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ABSTRACT

Networks with community structure arise in many fields such as social science, biological

science, and computer science. Stochastic block models are popular tools to describe such

networks. For this reason, in this dissertation which is composed of two parts we explore

some stochastic block models and the relationship between them.

In the first part of the dissertation, we study the Popularity Adjusted Block Model (PABM)

and introduce its sparse case, the Sparse Popularity Adjusted Block Model (SPABM). The

SPABM is the only existing block model which allows to set some probabilities of connections

to zero. For both the PABM and the SPABM, we produce the estimators of the probability

matrix in the case of an arbitrary number of communities which possibly grows with a number

of nodes in the network and is not assumed to be known. One of our main contributions

is application of the Sparse Subspace Clustering (SSC) to partitioning the network into

communities, the approach that is well known in Computer Vision but, to the best of our

knowledge, has not been used for clustering network data.

There is a variety of block models such as the Stochastic Block Model (SBM) and the

Degree Corrected Block Model (DCBM) and the PABM. However, while this variety leads

to a range of choices, the block models do not have a nested structure, in addition the DCBM

requires identifiability assumptions for its fitting. There is also a substantial jump in the

number of parameters from the DCBM to the PABM. Therefore, in the second part of the

dissertation, we explore the relationship between the existing block models. We suggest a set

of conditions on the DCBM that leads to a nested structure in block models, with the Erdős-

Rényi model being the simplest and the PABM the most complex. Moreover, we introduce

the Heterogeneous Block Model (HBM) that is more complicated than DCBM but has fewer
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unknown parameters than the PABM, thus bridging the gap between the DCBM and the

PABM. The HBM is based on partitioning the network into the mega-communities that,

in turn, are subdivided into communities, where the communities are distinguished by the

average connection probabilities between them while the mega-communities are determined

by the heterogeneity of the probabilities of connections. This results in formulation of a

hierarchy of block model which does not rely on arbitrary identifiability conditions, treats

the SBM, the DCBM and the PABM as its particular cases with specific parameter values,

and also allows a multitude of versions that are more complicated than DCBM but have

fewer unknown parameters than the PABM. The latter enables one to carry out clustering

and estimation without preliminary testing which of the block models is really true.

The theories in this dissertation are supplemented by simulation studies and real data ex-

amples.
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CHAPTER 1: INTRODUCTION

Over the past decade there has been an explosion of network data, that is, measurements

that are either of or from a system conceptualized as a network, from different fields of

science. For this reason, statistical network analysis has become a major field of research,

with applications as diverse as sociology, biology, genetics, ecology, information technology

to name a few. Examples of networks include protein-protein interaction networks, human

brain functional networks, social networks found on Facebook, Twitter and dating websites,

academic paper co-authorship and citation networks, etc. Theoretically, a network is con-

sidered as a graph often defined in terms of nodes and edges. In the statistical literature, a

graph is often defined in terms of the nodes and the corresponding measurements on pairs

of nodes which can be represented, for instance, as a binary adjacency matrix in a setting

where we are only concerned with encoding presence or absence of edges between pairs of

nodes. Nodes in the network may represent individuals, organizations, or some other kind

of unit of study. Edges correspond to types of links, relationships, or interactions between

the units, and they may be directed or undirected. For undirected graphs the adjacency

matrix is symmetric. Networks can be modeled in a variety of ways, however, in the last

decade stochastic block models attracted more and more attention due to their ability to

summarize data in a compact and intuitive way and uncover low-dimensional structures that

fully describe a given network. An overview of statistical modeling of random graphs can be

found in, e.g., [23] and [32].

Consider an undirected network with n nodes and no self-loops and multiple edges. Let

A ∈ {0, 1}n×n be the symmetric adjacency matrix of the network with Ai,j = 1 if there is a
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connection between nodes i and j, and Ai,j = 0 otherwise. We assume that

Ai,j ∼ Bernoulli(Pi,j), 1 ≤ i ≤ j ≤ n, (1.1)

where Ai,j are conditionally independent given Pi,j and Ai,j = Aj,i, Pi,j = Pj,i for i > j.

The classical Erdős-Rényi [16] random graph model assumes that the edges in a random graph

are drawn independently with an equal probability, does not allow community structures

and is too simplistic for applications. While the model boosted research in the area, it was

very simplistic and could not adequately describe the networks that appear in real life. In

particular, one of the main goals of a network modeling is to partition the nodes into the

communities that, in some sense, exhibit similar modes of behavior.

The block models assume that each node in the network belongs to one of K distinct blocks

or communities Nk, k = 1, · · · , K. Let z denote the vector of community assignment, with

zi = k if the node i belongs to the community k. Then, the probability of connection between

node i ∈ Nk and node j ∈ Nl depends on the pair of blocks (k, l) to which nodes (i, j) belong.

One can also consider a corresponding membership (or clustering) matrix Z ∈ {0, 1}n×K such

that Zi,k = 1 iff i ∈ Nk, i = 1, . . . , n.

The simplest random graph model for networks with community structure is the Stochastic

Block Model (SBM) [40], [1], [20]. Under the K-block SBM, all nodes are partitioned into

communities Nk, k = 1, . . . , K, and the probability of connection between nodes is com-

pletely defined by the communities to which they belong: Pi,j = Bz(i),z(j) where Bk,l is the

probability of connection between communities k and l, and z : {1, ..., n} → {1, ..., K} is a

clustering function. In particular, any nodes from the same community have the same degree

distribution and the same expected degree. The Erdős-Rényi model can be viewed as the
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SBM with only one community K = 1.

Since the real-life networks usually contain a very small number of high-degree nodes while

the rest of the nodes have very low degrees, the SBM fails to explain the structure of many

networks that occur in practice. The Degree-Corrected Block Model (DCBM), introduced

by Karrer and Newman (2011) addresses this deficiency by allowing these probabilities to

be multiplied by the node-dependent weights. Under the DCBM, the elements of matrix P

are modeled as

Pi,j = hiBz(i),z(j)hj, i, j = 1, . . . , n, (1.2)

where h = [h1, h2, ..., hn] is a vector of the degree parameters of the nodes, and B is the

(K × K) matrix of baseline interaction between communities. Matrix B and vector h in

(1.2) are defined up to a scalar factor, which is usually fixed via the so called identifiability

condition, that can be imposed in a variety of ways. For example, Karrer and Newman [29]

enforce a constraint of the form

∑

i∈Nk

hi = 1, k = 1, ..., K. (1.3)

A network feature that is closely associated with community structure is the popularity

of nodes across communities defined as the number of edges between a specific node and

a specific community. While the DCBM allows to correctly detect the communities, and

accurately fits the total degree by enforcing the node-specific degree parameters, it enforces

the node popularity to be uniformly proportional to the node degree. Hence, the DCBM fails

to model node popularities in a flexible and realistic way. For this reason, recently, Sengupta

and Chen (2018) [49] introduced the Popularity Adjusted Stochastic Block Model (PABM)

which models the probability of a connection between nodes as a product of popularity
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parameters that depend on the communities to which the nodes belong as well as on the

pair of nodes themselves. In particular, in PABM

Pi,j = Vi,zjVj,zi , (1.4)

where Vi,k, 1 ≤ i ≤ n, 1 ≤ k ≤ K, are the popularity scaling parameters and 0 ≤ Pi,j ≤ 1

for any i and j. Sengupta and Chen [49] introduced the notion of popularity of node i in

community k as µi,k =
∑

j∈Nk
Pi,j. They noted that the ratio of popularities of the nodes

(i, j) ∈ Nk in the same community k is equal to one for the SBM, is independent of commu-

nity k (a function of i and j only) in DCBM but can vary between nodes and communities for

the PABM, thus, allowing a more flexible modeling of connection probabilities. The authors

showed that PABM generalizes both the SBM and the DCBM, suggested the quasi-maximum

likelihood type procedure for estimation and clustering and demonstrated the improvement

achieved through this new methodology.

The flexibility of PABM, however, is not limited to modeling the popularity parameters of

the nodes. In order to better understand the model, consider a rearranged version P (Z,K) of

matrix P where its first n1 rows correspond to nodes from class 1, the next n2 rows correspond

to nodes from class 2 and the last nK rows correspond to nodes from class K. Denote the

(k, l)-th block of matrix P (Z,K) by P (k,l)(Z,K). Since sub-matrix P (k,l)(Z,K) ∈ [0, 1]nk×nl

corresponds to pairs of nodes in communities (k, l) respectively, one obtains from (1.4) that

P
(k,l)
i,j = Vik,lVjl,k where ik is the i-th element in Nk and jl is the j-th element in Nl. Thus,

matrices P (k,l)(Z,K) are rank-one matrices with the unique singular vectors generating them.

Indeed, consider vectors Λ(k,l) with elements Λ
(k,l)
i = Vik,l, where i = 1, . . . , nk and ik ∈ Nk.

Then, equation (1.4) implies that

P (k,l)(Z,K) = Λ(k,l) [Λ(l,k)]T . (1.5)
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Moreover, it follows from (1.4) and (1.5) that P (k,l)(Z,K) = [P (l,k)(Z,K)]T and that each

pair of blocks (k, l) involves a unique combination of vectors Λ(l,k):

P (Z,K) =




Λ(1,1)(Λ(1,1))T Λ(1,2)(Λ(2,1))T · · · Λ(1,K)(Λ(K,1))T

Λ(2,1)(Λ(1,2))T Λ(2,2)(Λ(2,2))T · · · Λ(2,K)(Λ(K,2))T

...
... · · · ...

Λ(K,1)(Λ(1,K))T Λ(K,2)(Λ(2,K))T · · · Λ(K,K)(Λ(K,K))T




where

Λ =




Λ(1,1) Λ(1,2) · · · Λ(1,K)

Λ(2,1) Λ(2,2) · · · Λ(2,K)

...
... · · · ...

Λ(K,1) Λ(K,2) · · · Λ(K,K)




(1.6)

The latter implies that matrix P (Z,K) is formed by arbitrary rank one blocks and hence

rank(P (Z,K)) = rank(P ) can take any value between K and K2. In comparison, all other

block models restrict the rank of P to be exactly K. This is true not only for the SBM and

DCBM discussed above but also for their generalizations such as the Mixed Membership

models (see, e.g., [4] and [11]) and the Degree Corrected Mixed Membership (DCMM) (see,

e.g., [25]). Hence, the PABM allows for much more flexible spectral structure than any other

block model above.

This flexibility makes the PABM an attractive choice for modeling networks that appear

in biological sciences. Indeed, while social networks exhibit assortative behavior due to the

human tendency of forming strong associations, the biological networks tend to be more

diverse. For this reason, PABM tends to be a useful tool for modeling such networks.

However, while the PABM model is extremely valuable, the statistical inference in [49] has

5



been incomplete. In particular, the authors considered only the case of a small finite number

of communities K; they provided only asymptotic consistency results as n → ∞ without any

error bounds when n is finite; their clustering procedure was tailored to the case of a small

K, therefore, all simulations and real data examples in [49] only tackled the case of K = 2.

In this dissertation, we address some of those deficiencies and advance the theory of the

PABM. Specifically, this dissertation makes the following contributions:

1. In contrast to [49], we consider the PABM with an arbitrary number of communities

which possibly grows with a number of nodes in the network and is not assumed to be

known.

2. We argue that the main appeal of the PABM is the flexibility of the spectral properties

of the graph and replace the estimators in [49] that are based on averaging over the

communities by more accurate counterparts based on low rank matrix approximations.

3. While Sengupta and Chen [49] only proved convergence of the estimation and clustering

errors to zero as the number of nodes grows, we derive non-asymptotic upper bounds

for those errors when the number of communities is arbitrary. In particular, we produce

an upper bound for the estimation error of the matrix of the connection probabilities

and provide a condition that guarantees that the proportion of misclassified nodes

is bounded above by a specified quantity. All results in this dissertation are non-

asymptotic and are valid for any combination of parameters.

4. We use the accuracy of approximation of the adjacency matrix for various number of

communities, to identify the number of communities in the network.

5. We suggest to use the Sparse Subspace Clustering (SSC) approach to partition the

network into communities. While the SSC is widely used in computer vision, to the
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best of our knowledge, it has not been used for clustering network data. The advantage

of the SSC procedure (in comparison with the Extreme Point algorithm applied in [49])

is that it has several well studied versions and can carry out clustering not only for the

PABM but also for the SBM and DCBM.

6. Our simulation study as well as the real data examples handle various number of

communities K between 2 and 6. In particular, we demonstrate the advantages of the

PABM for modeling networks that appear in biological sciences.

The real life networks are usually sparse in a sense that a large number of nodes have small

degrees. One of the shortcomings of both the SBM and the DCBM is that they do not allow

to efficiently model sparsity in networks. Indeed, for the SBM, it is not realistic to assume

that all nodes in a pair of communities have no connections, hence, in the SBM setting, one

does not assume that the average block probabilities Bk,l = 0 for some k and l. The DCBM

is not very different in this respect since setting any node–specific weight to zero will force

the respective node to be totally disconnected from the network. For this reason, unlike in

other numerous statistical settings, sparsity in block models is defined as a low maximum

probability of connections between the nodes: max
i,j

Pi,j ≤ ρ(n) where ρ(n) → 0 as n → ∞

(see, e.g., [30], [35]). As a result, high degree nodes become very unlikely.

In addition to being unrealistic, the above definition of sparsity has other drawbacks. In

particular, one has to estimate every probability of connections Bk,l, no matter how small it

is, and, in many settings (see, e.g., [30]), in order to take advantage of the fact that Pi,j are

bounded above by ρ(n), one needs to incorporate this unknown value into the estimation

process.

On the contrary, the PABM setting allows some connection probabilities to be zero while

keeping average connection probabilities between classes above certain level and the network
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connected. This is possible only in the PABM context due to the flexible modeling of connec-

tion probabilities. The idea of setting some infinitesimally small probabilities of connections

to zero is quite attractive. Indeed, it is well known that, when many of the elements of a

vector or a matrix are identical zeros, identifying those zeros and estimating the rest of the

elements leads to a smaller error than when this information is ignored. Similarly, allowing

structural sparsity (i.e., setting connection probabilities to zero rather than to a very small

positive number) not only leads to better understanding of network topology but leads to

more precise estimation of the probability matrix P .

In the context of PABM, setting Λ
(k,l)
i = 0 simply means that that node i in class k is not

active ("popular") in class l. This, nevertheless, does not prevent this node from having high

probability of connection with nodes in another class. Setting some elements of vectors Λ(k,l)

to zero will merely lead to some of the rows (columns) of sub-matrices P (k,l)(Z,K) being

zero. Moreover, since Ai,j are Bernoulli variables with the means Pi,j, those zeros are fairly

easy to identify since Pi,j = 0 leads to Ai,j = 0.

Having several types of block models introduces a variety of choices, but also leads to some

significant drawbacks. Specifically, although the block models can be viewed as progressively

more elaborate with the Erdős-Rényi being the simplest and the PABM the most complex,

the simpler models are not necessarily particular cases of the more sophisticated ones. Indeed,

with the identifiability condition (1.3), the SBM matrix B will be different from the one in

the DCBM formulation (1.2). For this reason, majority of authors carry out estimation and

clustering under the assumption that the model which they use is indeed the correct one.

There are only very few papers that study goodness of fit in block models and majority of

them are concerned with either testing that there are no distinct communities (K = 1 in

SBM or DCBM) [6], [19], [24], or testing the exact number of communities K = K0 in the

SBM [18], [34], [44]. To the best of our knowledge, [44] is the only paper testing the SBM
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versus the DCBM, where the testing is carried out under rather restrictive assumptions. On

the other hand, using the most flexible model, the PABM, may not always be the right choice

since there is a substantial jump in complexity from the DCBM with O(n+K2) parameters

to the PABM with O(nK) parameters.

Therefore, formulation of a hierarchy of block model which does not rely on arbitrary iden-

tifiability conditions and treats the SBM, the DCBM and the PABM as its particular cases

(with specific parameter values) provides a unified approach to block models. Moreover, the

formulation allows a multitude of versions that are more complicated than DCBM but have

fewer unknown parameters than the PABM. The aim of this construction is to treat all block

models as a part of one paradigm and hence carry out estimation and clustering without

preliminary testing to see which block model fits data at hand.

The rest of the dissertation is organized as follows.

Chapter 2 discusses estimation and clustering in PABM. Section 2.1 introduces notations

used throughout Chapter 2. Section 2.2 formulates estimation and clustering as solutions of

an optimization procedure. Section 2.3 derives upper bounds for estimation errors as well

as sufficient conditions for the proportion of misclustered nodes to be bounded above by

a pre-specified quantity ρn with a high probability. Section 2.4 deliberates about practical

implementation of clustering and provides a simulation study and real data examples. In

particular, Section 2.4.1 reviews the SSC and elaborates on what kind of SSC procedure we

employ. Section 2.4.2 evaluates the performance of this method using synthetic networks with

various values of K. Furthermore, it compares the performance of the SSC with the Extreme

Point algorithm applied in [49] using the simulation example presented in [49] and shows the

superiority of the former, especially when the homophily factor is small. Section 2.4.3 brings

two examples of biological networks that we model using the PABM.
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In Chapter 3 we introduce and analyze sparse PABM. After introducing notations in Sec-

tion 3.1, we convey the structure of the probability matrix in Section 3.2. Section 3.3 for-

mulates an optimization procedure for estimation and clustering. Furthermore, Section 3.4

suggests two possible expressions for the penalties and examines the support sets of the true

and estimated probability matrices. Section 3.5 produces upper bounds on the estimation

and clustering errors. Since the optimization procedure in Section 3.3 is NP-hard, Section 3.6

discusses implementation of the community detection via sparse subspace clustering. Sec-

tions 3.7.1 and 3.7.2 complement the theory with simulations on synthetic networks and real

data examples.

Chapter 4 introduces the hierarchy of block models. In Section 4.1 we review the block

models (SBM, DCBM, and PABM). Then, we introduce and formulate in Section 4.2 the

heterogeneous stochastic block model (HBM). The optimization procedure for estimation

and clustering is discussed in Section 4.3. Section 4.4 describes a computationally tractable

clustering procedure for the implementation of clustering. The performance of the clustering

procedure is evaluated on synthetic networks and real data examples in Section 4.5.

Finally, we devote Chapter 5 to a discussion of future work.
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CHAPTER 2: ESTIMATION AND CLUSTERING IN PABM

2.1 Notation

For any two positive sequences {an} and {bn}, an ≍ bn means that there exists a constant

C > 0 independent of n such that C−1an ≤ bn ≤ Can for any n. For any set Ω, denote

cardinality of Ω by |Ω|. For any numbers a and b, a ∧ b = min(a, b). For any vector t ∈ R
p,

denote its ℓ2, ℓ1, ℓ0 and ℓ∞ norms by, respectively, ‖t‖, ‖t‖1, ‖t‖0 and ‖t‖∞. Denote by 1m

the m-dimensional column vector with all components equal to one.

For any matrix A, denote its spectral and Frobenius norms by, respectively, ‖A‖op and ‖A‖F .

Let vec(A) be the vector obtained from matrix A by sequentially stacking its columns.

Denote by Mn,K a collection of clustering matrices Z ∈ {0, 1}n×K such that Zi,k = 1

iff i ∈ Nk, i = 1, . . . , n, and ZTZ = diag(n1, . . . , nK) where nk = |Nk| is the size of

community k, where k = 1, . . . , K. Denote by PZ,K ∈ {0, 1}n×n the permutation matrix

corresponding to Z ∈ Mn,K that rearranges any matrix B ∈ R
n,n, so that its first n1 rows

correspond to nodes from class 1, the next n2 rows correspond to nodes from class 2 and

the last nK rows correspond to nodes from class K. Recall that PZ,K is an orthogonal

matrix with P
−1
Z,K = PT

Z,K . For any PZ,K and any matrix B ∈ R
n×n denote the permuted

matrix and its blocks by, respectively, B(Z,K) and B(k,l)(Z,K), where B(k,l)(Z,K) ∈ R
nk×nl ,

k, l = 1, . . . , K, and

B(Z,K) = P
T
Z,KBPZ,K , B = PZ,KB(Z,K)PT

Z,K . (2.1)

Also, throughout this chapter, we use the star symbol to identify the true quantities. In
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particular, we denote the true matrix of connection probabilities by P∗, the true number of

classes by K∗ and the true clustering matrix that partitions n nodes into K∗ communities

by Z∗.

2.2 Optimization procedure for estimation and clustering

In this section we consider estimation of the true probability matrix P∗. Consider block

P
(k,l)
∗ (Z∗, K∗) of the rearranged version P∗(Z∗, K∗) of P∗. Let Λ ≡ Λ(Z∗, K∗) ∈ [0, 1]n×K∗

be a block matrix with each column l partitioned into K∗ blocks Λ(k,l) ≡ Λ(k,l)(Z∗, K∗) ∈

[0, 1]nk . Then, due to (1.5), P
(k,l)
∗ (Z∗, K∗) are rank-one matrices such that P

(k,l)
∗ (Z∗, K∗) =

[P
(l,k)
∗ (Z∗, K∗)]T and that each pair of blocks (k, l) involves a unique combination of vectors

Λ(k,l). The structures of matrices P∗(Z∗, K∗), Λ and P∗ are illustrated in Figure 2.1.

