 ± 10.9 
0.179 

(85–119) (82–112) (79–121) 

Working memory index 104.9 ± 9.3 96.4 ± 16.1 107.1 ± 9.8 
0.094 

(88–127) (68–122) (91–125) 

BASC (range) 40–60 40–60 40–60 

Reading score (PROLEC-R) ∗∗

Word reading accuracy (n/40) 39.6 ± 0.7 36.0 ± 3.3 39.8 ± 0.7 
< 0.001 

(38–40) (28–40) (38–40) 

Pseudoword reading accuracy (n/40) 37.2 ± 1.7 30.3 ± 5.4 36.5 ± 1.8 
< 0.001 

(34–40) (19–38) (33–39) 

Word reading speed (s) 41.1 ± 8.3 82.5 ± 49.0 31.9 ± 12.3 
< 0.001 

(22–58) (32–186) (17–58) 

Pseudoword reading speed (s) 68.3 ± 15.4 99.2 ± 51.3 58.4 ± 19.0 
0.006 

(47–102) (57–229) (23–104) 

Word reading skill (accuracy/speed) × 100 101.6 ± 25.7 60.6 ± 30.9 144.3 ± 45.9 
< 0.001 

(67–182) (15–119) (65–235) 

Pseudoword reading skill (accuracy/speed)x100 57.5 ± 12.1 38.3 ± 17.5 70.6 ± 25.1 
< 0.00 

(39-81) (9-65) (33-143) 

∗Kruskal-Wallis H or Pearson’s chi-square test. ∗∗The values are mean ± SD (max-min) TDR: Control group,DXR: 

Dyslexia group, MVR: Monocular Vision group 
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Table 2 

Scanning Parameters used for this study. 

Parameters Value 

TR/TE 3000 / 30 ms 

Matrix size 96 × 96 

flip angle 90 degrees 

field of view 230 × 230 cm 

number of slices 25 

slice thickness 4 mm with no gap 

number of volumes 90 

NSA 1 

Total acquisition time 4’39”
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.1.2. Data acquisition 

In order to acquire quality data, the children were shown the

hree different reading tasks, and were introduced to the entire

rocedure of the cognitive testing. The three paradigms conducted

uring this study were: 

• Lexical decision task : The children were asked during this task

to read two-syllable real words or pseudowords (which do not

have actual meaning). Ten words were randomly presented,

each one appearing every 3 s. The child had to read the word

and decide whether it is a real word by pressing a button of

the answering box that he/she has in the right hand, or a pseu-

doword by pressing the one in the left hand. 
• Lexical orthographic matching task : During this task, the chil-

dren were given every five seconds two two-syllable words,

which were either identical or different. Once the two words

were read, the child decided whether they are equal by press-

ing the right hand button, or spelled differently by pressing the

one in the left hand. The words and pseudowords used in the

two tasks listed so far were selected in accordance with the

standardized reading test PROLEC-R. 
• Semantic categorisation task : Three words were displayed ev-

ery five seconds. Two of them were from the same semantic

category and were displayed on the top of the screen. The third

word, displayed in the bottom, either belonged to the same se-

mantic category or did not. The child pushed the right hand

button if he/she decided that the all the words shared the same

semantic category, or the left hand button in the opposite case.

During the rest phases, strings of signs were displayed on the

creen, so that no reading stimulus could occur. The Fig. 1 depicts

he experimental design of this database acquisition. 
The scanning protocol was conducted using Philips Achieva 3.0-

 MRI system of 32-channel coil (Philips Medical Systems, Best,

etherlands). For the three reading tasks, BOLD functional images

ere acquired using an axial single shot EPI method block design

9 blocks: 5 Resting and 4 Reading) [17] . The chosen scanning pa-

ameters are presented in Table 2 . 

.2. Proposed framework 

First of all, the preprocessing step was given a high attention

ince the raw database contains many defects which reduce the

fficiency of the intersubject and intrasubject variability. The pre-

rocessing relies on a series of transformations in order to bring

ll the subject brains into one single model which will enable vox-

ls comparison between each subject. This step was all conducted

sing SPM12 software with Matlab 2018b environment. Then, once

he 3D volumes containing the activated areas were retrieved after

he preprocessing step, they were fed to a 3D Convolutional Neu-

al Network which was trained to distinguish between the differ-
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Fig. 1. The experimental design of the database acquisition [17] : During the read- 

ing blocks, a two-syllable word was displayed each 3 seconds in Lexical decision 

task, either real word (silla in this example, which means chair) or pseudoword 

(feje, which does not have a meaning). Or, in Orthographic marching task, two two- 

syllable words displayed every 5 seconds, either identical (calzapo - calzapo) or dis- 

similar (mertado-merlado). For the semantic categorization task, three words were 

displayed every 5 seconds, two words belong to the same semantic category and 

the third word either belongs also (e.g. clavel, rosa, margarita meaning carnation, 

rose and daisy in Spanish) or does not belong to the same semantic category (e.g. 

