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ABSTRACT

Differential equations (DEs) model a variety of physical phenomena in science and engineering.

Many physical phenomena involve conservative or dissipative forces, which manifest themselves

as qualitative properties of DEs that govern these phenomena. Since only a few and simplistic

models are known to have exact solutions, approximate solution techniques, such as numerical

integration, are used to reveal important insights about solution behavior and properties of these

models. Numerical integrators generally result in undesirable quantitative and qualitative errors .

Standard numerical integrators aim to reduce quantitative errors, whereas geometric (numerical)

integrators aim to reduce or eliminate qualitative errors, as well, in order to improve the accuracy

of numerical solutions. It is now widely recognized that geometric (or structure-preserving) inte-

grators are advantageous compared to non-geometric integrators for DEs, especially for long time

integration.

Geometric integrators for conservative DEs have been proposed, analyzed, and investigated exten-

sively in the literature. The motif of this thesis is to extend the idea of structure preservation to

linearly damped DEs. More specifically, we develop, analyze, and implement geometric integra-

tors for linearly damped ordinary and partial differential equations (ODEs and PDEs) that possess

conformal invariants, which are qualitative properties that decay exponentially along any solution

of the DE as the system evolves over time. In particular, we derive restrictions on the coefficient

functions of exponential Runge-Kutta (ERK) numerical methods for preservation of certain con-

formal invariants of linearly damped ODEs. An important class of these methods is shown to

preserve the damping rate of solutions of damped linear ODEs. Linearly stability and order of ac-

curacy for some specific cases of ERK methods are investigated. Geometric integrators for PDEs

are designed using structure-preserving ERK methods in space, time, or both. These integrators

for PDEs are also shown to preserve additional structure in certain special cases. Numerical ex-
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periments illustrate higher order accuracy and structure preservation properties of various ERK

based methods, demonstrating clear advantages over non-structure-preserving methods, as well as

usefulness for solving a wide range of DEs.
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CHAPTER 1: INTRODUCTION

Some examples of physical phenomena in science and engineering that are governed by DEs in-

clude rigid body problem , N-body problem, water and sound wave propagation, non-relativistic

quantum mechanics, and superconductivity. From the perspective of structure preservation, DEs

can be classified in two broad categories: conservative and damped DEs. While conservative DEs

have their own importance, damped DEs are also important in applications because of the pres-

ence of resistive or attenuating forces in physical systems governed by the damped DEs. In this

thesis, our focus will be on the later category. Damped DEs are characterized by possession of

qualitative properties that decay along any solution. Those qualitative properties that decay ex-

ponentially along any solution are referred to as conformal invariants and will be defined more

precisely later. Both ordinary and partial differential equations (ODEs and PDEs) that possess

conformal invariants are considered in this exposition.

Since not all DEs are amenable to exact solutions, approximate solution techniques are indispens-

able. Numerical methods are one of the approximate solution techniques used to solve DEs. Finite

difference, finite element, finite volume, and spectral methods are types of numerical methods

used to solve DEs numerically. Finite difference methods are the earliest numerical methods used

among all the numerical methods and their structure-preservation properties for conservative DEs

are well known. In this thesis, our focus will be on establishing structure-preservation properties

of finite difference methods for linearly damped DEs.

In the next section, we define conformal invariants and discuss some motivating examples of DEs

and their conformal invariants. In Section 1.2, we discuss fundamentals of finite difference meth-

ods and properties of finite difference operators that will be used later in this thesis to design

structure-preserving numerical methods. Then we discuss some of the previous work done in the
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direction of structure-preservation in Section 1.3. We conclude this chapter with an outline of the

rest of the thesis in Section 1.4.

1.1 Damped differential equations

DEs, whose qualitative properties, such as energy or momentum, remain constant along any so-

lution, are referred to as conservative DEs. In contrast, DEs whose qualitative properties decay

along any solution are referred to as damped differential equations. Other commonly used names

for damped DEs are dissipative DEs or non-conservative DEs. This decay in the solution or quali-

tative properties of a DE is often the result of the presence of resistive forces in the system that is

being modeled by the DE.

Consider the Cauchy problem

ż(t) = N(z(t))− γ(t)z(t), z(0) = z0 (1.1)

where z ∈ R
d with d ∈ N, N : Rd → R

d is a smooth nonlinear function of z, and ż denotes the

derivative of z with respect to t. We require that γ be scalar, and we allow it to depend on time, i.e.

γ(t) : R → R. The DE in eq. (1.1) is a generalization of a more prevalent special case

ż(t) = N(z(t))− γ0z(t),

where γ0 is a real constant. The term involving γ0 is linear and is often responsible for damping

in the system. In this thesis, we consider the generalization (1.1) of this linearly damped system.

The solution z of (1.1) can be thought of a map taking the initial condition z0 to a later point z(t)

after time t along a solution trajectory. To emphasize this dependence of the solution on the initial

condition, one often writes z = z(t; z0).
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When d is even, the solution z(t) of the system (1.1) can be partitioned into two vector variables

of dimension d/2× 1. The system thus obtained in terms of these new variables is referred to as a

partitioned system. Now, suppose the partitioned system thus obtained from (1.1) has the form



q̇

ṗ


 =



F (q, p)

G(q, p)


−



γ1(t)q

γ2(t)p


 ,



q(0)

p(0)


 =



q0

p0


 (1.2)

where q, p ∈ R
d/2 with d even, and the functions F,G : Rd → R

d/2 and γk : R → R for k = 1, 2

are smooth. We have suppressed the dependence of the variables q, p on t.

The following definition of a conformal invariant is of fundamental importance to our discussion.

Definition 1.1. A non constant function I : Rd → R is a conformal invariant of eq. (1.1) if

d

dt
I(z) = −2γ(t)I(z) (1.3)

for all z = z(t, z0), all z0 ∈ R
d, and all t ∈ R. Similarly, a non constant function I(t) : R2d → R

is a conformal invariant of (1.2) if

d

dt
I = −(γ1(t) + γ2(t))I,

for all q = q(t, q0, p0), p = p(t, q0, p0), all (q0, p0) ∈ R
2d, and all t ∈ R

Notice that eq. (1.3) is equivalent to

d

dt

(
e
∫ t
0
2γ(s)dsI(t)

)
= 0 ⇐⇒ I(t) = e−

∫ t
0
2γ(s)dsI(0),

where I(t) = I(z(t)). This last equation means that conformal invariants decay exponentially

along all solutions when γ is a constant. If γ = 0, then the function I remains unchanged along all

solutions of eq. (1.1) and is referred to as a first integral, constant of motion, or conserved quantity

of the equation. Similar statements are true for the conformal invariant of the partitioned system.

The next chapter has more details on conformal invariants and their preservation. For now, let

3



us motivate the discussion by giving the following examples of non-conservatively perturbed DEs

and their conformal invariants.

Example 1.2. Consider the following system

θ̇ = ω,

ω̇ = −κ2θ − 2γω.

(1.4)

Notice that this is just the governing equation of a damped oscillator where θ is the displacement, κ

is the frequency, and γ is the damping parameter. Here, overdot denotes the time derivative. Now

defining

Hγ =
1
2
(κ2θ2 + ω2) + γθω

and differentiating with respect to t gives

d

dt
Hγ =

d

dt

(
1
2
(κ2θ2 + ω2) + γθω

)

= κ2θθ̇ + ωω̇ + γ(θω̇ + ωθ̇)

= (κ2θ + γω)θ̇ + (ω + γθ)ω̇

= (κ2θ + γω)ω + (ω + γθ)(−κ2θ − γω)

= −γω2 − γκ2θ2 − 2γ2θω

= −2γ
(
1
2
(κ2θ2 + ω2) + γθω

)

= −2γHγ.

Here, we have used system (1.4) to replace time derivatives of θ and ω. ThereforeHγ is a conformal

invariant of the system (1.4). With γ = 0, eq. (1.4) reduces to a conservative harmonic oscillator

with energy H0 = Hγ|γ=0. Notice that the energy H0 of the conservative harmonic oscillator

remains unchanged along all solutions, and, hence, H0 is a first integral.

4



Example 1.3. Consider the following equations of motion for an n-body system

∂tqi =
1

mi

pi, (1.5)

∂tpi = −
∑

j 6=i
τij(qi − qj)− 2γpi (1.6)

for i = 1, 2, . . . , N ; where mi is mass of the ith particle, φij(‖qi − qj‖) is the interaction potential

(pair-potential) between particles i and j at the distance ‖qi − qj‖, and

τij =
φ′
ij(‖qi − qj‖)

‖qi − qj‖
.

Here ∂t denotes the time derivative. Vectors qi ∈ R
3 and pi ∈ R

3 denote position and linear

momentum, respectively, of the ith particle. Taking the cross product of (1.5) and (1.6) with pi and

qi, respectively, we have

∂tqi × pi = 0,

∂tpi × qi = −
∑

j 6=i
τij(−qj × qi)− 2γpi × qi.

Now, summing the second equation over i gives

∑

i

∂tpi × qi = −
∑

i

∑

j 6=i
τij(−qj × qi)− 2γ

∑

i

pi × qi

= −2γ
∑

i

pi × qi,

which gives

∂t

(
∑

i

pi × qi

)
= −2γ

∑

i

pi × qi.

Similarly summing equation (1.6) over i we arrive at

∑

i

∂tpi = −2γ
∑

i

pi, ⇐⇒
∑

i

pi(t) = e−2γt
∑

i

pi(0).

Therefore, total angular momentum
∑

i pi(t)× qi(t) and total linear momentum
∑

i pi(t) are con-
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formal invariants for the system of eqs. (1.5) and (1.6). Notice that for γ = 0, this simply means

that the total linear and total angular momentum are first integrals of the n-body problem given by

eqs. (1.5) and (1.6) with γ = 0.

Example 1.4. Consider the following system of equations




ż1

ż2

ż3



=




0 z3/I3 −z2/I2

−z3/I3 0 z1/I1

z2/I2 −z1/I1 0







z1

z2

z3



− γ(t)




z1

z2

z3



, (1.7)

where I1, I2, I3 are nonzero real constants and γ(t) = ǫ
2
cos(2t) is a time dependent damping term.

When ǫ = 0, this system defines the motion of a free rigid body with center of mass at the origin,

the solution vector z = (z1, z2, z3)
T represents the angular momentum, and I1, I2, I3 are principal

moments of inertia. It is straightforward to show that the system has two conformal invariants, one

for the Casimir

dC

dt
= −2γ(t)C with Casimir C(z) = z21 + z22 + z23 ,

and one for the energy

dH

dt
= −2γ(t)H with energy H(z) =

1

2

(
z21
I1

+
z22
I2

+
z23
I3

)
.

Example 1.5. Consider the nonlinear Schrödinger equation

iψt + ψxx + V ′(|ψ|2)ψ + 2iγψ = 0

where ψ = ψ(x, t) is a complex valued wave function of space x and time t, the nonnegative real

number γ is the damping parameter, and subscripts denote the usual partial derivatives. The equa-

tion models a variety of physical phenomena including propagation of the envelop of modulated

water wave groups. To show that the equation has a conformal invariant, let us multiply the PDE

6



by ψ, the complex conjugate of ψ, and integrate to get

i

∫
ψtψ dx+

∫
ψxxψ dx+

∫
V ′(|ψ|2)|ψ|2 dx+ 2iγ

∫
|ψ|2 dx = 0. (1.8)

After integration by parts, the second term of this equation becomes

∫
ψxxψ dx = [ψψx]−

∫
|ψx|

2 dx

where [.] denotes difference of the enclosed function evaluated at the upper and lower limit of

integration. This difference vanishes under appropriate boundary conditions and hence eq. (1.8)

becomes

i

∫
ψtψ dx−

∫
|ψx|

2 dx+

∫
V ′(|ψ|2)|ψ|2 dx+ 2iγ

∫
|ψ|2 dx = 0 (1.9)

Taking the imaginary part of this equation we get the linear ODE

∂t

∫
|ψ|2 dx+ 4γ

∫
|ψ|2 dx = 0,

which implies ∫
|ψ(x, t)|2dx = e−4γt

∫
|ψ(x, 0)|2 dx

i.e. the norm
∫
|ψ|2dx of the solution decays exponentially along solutions of the PDE, or the norm

is a conformal invariant.

Some of the above and other examples of damped DEs, along with corresponding conformal in-

variants, are given in Table 1.1. Conformal Hamiltonian ODE and its conformal invariant in the

table are discussed in detail in the next chapter. Notice that for all the examples of the table, setting

γ = 0 renders the damped DEs conservative and corresponding conformal invariants become con-

stants of motion i.e. they remain unchanged along all solutions. Much research has been done to

develop numerical methods that preserve constants of motion of a DE. On the other hand, preser-

vation of conformal invariants is a comparatively less researched area but important nonetheless

7



because of its physical implications. The main motif of this thesis is to develop numerical methods

that preserve conformal invariants, such as those in Table 1.1.

Table 1.1: Equations and some of their conformal invariants, under suitable boundary conditions

where applicable. Setting γ = 0 in an equation gives the conservative counterpart of that equation

because the corresponding conformal invariants become integral invariants.

Equation Conformal Invariant

Damped harmonic oscillator

θ̈ + 2γθ̇ + κ2θ = 0 I = 1
2
(κ2θ2 + θ̇2) + γθθ̇

Lorenz equations

ẋ = σ(y − x), ẏ = rx− y − xz, ż = xy − bz I =
∫
Ω
dV

Conformal Hamiltonian ODE

ż = J
−1∇zH(z)− γ(t)z I = ω = dz ∧ Jdz

Damped wave equation

utt − uxx + cu+ 2γut = 0 I =
∫
utux dx

Damped KdV equation

ut + uux + uxxx + 2γu = 0 I =
∫
u dx

Damped nonlinear Schrödinger equation

iψt + ψxx + V ′(|ψ|2)ψ + 2iγψ = 0 I =
∫
|ψ|2 dx

Damped Camassa Holm equation

ut − uxxt + 3uux + γ(u− uxx) = 2uxuxx + uuxxx I =
∫
(u2 + u2x) dx

1.2 Finite difference methods

Methods used to find numerical solutions of differential equations are referred to as numerical

methods. A numerical method is also referred to as a scheme, an integrator, or simply a discretiza-

tion and we use all these terms interchangeably throughout this thesis. Finite difference methods

make up a class of numerical methods which replaces terms of a continuous equation with finite

difference operators.
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Remark. Discretizing a continuous equation often comes at the cost of quantitative and qualita-

tive errors. The quantitative error refers to the error introduced by a numerical method in approx-

imating a solution of a DE, whereas the qualitative error is the error in approximating qualitative

properties such as first integrals, conformal invariants, conservation laws, limit cycles, equilibrium

points, periodic orbits, chaos, etc. of a DE. We want to develop numerical methods that preserve

some qualitative properties. We build upon methods that preserve qualitative properties such as

first integrals and conservation laws of conservative DEs . Our methods instead preserve qualita-

tive properties such as conformal invariants and conformal conservation laws of linearly damped

DEs.

By choosing appropriate finite difference operators, one is able to reduce or eliminate qualitative

and qualitative errors. The next section puts qualitative properties and their preservation in per-

spective. In this section, we discuss a measurement of quantitative errors, present examples of

finite difference methods, and establish properties of the operators used in numerical discretiza-

tions. To this end, let us recall that z(t; z0) denotes the solution trajectory starting at the initial

value z0 and describe the flow map of an ODE in the following definition.

Definition 1.6. The map ψt : R
d → R

d is the flow map of the initial value problem

ż = f(z), z(0) = z0 (1.10)

if

ψt(z0) = z(t; z0), z0 ∈ R
d,

i.e. ψt takes initial data to later points along solution trajectories.

Similar to the flow map of a continuous process, one can define the flow map of a discrete process.

Let Ψh denote the flow map of a numerical method for (1.10) and Ψh(z) be the approximation

of the solution z(h; z) through a given point z of the phase space. The numerical approximation
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Ψh(z) is often not equal to the solution z(h; z) and the order of a method is a measure of the

distance between the two, as given in the following definition.

Definition 1.7. The order of a numerical one-step method Ψh is defined to be the largest integer

p ≥ 1 such that

‖Ψh(z)− ψh(z)‖ ≤ Chp+1,

for z in the domain of interest, where C > 0 is a constant.

In other words, order is a measure of the quantitative error due to the discretization. Since numeri-

cal solutions are only approximate in general, there is always some error (quantitative error) in the

solutions. Evidently, numerical methods with less quantitative error (higher order methods) may

be more desirable.

Some examples of finite difference methods are perhaps in order. Runge-Kutta (RK) methods for

the differential equation

ż(t) = f(z, t), (1.11)

where z ∈ R
d with d ∈ N, f : Rd × R → R

d is a smooth function of z, are given by

Zi = zn + h
s∑

j=1

αijf(Zj, tn + cjh), i = 1, . . . , s,

zn+1 = zn + h
s∑

i=1

βif(Zi, tn + cih),

(1.12)

where s is the number of stages, h denotes the step size, and tn = nh for n = 0, 1, 2, . . ., zn is

the numerical solution, Zi’s are the stage variables, and αij, βi are referred to as coefficients of the

methods. RK methods are succinctly represented by the Butcher tableau

c A

bT
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where

c = {ci}
s
i=1, ci =

s∑

j=1

αij, b = {βi}
s
i=1, and A = {αij}

s
i,j=1.

Notice that the flow map zn+1 = Ψh(zn) of an RK method is not explicit in general and one has to

employ fixed point iterations to compute an implicit flow map to obtain the numerical solution zn.

For example, the explicit Euler method and the implicit midpoint method are given by

0 0

1
and

1/2 1/2

1
, (1.13)

respectively. The explicit Euler method is an order one and the implicit midpoint method is an

order two RK method. Indeed, the latter method is a type of Gauss-Legendre RK method. GL-RK

methods of stage s are known to have order of accuracy equal to 2s, highest possible order achiev-

able by a stage s RK method. For a partitioned system, it may be desirable to apply two different

RK methods on each part of the system. Methods thus obtained are referred to as partitioned RK

(PRK) methods. Since we are on the topic of finite difference methods, it is efficient to discuss the

operators used in these methods here.

1.2.1 Finite difference operators and their properties

It is often more convenient to write and work with a numerical method for a differential equation by

writing the method more succinctly using discrete analogues of the continuous operators appearing

in the equation. Here we introduce some of these discrete analogues and their properties to be

used later. We begin by defining the following finite difference operators for φk, a numerical

11



approximation of φ(ζk) = φ(k∆ζ), k ∈ Z.