Observe that although matrices P
(k,l)
∗ (Z∗, K∗) in (1.5) are well defined, vectors Λ(k,l) and Λ(l,k)

can be determined only up to a multiplicative constant. In particular, under the constraint

1Tnk
Λ(k,l) = 1Tnl

Λ(l,k), (2.2)

Sengupta and Chen [49] obtained explicit expressions for vectors Λ(k,l) and Λ(l,k) in (1.5).

In reality, K∗ and matrices Z∗ and P∗ are unknown and need to be recovered. If K∗ were

known, in order to estimate Z∗ and P∗, one could permute the rows and the columns of

the adjacency matrix A using permutation matrix PZ,K∗ obtaining matrix A(Z,K∗) =

PT
Z,K∗

APZ,K∗ and then, following assumption (1.5), minimize some divergence measure

between blocks of A(Z,K∗) and the products Λ(k,l) [Λ(l,k)]T . One of such measures is the

Bregman divergence between A(Z,K∗) and Λ(k,l) [Λ(l,k)]T .
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Figure 2.1: Matrices Λ, P (Z,K) and P in the case of n = 5 and K = 2. Matrix Λ (top left):
Λ(1,1) (red), Λ(2,1) (blue), Λ(1,2) (yellow), Λ(2,2) (violet). Assembling re-organized probability
matrix P (Z,K) (top right): P (1,1)(Z,K) (red), P (2,1)(Z,K) (green), P (2,2)(Z,K) (violet).
Re-organized probability matrix P (Z,K) (bottom left): P (1,1)(Z,K) (red), P (2,1)(Z,K) and
P (1,2)(Z,K) (green), P (2,2)(Z,K) (violet). Probability matrix P (bottom right): nodes 1,3,4
are in community 1; nodes 2 and 5 are in community 2.

The Bregman divergence between vectors x and y associated with a continuously-differentiable,

strictly convex function F is defined as

DF (x, y) = F (x)− F (y)− 〈∇F (y), x− y〉

where ∇F (y) is the gradient of F with respect to y. The Bregman divergence between

any matrices X and Y of the same dimension can be defined as the Bregman divergence
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between their vectorized versions: DF (X, Y ) = DF (vec(X), vec(Y )). It is well known that

DF (X, Y ) ≥ 0 for any X and Y and DF (X, Y ) = 0 iff X = Y . In particular, the Poisson

log-likelihood maximization used in [49] corresponds to minimizing the Bregman divergence

with

F (x) =
∑

i

(xi ln xi − xi).

Under the assumption (1.5) and the constraint (2.2) of [49], the latter leads to maximization

over Λ(k,l) and Z ∈ Mn,K∗ of the following quantity

l(Λ|A) = −DF (A,Λ) =
K∗∑

k,l=1

nk∑

i=1

nl∑

j=1

[
A

(k,l)
i,j ln

(
Λ

(k,l)
i Λ

(l,k)
j

)
−

(
Λ

(k,l)
i Λ

(l,k)
j

)]
. (2.3)

where A(k,l) stands for A(k,l)(Z,K∗), the (k, l)-th block of matrix A(Z,K∗). It is easy to

see that the expression (2.3) coincides with the Poisson log-likelihood up to a term which

depends on matrix A only, and is independent of P,Z and K∗. Maximization of (2.3) over

Λ, under condition (2.2), for given Z and K∗, leads to the estimators of Λ obtained in [49]

Λ̂(k,l) =
A(k,l)(Z,K∗)1nl√
1Tnk

A(k,l)(Z,K∗)1nl

; Λ̂(l,k) =
(A(k,l)(Z,K∗))T1nk√
1Tnk

A(k,l)(Z,K∗)1nl

. (2.4)

Afterwards, Sengupta and Chen [49] plug the estimators (2.4) into (2.3), thus, obtaining the

likelihood modularity function which they further maximize in order to obtain community

assignments.

Here, we use the Bregman divergence associated with the Euclidean distance (F (x) = ‖x‖2)

which, for a given K, leads to the following optimization problem

(Λ̂, Ẑ) ∈ argmin
Λ,Z

{
K∑

k,l=1

∥∥A(k,l)(Z,K)− Λ(k,l)[Λ(l,k)]T
∥∥2

F

}
s.t. A(Z,K) = P

T
Z,KAPZ,K
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Note that recovery of the components Λ(k,l) and Λ(l,k) of the products above relies on an

identifiability condition of the type (2.2). Since these conditions can be imposed in a variety

of ways, we denote Θ(k,l) = Λ(k,l)[Λ(l,k)]T and recover the uniquely defined rank one matrix

Θ(k,l). In addition, since the number of clusters K is unknown, we impose a penalty on K in

order to safeguard against choosing too many clusters. Hence, we need to solve the following

optimization problem

(Θ̂, Ẑ, K̂) ∈ argmin
Θ,Z,K

{
K∑

k,l=1

∥∥A(k,l)(Z,K)−Θ(k,l)
∥∥2

F
+ Pen(n,K)

}

s.t. A(Z,K) = PT
Z,KAPZ,K , rank(Θ(k,l)) = 1; k, l = 1, 2, · · · , K.

(2.5)

Here, Θ̂ is the block matrix with blocks Θ̂(k,l), k, l = 1, . . . , K̂ and Pen(n,K) will be defined

later.

Observe that, if Ẑ and K̂ were known, the best solution of problem (2.5) would be given by

the rank one approximations Θ̂(k,l) of matrices A(k,l)(Ẑ, K̂)

Θ̂(k,l)(Ẑ, K̂) = Πû,v̂

(
A(k,l)(Ẑ, K̂)

)
= σ̂

(k,l)
1 û(k,l)(Ẑ, K̂)(v̂(k,l)(Ẑ, K̂))T , (2.6)

where σ̂
(k,l)
1 are the largest singular values of matrices A(k,l)(Ẑ, K̂)); û(k,l)(Ẑ, K̂), v̂(k,l)(Ẑ, K̂)

are the corresponding singular vectors, and Πû,v̂

(
A(k,l)(Ẑ, K̂)

)
is the rank one projection of

matrix A(k,l)(Ẑ, K̂). Plugging (2.6) into (2.5), we rewrite optimization problem (2.5) as

(Ẑ, K̂) ∈ argmin
Z,K

{
K∑

k,l=1

∥∥A(k,l)(Z,K)− Πû,v̂

(
A(k,l)(Z,K)

)∥∥2

F
+ Pen(n,K)

}

s.t. A(Z,K) = PT
Z,KAPZ,K

(2.7)

In order to obtain (Ẑ, K̂), one needs to solve optimization problem (2.7) for every K, ob-
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taining

ẐK ∈ argmin
Z∈Mn,K

{
K∑

k,l=1

∥∥A(k,l)(Z,K)− Πû,v̂

(
A(k,l)(Z,K)

)∥∥2

F

}
(2.8)

and then find K̂ as

K̂ ∈ argmin
K

{
K∑

k,l=1

∥∥∥A(k,l)(ẐK , K)− Πû,v̂

(
A(k,l)(ẐK , K)

)∥∥∥
2

F
+ Pen(n,K)

}
. (2.9)

Note that if the true number of clusters K∗ were known, the penalty in (2.5) and (2.7) would

be unnecessary.

Remark 2.2.1. Advantages of our estimation procedure. There are several ad-

vantages of the estimator (2.6) in comparison with estimators (2.4) of [49]. First, rather

than obtaining estimators in (2.4) by averaging, we derive the rank one approximations of

the unknown sub-matrices of probabilities which lead to the minimal error (see, e.g., [22])

even when some of the nodes are misclustered and, therefore, the matrices P
(k,l)
∗ (Ẑ, K̂) are

not necessarily of rank one. Indeed, the estimators obtained by averaging are suboptimal

since matrix P∗ is contaminated with errors. Second, recoveries of the matrices Θ(k,l) do

not require any identifiability conditions that can be imposed in a variety of ways. Finally,

estimators Λ̂(k,k) of vectors Λ(k,k) in (2.4) require the knowledge of the diagonal elements of

matrix A that are not available. On the contrary, the rank one approximation of a matrix

can be achieved in the presence of missing values (see, e.g., [30]).

Remark 2.2.2. The true community assignment. Sengupta and Chen [49] show that

the likelihood modularity is maximized at the true community assignment provided the,

so called, detectability condition holds: for any two distinct communities Nl and Nk and

any two nodes, j1 ∈ Nl and j2 ∈ Nk, the set {(P∗)i,j1/(P∗)i,j2}ni=1 assumes at least K∗ + 1

distinct values, where K∗ is the true (known) number of clusters and P∗ is the unknown true

matrix of probabilities. In our case, the correct community assignment is a solution of the
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optimization problem (2.8) if matrix P∗ is a unique combination (up to permutations) of the

K2 rank one matrices. The latter is guaranteed if collections of vectors Λ(k,1), . . . ,Λ(k,K∗) are

linearly independent for any k = 1, . . . , K∗. Milder conditions can be found in [50].

2.3 The errors of estimation and clustering

In this section we evaluate the estimation and the clustering errors. We choose the penalty

which, with high probability, exceeds the random errors. In particular, we denote

F1(n,K) = C1nK + C2K
2 ln(ne) + C3(lnn+ n lnK) (2.10)

F2(n,K) = 2 lnn+ 2n lnK, (2.11)

where C1, C2 and C3 are absolute constants. Define the penalty of the form

Pen(n,K) =
(
2 + 16 β−1

1

)
F1(n,K) + β−1

2 F2(n,K), (2.12)

where positive parameters β1 and β2 are such that β1+β2 < 1. Then, the following statement

holds.

Theorem 2.3.1. Let (Θ̂, Ẑ, K̂) be a solution of optimization problem (2.5). Construct the

estimator P̂ of P∗ of the form

P̂ = PẐ,K̂Θ̂(Ẑ, K̂)PT
Ẑ,K̂

(2.13)

where PẐ,K̂ is the permutation matrix corresponding to (Ẑ, K̂). Then, for any t > 0 and
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C̃ = 2 (1− α1 − 8α2)
−1 (C3 + 1/α1 + C3/α2), one has

P

{
1

n2

∥∥∥P̂ − P∗

∥∥∥
2

F
≤ Pen(n,K∗)

(1− β1 − β2)n2
+

C̃t

n2

}
≥ 1− 3e−t, (2.14)

1

n2
E

∥∥∥P̂ − P∗

∥∥∥
2

F
≤ Pen(n,K∗)

(1− β1 − β2)n2
+

3C̃

n2
(2.15)

Remark 2.3.1. The penalty. By rearranging and combining the terms, the penalty in

(2.12) can be written in the form

Pen(n,K) = H1nK +H2K
2 lnn+H3n lnK, (2.16)

where Hi ≡ Hi(β1, β2, C1, C2, C3), i = 1, 2, 3, and the estimation errors in (2.14) and (2.15)

are proportional to the right hand side of (2.16). The first term in (2.16) corresponds to

the error of estimating nK unknown entries of matrix Λ, the second term is associated with

estimation of rank K2 matrix while the last term is due to the clustering of n nodes into K

communities. If K grows with n, i.e., K = K(n) → ∞ as n → ∞, then the first term in

(2.16) dominates the other two terms. However, in the case of a fixed K, the first and the

third terms grow at the same rate as n → ∞. The second term is always of a smaller order

provided K(n)/n → 0.

In order to evaluate the clustering error, we assume that the true number of classes K = K∗

is known. Let Z∗ ∈ Mn,K∗ be the true clustering matrix. Then Ẑ ≡ ẐK is a solution of the

optimization problem (2.8). Note that if Z∗ is the true clustering matrix and Z is any other

clustering matrix, then the proportion of misclustered nodes can be evaluated as

Err(Z,Z∗) = (2n)−1 min
PK∈PK

‖ZPK − Z∗‖1 = (2n)−1 min
PK∈PK

‖ZPK − Z∗‖2F (2.17)
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where PK is the set of permutation matrices PK : {1, 2, · · · , K} −→ {1, 2, · · · , K}. Let

Υ(Z∗, ρ) =

{
Z ∈ Mn,K : (2n)−1 min

PK∈PK

‖ZPK − Z∗‖1 ≥ ρ

}
(2.18)

be the set of clustering matrices with the proportion of misclustered nodes being at least ρ,

ρ < 1.

The success of clustering in (2.8) relies upon the fact that matrix P∗ is a collection of K2

rank one blocks, so that the operator and the Frobenius norms of each block are the same.

On the other hand, if clustering were incorrect, the ranks of the blocks would increase which

would lead to the discrepancy between their operator and Frobenius norms. In particular,

the following statement is true.

Theorem 2.3.2. Let K = K∗ be the true number of clusters and Z∗ ∈ Mn,K∗ be the true

clustering matrix. If for some α1, α2, ρn ∈ (0, 1), one has

‖P∗‖2F − 1 + α2

1− α1

max
Z∈Υ(Z∗,ρn)

K∑

k,l=1

∥∥P (k,l)
∗ (Z)

∥∥2

op
≥ H[C1nK + C2K

2 ln(ne) + C3(n lnK + t)],

(2.19)

then, with probability at least 1 − 2e−t, the proportion of the misclassified nodes is at most

ρn. Here, H ≡ H(α1, α2), is a function of α1 and α2 only.

2.4 Simulations and real data examples

2.4.1 Sparse subspace clustering

In Section 2.2, we obtained an estimator Ẑ of the true clustering matrix Z∗ as a solution

of optimization problem (2.7). Minimization in (2.7) is somewhat similar to modularity
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maximization in [7] or [59] in the sense that modularity maximization as well as minimization

in (2.7) are NP-hard, and, hence, require some relaxation in order to obtain an implementable

clustering solution.

In the case of the SBM and the DCBM, possible relaxations include semidefinite program-

ming (see, e.g., [5] and references therein), variational methods ([10]) and spectral clustering

and its versions (see, e.g., [28], [35] and [48] among others). Since in the case of PABM,

columns of matrix P∗ that correspond to nodes in the same class are neither identical, nor

proportional, direct application of spectral clustering to matrix P∗ does not deliver the par-

tition of the nodes. However, it is easy to see that the columns of matrix P∗ that correspond

to nodes in the same class form a matrix with K rank-one blocks, hence, those columns lie in

the subspace of the dimension at most K. Therefore, matrix P∗ is constructed of K clusters

of columns (rows) that lie in the union of K distinct subspaces, each of the dimension K.

For this reason, the subspace clustering presents a technique for obtaining a fast and reliable

solution of optimization problem (2.7) (or (2.8)).

Subspace clustering (see [54] for a review) has been widely used in computer vision and,

for this reason, it is a very well studied and developed technique in comparison with the

Extreme Points algorithm used in [49]. Subspace clustering is designed for separation of

points that lie in the union of subspaces. Let {Xj ∈ R
D}nj=1 be a given set of points drawn

from an unknown union of K > 1 linear or affine subspaces {Si}Ki=1 of unknown dimensions

di = dim(Si), 0 < di < D, i = 1, ..., K. In the case of linear subspaces, the subspaces can be

described as

Si = {x ∈ R
D : x = U iy}, i = 1, ..., K

where U i ∈ R
D×di is a basis for subspace Si and y ∈ R

di is a low-dimensional representation

for point x. The goal of subspace clustering is to find the number of subspaces K, their
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dimensions {di}Ki=1, the subspace bases {U i}Ki=1, and the segmentation of the points according

to the subspaces.

When there is only one subspace, the problem reduces to finding a basis U ∈ R
D×d, a low-

dimensional representation Y = [Y1, ..., Yn] ∈ R
d×n, and the dimension d. This problem is

known as Principal Component Analysis (PCA) [27] and can be solved in a simple way:

(U, Y ) can be obtained from the rank-d singular value decomposition (SVD) of the data

matrix Y = [X1, ..., Xn] ∈ R
D×n as

U = U and Y = ΣVT , where X = UΣVT ,

and d can be obtained as d = rank(X) with data without noise, or using model selection

techniques when the data is noisy [27].

When K > 1, the subspace clustering problem becomes considerably more difficult because

of a number of challenges. First, there is a strong connectivity between model estimation

and data segmentation. Particularly, one could easily fit a single subspace to each group

of points using standard PCA if the segmentation of the data were known. Conversely,

one could easily find the data points that best fit each subspace if the subspace parameters

were known. In practice, both problems need to be solved simultaneously since neither the

segmentation of the data nor the subspace parameters are known. The second challenge

is that the distribution of the data inside the subspaces is generally unknown. Third, the

relative position of the subspaces can be arbitrary and the subspace clustering problem

becomes significantly hard when two subspaces intersect or are very close. Fourth, the data

can be corrupted by noise, outliers, missing entries, etc. Last, but not least, is the issue

of model selection. In classical PCA, the dimension of the subspace is the only parameter,

which can be found by searching for the subspace of smallest dimension that fits the data
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with a given accuracy. In the case of having more than one subspace, one can fit the data

with n different subspaces of dimension one, namely one subspace per data point, or with a

single subspace of dimension D. Clearly, neither solution is satisfactory. The challenge is to

find a model selection criteria that leads to a small number of subspaces of small dimension.

Several methods have been developed to address these challenges over the past few years.

Algebraic methods ([8], [41], [55]), iterative methods ([9], [2], [52]), and spectral clustering

based methods ([17], [38], [39], [51], [14], [15], [54]) are some of these methods.

Two algebraic algorithms for clustering noise free data drawn from multiple linear subspaces

are matrix factorization-based algorithm [8] and Generalized PCA (GPCA) ([41], [55]). The

first algorithm is applicable only to independent subspaces and is based on linear algebra,

specifically matrix factorization. It obtains the segmentation of the data from a low-rank

factorization of the data matrix X. Thus, it is a natural extension of PCA from one to

multiple independent linear subspaces. The second one is applicable to any kind of subspaces

and is based on polynomial algebra. It is an algebraic-geometric method for clustering data

lying in (not necessarily independent) linear subspaces. The main idea behind GPCA is that

one can fit a union of K subspaces with a set of polynomials of degree K, whose derivatives at

a point give a vector normal to the subspace containing that point. Then, the segmentation

of the data is obtained by grouping these normal vectors using possible techniques. These

algorithms are designed for linear subspaces; however, in the case of noiseless data they can

also be applied to affine subspaces by considering an affine subspace of dimension d in R
D as

a linear subspace of dimension d + 1 in R
D+1. Also, while these algorithms are used under

the assumption of noise free data, they provide good insights into the geometry and algebra

of the subspace clustering problem. Moreover, they can be extended to handle moderate

amounts of noise.
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The performance of algebraic algorithms in the case of noisy data can be improved by using

iterative methods. Intuitively, given an initial segmentation, one can fit a subspace to each

group using classical PCA. Then, given a PCA model for each subspace, one can assign each

data point to its closest subspace. By iterating these two steps until convergence, a refined

estimate of the subspaces and of the segmentation can be obtained. This is the main idea

behind the K-planes [9] and K-subspaces ([3], [52]) algorithms.

Spectral clustering algorithms are popular and widely used techniques for clustering high-

dimensional data. These algorithms rely on construction of an affinity matrix A ∈ R
n×n,

whose ij entry measures the similarity between points i and j. The similarity is typically

measured based on some distance measures between the points. Preferably, Aij = 1 if points

i and j are in the same group and Aij = 0 if points i and j are in different groups. Given

A, the K-means algorithm is applied to the eigenvectors of a Laplacian matrix L ∈ R
n×n

formed from A to obtain the segmentation of the data. Specifically, K eigenvectors of L are

chosen and stacked into a matrix and the K-means algorithm is then applied to the rows

of this matrix. The affinity matrix A, the Laplacian D − A, where D = diag(A1) and 1 is

the vector of all 1’s, or the normalized Laplacian D−1/2AD−1/2 are typical choices for the L.

Typical choices for the eigenvectors are the top K eigenvectors of the affinity or the bottom K

eigenvectors of the (normalized) Laplacian, where K is the number of groups. Defining a good

affinity matrix is one of the main challenges in applying spectral clustering to the subspace

clustering problem. This is because two points could be very close to each other, but lie in

different subspaces, while they could be far from each other, but lie in the same subspace.

Consequently, the typical distance-based affinity cannot be used. Spectral clustering based

methods divide the problem in two steps. First, an affinity matrix is learned from the data.

Second, the segmentation of the data is obtained by applying spectral clustering to this

affinity matrix. Since the success of the spectral clustering algorithm is largely dependent
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on constructing an informative affinity matrix, the first step is the most important. One of

the solutions is to construct the affinity matrix using self-representation of the points with

the expectation that a point is more likely to be presented as a linear combination of points

in its own subspace rather than from a different one. A number of approaches such as Low

Rank Representation (LRR) (see, e.g., [38], [39]) and Sparse Subspace Clustering (SSC) (see,

e.g., [15], [14]) have been proposed for the solution of this problem in the past decade. LRR

and SSC are very similar. LRR tries to find a low-rank representation, while SSC aims to

find a sparse representation.

