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A B S T R A C T

Advances in data-driven methods have sparked renewed interest for applications in power systems. Creating
datasets for successful application of these methods has proven to be very challenging, especially when con-
sidering power system security. This paper proposes a computationally efficient method to create datasets of
secure and insecure operating points. We propose an infeasibility certificate based on separating hyperplanes
that can a-priori characterize large parts of the input space as insecure, thus significantly reducing both com-
putation time and problem size. Our method can handle an order of magnitude more control variables and
creates balanced datasets of secure and insecure operating points, which is essential for data-driven applications.
While we focus on N-1 security and uncertainty, our method can extend to dynamic security. For PGLib-OPF
networks up to 500 buses and up to 125 control variables, we demonstrate drastic reductions in unclassified
input space volumes and computation time, create balanced datasets, and evaluate an illustrative data-driven
application.

1. Introduction

Recent advances in data-driven methods have shown substantial
potential for power system applications including security assessment
under uncertainty [1–6], e.g., by rapidly estimating line flows [2],
training accurate security classifiers [3], and applying these classifiers
in the context of data-driven security-constrained optimal power flow
[4] and deep learning toolboxes [5]. The performance of these methods,
however, relies on the quality of the underlying dataset. As historical
data is often limited and does not contain many abnormal situations,
the datasets have to be enriched through simulation. This, however, is a
highly computationally demanding task. The resulting datasets should
be balanced between secure and insecure samples to improve classifier
performance, take into consideration all degrees of freedom of the
system, and be able to accurately represent the security boundary. In
this work, we propose an efficient method to create datasets with these
properties for data-driven applications in power systems.

The steady-state operational constraints are described by the AC
optimal power flow (AC-OPF) problem. The degrees of freedom of the
system, i.e., the inputs characterizing each operating point, are defined
by the control variables, which in the AC-OPF problem are generator
active power and voltage set-points. By defining these, the remaining
state variables are determined by solving the AC power flow

equations [7]. Even for medium-sized systems, the resulting number of
control variables renders the task of creating datasets covering a wide
range of operating points very computationally challenging.

To address this challenge, we can directly classify operating points
that are infeasible with respect to the AC-OPF problem as insecure and
avoid any further stability or static security assessment. Ref. [8] for-
mulated infeasibility certificates with respect to the AC-OPF problem
that are based on hyperspheres which certify a wide range of operating
points a-priori as insecure. Inspired by [8], our previous work in Thams
et al. [9] used such certificates to generate large datasets, reducing the
input space and decreasing computation time, while considering both
N-1 security and small-signal stability. Both works [8,9] consider sys-
tems with up to 11 control variables. Instead of hyperspheres, this
paper proposes the use of separating hyperplanes, which, among other
important benefits, allows us to consider numbers of control variables
that are at least an order of magnitude greater than previous methods
(up to 125 in our test cases).

Another popular approach to create such datasets is through im-
portance sampling, e.g., [10,11]. In power systems, however, the initial
sampling space is largely unbalanced, i.e., the volume of insecure space
is several orders of magnitude larger than the secure space, and, as we
observed in Thams et al. [9], it can be challenging to obtain an ade-
quate number of secure samples. In this work, we show how our
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proposed method can lead to a balanced dataset, as it enables us to
sample from inside the secure space. A related strand of research uses
historical data that is enriched through sampling methods such as
composite modelling approaches and vine-copulas [12,13]. However,
this can neglect parts of the secure space or might not capture abnormal
operating regions.

To create representative datasets for data-driven power system ap-
plications, we propose a computationally efficient method which (a)
can deal with high input dimensionality (our test cases have up to 125
control variables), (b) provides a detailed description of the security
boundary, and (c) creates balanced classes. We apply this method to AC-
OPF problems including N-1 security and uncertainty in power injec-
tions. The main contributions of our work are:

1. We propose an infeasibility certificate based on separating hyper-
planes. This certificate is computed using convex relaxations of AC-
OPF problems and considers both N-1 security and uncertainty.
Compared to the hypersphere-based method proposed in Molzahn
[8], our algorithm shows two key improvements: First, separating
hyperplanes allow the classification of substantially larger parts of
the input space as insecure. Second, as these hyperplanes form a
convex polytope, efficient methods to sample uniformly from inside
the remaining unclassified space are available. Based on these, we
propose an efficient algorithm to maximize the volume of the input
space classified a-priori as insecure.

2. We evaluate this algorithm on PGLib-OPF networks with up to 500
buses and numbers of control variables up to 125. Compared to
initial normalized input space volumes of 1 (i.e., 100) based on
specified control variable bounds, the infeasibility certificates re-
duce the unclassified input space volumes significantly, with re-
duced volumes ranging from −10 2 up to −10 40.

3. We propose a computationally efficient method to create datasets
for data-driven power system applications which can handle systems
where the number of control variables is at least one order of
magnitude greater than state-of-the-art methods (e.g., [9]). Com-
puting infeasibility certificates allows us to efficiently characterize
the security boundary in detail and sample from inside the secure
space. We create balanced datasets for PGLib-OPF networks up to
500 buses and train neural network classifiers as an illustrative data-
driven application.