gato, perro, lechuga meaning cat, dog and lettuce in Spanish). 
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ent areas of activation depending on the class it belongs to: Non

dyslexic (TDR and MVR) or Dyslexic (DXR). Based on the study

conducted by Saralegui. et al [17] , the pattern of activation while

reading in Monocular vision group seemed similar to that in con-

trol children with no vision disorders, and different from that in

dyslexic children. This is because dyslexia is, at its core, a prob-

lem with phonological processing which is related to a neurologi-

cal disorder, not to vision impairments. For this reason, we merged

the two groups (TDR and MVR) into one class of Non dyslexic, and

kept dyslexic children in the second class. Fig. 2 sketches our pro-

cessing workflow for dyslexia detection. Fig. 2 sketches our pro-

cessing workflow for dyslexia detection. 

2.2.1. DICOM to NIFTI conversion 

Fistly, all the DICOM files were organized into 3 folders of each

subject using the metadata in each DICOM image (Lexical deci-

sion (2250 scans), Orthographic matching (2250 scans) and Seman-

tic categorization (2250 scans)). Then, the DICOM images in each

folder were converted into NIFTI volumes which is the standard

format that is processable by SPM software. This software package

was created for the analysis of brain image data. It was used to

conduct all the preprocessing steps. This conversion generated 90

volumes in each folder. In fact, 2250 scans are a concatenation of

25 brain layers acquired during a period of 270 s and scanned each

3 s (2250 = 25 ∗270/3). Since the test was composed of 9 periods (5

resting and 4 reading), then each one of these periods contains 10

volumes, as shown in Fig. 2 . 
.2.2. Adjustment of head motion 

Head motion during fMRI scan acquisition can lead to errors in

urther analysis of brain voxels between subjects. The headers were

ltered for each of the input images to reflect the relative orien-

ations of the head during the scanning. For each subject, the 90

olumes of all the 3 tests (sessions) were realigned to each other.

irstly, the first scans from each session were aligned. Later, the

mages in each session were aligned to the first image of the ses-

ion. 

.2.3. Normalization 

The brains come in different shapes and forms. These differ-

nces are likely to lead to an inherently biased findings. When all

he scans were aligned, an image of the same sequence of image

as used to estimate some warping parameters which will map it

nto a template ATLAS. Then the rest of the images were warped

ccordingly. 

.2.4. Smoothing 

The aim of this step is to suppress noise and reduce effects

aused by the previous transformations. The chosen full width at

alf maximum (FWHM) of the Gaussian smoothing kernel was

mm. 

.2.5. GLM design matrix and parameters 

Now that the full database has been spatially preprocessed, the

ollowing steps consisted in conducting the statistical analysis of

he brain volumes in order to detect the activated regions during

he reading tasks for each subject in each one of the three reading

asks. For each subject and test, the GLM design matrix was de-

ned by introducing the parameters of the experimental design.

his part was performed using ”1st level analysis” batch of the

PM software. Once the GLM matrix defined, the GLM parameters

ere estimated using Variational Bayes (VB) [37] using the ”esti-

ate” batch. 

.2.6. Generation of statistical parametric maps 

The contrasts were specified using ”results” button of the soft-

are interface in order to generate Statistical Parametric Maps

SPMs). Since our approach is to use the brain areas of activa-

ion to classify the subjects, the analysis conducted by Saralegui.

t al [17] was used as a primary reference for the selection of the

pecific brain areas to include in the study. In fact, the selection

f only the brain parts where a difference between subjects was

oticed will remove any information likely to reduce the model’s

earning efficiency. 

For Lexical decision task, as shown in fig 3 , the chosen areas

ere: 

• Left/right Broca’s areas (BA 45 and BA 44) 
• Left/right MTG (BA 21) 
• Left/right VWFA 1/2 (BA 37) 
• Left/right VWFA 3 (BA 20) 
• Left Wernicke’s area (BA 22) 

For Orthographic matching task, as shown in Fig. 4 , the chosen

reas were: 

• Right Broca’s areas (BA 45 and BA 44) 
• Left Broca’s areas (BA 44) 
• Left/right MTG (BA 21) 
• Left/right precuneus (BA 19) 
• Left V5-MT (BA 39) 

For Semantic categorization task, as shown in Fig. 5 , the chosen

reas were: 

• Left/right Broca’s areas (BA 45 and BA 44) 
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Fig. 2. Proposed architecture for dyslexia detection with fMRI scans using deep learning techniques. 