Dα
ζ φ

k =
eα∆ζφk+1 − e−α∆ζφk

∆ζ
, Aαζ φ

k =
eα∆ζφk+1 + e−α∆ζφk

2
,

Tζφ
k = φk−1, δζφ

k =
φk+1 − φk−1

2∆ζ
, δ2ζφ

k =
φk+1 − 2φk + φk−1

∆ζ2
.

(1.14)

Depending on whether ζ denotes space x or time t, the operators of eq. (1.14) are spatial or tempo-

ral operators, respectively. The operatorsDα
ζ andAαζ are often referred to as discrete derivative and

discrete averaging operators, respectively. Usually, the superscript α is a function of the damping

parameter in the system being discretized and should not be confused with coefficients αij of the

RK methods (1.12). Thus these operators subsume part of the damping and distribute it evenly over

a discrete computational mesh. This absorption and uniform distribution of damping has important

ramifications which will be discussed in later chapters. When α = 0, the derivative and averaging

operators simply reduce to standard forward difference and forward averaging operators and are

denoted by Dζ and Aζ , respectively. Operator Tζ is a shift operator whereas δζ and δ2ζ are second

order accurate finite difference approximations of first and second order derivatives. In general,

we drop the superscript on φk when using these operators for the sake of simplicity.

For example, the implicit midpoint method, given by the second tableau of eq. (1.13), for eq. (1.11)

can written in two different ways:

zn+1 − zn
h

= f

(
zn+1 + zn

2
,
tn+1 + tn

2

)
,

or using the operators of eq. (1.14)

Dtzn = f(Atzn, Attn).

Among these two portrayals of the implicit midpoint method, the later one is more succinct and

arguably easier to work with in light of the following lemma stating properties of the operators

of eq. (1.14). The succinctness property of the discrete operators becomes even more worthwhile
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for PDEs. The following lemma will be used frequently in the following chapters to prove certain

properties of numerical methods.

Lemma 1.8. The operators of eq. (1.14) have the following properties, [40, 5]:

(i) The derivative and averaging operators commute:

Dα
ζA

β
ηφ = AβηD

α
ζ φ, D

α
ζD

β
ηφ = Dβ

ηD
α
ζ φ, A

α
ζA

β
ηφ = AβηA

α
ζ φ.

(ii) They satisfy the following discrete product rule:

Dα
ζ (φ ∗ ξ) = D

α/2
ζ φ ∗ A

α/2
ζ ξ + A

α/2
ζ φ ∗D

α/2
ζ ξ.

Where ∗ stands for the standard inner product, the cross product of vectors in R
3, or the

wedge product of differential one-forms.

(iii) For two periodic sequences {φk} and {ξk} of the same period,

∑

k

φkδζξ
k = −

∑

k

δζφ
kξk,

∑

k

φkδ2ζξ
k =

∑

k

δ2ζφ
kξk.

Where summation index k ranges over the period of the sequences.

Proof. The first item can be obtained by expanding and rearranging [40, 5]. For the second item,

using definitions of the discrete operators and properties of the product ∗, we get

D
α/2
ζ φ ∗ A

α/2
ζ ξ =

eα∆ζ/2φk+1 − e−α∆ζ/2φk

∆ζ
∗
eα∆ζ/2ξk+1 + e−α∆ζ/2ξk

2

=
1

2∆ζ

(
eα∆ζφk+1 ∗ ξk+1 + φk+1 ∗ ξk − φk ∗ ξk+1 − e−α∆ζφk ∗ ξk

)
. (1.15)
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And similarly

A
α/2
ζ φ ∗D

α/2
ζ ξ =

eα∆ζ/2φk+1 + e−α∆ζ/2φk

2
∗
eα∆ζ/2ξk+1 − e−α∆ζ/2ξk

∆ζ

=
1

2∆ζ

(
eα∆ζφk+1 ∗ ξk+1 − φk+1 ∗ ξk + φk ∗ ξk+1 − e−α∆ζφk ∗ ξk

)
. (1.16)

Adding eqs. (1.15) and (1.16) we get

D
α/2
ζ φ ∗ A

α/2
ζ ξ + A

α/2
ζ φ ∗D

α/2
ζ ξ =

1

∆ζ

(
eα∆ζφk+1 ∗ ξk+1 − e−α∆ζφk ∗ ξk

)

=Dα
ζ (φ ∗ ξ)

as desired. Differential forms and wedge product are discussed in Appendix A.

The last item can be proved by expanding and rearranging terms of the expansion and using peri-

odicity of the sequences. Indeed, assuming φk+M−1 = φk and ξk+M−1 = ξk for all k, we get

M−1∑

k=1

φkδζξ
k =

1

2∆ζ

(
φ1(ξ2 − ξM−1) + φ2(ξ3 − ξ1) + φ3(ξ4 − ξ2) + . . .+ φM−1(ξ1 − ξM−2)

)

=−
1

2∆ζ

(
ξ1(φ2 − φM−1) + ξ2(φ3 − φ1) + ξ3(φ4 − φ2) + . . .+ ξM−1(φ1 − φM−2)

)

=−
M−1∑

k=1

δζφ
kξk

Similarly, using the summation by parts formula, a discrete analog of integration by parts formula,

n∑

k=m

fkDζg
k = [fn+1gn+1 − fmgm]−

n∑

k=m

gk+1Dζf
k
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for two sequences {fk} and {gk} and periodicity of the sequences {φk} and {ξk} we obtain

M−1∑

k=1

φkδ2ζξ
k =

M−1∑

k=1

φkTζDζDζξ
k

=−
M−1∑

k=1

Dζφ
kTζDζξ

k+1

=
M−1∑

k=1

DζDζφ
kTζξ

k+2

=
M−1∑

k=1

TζDζDζφ
k+1ξk+1

=
M−1∑

k=1

TζDζDζφ
kξk

=
M−1∑

k=1

δ2ζφ
kξk,

as desired.

Numerical methods that use finite difference operators, such as operators of (1.14), are called finite

difference methods.

1.3 Structure preservation background

First integrals, conformal invariants, and conservation laws of a DE are usually referred to as qual-

itative properties of the DE. A Numerical method (or integrator), that satisfies a discrete version

of a qualitative property of a DE, is referred to as a geometric integrator or a structure-preserving

numerical method. Since they have an extra property of structure-preservation, geometric integra-

tors have been shown to be advantageous when compared to non-geometric integrators especially

for long-time simulations of a problem. We are interested in geometric integrators which preserve

conformal invariants of DEs.
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A qualitative property of a DE that remains constant along any solution of the DE is referred to as a

first integral or constant of motion. A lot of work has been done in the direction of developing geo-

metric integrators that preserve first integrals. Indeed, there is a class of numerical methods which

preserve first integral of conservative DEs. For example, Runge-Kutta methods given by eq. (1.12)

preserve linear, quadratic, and symplectic invariants under certain restrictions on their coefficient

functions [15, 26, 42, 45, 17]. More precisely, these methods preserve linear first integrals of the

form

I = σT z, with σ ∈ R
d,

i.e. they satisfy

σT zn+1 = σT zn.

They also preserve quadratic first integrals of the form

I = zTWz,

where W ∈ R
d×d is a constant symmetric matrix, and symplectic 2-form

I = dz ∧ Jdz

of the Hamiltonian system

ż = J
−1∇zH(z); (1.17)

i.e. they satisfy

zTn+1Wzn+1 = zTnWzn and dzn+1 ∧ Jdzn+1 = dzn ∧ Jdzn

provided their coefficients satisfy

βiαij + βjαji − βiβj = 0 (1.18)
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for all i, j. The skew-symmetric matrix J
−1 is referred to as the structure matrix of the Hamil-

tonian system with Hamiltonian H such that H : R
d → R is a smooth function. We assume

throughout this thesis that the phase space of a Hamiltonian system is even dimensional. Please

see Appendix A for a review of differential forms and the wedge product. Similarly, Nyström

methods preserve quadratic invariants under certain restrictions on their coefficient functions [19].

The integrators that preserve the symplectic 2-form dz ∧ Jdz are referred to as the symplectic

integrators. Such integrators are volume preserving [28, 19]. Indeed, let ψt be the flow of a

symplectic map for the Hamiltonian system (1.17) and let Ω be a region in the phase space which

is transported to another region ψt(Ω) by the flow ψt. Then the change of variables formula for

integrals gives

∫

Ω

dz =

∫

ψt(Ω)

det(ψ′
t)dz

=

∫

ψt(Ω)

dz.

The last equality follows because det(ψ′
t) = 1 for a symplectic map (see appendix A). Therefore,

symplectic methods preserve phase space volume of Hamiltonian systems. In other words, a set of

initial conditions occupying a solid region in phase space retain their original volume as the system

evolves even though the shape of the region may change.

The references cited in this section so far are mostly concerned with ODEs although structure-

preserving techniques therein can sometimes be extended to PDEs. There are other approaches,

however, which take a different route to the structure-preserving discretization of PDEs. Some of

these approaches include multi-symplectic discretizations, discrete variational methods, and av-

erage vector field methods. The first approach discretizes both space and time with symplectic

geometric integrators, thus producing a multi-symplectic geometric integrator [8, 9, 28]. Multi-

symplectic integrators aim to preserve local conservation law(s) which may result in the preser-
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vation of certain first integrals of the PDEs. The second approach discretizes the Lagrangian of

a PDE and then uses a discrete Lagrange principle to obtain a numerical integrator which is au-

tomatically multi-symplectic [30, 31]. While the multi-symplectic and the discrete variational

methods guarantee the preservation of the symplectic structure, average vector field methods focus

on preservation of energy of the system instead [20, 34, 14, 13].

Figure 1.1: Solutions of a PDE without and with damping (Left to right).

There are damped (or dissipative) DEs, however, which have conformal invariants. Many physical

systems have damping, dissipative, drag, resistive, or attenuating forces which result in conformal

invariants of corresponding differential equation models. Figure 1.1 shows a typical example where

a wave solution of a PDE preserves its shape without damping but decays in magnitude in the

presence of damping as the time progresses. Figure 1.2 shows an example where a box of initial

conditions in the phase space of a differential equation changes its shape as the time progresses. If

the volume of the red box is same as the blue box, then the flow of differential equation preserves

the phase space volume. The DE flow contracts the phase space volume if the volume of the red

box is less than the blue box. Exponential decay in the magnitude of a solution of a DE and

exponential phase space volume contraction along the flow are often the result of damping, which

results in such conformal invariants. The aim of this thesis is to identify conformal invariants of
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DEs and design numerical methods that preserve them.

Figure 1.2: Deformation of the phase space volume (left) and the corresponding flow (right), which

corresponds to the flow of a differential equation [41]. Blue and red boxes represent the initial and

current phase space volumes, respectively. Blue lines denote solution trajectories of the DE.

Here, we mention some of the work that has already been done toward structure-preservation of

dissipative differential equations. In [32, 33], authors have used differential geometric framework

to define conformal Hamiltonian ODEs and constructed numerical methods which preserve con-

formal invariants. Dissipative systems were formulated as Birkhoffian systems in [44, 43], where

authors used Birkhoffian framework to construct structure-preserving methods for the systems.

Authors of [38, 43, 37, 40] generalized the multi-symplectic integration approach to dissipative

PDEs which resulted in methods that preserve conformal invariants and local conservation laws.

Authors of [31, 13] have suggested structure-preserving discrete gradient and average vector field

methods, respectively, for a variety of damped PDEs. We remark at this point that all the reference

in this section for geometric integration of conservative and dissipative DEs are systematic and me-

thodical as they follow a strict prescription for obtaining structure-preserving numerical methods.
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Moreover, one may be able to discretize a given DE with only some of these numerical integration

approaches depending on the type and form of the DE.

Furthermore, we constructed conformal invariant preserving methods for damped DEs in [5].

These methods are based on the famous implicit midpoint and Störmer-Verlet methods. In [6], we

derived structure-preserving conditions for ERK methods, specialized methods for linearly damped

ODEs. We further constructed structure-preserving numerical methods for a damped driven non-

linear Schrödinger equation in [4]. This thesis expounds on the results of [5, 6, 4].

1.4 Outline

The main body of this thesis can be divided into two parts. The first part, Chapters 2 and 3, is

concerned with ODEs and their structure-preservation. We introduce a framework for numerical

methods for damped linear ODEs in Chapter 2. We derive conditions under which the methods sat-

isfy conformal invariants. These conditions are given as restrictions on coefficient functions of the

methods. We also do accuracy and stability analysis of some of these methods where we show that

some of the methods are unconditionally stable whereas others are only conditionally stable. We

conduct some experiments on ODEs in Chapter 3 where we illustrate structure-preserving proper-

ties of geometric integrators and their advantages over non-geometric integrators. The second part,

Chapters 4 and 5, is concerned with PDEs and their structure-preservation. Structure-preserving

methods are provided for damped linear PDEs in Chapter 4, where we also describe conserva-

tion laws associated with these PDEs and their preservation by the methods. These methods are

primarily obtained by discretizing space, time, or both using structure preserving methods of Chap-

ter 2. We conduct some numerical experiments on PDEs in Chapter 5 to demonstrate advantages

of structure-preserving integrators against other integrators. In Chapter 6, we give concluding

remarks and future directions.
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CHAPTER 2: STRUCTURE-PRESERVING EXPONENTIAL

RUNGE-KUTTA METHODS FOR ODES

Let us recall the initial value problem (1.1)

ż(t) = N(z(t))− γ(t)z(t), z(0) = z0. (1.1)

A variety of DEs can be put in the form of (1.1). Indeed, all the equations of Table 1.1 can be put

in the form of eq. (1.1) by discretizing any spatial derivative(s). It is worth noticing that eq. (1.1)

is obtained from eq. (1.11) when f(z, t) = N(z) − γ(t)z i.e. when the vector field f(z, t) can be

split in nonlinear and linear components. Linear, quadratic, and symplectic first integrals of this

IVP, with γ = 0, can be preserved using RK methods as discussed in Chapter 1. Here, we discuss

preservation of corresponding conformal invariants of the equation. This will be achieved using

the framework of exponential Runge-Kutta (ERK) methods.

ERK methods are a type of finite difference methods. They are specialized numerical methods

for ODEs of the form (1.1) and are based on RK methods [28, 19]. In the following we define

two common approaches of constructing ERK methods for eq. (1.1). The first approach uses

a transformation to convert the equation into another equation which is then discretized using

standard RK methods. Methods for the original equation (1.1) obtained by converting the methods

for the transformed equation, using the original transformation, are referred to as integrating factor

methods. The second approach uses approximations of the variation of constants formula for the

solution of the IVP and the resulting methods are referred to as exponential time differencing

methods.
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2.1 ERK and partitioned ERK methods

Following the approach designed by Lawson [27], define the change of variables (like a Lawson

transformation)

y(t) = ex0(t)z(t), with x0(t) :=

∫ t

0

γ(s)ds. (2.1)

Then, eq. (1.1) becomes

ẏ = ex0(t)N
(
e−x0(t)y

)
. (2.2)

Notice, the same system of equations is achieved by multiplying eq. (1.1) through by the integrating

factor. In this way, a method for solving eq. (1.1) can be constructed through standard methods

that might be applied to eq. (2.2), and the resulting methods are typically called integrating factor

methods. More specifically, applying a Runge-Kutta method (1.12) to eq. (2.2) gives

Yi = yn + h
s∑

j=1

αije
x0(tn+cjh)N

(
e−x0(tn+cjh)Yj

)
, i = 1, . . . , s,

yn+1 = yn + h

s∑

i=1

βie
x0(tn+cih)N

(
e−x0(tn+cih)Yi

)
,

(2.3)

where s is the number of stages, h denotes the step size, and tn = nh for n = 0, 1, 2, . . ., yn is the

numerical solution, and Yi’s are the stage variables. To write this in terms of the original variables,

notice that

∫ tn+h

tn+cih

γ(s)ds =

∫ tn+h

tn

γ(s)ds−

∫ tn+cih

tn

γ(s)ds = xn(h)− xn(cih),

where we define

xn(t) =

∫ t

0

γn(s)ds with γn(s) := γ(s+ tn). (2.4)

Thus, after manipulating the exponentials, the discretization can be rewritten in terms of the origi-

nal variables to give a class of ERK methods for solving eq. (1.1), which are often called integrating
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factor Runge-Kutta (IFRK) methods, given by

Zi = e−xn(cih)zn + h

s∑

j=1

αije
xn(cjh)−xn(cih)N(Zj), i = 1, . . . , s,

zn+1 = e−xn(h)zn + h
s∑

i=1

βie
−xn(h)+xn(cih)N(Zi),

(2.5)

where zn ≈ z(tn) is the numerical solution.

A common alternative approach for constructing ERK methods is known as exponential time dif-

ferencing, leading to the so called ETDRK methods. To construct methods of this type, we use the

variation of constants formula and write the solution of eq. (2.2) as

y(t) = y(0) +

∫ t

0

ex0(τ)N(e−x0(τ)y(τ))dτ

where y(0) is the initial value and x0(t) is defined in eq. (2.1). Then using the transformation (2.1),

the solution of eq. (1.1) becomes

z(t) = e−x0(t)z(0) + e−x0(t)
∫ t

0

ex0(τ)N(z(τ))dτ, (2.6)

Following [23], the integral here can be approximated using a polynomial interpolation of N ,

particularly when γ is constant. In cases where γ is truly time-dependent, we may also require an

approximation of the integral defined by xn(t). A simple and likely approach, which is rooted in

the work of Hipp et al. [22], is to use an approximation, such as xn(h) ≈ hγn(h/2).

In general, an s-stage ERK method for solving eq. (1.1), which includes both IFRK and ETDRK

formulations, can be stated

Zi = φi(h; γn)zn + h
s∑

j=1

aij(h; γn)N(Zj), i = 1, . . . , s,

zn+1 = φ0(h; γn)zn + h
s∑

i=1

bi(h; γn)N(Zi).