This paper is structured as follows: In Section 2, we describe the AC-
OPF problem including N-1 security and uncertainty, and its convex
relaxation. In Section 3, we outline our proposed methodology to create
datasets, including the infeasibility certificate, boundary description,
and sampling from inside the secure space. Section 4 presents simula-
tion results on PGLib-OPF networks up to 500 buses. Section 5 con-
cludes.

2. Optimal power flow formulation

This section presents the AC-OPF formulations necessary for de-
riving the dataset creation methodology. In particular, we formulate the
N-1 security-constrained preventive AC-OPF problem considering un-
certainty in power injections, and its quadratic convex (QC) relaxation.
For a detailed survey on AC-OPF and convex relaxations of the AC-OPF,
the reader is referred to [7,14]. Here, for brevity, we build our for-
mulation upon the AC-OPF formulation of [15] to facilitate the deri-
vation of the QC relaxation. We use the QC relaxation as it represents a
good trade-off between computational complexity and tightness of the
relaxation [15]. Note that the following derivations could be readily
extended via the many other convex relaxations of the power flow
equations [7].

2.1. Security-constrained AC-OPF under uncertainty

A power system is defined by its set � of buses. A subset of those
buses, which are denoted by � , have a controllable generator con-
nected. A second subset denoted by � , which can be either generation
or load buses, are subject to uncertain power injections. It is assumed
that all buses of the power system are connected by a set �∈i j( , ) of
power lines from bus i to bus j. To ensure the N-1 security criterion
during operation, we consider the potential outage of a list of critical
candidate lines defined by the set � �⊂ . Note that we define the first
entry of � to correspond to the intact system state {0}, i.e., no trans-
mission line is outaged. The term �c denotes the set of intact power
lines for outage �∈c . For the intact system state, the set �0 corre-
sponds to the set � .

The optimization variables in the security-constrained AC-OPF are
the complex bus voltages Vk

c for each bus �∈k and contingency �∈c ,
the complex power dispatch of generator SG

c
k for each bus �∈k and

contingency �∈c , and the uncertain complex power injections SUk for
each bus �∈k . The uncertain power injections do not change upon
outage of system components, i.e., �= ∀ ∈S S c,U U

c . We assume that
the uncertain reactive power injection I=Q S{ }U U is determined
through a fixed power factor cos ϕ in relation to the uncertain active

power injection R=P S{ },U U i.e., = −Q PU
ϕ

ϕ U
1 cos

cos

2

2 . If the power factor

is not constant, then the reactive power injection QU can be modelled as
a separate variable, i.e., as a separate degree of freedom in the dataset
creation method. The following constraints must be satisfied for the
intact system and for each contingency �∈c :

�≤ ≤ ∀ ∈V V V V k( ) ( )* ( )k k
c

k
c

k
min 2 max 2 (1a)

�≤ ≤ ∀ ∈S S S kG G
c

G
min max

k k k (1b)

�≤ ∀ ∈S S i j| ( , )ij
c

ij
cmax

(1c)

�

�

∑− + = ∀ ∈
∈

S S S S kG
c

D U
k j

kj
c

( , )
k k k

c (1d)

�= − ∀ ∈S Y V V Y V V i j( )* ( )* ( )* ( )* ( , )ij
c

ij
c

i
c

i
c

ij
c

i
c

j
c c (1e)

�≤ ≤ ∀ ∈S S S kU U U
min max

k k k (1f)

�≤ ∠ ≤ ∀ ∈θ V V θ i j( ( )*) ( , )ij i
c

j
c

ij
cmin max (1g)

The bus voltage magnitudes are constrained in (1a) by upper and
lower limits Vk

min and Vk
max. The superscript * denotes the complex

conjugate. Similarly, the generators’ complex power outputs are limited
in (1b) by upper and lower bounds SG

min
k and SG

max
k . The inequality

constraints for complex variables are defined as bounds on the real and
imaginary parts. The apparent power flow Sij on the line from i to j is
upper bounded in (1c) by Sij

max. The nodal complex power balance (1d)
including the load SD, generation SG and uncertain injections SU has to
hold for each bus. The apparent power flow Sij on the line from i to j is
defined in (1e). The term Y denotes the admittance matrix of the power
grid. Constraint (1f) models minimum and maximum bounds S ,U

min
k SU

max
k

on the uncertain injections. The flow on the line from i to j is limited in
(1g) by a lower and upper limit on angle differences θij

min and θ ,ij
max

respectively. Please note that for most instances the following holds:
= −θ θij ij

min max.
We consider preventive actions in the security-constrained AC-OPF

formulation, i.e., the generator set-points remain fixed during an
outage. As a result, we include the following linking constraints be-
tween the intact system state and the outaged system states:

� �= ∀ ∈ ∀ ∈ ∖V V k c| | | | , {0}k k
c0 (2a)

� �= ∀ ∈ ∖ ∀ ∈ ∖P P k c{slack}, {0}G G
c0

k k (2b)

The active power dispatch is denoted as PG, i.e., R=P S{ }G G . The
first constraint sets the generator voltage set-points |Vk| of the outaged
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system states to the values from the intact system state. The second
constraint does the same for the active power generation dispatch,
excluding the slack bus which compensates the difference in active
power losses.

