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ABSTRACT 

 

Metacommunity connectivity, i.e., multi-species dispersal events, is vital to 

metapopulation persistence in patchy landscapes. Assessments of metacommunity connectivity 

are not trivial. However, a relationship between trophic rank and the species-area relationship 

has been found in previous studies, allowing for the use of the predator species-area relationship 

to act as a surrogate measure of actual metacommunity connectivity of prey species in some 

systems. For this study, avian species were selected as they are generalist top predators within 

the study system. Predator species richness within geographically isolated freshwater marshes is 

influenced by a number of factors. I explore the relative roles of patch area, seasonality, 

hydroperiod, isolation, and vegetation structure on habitat use in the isolated freshwater marshes 

embedded within the dry prairie ecosystem of Central Florida. Predator species richness was 

surveyed in 50 sites for three seasons: fall 2005, winter 2005/06, and spring 2006 and the 

observed avian assemblage measures were subdivided into foraging guilds for analysis. Wading 

guild (e.g., egrets, herons, bitterns) species richness was correlated with hydroperiod and 

vegetation structural variables while perching guild (e.g., blackbirds, sparrows, meadowlarks) 

species richness was correlated with isolation, hydroperiod, and area annually. Overall predator 

and all guild species richness measures were also correlated with patch area for all seasons. 

These results suggest that while a complex mixture of patch area, hydroperiod and isolation 

influence habitat utilization that varies by season and at the community, guild and individual 

species level, the underlying predictors that define habitat use in wetlands annually includes 

hydroperiod, and is not exclusively patch area. Additionally, seasonal differences in predator 

species richness were found to be significant in some cases indicating that future avian 

population studies may benefit by sampling outside of the normally studied spring breeding 
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season. Results of this study support the use of predator species richness as a suitable assay of 

metacommunity connectivity of prey species. Applications and implications of this approach 

toward future conservation efforts are discussed. 
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CHAPTER ONE: INTRODUCTION 

 

One of the larger issues that face ecological researchers this century is answering the 

broad scale questions posed by the relatively young sub-discipline of conservation biology. What 

are the effects of anthropogenic changes, e.g. habitat loss and fragmentation, on ecosystem 

biodiversity and what approaches best serve to preserve biodiversity in reserve design? There is 

no simple answer to these questions. Earlier efforts in developing conservation policy relied 

heavily on the theory of island biogeography (MacArthur & Wilson 1967), resulting in larger 

and more continuous patches being preferred over smaller patches for preserving biodiversity. 

Conflicting models and studies contesting the concept of large mainland populations that are 

resistant to extinction, a cornerstone of the theory, and a lack of explicit spatial context within 

the theory led to a paradigm shift in the early nineties (for a good review, see Hanski & Gilpin 

1997). Another theory was put forward as a more effective model, the metapopulation concept 

(Levins 1969). The theory, which states that populations in fragmented landscapes exist as local 

populations within patches that are connected through some level of migration to form a 

metapopulation, allows for the inclusion of habitat spatial context within the landscape and a 

single species level perspective in reserve design formerly not possible in island biogeography 

based studies. The widespread applicability of this concept has led to an explosion in its citation 

within the scientific literature in the past decade (Hanski & Gaggiotti 2004, Kritzer & Sale 

2006). A couple of the foci that have developed in its application to reserve design is the concept 

of landscape connectivity (Tischendorf & Fahrig 2000) and the applications of corridors (Noss 

1993; Noss & Daly 2006). While much has been published on these topics, there is little 

agreement on how to most effectively measure connectivity (Moilanen & Nieminem 2002, 

Calabrese & Fagan 2004) and the usefulness of corridors for conserving biodiversity (Beier 
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1998, Hannon & Schmiegelow 2002, Levey et al. 2005). A primary problem is that these 

concepts are innately species specific in both how they are interpreted and applied. A potential 

solution is to look beyond these concepts as metapopulation scale measures and focus on a 

metacommunity-based approach. 

Metacommunities are defined as a set of local communities, linked by dispersal of 

multiple species that all have the potential to interact with one another (Wilson 1992). Possibly 

the greatest weakness of the metapopulation concept is its single species focus. Past studies of 

metapopulations examining the effects of landscape fragmentation have led to sometimes 

unexpected observations in the responses of individual species and biodiversity (Lindenmayer & 

Franklin 2002; Debinski & Holt 2000). Metapopulation models do not account for the 

interactions of many species existing at multiple trophic levels, interactions that can have 

significant impacts on metapopulation persistence (Harrison & Taylor 1997). To address this 

trophic complexity, the development of a framework for study of community ecology at large 

spatial scales is a necessity (for a good review, see Holyoak et al. 2005). Unfortunately, 

implementation of this framework into empirical studies has been difficult and not widely 

attempted. Few examples, i.e. studies that are explicitly defined as metacommunity studies, can 

be found in the literature. 