(2.7)
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This formulation should be compared with eqs. (2.5) and (2.6). The coefficients, φi, φ0, ai,j , and

bi, are scalar functions of the constant step-size h, which also depend on the damping coefficient γ

and the time index n, and they satisfy

φi(h; 0) = φ0(h; 0) = 1, aij(h; 0) = αij, bi(h; 0) = βi (2.8)

for all i, j = 1, 2, . . . , s. The coefficients φi and φ0 are either exponential functions or rational

approximations of such functions. Here and throughout this thesis we assume, for all i,

s∑

j=1

αij = ci, and

s∑

i=1

βi = 1. (2.9)

The RK method with coefficients αij, βi is obtained from the ERK method by setting γ = 0 and is

often referred to as the underlying RK method. An ERK method can be succinctly represented by

a Butcher-like tableau, given by

c A φ

bT φ0

. (2.10)

Entries c, φ and b of the tableau are column vectors and A is a square matrix, such that

c = {ci}
s
i=1, φ = {φi}

s
i=1, b = {bi}

s
i=1, A = {aij}

s
i,j=1.

Notice that an ERK method is explicit if and only if the matrix A is lower triangular and implicit

otherwise. The advantage of explicit methods is that they are computationally less expensive com-

pared to implicit methods which require solution of an algebraic system of equations at every time

step. The trade-off being that the former are generally conditionally stable whereas the latter are

often unconditionally stable.

Example 2.1. Examples of some importance in the following exposition are listed here.

• Since our focus is on structure-preservation, natural choices for the underlying RK method

are the Gauss-Legendre collocation methods, which are known to have order of accuracy 2s,
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which is maximum for any s-stage RK method. ERK methods obtained from (2.5) using

Gauss-Legendre collocation methods as underlying RK methods will be referred to as GL-

IFRK methods. A one stage GL-IFRK method is given by (cf. [3, 12, 5])

1
2

1
2

e−
∫ tn+1/2
tn

γ(s)ds

e
−

∫ tn+1
tn+1/2

γ(s)ds
e−

∫ tn+1
tn

γ(s)ds
. (2.11)

A two stage GL-IFRK, with constant γ, is

1
2
−

√
3
6

1
4

(
1
4
−

√
3
6

)
e

√

3

3
γh e

−
(

1

2
−

√

3

6

)
γh

1
2
+

√
3
6

(
1
4
+

√
3
6

)
e−

√

3

3
γh 1

4
e
−
(

1

2
+

√

3

6

)
γh

1
2
e
−
(

1

2
+

√

3

6

)
γh 1

2
e
−
(

1

2
−

√

3

6

)
γh

e−γh

. (2.12)

Methods of tableaux 2.11 and 2.12 are constructed using 1 and 2-stage Gauss-Legendre

collocation methods, respectively, as underlying RK methods. A sixth-order, 3-stage, IFRK

method can be constructed by using a 3-stage Gauss-Legendre collocation method as an

underlying RK method. Order of accuracy of GL-IFRK methods is 2s [12].

• A second order ETDRK method (with constant γ), based on the implicit midpoint rule, is

1
2

1
2γh

(eγh/2 − e−γh/2) e−γh/2

1
γh
(1− e−γh) e−γh

. (2.13)

To solve the partitioned system (1.2) it may be desirable to employ one ERK method for the

first equation and a different ERK method for the second. This approach yields a partitioned
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exponential Runge-Kutta (PERK) method of the form

Qi = φ̂i(h; γ
1
n)qn + h

s∑

j=1

âij(h; γ
1
n)F (Qj, Pj), i = 1, . . . , s,

Pi = φ̃i(h; γ
2
n)pn + h

s∑

j=1

ãij(h; γ
2
n)G(Qj, Pj), i = 1, . . . , s,

qn+1 = φ̂0(h; γ
1
n)qn + h

s∑

i=1

b̂i(h; γ
1
n)F (Qi, Pi),

pn+1 = φ̃0(h; γ
2
n)pn + h

s∑

i=1

b̃i(h; γ
2
n)G(Qi, Pi),

(2.14)

where coefficients, φ̂0, φ̂i, âij, b̂j, φ̃0, φ̃i, ãij, and b̃j are scalar functions and they must satisfy the

conditions required of and ERK method, namely eqs. (2.8) and (2.9). Here, Qi, Pi are stage vari-

ables, [qn, pn] ≈ [q(tn), p(tn)] is the numerical solution for n = 0, 1, 2, . . . and tn = nh, and γkn

for k = 1, 2 are defined according to eq. (2.4). In this case, the underlying method is a partitioned

Runge-Kutta (PRK) method, obtained by setting γk = 0 for k = 1, 2. (For our purposes, the

Lobatto IIIA-IIIB methods are natural choices for the underlying PRK methods.) A PERK method

can be succinctly represented by a pair of Butcher-like tableau, given by

ĉ Â φ̂

̂ b̂T φ̂0

c̃ Ã φ̃

˜ b̃T φ̃0

(2.15)

one for each ERK method used. Notice that setting

φ̂0 = φ̃0 = φ0, φ̂i = φ̃i = φi, âij = ãij = aij, b̂j = b̃j = bj,

Zi =



Qi

Pi


 , zn =



qn

pn


 , N =



F

G


 for all i, j

(2.16)

in a PERK method gives an ERK method.
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As an example, consider an important special case of the ODE (1.2), given by

q̇ = ∇pT (p), ṗ = −∇qV (q)− γp, (2.17)

with 0 < γ ∈ R, which is known as a conformal Hamiltonian system [32]. If one or both equations

of this system are discretized with an IFRK or ETDRK method, we refer to such a PERK method

as IFPRK or ETDPRK method, respectively.

Example 2.2. Some examples of PERK methods for solving the system are:

• A first-order IFPRK method based on the symplectic Euler method

qn+1 = qn + h∇pT (pn+1), pn+1 = e−γhpn − h∇qV (qn). (2.18)

• A first-order ETDPRK method based on the symplectic Euler method

qn+1 = qn + h∇pT (pn+1), pn+1 = e−γhpn +
1

γ
(e−γh − 1)∇qV (qn). (2.19)

• A second-order IFPRK method based on the 2-stage Lobatto IIIA-IIIB (Störmer-Verlet)

method

0 0 0 1

1 1
2

1
2

1

̂ 1
2

1
2

1

1
2

1
2

0 e−γh/2

1
2

1
2

0 e−γh/2

˜ 1
2
e−γh/2 1

2
e−γh/2 e−γh

. (2.20)

• A second-order IFPRK method based on the 2-stage Lobatto IIIA-IIIB method

0 0 0 1

4
4−γh

2
4−γh

2
4−γh

4+γh
4−γhe

−γh/2

̂ 2
4−γh

2
4−γh

4+γh
4−γhe

−γh/2

2
4+γh

2
4+γh

0 4
4+γh

e−γh/4

2
4+γh

2
4+γh

0 4
4+γh

e−γh/4

˜ 4−γh
4+γh

e−γh/4

2
e−γh/4

2
4−γh
4+γh

e−γh/2

. (2.21)
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• A second-order ETDPRK method based on the 2-stage Lobatto IIIA-IIIB method

0 0 0 1

1 1
2

1
2

1

̂ 1
2

1
2

1

1
2

1
γh
(1− e−γh/2) 0 e−γh/2

1
2

1
γh
(1− e−γh/2) 0 e−γh/2

˜ 1
2
e−γh/2 1

2
e−γh/2 e−γh

. (2.22)

Order of accuracy of some of these methods will be proved in Section 2.4. Methods of eqs. (2.20)

and (2.21) have been analyzed in some detail in [5, 37], where one can find their applications to

ODEs and PDEs, in addition to their linear stability analysis and structure preservation properties

for conformal Hamiltonian systems.

Though this discussion has been somewhat limited to integrating factor methods and exponential

time differencing methods, other exponential integrators may be included in the general ERK and

PERK formulations given in eqs. (2.7) and (2.14). It is important to keep this in mind, as the

proofs concerning structure-preservation for ERK and PERK methods in the following sections

give restrictions on the coefficient functions, which include, but are not necessarily limited to,

integrating factor and exponential time differencing methods.

2.2 Preservation of conformal invariants

Conformal invariants were defined in Definition 1.1 and their examples were provided in Exam-

ples 1.2 to 1.5 and Table 1.1. It is natural to expect that numerical methods which preserve con-

formal invariants have certain advantages. This section is devoted to deriving sufficient conditions

for preservation of conformal invariants by ERK and PERK methods. Some of the methods of the

previous section are shown to satisfy these conditions. It is worth mentioning that setting γ = 0

in eq. (1.1) and Definition 1.1 makes conformal invariants constants of motion. So structure-

preservation of conservative systems becomes a special case of this exposition.
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Similar to the preservation of first integrals, we define preservation of conformal invariants in the

following definition. This definition should be compared with Definition 1.1 of the conformal

invariants.

Definition 2.3. A numerical method zn+1 = Ψh(zn) preserves a conformal invariant I of eq. (1.1)

if it satisfies

In+1 = e−
∫ tn+1
tn

2γ(s)dsIn

where In = I(tn) (cf. [5]). Similarly, a numerical method zn+1 = Ψh(zn) preserves a conformal

invariant I of eq. (1.2) if it satisfies

In+1 = e−
∫ tn+1
tn

(γ1(s)+γ2(s))dsIn

where In = I(tn).

Invariants of the form σz, for constant vector σ ∈ R
d, are referred to as linear invariants, whereas

invariants of the form zTWz, for constant matrixW ∈ R
d×d, are referred to as quadratic invariants

of eq. (1.1). For example, invariant Hγ of Example 1.2 is a quadratic invariant because

Hγ =
1
2
(κ2θ2 + ω2) + γθω

=

[
θ ω

]



1
2
κ2 1

2
γ

1
2
γ 1

2






θ

ω


 .

Total linear momentum
∑N

i=1 pi is a linear invariant of eq. (1.5) because

N∑

i=1

pki = 1
Tpk, for k = 1, 2, 3,

where 1 ∈ R
N is a column vector of ones and pk = [pk1 p

k
2 . . . p

k
N ]

T .

In the following, we derive sufficient conditions for quadratic and linear conformal invariant preser-

vation by PERK methods in line with similar conditions for PRK methods.
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Theorem 2.4. Suppose that the system (1.2) has a conformal invariant I = qTWp, with W ∈

R
d/2×d/2. Then a PERK method applied to such a system satisfies In+1 = φ̂0φ̃0In, provided its

coefficients satisfy

b̂i
φ̃0

φ̃i
= b̃i

φ̂0

φ̂i
, b̂iãij

φ̃0

φ̃i
+ b̃j âji

φ̂0

φ̂j
− b̂ib̃j = 0 (2.23)

for all i, j. Moreover, the method preserves I provided its coefficients also satisfy

φ̂0φ̃0 = e−
∫ tn+1
tn

(γ1(s)+γ2(s))ds.

Proof. Using the Kronecker product ⊗, one can write the system (2.14) as

Q = φ̂⊗ qn + h(Â⊗ I)F,

P = φ̃⊗ pn + h(Ã⊗ I)G,

qn+1 = φ̂0qn + h(̂bT ⊗ I)F,

pn+1 = φ̃0pn + h(̃bT ⊗ I)G,

(2.24)

where I ∈ R
d/2×d/2 is the identity matrix, and we define the vectors Q = {Qi}

s
i=1, P = {Pi}

s
i=1,

F = {Fi}
s
i=1, and G = {Gi}

s
i=1, with Fi = F (Qi, Pi) and Gi = G(Qi, Pi). This implies that

qTn+1Wpn+1 = φ̂0φ̃0q
T
nWpn + hφ̂0q

T
nW (̃bT ⊗ I)G+ hφ̃0((̂b

T ⊗ I)F )TWpn

+ h2((̂bT ⊗ I)F )TW (̃bT ⊗ I)G,

which is equivalent to

qTn+1Wpn+1 = φ̂0φ̃0q
T
nWpn + hφ̂0q

T
n (̃b

T ⊗W )G+ hφ̃0F
T (̂b⊗W )pn

+ h2F T (̂b̃bT ⊗W )G. (2.25)
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Let B̃, B̂ ∈ R
s×s be diagonal matrices such that

B̃φ̂ = b̃ and B̂φ̃ = b̂, (2.26)

respectively. Then using eq. (2.24) once again

QT (B̃ ⊗W )G = (φ̂T ⊗ qTn )(B̃ ⊗W )G+ hF T (ÂT ⊗ I)(B̃ ⊗W )G

= qTn (̃b
T ⊗W )G+ hF T (ÂT B̃ ⊗W )G, (2.27)

and

F T (B̂ ⊗W )P = F T (̂bT ⊗W )pn + hF T (B̂Ã⊗W )G. (2.28)

Using (2.27)-(2.28) in eq. (2.25), one gets

qTn+1Wpn+1 = φ̂0φ̃0q
T
nWpn + hφ̂0Q

T (B̃ ⊗W )G+ hφ̃0F
T (B̂ ⊗W )P

+ h2F T ((̂b̃bT − φ̂0Â
T B̃ − φ̃0B̂Ã)⊗W )G. (2.29)

On the other hand, since I is a conformal invariant, it follows that

0 = qTWG(q, p) + F (q, p)TWp,

for all q, p. Thus, provided b̂i
φ̃0
φ̃i

= b̃i
φ̂0
φ̂i

for all i,

0 = QT
i WGi + F T

i WPi = QT
i b̃i

φ̂0

φ̂i
WGi + F T

i b̂i
φ̃0

φ̃i
WPi

which implies

0 =
s∑

i=1

QT
i b̃i

φ̂0

φ̂i
WGi + F T

i b̂i
φ̃0

φ̃i
WPi = φ̂0Q

T (B̃ ⊗W )G+ φ̃0F
T (B̂ ⊗W )P.
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Using this and eq. (2.23) in eq. (2.29), we get

qTn+1Wpn+1 = φ̂0φ̃0q
T
nWpn.

Provided that φ̂0φ̃0 = e−
∫ tn+1
tn

(γ1(s)+γ2(s))ds, this implies

qTn+1Wpn+1 = e−
∫ tn+1
tn

(γ1(s)+γ2(s))dsqTnWpn,

i.e. the method preserves I.

Among the PERK methods of Example 2.2, only methods (2.18) and (2.20) satisfy the hypotheses

of Theorem 2.4, and hence for these methods,

qTn+1Wpn+1 = e−γh(qTnWpn)

i.e. they preserve the conformal quadratic invariant qTWp.

Theorem 2.5. Let the function I = σT1 q + σT2 p, with σ1, σ2 ∈ R
d/2, be a conformal invariant of

the system (1.2), and assume one of the following three conditions is satisfied: (i) γ1(t) = γ2(t) =

γ(t), (ii) σ1 = 0, or (iii) σ2 = 0. Then, a PERK method for such a system satisfies

σT1 qn+1 + σT2 pn+1 = φ̂0σ
T
1 qn + φ̃0σ

T
2 pn,

provided its coefficients satisfy b̃i = b̂i. Moreover, the method preserves I provided its coefficients

also satisfy

φ̂0 = e−
∫ tn+1
tn

γ1(s)ds, φ̃0 = e−
∫ tn+1
tn

γ2(s)ds.

Proof. Formulation (2.24) of the PERK method implies

σT1 qn+1 + σT2 pn+1 = φ̂0σ
T
1 qn + φ̃0σ

T
2 pn + σT1 (̂b

T ⊗ I)F + σT2 (̃b
T ⊗ I)G.
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Thus, to obtain the desired result, we must show that

σT1 (̂b
T ⊗ I)F + σT2 (̃b

T ⊗ I)G = 0.

But, this follows from the fact that

0 = σT1 Fi + σT2 Gi = σT1 b̂iFi + σT2 b̃iGi =
s∑

i=1

σT1 b̂iFi + σT2 b̃iGi,

because I is a conformal invariant of the system (1.2) with γ1(t) = γ2(t) = γ(t), meaning

σT1 F (q, p) + σT2 G(q, p) = 0 for all q, p. This implies that

σT1 qn+1 + σT2 pn+1 = e−
∫ tn+1
tn

γ(s)ds(σT1 qn + σT2 pn),

provided φ̂0 = φ̃0 = e−
∫ tn+1
tn

γ(s)ds. The result for cases (ii) and (iii) follows automatically.

Among the PERK methods of Example 2.2, only method (2.18) satisfies the hypotheses of this

theorem and hence preserves the conformal linear invariants σT1 q + σT2 p.

The following result about the structure preserving properties of the ERK method can be derived

in a manner analogous to those of the PERK method.

Theorem 2.6. Suppose the system (1.1) has a conformal invariant I = zTWz where W ∈ R
d×d is

a symmetric matrix. Then an ERK method applied to such a system satisfies In+1 = φ2
0In provided

its coefficients satisfy

biaij
φ0

φi
+ bjaji

φ0

φj
− bibj = 0 (2.30)

for all i, j. Moreover, the method preserves I provided its coefficients also satisfy

φ0 = e−
∫ tn+1
tn

γ(s)ds. (2.31)

Indeed, one can informally use eqs. (2.7) and (2.16) in the proof of Theorem 2.4 and get this result.
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It is worth noticing that the condition (2.30) reduces to eq. (1.18) when γ = 0. All the methods of

Example 2.1 satisfy the hypotheses of this corollary, and hence they have the property

zTn+1Wzn+1 = e−2γhzTnWzn

i.e. these methods preserve conformal invariants of the form zTWz. The following theorem fol-

lows directly from the definition of ERK methods.

Theorem 2.7. Suppose that the system (1.1) has a conformal invariant I = σT z, with σ ∈ R
d.

Then an ERK method applied to this system satisfies In+1 = φ0In. Moreover, the method preserves

I provided its coefficients satisfy eq. (2.31).

Since all the methods of Example 2.1 satisfy the hypotheses of this theorem, they preserve confor-

mal linear invariants.

2.3 Preservation of conformal symplecticness

In this section, we define conformal symplecticness and derive conformal symplecticness condi-

tions for the ERK and the PERK methods. A special case of eq. (1.1) that we are particularly

interested in occurs when d is even and the vector field N is of the form J
−1∇zH(z). Substituting

N(z) = J
−1∇zH(z) in eq. (1.1), we get the conformal Hamiltonian system [32]

ż = J
−1∇zH(z)− γ(t)z (2.32)

where

z =



q

p


 , J

−1 =




0 I

−I 0




is a constant skew-symmetric matrix and H(z) : Rd → R is a smooth function. Here I ∈ R
d/2×d/2

is the identity matrix. When γ(t) = 0, this system reduces to a Hamiltonian system with Hamil-
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tonian H , which is a first integral, whereas function H in conformal Hamiltonian system (2.32) is

not a first integral or conformal invariant of the system. Nonetheless, we refer to the function H in

eq. (2.32) as Hamiltonian of the system.