2.2. Quadratic convex (QC) relaxation

The QC relaxation proposed in Coffrin et al. [15] uses convex en-
velopes of the polar representation of the AC-OPF problem to relax the
dependencies among voltage variables. As proposed in Coffrin et al.
[15], Lavaei and Low [16], an additional auxiliary matrix variableWc is
introduced for the intact system state and each contingency �∈c ,
which denotes the product of the complex bus voltages:

�= ∀ ∈W V V c( )*ij
c

i
c

j
c

(3)

This allows reformulation of (1a), (1e), (1g), and (2a) as:

�≤ ≤ ∀ ∈V W V k( ) ( )k kk
c

k
min 2 max 2 (4a)

�= − ∀ ∈S Y W Y W i j( )* ( )* ( , )ij
c

ij
c

ii
c

ij
c

ij
c c (4b)

�= − ∀ ∈S Y W Y W i j( )* ( )*( )* ( , )ji
c

ij
c

jj
c

ij
c

ij
c c (4c)

I

R
�≤ ≤ ∀ ∈θ

W
W

θ i jtan( )
{ }
{ }

tan( ) ( , )ij
ij
c

ij
c ij

cmin max

(4d)

� �= ∀ ∈ ∀ ∈ ∖W W k c, {0}kk kk
c0 (4e)

The non-convexity is encapsulated in the voltage product (3). To
obtain a convex relaxation, the non-convex constraint (3) is removed
from the optimization problem and variables for voltages,

� �∠ ∀ ∈ ∀ ∈v θ i c ,i
c

i
c and squared current flows,

� �∀ ∈ ∀ ∈l i j c( , ) ,ij
c c are added. The following convex constraints
and envelopes are introduced for the intact system state and each
contingency �∈c [15]:

�= 〈 〉 ∀ ∈W v kkk
c

k
T2 (5a)

R �= 〈〈 〉 〈 − 〉 〉 ∀ ∈W v v θ θ i j{ } cos( ) ( , )ij
c

i
c

j
c M

i
c

j
c C M c (5b)

I �= 〈〈 〉 − 〉 ∀ ∈W v v θ θ i j{ } sin( ) ( , )ij
c

i
c

j
c M

i
c

j
c S M c (5c)

�+ = ∀ ∈S S Z l i j( , )ij
c

ji
c

ij
c

ij
c c (5d)

�≤ ∀ ∈S W l i j| ( , )ij
c

ii
c

ij
c c2 (5e)

The superscripts T, M, C, S denote convex envelopes for the square,
bilinear product, cosine, and sine functions, respectively. The term Zij
denotes the line impedance. Refer to [15] for the complete QC for-
mulation. The resulting relaxation of the preventive security-con-
strained AC-OPF under uncertainty is a second-order cone program
(SOCP) that minimizes an objective function, e.g., generation cost,
subject to (1b)–(1d), (1f), (2b), (4), and (5).

3. Methodology to create datasets

The goal of the following methodology is to create a dataset which
maps operating points described by the input vector x to a power
system security classification, e.g., secure or insecure. The dataset
should be balanced between secure and insecure samples, take into
consideration the degrees of freedom of the system, and have a detailed
description of the security boundary. The power system security clas-
sification we consider is feasibility with respect to the N-1 security-
constrained AC-OPF problem under uncertainty defined in (1) and (2).
The resulting dataset can be complemented with further assessment of
dynamic security criteria, e.g. small-signal stability [9]. The input
vector x, i.e., the control variables that define the relevant degrees of
freedom, is defined as follows:

� � �
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ∀ ∈ ∖ ∀ ∈ ∀ ∈x
P

V
P

i j k| | {slack}, ,
G

j

U

0

0
i

k (6)

Using the input x, all other states in the AC-OPF problem can be de-
termined by solving the non-linear AC power flow equations. The
minimum and maximum bounds on input vector xmax and xmin are
defined in (1a), (1b), and (1f). Please note that in the formulation of the
QC relaxation, we use the variable vj

0 instead of the eliminated variable
V| |j

0 .
The main challenge in creating a representative and balanced da-

taset is the large number of control variables. The dimensionality of the
input vector x grows substantially with increasing system size. For in-
stance, the IEEE 118-bus system has 72 control variables, i.e., the di-
mensionality |x| is 72. A naïve approach to create a dataset would be to
sample with a prespecified discretization interval, e.g., by specifying 10
steps in each dimension of the control variables, …x x x, , ,1 2 3 . For the
118-bus system, this would require power flow solutions for 1072 op-
erating points, which is computationally intractable. Further, as we will
empirically show in Section 4.3, large parts of the input space x ∈ [xmin,
xmax] are infeasible. As a result, identifying secure samples by naïvely
sampling from the entire input space is not possible for larger test cases.

To address these challenges, we present an efficient method for
creating such datasets. First, to a-priori classify large parts of the input
space as insecure, we propose an infeasibility certificate based on se-
parating hyperplanes in Section 3.1. Focusing on the unclassified re-
gions, we then characterize the security boundary in detail in
Section 3.2. Finally, we sample inside the secure space in Section 3.3.

3.1. Constructing infeasibility certificates

We propose an infeasibility certificate which can a-priori certify
regions in which the non-convex security-constrained AC-OPF problem
under uncertainty is infeasible. This exploits the following property of a
convex relaxation: if a relaxation is infeasible for a given operating
point, the original non-convex problem is also guaranteed to be in-
feasible for that operating point. The proposed infeasibility certificate
has three components: First, we employ bound tightening to tighten
both the QC relaxation and the input bounds; this better approximates
the secure region, while also reducing the sample space. Second, we
propose an infeasibility certificate based on separating hyperplanes.
Third, we present an efficient algorithm to maximize the input region
classified as infeasible.