In this dissertation, we use SSC since it allows one to take advantage of the knowledge that,

for a given K, columns of matrix P∗ lie in the union of K distinct subspaces, each of the

dimension at most K. If matrix P∗ were known, the weight matrix W would be based on

writing every data point as a sparse linear combination of all other points by minimizing the

number of nonzero coefficients

min
Wj

‖Wj‖0 s.t (P∗)j =
∑

k 6=j

Wkj(P∗)k (2.20)

where, for any matrix B, Bj is its j-th column. The affinity matrix of the SSC is the

symmetrized version of the weight matrix W . If the subspaces are linearly independent,

then the solution to the optimization problem (4.20) is such that Wk,j 6= 0 only if points

k and j are in the same subspace. In the case of data contaminated by noise, the SSC

algorithm does not attempt to write data as an exact linear combination of other points.

Instead, SSC is based on the solution of the following optimization problem

Ŵj ∈ argmin
Wj

{
‖Wj‖0 + γ‖Aj − AWj‖22 s.t. Wjj = 0

}
, j = 1, ..., n, (2.21)

where γ > 0 is a tuning parameter. Problem (2.21) can be rewritten in an equivalent form
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as

Ŵj ∈ argmin
Wj

{
‖Aj − AWj‖22 s.t. ‖Wj‖0 ≤ L, Wjj = 0

}
, j = 1, ..., n, (2.22)

where L is the maximum number of nonzero elements in each column of W ; in our case

L = K. We solve (2.22) using the Orthogonal Matching Pursuit (OMP) algorithm ([43],

[58]) implemented in SPAMS Matlab toolbox (see [42]). Given Ŵ , the affinity matrix is

defined as |Ŵ |+ |Ŵ T | where, for any matrix B, matrix |B| has absolute values of elements

of B as its entries. The class assignment (clustering matrix) Z is then obtained by applying

spectral clustering to |Ŵ |+ |Ŵ T |. We elaborate on the implementation of the SSC in Section

2.4.2.

2.4.2 Simulations on synthetic networks

In this section we evaluate the performance of our method using synthetic networks. We

assume that the number of communities (clusters) K is known and for simplicity consider a

perfectly balanced model with n/K nodes in each cluster. We generate each network from

a random graph model with a symmetric probability matrix P given by the PABM model

with a clustering matrix Z and a block matrix Λ.

Sengupta and Chen [49], in their simulations, considered networks with K = 2 communities

of equal sizes and matrices Λ in (1.4) with elements Λi,r = αi

√
h

1+h
when node i lies in class

r, and Λi,r = βi

√
1

1+h
otherwise, where h is the homophily factor. The factors αi and βi were

set to 0.8 for half of the nodes in each class and to 0.2 for another half at random, and h

ranges between 1.5 and 4.0. Note that, although the data generated by the procedure above

follows PABM, the probability matrix has constant blocks, for which the spectral clustering
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Figure 2.2: The clustering errors Err(Ẑ, Z) defined in (4.24) (left panels) and the estimation
errors n−2 ‖P̂ − P‖2F (right panels) for K = 3 (top), K = 4 (middle) and K = 5 (bottom)
clusters. The errors are evaluated over 50 simulation runs. The number of nodes ranges
from n = 300 to n = 540 with the increments of 60. SSC results are represented by the solid
lines; SC results are represented by the dash lines: ω = 0.5 (red), ω = 0.7 (blue) and ω = 0.9
(black).
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is known to deliver accurate results. In particular, the setting above leads to the SBM with

four blocks. However, the spectral clustering incurs some difficulties as the probabilities of

connections in every community become more diverse. In this dissertation, we ensure to

generate networks that follow PABM with diverse probabilities of connections.

To generate a more diverse synthetic network, we start by producing a block matrix Λ in

(1.6) with random entries between 0 and 1. We multiply the non-diagonal blocks of Λ by

ω, 0 < ω < 1, to ensure that most nodes in the same community have larger probability of

interactions. Then matrix P (Z,K) with blocks P
(k,l)
Z,K = Λ(k,l)(Λ(l,k))T , k, l = 1, . . . , K, mostly

has larger entries in the diagonal blocks than in the non-diagonal blocks. The parameter ω

is the heterogeneity parameter. Indeed, if ω = 0, the matrix P∗ is strictly block-diagonal,

while in the case of ω = 1, there is no difference between diagonal and non-diagonal blocks.

Next, we generate a random clustering matrix Z ∈ Mn,K corresponding to the case of

equal community sizes and the permutation matrix P(Z,K) corresponding to the clustering

matrix Z. Subsequently, we scramble rows and columns of P (Z,K) to create the probability

matrix P = PZ,KP (Z,K)PT
Z,K . Finally we generate the lower half of the adjacency matrix

A as independent Bernoulli variables Aij ∼ Ber(Pij), i = 1, . . . , n, j = 1, . . . , i − 1, and set

Aij = Aji when j > i. In practice, the diagonal diag(A) of matrix A is unavailable, so we

estimate diag(P ) without its knowledge.

Sengupta and Chen [49] used the Extreme Points (EP) algorithm, introduced in [33], as a

clustering procedure. For K = 2, the EP algorithm computes the two leading eigenvectors

of the adjacency matrix A, and finds the candidate assignments associated with the extreme

points of the projection of the cube [−1, 1]n onto the space spanned by the two leading eigen-

vectors of A. The technique is becoming problematic when K grows and the probabilities

of connections are getting more diverse, hence, Sengupta and Chen [49] have only studied

performances of estimation and clustering in the case of K = 2 and the choices of probability
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matrix P described above. As we have mentioned before, these are the settings for which

the spectral clustering procedure allows to identify the communities. Considering that we

are interested in studying K > 2 and the more diverse probabilities of connections, we use

the spectral clustering directly (SC thereafter) and compare its precision with the sparse

subspace clustering (SSC) procedure.

Since the diagonal elements of matrix A are unavailable, we initially set Aii = 0, i =

1, ..., n. We solve optimization problem (2.22) using the Orthogonal Matching Pursuit (OMP)

algorithm. After matrix Ŵ of weights is evaluated, we obtain the clustering matrix Ẑ by

applying spectral clustering to |Ŵ | + |Ŵ T |, as it was described in Section 2.4.1. Given

Ẑ, we generate matrix A(Ẑ) = PT
Ẑ
APẐ with blocks A(k,l)(Ẑ), k, l = 1, . . . , K, and obtain

Θ̂(k,l)(Ẑ, K̂) by using the rank one approximation for each of the blocks. Finally, we estimate

matrix P by P̂ = P̂ (Ẑ, K̂) using formula (2.13) with K̂ = K.

We compared the accuracy of SSC and SC methods in terms of the average estimation

errors n−2 ‖P̂ − P‖2F and the average clustering errors Err(Ẑ, Z) defined in (2.17). Figure

2.2 shows results of these comparisons for K = 3, 4 and 5, respectively, and the number of

nodes ranging from n = 300 to n = 540 with the increments of 60. The left panels display the

clustering errors Err(Ẑ, Z) while the right ones exhibit the estimation errors n−2 ‖P̂ − P‖2F ,

as functions of the number of nodes, for three different values of the parameter ω: ω = 0.5,

0.7, and 0.9. Figure 2.2 confirms that the SSC is becoming more and more accurate in

comparison with SC as ω grows. The latter is due to the fact that the SSC is more suitable

for handling heterogeneous connections probabilities.

Figure 2.3 presents the results of comparison of the clustering errors of SSC and SC in the

simulations settings of [49]. It is easy to see that, while for larger values of the homophily

factor h both methods perform almost equally well, the accuracy of SC deteriorates as h
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Figure 2.3: Clustering errors of SC and SSC for K = 2 clusters and n = 360, 420 and 480
nodes in the simulations setting of [49]. The homophily factor h ranges from 1.5 to 4 with
increments of 0.5

is getting smaller, due to the fact that the differences between probabilities of connections

within and between clusters become less significant. The latter shows that the SSC approach

is beneficial for clustering in PABM model. Indeed, it delivers more accurate results than

the SC when probabilities of connections are more diverse. On the other hand, SSC is still

applicable when the PABM reduces to the SBM, although SC is more accurate in the case

of the SBM since it does not require an additional step of evaluating the affinity matrix.

Remark 2.4.1. Spectral Clustering Versus Sparse Subspace Clustering. It is worth

noting that when the matrix of probabilities P∗ is close to being block diagonal, the spec-

tral clustering can be still used for recovering community assignments, even if P∗ does not

follow the SBM. The latter is due to the fact that, in this situation, the graph can be well
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approximated by a union of distinct connected components, and, therefore, SC allows to

identify the true clusters. Moreover, in such situation, SC has an advantage of not requiring

an additional step of self-representation, which is computationally costly and produces addi-

tional errors. On the other hand, as we shall see from examples below, when probabilities of

connections become more heterogeneous, SSC turns to be more precise than SC. In addition,

since PABM has more unknown parameters than SBM, its correct fitting requires sufficient

number of nodes per class (see, e.g., [51]); otherwise, its accuracy declines.

Remark 2.4.2. Unknown number of clusters. In our previous simulations we treated

the true number of clusters as a known quantity. However, we can actually use P̂ to obtain

an estimator K̂ of K by solving, for every suitable K, the optimization problem (2.9), which

can be equivalently rewritten as

K̂ = argmin
K

{‖P̂ − A‖2F + Pen(n,K)}. (2.23)

The penalty Pen(n,K) defined in (2.12) is, however, motivated by the objective of setting

it above the noise level with a very high probability. In our simulations, we also study the

selection of an unknown K using somewhat smaller penalty

Pen(n,K) = ρ(A)nK
√

lnn (lnK)3 (2.24)

where ρ(A) is the density of matrix A, the proportion of nonzero entries of A.

In order to assess the accuracy of K̂ as an estimator of K, we evaluated K̂ as a solution

of optimization problem (2.23) with the penalty (2.24) in each of the previous simulations

settings over 50 simulation runs. Table 2.1 presents the relative frequencies of the estimators

K̂ of K∗ for K∗ ranging from 3 to 6, n = 420 and n = 540 and ω = 0.5, 0.7 and 0.9.
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Table 2.1: The relative frequencies of the estimators K̂ of K∗ for K∗ ranging from 3 to 6,
n = 420 and n = 540 and ω = 0.5, 0.7 and 0.9.

n=420 n=540

K∗ K̂ ω = 0.5 ω = 0.7 ω = 0.9 ω = 0.5 ω = 0.7 ω = 0.9
2 0 0 0 0 0.02 0
3 0.76 0.80 0.90 0.66 0.76 0.92

3 4 0.24 0.16 0.10 0.24 0.16 0.08
5 0 0.04 0 0.10 0.06 0
6 0 0 0 0 0 0

n=420 n=540

K∗ K̂ ω = 0.5 ω = 0.7 ω = 0.9 ω = 0.5 ω = 0.7 ω = 0.9
2 0 0 0 0 0 0
3 0.06 0.14 0 0.04 0 0

4 4 0.64 0.66 0.96 0.8 0.76 0.96
5 0.28 0.16 0.04 0.12 0.22 0.04
6 0.02 0.04 0 0.04 0.02 0

n=420 n=540

K∗ K̂ ω = 0.5 ω = 0.7 ω = 0.9 ω = 0.5 ω = 0.7 ω = 0.9
2 0 0.02 0 0 0 0
3 0.02 0 0.02 0 0.04 0

5 4 0.14 0.16 0.04 0.12 0.1 0
5 0.64 0.66 0.82 0.76 0.74 0.96
6 0.2 0.16 0.12 0.12 0.12 0.04

n=420 n=540

K∗ K̂ ω = 0.5 ω = 0.7 ω = 0.9 ω = 0.5 ω = 0.7 ω = 0.9
2 0 0.04 0 0 0 0
3 0.06 0.18 0.02 0 0.06 0

6 4 0.18 0.22 0.02 0.08 0.04 0
5 0.28 0.22 0.08 0.20 0.26 0.06
6 0.48 0.34 0.88 0.72 0.64 0.94
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Figure 2.4: Adjacency matrices of the butterfly similarity network with 41132 nonzero entries
and 4 clusters (left) and the brain network with 37250 nonzero entries and 6 clusters (right)

Table 2.1 confirms that for majority of settings, K̂ = K∗, the true number of clusters, with

high probability. Moreover, the estimator K̂ of K is more reliable for higher values of ω and

larger number of nodes per cluster.

2.4.3 Real data examples

In this section, we report the performances of SSC and SC in studying real life networks.

The social networks usually exhibit strong assortative behavior, the phenomenon which is

possibly due to the tendency of humans to form strong associations. Perhaps, for this reason,

the political blogs network, the British Twitter network, and the DBLP network which have

been analyzed by Sengupta and Chen [49] have nearly block-diagonal adjacency matrices, so

SC exhibits good performance in clustering of those networks (see Remark 2.4.1).

However, PABM provides a more accurate description of more diverse networks, in particular,
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the networks that appear in biological sciences. Below, we consider a butterfly similarity

network extracted from the Leeds Butterfly dataset described in [57]. Leeds Butterfly dataset

contains fine-grained images of 832 butterfly species that belong to 10 different classes, with

each class containing between 55 and 100 images. In this network, the nodes represent

butterfly species and edges represent visual similarities between them. Visual similarities

are evaluated on the basis of butterfly images and range from 0 to 1. We study a network

by extracting the four largest classes as a simple graph with 373 nodes and 20566 edges. We

draw an edge between the nodes if the visual similarity between those nodes is greater than

zero. We carried out clustering of the nodes using the SSC and the SC and compared the

clustering assignments of both methods with the true class specifications of the species. The

SSC provides 89% accuracy while SC is correct only in 64% of cases. In addition, we applied

formula (2.23) with K ranging from 2 to 6 and obtained the true number of clusters with

100% accuracy.

Figure 2.4 (left) shows the adjacency matrix of the graph (after clustering), which confirms

that the network indeed follows the PABM. The latter is due to the fact that, since the

phenotype of the species in the same class can vary, the SBM may not provide an adequate

summary for the class similarities. Replacing the SBM by the DCBM does not solve the

problem either, since it is unlikely that few butterflies are “more similar” to the others than

the rest. On the other hand, the PABM allows some of the butterflies in one class to be

“more similar” to species of another specific class than the other, thus, justifying application

of the PABM.

As the second real network, we analyze a human brain functional network, measured using the

resting-state functional MRI (fMRI). In particular we use the co-activation matrix described

in [12] the brain connectivity dataset. In this dataset, the brain is partitioned into 638

distinct regions and a weighted graph is used to characterize the network topology. In our
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analysis, we set all nonzero weights to one, obtaining the network with 18625 undirected

edges. Since, for this network, the true clustering as well as the true number of clusters

are unknown, we first applied formula (2.23) with K ranging from 2 to 10 to find the

number of clusters obtaining K̂ = 6. This agrees with the assessment in [12] where the

authors partitioned the network into 6 groups (if one considers the “rich-club” communities

as separate clusters). Subsequently, we applied the SSC for partitioning the network into

blocks and derived the estimator P̂ of P∗. Figure 2.4 (right) shows the adjacency matrix of

the graph after clustering. The true probability matrix P∗ is unknown, we can only report

that n−2 ‖P̂ − A‖2F = 0.05, which indicates high agreement between the two matrices.
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CHAPTER 3: ESTIMATION AND CLUSTERING IN SPARSE

PABM

3.1 Notation

Denote by ΠJ(X), the projection of a matrix X : n ×m onto the set of matrices with non

zero elements in the set J = J1 × J2 = {(i, j) : i ∈ J1, j ∈ J2}. Denote by Π(1)(X) the best

rank one approximation of matrix X and by Πu,v(X) the rank one projection of X onto pair

of unit vectors u, v given by

Πu,v(X) = (uuT )X(vvT ). (3.1)

Then, Π(1)(X) = Πu,v(X) provided (u, v) is a pair of singular vectors of X corresponding to

the largest singular value.

The notation in Chapter 2 also holds in this chapter.

3.2 The structure of the probability matrix

We consider the problem of estimation and clustering of the true matrix P∗ of the probabilities

of the connection between the nodes. Consider block P
(k,l)
∗ (Z∗, K∗) of the rearranged version

P∗(Z∗, K∗) of P∗. Let Λ∗ ≡ Λ(Z∗, K∗) ∈ [0, 1]n×K∗ be a block matrix with each column l

partitioned into K∗ blocks Λ
(k,l)
∗ ≡ Λ

(k,l)
∗ (Z∗, K∗). Here, Λ

(k,l)
∗ ∈ [0, 1]nk and Λ

(l,k)
∗ ∈ [0, 1]nl

are the column vectors and P
(k,l)
∗ (Z∗, K∗) follows (1.5), i.e., P

(k,l)
∗ (Z∗, K∗) = Λ

(k,l)
∗ [Λ

(l,k)
∗ ]T .

Hence, P
(k,l)
∗ (Z∗, K∗) are rank-one matrices such that P

(k,l)
∗ (Z∗, K∗) = [P

(l,k)
∗ (Z∗, K∗)]T and

that each pair of blocks P
(k,l)
∗ and P

(l,k)
∗ , involves a unique combination of vectors Λ

(k,l)
∗ and

Λ
(l,k)
∗ , k, l = 1, . . . , K∗.
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Vectors Λ
(k,l)
∗ and Λ

(l,k)
∗ describe the heterogeneity of the connections of nodes in the pair

of communities (k, l). While, on the average, those communities can be connected, some

nodes in community k may have no interaction with nodes in community l or vice versa,

so that some of the elements of vectors Λ
(k,l)
∗ and Λ

(l,k)
∗ can be identical zeros. Denote by

J∗ ≡ J∗(Z∗, K∗) =
K⋃

k,l=1

(J∗)k,l the set of indices of all nonzero elements of matrix Λ∗, where

(J∗)k,l ≡ (J∗)k,l(Z∗, K∗) = {i : (Λ∗)
(k,l)
i 6= 0}, J (k,l)

∗ = (J∗)k,l × (J∗)l,k, (3.2)

are, respectively, the true support of vector Λ
(k,l)
∗ and the set of all ordered pairs of indices

(positions) of non-zero elements of sub-matrix P
(k,l)
∗ (Z∗, K∗). Here, the elements of (J∗)k,l

are enumerated by their corresponding rows in matrix Λ∗. Then,

(P∗)
(k,l)
i,j (Z∗, K∗) > 0 iff (i, j) ∈ J (k,l)

∗

and row i and column j of P
(k,l)
∗ (Z∗, K∗) are equal to zero if i /∈ (J∗)k,l or j /∈ (J∗)l,k.

Note that the set J∗ ≡ J∗(Z∗, K∗) relies upon the true clustering defined by K∗ and Z∗. One

can also consider sparsity sets (J̆∗)k,l ≡ (J̆∗)k,l(Z,K) and J̆k,l ≡ J̆k,l(Z,K) for an arbitrary

K and matrix Z ∈ Mn,K

(J̆∗)k,l = {i : (P∗)
(k,l)
i,j (Z,K) 6= 0, j = 1, . . . , nl}, J̆k,l = {i : A(k,l)

i,j (Z,K) 6= 0, j = 1, . . . , nl},

(3.3)

where the elements of (J̆∗)k,l and J̆k,l are enumerated by their corresponding rows in matrices

P∗ and A, respectively. Examples of the sets (J∗)k,l, (J∗)(k,l), (J̆∗)k,l and (J̆∗)k,l are considered

in Section 3.4.
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For any sparsity sets Jk,l ≡ Jk,l(Z,K), define, similarly to (3.2),

J =
K⋃

k,l=1

Jk,l with J (k,l) = Jk,l × Jl,k (3.4)

It follows from the definitions (3.3) and (3.4) that for any K, Z ∈ Mn,K and k, l = 1, . . . , K

J̆k,l(Z,K) ⊆ (J̆∗)k,l(Z,K) and J̆(Z,K) ⊆ J̆∗(Z,K). (3.5)

3.3 Optimization procedure for estimation and clustering

Observe that although matrices P
(k,l)
∗ (Z∗, K∗) and the sets J

(k,l)
∗ are well defined, vectors

Λ
(k,l)
∗ and Λ

(l,k)
∗ can be determined only up to a multiplicative constant. In order to avoid

this ambiguity, denote Θ
(k,l)
∗ = Λ

(k,l)
∗ [Λ

(l,k)
∗ ]T and recover matrix Θ∗ with the uniquely defined

rank one blocks Θ
(k,l)
∗ and their supports J

(k,l)
∗ , k, l = 1, . . . , K∗. Then, one needs to solve

the following optimization problem

(Θ̂, Ẑ, Ĵ , K̂) ∈ argmin
Θ,Z,J,K

{
K∑

k,l=1

∥∥A(k,l)(Z,K)−Θ(k,l)(Z, J,K)
∥∥2

F
+ Pen(n, J,K)

}

s.t. A(Z,K) = PT
Z,KAPZ,K , Z ∈ Mn,K ,

supp(Θ(k,l)) = J (k,l) = Jk,l × Jl,k, rank(Θ(k,l)) = 1, k, l = 1, 2, · · · , K.