From the variational equation associated with eq. (2.32)

dż = J
−1Hzz(z)dz − γ(t)dz, (2.33)

where Hzz(z) is the Hessian matrix, one can easily obtain ω̇ = −2γ(t)ω, where ω = dz ∧ Jdz,

assuming Hzz(z) is symmetric. Indeed, taking the wedge product of eq. (2.33) with Jdz and using

the properties of the wedge product from Appendix A we get

dż ∧ Jdz =J
−1Hzz(z)dz ∧ Jdz − γ(t)dz ∧ Jdz,

1

2

d

dt
(dz ∧ Jdz) =J

−1
J
THzz(z)dz ∧ dz − γ(t)dz ∧ Jdz,

1

2

d

dt
(dz ∧ Jdz) =− J

−1
JHzz(z)dz ∧ dz − γ(t)dz ∧ Jdz,

d

dt
(dz ∧ Jdz) =− 2γ(t)dz ∧ Jdz,

because Hzz(z)dz ∧ dz = 0 as Hzz is a symmetric matrix.

Substituting F = ∇pH(q, p), G = −∇qH(q, p), along with γ1 = 0 and γ2 = γ in eq. (1.2) we get



q̇

ṗ


 =




∇pH(q, p)

−∇qH(q, p)


−




0

γ(t)p


 ,



q(0)

p(0)


 =



q0

p0


 . (2.34)

From this equation, one can obtain

ω̇ = −γ(t)ω

for ω = dq ∧ dp. Thus, we arrive at the following definition.

Definition 2.8. Differential equations (1.1) and (1.2) are called conformal symplectic if the differ-
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ential two-forms

ω = dz ∧ Jdz and ω = dq ∧ dp,

respectively, are conformal invariants of the corresponding equations.

Conformal symplecticness has been defined for time-independent perturbations in previous works

[38, 40]. Definition 2.8 generalizes conformal symplecticness to eq. (1.1) which has time-dependent

non-conservative perturbation. We want to develop numerical methods which preserve conformal

symplecticness of conformal Hamiltonian systems.

Definition 2.9. A numerical method zn+1 = Ψh(zn) for solving differential equations eqs. (1.1)

and (1.2) is said to preserve conformal symplecticity, and we call such a method conformal sym-

plectic, if it preserves the corresponding conformal invariants of Definition 2.8.

Please refer to Definitions 1.1 and 2.3 for the definitions of conformal invariants of a differential

equation and their preservation by a numerical method. In particular, differential equation (1.1),

with constant γ, is conformal symplectic if the symplectic 2-form ω decays exponentially with

time along a solution of the differential equation. A conformal symplectic method for a conformal

symplectic ODE becomes a symplectic method for a symplectic ODE when γ = 0.

The following theorems concerning conformal symplecticness of PERK and ERK methods adopt

the proof strategy presented in [28] for Hamiltonian systems.

Theorem 2.10. A PERK method for eq. (2.34) satisfies

dqn+1 ∧ dpn+1 = φ̂0φ̃0 (dqn ∧ dpn)

provided its coefficients satisfy eq. (2.23). Moreover, the method is conformal symplectic if its

coefficients also satisfy

φ̂0φ̃0 = e−
∫ tn+1
tn

γ(s)ds.
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Proof. In Kronecker product notation, the variational equation associated with the PERK method

(2.24) applied to system (2.34) is

dQ = φ̂⊗ dqn + h(Â⊗ I)dF,

dP = φ̃⊗ dpn + h(Ã⊗ I)dG,

dqn+1 = φ̂0dqn + h(̂bT ⊗ I)dF,

dpn+1 = φ̃0dpn + h(̃bT ⊗ I)dG.

(2.35)

where Fi = ∇pH(Qi, Pi), Gi = −∇qH(Qi, Pi), dF = FQdQ+FPdP and dG = GQdQ+GPdP.

This implies that

∂Qi
Fi + ∂Pi

Gi = ∇pqH(Qi, Pi)−∇qpH(Qi, Pi) = 0, for all i,

and hence F T
Q +GP = 0. Also FP = F T

P and GQ = GT
Q. Now, system (2.35) implies

dqn+1 ∧ dpn+1 − φ̂0φ̃0dqn ∧ dpn

= hφ̂0dqn ∧ (̃bT ⊗ I)dG− hφ̃0dpn ∧ (̂bT ⊗ I)dF + h2dF ∧ (̂b̃bT ⊗ I)dG. (2.36)

Using the first and the second equations of the system (2.35) and letting B̃ and B̂ be diagonal

matrices such that they satisfy eq. (2.26), we get

dQ ∧ (B̃ ⊗ I)dG = φ̂⊗ dqn ∧ (B̃ ⊗ I)dG+ h(Â⊗ I)dF ∧ (B̃ ⊗ I)dG

= dqn ∧ (̃bT ⊗ I)dG+ hdF ∧ (ÂT B̃ ⊗ I)dG (2.37)

and

dP ∧ (B̂ ⊗ I)dF = dpn ∧ (̂bT ⊗ I)dF + hdG ∧ (ÃT B̂ ⊗ I)dF. (2.38)
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Using eq. (2.37)-eq. (2.38) in eq. (2.36) we get

dqn+1 ∧ dpn+1 − φ̂0φ̃0dqn ∧ dpn = hdQ ∧ (B̃φ̂0 ⊗ I)dG− hdP ∧ (B̂φ̃0 ⊗ I)dF

− h2dF ∧ ((φ̂0Â
T B̃ + φ̃0B̂

T Ã− b̂̃bT )⊗ I)dG. (2.39)

Since GP + F T
Q = 0 and eq. (2.23) implies B̃φ̂0 = B̂φ̃0, we have

dQ ∧ (B̃φ̂0 ⊗ I)dG− dP ∧ (B̂φ̃0 ⊗ I)dF = dQ ∧ (B̃φ̂0 ⊗ I)(GP + F T
Q )dP = 0.

Using this and eq. (2.23) in eq. (2.39) yields

dqn+1 ∧ dpn+1 − φ̂0φ̃0dqn ∧ dpn = 0.

This implies that

dqn+1 ∧ dpn+1 = e−
∫ tn+1
tn

γ(s)dsdqn ∧ dpn

provided φ̂0φ̃0 = e−
∫ tn+1
tn

γ(s)ds.

One can get the following result for ERK methods by using eqs. (2.7) and (2.16) in the proof of

Theorem 2.10.

Theorem 2.11. An ERK method for eq. (2.32) satisfies

dzn+1 ∧ Jdzn+1 = φ2
0 (dzn ∧ Jdzn)

provided its coefficients satisfy eq. (2.30). Moreover, the method is conformal symplectic if its

coefficients also satisfy eq. (2.31).

Let us illustrate these theorems with some examples. PERK methods (2.18) and (2.20) satisfies

the hypotheses of Theorem 2.10 and ERK methods (2.11)–(2.12) satisfy the hypotheses of Theo-

rem 2.11; hence, these methods are conformal symplectic. Although methods (2.19) and (2.21) do
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not satisfy the condition (2.23) it is a quick calculation to show that they are also conformal sym-

plectic. Moreover method (2.21) has a conformal quadratic invariance [5]. This shows that a PERK

method does not necessarily need to satisfy the condition (2.23) in order to preserve these geomet-

ric properties. Method (2.22) neither satisfies the condition (2.23) nor is conformal symplectic, so

it is not enough to use any ERK method which has a conservative underlying RK method. It is

interesting to note that the conditions (2.23) and (2.30) are part of the sufficient conditions for both

conformal quadratic invariance and conformal symplecticness of the respective methods (cf. [7]).

Also note that combining the hypotheses of these theorems with the conditions (2.8) implies that

the underlying RK and PRK methods are always symplectic.

It is possible to define conformal symplecticness entirely in terms of flow maps rather than the

wedge product. To this end, let ψt(z0) be the flow map of the system (2.32) at time t with initial

condition z0, then an alternative (equivalent) formulation of the conformal symplecticness given in

Definition 2.8 is

(ψ′
t(z0))

T
J
−1ψ′

t(z0) = e−2
∫ t
0
γ(s)ds

J
−1, (2.40)

where ψ′
t(z0) denotes the Jacobian and is a solution of the variational eq. (2.33). Indeed, let ψt(z0) :

U → R
2d be the flow map of the system (2.32) at time twith initial condition z0. Since the solution

z(t) of the system satisfies z(t, z0) = ψt(z0), then

dz = ψ′
t(z0)dz0
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and hence Definition 2.8 is equivalent to

ψ′
t(z0)dz0 ∧ J

−1ψ′
t(z0)dz0 = e−2

∫ t
0
γ(s)dsdz0 ∧ J

−1dz0,

⇐⇒ (ψ′
t(z0))

T
J
−1ψ′

t(z0)dz0 ∧ dz0 = e−2
∫ t
0
γ(s)ds

J
−1dz0 ∧ dz0,

⇐⇒
(
(ψ′

t(z0))
T
J
−1ψ′

t(z0)− e−2
∫ t
0
γ(s)ds

J
−1

)
dz0 ∧ dz0 = 0,

⇐⇒ (ψ′
t(z0))

T
J
−1ψ′

t(z0) = e−2
∫ t
0
γ(s)ds

J
−1. (2.41)

Where we have used the the skew-symmetry of the matrix (ψ′
t(z0))

T
J
−1ψ′

t(z0) − e−2
∫ t
0
γ(s)ds

J
−1

and Lemma A.1 to get eq. (2.41). One can also obtain formula (2.40) using variational eq. (2.33)

of eq. (2.32) by taking the time derivative of (ψ′
t(z0))

T
J
−1ψ′

t(z0).

Thus, a numerical method with flow map Ψh is conformal symplectic if

(Ψ′
h(zn))

T
J
−1(Ψ′

h(zn)) = e−2
∫ tn+1
tn

γ(s)ds
J
−1. (2.42)

2.4 Accuracy and stability of ERK and PERK methods

In the last two sections, we derived conditions under which ERK and PERK methods preserve

conformal invariants and conformal symplecticness of a differential equation. We showed that

some methods of Examples 2.1 and 2.2 are structure-preserving. In this section, we take a closer

look at some methods of these examples, their order of accuracy, and their linear stability.

Conditions under which numerical methods have certain order of accuracy are called order condi-

tions. Order conditions for RK methods are well known but the theory is not developed as much

for ERK methods partly because of increased complexity due to additional coefficient functions.

Some of the work that has been in the direction of order of accuracy analysis of ERK methods

includes [2, 10]. The aim of this section is not to derive general order conditions for ERK meth-
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ods but to derive these conditions for specific cases of ERK and PERK methods. In the following

theorem, we derive order of accuracy of some of the methods of Examples 2.1 and 2.2.

Theorem 2.12. Method of eqs. (2.11), (2.20) and (2.21) are second order for constant γ.

Proof. In the notation of discrete operators of Lemma 1.8, eq. (2.11) becomes

JD
γ/2
t z = N(A

γ/2
t z). (2.43)

A Taylor series expansion reveals

eγhz(t+ h) = z(t) + h(∂t + γ)z(t) +
h2

2
(∂t + γ)2z(t) +

h3

6
(∂t + γ)3z(t) + . . . ,

which implies, assuming zn = z(tn) for all n,

JD
γ/2
t z = J

(
1

h
(eγh/2zn+1 − e−γh/2zn)

)

= J

(
1

h
(eγh/2z(tn + h)− e−γh/2z(tn))

)

= J

(
(∂t +

γ

2
)z(tn) +

h

2
(∂t +

γ

2
)2z(tn) +

γ

2
z(tn)−

h

2

γ

4

2

z(tn)

)
+O(h2)

= J

(
(∂t + γ)z(tn) +

h

2
(∂2t + γ∂t)z(tn)

)
+O(h2) (2.44)

and

N
(
A
γ/2
t zn

)
= N

(
1

2
(eγh/2zn+1 + e−γh/2zn)

)

= N

(
1

2
(eγh/2z(tn + h) + e−γh/2z(tn))

)

= N(z(tn)) +
h

2
∂zN(z(tn))ż(tn) +O(h2). (2.45)
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Substituting eqs. (2.44) and (2.45) into eq. (2.43), we get

Jż(tn) = N(z(tn))− γJz(tn)−
h

2
(J (z̈(tn) + γż(tn))− ∂zN(z(tn))ż(tn)) +O(h2)

= N(z(tn))− γJz(tn) +O(h2).

Comparing this equation to ODE Jż(t) = N(z(t)) − γJz(t), we see that the method is second

order.

Notice that the method

(1 + γ1h/2)pn+1/2 = e−γ3h/2pn −
h

2
∇qV (qn),

(1− γ1h/2)qn+1 = e−γ1h/2
[
(1 + γ1h/2)e

−γ1h/2qn + h∇pT (pn+1/2)
]

eγ2h/2pn+1 = e−γ1h/2
[
(1− γ1h/2)pn+1/2 −

h

2
∇qV (qn+1)

]
(2.46)

gives method (2.20) on setting γ1 = 0, γ2 = 2γ, γ3 = 2γ, and method (2.21) on setting γ1 =

γ, γ2 = 0, γ3 = γ. Assuming qn = q(tn), pn = p(tn) and expanding first equation of method

(2.46) in its Taylor series about h = 0, we obtain

ṗ(tn) = −∇qV (q(tn))− (γ1 + γ3)p(tn) +O(h). (2.47)

Now rewriting the second equation of method (2.46), we obtain

1

h

[
(1− γ1h/2)e

γ1h/2qn+1 − (1 + γ1h/2)e
−γ1h/2qn

]
= ∇pT

(
pn+1/2

)
.

Replacing pn+1/2 by its definition in this equation and doing Taylor expansions about h = 0 we get

q̇(tn) = ∇pT (p(tn))−
h

2
(Tpp(p(tn)) · ((γ1 + γ3)p(tn) +∇qV (q(tn))) + q̈(tn)) +O(h2).

In this equation, using eq. (2.47) and q̈ = Tpp(p) · ṗ+O(h), we get

q̇(tn) = ∇pT (p(tn)) +O(h2). (2.48)
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Now rewriting third equation of method (2.46)

2

h

[
e(γ1+γ2)h/2pn+1 − (1− γ1h/2)pn+1/2

]
= −∇qV (qn+1),

replacing pn+1/2 and qn+1 by their definitions in this equation and expanding about h = 0 we get

ṗ(tn) = −∇qV (q(tn))−
1
2
(3γ1 + γ2 + γ3)p(tn)

−
h

2

(
p̈(tn) + (γ1 + γ2) ṗ(tn) + Vqq(q(tn)) · ∇pT (p(tn))

−
1

4
(γ1 − γ2 + γ3) (3γ1 + γ2 + γ3) p(tn)− γ1∇qV (q(tn))

)
+O(h2).

In the this equation, substituting

q̇ = ∇pT (p) +O(h2),

ṗ = −∇qV (q)− 1
2
(3γ1 + γ2 + γ3)p+O(h),

and

p̈ = −Vqq(q).q̇ −
1
2
(3γ1 + γ2 + γ3)ṗ+O(h)

and simplifying we get

ṗ(tn) = −∇qV (q(tn))−
1
2
(3γ1 + γ2 + γ3)p(tn) +

h

4
(γ1 + γ2 − γ3)∇qV (q(tn)) +O(h2)

= −∇qV (q(tn))− 2γp(tn) +O(h2) (2.49)

because γ1 + γ2 − γ3 = 0 for both methods (2.20) and (2.21). Comparing eqs. (2.48) and (2.49) to

the ODE being discretized

q̇(t) =∇pT (p(t)),

ṗ(t) =−∇qV (q(t))− 2γp(t),

we see that both methods (2.20) and (2.21) are second order accurate
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Remark. Other methods that are closely related to method (2.43) have been considered before

[25, 40, 44]. The difference between these methods and the method (2.43) is how they spread out

the damping over a stencil. The discrete operators for some of these methods read

Dtzn =
1

h
(zn+1 − e−γhzn), Atzn =

1

2
(zn+1 + e−γhzn).

The methods that use these discrete operators are only first order accurate. Method (2.43), however,

spreads out the damping more evenly over the stencil. The uniform distribution of the damping

results in improved accuracy of the method (2.43) over the methods that use non-uniform distribu-

tion.

Other methods can be similarly shown to have a certain order of accuracy. However, complexity

in doing order analysis using Taylor series multiplies quickly as the order increases. It was shown

in [12] that GL-IFRK methods, e.g. eqs. (2.11) and (2.12) with constant γ, have order of accuracy

2s.

Next, we derive the stability function of the ERK method (2.7) and then derive stability condition

for certain special cases. Substituting N(z) = λz, λ ∈ C, in method (2.7), we get the method in

the vector form

Z = φzn + hλAZ,

zn+1 = φ0zn + hλbTZ

where

Z =




Z1

Z2

...

Zs




and φ =




φ1

φ2

...

φs




.
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Assuming the matrix (I − hλA) is invertible, this gives

Z = (I − hλA)−1φzn,

which in turn implies

zn+1 = R(hλ, hγ)zn. (2.50)

where the stability function R(w, x) is given by

R(w, x) = φ0(x) + wb(x)T (I − wA(x))−1φ(x). (2.51)

If |R(w, x)| < 1 then the numerical solution zn remains bounded and the method is called A-stable.

The stability function R is reminiscent of the stability function

R0(w) = R(w, 0) = 1 + wb(0)T (I − wA(0))−1
1 (2.52)

of the underlying RK method where 1 ∈ R
s is a column vector of ones. One, therefore, wonders if

there is a simple relationship between the two, at least for some special cases of ERK. This brings

us to the next theorem.

The following theorem establishes a simple relationship between stability functions of IFRK meth-

ods and their underlying RK methods, thus giving complete characterization of the stability func-

tion of the former methods.

Theorem 2.13. The stability function R of IFRK methods, eq. (2.5), satisfies

R(w, x) = e−xR0(w)

where R0(w) is the stability function of the underlying RK method.
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Proof. Since R0 is the stability function of the underlying method, it follows from (2.3)

yn+1 = R0(λh)yn.

Using the transformation (2.1), it follows that

zn+1 = R0(λh)e
−x0(h)zn = e−γhR0(λh)zn.

Therefore the result follows.