3.1.1. Bound tightening algorithms
The tightness of the QC relaxation relies on the tightness of the

envelopes used in (5) including the envelopes on cosine and sine terms.
These in turn depend on the tightness of the bounds on the voltage
magnitudes and angle differences. The goal of bound tightening is to
iteratively tighten voltage magnitudes and angle differences, and, as a
result, obtain a tighter relaxation. In the context of our work, the
benefits of bound tightening are twofold: First, it tightens the QC re-
laxation, i.e., shrinks its feasible space, making the infeasibility certi-
ficate based on separating hyperplanes more effective, and second, it
allows us to directly tighten the bounds on the input vector x.

We use two bound tightening algorithms from the literature: First,
we rely on a computationally lightweight bound tightening technique
for the branch angle differences θij

min and θij
max in (1g) from [17].

Second, we use an optimization-based bound tightening algorithm from
[18] which tightens the voltage magnitude bounds at each bus Vmax,
Vmax in (1a), and further tightens the angle differences for each line θij

min

and θij
max in (1g). For this purpose, we iteratively solve convex optimi-

zation problems to calculate the maximum and minimum values that
the optimization variable under study, i.e., a voltage magnitude or a
voltage angle difference, can obtain in the relaxed problem. Note that
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by tightening one variable bound, it may be possible to further tighten a
previously tightened bound. This procedure can be executed for a de-
fined number of iterations or until a fixed point is reached. As a final
step in the bound tightening, we compute the tightened bounds for the
input vector x, i.e., the bounds on active power of generators and un-
certain injections. All inputs x which are outside the tightened
minimum and maximum input bounds xBT,min, xBT,max are guaranteed to
be infeasible with respect to the non-convex AC-OPF problem. We
calculate the volume of the remaining unclassified input space volume
VBT, normalized by the originally specified bounds on x:

�

∏=
∈

−

−
VBT

k

x x

x x
k k

k k

BT,max BT,min

max min
(7)

The input set � is defined as � � � �∖: { {slack}, , }.

3.1.2. Separating hyperplanes
We next propose an infeasibility certificate based on separating

hyperplanes. Consider a particular operating point x̂ that is infeasible
with respect to the non-convex security-constrained AC-OPF. We solve
the following optimization problem to compute the closest dispatch x*
which is feasible to the convex QC relaxation:

Rmin
x S S S v θ l W R, , , , , , , ,U G (8a)

b d f bs.t.(1 )-(1 ), (1 ), (2 ), (4), (5), (6) (8b)

�
∑ − ≤

∈
x x R( ^ )

k k k
2

(8c)

If the obtained radius R* is greater than zero, i.e., the operating
point x̂ is infeasible with respect to the relaxation, no operating point x
exists which is closer to x̂ than the obtained point x*. This property has
been used in Molzahn [8] to construct infeasibility certificates in the
form of hyperspheres and ellipses by assigning different weights to the
components in (8c). Here, we propose to use hyperplanes as in-
feasibility certificates in order to significantly enlarge the volume
classified as infeasible: Proposition 1: For a given infeasible point x̂ , if
the solution to (8) yields a non-zero radius R* and optimal solution x*,
all vectors x which fulfill the following criterion are infeasible with
respect to the AC-OPF constraints (1) and (2):

→ − <n x x( *) 0T (9)

The normal of the hyperplane is defined as→ = −n x x: * ^ and the operator
T denotes the transpose. Proof of Proposition 1: Proof by contradiction:
Assume there exists a feasible point x̃ that is inside the region classified
as infeasible by the hyperplane: → − <n x x(˜ *) 0T . As the feasible space
of optimization problem (8) is convex, it must hold that any linear
combination between x̃ and x* is also feasible:

+ − ∈λx λ x λ˜ (1 ) *, [0, 1]. Then, there exists a point
= + −x λ x λ x˜* *˜ (1 *) * which has a radius R̃* to the initial infeasible

point x̂ that is smaller than R*. Since the optimization problem (8) is
convex, we obtained the globally optimal solution x* with the smallest
radius R*. As a result, there cannot exist an input x̃ that has a smaller
radius than R*. We have shown by contradiction that there cannot exist
a feasible point x̃ that is inside the region classified as infeasible by the
hyperplane. The infeasibility certificate with respect to the non-convex
AC-OPF problem (1) and (2) follows from the property that infeasibility
with respect to the QC relaxation constraints (8b) is sufficient to ensure
infeasibility with respect to (1) and (2). Alternatively, we can show that
Proposition 1 is true by taking the first-order Taylor expansion of
constraint (8c) at the optimal solution x*. For convex sets, first-order
Taylor expansions of nonlinear constraints are always separating hy-
perplanes [19].

An illustrative comparison of both infeasibility certificates is shown
in Fig. 1. By solving the same optimization problem, it is evident that
the infeasibility certificate based on hyperplanes is able to classify
significantly larger spaces as infeasible. This is quantitatively analysed

through simulation studies in Section 4.2.