(3.6)

Here, Θ̂ is the block matrix with blocks Θ̂(k,l), k, l = 1, . . . , K.

Observe that, if Ẑ, Ĵ and K̂ were known, the best solution of problem (4.18) would be given

by the best rank one approximations Θ̂(k,l) of matrices A(k,l)(Ẑ, K̂) restricted to the sets Ĵ (k,l)
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of indices of nonzero elements:

Θ̂(k,l)(Ẑ, Ĵ , K̂) = Π(1)

(
ΠĴ(k,l)(A

(k,l)(Ẑ, K̂))
)
, (3.7)

where ΠJ(k,l)

(
A(k,l)

)
is the projection of matrix A(k,l) onto the set of matrices with the support

J (k,l) and Π(1) is the best rank one approximation of a matrix. Plugging (3.7) into (4.18),

we rewrite optimization problem (4.18) as

(Ẑ, Ĵ , K̂) ∈ argmin
Z,J,K

{
K∑

k,l=1

‖A(k,l)(Z,K)− Π(1)[ΠJ(k,l)(A(k,l)(Z,K))]‖2F + Pen(n, J,K)

}

(3.8)

s.t. A(Z,K) = P
T
Z,KAPZ,K , Z ∈ Mn,K ,

J (k,l) ≡ J (k,l)(Z,K) = Jk,l(Z,K)× Jl,k(Z,K).

In practice, in order to obtain (Ẑ, Ĵ , K̂), one needs to solve optimization problem (3.8) for

every K, obtaining

(ẐK , ĴK) ∈ argmin
Z,J

{
K∑

k,l=1

∥∥A(k,l)(Z,K)− Π(1)

(
ΠJ(k,l)(A(k,l)(Z,K))

)∥∥2

F
+ Pen(n, J,K)

}

(3.9)

s.t. A(Z,K) = P
T
Z,KAPZ,K , ZK ∈ Mn,K ,

J (k,l) ≡ J (k,l)(Z,K) = Jk,l(Z,K)× Jl,k(Z,K).

and then find K̂ as

K̂ ∈ argmin
K

{
K∑

k,l=1

∥∥∥A(k,l)(ẐK , K)− Π(1)

(
Π

Ĵ
(k,l)
K

(
A(k,l)(ẐK , K)

))∥∥∥
2

F
+ Pen(n, ĴK , K)

}
.

(3.10)
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3.4 The support of the probability matrix and the penalty

Consider solution of optimization problem (3.9) for a fixed value of K. If ẐK ∈ Mn,K is a

solution of (3.8), then

ĴK ∈ argmin
J

{
K∑

k,l=1

∥∥∥A(k,l)(ẐK , K)− Π(1)

(
ΠJ(k,l)

(
A(k,l)(ẐK , K)

))∥∥∥
2

F
+ Pen(n, J,K)

}

s.t. A(ẐK , K) = PT
ẐK ,K

APẐK ,K , J (k,l) = Jk,l × Jl,k, Jk,l ≡ Jk,l(ẐK , K).

(3.11)

Observe that if the penalty term Pen(n, J,K) were not present in (3.11) or did not depend

on set J , then one would have ĴK = J̆K and Ĵ
(k,l)
K = J̆

(k,l)
K where, by (3.3), J̆

(k,l)
K is the set of

indices of nonzero rows and columns in A(k,l)(ẐK , K). It is easy to see that

ΠJ̆(k,l)

(
A(k,l)(ẐK , K)

)
= A(k,l)(ẐK , K),

Π(1)

(
ΠJ̆(k,l)

(
A(k,l)(ẐK , K)

))
= Π(1)

(
A(k,l)(ẐK , K)

)
.

Hence, even if sparsity is not specifically enforced (as it happens in [46] where the penalty

depends on n and K only), one still obtains a sparse estimator P̂ with the support ĴK = J̆K .

If the true number of clusters K∗ and the true clustering matrix Z∗ ∈ Mn,K∗ were available,

then the statement below shows that, under certain conditions, with high probability, sets

J∗ ≡ J∗(Z∗, K∗) and J̆(Z∗, K∗) would coincide.

Lemma 3.4.1. Let K2
∗ ≤ n and the true matrix P∗ be such that (P∗)i,j = 0 or (P∗)i,j >

̟(n,K∗). If the community sizes are balanced, i.e., the sizes of the true communities are no

less than C̃0n/K∗ for some C̃0 ∈ (0, 1], and

̟(n,K∗) ≥ K∗
(√

lnn+
√
t
)/(

C̃0

√
2n

)
,

39



     

 

 

 

 

 

 

 

* * 

* * 

* 0 

0 * 

* * 

* * * 0 * 

* * * 0 * 

* * * 0 0 

0 0 0 * * 

* * 0 * * 

* * * 0 * 

* * * 0 * 

* * * 0 0 

0 0 0 * * 

* * 0 * * 

Figure 3.1: Zeros of the probability matrix with n = 5 and K∗ = 2. Star symbols correspond
to nonzero elements, the thick lines correspond to clustering assignments. Left panel: matrix
Λ with (J∗)1,1 = {1, 2, 3}, (J∗)2,1 = {5}, (J∗)1,2 = {1, 2} and (J∗)2,2 = {4, 5}. Middle

panel: matrix P∗(Z∗, K∗) with true clustering, (J̆∗)c2,1(Z∗) = {4} and (J̆∗)c1,2(Z∗) = {3},
P̂i,j(Z∗, K∗) = 0 for (i, j) ∈ {(1, 4), (2, 4), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (5, 3)}, so that, zero

entries of the probability matrix are estimated by zeros. Right panel: matrix P∗(Ẑ,K∗) with
node 3 erroneously placed into community 2. The value of (P∗)3,3 is nonzero. If A3,3 = 0,

then J̆ c
2,2(Ẑ) = {3} and P̂i,j(Ẑ,K∗) = 0 for (i, j) ∈ {(1, 4), (2, 4), (3, 4), (3, 5), (4, 1), (4, 2),

(4, 3), (5, 3)}, hence, zero entries of P∗ are still estimated by the identical zeros. However,
if A3,3 = 1, then zero elements (P∗)3,4, (P∗)3,5, (P∗)4,3 and (P∗)5,3 are estimated by positive
values.

then, with probability at least 1− e−t, one has J∗(Z∗, K∗) = J̆(Z∗, K∗).

Unfortunately, K∗ and Z∗ are unknown and, hence, ĴK(Z,K) = J̆K(Z,K) may not always

be the best estimator.

Consider, for example, the situation displayed in Figure 3.1 where n = 5, K∗ = 2 and,

under the true clustering, one has n1 = 3 and n2 = 2. Vectors Λ2,1 and Λ1,2 have one zero

element each, so that (J∗)1,1 = {1, 2, 3}, (J∗)2,1 = {5}, (J∗)1,2 = {1, 2} and (J∗)2,2 = {4, 5}

(left panel) leading to (J∗)(1,1) = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)},
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(J∗)(2,1) = {(5, 1), (5, 2)}, (J∗)(1,2) = {(1, 5), (2, 5)} and (J∗)(2,2) = {(4, 4), (4, 5), (5, 4), (5.5)}

(middle panel). With the true clustering (middle panel), (J̆∗)c2,1(Z∗) = {4} and (J̆∗)c1,2(Z∗) =

{3}, so that P̂i,j(Z∗, K∗) = 0 for (i, j) ∈ {(1, 4), (2, 4), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (5, 3)}.

Hence, zero entries of the probability matrix are estimated by zeros.

Consider now the situation where the third node has been erroneously placed into com-

munity 2 by clustering matrix Ẑ (right panel). Then, we still have (J̆∗)c2,1(Ẑ) = {4},

but (J̆∗)c1,2(Ẑ) is an empty set. If A3,3 = 0, then J̆ c
2,2(Ẑ) = {3} and P̂i,j(Ẑ,K∗) = 0 for

(i, j) ∈ {(1, 4), (2, 4), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (5, 3)}, so that the zero entries of P∗ are

still estimated by the identical zeros. However, if A3,3 = 1, then zero elements (P∗)3,4, (P∗)3,5,

(P∗)4,3 and (P∗)5,3 will be estimated by positive values.

For this reason, it is reasonable to introduce a penalty that will lead to trimming the support

of P̂ (Z,K).

We say that a penalty Pen(n, J,K) is separable if for any K and any clustering matrix Z

that partitions n nodes into K communities of sizes nk, k = 1, . . . , K, one can write

Pen(n, J,K) = Pen(0)(n, J,K)+Pen(1)(n,K) with Pen(0)(n, J,K) =
K∑

l=1

K∑

k=1

F (|Jk,l|, nk),

(3.12)

where Jk,l ≡ Jk,l(Z,K). Otherwise, the penalty is non-separable.

Lemma 3.4.2. Let (ẐK , ĴK) be the solution of the optimization problem (3.9). If Pen(n, J,K)

is separable and function F (j,m) in (3.12) is an increasing function of j for 0 ≤ j ≤ m,

then, for any K < n and k, l = 1, . . . , K, one has

Ĵk,l(ẐK , K) ⊆ J̆k,l(ẐK , K) ⊆ (J̆∗)k,l(ẐK , K), Ĵ(ẐK , K) ⊆ J̆(ẐK , K) ⊆ J̆∗(ẐK , K). (3.13)
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3.5 The errors of estimation and clustering

3.5.1 The penalty

In what follows, we consider the separable and the non-separable penalties of the form (3.12)

with the common Pen(1)(n,K), i.e.

Pen(a)(n, J,K) = Pen(0,a)(n, J,K) + Pen(1)(n,K), (3.14)

where a =s for the separable penalty and a = ns for the nonseparable one, and

Pen(0,s)(n, J,K) = β1

K∑

k,l=1

|Jk,l| ln(nke/|Jk,l|) + β2K
K∑

k=1

lnnk (3.15)

Pen(0,ns)(n, J,K) = β1|J | ln(nKe/|J |) + 2β2 lnn (3.16)

Pen(1)(n,K) = β2[n lnK + lnn]. (3.17)

Here, the separable penalty corresponds to F (|Jk,l|, nk) = β1|Jk,l| ln(nke/|Jk,l|) + β2 lnnk

and the exact expressions for β1 and β2 are given in Theorem 4.3.2 below.

In the next two sections, we shall provide upper bounds for the errors of the solution of

optimization problem (4.18) with the separable or the non-separable penalty as well as upper

bounds for the clustering error in the case of the separable penalty. While the separable

penalty has some valuable properties (see Lemma 3.4.2), the non-separable penalty is much

easier to interpret. Fortunately, as the statement below shows, under very nonrestrictive

conditions, the penalties are within a constant factor of each other.
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Lemma 3.5.1. If n ≥ 8 and K ≤
√

n/ lnn, then

Pen(ns)(n, J,K) < (2 + β1/β2)Pen(s)(n, J,K) < 2 (2 + β1/β2)Pen(ns)(n, J,K). (3.18)

3.5.2 The estimation errors

Theorem 3.5.1. Let (Θ̂, Ẑ, Ĵ , K̂) be a solution of optimization problem (4.18) with the

separable or non-separable penalty defined in (3.14). Construct the estimator P̂ of P∗ of the

form

P̂ = PẐ,K̂Θ̂(Ẑ, Ĵ , K̂)PT
Ẑ,K̂

(3.19)

where PẐ,K̂ is the permutation matrix corresponding to (Ẑ, K̂). Let positive γ1, γ2 be such

that γ1 + γ2 < 1 and β1 and β2 in (3.15)–(3.17) be given by

β1 =
2(C1 + C2)(8 + γ1)

γ1
+

2

γ2
, β2 =

2C2(8 + γ1)

γ1
+

2

γ2
, (3.20)

where C1 and C2 are absolute constants. Then, for any t > 0, one has

P

{
1

n2

∥∥∥P̂ − P∗

∥∥∥
2

F
≤ Pen(n, J∗, K∗)

n2 (1− γ1 − γ2)
+

C̃t

n2

}
≥ 1− 3e−t, (3.21)

and,

1

n2
E

∥∥∥P̂ − P∗

∥∥∥
2

F
≤ Pen(n, J∗, K∗)

n2 (1− γ1 − γ2)
+

3C̃

n2
(3.22)

where

C̃ = 2 γ1
−1γ2

−1(1− γ1 − 8γ2)
−1 (C2γ1γ2 + γ1 + 8C2γ2) (3.23)

Observe that, due to Lemma 3.5.1, the separable and non-separable penalties are within
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a constant factor of each other, so that Theorem 4.3.2 implies that the estimation error is

proportional to Pen(n, J∗, K∗) where

Pen(n, J,K) ≍ Pen(ns)(n, J,K) ≍ n lnK + |J | ln(nKe/|J |) + lnn. (3.24)

The first term in (3.24) is due to the clustering errors, the second term quantifies the difficulty

of finding and estimating |J | nonzero elements among nK elements of matrix Λ ∈ [0, 1]n×K

while the lnn ≍ ln(nK) term stands for the difficulty of finding the cardinality of the set

|J |, and it is always dominated by the first two terms in (3.24).

Since each node has at least one community to which it is connected with a nonzero prob-

ability, one has n ≤ |J | ≤ nK. In the (non-sparse) PABM, |J | = nK and the second

term in (3.24) is always asymptotically larger, as n → ∞, than the other two terms. In

SPABM, the second term in (3.24) dominates the first term only if K = 1 or |J |/n → ∞

as n → ∞. However, if K > 1 and |J | ≍ n, then both terms are of the equal asymptotic

order. If K → ∞ and |J | ≍ n as n → ∞, then SPABM has the error O(n lnK) which is

asymptotically smaller than O(nK) error of PABM.

3.5.3 The clustering errors

In order to evaluate the clustering error, we assume that the true number of classes K = K∗

is known. Let Z∗ ∈ Mn,K∗ be the true clustering matrix. Then Ẑ ≡ ẐK is a solution of the

optimization problem (3.9). Note that if Z∗ is the true clustering matrix and Z is any other

clustering matrix, then the proportion of misclustered nodes can be evaluated as

Err(Z,Z∗) = (2n)−1 min
PK∈PK

‖ZPK − Z∗‖1 = (2n)−1 min
PK∈PK

‖ZPK − Z∗‖2F (3.25)

44



where PK is the set of permutation matrices PK : {1, 2, · · · , K} −→ {1, 2, · · · , K}.

Theorem 3.5.2. Let K = K∗ be the true number of clusters and Z∗ ∈ Mn,K∗ be the true

clustering matrix and nk be the true number of nodes in cluster k = 1, . . . , K. Denote by

γ(Z∗, ρn) the set of clustering matrices with the proportion of at most ρn of the mis-clustered

nodes. Let P∗ and J∗ = J∗(P∗, Z∗) be, respectively, the true probability matrix and the true

set J∗. If for some γ1, γ2 > 0 such that γ1 + γ2 < 1 and some τ ∈ (0, 1), one has

max
Ẑ∈γ(Z∗,ρn)

{
K∑

k,l=1

‖P (k,l)
∗ (Ẑ)‖2op −

2C1(β1 − C1 − C2)

(C1 + C2)β1γ2
K

K∑

k=1

ln(n̂k)

}

≤ (1− τ)(β1 − C1 − C2)

β1

[
‖P∗‖2F − 2(1 +

√
2)2τ−1 (C1|J∗|+ C2t)

]
(3.26)

− (β1 − C1 − C2)

[
C2

C1 + C2

(n lnK + t) +
K∑

k,l=1

|(J∗)k,l| ln
(

nk e

|(J∗)k,l|

)
+

β2

β1

K
K∑

k=1

ln(nk)

]

where β1 and β2 are defined in (3.20), then with probability at least 1 − 2 exp(−t), the pro-

portion of mis-clustered nodes does not exceed ρn.

3.6 Implementation of clustering

In Section 3.3, we obtained an estimator Ẑ of the true clustering matrix Z∗ as a solution

of optimization problem (3.8). Minimization in (3.8) is somewhat similar to modularity

maximization in [7] or [59] in the sense that modularity maximization as well as minimization

in (3.8) are NP-hard, and, hence, require some relaxation in order to obtain an implementable

clustering solution.

Since the SPABM is a special case of the PABM, the probability matrices in SPABM and

PABM have the similar structure. In particular, matrix P∗ is constructed of K clusters
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of columns (rows) that lie in the union of K distinct subspaces, each of the dimension K.

For this reason, the subspace clustering can be applied to obtain a solution of optimization

problem (3.8) (or (3.9)).

As we discussed in Section 2.4.1, there are several methods to implement subspace clustering.

Here, we use Sparse Subspace Clustering (SSC) since, similar to the PABM, it allows one to

take advantage of the knowledge that, for a given K, columns of matrix P∗ lie in the union

of K distinct subspaces, each of the dimension at most K. If matrix P∗ were known, the

weight matrix W would be based on writing every data point as a sparse linear combination

of all other points by solving the following optimization problem

min
Wj

‖Wj‖1 s.t. (P∗)j =
∑

k 6=j

Wkj(P∗)k (3.27)

In the case of data contaminated by noise, the SSC algorithm does not attempt to write data

as an exact linear combination of other points. Instead, SSC can be built upon the solution

of the the elastic net problem

Ŵj ∈ argmin
Wj

{
{1
2
‖Aj − AWj‖22 + γ1‖Wj‖1 + γ2‖Wj‖22} s.t. Wjj = 0

}
, j = 1, ..., n,

(3.28)

where γ1, γ2 > 0 are tuning parameters. The quadratic term stabilizes the LASSO problem

by making the problem strongly convex.

We solve (4.22) using the LARS algorithm [13] implemented in SPAMS Matlab toolbox (see

[42]). Given Ŵ , the affinity matrix is defined as |Ŵ |+ |Ŵ T | where, for any matrix B, matrix

|B| has absolute values of elements of B as its entries. The class assignment (clustering

matrix) Z is then obtained by applying spectral clustering to |Ŵ |+ |Ŵ T |. We elaborate on

the implementation of the SSC in Section 3.7.1.
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3.7 Simulations and real data examples

3.7.1 Simulations on synthetic networks

In this section we evaluate the performance of our method using synthetic networks. We

assume that the number of communities (clusters) K is known and for simplicity consider a

perfectly balanced model with n/K nodes in each cluster. We generate each network from

a random graph model with a symmetric probability matrix P given by the SPABM model

with a clustering matrix Z and a block matrix Λ.

To generate synthetic networks, we start by producing a block matrix Λ in (1.6) with random

entries between 0 and 1. We use a parameter σ as the proportion of nonzero entries in matrix

Λ to control the sparsity of networks. To do that, we set ⌊nKσ⌋ smallest non-diagonal entries

of Λ to zero. Then we multiply the non-diagonal blocks of Λ by ω, 0 < ω < 1, to ensure

that most nodes in the same community have larger probability of interactions. As a result,

matrix P (Z,K) with blocks P (k,l)(Z,K) = Λ(k,l)(Λ(l,k))T , k, l = 1, . . . , K, has larger entries

mostly in the diagonal blocks than in the non-diagonal blocks and some zero rows (columns)

in the non-diagonal blocks. The parameter ω is the heterogeneity parameter. Indeed, if

ω = 0, the matrix P∗ is strictly block-diagonal, while in the case of ω = 1, there is no

difference between entries in diagonal and nonzero entries in non-diagonal blocks. Next,

we generate a random clustering matrix Z ∈ Mn,K corresponding to the case of equal

community sizes and the permutation matrix PZ,K corresponding to the clustering matrix

Z. Subsequently, we scramble rows and columns of P (Z,K) to create the probability matrix

P = PZ,KP (Z,K)PT
Z,K . Finally we generate the lower half of the adjacency matrix A

as independent Bernoulli variables Aij ∼ Ber(Pij), i = 1, . . . , n, j = 1, . . . , i − 1, and set

Aij = Aji when j > i. In practice, the diagonal elements of matrix A are unavailable, so we
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Figure 3.2: The clustering errors Err(Ẑ, Z) defined in (4.24) (left panels) and the estimation
errors n−2 ‖P̂ − P‖2F (right panels) for K = 4 (top), K = 5 (middle) and K = 6 (bottom)
clusters. The errors are evaluated over 50 simulation runs. The number of nodes ranges
from n = 300 to n = 540 with the increments of 60. Dashed lines represent the results for
ω = 0.5 and solid lines represent the results for ω = 0.8; σ = 0.3 (red), σ = 0.5 (blue) and
σ = 0.7 (black).
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estimate diag(P ) without their knowledge.

Now we use SSC to find the clustering matrix Ẑ. Since the diagonal elements of matrix A

are unavailable, we initially set Aii = 0, i = 1, ..., n, and solve optimization problem (4.22)

with γ1 = 30ρ(A) and γ2 = 125(1− ρ(A)), where where ρ(A) is the density of matrix A, the

proportion of nonzero entries of A. The values of γ1 and γ2 have been obtained empirically

by testing on synthetic networks. After matrix Ŵ of weights is evaluated, we obtain the

clustering matrix Ẑ by applying spectral clustering to |Ŵ | + |Ŵ T |, as it was described in

Section 3.6. In this chapter, we use the normalized cut algorithm [53] to perform spectral

clustering. Given Ẑ, we generate matrix A(Ẑ,K) = PT
Ẑ,K

APẐ,K with blocks A(k,l)(Ẑ,K),

k, l = 1, . . . , K, and obtain Θ̂(k,l)(Ẑ,K) by using the rank one approximation for each of the

blocks. Finally, we estimate matrix P by P̂ = P̂ (Ẑ, K̂) using formula (4.14) with K̂ = K.