A-stability of a numerical method ensures that the numerical solution of a linear differential equa-

tion does not grow to infinity. A-stablity of GL-IFRK methods can be quickly established from

Theorem 2.13. Indeed, since the underlying Gauss-Legendre method is A-stable i.e. its stability

function satisfies

|R0(w)| < 1 for all w such that ℜ(w) < 0,

the GL-IFRK methods are also A-stable because

|R(w, x)| = e−x|R0(w)| < 1 for all x > 0 and all w such that ℜ(w) < 0

by Theorem 2.13. Since |R(w, x)| < 1, the numerical solution zn remains bounded.

Let us now turn to the stability of PERK methods. Consider the exact solution of the damped

harmonic oscillator (1.4)



θ(t)

ω(t)


 = e−γt



cos(βt) + γ

β
sin(βt) 1

β
sin(βt)

−κ2
β

sin(βt) cos(βt)− γ
β
sin(βt)






θ0

ω0


 , (2.53)

where β =
√
κ2 − γ2. The transition matrix, which is the square matrix on the right hand side of

eq. (2.53), has eigenvalues

λ± = e−γt
(
µ±

√
µ2 − 1

)
, (2.54)
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where µ = cos(βt). Notice, the dissipative part of the solution is completely described by the

exponential e−γt, and the conservative part is completely described by the complex conjugate pairs

µ±
√
µ2 − 1, which lie on the unit circle because |µ| ≤ 1.

It is desirable that our numerical methods reproduce this behavior. Eigenvalues of the transition

matrix of a numerical method generally depend on step-size h also. We consider the method stable

if |µ(h)| ≤ 1. Now, apply the explicit PERK method (2.20) to eq. (1.4) to obtain



θn+1

ωn+1


 =




1− κ2h2

2
he−γh

hκ2e−γh
(
κ2h2

4
− 1
)

e−2γh
(
1− κ2h2

2

)






θn

ωn


 .

Hence, the eigenvalues of the transition matrix are (2.54) with

µ =

(
1−

κ2h2

2

)
cosh(γh).

Thus, requiring |µ| ≤ 1 to ensure stability implies the stability condition

1− sech(γh) ≤
κ2h2

2
≤ 1 + sech(γh),

which gives a restriction on the step size h for explicit method (2.20) to be stable. One can similarly

show that the explicit PERK method (2.21) is also conditionally stable [5]. In contrast, implicit

methods of eqs. (2.11) and (2.12) are unconditionally stable. A step size restriction is often the

price one pays for more straightforward implementation and less computational complexity of

explicit methods compared to implicit methods.
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CHAPTER 3: ODE APPLICATIONS AND EXPERIMENTS

In this chapter, ERK and PERK methods of Examples 2.1 and 2.2 are applied to various ODEs with

constant damping and time-dependent non-conservative perturbation terms to demonstrate their

properties of structure preservation [5, 37]. Studies have also performed numerical simulations

using various first order ERK methods on very similar problems [25, 38, 40, 44]. Our purpose

in this chapter is to demonstrate the effectiveness of ERK and PERK methods from a few points

of view that are different from previous studies. First, we demonstrate preservation of conformal

symplecticness. Second, we consider problems with time-dependent damping. Third, we conduct

experiments using methods of higher orders (four and six). Fourth, we illustrate the advantages

of such methods for a damped Poisson (non-canonical) system. Fifth, we implement structure-

preserving exponential time differencing methods and compare the results to more commonly used

integrating factor methods.

3.1 Linear oscillators

In this section, we discretize linear oscillators with constant damping and time-dependent non-

conservative perturbation terms with ERK and PERK methods of Examples 2.1 and 2.2. To this

end, consider the following generalization of eq. (1.4)

θ̈ + 2γ(t)θ̇ + κ2θ = 0 (3.1)

where κ ∈ R is constant frequency. This equation can be put in the form of conformal Hamiltonian

system (2.32) by setting

H = 1
2
(κ2θ2 + ω2) + γ(t)θω.
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Thus the methods of Example 2.1 are applicable to this equation. In the following, we analyze

numerical simulations in two cases: γ = const. and γ(t) = 1
2
ǫ cos(2t) with ǫ ∈ R.

3.1.1 Constant damping

When the damping parameter γ is constant, ODE (3.1) becomes a constant coefficient linear DE

of order 2 and can be rewritten as the conformal Hamiltonian system (2.17) by setting

T (θ) = 1
2
κ2θ2, V (ω) = 1

2
ω2, γ(t) = 2γ,

where γ on the right hand side of the last equation is constant. In the form of eq. (2.17), numerical

methods of Example 2.2 are applicable to the oscillator. In this case, we can compare our numerical

solutions against the exact solution. To begin, we compare the integrating factor and exponential

time differencing methods given in eqs. (2.18) and (2.19), respectively. Both methods are first order

and conformal symplectic. Figure 3.1 shows the average absolute error for each method, as γ is

fixed, while the frequency and the step size are varied. Notice, the exponential time differencing

method exhibits clear advantages over the integrating factor method as the frequency increases,

and these advantages are more pronounced as the step size decreases, even for problems with high

frequencies.

Next, we present an example illustrating order of accuracy and structure preservation by GL-IFRK

methods, IFRK methods (2.5) having the Gauss-Legendre schemes as the underlying RK methods.

To illustrate higher order convergence, we apply stage 1, 2, and 3 GL-IFRK methods to eq. (3.1)

with γ constant. Figure 3.2 shows the ratio of local absolute error in solution and the step size as a

function of the step size, which agrees with the theoretical local order of the methods.
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Figure 3.1: A comparison of the average absolute solution error for the conformal symplectic Euler

methods given in (2.18) and (2.19) for solving eq. (3.1) with γ = 0.01. Initial condition: θ(0) = 0,

ω(0) = 10; final time: T = 50.

h
10-2 10-1

A
b
so
lu
te

E
rr
or
/h

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2
γ =0.1,κ =1

slope 4

slope 6

slope 2

Figure 3.2: Local absolute error in solution over the step size for IFRK methods of stages 1, 2 and

3 applied to ODE (3.1). Dashed lines represent the slopes with which they are labeled.
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3.1.2 Time-dependent damping

Setting γ(t) = 1
2
ǫ cos(2t) with ǫ ∈ R in eq. (3.1) yields a special case of Hill’s equation, which is

used to model rain-wind induced vibrations in an oscillator. Depending on parameter values, the

solutions (q : R → R) in this case may be periodic, bounded, or unbounded [21], providing richer

solution behavior than the linear oscillator with constant damping.
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Figure 3.3: Error En (3.2) in conformal symplecticness for the GL-IFRK methods (left) and the

standard Gauss-Legendre methods (right) applied to eq. (3.1) with γ(t) = 1
2
ǫ cos(2t).

An IFRK method for solving eq. (3.1) is given by eq. (2.5). Since φ0 = e−xn(h), we know that such

methods satisfy the hypotheses of Theorem 2.11. A numerical method with flow map Ψh(zn),

which solves the system (2.32), is conformal symplectic if

En := ‖(Ψ′
h(zn))

T
J
−1Ψ′

h(zn)− e−2
∫ tn+1
0 γ(s)ds

J
−1‖ (3.2)

vanishes, see eq. (2.42). Since zn+1 = Ψh(zn) implies dzn+1 = Ψ′
h(zn)dzn, the Jacobian Ψ′

h(zn)
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can be computed by numerically solving the system for dzn+1. For instance, the first two equations

of the system (2.35) can be numerically solved for dQ, dP using exact methods or fixed point

iterations and the resulting solutions can be substituted in the last two equations of the system

to find dqn+1, dpn+1. In Figure 3.3, we plot the error En for both the GL-IFRK methods and

the standard Gauss-Legendre methods of stages 1, 2 and 3, illustrating preservation of conformal

symplecticness by the GL-IFRK methods, but not by the standard methods.

3.2 Damped pendulum

Here, we implement geometric integrators on a damped pendulum. Damping, nonlinearity, and

external driving force result in chaotic solutions in certain parameter regimes of a damped driven

pendulum. Chaotic solutions are those which have sensitive dependence on the initial condition:

changing the initial condition slightly results in a comparatively large change in solution trajectory

of the system.

3.2.1 Damped pendulum

To begin with, consider the pendulum equation with constant linear damping

θ̈ + 2γθ̇ + sin(θ) = 0. (3.3)

We consider the problem in two cases. First, when γ is purely imaginary the differential equation

has rapid oscillations resulting from the first order linear term when |γ| > 1. Second, using a real

constant satisfying γ > 1 the pendulum is strongly damped. It can be shown that the differential

equation satisfies

d

dt
(1
2
ω2 − cos(θ)) = −2γω2
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which could be called the energy balance. Though this is not what we have called a conformal

invariant for the system, it does provide a way to measure the accuracy of a method.
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t

1 2 3 4 5 6 7 8 9

R 10-6

10-5
γ =3, h =0.1

IFRK

ETDRK

IFPRK

Figure 3.4: The residual (3.4) for three numerical solutions of (3.3). The methods used are IFRK

(2.11); ETDRK (2.13); and IFPRK (2.20) denoted here by IFRK, ETDRK, and IFRK, respectively.

Left: rapid oscillation with imaginary γ; Right: strong damping with real γ.

To this model problem, we apply the IFRK methods, eqs. (2.11) and (2.20), and the ETDRK

method (2.13). All three methods are second order accurate and conformal symplectic. The ex-

pression (eγh/2−e−γh/2) in tableau 2.13 is evaluated by computing 2 sinh(γh/2) instead. Denoting

the eighth order central finite difference operator by Dt, we plot the residual

R(tn) = |Dt(
1
2
ω2
n − cos(θn)) + 2γω2

n| (3.4)

for each of the three methods in Figure 3.4. For imaginary γ method (2.11) produces a serious drift

in the energy balance, while the other two methods more accurately maintain the energy balance.

For γ ∈ R, all the methods show rapid decay. In each case, the PERK method produces smaller
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residuals, and the fact that it is explicit gives it a strong advantage.

It is important to note here that these differences between integrating factor and exponential time

differencing methods are a result of choosing relatively large values of γ. Other comparisons of

interest with small damping coefficients do not often reveal such obvious differences between the

methods. As a result, the integrating factor methods may often be preferable, because they are

generally easier to construct and analyze.

3.2.2 Damped driven pendulum

A damped driven pendulum is governed by the following ODE

θ̈ + 2Γθ̇ +
g

l
sin(θ) = F sin(Ωt),

where θ is the angle the pendulum makes with the vertical, Γ is the damping parameter, g is the

acceleration due to gravity, l is the length of the pendulum; F and Ω are the amplitude and the

angular frequency of the driving force. Choosing Ω−1 to be the new units of time, the last equation

becomes

θ̈ + 2γθ̇ + λ2 sin(θ) = f sin(t), (3.5)

with

γ = Ω−1Γ, λ2 = Ω−2 g

l
, f = Ω−2F.

The damping, driving force, and the sinusoidal terms in this equation are the ones responsible for

chaos in the system. In the numerical experiments that follow in this section, we will discretize

eq. (3.5) with the numerical methods developed in earlier sections and a second order RK (Heun’s)

method and compare the numerical results.
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To this end, let us write equation eq. (3.5) as a first order system

θ̇ = ω,

ω̇ = −λ2 sin(θ) + f sin(t)− 2γω.

When f = 0, this is a conformal Hamiltonian system (2.32) with

H = 1
2
(ω2 − λ2 cos(θ))− γθω.

Even though eq. (3.5) is not conformal Hamiltonian, it is conformal symplectic, nonetheless.

Therefore, we extend the application of conformal symplectic methods of Chapter 2 to this system.

An implicit method based on (2.11) for (3.5) is

D
γ/2
t θ = A

γ/2
t ω + γA

γ/2
t θ,

D
γ/2
t ω = −λ2 sin(A

γ/2
t θ) + f sin(Att)− γA

γ/2
t ω.

(3.6)

An explicit PERK method for (3.5) reads

(1 + γ1∆t/2)ωn+1/2 = e−γ3∆t/2ωn +
∆t

2

(
−λ2 sin(θn) + f sin(tn)

)
,

(1− γ1∆t/2)θn+1 = e−γ1∆t/2
[
(1 + γ1∆t/2)e

−γ1∆t/2θn +∆tωn+1/2

]
,

eγ2∆t/2ωn+1 = e−γ1∆t/2
[
(1− γ1∆t/2)ω

i+1/2 +
∆t

2

(
−λ2 sin(θn+1) + f sin(tn+1)

)]

(3.7)

which gives a method based on tableau (2.20) on setting γ1 = 0, γ2 = 2γ, γ3 = 2γ, which we call

CSV1, and a method based on tableau (2.21) on setting γ1 = γ, γ2 = 0, γ3 = γ, which we call

CSV2. Finally, Heun’s method for this system is

ωn+1/2 = ωn +∆t
(
−λ2 sin(θn) + f sin(tn)− 2γωn

)
,

θn+1 = θn +
∆t

2
(ωn + ωn+1/2),

ωn+1 =
1
2
(ωn + ωn+1/2) +

∆t

2

(
−λ2 sin(θn +∆tωn) + f sin(tn+1)− 2γωn+1/2

)
.

(3.8)
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Figure 3.5: Left to right: time series, phase space and Poincare sections of damped driven oscil-

lator, eq. (3.5), with the parameter values mentioned in the title. T is the final time. CIMP and

Heun’s stand for eqs. (3.6) and (3.8)
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Figure 3.5 gives an example of a bounded orbit which is neither periodic nor convergent. The

figure shows the failure of Heun’s method to reproduce the chaotic orbit with a larger time-step

size whereas other methods, which are conformal symplectic, successfully do so.

3.3 N-body ODE

Let us define the following Hamiltonian function

H(q, p) =
N∑

i=1

‖pi‖
2

2mi

+
N−1∑

i=1

N∑

j=i+1

φij(‖qi − qj‖) (3.9)

where q = [q1, q2, . . . , qN ] and p = [p1, p2, . . . , pN ]. With this Hamiltonian, one can rewrite the

N-body system (1.5)-(1.6) as conformal Hamiltonian system (2.17) given by

∂tqi = ∇piH(q, p),

∂tpi = −∇qiH(q, p)− 2γpi.

This conformal Hamiltonian system is now amenable for numerical treatment by methods of

tableaux (2.20) and (2.21). Defining

H(q, p) = H(q, p) + γ
N∑

i=1

qi · pi and zi =



qi

pi


 ,

we can also rewrite the N-body system as conformal Hamiltonian system (2.32) using

∂tzi = J
−1∇ziH(q, p)− γzi,

which lends itself to the method of Example 2.1 including method (2.11).

In this experiment, we use methods of tableaux (2.20), (2.21), and (2.11), referred to as CSV1,

CSV2, and CIMP in Table 3.1 and Figure 3.6, for the N-body system (1.5)-(1.6) of Example 1.3
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with interaction potential

φij(r) = −
Gmimj

r

to simulate the system and graphically illustrate momentum preserving properties of these methods

that were proved in Section 2.2. Table 3.1 encapsulates the said properties of the three methods.

Notice that CSV2 and CIMP do not preserve linear momentum.

Table 3.1: Total linear momentum and total angular momentum for the three methods. Here qni ≈
qi(tn) etc.

Method
∑

i p
n+1
i =

∑
i q
n+1
i × pn+1

i =

CSV1 e−2γ∆t
∑

i p
n
i e−2γ∆t

∑
i q
n
i × pni

CSV2 2−γ∆t
2+γ∆t

e−γ∆t
∑

i p
n
i e−2γ∆t

∑
i q
n
i × pni

CIMP 2−γ∆t
2+γ∆t

e−γ∆t
∑

i p
n
i e−2γ∆t

∑
i q
n
i × pni
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Figure 3.6: Left to right: Error in linear momentum, error in angular momentum and corresponding

solution trajectories of N-body system.

58



Figure 3.6 shows the norm of the difference between headings and corresponding entries of Ta-

ble 3.1. This difference is less than the machine precision as expected. The innermost objects

spiral inward and the rest of the objects are in orbits which are fast converging toward the fixed

point.

3.4 Rigid body with periodic perturbation

Here, we present an example illustrating conformal quadratic invariant preservation by the ERK

methods for eq. (1.7), which is not a conformal Hamiltonian system. Figure 3.7 shows plots of

both

En = |C(zn)− C(z0)e
− ǫ

2
sin(2tn)|, and En = |H(zn)−H(z0)e

− ǫ
2
sin(2tn)|, (3.10)

which are the residuals in Casimir and energy, respectively, of (1.7) and zn is the numerical solu-

tion. The residuals due to the standard Gauss-Legendre methods are proportional to the order of

the methods, i.e. the residuals decrease as the order of the methods increases. The figure verifies

that the conformal quadratic invariants are preserved by the GL-IFRK methods.

We have applied various ERK and PERK methods to a variety of ODEs. An ETD method is seen

to be advantageous compared to an IF method in Figure 3.1. PERK methods exhibit better perfor-

mance (with respect to accuracy and efficiency) compared to ERK methods in Figures 3.4 to 3.6.

Figure 3.4 shows that structure-preserving methods can be beneficial even in chaotic regimes.

Figures 3.3, 3.5 and 3.7 illustrate structure-preservation properties of ERK methods and their ad-

vantages over non-structure preserving methods.
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CHAPTER 4: STRUCTURE-PRESERVING METHODS FOR PDES

Some physical phenomena have not only time dependence but spatial dependence also. Such phe-

nomena are modeled by partial differential equations. Much like ODEs, PDEs also have qualitative

properties such as integral invariants and conservation laws. Therefore, structure-preserving meth-

ods or geometric integrators for PDEs are desirable. In this chapter, we discretize a given PDE

with a structure-preserving method in space, time, or both to get a structure-preserving method

for the PDE. The geometric integrators to discretize space or time may be chosen from the ERK

methods presented in Chapter 2.

4.1 Multi-conformal-symplectic PDEs

Multi-conformal-symplectic (MCS) methods are structure-preserving numerical methods for par-

tial differential equations. They can be seen as a generalization of conformal symplectic idea for

ODEs to PDEs. The central concept behind MCS integrators is that two symplectic integrators,

one in space and time each, work in tandem to preserve MCS structure of a PDE.