3.1.3. An efficient algorithm to minimize the unclassified input space
Using the infeasibility certificate, we propose an efficient algorithm

to maximize the portion of the input space that can be classified a-priori
as infeasible. Our algorithm relies on an insight related to the hyper-
planes: together with the initial input space restriction, subsequent
hyperplanes form a convex polytope which can be described as Ax ≤ b.
We can write the row of A and entry in b corresponding to the hyper-
plane in (9) as =→A n:k

T and =→b n x: *k
T . Efficient methods to sample

uniformly from inside a convex polytope are available, e.g., “Hit-and-
Run” sampling [20]. This allows us to iteratively construct hyperplanes
while sampling only inside the currently unclassified region. Thus, the
hyperplane certificates facilitate a significant improvement on the
“rejection” sampling approach used with hypersphere certificates
in Molzahn [8], Thams et al. [9].

The steps of the algorithm to compute infeasibility certificates are
detailed in Algorithm 1. We start with a description of the convex
polytope restricted to the tightened input bounds. We iteratively sample
uniformly from inside the convex polytope and add identified hyper-
planes until we reach an upper iteration limit of N1 samples. This en-
sures that only samples which have not yet been classified as infeasible
by previously added hyperplanes are considered in optimization pro-
blem (8). In Section 4.3, we will demonstrate the performance of this

Fig. 1. Illustrative example of the differences between the infeasibility certifi-
cates using hyperspheres and hyperplanes. For a given infeasible point x̂ , the
closest point x* is computed which is feasible to the QC relaxation. The normal
vector →n is perpendicular to the feasible space of the QC relaxation. The
feasible space of the non-convex AC-OPF problem is contained within that of
the convex QC relaxation. All points inside the hypersphere or all points that
are on the left side of the hyperplane are guaranteed to be infeasible with re-
spect to both the QC relaxation and the non-convex AC-OPF problem, respec-
tively. Note that the sets are not drawn to scale.

1: Run bound tightening and obtain xBT,min and xBT,max

2: Set iteration count: k ← 0
3: Initialize unclassified region A(0)x ≤ b(0):

A(0) := [I|x|×|x| − I|x|×|x|]T

b(0) : = [(xBT,max)T (xBT,min)T ]T

4: while k ≤ N1 do
5: draw random x(k) from inside A(k)x ≤ b(k)

6: solve (8) with x̂ := x(k) and obtain x∗
7: if R > 0 then
8: reduce unclassified region by adding hyperplane:

A(k+1) = [(A(k))T −→n ]T

b(k+1) = [(b(k))T −→n T x∗]T

9: end if
10: k ← k + 1
11: end while.

Algorithm 1. Computing infeasibility certificates.
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algorithm on a range of PGLib-OPF networks up to 500 buses by cal-
culating the remaining unclassified volume as the volume of the convex
polytope ≤A x bN N( ) ( )1 1 . This shows substantial reductions of unclassified
input space volumes. An alternative approach to the proposed algo-
rithm using separating hyperplanes could be to directly construct a
linear outer approximation of the convex feasibility set defined by (8b).
This could be achieved by applying e.g. “Hit-and-Run” sampling to
(8b). This is subject of our future work.

3.2. Security boundary identification

After computing the infeasibility certificates, we perform sampling
and directed walks, similar to [9], to obtain a detailed description of the
security boundary. For this purpose, we first uniformly draw a large
number N2 of samples from the convex polytope describing the re-
maining unclassified input region: ≤A x bN N( ) ( )1 1 . For each sample, we
first run AC power flows for the intact and the outaged system states
and check if any of the constraints in (1) are violated. If not, we add the
current point to the dataset as a feasible point, otherwise as an in-
feasible point. If constraints are violated, we run additional AC power
flows for which we enforce the reactive power limits of generators, i.e.,
if any generator violates its reactive power limit it is converted from a
PV to a PQ bus in the power flow. This is based on the observation that
reactive power limits are often the only constraints violated. If the
obtained power flow solutions satisfy all constraints in (1), the voltage-
adjusted point is added to the dataset as feasible sample, i.e., the vol-
tage set-points of generators in x are updated accordingly. If both stages
are not feasible, we solve the following non-convex optimization pro-
blem which computes the closest feasible dispatch to the non-convex
AC-OPF problem in (1) and (2):

Rmin
x V S S S R, , , , ,U G (10a)

cs.t. (1), (2), (6), (8 ) (10b)

We add the obtained locally optimal point x* to the dataset as
feasible point. We repeat this procedure for all N2 samples and obtain as
a result a detailed security boundary description.

3.3. Sampling from inside the secure space

To obtain a more detailed description of the entire secure space, we
fit a multivariate normal distribution � to the feasible points obtained.
For this purpose, we estimate both the mean μ and the covariance
matrix Σ from the feasible data points. To bias the sampling towards
inside the boundary, we reduce the magnitude of all entries of the
covariance matrix, i.e., = sΣ ·Σ,red red by a constant scaling factor
sred < 1. We draw a large number, denoted N3, of samples from
� μ( , Σ )red . For each of these samples, we first run AC power flows for
the intact and the outaged system states, check feasibility with respect
to all AC-OPF constraints, and add the sample with the corresponding
classification to the dataset. If the sample is infeasible, we run a second
round of AC power flows in which we enforce the generators’ reactive
limits and again evaluate the feasibility with respect to all AC-OPF
constraints. If the sample is feasible, we add it to the dataset with the
generator voltage set-points adjusted accordingly. Our simulations in-
dicate that sampling from a multivariate normal distribution � μ( , Σ )red
results in identification of feasible samples inside the secure space. We
did not observe improvements by fitting a Gaussian mixture model.