Fig. 3. Surface rendering of the locations of the selected brain regions for lexical 

decision task. 

Fig. 4. Surface rendering of the locations of the selected brain regions for ortho- 

graphic matching task. 

2

 

b  
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Fig. 5. Surface rendering of the locations of the selected brain regions for semantic 

categorization task. 

Fig. 6. Examples of the output of preprocessing step for the three reading tasks of 

a non-dyslexic child. 
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• Left/right MTG (BA 21) 
• Left V5-MT (BA 39) 
• Left/right Wernicke’s area (BA 22) 
• Left/right precuneus (BA 19) 

.2.7. Retrieval of activation areas 

Once the brain areas listed above were selected to mask the

rain activation areas, the NIFTII files containing the slices of the

rain, each with the activated areas were saved using the in-
eractive window of the software. The size of these volumes is

9x95x95x3, as shown in Fig. 6 . 

As an output of the preprocessing phase, a total of 165 volumes

ere created: 57 volumes (19 ∗3) for dyslexic class and 108 vol-

mes (36 ∗3) for non-dyslexic class. 

.2.8. 3D convolutional neural networks 

The massive interest in artificial intelligence for learning data

epresentations has enabled a new way of handling statistical

odelling in neuroimaging, by virtue of computing infrastructures

mprovement. Of particular interest to us is the potential of 3D

onvolutional neural networks (CNN) to make a distinction be-

ween brain activation of children with dyslexia and those without,

nd thence enabling an early detection of this disorder simply from

he analysis of fMRI scans during reading stimulus. As 2D convo-

utional neural networks have shown great success on 2D images,
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Table 3 

Summary of the proposed architecture with detailed parameters and input and output shapes. 

Input Layer (type) Remarks Output shape Parameters # 

Feature maps = 8 

Input 1 

(95,79,79,3) 

Conv3D_11 kernel_size = (5,5,5) (95,79,79) 3008 

activation = ’relu’ 

pool_size = (2, 2, 2) 

Max_pooling3D_11 strides = (2,2,2) (47,39,39) 0 

Feature maps = 16 

Conv3D_12 kernel_size = (3,3,3) (47,39,39) 3472 

activation = ’relu’ 

pool_size = (2, 2, 2) 

Max_pooling3D_12 strides = (2,2,2) (23,19,19) 0 

Flatten_1 flatten 132,848 0 

Dense_11 Units = 32 32 4,251,168 

Dropout1 p = 0.5 32 0 

Dense_12 Units = 8 8 264 

Input 2 

(95,79,79,3) 

Feature maps = 8 

Conv3D_21 kernel_size = (5,5,5) (95,79,79) 3008 

activation = ’relu’ 

pool_size = (2,2,2) 0 

Max_pooling3D_21 strides = (2,2,2) (47,39,39) 0 

Feature maps = 16 

Conv3D_22 kernel_size = (3,3,3) (47,39,39) 3472 

activation = ’relu’ 

pool_size = (2, 2, 2) 

Max_pooling3D_22 strides = (2,2,2) (23,19,19) 0 

Flatten_2 flatten 132,848 0 

Dense_21 Units = 32 32 4,251,168 

Dropout2 p = 0.5 32 0 

Dense_22 Units = 8 8 264 

Input 3 

(95,79,79,3) 

Feature maps = 8 

Conv3D_31 kernel_size = (5,5,5) (95,79,79) 3008 

activation = ’relu’ 

pool_size = (2, 2, 2)) 

Max_pooling3D_31 strides = (2,2,2) (47,39,39) 0 

Feature maps = 16 

Conv3D_32 kernel_size = (3,3,3) (47,39,39) 3472 

activation = ’relu’ 

pool_size = (2, 2, 2) 

Max_pooling3D_32 strides = (2,2,2) (23,19,19) 0 

Flatten_3 flatten 132,848 0 

Dense_31 Units = 32 32 4,251,168 

Dropout3 p = 0.3 32 0 

Dense_32 Units = 8 8 264 

Concat Concatenate (Dense_12, Dense_22,Dense_32) 24 0 

Dense activation = ’sigmoid’ 1 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Illustration of 3D convolution applied on a (9x9x9) input volume with a 

(3x3x3) filter sliding through the 3D space, and resulting in a (7x7x7) output vol- 

ume. 