It was first noted in [8, 9] that some PDEs can be put in the following form

Kzt + Lzx = ∇S(z) (4.1)

where K and L are constant skew-symmetric matrices, S(z) is a smooth scalar function, z is a

vector of field variables, and subscripts denote usual partial derivatives. Equation (4.1) can be seen

as a PDE equivalent of the Hamiltonian system (1.17). In the form of eq. (4.1), a PDE automatically

satisfies certain local conservation laws. Many conservative PDEs can be put in the form of (4.1).

See [28] and references therein for a discussion on this PDE, associated conservation laws, and
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some examples.

In this thesis, we consider the following generalization of PDE (4.1)

Kzt + Lzx = ∇S(z)−
a

2
Kz + F(t), (4.2)

where a is a non-negative real number and F(t) is a time dependent vector function. Additional

terms on the right hand side of this PDE, as compared to PDE (4.1), usually represent dissipation

and forcing terms in the PDE. This equation was first introduced in [38, 40] where its properties

were also discussed. Some examples of eq. (4.2) follow.

Example 4.1. Consider a damped Klein-Gordon equation

utt = uxx − cu− 2γut. (4.3)

Here u = u(x, t) is the solution of the equation, c is a real constant, and γ is the damping parameter.

Subscripts denote the usual partial derivatives. This equation arises in relativistic mechanics and

has been discussed extensively in the literature, including [16, 40]. The case γ = 0 corresponds to

the conservative counterpart of the equation.

We can write eq. (4.3) in the form of (4.2) as [40]

−vt − wx = cu+ 2γv

ut − px = v

−pt + ux = −w + 2γp

wt + vx = −cp

which can be written in short as

Kzt + Lzx = ∇Sγ(z)− γKz (4.4)
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with

K =




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0




, L =




0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0




, z =




u

v

w

p




,

and Sγ(z) =
1
2
(2γ(uv + wp) + v2 − w2 + cu2 − cp2).

Example 4.2. Consider a modified Burgers’ equation

ut + uux = −2γu. (4.5)

This equation can also be put in the form of (4.2)

Kzt + Lzx = ∇S(z)− 2γKz (4.6)

with

K =




0 0 −1

0 0 0

1 0 0



, L =




0 0 0

0 0 −1

0 1 0



, z =




u

v

w



,

and S(z) = −uv + u3

3
.

Example 4.3. Consider the following generalization of the NLS equation of Table 1.1

iψt + ψxx + V ′(|ψ|2)ψ + 2iγψ = F (t), (4.7)

where ψ = ψ(x, t) is a complex valued wave function of space x and time t, the nonnegative real

number γ is a damping parameter, and subscripts denote the usual partial derivatives. The time

dependent term on the right hand side F (t) is an external driving force. We can put eq. (4.7) in the

form of (4.2) as

Kzt + Lzx = ∇S(z)− 2γKz + F(t), (4.8)
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with

K =




0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0




, L =




0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0




, z =




v

w

p

q




,F(t) =




−ℜF (t)

−ℑF (t)

0

0




,

S = 1
2
(p2 + q2 + V (v2 + w2)), and ψ = v + iw. Here ℜ and ℑ denote real and imaginary parts,

respectively, of a complex number.

Notice that the damping part of the equations in the last three examples is absorbed by either the

function S or the term involving parameter a or both. We also remark that setting γ = F = 0

in these three examples gives a multi-symplectic formulation (4.1) of the corresponding PDEs

instead. One advantage of writing PDEs in the form of eq. (4.2) is that the equation automatically

satisfies certain local conservation laws. Setting a = b = 0 and F = 0 in these conservation laws

gives corresponding conservation laws for eq. (4.1).

4.1.1 Local conservation laws

A conservation law of a PDE assumes the following form

∂tP + ∂xQ = 0

where P and Q depend on z. For example, a conservation law associated with the modified Burg-

ers’ equation (4.5) is

∂t(e
2γtu) + ∂x(e

2γt 1
2
u2) = 0.
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Indeed, the left hand side of this equation gives

∂t(e
2γtu) + ∂x(e

2γt 1
2
u2) =e2γtut + 2γe2γtu+ e2γtuux

=e2γt(ut + 2γu+ uux)

=0,

because u solves eq. (4.5).

Local conservation laws of multi-conformal-symplecticness and conformal momentum will be

derived in this section. Let us begin by defining L+ and L− such that

L = L+ + L− and L
T
+ = −L−.

Then eq. (4.2) becomes

Kzt + L+zx + L−zx = ∇S(z)−
a

2
Kz + F(t). (4.9)

Local conservation laws for this PDE can be derived in a manner analogous to the conservation

laws of eqs. (4.1) and (4.2). Indeed, the variational equation associated with this PDE is given by

Kdzt + L+dzx + L−dzx = Szz(z)dz −
a

2
Kdz.

Taking the wedge product of this equation with dz and using

dz ∧Kdzt =∂t(
1
2
(dz ∧Kdz)),

dz ∧ L−dzx + dz ∧ L+dzx =∂x(dz ∧ L+dz),

dz ∧ Szz(z)dz =0,

we get the following local conservation law

∂tω + ∂xκ = −aω, (4.10)
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which can be written more compactly [39] as

∂t(e
atω) + ∂x(e

atκ) = 0,

where ω = 1
2
dz ∧ Kdz and κ = dz ∧ L+dz. That is, differential two-forms ω and κ associated

with PDE (4.9) satisfy a linear partial differential equation. Another way to interpret the above

equation is that changes in space and time mutually annihilate each other. This local conservation

law is called a multi-conformal-symplectic conservation law, after which the PDE is referred to as

a multi-conformal-symplectic PDE. When a = 0 and F(t) = 0, eq. (4.9) reduces to eq. (4.1) which

satisfies a multi-symplectic-conservation law given by eq. (4.10) with a = 0. It can be shown that

eq. (4.10) holds for PDE (4.2) with the following differential 2-forms also:

ω = dz ∧Kdz and κ = dz ∧ Ldz.

Therefore eqs. (4.3), (4.5) and (4.7) are MCS PDEs.

Special form of eqs. (4.2) and (4.9) guarantee another local conservation law. This conservation

law, analogous to momentum conservation law for eq. (4.1), can be obtained for eq. (4.9) when

F = 0. Indeed, taking the inner product of zx with eq. (4.9), we get

〈Kzt, zx〉 = ∂xS(z)−
a

2
〈Kz, zx〉,

if and only if F = 0. In this equation, using

∂t〈Kz, zx〉 − ∂t〈zt,Kz〉 = 2〈Kzt, zx〉,

we get

∂tI + ∂xG = −aI, (4.11)

where G = −S(z)− 1
2
〈zt,Kz〉 and I = 1

2
〈z,Kzx〉. Equation (4.11) is referred to as the conformal
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momentum conservation law. From this local conservation law, one can obtain the following global

conservation law by integrating in space and assuming vanishing or periodic boundary conditions,

so that

∂x

∫
G dx = 0

and

∂t

∫
I dx = −a

∫
I dx. (4.12)

This implies that the property I =
∫
I dx is a conformal invariant (Definition 1.1) of the MCS

PDE. It is desirable for a numerical integrator of a MCS PDE to preserve as many of these conser-

vation laws as possible.

4.1.2 Multi-conformal-symplectic numerical methods

Numerical methods which satisfy a discrete version of the multi-conformal-symplectic conserva-

tion law, eq. (4.10), are called multi-conformal-symplectic numerical methods. We present two

examples of MCS methods for MCS PDE (4.2). The first one of these examples is for a specific

MCS PDE, eq. (4.7) and the second example is for the general PDE, eq. (4.2). Both these equations

will be shown to satisfy a discrete version of the MCS conservation law (4.10).

Example 4.4. Discretizing eq. (4.8) in space using notation of eq. (1.14), we obtain

K∂tz
n + L+Dxz

n + L−DxTxz
n = ∇S(zn)− 2γKzn + F(t), (4.13)
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where

L+ =




0 0 −1 0

0 0 0 −1

0 0 0 0

0 0 0 0




, and L− =




0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0




.

Discretizing eq. (4.13) in time with the method of eq. (2.11) we obtain

KDγ
t z + L+DxA

γ
t z + L−DxTxA

γ
t z = ∇S(Aγt z) + F(Att) (4.14)

where we have suppressed superscripts in the numerical solution zn,i for brevity. Notice that both

spatial and time indices are denoted by superscripts for PDE numerical solutions as compared to

subscripts for ODE numerical solutions. In terms of the original variable, this equation becomes

iDγ
t ψ + Aγt δ

2
xψ + V ′(|Aγtψ|

2)Aγtψ = F (Att), (4.15)

which should be compared with its continuous counterpart, eq. (4.7).

That (4.14) is a multi-conformal-symplectic method can be seen from the following computation.

The variational equation associated with this method is

KDγ
t dz + L+DxA

γ
t dz + L−DxTxA

γ
t dz = Szz(A

γ
t z)A

γ
t dz

where Szz is the Hessian of S. Taking the wedge product of Aγt dz with this equation we get

Aγt dz ∧KDγ
t dz + Aγt dz ∧ L+DxA

γ
t dz + Aγt dz ∧ L−DxTxA

γ
t dz = Aγt dz ∧ Szz(A

γ
t z)A

γ
t dz.

(4.16)
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Using Lemma 1.8 and the symmetry of Szz we get

Aγt dz ∧KDγ
t dz = D2γ

t (1
2
(dz ∧Kdz)),

Aγt dz ∧ L+DxA
γ
t dz + Aγt dz ∧ L−DxTxA

γ
t dz = Dx(A

γ
t Txdz ∧ L+A

γ
t dz),

Aγt dz ∧ Szz(A
γ
t z)A

γ
t dz = 0.

These equations along with eq. (4.16) give

D2γ
t (1

2
(dz ∧Kdz)) +Dx(A

γ
t Txdz ∧ L+A

γ
t dz) = 0

which is a discrete version of the multi-conformal-symplectic conservation law (4.10).

Example 4.5. For our next example, consider the following method for eq. (4.2) with F = 0.

K(D
a/4
t Axz) + L(DxA

a/4
t z) = ∇S(AxA

a/4
t z). (4.17)

This method is obtained by using conformal symplectic method (2.11) in both space and time.

Variational equation for this method is

K(D
a/4
t Axdz) + L(DxA

a/4
t dz) = SzzAxA

a/4
t dz.

Similar to the previous example, one can get the following discrete version of eq. (4.10)

D
a/2
t (Axdz ∧KAxdz) +Dx

(
LA

a/4
t dz ∧ A

a/4
t dz

)
= 0.

Therefore eq. (4.17) is an MCS integrator.

Of course, conformal symplectic numerical methods other than eq. (2.11) can also be used to

discretize space and time to obtain MCS integrators. We explore some of these possibilities and

use the two methods discussed in this section to solve PDEs in the next chapter.
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4.2 Non-standard finite difference methods

Non-standard finite difference methods provide an alternative approach to discretizing differential

equations. This approach uses a set of rules to discretize a given DE. The following rules are

suggested to design a non-standard finite difference method:

• Denominator function of a discrete derivative is a more complicated function of time/space

step-size than denominator function of a standard discrete derivative.

• Non-linear terms are modeled non-locally.

• Order of the discrete derivatives is exactly equal to the corresponding order of the derivatives

in the differential equation.

In addition to these rules, a relationship between time and spatial step-size often exists to ensure

stability of the method. These rules often result in operators that are non-standard i.e. they re-

semble the standard discrete derivative and averaging operators, Dζ and Aζ of eq. (1.14), but are

not exactly the same. Although relatively new compared to standard finite difference methods,

non-standard methods have been successfully used to discretize a multitude of ODEs and PDEs

[35, 36]. Instead of structure preservation, this approach focuses on providing “best” solutions to

a differential equation. For this reason, we will use a non-standard method to discretize a PDE for

the purposes of comparison in this thesis.

For example, consider the modified Burgers’ equation (4.5)

ut + uux = −2γu.

Solving only the linear part

ut = −2γu,
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one gets the solution

u(x, t) = e−2γtu(x, 0).

An exact finite difference method, for the linear part, which produces this solution is given by

un,i+1 = e−2γ∆tun,i,

⇐⇒
un,i+1 − un,i(

1−e−2γ∆t

2γ

) = −2γun,i.

Notation ∆x and ∆t is used to denote spatial and time step-sizes in numerical methods for PDEs.

We use superscripts {n, i} for spatial and time indices, respectively. Modeling the nonlinear term

uux nonlocally gives the following non-standard finite difference (NSFD) scheme for (4.5)

un,i+1 − un,i(
1−e−2γ∆t

2γ

) + un,i
(
un,i+1 − un−1,i+1

∆x

)
= −2γun,i. (4.18)

Numerical methods discussed in this chapter will be used to simulate numerical solutions of PDEs

in the next chapter, where the efficacy of these methods will also be compared. Consistent with

numerical experiments for ODEs, our focus will remain on structure preservation.
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CHAPTER 5: PDE APPLICATIONS AND EXPERIMENTS

We apply and compare the performance of numerical methods for PDEs discussed in the previous

chapter and other methods that will be developed in this chapter. We begin by discretizing a linear

PDE with the methods of Chapters 2 and 4 and prove their structure-preservation properties. Then

we use some of these methods to discretize a nonlinear PDE and compare them against a non-

standard finite difference method. In our final PDE experiment we compare some of the methods

of Chapters 2 and 4 against a non-structure preserving method to highlight advantages of structure-

preservation. Among these methods, MCS methods automatically satisfy certain conservation laws

and other structure-preserving methods are shown to preserve structure by direct computations. In

the following, superscripts n and i denote the spatial and temporal indices, respectively. Notations

∆x and ∆t denote spatial and time step sizes, respectively.

5.1 A damped Klein-Gordon equation

Consider the damped Klein-Gordon eq. (4.3) on the interval [−π, π] with periodic boundary con-

ditions. Its exact solution is taken to be

u(x, t) = e−γt cos(Kx−Wt), W =
√
K2 + c− γ2 (5.1)

where K is the wavenumber and W is called the frequency of the wave. Constant γ is the damping

parameter. Equation (4.3) can be written as a multi-conformal-symplectic PDE as in eq. (4.4). In

the following, we describe different approaches to discretize this PDE.
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5.1.1 Numerical solutions

We take two different approaches to design numerical solutions for eq. (5.1). Our first approach

discretizes a spatially semi-discretized PDE with two different conformal symplectic PERK meth-

ods in time. This gives two explicit numerical schemes for the Klein-Gordon equation. The other

approach uses an implicit MCS integrator from Chapter 4 to discretize the equation.

One can rewrite eq. (4.3) as a system of equations

ut = v, vt = −(cu− uxx)− 2γv. (5.2)

Using the central finite difference operator of eq. (1.14), we discretize this system using PERK

methods (2.20) and (2.21) in time to get numerical methods

vn,i+1/2 = e−γ∆tvn,i +
∆t

2

(
δ2x − c

)
un,i,

un,i+1 = un,i +∆tvn,i+1/2,

vn,i+1 = e−γ∆t
[
vn,i+1/2 +

∆t

2

(
δ2x − c

)
un,i+1

]
,

(5.3)

and

(1 + γ∆t/2)vn,i+1/2 = e−γ∆t/2vn,i +
∆t

2

(
δ2x − c

)
un,i,

(1− γ∆t/2)un,i+1 = e−γ∆t/2
[
(1 + γ∆t/2)e−γ∆t/2un,i +∆tvn,i+1/2

]
,

vn,i+1 = e−γ∆t/2
[
(1− γ∆t/2)vn,i+1/2 +

∆t

2

(
δ2x − c

)
un,i+1

]
,

(5.4)

respectively. On the other hand, discretizing PDE (4.4) with the multi-conformal-symplectic

method (4.17) we get

K(D
γ/2
t Axz) + L(A

γ/2
t Dxz) = ∇Sγ(AxA

γ/2
t z). (5.5)

In the following we simulate solutions and compare these three methods.
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Figure 5.1 shows the absolute error in numerical solutions produced by methods of eqs. (5.3)

to (5.5), denoted by CSV1, CSV2, and CIMP, respectively, where the exact solution is propagated

with numerical frequency. Notice that the three numerical solutions are slightly out of phase with

one another due to their different numerical frequencies. Notice also that the error decreases for

all three methods as time increases, primarily because the solution is dissipating to zero, but the

relative error remains close to 10−2.

−3 −2 −1 0 1 2 3

1

2

3

x 10
−11

x

A
bs

ol
ut

e 
E

rr
or

∆t = 0.025, ∆x = π/40, T = 50, γ = 0.375, c = 1, K = 8

 

 

−3 −2 −1 0 1 2 3

2
4
6
8

x 10
−9

x

A
bs

ol
ut

e 
E

rr
or

∆t = 0.025, ∆x = π/40, T = 40, γ = 0.375, c = 1, K = 8

 

 

−3 −2 −1 0 1 2 3

0.5
1

1.5
2

2.5

x 10
−7

x

A
bs

ol
ut

e 
E

rr
or

∆t = 0.025, ∆x = π/40, T = 30, γ = 0.375, c = 1, K = 8

 

 
CSV1
CSV2
CIMP

Figure 5.1: Error in the solution of (4.3) due to methods (5.3), (5.4) and (5.5). Parameter values are

given in the figure title. The maximum value of the exact solution at time T = 50 is approximately

7× 10−9.
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Following the approach of [40] consider the function

d(t) = ln

(
max

x∈[−π,π]
u(x, t)

)
+ γt (5.6)

for measuring the drift in the rate of dissipation for the Klein-Gordon equation. Figure 5.2 shows

that there is no drift in the rate of dissipation (5.6) for the three methods.
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Figure 5.2: Drift in the rate of dissipation for the three methods (5.3), (5.4) and (5.5) with the

parameter values mentioned in the figure title. Only every sixth drift vector component is plotted

for clarity and CSV1 eclipses CSV2.

5.1.2 Structure-preservation

Consistent with the theme of this thesis, these methods preserve more than conformal symplec-

ticity, which helps explain the practical advantages of the methods. To be specific, define the

momentum for the Klein-Gordon eq. (5.2) by

I(t) =

∫
utux dx. (5.7)
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Under appropriate boundary conditions, it can be shown that the PDE has the conformal invariant

I(t) = e−2γtI(0). (5.8)

In fact, all three methods preserve this property.

Theorem 5.1. The numerical methods (5.3), (5.4), and (5.5) each preserve eq. (5.8).