4. Simulation and results

We analyse the performance of our proposed methodology for a
range of test cases from the PGLib-OPF networks. First, we compare the
proposed infeasibility certificate based on separating hyperplanes with
the certificate based on hyperspheres from [8]. Second, we compute the
volume of the unclassified input space using the infeasibility certificates

and show substantial reductions. Third, we create balanced datasets
and demonstrate their applicability using an illustrative data-driven
application.

4.1. Simulation setup

In the following, we first evaluate our proposed methods on 13
PGLib-OPF networks (v19.05) [21] up to 500 buses for which we do not
consider N-1 security and uncertainty, i.e., we use the test cases as
specified in IEEE PES Task Force on Benchmarks for Validation of
Emerging Power System Algorithms [21]. Second, we use two test cases
for which we include both N-1 security and uncertainty. We use
case39_epri and case162_ieee_dtc with the following line contingencies
� = {0, 7, 22, 24, 36, 43} and � = {0, 6, 8, 24, 50, 128}, respectively.
These lines correspond to the following bus pairs {–, 3–18, 12–13,
14–15, 22–23, 26–28} and {–, 2–7, 3–14, 8–13, 16–17, 50–125}, re-
spectively. We assume the same parameters for the outaged system
state as for the intact system state. Furthermore, we place three wind
farms with rated power of 500 MW and consider three uncertain loads
with ± 50% variability, i.e., a total of six uncertain power injections,
at buses � = {3, 21, 27, 4, 25, 28} for case39_epri and
� = {60, 90, 145, 3, 8, 52} for case162_ieee_dtc. For all uncertain injec-
tions, we assume a power factor =ϕcos 1.

Note that all inputs x are normalized with respect to their maximum
and minimum limits as specified in IEEE PES Task Force on Benchmarks
for Validation of Emerging Power System Algorithms [21], i.e., if x has
dimension |x|, then x ∈ [0, 1]|x|. This normalization step is standard
practice for many data-driven applications including neural networks
and improves performance [22].

For both AC power flow and AC optimal power flow computations,
we rely on MATPOWER [23] with the IPOPT solver for AC-OPF problems
[24]. For the bound tightening, we use the implementations in Shche-
tinin et al. [17], Sundar et al. [18]. Note that we adapted the im-
plementations in both Shchetinin et al. [17] and Sundar et al. [18] to
include uncertainty in power injections by modelling them as gen-
erators with active power limits corresponding to the defined un-
certainty set and no reactive power capability, i.e., the lower and upper
reactive power limits are set to zero (as the power factor is assumed to
be 1, =ϕcos 1). We only tighten the bounds of the intact system state,
i.e., the bounds of the outaged system states are not tightened, and we
run the optimization-based bound tightening for up to three iterations.
Extension of these toolboxes to the full N-1 case is a direction for future
work. We use MOSEK [25] to solve the QC relaxation.

To approximate the volumes of the convex polytopes describing the
remaining unclassified input space, we use a volume approximation
toolbox in C++ [26] which handles floating point precision issues.
Note that an exact volume computation is considered intractable for
dimensionality 10 or higher [26]. The relative approximation error
threshold is set to be less than one order of magnitude, which is suffi-
ciently accurate for our purposes since we compute volumes of spaces
several orders of magnitudes smaller than the initial volume.

4.2. Comparison of infeasiblity certificates

We compare the infeasibility certificate based on hyperspheres
proposed in Molzahn [8] with the infeasibility certificate based on
hyperplanes proposed in Section 3.1.2. The main metric for comparison
is the volume of the remaining unclassified space after applying the
infeasibility certificates. We consider case39_epri and case162_ieee_dtc.
We use the QC relaxation for both certificates with all the bounds
tightened as described in Section 3.1.1. We only consider the active
power generation in the input variables x and we do not consider N-1
security or uncertainty. For the certificate based on hyperplanes, we
follow the algorithm outlined in Algorithm 1. For the certificate based
on hyperspheres, we assume that in each iteration we draw a random
sample from the entire input space, and if it is infeasible we compute
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the closest feasible input x by solving (8). If the distance is non-zero, we
have obtained an infeasibility certificate. We use Monte Carlo sampling
with 106 samples to estimate the volume of the unclassified space not
covered by the hyperspheres.

Fig. 2 shows the variation of the unclassified input volume with up
to 50 iterations. We make the following observations from the results.
First, the hyperplane certificates shrink the unclassified region by four
orders of magnitude more than the hyperspheres, i.e., the unclassified
volumes evaluate to −10 5 versus −10 1 compared to the initial unit hy-
percube’s normalized volume of 1. Second, the algorithm using hy-
perplanes requires significantly fewer iterations. After the first itera-
tion, the hyperplanes classify a substantially larger space as infeasible
than the hyperspheres after 50 iterations. The reasons for this are
twofold: First, as evident in Fig. 1, certificates based on separating
hyperplanes cover a larger volume than hyperspheres for the same
sample and second, the hyperplanes enable the use of efficient methods
for sampling uniformly from inside the associated convex poly-
tope [20,26].