 

 

T  

t  

i  
applying a 3D CNN on the 3D image of the whole brain will cap-

ture local 3D patterns which may boost our classification results.

The 3D CNNs function in the same way as 2D CNNs, with the ex-

ception of convolution kernels that are expanded to three dimen-

sions. The architecture of 3D CNN is composed of stacked layers

of 3D convolutions and 3D maxpooling layers, followed by flatten

layer, dense layers and output prediction layer. 

• 3D convolution layer: It represents the core layer of a CNN ar-

chitecture. A filter with learnable weights slides over the in-

put while moving in 3-direction (height, width, depth of the

image) to calculate the feature representations, and produces a

weighted sum as the output. The weighted sum is the feature

space that represents the input for the next layers. The Fig. 7

shows the concept of the sliding 3D window of size (3x3x3)

over a (9x9x9) matrix with stride = (1,1,1) and no zero padding.

The output size is (7x7x7). 
• 3D maxpooling layer: This layers extends the functionality of a

max pooling layer to a third dimension. It down-samples the

input data by dividing it into cuboidal regions and computing

the maximum of each region. The purpose of its usage is to

gradually decrease the spatial size of the representation and the
amount of parameters learned in the network, and hence con-

trolling overfitting. 

The proposed framework, as shown in Fig. 8 and detailed in

able 3 , for each one of the three input volumes, is composed of

wo 3D convolution layers, each one followed by a 3D max pool-

ng layer. Then, a flatten layer followed by a dense layer with
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Fig. 8. Proposed 3D Convolutional Neural Network architecture for the classification of brain activation of dyslexic children. 
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ropout layer of 0.3. After the three dense layers are concate-

ated in a second dense layer, the output classification is given

n the output layer using sigmoid function. Our architecture was

mplemented using Keras 2.1 and TensorFlow 1.12 libraries with

ual Nvidia Geforce GTX 1080 Ti graphical processing unit (GPU)

upport. Initially, we set initial hyperparameters as presented by

ou, Liang, et al. [42] due to a fair similarity between our pro-

osed architectures. Then, after tuning the hyperparameters in a

-fold cross validation protocol, we trained our model using the

dam optimizer and a learning rate of 1e −5, a batch size of 8,

nd 15 epochs were chosen using early stopping callback. The

atabase is composed of 165 3D volumes (55 children 

∗ 3 read-

ng tasks). The balanced splitting was done by keeping 33 3D

olumes (33 volumes = 11 children 

∗ 3 reading tasks) for test-

ng, which represents 25% of the database, and kept the other

5% (132 volumes = 44 children 

∗ 3 reading tasks) for training

nd validation. Due to the size of data used in this study, which

as relatively small for a deep learning strategy, we used 4-fold

ross validation to avoid overfitting. Thus, during each fold, the

odel was trained on 99 3D volumes (33 children 

∗ 3 reading

asks), and validated on 33 3D volumes (11 children 

∗ 3 reading

asks). 
. Results and discussion 

.1. Validation metrics 

Our model classification was evaluated on the testing set us-

ng five performance measures: overall accuracy, sensitivity (recall),

pecificity, precision and F1-score, using python scikit-learn mod-

le [26] . Four metrics were used to measure the performance of

ur approach: The True Positive (TP) refers to those volumes that

ere correctly classified as dyslexic and the False Positive (FP) rep-

esents the non-dyslexic volumes mistakenly classified as dyslexic.

hereas, the False Negative (FN) represents the activation volumes

elonging to dyslexic class that were classified as non-dyslexic, and

he True Negative (TN) refers to the non-dyslexic activation vol-

mes correctly classified as non-dyslexic. From these values, we

alculate the following performance measures: 

• Overall accuracy: It is the ratio of the number of activation vol-

umes accurately classified out of the total number of testing

volumes. 

O v erall Accuracy = 

TP + FN 

(1) 

TP + TN + FP + FN 
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Table 4 

Results of the dyslexia detection on a set of 11 participants(4 

dyslexic and 7 non-dyslexic). 

Predicted class 

Dyslexic Non dyslexic 

Actual class Dyslexic 3 1 

Non dyslexic 2 5 

Evaluation metric Value 

Sensitivity 75% 

Specificity 71.43% 

Precision 60% 

F1-score 67% 

Overall accuracy 72.73% 
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• Sensitivity: Also named ”recall”, It represents the ratio of brain

activation volumes accurately classified as dyslexic out of the

total number of dyslexic children. 

Sensit i v it y = 

TP 

TP + FN 

(2)

• Specificity: It represents the ratio of non-dyslexic children that

are correctly identified out of the total number of non-dyslexic

children. 