Proof. Notice that

(1 + γ1∆t/2)v
n,i+1/2 = e−γ3∆t/2vn,i −

∆t

2
(cun,i − δ2xu

n,i),

(1− γ1∆t/2)u
n,i+1 = e−γ1∆t/2

[
(1 + γ1∆t/2)e

−γ1∆t/2un,i +∆tvn,i+1/2
]
,

eγ2∆t/2vn,i+1 = e−γ1∆t/2
[
(1− γ1∆t/2)v

n,i+1/2 −
∆t

2
(cun,i+1 − δ2xu

n,i+1)

]
,

gives method (5.3) on setting γ1 = 0, γ2 = 2γ, γ3 = 2γ and method (5.4) on setting γ1 = γ, γ2 =

0, γ3 = γ. Using this combined method and Lemma 1.8 we see that

∑
vn,i+1δxu

n,i+1 = e−(γ1+γ2)∆t/2(1− γ1∆t/2)
∑

vn,i+1/2δxu
n,i+1

= e−(3γ1+γ2)∆t/2(1 + γ1∆t/2)
∑

vn,i+1/2δxu
n,i

= e−(3γ1+γ2+γ3)∆t/2
∑

vn,iδxu
n,i

= e−2γ∆t
∑

vn,iδxu
n,i

for both methods. Here
∑

denotes summation with respect to the spatial index over all the spatial

grid points.

Also notice that eq. (5.5) can be re-written in terms of the original variable u as

(D
γ/2
t )2A2

xu−D2
x(A

γ/2
t )2u = (γ2 − c)A2

x(A
γ/2
t )2u
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where A2
xu = AxAxu etc. Now observe that, using Lemma 1.8,

0 = Dγ
t

∑
D
γ/2
t A2

xu · δxA
γ/2
t A2

xu

=
∑

(D
γ/2
t )2A2

xu · δx(A
γ/2
t )2A2

xu+
∑

D
γ/2
t A

γ/2
t A2

xu · δxD
γ/2
t A

γ/2
t A2

xu

=
∑(

D2
x(A

γ/2
t )2u+ (γ2 − c)A2

x(A
γ/2
t )2u

)
δx(A

γ/2
t )2A2

xu

=
∑(

D2
x(A

γ/2
t )2u

)
δx(A

γ/2
t )2A2

xu

because for a periodic sequence U ,

∑
D2
xU · δxA

2
xU =

1

4∆x2

∑
(Un+2 − 2Un+1 + Un) · δx(U

n+2 + 2Un+1 + Un)

=
1

2∆x2

∑
Un+2δxU

n+1 +
1

4∆x2

∑
Un+2δxU

n

−
1

2∆x2

∑
Un+1δxU

n+2 −
1

2∆x2

∑
Un+1δxU

n

+
1

4∆x2

∑
UnδxU

n+2 +
1

2∆x2

∑
UnδxU

n+1

=
1

∆x2

∑
Un+2δxU

n+1 −
1

∆x2

∑
Un+1δxU

n = 0.

Therefore, P i+1 = e−2γ∆tP i for

P i =
∑

D
γ/2
t A2

xu
n,i · δxA

γ/2
t A2

xu
n,i.

We define the residual ri in preserving conformal momentum as

ri = ln

(
I i+1

I i

)
+ 2γ∆t,

where

I i =
∑

n

vn,iδxu
n,i and I i =

∑
D
γ/2
t A2

xu
n,i · δxA

γ/2
t A2

xu
n,i,

for Störmer-Verlet type methods (5.3), (5.4), and implicit midpoint type method (5.5) respectively.
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Upon plotting I i alongside respective residuals ri for the three methods (5.3), (5.4) and (5.5), one

obtains Figure 5.3, verifying momentum preservation property of the methods. (Only some of the

data points are plotted to prevent overcrowding.)
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Figure 5.3: Total conformal momentum I i and residual ri due to (5.3), (5.4) and (5.5) with the

parameters mentioned in the figure title

5.2 A Modified Burgers’ Equation

In this experiment, we consider application of ERK and PERK methods to a nonlinear equation,

which we refer to as a modified Burgers’ equation, given by eq. (4.5):

ut + uux = −2γu,

on the interval [−π, π] with periodic boundary conditions. This is a fundamental equation that

models physical phenomenon in fluid mechanics, acoustics, traffic flow etc. It is also one of the
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simplest PDEs whose solutions develop shock: spatial derivative of the solution becomes infinite

in finite time. Formation of shocks makes this PDE a challenging equation to solve numerically.

We derive three numerical methods for this nonlinear equation. Our first method for this PDE is

based on method (2.21). The second method is a multi-conformal-symplectic method obtained

from discretizing eq. (4.6) with conformal symplectic method (2.11) in both space and time. The

third method is obtained from discretizing the PDE with a non-standard finite difference method

obtained by using the rules of Section 4.2.

5.2.1 Numerical solutions

To test our methods on this nonlinear problem, we discretize the space x ∈ [−L,L], L = π, by

introducing a uniform spatial grid [x1, x2, . . . , xM ] with gridsize ∆x such that x1 = −L, xM = L,

and M is even. Then we approximate u by un = u(xn), n = 1, 2, . . . ,M , with periodic boundary

conditions un+M = un, and define the following vectors.

v = [u1, u3, u5, . . . , uM−1]T and w = [u2, u4, u6, . . . , uM ]T .

Given this spatial decomposition of the solution vector un, one can semi-discretize (4.5) to get the

following system of ODEs

dwn

dt
= −∂+x ((v

n)2/2)− 2γwn,

dvn

dt
= −∂−x ((w

n)2/2)− 2γvn,

(5.9)

where the superscript n on the vectors v and w is the index of these vectors, e.g. v2 = u3 etc.,

and ∂+x and ∂−x are one-half of standard forward and backward difference operators, respectively.

Even-odd splitting of the dependent variable u was suggested in [1], and this is the approach used
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here. Notice that the system is a conformal Hamiltonian system of the form

znt = D∇znH(zn)− 2γzn with D =



0 ∂−x

∂+x 0


 ,

which is constant and skew-symmetric, zn = [vn, wn]T andH(zn) = −1
6
((un)3+(vn)3). Although

structure matrix D of the system above is not same as the matrix J
−1 of (2.32), one can still show

that this system is conformal symplectic and hence it is desirable to apply conformal symplectic

methods on the system. Using method (2.21) to discretize time in system (5.9) we get the following

method

wn,i+
1
2 = e−γ∆twn,i −

∆t

2
∂+x

(vn,i)2

2
,

vn,i+1 = e−γ∆t


e

−γ∆tvn,i −∆t∂−x

(
wn,i+

1
2

)2

2


 ,

wn,i+1 = e−γ∆t
(
wn,i+

1
2 −

∆t

2
∂+x

(vn,i+1)2

2

)
.

(5.10)

Let us now discretize multi-conformal-symplectic formulation (4.6) of the modified Burgers’ equa-

tion with method (4.17). Doing so, gives the following multi-conformal-symplectic method

K(Dγ
tAxz) + L(AγtDxz) = ∇S(AxA

γ
t z), (5.11)

which gives the following method in terms of the original variable.

AγtD
γ
tA

2
xu+

1
2
AγtDx (AxA

γ
t u)

2 = 0.

An equivalent one-step method is

Dγ
tAxu+

1
2
Dx (A

γ
t u)

2 = 0 (5.12)

which should be compared with (4.5).
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Another discrete model that can approximate solutions of modified Burgers’ equation is the fol-

lowing non-standard finite difference method (NSFD) (4.18) (cf. [35])

un,i+1 − un,i(
1−e−2γ∆t

2γ

) + un,i
(
un,i+1 − un−1,i+1

∆x

)
= −2γun,i,

which is able to exactly reproduce certain solutions of the equation. Since this method is, in some

way, also structure-preserving, it provides an interesting comparison to the conformal symplectic

methods. The three methods given by eqs. (4.18), (5.10) and (5.12) will be referred to as NSFD,

CSV2, and CIMP, respectively, in the following experiments.
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Figure 5.4: Snapshots of the numerical solution of eq. (4.5) using (5.10), (5.12) and (4.18) at

different times.

Numerical solutions of eq. (4.5) at different times are given in Figure 5.4. The initial condition is

taken to be a normal probability distribution function with mean 0 and standard deviation 1. As

time progresses, the waveform becomes steeper, and the NSFD solution is damping at a different

rate than the other two methods. In fact, the methods (5.10) and (5.12) are more accurate in this
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case, and the results of the following subsection explain why.

5.2.2 Structure-preservation

Consider the Casimir

C[u] =

∫
u dx (5.13)

which corresponds to mass of the wave at time t and is an integral of motion for the eq. (4.5) with

γ = 0. Differentiating eq. (5.13) with respect to t, we have

dC

dt
=

∫
ut dx = −

∫
uux dx− 2γ

∫
u dx.

Now using integration by parts and periodic boundary conditions we get

∫ π

−π
uux dx = uu

∣∣∣∣
π

−π
−

∫ π

−π
uxu dx, =⇒

∫ π

−π
uux dx = 0.

Therefore

dC

dt
= −2γC ⇐⇒ C(t) = C(t0)e

−2γ(t−t0), (5.14)

which is a conformal property of eq. (4.5).

Theorem 5.2. Methods (5.10) and (5.12) preserve eq. (5.14), but (4.18) does not.

Proof. Define the discrete Casimir function (5.13) by C i =
∑

n u
n,i. For method (5.10), we get

C i+1 =
M∑

n=1

un,i+1 =

M/2∑

n=1

(
vn,i+1 + wn,i+1

)

=

M/2∑

n=1

e−2γ∆t
(
vn,i + wn,i

)
= e−2γ∆tC i,
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i.e. method (5.10) preserves eq. (5.14). Summing eq. (5.12) over the spatial index n, we get

∑

n

Dγ
tAxu = 0, =⇒

∑

n

Axu
n,i+1 = e−2γ∆t

∑

n

Axu
n,i,

=⇒
∑

n

un,i+1 = e−2γ∆t
∑

n

un,i,

i.e. method (5.12) also preserves eq. (5.14). Similarly, summing eq. (4.18) over the spatial index

n we get

2γ

1− e−2γ∆t

∑

n

un,i+1 =
2γ

1− e−2γ∆t

∑

n

un,i − 2λ
∑

n

un,i

−
1

∆x

∑

n

(un,iun,i+1 − un,iun−1,i+1),

which implies

∑

n

un,i+1 = e−2γ∆t
∑

n

un,i −
1− e−2γ∆t

2γ∆x

∑

n

(un,iun,i+1 − un,iun−1,i+1).

Therefore, method (4.18) does not preserve eq. (5.14).
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Figure 5.5: Residual (5.15) due to conformal symplectic methods (5.10) and (5.12) and NSFD

(4.18).
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To measure the error in preservation of (5.14) we define the residual ri

ri = ln

(
C i+1

C i

)
+ 2γ∆t, (5.15)

which is plotted in Figure 5.5, verifying that the conformal symplectic methods preserve dissipa-

tion of mass, but NSFD does not.

5.3 Damped driven nonlinear Schrödinger equation

The damped driven nonlinear Schrödinger eq. (4.7) is discretized by structure-preserving methods

in this section. The time dependent term on the right hand side F (t) is an external driving force

which, along with the nonlinear term V ′(|ψ|2)ψ and damping term 2iγψ, induces chaos in certain

parameter regimes.

Undamped (γ = 0) and unforced (F (t) = 0) eq. (4.7) is a Hamiltonian system and is referred to as

integrable NLS. Every symmetry of a Hamiltonian system results in a conservation law according

to Noether’s theorem. Symmetries of the integrable NLS about space, phase, and time result in

conservation of the quantities

I1 = ℑ

∫
ψψx dx, I2 =

∫
|ψ|2 dx, I3 =

∫
−|ψx|

2 + V (|ψ|2) dx (5.16)

with periodic or vanishing boundary conditions. Quantities I1, I2, and I3 are referred to as mo-

mentum, norm, and energy, respectively. Bar over a complex variable denotes complex conjugate

of the variable.

Equation (4.7) with F = 0 is referred to as damped NLS. Although Noether’s theorem is not

applicable to non-conservative systems, one can nonetheless show by direct computations that a
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solution of damped NLS satisfies

∂t(e
4γtI1) = 0, ∂t(e

4γtI2) = 0 (5.17)

with periodic or vanishing boundary conditions. Indeed,

∂t

∫
ψψx dx =

∫
ψtψx dx+

∫
ψψxt dx

=

∫
ψtψx dx+ [ψψt]−

∫
ψxψt dx.

Here, we have used integration by parts and [.] denotes the boundary terms. Assuming periodic

boundary conditions, this equation gives

∂t

∫
ψψx dx =

∫
ψtψx dx−

∫
ψxψt dx. (5.18)

In the right hand side of this equation, using eq. (4.7) with F = 0, we get

∫
ψtψx dx−

∫
ψxψt dx =i

[∫
−V ′(|ψ|2)(ψψx + ψψx) dx+ 2iγ

∫
(ψψx − ψψx) dx

]

=i

[∫
−V ′(|ψ|2)(2ℜ{ψψx}) dx+ 2iγ

∫
(2iℑ{ψψx}) dx

]

Using this equation in eq. (5.18) and taking imaginary part of both sides we get

∂tℑ

∫
ψψx dx = −4γℑ

∫
ψψx dx.

This implies that

∂tI1 = −4γI1 ⇐⇒ ∂t(e
4γtI1) = 0.

The second equation of (5.17) was proved in Example 1.5.

Substituting V (η) = λη and F = 0 in eq. (4.7) we obtain a linear Schrödinger equation:

iψt + ψxx + λψ + 2iγψ = 0. (5.19)
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A solution of this equation satisfies

∂t(e
4γtIk) = 0 for k = 1, 2, 3, (5.20)

where Ik are as in eq. (5.16) with V (η) = λη. It follows that preservation of dissipative properties

of linear and nonlinear Schrödinger equations by numerical methods is desirable.

Damped driven NLS is an example of an infinite-dimensional dynamical system. Long time behav-

ior of eq. (4.7) has been studied extensively both analytically and numerically. Its global attractor

attracts all nearby trajectories on a compact bounded set. It was shown in [18] that chaotic at-

tractors exist and they are confined in a finite dimensional space. Authors of [11] used high order

RK methods to conduct numerical experiments showing a quasi-periodic route to chaos in the

dynamical system.

5.3.1 Numerical solutions

In [31], authors take a discrete variational derivatives route to derive a linearly implicit finite differ-

ence scheme that inherits an energy conservation or dissipation property of a complex valued PDE

such as integrable NLS and closely related Ginzburg-Landau equation. In [24], authors construct a

symplectic geometric integrator by generalizing the generating functions approach and comparing

it to a multi-symplectic geometric integrator for integrable NLS. The multi-symplectic integration

technique was generalized to dissipative PDEs in [40] where authors proposed a norm-preserving

multi-conformal-symplectic integrator for a damped NLS. Authors of [29] propose a variational in-

tegrator, which is naturally multi-symplectic, by first defining a Lagrangian function for a variable

coefficient integrable NLS.

As far as we know, structure-preserving methods for damped driven NLS (DDNLS) have not been

previously suggested in the literature. In this section, we use an appropriate spatial discretization
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and two conformal symplectic ERK methods for time discretizations to assemble MCS methods

for the DDNLS. We compare these two methods against a method which employs a closely related

discretization in space and time but the resulting method is not structure-preserving. The aim is

to construct structure preserving numerical methods for DDNLS, discuss their structure preserv-

ing properties, and implement them to show their effectiveness. In the following, we discretize

multi-conformal-symplectic formulation (4.9) of DDNLS eq. (4.7). We discretize this formulation

with integrating factor method (2.11), exponential time differencing (2.13), and implicit midpoint

methods in time.

5.3.1.1 Integrating factor method

Discretizing (4.7) with (2.11) we get method (4.14) or equivalently method (4.15). This method

will be referred to as the IF method in the numerical plots. Let us point out some salient features

of this method.

(i) That (4.14) is a MCS integrator was shown in Example 4.4.

(ii) The method preserves the invariant e4γtI2 for damped NLS. This can be shown from a con-

formal norm conservation law [40], similar to the conformal momentum conservation law

eq. (4.11). Alternatively, one can show preservation of e4γtI2 by doing computations anal-

ogous to their continuous counterpart in Section 5.3. Indeed, assuming F (Att) = 0 and

multiplying eq. (4.15) with Aγtψ, one gets

iDγ
t ψA

γ
tψ + Aγt δ

2
xψA

γ
tψ + V ′(|Aγtψ|

2)AγtψA
γ
tψ = 0
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which gives

∑

n

(
iDγ

t ψA
γ
tψ + Aγt δ

2
xψA

γ
tψ + V ′(|Aγtψ|

2)AγtψA
γ
tψ
)
= 0. (5.21)

The first term of this equation gives, using eq. (1.14),

∑

n

iDγ
t ψ

n,iAγtψ
n,i =

∑

n

i

2∆t
(eγ∆tψn,i+1 − e−γ∆tψn,i)(eγ∆tψn,i+1 + e−γ∆tψn,i)

=
∑

n

1

2∆t

(
i(e2γ∆t|ψn,i+1|2 − e−2γ∆t|ψn,i|2)− 2ℑ(ψn,i+1ψn,i)

)
,

(5.22)

the second term gives, using eq. (1.14) and periodic boundary conditions,

∑

n

Aγt δ
2
xψ

n,iAγtψ
n,i =

∑

n

1

∆x2

(
Aγtψ

n+1,iAγtψ
n,i − 2|Aγtψ

n,i|2 + Aγtψ
n−1,iAγtψ

n,i
)

=
∑

n

1

∆x2

(
Aγtψ

n+1,iAγtψ
n,i − 2|Aγtψ

n,i|2 + Aγtψ
n,iAγtψ

n+1,i
)

=
∑

n

1

∆x2

(
2ℜ(Aγtψ

n+1,iAγtψ
n,i)− 2|Aγtψ

n,i|2
)

(5.23)

and the third term gives

∑

n

V ′(|Aγtψ
n,i|2)Aγtψ

n,iAγtψ
n,i =

∑

n

V ′(|Aγtψ
n,i|2)|Aγtψ

n,i|2. (5.24)

Substituting eqs. (5.22) to (5.24) in eq. (5.21) we get

∑

n

1

2∆t

(
i(e2γ∆t|ψn,i+1|2 − e−2γ∆t|ψn,i|2)− 2ℑ(ψn,i+1ψn,i)

)

+
∑

n

1

∆x2

(
2ℜ(Aγtψ

n+1,iAγtψ
n,i)− 2|Aγtψ

n,i|2
)
+
∑

n

V ′(|Aγtψ
n,i|2)|Aγtψ

n,i|2 = 0.