4.3. Estimating unclassified volumes for PGLib-OPF networks

In the following, we compute infeasibility certificates and the vo-
lume of the remaining unclassified input space for a range of test cases.
For this purpose, we run Algorithm 1 with the number of iterations N1

set to 1000. We evaluate the remaining estimated volume for the bound
tightening VBT according to (7) and for the separating hyperplanes
described as a convex polytope by running the volume approximation
algorithm in Emiris and Fisikopoulos [26]. In Table 1, the

dimensionality |x|, the reduced unclassified volume VBT after bound
tightening, the number of hyperplanes |HP|, and the reduced un-
classified volume VHP enclosed by the separating hyperplanes is listed.
Note that both volumes are defined with respect to the unit hypercube
x ∈ [0 1]|x| normalized by the original power system limits with volume
1, i.e., 100.

We make several observations. First, the bound tightening results in
a moderate reduction in input dimensionality of several orders of
magnitude ( −10 1 to −10 4) for most test cases. Second, the infeasibility
certificates based on hyperplanes enable further substantial reductions
in the unclassified volume. As a result, the total unclassified volume
compared to the unit hypercube is reduced between 2 and 40 orders of
magnitude ( −10 2 to −10 40). The median of the unclassified volume is

−10 8. This means that in order to identify one sample inside the un-
classified volume, we would have to uniformly draw 108 samples from
the original bounds on the input x. This highlights the necessity of first
computing the infeasibility certificates to be able to identify the secure
space. The number of hyperplanes is below 1000 for most test cases,
indicating that Algorithm 1 has obtained a good estimation of the un-
classified volume. For the four test cases for which 1000 hyperplanes
are added, the unclassified input volume could be further reduced by
increasing N1.

To allow for comparability between test cases with different number
of degrees of freedom, we propose to use a metric defined as − V

x
log ( )

| |
10 .

The metric is motivated as follows: If one wants to sample 10 steps in
each dimension, i.e., 10|x|, then this metric quantifies by how much the
exponent is reduced. Note that the value obtained in percent is not the
dimensionality reduction itself but relates to the reduction in the orders
of magnitudes of the dimensionality. This value is between 14.8% and
72.2% for all test cases, showcasing the general applicability of the
proposed infeasibility certificate for AC-OPF problems.

4.4. Dataset creation for PGLib-OPF networks

We create datasets of operating points classified based on their
feasibility with respect to AC-OPF problems including N-1 security and
uncertainty. To this end, we first draw a number of samples =N 102

4

from the inside of the remaining unclassified volume described in
Table 1 and obtain a detailed security boundary description following
the approach in Section 3.2. We fit a multivariate normal distribution
with =s 0.25red and classify =N 103

5 samples as secure or insecure
following the approach in Section 3.3. In Table 2, we list the char-
acteristics of the obtained datasets. First, note that in the boundary
identification stage, if the percentage of secure points is above 50%,

Fig. 2. For case39_epri and case162_ieee_dtc, we compare the remaining un-
classified volume between an infeasibility certificate based on hyperspheres
from [8] and the proposed certificate in Section 3.1.2 based on hyperplanes.
Note that these results cannot be directly compared to those of Table 1, as here
only the active generator set-points are assumed as degrees of freedom. In
Table 1, generator voltage set-points and uncertain injections are also con-
sidered.

Table 1
Unclassified input volumes for PGLib-OPF networks.

Power system case |x| VBT |HP| VHP − V
x

log10( )
| |

AC-OPF without N-1 security and without uncertainty
case3_lmbd 4 6.3e−02 28 3.3e−02 37.0%
case5_pjm 7 1.0e+00 99 6.9e−03 30.9%
case14_ieee 6 2.4e−01 54 6.9e−04 52.7%
case24_ieee_rts 20 9.2e−01 184 2.3e−06 28.2%
case30_ieee 7 6.2e−03 61 8.8e−06 72.2%
case39_epri 19 9.9e−02 203 7.0e−08 37.7%
case57_ieee 10 3.8e−02 231 4.9e−06 53.1%
case73_ieee_rts 62 1.0e+00 608 6.1e−16 24.5%
case118_ieee 72 1.7e−02 1000 1.6e−17 23.3%
case162_ieee_dtc 23 6.1e−04 371 1.5e−11 47.1%
case200_tamu 69 9.3e−01 1000 6.0e−11 14.8%
case300_ieee 125 1.0e−12 1000 3.4e−40 31.6%
case500_tamu 111 8.6e−02 1000 5.4e−26 22.8%
AC-OPF considering N-1 security and uncertainty
case39_epri 25 2.6e−01 271 2.0e−05 18.8%
case162_ieee_dtc 29 2.2e−04 394 6.0e−10 31.8%
Median all cases 23 8.6e−02 271 7.0e−08 31.6%

Table 2
Created datasets for AC-OPF problems.