Figure 4.3 represents the accuracy of SSC in terms of the average clustering errors Err(Ẑ, Z)

defined in (4.24) and the average estimation errors n−2 ‖P̂ − P‖2F for K = 4, 5 and 6, re-

spectively, and the number of nodes ranging from n = 300 to n = 540 with the increments

of 60. The left panels display the clustering errors Err(Ẑ, Z) while the right ones exhibit

the estimation errors n−2 ‖P̂ − P‖2F , as functions of the number of nodes, for two different

values of the parameter ω: ω = 0.5 (dashed lines) and 0.8 (solid lines) and three different

values of the parameter σ: σ = 0.3 (red lines), 0.5 (blue lines), and 0.7 (black lines). Figure

4.3 shows that as the sparsity increases, the estimation error decreases.

Our procedure does not estimate the set J explicitly. Instead, we set Ĵ = J̆ =
⋃K

k,l=1 J̆k,l

where J̆k,l is defined in (3.3). Our next objective is to evaluate how accurate J̆ is, as an

estimator of J∗. While there are several ways for doing this, below we use two measures, the

false positive rate ρFP , defined as the proportion of zero entries in P∗ that are estimated by

non-zeros in P̂ , and ∆FN = ‖P∗‖−1
F ‖X∗‖F , where ‖X∗‖F is the Frobenius norm of nonzero
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Figure 3.3: The false positive rates ρFP (left panels) and the rates ∆FN (right panels) for
K = 4 (top), K = 5 (middle) and K = 6 (bottom) clusters. The rates are evaluated over 50
simulation runs. The number of nodes ranges from n = 300 to n = 540 with the increments
of 60. Dashed lines represent the results for ω = 0.5 and solid lines represent the results for
ω = 0.8; σ = 0.3 (red), σ = 0.5 (blue) and σ = 0.7 (black).
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entries in P∗ that are estimated by zeros in P̂ . The reports on the accuracies of estimating

J∗ are presented in Figure 3.3. The left panels display ρFP while the right ones exhibit ∆FN ,

as functions of the number of nodes for the same settings as in Figure 4.3.

Remark 3.7.1. Unknown number of clusters. In our previous simulations we treated

the true number of clusters as a known quantity. However, we can actually use P̂ to obtain

an estimator K̂ of K by solving, for every suitable K, the optimization problem (3.10), which

can be equivalently rewritten as

K̂ = argmin
K

{‖P̂ − A‖2F + Pen(n, J,K)}. (3.29)

The penalties Pen(n, J,K) defined in (3.14) are, however, motivated by the objective of

setting it above the noise level with a very high probability. In our simulations, we also

study the selection of an unknown K using an empirical version of this penalty

Pen(n, J,K) = ρ(A)nK
√

lnn (lnK)3. (3.30)

In order to assess the accuracy of K̂ as an estimator of K, we evaluated K̂ as a solution

of optimization problem (3.29) with the penalty (3.30) in each of the previous simulations

settings over 50 simulation runs. Table 3.1 presents the relative frequencies of the estimators

K̂ of K∗ for K∗ ranging from 3 to 5, n = 360 and 480 and ω = 0.5 and 0.8 and σ = 0.4,

0.6 and 0.8. Table 3.1 confirms that for majority of settings, K̂ = K∗, the true number of

clusters, with high probability.
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Table 3.1: The relative frequencies of the estimators K̂ of K∗ for K∗ ranging from 3 to 5,
n = 360 and 480 and ω = 0.5 and 0.8 and σ = 0.4, 0.6 and 0.8.

n = 360
ω = 0.5 ω = 0.8

K∗ K̂ σ = 0.4 σ = 0.6 σ = 0.8 σ = 0.4 σ = 0.6 σ = 0.8
2 0 0 0.02 0 0 0
3 0.58 0.60 0.58 0.58 0.76 0.88

3 4 0.26 0.28 0.32 0.28 0.18 0.12
5 0.12 0.12 0.08 0.12 0.06 0
6 0.04 0 0 0.02 0 0

2 0 0 0 0 0 0
3 0 0.02 0.02 0 0 0.02

4 4 0.68 0.76 0.68 0.76 0.78 0.84
5 0.22 0.20 0.26 0.20 0.18 0.12
6 0.10 0.02 0.04 0.04 0.04 0.02

2 0 0 0 0 0 0
3 0.02 0 0 0 0 0

5 4 0.04 0.10 0.30 0.02 0 0.14
5 0.74 0.78 0.50 0.84 0.94 0.78
6 0.20 0.12 0.20 0.14 0.06 0.08

n = 480
ω = 0.5 ω = 0.8

K∗ K̂ σ = 0.4 σ = 0.6 σ = 0.8 σ = 0.4 σ = 0.6 σ = 0.8
2 0 0 0 0 0 0
3 0.66 0.52 0.58 0.56 0.72 0.86

3 4 0.28 0.34 0.28 0.28 0.20 0.10
5 0.04 0.12 0.14 0.14 0.08 0.04
6 0.02 0.02 0 0.02 0 0

2 0 0 0 0 0 0
3 0.02 0 0.02 0 0 0

4 4 0.56 0.74 0.68 0.82 0.78 0.86
5 0.30 0.24 0.28 0.16 0.18 0.12
6 0.12 0.02 0.02 0.02 0.04 0.02

2 0 0 0 0 0 0
3 0 0 0.02 0 0 0

5 4 0.06 0.04 0 0 0 0
5 0.72 0.86 0.84 0.86 0.88 0.90
6 0.22 0.10 0.14 0.14 0.12 0.10
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Figure 3.4: The adjacency matrices of the ego-network with 25114 nonzero entries and 5
clusters (left) and the brain network with 30894 nonzero entries and 6 clusters (right) after
clustering

3.7.2 Real data examples

In this section, we report the performance of SSC and our estimation procedure when they

are applied to two real life networks, an ego-network and a human brain network.

To study the ego-network, we use the dataset described comprehensively in [36]. An ego-

network is a social network of a single person, with the exclusion of the person generating

this network. Users of social networking sites are usually provided with a tool that allows

them to organize their networks into categories, referred to, in [36], as social circles. Prac-

tically all major social networking cites provide such functionality, for example, “circles” on

Google+, and “lists” on Facebook and Twitter. Examples of such circles include university

classmates, sports team members, relatives, etc. Once circles are created by a user, they can

be utilized, for example, for content filtering (e.g. to filter status updates posted by distant

acquaintances) or for privacy (e.g., to hide personal information from coworkers).
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Here, we attempt to recover social circles of an ego-network when only binary connection

data is available. In particular, we formulate the problem of circle detection as a clustering

problem on an individual ego-network. In principle, circles can overlap or a circle can be

a subset of another circle, hence, as an example in this chapter, we study an ego-network

with only few nodes overlap between the circles which does not affect the performance of

the clustering method. Specifically, we study an ego-network from Facebook where user

profiles are treated as nodes and a friendship between two user profiles is considered as an

edge between them. Since a friendship is a mutual tie, the ego-network is undirected. The

ego-network studied here, has 777 nodes with 17 circles, each circle containing between 2 to

225 nodes. For our study, we extract the five largest circles of the this network, obtaining a

network with 629 nodes and 12557 edges. We carried out clustering of the nodes using the

SSC and compared the clustering assignments of SSC with the true class assignments. The

SSC provides 85% accuracy. In addition, we applied formula (3.29) with K ranging from

2 to 6 to the adjacency matrix with the randomly permuted rows (columns), obtaining the

true number of clusters with 100% accuracy over 10 runs. Figure 4.4 shows the adjacency

matrix of the graph after clustering (left), which confirms that the network indeed follows the

SPABM. Indeed, the SPABM is a very appropriate model for this example since users display

different degrees of connections to users in other circles, and, furthermore, the network is

sparse, which justifies the application of the SPABM.

Our second example involves analyzing a human brain functional network, measured using

the resting-state functional MRI (rsfMRI). We use the the brain connectivity dataset pre-

sented as a GroupAverage rsfMRI matrix described in [12]. In this dataset, the brain is

partitioned into 638 distinct regions and a weighted graph is used to characterize the net-

work topology. Nicolini et al. [45] developed a new Asymptotical Surprise method, which

is applied for clustering the weighted graph. Asymptotical Surprise detects 47 communities
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ranging from 1 to 133. Since the true clustering as well as the true number of clusters are

unknown for this dataset, we treat the results of the Asymptotical Surprise as the ground

truth.

In order to generate a binary network, we set all nonzero weights to one in the GroupAverage

rsfMRI matrix, obtaining a network with 18625 undirected edges. For evaluating the perfor-

mance of SSC on this network, we extract 6 largest communities derived by the Asymptotical

Surprise, obtaining a network with 422 nodes and 15447 edges. Applying (3.29), with K rang-

ing from 2 to 10, to the adjacency matrix with the randomly permuted rows (columns), we

recovered the true number of clusters with 70% accuracy over 10 simulation runs. For this

true number of communities, our version of the SSC detects the true communities with 94%

accuracy. Figure 4.4 (right) shows the adjacency matrix of the network after clustering,

showing that the network is very sparse. In addition, the SPABM provides a significantly

tighter fit than the SBM with estimation errors n−2 ‖P̂ − A‖2F being 0.056 and 0.090, re-

spectively, when P̂ is estimated according to SPABM and SBM on the basis of the true

clustering. Those considerations justify application of the SPABM to the data.
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CHAPTER 4: THE HIERARCHY OF BLOCK MODELS

4.1 An overview of block models

Consider an undirected network with n nodes that are partitioned into K communities Nk,

k = 1, . . . , K, by a clustering function z : {1, . . . , n} → {1, . . . , K} with the corresponding

clustering matrix Z. Here, we shall deal only with the graphs where each node belongs to

one and only one community, thus, leaving aside the mixed membership models [4], [26].

Denote by B the matrix of average connection probabilities between communities, so that

for k, l = 1, 2, · · · , K, one has

Bk,l =
1

nk nl

n∑

i,j=1

Pij I(z(i) = k) I(z(j) = l), (4.1)

where nk is the number of nodes in the community k.

In order to better understand the relationships between various block models, consider a

rearranged version P (Z) of matrix P where its first n1 rows correspond to nodes from class

1, the next n2 rows correspond to nodes from class 2 and the last nK rows correspond to

nodes from class K. Denote the (k1, k2)-th block of matrix P (Z) by P (k1,k2)(Z). Then, the

block models vary by how dissimilar matrices P (k1,k2)(Z) are. Indeed, under the SBM

P (k1,k2)(Z) = Bk1,k21nk1
1Tnk2

(4.2)

where 1k is the k-dimensional column vector with all elements equal to one. In the DCBM,

there exists a vector h ∈ R
n
+, with sub-vectors h(k) ∈ R

nk
+ , k = 1, . . . , K, such that, for
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k1, k2 = 1, 2, · · · , K,

P (k1,k2)(Z) = Bk1,k2h
(k1)(h(k2))T . (4.3)

In the PABM, instead of one vector h, there are K vectors Λ(1), · · · ,Λ(K) with sub-vectors

Λ(k1,k2) ∈ R
nk1
+ , k1, k2 = 1, 2, · · · , K. (4.4)

In this case, vectors Λ(k) form the (n × K) matrix Λ with columns partitioned into sub-

columns Λ(k1,k2), and

P (k1,k2)(Z) = Bk1,k2Λ
(k1,k2)(Λ(k2,k1))T , (4.5)

for every k1, k2 = 1, 2, · · · , K. Hence, (4.2) and (4.3) coincide if h ≡ 1n, and (4.5) reduces

to (4.3) if all columns of matrix Λ are identical, i.e.

Λ(k1,k2) ≡ h(k1), k1, k2 = 1, 2, · · · , K. (4.6)

Since in the DCBM there is only one vector h that models heterogeneity in probabilities

of connections, the ratios Pi1,j/Pi2,j of the probabilities of connections of two nodes, i1

and i2, that belong to the same community, are determined entirely by the nodes i1 and

i2 and are independent of the community with which those nodes interact. On the other

hand, for the PABM, each node has a different degree of popularity (interaction level) with

respect to every other community, so that Pi1,j1/Pi2,j1 6= Pi1,j2/Pi2,j2 if nodes j1 and j2

belong to different communities. In the PABM, those variable popularities are described by

the matrix Λ ∈ [0, 1]n×K which reduces to a single vector h in the case of the DCBM. One

can easily imagine the situation where nodes do not exhibit different levels of activity with

respect to every community but rather with respect to some groups of communities, “mega-

communities”, so that there are L, 1 ≤ L ≤ K, different vectors H(l) ∈ R
n
+, l = 1, 2, · · · , L,
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and each of columns Λk, k = 1, 2, · · · , K, of matrix Λ is equal to one of vectors H(l). In other

words, there exists a clustering function c : {1, ..., K} → {1, ..., L} with the corresponding

clustering matrix C such that

Λk = H(l), l = c(k), l = 1, . . . , L, k = 1, . . . , K.

We name the resulting model the Heterogeneous Block Model (HBM) to emphasize that,

beyond the average connection probabilities of communities, the mega-communities are de-

termined by the heterogeneity of the probabilities of connections.

4.2 The Heterogeneous Stochastic Block Model (HBM)

The HBM contains two types of communities, the regular communities that can be distin-

guished by the average probabilities of connections between them (like in the SBM or the

DCBM) and the mega-communities that are described by the heterogeneity of probabilities

of connections of individual nodes across the communities.

The idea of mega-communities is not entirely new. It was introduced in [56] and recently

appeared in [37]. The difference between this chapter and the above cited publications is

that in [56] and [37] the mega-communities are determined by intermediate results of the

clustering algorithms while we define them on the basis of the heterogeneous patterns of the

connection probabilities of nodes with respect to different communities.

For any M and K ≤ M , denote by MM,K the collection of all clustering matrices Z ∈

{0, 1}M×K with the corresponding clustering function z : {1, . . . ,M} → {1, . . . , K} such

that Zi,k = 1 iff z(i) = k, i = 1, . . . ,M . Then, ZTZ = diag(n1, . . . , nK) where nk is

the size of community k, k = 1, . . . , K. The HBM, with K communities and L ≤ K
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mega-communities, is defined by two clustering matrices Z ∈ Mn,K and C ∈ MK,L with

corresponding clustering functions z and c that, respectively, partition the n nodes into K

communities, and K communities into L mega-communities. If the l-th mega-community

consists of Kl communities and the community sizes are nk, then the total number of nodes

in mega-community l is Nl, where

Nl =
K∑

k=1

nk I(c(k) = l),
L∑

l=1

Kl = K,
L∑

l=1

Nl = n, l = 1, · · · , L. (4.7)

The communities are characterized by their average connection probability matrix with el-

ements Bk1,k2 , k1, k2 = 1, 2, . . . , K, defined in (4.1). In order to better understand the

mega-communities, consider a permutation matrix PZ,C that arranges nodes into commu-

nities consecutively, and orders communities so that the Kl blocks within the l-th mega-

community are consecutive, l = 1, 2, . . . , L. Recall that PZ,C is an orthogonal matrix with

P
−1
Z,C = PT

Z,C and denote

P (Z,C) = P
T
Z,CPPZ,C , P = PZ,CP (Z,C)PT

Z,C .

According to Z and C, matrix P is partitioned into K2 blocks P (k1,k2)(Z,C) ∈ [0, 1]nk1
×nk2 ,

k1, k2 = 1, . . . , K, with the block-averages given by (4.1). In addition, blocks P (k1,k2)(Z,C)

can be combined into the L2 mega-blocks P̃ (l1,l2)(Z,C) ∈ [0, 1]Nl1
×Nl2 , corresponding to

probabilities of connections between mega-communities l1 and l2, l1, l2 = 1, . . . , L. Consider

matrix H ∈ R
n×L
+ (Figure 4.1, top middle), where each column Hl, l = 1, . . . , L, can be

partitioned into K sub-vectors h(k,l) ∈ R
nk
+ of lengths nk, k = 1, . . . , K. Those sub-vectors are

combined into L mega sub-vectors H(m,l) ∈ R
Nm
+ of lengths Nm, m = 1, · · · , L, according to

matrix C, where Nm is defined in (4.7). Similarly, matrix B ∈ [0, 1]K×K of block probabilities

is partitioned into sub-matrices B(l1,l2) ∈ [0, 1]Kl1
×Kl2 , l1, l2 = 1, · · · , L. With these notations,
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Figure 4.1: Matrices associated with the HBM with K = 5, L = 2, K1 = 3, K2 = 2. Bold
lines identify mega-blocks. Top left: matrix B partitioned into blocks B(l1,l2). Top, middle:
matrix H. Top right: matrix H with columns expressed via vectors h(k,l) and repeated:
column 1- K1 times; column 2 - K2 times. Bottom: the probability matrix with K2 blocks
and L2 mega-blocks.

for any l1, l2 = 1, · · · , L, the (l1, l2)-th mega-block of P can be presented as

P̃ (l1,l2)(Z,C) =
(
H(l1,l2)(H(l2,l1))T

)
◦
(
J (l1)B(l1,l2)(J (l2))T

)
, (4.8)

where A ◦ B is the Hadamard product of A and B, and matrices J (l) ∈ {0, 1}Nl×Kl , l =
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1, . . . , L, are of the form

J (l) =




1nk1
0 · · · 0

0 1nk2
· · · 0

...
... · · · ...

0 0 · · · 1nkKl



. (4.9)

In order for the model to be identifiable, we impose the following assumptions:

A1. Matrix B is non-singular with λmin(B) ≥ λ0 > 0.

A2. For each k = 1, · · · , K, vectors H(k,l), l = 1, · · · , L, are linearly independent.

By rewriting (4.8) in an equivalent form, one can conclude that each of the mega-blocks

P̃ (l1,l2)(Z,C) (and, hence, P̃ (l1,l2) if we scramble them to the original order) follows the

(non-symmetric) DCBM model with Kl1 ×Kl2 blocks. Specifically, for a pair of sub-vectors

H(l1,l2) ∈ R
Nl1
+ and H(l2,l1) ∈ R

Nl2
+ of matrix H and a matrix B(l1,l2) ∈ [0, 1]Kl1

×Kl2 containing

average probabilities of connections for each pair of communities within the mega-community

(l1, l2) one has

P̃ (l1,l2)(Z,C) = Q(l1,l2)J (l1)B(l1,l2)(J (l2))TQ(l2,l1).

Here, Q(l1,l2) = diag(H(l1,l2)) and the (k1, k2)-th block of P is given by

P (k1,k2)(Z,C) = Bk1,k2h
(k1,l2)

(
h(k2,l1)

)T
, (4.10)

where li = c(ki), i = 1, 2, and h(k,l) ∈ R
nk
+ is a sub-vector of H(m,l) with m = c(k). Observe

that the formulation above imposes a natural scaling on the sub-vectors h(k,l) of H, since

it follows from equations (4.1) and (4.10), that for any pair of communities (k1, k2) which
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Figure 4.2: The hierarchy of block models

belong to a pair of mega-communities (l1, l2), one has

nk1 nk2 Bk1,k2 = 1Tk1 P
(k1,k2)(Z,C) 1k2 = Bk1,k2

(
1Tk1h

(k1,l2)
) (

1Tk2 h
(k2,l1)

)
.

The latter implies that for any k = 1, . . . , K and l = 1, . . . , L,

1Tk h
(k,l) = nk, k = 1, . . . , K, l = 1, . . . , L. (4.11)

Now, it is easy to see that all block models, the SBM, the DCBM and the PABM, can be

viewed as particular cases of the HBM introduced above. Indeed, the DCBM is a particular

case of the HBM with L = 1 while the PABM corresponds to the setting of L = K. Finally,

due to (4.11), the SBM constitutes a particular case of the HBM with L = 1 and matrix

H reduced to vector 1n, the n-dimensional column vector with all entries equal to one.
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Moreover, the absence of the community structure (whether in the SBM or the DCBM) is

equivalent to K = 1, and implies that the HBM necessarily reduces to the DCBM.