Speci f icity = 

TN 

TN + FP 

(3)

• Precision: It represents the ratio of dyslexic brain activation ac-

curately classified out of the union of predicted same-class vol-

umes. 

P recision = 

TP 

TP + FP 

(4)

• F1-score: this is the harmonic mean between precision and re-

call 

F 1 − score = 

2 ∗ Precision ∗ Recall 

Precision + Recall 
(5)

3.2. Results and discussion 

The selected hyperparameters were chosen based on the best

mean accuracy, which was 75% with the previously stated hyper-

parameters. Then, the model was trained on all the 132 volumes

(44 children) and tested on the testing set. The model was able to

reach an overall accuracy of 72,73%, a specificity of 71.43%, a preci-

sion of 60% and an F1-score of 67% in dyslexia detection as shown

in Table 4 . 

According to the state of the art results, convolutional neural

networks have proven to be efficient in extracting important fea-

tures and accurately clustering them in the 2-dimensional domain

[18,19,23] . Nonetheless, there have been very few contributions in

which 3D-CNN has been deployed to classify and predict disorders

using volumetric neuroimaging data [38–41] , our developed ap-

proach for dyslexia detection through brain activation analysis has

shown that 3D CNN can also learn spatial features in 3D volumes

containing brain activation areas. Tamboer, P., et al. [54] , an SVM

classifier was trained on 41 preprocessed brain scans to classify

them based on their anatomical differences. They achieved, on 60

dyslexic individuals (7%) and 816 non dyslexic (93%), a total sensi-

tivity of 67% and a specificity of 59%. Our method applied on a lim-

ited amount of data has proven to be able to extract the underlying

features from the 3D volumes of brain activation and fairly classi-

fying them. It is to be noted that because of the limited number

of volumes for testing, the values of metrics highly fluctuate with

only one more brain correctly or incorrectly classified. 

However, our study has some limitations. First of all, the num-

ber of participants in the study is limited. Hence, acquiring larger
amples using different experiments is needed to reach higher lev-

ls of evidence. Moreover, using SPM software, we were able to se-

ect the brain regions corresponding to reading and language com-

rehension. Nonetheless, we believe that there are subregions in

hese areas which can better discriminate the differences in ac-

ivation, and hence reducing confusion for the learning. Also, in

his study, we did not include the differentiation between differ-

nt subtypes of dyslexia, where it was found that only the subtype

f dyslexia with poor phonological awareness and magnocellular

kills demonstrated an increased gray matter volume in the right

utamen and the left cerebellum compared to controls, while the

ther two subtypes of dyslexia did not show differences at these

egions [36] . Hence, the lack of this differentiation may also be

indering an efficient learning. 

. Conclusion 

The purpose of this paper is to detect dyslexic children by

eans of deep learning neural network from the 3D volumes of

rain activation. Unlike the state of the art methods that mostly

ork on the whole brain fMRI scans (either 2D or 3D), we propose

 method which only targets the brain activation areas in order

o tackle our classification problem. To prepare the input data, the

MRI scans were passed through a serie of preprocessing steps us-

ng SPM12 software, which are: Dicom to Niftii conversion, adjust-

ent of head motion to reduce intersubject vaiability, normaliza-

ion to a template Atlas in order to reduce intrasubject variability

nd the application of a smoothing filter to suppress noise. Then,

tatistical parametric maps were generated using the same soft-

are in order to retrieve the activated brain areas. For the pur-

ose of reducing brain activation areas which may be present in

ll the participants and hence will reduce the efficiency of fea-

ure learning, we decided to keep only the brain areas responsi-

le for reading and language comprehension, as presented by Sar-

legui et al [17] . As the participants have gone through three differ-

nt reading paradigms, each participant had three brain activation

olumes which were fed to the designed neural network. The pre-

ented architecture composed of three parallel 3D CNN combined

ith a dense layer has enabled the classification of dyslexic chil-

ren with an overall accuracy of 72,73% and specificity of 75%. Due

o the limited number of participants, we used 4-fold cross valida-

ion method to assess the generalizability of our model and control

verfitting. Hence, future work will be focused on acquiring more

ata and conducting a deeper analysis of subregions from the se-

ected brain areas where the difference in activation is even more

ignificant. Furthermore, the combination of the collected data dur-

ng the reading paradigms (reading accuracy, reading speed, etc)

ith the current model will be added in order to improve the per-

ormance of the system. When better results will be achieved, the

eatures learned will be used for the classification of other neuro-

ogical conditions such as migraine using transfer learning. 
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