Power system case Boundary Inside (MVND) Overall secure Overall points
=N 102 4 =N 103 5

AC-OPF without N-1 security and without uncertainty
case3_lmbd 69.5% 36.5% 40.6% 114′389
case5_pjm 68.6% 69.4% 69.3% 125′432
case14_ieee 73.3% 59.0% 61.0% 147′047
case24_ieee_rts 66.8% 44.3% 48.7% 131′158
case30_ieee 75.0% 50.2% 54.0% 124′944
case39_epri 57.2% 29.9% 33.9% 154′635
case57_ieee 58.9% 35.2% 38.9% 150′865
case73_ieee_rts 63.9% 51.1% 52.7% 222′730
case118_ieee 53.2% 47.0% 47.6% 209′996
case162_ieee_dtc 50.0% 40.1% 41.7% 129′165
case200_tamu 50.2% 36.6% 38.1% 177′023
case300_ieee 50.0% 32.6% 34.7% 163′087
case500_tamu 50.0% 35.4% 37.1% 174′774
AC-OPF considering N-1 security and uncertainty
case39_epri 58.2% 78.2% 75.2% 139′756
case162_ieee_dtc 50.0% 17.9% 23.2% 121′358
Average all cases 59.7% 44.2% 46.5% 152′424
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then sampling directly from the remaining unclassified volume results
in identifying secure operating points. This is the case for the majority
of test cases, demonstrating that the infeasibility certificate is able to
provide a tight approximation of the secure spaces of non-convex AC-
OPF problems. For the test cases where the sampling did not find any
secure samples, the number of iterations for the feasibility certificate
could be enlarged or other relaxations such as moment-based relaxa-
tions described in Molzahn and Hiskens [7] could be used to further
reduce the unclassified space in Algorithm 1. Second, the results show
that sampling from a multivariate normal distribution fitted to the
boundary samples results in identification of a large number of secure
samples. The resulting datasets are well balanced with on average
46.5% secure samples. Note that this is an important metric for the
successful application of data-driven methods such as neural networks
[1]. The number of overall points is dependent on the number of ad-
ditional feasible samples identified by enforcing the generators’ reactive
power limits in the AC power flows and differs between the test cases.

Regarding the computational tractability, all simulations were car-
ried out on a laptop and the dataset creation for the largest test cases
took a few hours, with the most computationally intense task being the
AC-OPF evaluations in the boundary identification and the optimiza-
tion-based bound tightening [18]. By using high-performance com-
puting and parallelizing both the boundary identification and the AC
power flow computations, we expect that our approach can scale to
systems with thousands of buses. The number of samples chosen for
each stage of the dataset creation method needs to be adjusted for the
data-driven application at hand, and depends among other factors on
the problem dimensionality, the chosen classifier, and the desired
prediction accuracy. A common approach is to train and evaluate the
performance of a data-driven method on datasets of different sizes.

4.5. Training neural network classifiers

As an illustrative data-driven application, we evaluate the perfor-
mance of a neural network classifier trained on several of the created
datasets. The neural network predicts a binary classification, i.e.,
whether the input x belongs to the class “secure” or “insecure”. We
choose neural network structures with five hidden layers where the
numbers of neurons of each hidden layer selected to be 10 times the
input dimension |x|. We split the dataset into a training set consisting of
85% of all samples and a test set of the remaining 15%. Note that the
classifier has no information of the test set during training, and its
performance is evaluated on the test set only. This gives a metric for
how well the classifier generalizes to unseen data. We train the neural
networks using TensorFlow [22] with standard training parameters and
250 epochs.

Table 3 shows the test set accuracy, i.e., the share of correctly
predicted labels for the test set. First, we use 85% of the full dataset for
training and 15% of the full dataset for testing. Second, we only use the
boundary samples from Section 3.2 as training data and then test on
15% of the full dataset. This gives us an estimation of the benefit of the
additional sampling from the fitted multivariate distribution in
Section 3.3. We observe that the neural network classifier is able to
generalize from the training to the test set and achieve high accuracy

when using the full dataset. To further increase the classification ac-
curacy, deeper neural networks or a deep autoencoder to identify
lower-dimensional features could be used. We observe that only relying
on the boundary samples for prediction is not sufficient for most test
cases, higlighting the importance of obtaining a representative dataset.

5. Conclusion

Successful application of data-driven methods in power systems
requires datasets of sufficient size, covering a wide range of operating
points. Creating a dataset that characterizes the security boundary and
sufficiently covers both secure and insecure operating regions is a
highly computationally demanding task, even for medium-sized sys-
tems, as we showed in Thams et al. [9]. In this paper, we propose an
efficient method to create such datasets. We focus on AC-OPF feasibility
and N-1 security, as any operating point should first satisfy static se-
curity criteria. Future work will extend this to include dynamic security
criteria, similar to [9]. We develop an infeasibility certificate based on
separating hyperplanes which is able to classify large portions of the
input space as insecure. We show that the infeasibility certificates re-
duce the unclassified input space volumes significantly, by up to −10 40

compared to an initial normalized input space volume of 1 (i.e., 100)
based on defined control variable bounds. Although the secure oper-
ating region is a very small portion of the original input space, our
method is able to produce balanced datasets of secure and insecure
operating points, a property desired for successful applications of data-
driven methods. As an illustrative application, we used the generated
datasets to assess the performance of neural network classifiers. Future
work is directed towards (i) utilizing convex restrictions from [27,28]
to characterize secure spaces and (ii) exploiting high-performance
computing.
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