4.3 Optimization procedure for estimation and clustering

Note that, in terms of the matrices J (l) defined in (4.9), the scaling conditions (4.11) appear

as

(J (l))T Q(l,l′) J (l) = (J (l))T J (l), l, l′ = 1, ..., L. (4.12)

Let PẐ,Ĉ be the permutation matrix corresponding to Ẑ ∈ Mn,K̂ and Ĉ ∈ MK̂,L̂. Consider

the set ℑ(n,K, L) of matrices Θ with blocks Θ(l1,l2) ∈ [0, 1]Nl1
×Nl2 , l1, l2 = 1, ..., L, such that

Θ =
⋃

l1,l2

Θ(l1,l2), Θ(l1,l2) = Q(l1,l2)J (l1)B(l1,l2)(J (l2))TQ(l2,l1),

B(l1,l2) ∈ [0, 1]Kl1
×Kl2 , Q(l1,l2) ∈ Dl1 , (4.13)

Z ∈ Mn,K , C ∈ MK,L, l1, l2 = 1, ..., L,

where Dm the set of diagonal matrices with diagonals in R
m
+ and conditions (4.7) and (4.12)

hold. Then, it is easy to see that P = PT
Z,CΘPZ,C , so its estimator can be obtained as

P̂ = PẐ,Ĉ Θ̂(Ẑ, Ĉ)P
T
Ẑ,Ĉ

. (4.14)

Here, for given values of K and L, (Ẑ, Ĉ, Θ̂) is a solution of the following optimization

problem

(Ẑ, Ĉ, Θ̂) ∈ argmin
Z,C,Θ

‖A(Z,C)−Θ‖2F (4.15)

subject to conditions A(Z,C) = PT
Z,CAPZ,C , (4.7), (4.12) and (4.13). In real life, however,

the values of K and L are unknown and need to be incorporated into the optimization
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problem by adding a penalty Pen(K,L) on K and L:

(Θ̂, Ẑ, Ĉ, K̂, L̂) ∈ argmin
Z,C,K,L,Θ

{
‖A(Z,C)−Θ‖2F + Pen(K,L)

}
, (4.16)

where optimization is carried out subject to conditions A(Z,C) = PT
Z,CAPZ,C , (4.7), (4.12)

and (4.13). After that, the estimator P̂ of P∗ can be obtained as (4.14).

In practice, one would need to solve optimization problem (4.15) for each K = 1, ..., n and

L = 1, . . . , K, and then find the values (K̂, L̂) that minimize the right hand side in (4.16).

After that, the estimator P̂ of P is obtained as (4.14). Then, the following statement holds.

Theorem 4.3.1. Let Assumptions A1 and A2 hold. Let (Θ̂, Ẑ, Ĉ, K̂, L̂) be a solution of

optimization problem (4.16) subject to conditions A(Z,C) = PT
Z,CAPZ,C, (4.7), (4.12) and

(4.13) with

Pen(K,L) = C1(nL+K2) lnn+ C2n lnK (4.17)

where C1 and C2 are absolute constants. Then, for the estimator P̂ given by (4.14), the true

matrix P∗ and any K, L, Z ∈ Mn,K, C ∈ MK,L and any matrix P = PZ,CΘPT
Z,C with

Θ ∈ ℑ(n,K, L), one has

P

{
‖P̂ − P∗‖2F ≤ 3

[
‖P − P∗‖2F + Pen(K,L)

]}
≥ 1− (n2 log2 n+ 1)e−n/32,

E‖P̂ − P∗‖2F ≤ 3
[
‖P − P∗‖2F + Pen(K,L)

]
+ n5e−n/32.

Solution of optimization problem (4.16) requires a search over the continuum of matrices Θ.

In order to simplify the estimation, we consider a solution of a somewhat simpler optimization

problem. It is easy to observe (see Figure 4.1) that each of the block columns of matrix P is a

matrix of rank one and, given the clustering, it can be obtained by the rank one projection of
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the respective adjacency sub-matrix. Denote the block columns of the re-arranged matrices

P and A by P (l,k)(Z,C) and A(l,k)(Z,C). Then, the optimization problem appears as

(Ẑ, Ĉ, K̂, L̂) ∈ argmin
Z,C,K,L

{
L∑

l=1

K∑

k=1

∥∥A(l,k)(Z,C)− Π(1)

(
A(l,k)(Z,C)

)∥∥2

F
+ Pen(K,L)

}

s.t. A(Z,C) = P
T
Z,CAPZ,C ,

(4.18)

where Π(1)

(
A(l,k)(Z,C)

)
is the rank one projection of the matrix A(l,k)(Z,C). Then, Θ̂ is

the block matrix with blocks Θ̂(l,k) = Π(1)

(
A(l,k)(Ẑ, Ĉ)

)
, l = 1, · · · , L̂, k = 1, · · · , K̂.

Theorem 4.3.2. Let Assumptions A1 and A2 hold. Let (Θ̂, Ẑ, Ĉ, K̂, L̂) be a solution of

optimization problem (4.18) with Pen(K,L) of the form

Pen(K,L) = Ψ1nK +Ψ2K
2 lnn+Ψ3n lnK, (4.19)

where Ψ1, Ψ2, and Ψ3 are positive absolute constants. Then, for the estimator P̂ of P∗ given

by (4.14) and any t > 0, one has

P

{∥∥∥P̂ − P∗

∥∥∥
2

F
≤ C̃ [Pen(n,K∗, L∗) + t]

}
≥ 1− 3e−t,

E

∥∥∥P̂ − P∗

∥∥∥
2

F
≤ C̃ [Pen(n,K∗, L∗) + 3].

Here K∗ and L∗ are the true number of communities and mega-communities and C̃ =

C̃(Ψ1,Ψ2,Ψ3) > 0 is an absolute constant.

Observe that Theorem 4.3.2 asserts smaller error rates if K∗/L∗ ≪ lnn, i.e., if n is large.
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4.4 Implementation of clustering

The optimization procedure in (4.16) is NP-hard. In this section, we describe a computation-

ally tractable clustering procedure that can replace it. Since the model requires identification

of mega-communities and communities, naturally, the clustering is carried out in two steps.

First, we find the clustering matrix C that arranges the nodes into L mega-communities.

Subsequently, we detect communities within each of the mega-communities, obtaining the

clustering matrix Z.

In order to accomplish the first task, we use the fact that, for a given L, under Assumption

A2, the columns of matrix P∗ lie in the union of L distinct subspaces. Finding those

subspaces can be carried out by the subspace clustering. Subspace clustering is widely used

in, e.g., computer vision and is designed for separation of points that lie in the union of

subspaces. While subspace clustering can be implemented by a variety of techniques, here

we use spectral clustering based methods [15], [17], [38], [51]. In particular, we apply the

Sparse Subspace Clustering (SSC) [15] which is based on representation of each of the vectors

as a sparse linear combination of all other vectors, with the expectation that a vector is more

likely to be represented as a linear combination of vectors in its own subspace rather than

other subspaces.

If matrix P∗ were known, the weight matrix W would be based on writing every data point

as a sparse linear combination of all other points by minimizing the number of nonzero

coefficients

min
Wj

‖Wj‖0 s.t. (P∗)j =
∑

k 6=j

Wk,j(P∗)k (4.20)

where, for any matrix B, Bj is its j-th column. The affinity matrix of the SSC is the

symmetrized version of the weight matrix W . Note that since, due to Assumption A2, the

66



Algorithm 1: The SSC procedure

Input: Adjacency matrix A, number of clusters k, tuning parameters γ1, γ2
Output: Clustering matrix C
Steps:
1: For j = 1, ..., n, find Ŵj in (4.22)

2: Apply spectral clustering to the affinity matrix |Ŵ |+ |Ŵ T | to find clustering matrix
C

subspaces are linearly independent, the solution to the optimization problem (4.20) is Wj

such that Wk,j 6= 0 only if points k and j are in the same subspace. Since the problem (4.20)

is NP-hard, one usually solves its convex relaxation

min
Wj

‖Wj‖1 s.t. (P∗)j =
∑

k 6=j

Wk,j(P∗)k (4.21)

In the case of data contaminated by noise, the SSC algorithm does not attempt to write data

as an exact linear combination of other points and replaces (4.21) by penalized optimization.

Here, we solve the elastic net problem

Ŵj ∈ argmin
Wj

{[
0.5 ‖Aj − AWj‖22 + γ1 ‖Wj‖1 +γ2 ‖Wj‖22

]
s.t. Wj,j = 0

}
, j = 1, . . . , n,

(4.22)

where γ1, γ2 > 0 are tuning parameters. The quadratic term stabilizes the LASSO problem

by making the problem strongly convex. We solve (4.22) using the a fast version of the

LARS algorithm implemented in SPAMS Matlab toolbox [42]. Given Ŵ , the clustering

matrix C is then obtained by applying spectral clustering to the affinity matrix |Ŵ |+ |Ŵ T |,

where, for any matrix B, matrix |B| has absolute values of elements of B as its entries.

Algorithm 1 summarizes the SSC procedure described above. Once the mega-communities

are discovered, one needs to detect communities inside of each mega-community. Since

each mega-community has been generated by a distinct column of H, it follows the non-
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Algorithm 2: Spectral clustering with k-median

Input: Adjacency matrix A ∈ {0, 1}n×n, number of clusters k
Output: Community assignment
Steps:
1: Find P̂ = Π(k)(A), the best rank k approximation of matrix A

2: For j = 1, ..., n, find P̃j = P̂j/‖P̂j‖1
3: Apply spectral clustering to P̃ to obtain community assignment

symmetric DCBM. One of the popular clustering methods for the DCBM is the weighted

k-median algorithm used in [35] and [21]. Algorithm 2 follows [21]. For the known number

of communities K, the algorithm starts with estimating the probability matrix P by the best

rank K approximation of the adjacency matrix, obtaining P̂ = UDUT , where U ∈ R
n×K

contains K leading eigenvectors and D is a diagonal matrix of top K eigenvalues. After

that, the columns of P̂ are normalized, leading to P̃i = P̂i/‖P̂i‖1, i = 1, 2, . . . , n. Finally, the

K-median spectral clustering is applied to P̃ to find the community assignment.

In the first step of clustering, we apply Algorithm 1 to the adjacency matrix A with k = L to

find L mega-communities defined by the clustering matrix C. In the second step, Algorithm

2 is applied to each of L mega-communities, obtained at the first step. Specifically, we apply

Algorithm 2 with k = Kl and n = Nl to cluster the l-th mega-community, l = 1, ..., L. The

union of these communities combined with the clustering matrix C, yields the clustering

matrix Z.

68



4.5 Simulations and real data examples

4.5.1 Simulations on synthetic networks

In the experiments with synthetic data, we generate networks with n nodes, L mega-

communities and K communities that fit the HBM. For simplicity, we consider perfectly

balanced networks where the number of nodes in each community and mega-community

are respectively n/K and n/L, and there are K/L communities in each mega-community.

First, we generate L distinct n-dimensional random vectors with entries between 0 and 1.

To this end, we generate a random vector Y ∈ (0, 1)n and partition it into K blocks Y (k),

k = 1, ..., K, of size n/K. The vector h̄(1) is generated from Y by sorting each block of Y

in ascending order. After that, we partition each of the K blocks, h̄(k,1) of h̄(1), into L sub-

blocks h̄
(k,1)
i , i = 1, ..., L, of equal size. To generate the k-th block h̄(k,2) of h̄(2), we reverse

the order of entries in each sub-block h̄
(k,1)
i and rearrange them in descending order. The

blocks h̄(k,s) of subsequent vectors h̄(s), s = 3, ..., L, are formed by re-arranging the order of

sub-blocks h̄
(k,2)
i in each sub-vector h̄(k,2). The L vectors h̄(l), l = 1, ..., L, generated by this

procedure have different patterns leading to detectable mega-communities. Subsequently, we

scale the vectors as H(k,l) = (n/K) h̄(k,l)/‖h̄(k,l)‖1, k = 1, ..., K, l = 1, ..., L, obtaining matrix

H. After that, we replicate K/L times each of the columns of H (Figure 4.1, top right) and

denote the resulting matrix by H̃. Matrix B has entries

Bk,l = B̃k,l

(
(H̃max)k,l

)−2
, k, l = 1, ..., K, (4.23)

where B̃ is a (K ×K) symmetric matrix with random entries between 0.35 and 1 to avoid

very sparse networks, and the largest entries of each row (column) are on the diagonal.
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Matrix H̃max is a K ×K symmetric matrix defined as

(H̃max)k,l = max
(
H̃(k,l), H̃(l,k)

)
, k, l = 1, ..., K,

where H̃(k,l) is the (k, l)-th block of matrix H̃. The term
(
(H̃max)k,l

)−2
in (4.23) guarantees

that the entries of probability matrix P (Z,C) do not exceed one. To control how assortative

the network is, we multiply the off-diagonal entries of B by the parameter ω ∈ (0, 1). The

values of ω close to zero produce an almost block diagonal probability matrix P (Z,C) while

the values of ω close to one lead to P (Z,C) with more diverse entries. We obtain the

probability matrix P (Z,C) as

P (k,l)(Z,C) = Bk,l H̃
(k,l)

(
H̃(l,k)

)T

, k, l = 1, ..., K.

After that, to obtain the probability matrix P , we generate random clustering matrices

Z ∈ Mn,K and C ∈ MK,L and their corresponding n × n permutation matrices P(Z) and

P(C), respectively. Subsequently, we set PZ,C = P(Z)P(C) and obtain the probability

matrix P as P = PZ,CP (Z,C)(PZ,C)
T . Finally we generate the lower half of the adjacency

matrix A as independent Bernoulli variables Ai,j ∼ Bern(Pi,j), i = 1, . . . , n, j = 1, . . . , i− 1,

and set Ai,j = Aj,i when j > i. In practice, the diagonal diag(A) of matrix A is unavailable,

so we estimate diag(P ) without its knowledge.

We apply Algorithm 1 to find the clustering matrix Ĉ. Since the diagonal elements of

matrix A are unavailable, we initially set Ai,i = 0, i = 1, ..., n. We use γ1 = 30ρ(A) and

γ2 = 125(1− ρ(A)) where ρ(A) is the density of matrix A, the proportion of nonzero entries

in A. The spectral clustering in step 2 of the Algorithm 1 is carried out by the normalized

cut algorithm [53]. Once the mega-communities are obtained, we apply Algorithm 2 to

detect communities inside each mega-community. The union of detected communities and
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the clustering matrix Ĉ yields the clustering matrix Ẑ. Given Ẑ and Ĉ, we generate matrix

A(Ẑ, Ĉ) = PT
Ẑ,Ĉ

APẐ,Ĉ with blocks A(k,l)(Ẑ, Ĉ), k = 1, . . . , K, l = 1, . . . , L, and obtain

Θ̂(k,l)(Ẑ, Ĉ) by using the rank one projection for each of the blocks. Finally, we estimate

matrix P by P̂ given by formula (4.14).

We evaluated the accuracy of estimation and clustering in the setting above with K = 6, two

values of L, L = 2 and L = 3, and the number of nodes ranging from n = 180 to n = 720

with the increments of 180. The proportion of misclustered nodes was evaluated as

Err(Z, Ẑ) = (2n)−1 min
PK∈PK

‖ZPK − Ẑ‖F (4.24)

where PK is the set of permutation matrices PK : {1, ..., K} → {1, ..., K}. The accuracy of

estimating the probability matrix P by P̂ is measured as n−2 ‖P̂ − P‖2F .

Figure 4.3 displays the accuracies of the two-step clustering procedure and the estimated

probability matrix P̂ in the above settings. We compare the results obtained by the two-

step clustering procedure (solid lines) with the clustering results obtained by using only

Algorithm 2 (dashed lines), where the post-clustering estimation is based on rank one

approximations. The top panels present the clustering errors Err(Ĉ, C), the middle ones

show the clustering errors Err(Ẑ, Z), and the bottom panels exhibit the estimation errors

n−2 ‖P̂ − P‖2F , as functions of the number of nodes, for three different values of the param-

eter ω: ω = 0.35 (red lines), 0.55 (blue lines), and 0.75 (black lines). One can see from

Figure 4.3 that since mega-communities are detected first, the accuracy of detecting K com-

munities (middle panels) depends on the precision of detecting L mega-communities (top

panels). Furthermore, the estimation errors (bottom panels) in turn depend on the accuracy

of detecting K communities (middle panels). Therefore, improved clustering precision leads

to smaller estimation errors with finding the mega-communities being the key task.
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Figure 4.3: The clustering errors Err(Ĉ, C) (top panels) and Err(Ẑ, Z) (middle panels)
defined in (4.24) and the estimation errors n−2 ‖P̂ − P‖2F (bottom panels) for K = 6 com-
munities and L = 2 (left) and L = 3 (right) mega-communities. The errors are evaluated
over 50 simulation runs. The number of nodes ranges from n = 180 to n = 720 with the
increments of 180. Dashed lines represent the results using Algorithm 2 for clustering and
solid lines represent the results using the two-step clustering procedure; ω = 0.35 (red),
ω = 0.55 (blue) and ω = 0.75 (black).
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Figure 4.4: The adjacency matrices of the butterfly similarity network with 57598 nonzero
entries and 5 clusters (left) and the brain network with 33140 nonzero entries and 7 clusters
(right) after clustering

4.5.2 Real data examples

In this section, we describe application of the two-step clustering procedure of Section 4.4

to two real life networks, a butterfly similarity network and a human brain network.

We consider the butterfly similarity network extracted from the Leeds Butterfly dataset [57],

which contains fine-grained images of 832 butterfly species that belong to 10 different classes,

with each class containing between 55 and 100 images. In this network, the nodes repre-

sent butterfly species and edges represent visual similarities (ranging from 0 to 1) between

them, evaluated on the basis of butterfly images. We extract the five largest classes and

draw an edge between two nodes if the visual similarity between them is greater than zero,

obtaining a simple graph with 462 nodes and 28799 edges. We carry out clustering of the

nodes, employing the two-step clustering procedure, first finding L = 4 mega-communities

by Algorithm 1, and then using Algorithm 2 to find communities within mega-communities.
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We conclude that the first mega-community has two communities, while the other three

mega-communities have one community each. We also applied Algorithms 1 and 2 sepa-

rately for detection of five communities. Here, Algorithms 1 and 2 correspond, respectively,

to the PABM and the DCBM settings with K = 5. Subsequently, we compare the clustering

assignments with the true class specifications of the species. Algorithms 1 and 2 lead to

74% and 77% accuracy, respectively, while the two-step clustering procedure provides better

84% accuracy, thus, justifying the application of the HBM. The better results are due to the

higher flexibility of the HBM.

The second example deals with analysis of a human brain functional network, based on

the brain connectivity dataset, derived from the resting-state functional MRI (rsfMRI) [12].

In this dataset, the brain is partitioned into 638 distinct regions and a weighted graph

is used to characterize the network topology. For a comparison, we use the Asymptotical

Surprise method [45] which is applied for clustering the GroupAverage rsfMRI matrix in [12].

Asymptotical Surprise detects 47 communities with sizes ranging from 1 to 133. Since the

true clustering as well as the true number of clusters are unknown for this dataset, we treat

the results of the Asymptotical Surprise as the ground truth. In order to generate a binary

network, we set all nonzero weights to one in the GroupAverage rsfMRI matrix, obtaining

a network with 18625 undirected edges. For our study, we extract 7 largest communities

derived by the Asymptotical Surprise, obtaining a network with 450 nodes and 16570 edges.

Similarly to the previous example, we apply Algorithms 1 and 2 separately to detect seven

communities, obtaining, respectively, 88% and 73% accuracy. We also use the the two-

step clustering procedure above, detecting six mega-communities and seven communities,

attaining 92% accuracy.

Figure 4.4 (right) shows the adjacency matrices of the butterfly similarity network (left) and

the human brain network after clustering.
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4.6 Discussion

The present chapter examines the hierarchy of block models with the purpose of treating

all existing singular membership block models as a part of one formulation, which is free

from arbitrary identifiability conditions. The blocks differ by the average probability of

connections and can be combined into mega-blocks that have common heterogeneity patterns

in the connection probabilities.

The hierarchical formulation proposed above (see Figure 4.2) can be utilized for a variety

of purposes. Since the HBM treats all other block models as its particular cases, one can

carry out estimation and clustering without assuming that a specific block model holds,

by employing the HBM with K communities and L mega-communities, where both K and

L are unknown. The values of K and L can later be derived on the basis of penalties.

Furthermore, in the framework above, one can easily test one block model versus another.

For instance, L = K suggests the PABM while L = 1 implies the DCBM. If, additionally,

H = 1n, then DCBM reduces to SBM. Finally, one can see from Figure 4.2 that absence of

distinct communities (K = 1) always leads to DCBM, which reduces to Erdős-Rényi model

if H = 1n.
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CHAPTER 5: FUTURE WORK

The present dissertation deals with the analysis of a single stochastic network at a time.

While it is a valid analysis, in many situations one needs to analyze multiple stochastic

networks that are related to each other in some way. Examples of such networks include the

brain networks of several individuals, the transportation networks with respect to various

mode of transportation, or social networks with respect to different types of relationships.

The models like this are called multilayer networks and recently attracted a lot of attention.

The objectives in analysis of such networks usually involve assessment of the features that are

common for all networks and are specific to some individual networks. In the context of the

networks equipped with block models, one is interested in uncovering community structures

that are common for all layers or groups of layers.

Specifically, we are planning to analyze brain network data of juvenile patients with the

drug resistant epilepsy with the objective of uncovering speech related sub-networks. These

sub-networks that may be affected by a surgical treatment which leads to subsequent speech

deficiencies. The objective of the study is to increase the number of patients who can safely

undergo a surgical treatment that is often the last resort for such patients.