Now taking the imaginary part of this equation we get

∑

n

(
e2γ∆t|ψn,i+1|2 − e−2γ∆t|ψn,i|2

)
= 0
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or equivalently

∑

n

|ψn,i+1|2 = e−4γ∆t
∑

n

|ψn,i|2

i.e. the method preserves e4γtI2.

(iii) For linear Schrödinger eq. (5.19), the method preserves e4γtIk for all k. For preservation of

e4γtI1, using Lemma 1.8 we obtain

iD2γ
t

∑

n

ψδxψ = i

∑

n

Dγ
t ψA

γ
t δxψ + i

∑

n

AγtψDtδxψ

= i

∑

n

Dγ
t ψA

γ
t δxψ − i

∑

n

DtψA
γ
t δxψ.

Using eq. (4.15), with V (η) = λη, in this equation we get

iD2γ
t

∑

n

ψδxψ =
∑

n

(Aγt δ
2
xψA

γ
t δxψ + Aγt δ

2
xψA

γ
t δxψ) + λ

∑

n

(AγtψA
γ
t δxψ + AγtψA

γ
t δxψ).

Using Lemma 1.8 again, we get

iD2γ
t

∑

n

ψδxψ =
∑

n

(Aγt δ
2
xψA

γ
t δxψ − Aγt δxψA

γ
t δ

2
xψ) + λ

∑

n

(AγtψA
γ
t δxψ − Aγt δxψA

γ
tψ) = 0.

Therefore,

∑

n

ψn,i+1δxψ
n,i+1 = e−4γ∆t

∑

n

ψn,iδxψ
n,i.

This shows that the method preserves e4γtI1.

Preservation of e4γtI2 by the method can be shown in a manner similar to preservation of the
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same for damped NLS in the previous item. For preservation of e4γtI3, notice that

−D2γ
t

∑

n

|Dxψ|
2 =D2γ

t

∑

n

ψδ2xψ

=
∑

n

(
Dγ
t ψA

γ
t δ

2
xψ + AγtψD

γ
t δ

2
xψ
)

=
∑

n

(
Dγ
t ψA

γ
t δ

2
xψ + Aγt δ

2
xψD

γ
t ψ
)
,

where we have used the summation by parts formula, periodic boundary conditions, and

Lemma 1.8. Now using the method of eq. (4.15), with V (η) = λη, we obtain

−D2γ
t

∑

n

|Dxψ|
2 = −λ

∑

n

(
Dγ
t ψA

γ
tψ +Dγ

t ψA
γ
tψ
)
. (5.25)

Using this in the following

D2γ
t

∑

n

(
−|Dxψ|

2 + λ|ψ|2
)
=− λ

∑

n

(
Dγ
t ψA

γ
tψ +Dγ

t ψA
γ
tψ
)
+ λ

∑

n

(
Dγ
t ψA

γ
tψ +Dγ

t ψA
γ
tψ
)

=0.

Therefore

∑

n

(
−|Dxψ

n,i+1|2 + λ|ψn,i+1|2
)
= e−4γ∆t

∑

n

(
−|Dxψ

n,i|2 + λ|ψn,i|2
)
,

i.e. the method preserves e4γtI3 for the linear Schrödinger equation.

5.3.1.2 Exponential time differencing method

Now, discretizing eq. (4.13) in time with exponential time differencing method (2.13), we obtain

γ∆t

sinh(γ∆t)
KDγ

t z + L+DxA
γ
t z + L−DxTxA

γ
t z = ∇S(Aγt z) + F(Att) (5.26)
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In terms of the original variable, the method becomes

i
γ∆t

sinh(γ∆t)
Dγ
t ψ + Aγt δ

2
xψ + V ′(|Aγtψ|

2)Aγtψ = F (Att). (5.27)

This method will be referred to as ETD in the numerical plots and it should be compared with the

continuous equation (4.7) and method (4.14). We summarize structure-preservation properties of

method (5.27) below. These properties can be derived by informally replacing the time derivative

by γ∆t
sinh(γ∆t)

Dγ
t in the derivation of corresponding properties of the method (4.14).

(i) Method (5.26) is multi-conformal-symplectic because it satisfies following discrete multi-

conformal-symplectic conservation law

γ∆t

sinh(γ∆t)
D2γ
t (1

2
(dz ∧Kdz)) +Dx(A

γ
t Txdz ∧ L+A

γ
t dz) = 0.

(ii) The method preserves e4γtI2 for damped NLS i.e.

∑

n

|ψn,i+1|2 = e−4γ∆t
∑

n

|ψn,i|2.

(iii) The method preserves e4γtIk, k = 1, 2, 3, for linear Schrödinger eq. (5.19):

•
∑

n

ψn,i+1δxψ
n,i+1 = e−4γ∆t

∑

n

ψn,iδxψ
n,i.

•
∑

n

|ψn,i+1|2 = e−4γ∆t
∑

n

|ψn,i|2.

•
∑

n

−|Dxψ
n,i+1|2 + λ|ψn,i+1|2 = e−4γ∆t

∑

n

−|Dxψ
n,i|2 + λ|ψn,i|2.

5.3.1.3 Implicit midpoint method

For the purpose of comparison with a closely related method which is not structure-preserving,

let us discretize time in the semi-discretized system (4.13) with the (symplectic) implicit midpoint
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rule:

KDtz + L+DxAtz + L−DxTxAtz = ∇S(Atz)− 2γKAtz + F(Att).

Rewriting this system in terms of the original variable, one gets

iDtψ + Atδ
2
xψ + V ′(|Atψ|

2)Atψ + 2iγAtψ = F (Att) (5.28)

which should be compared with its continuous counterpart eq. (4.7) and methods given by eqs. (4.15)

and (5.27). Method (5.28) will be referred to as IMP in the numerical plots. It can be easily shown

that the method is neither multi-conformal-symplectic nor does it preserve dissipative properties

of the linear Schrödinger equation and damped NLS.

5.3.2 Numerical results

We now turn to numerical implementation of the methods introduced in the last section. We re-

fer to methods of eqs. (4.15), (5.27) and (5.28) as IF, ETD, and IMP, respectively. We start by

demonstrating structure preservation for linear Schrödinger eq. (5.19) and damped NLS and then

show that the methods successfully capture global attractors for damped driven NLS eq. (4.7). We

compute errors in preserving the invariants of eqs. (5.17) and (5.20) by computing the residuals

Ri
k = log

(
I i+1
k

I ik

)
+ 4γ∆t, (5.29)

where I ik is the numerical approximation of Ik(t
i) for k = 1, 2, 3:

I i1 = ℑ
∑

n

ψn,iDxψ
n,i, I i2 =

∑

n

|ψn,i|2, I i3 =
∑

n

−|Dxψ
n,i|2 + V (|ψn,i|2).

The spectral differentiation matrix operator Dx is implemented using MATLAB’s FFT routine. We

choose Dx, instead of finite difference operators, to reduce error in evaluating Ik’s along numerical

solutions. Let us denote the vector {Ri
k}i by Rk and {I ik}i by Ik for all k. We shall assume
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V (η) = λη and V (η) = 1
2
λη2, with λ = 2, for linear and nonlinear NLS, respectively, in all the

experiments that follow.

5.3.2.1 Linear Schrödinger equation

IF and ETD preserve dissipation in momentum, norm, and energy of linear Schrödinger eq. (5.19).

A plane wave solution of the linear Schrödinger equation is given by

ψ(x, t) = Aeiλt−2γt,

where A is amplitude of the solution. Initializing the three methods with this plane wave we

obtain Figure 5.6. The figure verifies numerical preservation of dissipation in the properties of the

equation by IF and ETD methods.
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Figure 5.6: Plane wave solution, momentum, and norm and energy residuals. The second column

gives I1 because R1 is undefined when the x-derivative of the solution is zero.
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5.3.2.2 Damped NLS

For this part of the experiments, we set F = 0 in eq. (4.7), so that there is no driving force. Plane

wave solutions of eq. (4.7), with F = 0, are given by

ψ(x, t) = Ae−2γt exp

(
iλ|A|2

(
1− e−4γt

4γ

))
,

where A is the amplitude of the plane wave. We plot L∞ errors in Figure 5.7 using the exact plane

wave solution and numerical solutions due to the methods. The figure verifies theoretical spatial

order of the methods. In Figure 5.8, we plot numerical solutions, along with the residuals defined

in eq. (5.29), initialized with the plane wave solution. The figure demonstrates preservation of the

invariant e4γtI2 by IF and ETD methods. For the plane wave solution, which has a spatially flat

profile and hence the x-derivative is zero, all the methods also seem to preserve e4γtI1.

It is well known that the integrable NLS with cubic nonlinearity (V ′(|ψ|2) = λ|ψ|2) has soliton

solutions. Soliton solutions travel and pass through each other maintaining their original shapes.

In our next experiment, we demonstrate collision of two waves for the damped NLS equation in

Figure 5.9. These waves propagate towards each other, collide, and emerge out of the collision

with their original shapes and smaller amplitudes. The initial profile is

ψ(x, 0) = e5ix sech(x+ 1) + 1.5e−5ix sech(1.5(x− 5)).

The figure also demonstrates preservation of dissipation in the norm, e4γtI2, by IF and ETD meth-

ods. For IF and ETD methods, residual R1 becomes large near the time of the collision of the two

peaks but both methods recover after the collision.
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Figure 5.7: L∞ error due to the methods of eqs. (4.15) and (5.27).
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Figure 5.8: Plane wave solution, momentum, and invariant residual.
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Figure 5.9: Soliton collision and invariant residuals. For IF and ETD methods, residual R1 is close

to machine precision except near the time of collision when solution profile is steep at the spatial

location of the collision.

5.3.2.3 Damped driven NLS

When a damped nonlinear pendulum is driven with external force, it shows chaotic behavior in

certain parametric regimes. Similarly, theory predicts chaotic solutions when external driving

force F (t) is included in a damped NLS. For these experiments we assume

F (t) = Γei(ω0t+α).

Where Γ, ω0 and α are amplitude, frequency, and phase, respectively, of the driving force. We set

ω0 = 1, α = 0, and vary Γ. As Γ varies, we observe periodic and chaotic attractors. The initial

condition used is a hyperbolic secant profile

ψ(x, 0) = 3 sech(3x).
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Figure 5.10 shows the amplitude of the numerical solutions and their imaginary versus real parts at

x = 0 for all times. Figure 5.10a shows a periodic attractor and Figure 5.10b shows a temporally

chaotic state. For a temporally chaotic state, the peak of the solutions jumps back and forth between

two different spatial locations. Numerical solutions with a small amplitude at x = 0 correspond to

points near the origin and those with a large amplitude at x = 0 correspond to points far from the

origin in imaginary versus real parts subplots of the figure. For the parameter values chosen, all

the numerical methods are in agreement as they settle down to the same attractor after the transient

phase is over.
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Figure 5.10: Periodic and chaotic attractors of damped driven NLS along with imaginary versus

real parts of numerical solution at all times and x = 0.
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK

This thesis presents and develops a class of exponential Runge-Kutta and partitioned exponential

Runge-Kutta methods. The methods are useful for differential equations with solutions that satisfy

properties of the form I(t) = e−x0(t)I(0). In many cases of interest I is linear, quadratic, or a

symplectic two-form. Because the methods produce solutions that satisfy I(tn+1) = e−x0(h)I(tn)

(under certain restrictions on the coefficient functions), they preserve the properties in a way that

is stronger than other methods that simply guarantee I(tn+1) < I(tn) when x0(h) > 0. Our focus

is on integrating factor methods and exponential time differencing methods, but the theorems on

structure-preservation may also apply to other types of exponential integrators. The strengths

of the methods are illustrated for various integrators applied to several model problems through

numerical experiments.

We have also developed structure-preserving integrators that preserve conservation laws of the

form

∂tP + ∂xQ = −aP

of a PDE. These methods were applied to PDEs and they were shown to satisfy additional structure

in some special cases. When these methods were compared against other non-structure-preserving

methods, the strengths and advantages of structure-preservation were demonstrated. In summary,

our research on structure-preserving numerical methods extends the existing body of knowledge

and provides improvement and deeper understanding of geometric integrators for linearly damped

DEs.

In keeping this thesis taut and focused, we had to put off several interesting perspectives and new

questions have also emerged out of the study. The methods developed here are interesting for con-

servative systems that are perturbed with linear, possibly time-dependent, non-conservative terms,
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and many aspects of the methods are well-understood, thanks to a wealth of prior research on

exponential integrators. Nevertheless, there are several avenues for future research on this topic,

including order conditions for PERK methods, backward error analysis, extension and applica-

tion to partial differential equations, and development of methods that preserve other important

properties of mechanical systems that are perturbed by non-conservative terms.

Often times, a DE has several qualitative properties and a geometric integrator is considered better

than other geometric integrators if the former preserves more qualitative properties of the DE than

the latter. Damped PDEs often have conformal invariants such as momentum, mass, and energy.

It is a natural extension of this thesis to develop such integrators for damped PDEs that have not

been considered here.

Order of accuracy of Runge-Kutta (RK) methods can be obtained by examining whether their coef-

ficients satisfy certain conditions, referred to as the order conditions. To the contrary, exponential

Runge-Kutta methods lack such order conditions except in some specific cases. One way to get

around this is to obtain ERK methods in such a way that their order is obvious by design. Generat-

ing functions are used to design symplectic RK methods of a specified order. Generating functions

approach may also reveal important insights about developing structure-preserving ERK methods

of a specified order.

Geometric integrators for some one-dimensional PDEs can be easily generalized to their higher

dimensional versions whereas others require fundamentally different approach. Preservation of

properties such as volume and measure, of Hamiltonian systems, by numerical methods have been

shown to be advantageous in the literature. However, more research needs to be done to develop

methods which preserve these properties or their dissipation for non-Hamiltonian systems.
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Damped DEs that we consider in this thesis can be cast as a conformal Hamiltonian ODE, a multi-

conformal-symplectic PDE, or a perturbation of these two DEs. Specific forms of these DEs

guarantee differential form(s) that satisfy a damped linear ordinary or partial differential equation.

With this in mind, we introduce the concept of differential forms here. A differential or differential

1-form df of a function f : Rm → R is defined to be

df = fz1dz1 + fz2dz2 + . . .+ fzmdzm

where z ∈ R
m and subscripts denote partial derivatives. This is written in a more compact form as

df = fz · dz,

where dz = [dz1 dz2 . . . dzm]
T is a vector of m differentials and fz is a column vector of

partial derivatives of f . A differential operates on a vector ζ ∈ R
m in the following manner

df(ζ) = fz1dz1(ζ) + fz2dz2(ζ) + . . .+ fzmdzm(ζ).

Notice that this is simply the directional derivative of f in the direction of ζ . The wedge product

df ∧ dg : R2m → R of two differential forms df and dg is defined to be

df ∧ dg(ζ, η) = dg(ζ)df(η)− df(ζ)dg(η).

The left hand side of the above equation is referred to as a differential 2-form. The wedge product

converts a differential k-form into a k+1-form in general. Differential forms are often denoted by

Greek letters ω, κ, τ , etc.

The wedge product of two vector functions is defined in a similar manner. Let

da = [da1 da2 . . . dam]
T and db = [db1 db2 . . . dbm]

T

be two differential 1-forms. Then their wedge product gives a differential 2-form and is defined to
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be

da ∧ db =
m∑

i=1

dai ∧ dbi.

Given three differential 1-forms ω, κ, and τ , which are m-vectors in R
m, one can check following

properties of the wedge product [28]

• (ω + κ) ∧ τ = ω ∧ τ + κ ∧ τ

• (ω ∧ κ) ∧ τ = ω ∧ (κ ∧ τ)

• ω ∧ κ = −κ ∧ ω

• ω ∧ (Aκ) = (ATω) ∧ κ

for any m×m matrix A. It follows from these properties that for a symmetric matrix A ∈ R
m×m

and a differential 1-form dz ∈ R
m, we have

Adz ∧ dz = 0.

Moreover, the converse is also true if A is a constant matrix:

Lemma A.1. If a vector z ∈ R
m and a real matrix A ∈ R

m×m satisfy

Adz ∧ dz = 0,

then A is symmetric.

103



Proof. Equation Adz ∧ dz = 0 implies that




a11 a12 a13 . . . a1m

a21 a22 a23 . . . a2m

a31 a32 a33 . . . a3m
...

am1 am2 am3 . . . amm







dz1

dz2

dz3
...

dzm




∧




dz1

dz2

dz3
...

dzm




= 0,

a12dz2 ∧ dz1 + a13dz3 ∧ dz1 + · · ·+ a1mdzm ∧ dz1

+a21dz1 ∧ dz2 + a23dz3 ∧ dz2 + · · ·+ a2mdzm ∧ dz2

+a31dz1 ∧ dz3 + a32dz2 ∧ dz3 + · · ·+ a3mdzm ∧ dz3

· · ·+ ad1dz1 ∧ dzd + ad2dz2 ∧ dzd + · · ·+ amm−1dzm−1 ∧ dzm = 0.

This implies that

m∑

i=2

(ai1 − a1i)(dz1 ∧ dzi) +
m∑

i=3

(ai2 − a2i)(dz2 ∧ dzi) + · · ·+ (amm−1 − am−1m)(dzm−1 ∧ dzm) = 0.

But {dzi∧dzj}1≤i<j≤m forms a basis of vector space
∧2(Rm) of all differential 2-forms. Therefore

aij = aji for all i, j i.e. A = A
T .

Let us recall that a numerical method with flow map ψh is conformal symplectic if

(ψ′
t(z))

T
J
−1ψ′

t(z) = e−2
∫ t
0
γ(s)ds

J
−1

by eq. (2.41). Therefore, a numerical method with flow map ψt is symplectic if

(ψ′
t(z))

T
J
−1(ψ′

t(z)) = J
−1.

104



Taking the determinant of both sides we see that

det
(
(ψ′

t(z))
T
J
−1(ψ′

t(z))
)
=det(J−1),

det(ψ′
t(z)) =1,

because det(AB) = det(A)det(B) for any two matrices A and B.
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