There are also several other possible research areas related to the work in this disserta-

tion. One obvious project is finding a practical way to estimate the true number of mega-

communities and communities in HBM. Another natural area of exploration is studying

weighted models which capture more information about networks. Some other avenues for

future research on this topic include extending our methods and models to directed and

dynamic settings which appear in many applications. One could also study the case that

communities overlap.
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APPENDIX : PROOFS
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A.1 Proof of Theorem 4.3.1.

Let Ξ = A−P∗. We let PZ,C,K,L denote the permutation matrix that arranges mega-blocks

consecutively and also blocks all mega-blocks consecutively. For simplicity, let

P ≡ PZ,C,K,L, P∗ ≡ PZ∗,C∗,K∗,L∗ , P̂ ≡ PẐ,Ĉ,K̂,L̂

For any matrix S, denote

S(Z,C,K,L) = P
T
Z,C,K,LSPZ,C,K,L (A.1)

Then, for any Z,C,K, and L:

∥∥∥P̂
TAP̂ − Θ̂(Ẑ, Ĉ, K̂, L̂)

∥∥∥
2

F
+ Pen(n, K̂, L̂) ≤

∥∥P
TAP − P

TPP
∥∥2

F
+ Pen(n,K, L)

Therefore,

∥∥∥A− P̂Θ̂(Ẑ, Ĉ, K̂, L̂)P̂T
∥∥∥
2

F
+ Pen(n, K̂, L̂) ≤ ‖A− P‖2F + Pen(n,K, L)

or
∥∥∥A− P̂

∥∥∥
2

F
+ Pen(n, K̂, L̂) ≤ ‖A− P‖2F + Pen(n,K, L). (A.2)

Subtracting and adding P∗ in the norms in both sides of (A.2), we rewrite it as

∥∥∥P̂ − P∗

∥∥∥
2

F
≤ ‖P − P∗‖2F + 2〈Ξ, P̂ − P 〉+ Pen(n,K, L)− Pen(n, K̂, L̂). (A.3)

Denote

P0(K,L) = inf
P∈ℑ(n,K,L)

‖P − P∗‖2F ,

78



(K0, L0) = inf
K,L

{
‖P0(K,L)− P∗‖2F + Pen(n,K, L)

}
.

Then, for P̂ ≡ P̂ (K̂, L̂) and P0 ≡ P0(K0, L0), one has

∥∥∥P̂ − P∗

∥∥∥
2

F
≤ ‖P0 − P∗‖2F + 2〈Ξ, P∗ − P0〉

2〈Ξ, P̂ − P∗〉+ Pen(n,K0, L0)− Pen(n, K̂, L̂).

(A.4)

Denote

τ(n,K, L) = n lnK +K lnL+ (K2 + 2nL) ln (9nL) (A.5)

and consider two sets Ω and Ωc

Ω =
{
ω :

∥∥∥P̂ − P∗

∥∥∥
F
≥ C02

s0
√
τ(n,K0, L0)

}
,

Ωc =
{
ω :

∥∥∥P̂ − P∗

∥∥∥
F
≤ C02

s0
√

τ(n,K0, L0)
} (A.6)

where s0 is a constant. If ω ∈ Ωc, then

∥∥∥P̂ − P∗

∥∥∥
2

F
≤ C2

02
2s0τ(n,K0, L0) (A.7)

Consider the case when ω ∈ Ω. It is known [31] that for any fixed matrix G, any α > 0 and

any t > 0 one has

P
{
2〈Ξ, G〉 ≥ α ‖P∗ − P0‖2F + 2t/α

}
≤ e−t. (A.8)

Then, there exists a set Ω̃ such that P (Ω̃Z) ≥ 1− e−t and for w ∈ Ω̃

2〈Ξ, P∗ − P0〉 ≤ α ‖P∗ − P0‖2F + 2t/α (A.9)
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Note that the set Ω can be partitioned as Ω =
⋃
K,L

ΩK,L, where

ΩK,L =

{
ω :

(∥∥∥P̂ − P∗

∥∥∥
F
≥ C02

s0
√
τ(n,K0, L0)

)
∩ (K̂ = K, L̂ = L)

}
(A.10)

with ΩK1,L1 ∩ ΩK2,L2 = ∅ unless K1 = K2 and L1 = L2. Denote

∆(n,K, L) = C2
0C2τ(n,K, L) + n, (A.11)

where τ(n,K, L) is defined in (A.5). Then,

P

{[
2〈Ξ, P̂ (n, K̂, L̂)− P∗〉 −

1

2

∥∥∥P̂ (n, K̂, L̂)− P∗

∥∥∥
2

F
− 2∆(n, K̂, L̂)

]
≥ 0

}

≤
n∑

K=1

K∑

L=1

P

{
sup

P̂∈ΩK,L

[
2〈Ξ, P̂ − P∗〉 −

1

2

∥∥∥P̂ − P∗

∥∥∥
2

F
− 2∆(n,K, L)

]
≥ 0

}

By Lemma A.3.3 in Section A.3, there exist sets Ω̃K,L ⊆ ΩK,L ⊂ Ω such that P(Ω̃c
K,L) ≤

log2 n · exp (−n · 22s0−7) and, for ω ∈ Ω̃K,L, one has

{
2〈Ξ, P̂ − P∗〉 ≤

1

2

∥∥∥P̂ − P∗

∥∥∥
2

F
+ 2∆(n,K, L)

}
∩
{
K̂ = K, L̂ = L

}

Denote

Ω̃ =

(
∩
K,L

Ω̃K,L

)
∩ Ω̃t (A.12)

and observe that

P

(
Ω̃
)
≥ 1− n2 log2 n · exp (−n · 22s0−7)− e−t.

Then, for ω ∈ Ω̃, one has

2〈Ξ, P̂ − P∗〉 ≤
1

2

∥∥∥P̂ − P∗

∥∥∥
2

F
+ 2∆(n, K̂, L̂) (A.13)
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and it follows from (A.9) with α = 1/2 that

2〈Ξ, P∗ − P0〉 ≤
1

2
‖P∗ − P0‖2F + 4t (A.14)

Plugging (A.13) and (A.14) into (A.4), obtain that for ω ∈ Ω̃ one has

∥∥∥P̂ − P∗

∥∥∥
2

F
≤ ‖P0 − P∗‖2F + Pen(n,K0, L0) +

1

2

∥∥∥P̂ − P∗

∥∥∥
2

F
+

2∆(n, K̂, L̂) +
1

2
‖P∗ − P0‖2F + 4t− Pen(n, K̂, L̂)

Finally, setting

Pen(n,K, L) = 2∆(n,K, L) = 2
[
C2

0τ(n,K, L) + n
]
,

obtain that for any t > 0, for ω ∈ Ω̃, one has

∥∥∥P̂ − P∗

∥∥∥
2

F
≤ 3 ‖P0 − P∗‖2F + 2Pen(n,K0, L0) + 8t,

for any ω ∈ Ω. Now, for ω ∈ Ωc, it follows from (A.7) that

∥∥∥P̂ − P∗

∥∥∥
2

F
≤ C2

02
2s0τ(n,K0, L0) ≤ 22s0−1Pen(n,K0, L0)

Setting s0 = 1 and t = n/32, obtain

P

{∥∥∥P̂ − P∗

∥∥∥
2

F
≤

[
3 ‖P0 − P∗‖2F + 2Pen(n,K0, L0)

]
+

n

4

}
≥ 1− (n2 log2 n+ 1)e−

n
32 ,

so that

P

{∥∥∥P̂ − P∗

∥∥∥
2

F
≤ 3 inf

P∈ℑ(n,K,L)

[
‖P − P∗‖2F + Pen(n,K, L)

]}
≥ 1− (n2 log2 n+ 1)e−

n
32
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Since
∥∥∥P̂ − P∗

∥∥∥
2

F
≤ n2, obtain

E

∥∥∥P̂ − P∗

∥∥∥
2

F
≤ 3 min

P∈M (n,K,L)

[
‖P − P∗‖2F + Pen(n,K, L)

]
+ n5e−n/32

A.2 Proof of Theorem 4.3.2.

Let

F1(n,K, L) = C1nK + C2K
2 ln(ne) + C3(lnn+ (n+ 1) lnK +K lnL)

F2(n,K, L) = 2 lnn+ 2(n+ 1) lnK + 2K lnL,

where C1, C2, and C3 are absolute constants. Denote Ξ = A−P∗ and recall that, given matrix

P∗, entries Ξi,j = Ai,j − (P∗)ij of Ξ are the independent Bernoulli errors for 1 ≤ i ≤ j ≤ n

and Ai,j = Aj,i. Then, following notation (A.1), for any Z, C, K, and L

Ξ(Z,C,K,L) = P
TΞP

P∗(Z,C,K,L) = P
TP∗P,

where P ≡ PZ,C,K,L. Then it follows from (4.18) that

∥∥∥P̂
TAP̂ − Θ̂(Ẑ, Ĉ, K̂, L̂)

∥∥∥
2

F
+ Pen(n, K̂, L̂) ≤

∥∥P
T
∗ AP∗ − P

T
∗ P∗P∗

∥∥2

F
+ Pen(n,K∗, L∗)

where P∗ ≡ PZ∗,C∗,K∗,L∗ . Using the fact that permutation matrices are orthogonal, we can

rewrite the previous inequality as

∥∥∥A− P̂Θ̂(Ẑ, Ĉ, K̂, L̂)P̂T
∥∥∥
2

F
+ Pen(n, K̂, L̂) ≤ ‖A− P∗‖2F + Pen(n,K∗, L∗). (A.15)
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Hence, (A.15) and (4.14) yield

∥∥∥A− P̂
∥∥∥
2

F
≤ ‖A− P∗‖2F + Pen(n,K∗, L∗)− Pen(n, K̂, L̂) (A.16)

Subtracting and adding P∗ in the norm of the left-hand side of (A.16), we rewrite (A.16) as

∥∥∥P̂ − P∗

∥∥∥
2

F
≤ ∆(Ẑ, Ĉ, K̂, L̂) + Pen(n,K∗, L∗)− Pen(n, K̂, L̂), (A.17)

where

∆ ≡ ∆(Ẑ, Ĉ, K̂, L̂) = 2Tr
[
ΞT (P̂ − P∗)

]
. (A.18)

Again, using orthogonality of the permutation matrices, we can rewrite

∆ = 2〈Ξ(Ẑ, Ĉ, K̂, L̂), (Θ̂(Ẑ, Ĉ, K̂, L̂)− P∗(Ẑ, Ĉ, K̂, L̂))〉,

where 〈A,B〉 = Tr(ATB). Then, in the block form, ∆ appears as

∆ =
L̂∑

l=1

K̂∑

k=1

∆(l,k) (A.19)

where

∆(l,k) = 2〈Ξ(l,k)(Ẑ, Ĉ, K̂, L̂),Πû,v̂(A
(l,k)(Ẑ, Ĉ, K̂, L̂))− P (l,k)

∗ (Ẑ, Ĉ, K̂, L̂)〉

and Πû,v̂ is defined in (A.52) of Lemma A.3.4.

Let ũ = ũ(l,k)(Ẑ, Ĉ, K̂, L̂) and ṽ = ṽ(l,k)(Ẑ, Ĉ, K̂, L̂) be the singular vectors of P
(l,k)
∗ (Ẑ, Ĉ, K̂, L̂)

83



corresponding to its largest singular value. Then, according to Lemma A.3.4

Πũ,ṽ

(
P (l,k)
∗ (Ẑ, Ĉ, K̂, L̂)

)
= ũ(l,k)(ũ(l,k))TP (l,k)

∗ ṽ(l,k)(ṽ(l,k))T (A.20)

Recall that

Πû,v̂(A
(l,k)(Ẑ, Ĉ, K̂, L̂)) = Πû,v̂

[
P (l,k)
∗ (Ẑ, Ĉ, K̂, L̂) + Ξ(l,k)(Ẑ, Ĉ, K̂, L̂)

]
,

Then, ∆(l,k) can be partitioned into the sums of three components

∆(l,k) = ∆
(l,k)
1 +∆

(l,k)
2 +∆

(l,k)
3 , l = 1, 2, · · · , L̂, k = 1, 2, · · · , K̂ (A.21)

where

∆
(l,k)
1 = 2〈Ξ(l,k)(Ẑ, Ĉ, K̂, L̂),Πû,v̂(Ξ

(l,k)(Ẑ, Ĉ, K̂, L̂))〉 (A.22)

∆
(l,k)
2 = 2〈Ξ(l,k)(Ẑ, Ĉ, K̂, L̂),Πũ,ṽ(P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂))− P (l,k)

∗ (Ẑ, Ĉ, K̂, L̂)〉 (A.23)

∆
(l,k)
3 = 2〈Ξ(l,k)(Ẑ, Ĉ, K̂, L̂),Πû,v̂(P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂))− Πũ,ṽ(P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂))〉 (A.24)

With some abuse of notations, for any matrix B, let Πũ,ṽ

(
B(Ẑ, Ĉ, K̂, L̂)

)
be the matrix

84



with blocks Πũ,ṽ

(
B(l,k)(Ẑ, Ĉ, K̂, L̂)

)
and Πû,v̂

(
B(Ẑ, Ĉ, K̂, L̂)

)
be the matrix with blocks

Πû,v̂

(
B(l,k)(Ẑ, Ĉ, K̂, L̂)

)
, l = 1, 2, · · · , L̂, k = 1, 2, · · · , K̂

. Then, it follows from (A.21)–(A.24) that

∆ = ∆1 +∆2 +∆3 (A.25)

where

∆1 = 2〈(Ξ(Ẑ, Ĉ, K̂, L̂),Πû,v̂(Ξ(Ẑ, Ĉ, K̂, L̂))〉 (A.26)

∆2 = 2〈Ξ(Ẑ, K̂),Πũ,ṽ(P∗(Ẑ, Ĉ, K̂, L̂))− P∗(Ẑ, Ĉ, K̂, L̂)〉 (A.27)

∆3 = 2〈Ξ(Ẑ, Ĉ, K̂, L̂),Πû,v̂(P∗(Ẑ, Ĉ, K̂, L̂))− Πũ,ṽ(P∗(Ẑ, Ĉ, K̂, L̂))〉 (A.28)

Observe that

∆
(l,k)
1 = 2〈Ξ(l,k)(Ẑ, Ĉ, K̂, L̂),Πû,v̂(Ξ

(l,k)(Ẑ, Ĉ, K̂, L̂))〉

= 2
∥∥∥Πû,v̂(Ξ

(l,k)(Ẑ, Ĉ, K̂, L̂))
∥∥∥
2

F

≤ 2
∥∥∥Ξ(l,k)(Ẑ, Ĉ, K̂, L̂)

∥∥∥
2

op
.

Now, fix t and let Ω1 be the set where
L̂∑

l=1

K̂∑

k=1

∥∥∥Ξ(l,k)(Ẑ, Ĉ, K̂, L̂)
∥∥∥
2

op
≤ F1(n, K̂, L̂) + C3t.
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According to Lemma A.3.7,

P(Ω1) ≥ 1− exp(−t), (A.29)

and, for ω ∈ Ω1, one has

|∆1| ≤ 2
L̂∑

l=1

K̂∑

k=1

∥∥∥Ξ(l,k)(Ẑ, Ĉ, K̂, L̂)
∥∥∥
2

op
≤ 2F1(n, K̂, L̂) + 2C3t (A.30)

Now, consider ∆2 given by (A.27). Note that

|∆2| = 2
∥∥∥Πũ,ṽ

(
P∗(Ẑ, Ĉ, K̂, L̂)

)
− P∗(Ẑ, Ĉ, K̂, L̂)

∥∥∥
F
|〈Ξ(Ẑ, Ĉ, K̂, L̂), Hũ,ṽ(Ẑ, Ĉ, K̂, L̂)〉|

(A.31)

where

Hũ,ṽ(Ẑ, Ĉ, K̂, L̂) =
Πũ,ṽ

(
P∗(Ẑ, Ĉ, K̂, L̂)

)
− P∗(Ẑ, Ĉ, K̂, L̂)

‖Πũ,ṽ

(
P∗(Ẑ, Ĉ, K̂, L̂)

)
− P∗(Ẑ, Ĉ, K̂, L̂)‖F

Since for any a, b, and α1 > 0, one has 2ab ≤ α1a
2 + b2/α1, obtain

|∆2| ≤ α1

∥∥∥Πũ,ṽ

(
P∗(Ẑ, Ĉ, K̂, L̂)

)
− P∗(Ẑ, Ĉ, K̂, L̂)

∥∥∥
2

F
+

1/α1 |〈Ξ(Ẑ, Ĉ, K̂, L̂), Hũ,ṽ(Ẑ, Ĉ, K̂, L̂) 〉|2
(A.32)

Observe that if K, L, Z ∈ Mn,K , and C ∈ MK,L are fixed, then Hũ,ṽ(Z,C,K,L) is fixed

and, for any K, L, Z, and C, one has ‖Hũ,ṽ(Z,C,K,L)‖F = 1. Note also that, for fixed

K, L, Z, and C, permuted matrix Ξ(Z,C,K,L) ∈ [0, 1]n×n contains independent Bernoulli

errors. It is well known that if ξ is a vector of independent Bernoulli errors and h is a unit

vector, then, for any x > 0, Hoeffding’s inequality yields

P(|ξTh|2 > x) ≤ 2 exp(−x/2)
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Since

〈Ξ(Z,C,K,L), Hũ,ṽ(Z,C,K,L)〉 = [vec(Ξ(Z,C,K,L))]Tvec(Hũ,ṽ(Z,C,K,L)),

obtain for any fixed K, L, Z, and C:

P
(
|〈Ξ(Z,C,K,L), Hũ,ṽ(Z,C,K,L)〉|2 − x > 0

)
≤ 2 exp(−x/2)

Now, applying the union bound, derive

P

(
|〈Ξ(Ẑ, Ĉ, K̂, L̂), Hũ,ṽ(Ẑ, Ĉ, K̂, L̂)〉|2 − F2(n, K̂, L̂) > 2t

)

≤ P

[
max

1≤K≤n
max

1≤L≤K
max

Z∈Mn,K

max
C∈MK,L

(|〈Ξ(Z,C,K,L), Hũ,ṽ(Z,C,K,L)〉|2 − F2(n,K, L)) > 2t
]

(A.33)

≤ 2nKKnLK exp {−F2(n,K, L)/2− t} = 2 exp(−t),

where F2(n,K, L) = 2 lnn+ 2(n+ 1) lnK + 2K lnL. By Lemma A.3.5, one has

∥∥∥Πũ,ṽ

(
P∗(Ẑ, Ĉ, K̂, L̂)

)
− P∗(Ẑ, Ĉ, K̂, L̂)

∥∥∥
2

F
≤

∥∥∥Πû,v̂

(
P∗(Ẑ, Ĉ, K̂, L̂)

)
− P∗(Ẑ, Ĉ, K̂, L̂)

∥∥∥
2

F
≤

∥∥∥P̂ − P∗

∥∥∥
2

F
.

Denote the set on which (A.33) holds by ΩC
2 , so that

P(Ω2) ≥ 1− 2 exp(−t). (A.34)

Then inequalities (A.32) and (A.33) imply that, for any α1 > 0, t > 0 and any ω ∈ Ω2, one

has

|∆2| ≤ α1

∥∥∥P̂ − P∗

∥∥∥
2

F
+ 1/α1 F2(n, K̂, L̂) + 2 t/α1. (A.35)
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Now consider ∆3 defined in (A.28) with components (A.24). Note that matrices

Πû,v̂(P
(l,k)
∗ (Ẑ, Ĉ, K̂, L̂))− Πũ,ṽ

(
P (l,k)
∗ (Ẑ, Ĉ, K̂, L̂)

)

have rank at most two. Use the fact that (see, e.g., Giraud (2014), page 123)

〈A,B〉 ≤ ‖A‖(2,r) ‖B‖(2,r) ≤ 2 ‖A‖op ‖B‖F , r = min{rank(A), rank(B)}. (A.36)

Here ‖A‖(2,q) is the Ky-Fan (2, q) norm

‖A‖2(2,q) =
q∑

j=1

σ2
j (A) ≤ ‖A‖2F ,

where σj(A) are the singular values of A. Applying inequality (A.36) with r = 2 and taking

into account that for any matrix A one has ‖A‖2(2,2) ≤ 2 ‖A‖2op, derive

|∆(l,k)
3 | ≤ 4

∥∥∥Ξ(l,k)(Ẑ, Ĉ, K̂, L̂)
∥∥∥
op

∥∥∥Πû,v̂(P
(l,k)
∗ (Ẑ, Ĉ, K̂, L̂)− Πũ,ṽ

(
P (l,k)
∗ (Ẑ, Ĉ, K̂, L̂)

)∥∥∥
F
.

Then, for any α2 > 0, obtain

|∆3| ≤
L̂∑

l=1

K̂∑

k=1

|∆(l,k)
3 | ≤ 2

α2

L̂∑

l=1

K̂∑

k=1

∥∥∥Ξ(l,k)(Ẑ, Ĉ, K̂, L̂)
∥∥∥
2

op
+ (A.37)

2α2

L̂∑

l=1

K̂∑

k=1

∥∥∥Πû,v̂(P
(l,k)
∗ (Ẑ, Ĉ, K̂, L̂)− Πũ,ṽ

(
P (l,k)
∗ (Ẑ, Ĉ, K̂, L̂)

)∥∥∥
2

F
.
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Note that, by Lemma A.3.5,

∥∥∥Πû,v̂(P
(l,k)
∗ (Ẑ, Ĉ, K̂, L̂))− Πũṽ

(
P (l,k)
∗ (Ẑ, Ĉ, K̂, L̂)

)∥∥∥
2

F

≤2
∥∥∥Πû,v̂(P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂))− P (l,k)

∗ (Ẑ, Ĉ, K̂, L̂)
∥∥∥
2

F
+

2
∥∥∥Πũ,ṽ(P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂))− P (l,k)

∗ (Ẑ, Ĉ, K̂, L̂)
∥∥∥
2

F

≤4
∥∥∥Πû,v̂(P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂))− P (l,k)

∗ (Ẑ, Ĉ, K̂, L̂)
∥∥∥
2

F

≤4
∥∥∥Πû,v̂(A

(l,k)(Ẑ, Ĉ, K̂, L̂))− P (l,k)
∗ (Ẑ, Ĉ, K̂, L̂)

∥∥∥
2

F

= 4
∥∥∥Θ̂(l,k)(Ẑ, Ĉ, K̂, L̂)− P (l,k)

∗ (Ẑ, Ĉ, K̂, L̂)
∥∥∥
2

F

Therefore,

L̂∑

l=1

K̂∑

k=1

∥∥∥Πû,v̂(P
(l,k)
∗ (Ẑ, Ĉ, K̂, L̂))− Πũ,ṽ

(
P (l,k)
∗ (Ẑ, Ĉ, K̂, L̂)

)∥∥∥
2

F
≤

4
∥∥∥Θ̂(Ẑ, Ĉ, K̂, L̂)− P∗(Ẑ, Ĉ, K̂, L̂)

∥∥∥
2

F
= 4

∥∥∥P̂ − P∗

∥∥∥
2

F
(A.38)

Combine inequalities (A.37) and (A.38) and recall that

L̂∑

l=1

K̂∑

k=1

∥∥∥Ξ(l,k)(Ẑ, Ĉ, K̂, L̂)
∥∥∥
2

op
≤ F1(n, K̂, L̂) + C3 t

for ω ∈ Ω1. Then, for any α2 > 0 and ω ∈ Ω1, one has

|∆3| ≤ 8α2

∥∥∥P̂ − P∗

∥∥∥
2

F
+ 2/α2F1(n, K̂, L̂) + 2C3 t/α2. (A.39)

Now, let Ω = Ω1 ∩ Ω2. Then, (A.29) and (A.34) imply that P(Ω) ≥ 1 − 3 exp(−t) and, for

ω ∈ Ω, inequalities (A.30), (A.35) and (A.39) simultaneously hold. Hence, by (A.25), derive
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that, for any ω ∈ Ω,

|∆| ≤ (2 + 2/α2)F1(n, K̂, L̂)) + 1/α1 F2(n, K̂, L̂)+

(α1 + 8α2)
∥∥∥P̂ − P∗

∥∥∥
2

F
+ 2(C3 + 1/α1 + C3/α2) t.

Combination of the last inequality and (A.17) yields that, for α1 + 8α2 < 1 and any ω ∈ Ω,

(1− α1 − 8α2)
∥∥∥P̂ − P∗

∥∥∥
2

F
≤

(
2 +

2

α2

)
F1(n, K̂, L̂)+

1

α1

F2(n, K̂, L̂) + Pen(n,K∗, L∗)− Pen(n, K̂, L̂)

+2(C3 + 1/α1 + C3/α2) t

Setting Pen(n,K, L) = (2+2/α2)F1(n,K, L)+1/α1F2(n,K, L) and dividing by (1−α1−8α2),

obtain that

P

{∥∥∥P̂ − P∗

∥∥∥
2

F
≤ (1− α1 − 8α2)

−1 Pen(n,K∗, L∗) + C̃ t

}
≥ 1− 3e−t (A.40)

where

C̃ = 2 (1− α1 − 8α2)
−1 (C3 + 1/α1 + C3/α2) (A.41)

Moreover, note that for ξ = ‖P̂ − P∗‖2F−(1−β1−β2)
−1 Pen(n,K∗, L∗), one has E‖P̂ − P∗‖2F =

(1− β1 − β2)
−1 Pen(n,K∗, L∗) + Eξ,where

Eξ ≤
∫ ∞

0

P(ξ > z)dz = C̃

∫ ∞

0

P(ξ > C̃t)dt ≤ C̃

∫ ∞

0

3 e−t dt = 3C̃,

By rearranging and combining the terms, the penalty Pen(n,K, L) can be written in the

form (4.19) completing the proof.
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A.3 Supplementary statements and their proofs

Lemma A.3.1. The logarithm of the cardinality of a δ-net on the space of non-symmetric

DCBMs of size n1 × n2 with K1 ×K2 blocks is

(K1K2 + n1 + n2) ln

(
9

δ

)
+

(
K1K2 +

n1 + n2

2

)
ln(n1n2)

Proof. Let Z1 and Z2 be fixed. Then by rearranging Θ, rewrite it as Θ = Q1BQT
2 , where B

and Qi, i = 1, 2, have the sizes K1 ×K2 and ni ×Ki, respectively. Here, Qi is of the form

Qi =




qi,1 0 · · · 0

0 qi,2 · · · 0

...
... · · · ...

0 0 · · · qi,Ki



, (A.42)

We re-scale components of matrices Q1, Q2 and B, so that vectors qi,j ∈ R
ni,j

+ , j = 1, · · · , Ki,

i = 1, 2, have unit norms ‖qi,j‖2 = 1, and
∑Ki

j=1 ni,j = ni. Let Θ(k1,k2) ∈ R
n1,k1

×n2,k2 be the

(k1, k2)-th block of Θ. Then,

Θ(k1,k2) = Bk1,k2q1,k1q
T
2,k2

and

∥∥Θ(k1,k2)
∥∥2

F
= B2

k1,k2
‖q1,k1‖22 ‖q2,k2‖

2
2 = B2

k1,k2
≤ nk1 · nk2 ,

due to
∥∥abT

∥∥2

F
≤ ‖a‖22 ‖b‖

2
2 (for any vectors a and b) and ‖Θ‖∞ ≤ 1. Hence, Bk1,k2 ≤

√
nk1 · nk2 ≤

√
n1 · n2.

Let D1(δ1), D2(δ2), and DB(δB) be the δ1, δ2, and δB nets for Q1, Q2, and B, respectively.
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The nets Di(δi) are essentially constructed for Ki vectors of length 1 in R
ni,j , hence, by [47]

card(Di(δi)) ≤ ΠKi

j=1 (3/δi)
ni,j = (3/δi)

ni , i = 1, 2.

Let b = vec(B). Then, b ∈ R
K1K2 and ‖b‖ ≤ √

n1n2 since

‖b‖2 = ‖B‖2F =
∑

k1,k2

B2
k1,k2

=
∑

k1,k2

nk1nk2 = n1n2.

Therefore,

card(DB(δB)) ≤
(
3n1n2

δB

)K1K2

Now, let us check what values of δ1, δ2, and δB result in a δ-net. Let Θ = Q1BQT
2 and

Θ̃ = Q̃1B̃Q̃T
2 . Then

∥∥∥Θ̃−Θ
∥∥∥
F
=

∥∥∥Q̃1B̃Q̃T
2 −Q1BQT

2

∥∥∥
F
≤

∥∥∥(Q̃1 −Q1)B̃Q̃T
2

∥∥∥
F
+
∥∥∥Q1(B̃ − B)Q̃T

2

∥∥∥
F
+
∥∥∥Q1B(Q̃2 −Q2)

T
∥∥∥
F

Note that

‖A1A2‖F ≤ min
(
‖A1‖F ‖A2‖op , ‖A1‖op ‖A2‖F

)

for any matrices A1 and A2, and that also

QT
i Qi = diag

(
‖qi,1‖2 , · · · , ‖qi,Ki

‖2
)
= IKi

, i = 1, 2.

Hence

‖Qi‖op = 1; ‖Qi‖F =
√

Ki, i = 1, 2.
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Similarly, if Q̃i, Qi ∈ Di(δi), then

(Q̃i −Qi)
T (Q̃i −Qi) = diag

(
‖q̃i,1 − qi,1‖2 , · · · , ‖q̃i,Ki

− qi,Ki
‖2
)

Thus
∥∥∥Q̃i −Qi

∥∥∥
op

= δi;
∥∥∥Q̃i −Qi

∥∥∥
F
≤

√
Kiδi, i = 1, 2.

Also, for i = 1, 2

Tr(BTQT
i QiB) = ‖QiB‖2F = ‖B‖2F = n1n2.

Hence, ∥∥∥Θ̃−Θ
∥∥∥
F
≤

∥∥∥Q̃1 −Q1

∥∥∥
op

∥∥∥B̃Q̃T
2

∥∥∥
F

+ ‖Q1B‖F
∥∥∥Q̃2 −Q2

∥∥∥
op
+ ‖Q1‖op

∥∥∥B̃ − B
∥∥∥
F

∥∥∥Q̃2

∥∥∥
op

= (δ1 + δ2)
√
n1n2 + δB ≤ δ

Set δB = δ
3

and δ1 = δ2 =
δ

3
√
n1n2

. Then

card(DB(δB)) =

(
9n1n2

δ

)K1K2

,

card(Di(δi)) =

(
9
√
n1n2

δ

)ni

,

which completes the proof.

Lemma A.3.2. Consider the set of matrices P which can be transformed by a permutation

matrix PZ,C into a block matrix Θ ∈ ℑ(n,K, L) where ℑ(n,K, L) is defined in (4.13). Let

Y (ǫ, n,K, L) be an ǫ-net on the set ℑ(n,K, L) and |Y (ǫ, n,K, L)| be its cardinality. Then,
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for any K and L, 1 ≤ K ≤ n, 1 ≤ L ≤ K, one has

|Y (ǫ, n,K, L)| ≤ n lnK +K lnL+ (K2 + 2nL) ln

(
9nL

ǫ

)
(A.43)

Proof. First construct nets on the set of matrices Z and C with the respective the cardi-

nalities Kn and LK . After that, validity of the lemma follows from Lemma A.3.1.

Lemma A.3.3. Let C2
0 = 3009, C2 = 1, s0 > 0 be an arbitrary constant and ΩK,L be defined

in (A.10). Then,

P

{
sup

P̂∈ΩK,L

[
2〈Ξ, P̂ − P∗〉 −

1

2

∥∥∥P̂ − P∗

∥∥∥
2

F
− 2∆(n,K, L)

]
≥ 0

}
≤ log2 n · exp

(
− n · 22s0−7

)

where ∆(n,K, L) is defined in (A.11).

Proof. Consider sets

χs(K,L) =
{
∃Z,C : P (Z,C) ∈ ℑ(n,K, L);

C02
s
√

τ(n,K0, L0) ≤ ‖P − P∗‖F ≤ C02
s+1

√
τ(n,K0, L0)

}
,

and

Js(K,L) =
{
∃Z,C : P (Z,C) ∈ ℑ(n,K, L); ‖P − P∗‖F ≤ C02

s
√

τ(n,K0, L0)
}

Note that the set Ω can be partitioned as

Ω =
⋃

K,L

ΩK,L
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where ΩK,L are defined in (A.10). Then

P

{
sup

P̂∈ΩK,L

[
〈Ξ, P̂ − P∗〉 −

1

4

∥∥∥P̂ − P∗

∥∥∥
2

F
−∆(n,K, L)

]
≥ 0

}
≤

smax∑

s=s0

P

{
sup

P̂∈χs(K,L)

[
〈Ξ, P̂ − P∗〉 −

1

4

∥∥∥P̂ − P∗

∥∥∥
2

F
−∆(n,K, L)

]
≥ 0

}
≤

smax∑

s=s0

P

{
sup

P̂∈χs(K,L)

〈Ξ, P̂ − P∗〉 ≥ C2
02

2s−2τ(n,K0, L0) + ∆(n,K, L)

}
≤

smax∑

s=s0

P

{
sup

P̂∈Js+1(K,L)

〈Ξ, P̂ − P∗〉 ≥ C2
02

2s−2τ(n,K0, L0) + ∆(n,K, L)

}

Here, smax ≤ log2 n since
∥∥∥P̂ − P∗

∥∥∥
F
≤ n.

Construct a 1-net Ys(n,K, L) on the set of matrices in Js+1(K,L) and observe that, for any

P̂ ∈ Js(K,L), there exists P̃ ∈ Ys(n,K, L) such that ‖P̂ − P̃‖F ≤ 1. Then,

sup
P̂∈Ys+1(n,K,L)

〈Ξ, P̂ − P∗〉 ≤

max
P̃∈Ys(n,K,L)

[
〈Ξ, P̃ − P∗〉+ 〈Ξ, P̂ − P̃ 〉

]
≤

max
P̃∈Ys(n,K,L)

〈Ξ, P̃ − P∗〉+ n

Hence,

P

{
sup

P̂∈ΩK,L

[
〈Ξ, P̂ − P∗〉 −

1

4

∥∥∥P̂ − P∗

∥∥∥
2

F
−∆(n,K, L)

]
≥ 0

}
≤

smax∑

s=s0

P

{
max

P̃∈Ys(n,K,L)
〈Ξ, P̃ − P∗〉 ≥ C2

02
2s−2τ(n,K0, L0) + ∆(n,K, L)− n

}
≤

smax∑

s=s0

∑

P̃∈Ys(n,K,L)

P

{
〈Ξ, P̃ − P∗〉 ≥ C2

02
2s−2τ(n,K0, L0) + ∆(n,K, L)− n

}

Below we shall use the following version of Bernstein inequality (see, e.g., [31]): if Ξ is a
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matrix of independent Bernoulli errors and G is an arbitrary matrix of the same size, then

for any t > 0 one has

P {〈Ξ, G〉 > t} ≤ max

(
e
− t2

4‖G‖2
F , e−

3t
4‖G‖∞

)
. (A.44)

We apply (A.44) with G = P̃ − P∗ and

t = C2
0

[
22s−2τ(n,K0, L0) + C2τ(n,K, L)

]
. (A.45)

Then, ‖G‖∞ = 1 and ‖G‖2 ≤ C2
02

2s+2τ(n,K0, L0) due to P̃ ∈ Ys(n,K, L) ⊆ Js+1(K,L).

Denote

d
(s)
K,L = max

{
e
− t2

4C2
022s+2 τ(n,K0,L0) , e−

3t
4

}
(A.46)

dK,L =
smax∑

s=s0

d
(s)
K,L · exp {τ(n,K, L)} (A.47)

Obtain

P

{
sup

P̂∈ΩK,L

[
〈Ξ, P̂ − P∗〉 −

1

4

∥∥∥P̂ − P∗

∥∥∥
2

F
−∆(n,K, L)

]
≥ 0

}
≤ dK,L (A.48)

Observe that

exp
{
− t2

4C2
02

2s+2τ(n,K0, L0)

}
≥ exp

{
− 3t

4

}

is equivalent to t ≤ 3C2
02

2s+2τ(n,K0, L0) which can be rewritten as

C2τ(n,K, L) ≤ 47 · 22s−2τ(n,K0, L0) (A.49)

Now, consider two cases: when (A.49) holds and when it does not.
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Case 1: If (A.49) holds, then

d
(s)
K,L ≤ exp

{
− C2

0

[
22s−8τ(n,K0, L0) +

C2
2τ

2(n,K, L)

22s+4τ(n,K0, L0)

]}
,

so that

d
(s)
K,L exp

{
τ(n,K, L)

}
≤

exp

{
−

[
C2

02
2s−8τ(n,K0, L0)−

47 · 22s−2

C2

τ(n,K0, L0)
]}

≤

exp

{
− τ(n,K0, L0) · 22s0−8

[
C2

0 −
47 · 64
C2

]}
.

Thus, it follows from (A.46) and (A.47) that

dK,L ≤ log2 n · exp
{
−τ(n,K0, L0)2

2s0−8C̃
}

(A.50)

where C̃ = (C2
0C2 − 47 · 64)/C2, provided C0C2 ≥ 47 · 64.

Case 2: If (A.49) does not hold, then

d
(s)
K,L ≤

exp

{
− 3C2

0

4

[
22s−2τ(n,K0, L0) + C2τ(n,K, L)

]}
≤

exp

{
− τ(n,K, L)− τ(n,K, L)

(3C2
0C2

4
− 1

)}

Hence, if 3C2
0C2 > 4, then

dK,L ≤ log2 n · exp
{
− τ(n,K, L)

(3C2
0C2 − 4

4

)}
. (A.51)

Combine (A.50) and (A.51) and observe that for C2 = 1 and C2
0 = 47 · 64 + 1 = 3009

inequalities C0C2 ≥ 47 · 64 and 3C2
0C2 > 4 hold. Then, due to τ(n,K, L) ≥ 2n, for any
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(K,L)

dK,L ≤ log2 n · exp
{
− 2n · 22s0−8

}
,

so that validity of the lemma follows from (A.48).

Lemma A.3.4. For any matrices A,B ∈ R
m×n and any unit vectors u ∈ R

m and v ∈ R
n,

let

Πu,v(A) = (uuT )A(vvT ) (A.52)

denote the projection of matrix A on the vectors (u, v). Then,

〈Πu,v(B), A− Πu,v(A)〉 = 0. (A.53)

Furthermore, if we let û and v̂ be the singular vectors of matrix A corresponding to its largest

singular value σ, the best rank one approximation of A is given by

Πû,v̂(A) = (ûûT )A(v̂v̂T ) = σûv̂T . (A.54)

Lemma A.3.5. Let (û, v̂) and (u, v) denote the pairs of singular vectors of matrices A and

P , respectively, corresponding to their largest singular values. Then,

‖Πu,v(P )− P‖F ≤ ‖Πû,v̂(P )− P‖F ≤ ‖Πû,v̂(A)− P‖F (A.55)

where Πu,v(·) is defined in (A.52).

Proof. The first inequality in (A.55) is true because Πu,v(P ) is the best rank one approxi-
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mation of P . Now let A = P + Ξ. Then

‖Πû,v̂(A)− P‖2F = ‖Πû,v̂(P )− P +Πû,v̂(Ξ)‖2F = ‖Πû,v̂(P )− P‖2F + ‖Πû,v̂(Ξ)‖2F

which leads to the second inequality in (A.55).

Lemma A.3.6. Let elements of matrix Ξ ∈ (−1, 1)n×n be independent Bernoulli errors and

matrix Ξ be partitioned into KL sub-matrices Ξ(l,k), l = 1, · · · , L, k = 1, · · · , K. Then, for

any x > 0

P

{
L∑

l=1

K∑

k=1

∥∥Ξ(l,k)
∥∥2

op
≤ C1nK + C2K

2 ln(ne) + C3x

}
≥ 1− exp(−x), (A.56)

where C1, C2 and C3 are absolute constants independent of n,K, and L.

Proof. See [46] for the proof.

Lemma A.3.7. For any t > 0,

P





L̂∑

l=1

K̂∑

k=1

∥∥∥Ξ(l,k)(Ẑ, Ĉ, K̂, L̂)
∥∥∥
2

op
− F1(n, K̂, L̂) ≤ C3t



 ≥ 1− exp (−t). (A.57)

where F1(n,K, L) = C1nK + C2K
2 ln(ne) + C3(lnn+ (n+ 1) lnK +K lnL).

Proof. Using Lemma A.3.6, for any fixed K, L, Z ∈ Mn,K , and C ∈ MK,L, we have

P

{
L∑

l=1

K∑

k=1

∥∥Ξ(l,k)(Z,C,K,L)
∥∥2

op
− C1nK − C2K

2 ln(ne)− C3x ≥ 0

}
≤ exp (−x).

Application of the union bound over Z ∈ Mn,K , C ∈ MK,L, K ∈ {1, ..., n}, and L ∈
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{1, ..., K} and setting x = t+ lnn+ (n+ 1) lnK +K lnL yield

P

{
L̂∑

l=1

K̂∑

k=1

∥∥∥Ξ(l,k)(Ẑ, Ĉ, K̂, L̂)
∥∥∥
2

op
− F1(n, K̂, L̂) ≥ C3t

}

≤ P

{
max

1≤K≤n
max

1≤L≤K
max

Z∈Mn,K

max
C∈MK,L

( L∑

l=1

K∑

k=1

∥∥Ξ(l,k)(Z,C,K,L)
∥∥2

op
− F1(n,K, L)

)
≥ C3t

}

≤
n∑

i=1

K∑

j=1

∑

Z∈Mn,K

∑

C∈MK,L

P

{
L∑

l=1

K∑

k=1

∥∥Ξ(l,k)(Z,C,K,L)
∥∥2

op
− F1(n,K, L) ≥ C3t

}

≤ nKKnLK exp
{
− t− lnn− (n+ 1) lnK −K lnL

}
= exp (−t),

which completes the proof.
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