One approach to exploring metacommunity structure has been through food web 

dynamics. Studies of food webs and metacommunities have largely been separated until recently 

(Holt & Hoopes 2005), with metacommunities contextualized by spatial characterizations 

through island biogeography theory and species dispersal (Volkov et al. 2003; Lobel et al. 2006; 

Richter-Boix et al. 2007) and food web dynamics focused on trophic structure and predator-prey 

interactions within the community, without concern for spatial influences (Polis et al. 1997; 
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Finlay et al. 2002; Polis et al. 2004). A full discussion of the integration of these two fields of 

study is beyond the scope and focus of this paper, but recent work has led to the synthesis of 

what has been termed “trophic island biogeography” by Holt & Hoopes (2005). The relationship 

of trophic rank to the species-area relationship is described in greater detail in an earlier paper by 

Holt et al. (1999), in which the species richness of predators are found to be correlated with the 

species-area relationship of their prey. The strength of this correlation varies, dependent on the 

whether systems are dominated by specialist or generalist predators (Figure 1). In this study, 

species richness of generalist predators will be investigated in habitat patches subject to cyclic 

stochastic extinctions of local populations for most prey species. Presence/absence of prey 

species resources within patches is indicative of dispersal success or failure. Given the 

established qualitative relationship found in previous studies (Figure 1), the observed predator 

species-area relationship will be tested as a surrogate measure of metacommunity connectivity 

for prey populations.  

Log area
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 Figure 1. Species richness-area relationship as a function of trophic rank and level of 

specialization (adapted from Holt & Hoopes 2005)  
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Birds are a diverse, highly mobile and widespread taxon. They can be found in a variety 

of ecosystems, spanning the globe from tropical rainforests along the equator to the vast 

expanses of tundra above the Arctic circle. Some are heavily specialized and adapted to specific 

environments (Dugger et al. 2005, Koenig 2005, Breininger et al. 2006, Forcada et al. 2006), 

while others are habitat generalists that travel great distances and utilize numerous distinct 

ecosystems along the way (Griffis-Kyle & Beier 2005, Jones et al. 2005). Due to their dispersal 

ability, they are largely exempt from factors that influence habitat selection for other species, i.e. 

many of their prey species, in patchy and fragmented landscapes. Their presence in a habitat 

patch is related to the resources that are available and not a result of the presence or absence of 

dispersal barriers between patches. In the selected system of study, they form an assemblage of 

generalist predators at the top of the food chain, making them ideal for study (Appendix A).  

The selected system of study, geographically isolated freshwater marshes, was chosen for 

three reasons. First, defined as wetlands that are completely surrounded by upland systems 

(Tiner 2003), these ecosystems may have hydrologic connections through ground water flows 

and periodic sheet flow, making them essentially wetland habitat islands within an upland matrix 

that form a naturally patchy landscape. A naturally patchy habitat type is vital to avoid including 

habitat loss as a factor that may influence metacommunity connectivity, confounding results. 

Second, these wetlands are often settings of high biodiversity (Scheffers et al. 2006) and 

endemism (Leibowitz 2003), and previous studies have shown isolated wetlands to support 

diverse communities of invertebrates, amphibians, birds and mammals (Gibbs 1993, Naugle et 

al. 1999, Brooks & Doyle 2001, Bradford et al. 2003, Gibbons et al. 2006, Schooley & Branch 

2006, Zamudio & Wieczorek 2007). Additionally, in recent years, wetlands have come to be 

recognized for the importance of the various ecosystem services and vital habitat they provide 
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(Costanza et al. 1997, Postel & Carpenter 1997, Jackson et al. 2001, Hansson et al. 2005). These 

characteristics make this system exceedingly relevant for study in the development of a new 

measure with such heavy implications for assessing habitat conservation values. Finally, for this 

study to work, local communities, i.e. most of the prey species, must undergo cyclic stochastic 

extinctions. Without regular extinctions, the existence of metacommunity connectivity (multi-

species dispersal events) cannot be confirmed to occur, as local communities may persist. The 

ephemeral nature of the study system assures that only populations of more sessile organisms 

persist, i.e. plant species, with the majority of prey species being reliant on water as a limiting 

factor and subject to cyclic stochastic extinctions.  

 Ultimately, the outcome of this study is three fold. The first objective is to investigate the 

role of area along with other multi-scale factors in establishing metacommunity dynamics within 

isolated freshwater marshes. Focus is placed on measuring multi-scale variables that may 

contribute to foraging habitat use and include in addition to patch area: seasonality, isolation, 

hydroperiod, water depth, percent cover, percent patch edge, and edge stem density. While the 

role of patch area, has long been associated with measures of species richness across a wide 

spectrum of taxa, other variables may also prove useful as predictors of species richness and are 

worthy of investigation. The island biogeography model (MacArthur & Wilson 1967) has served 

as such a dominating paradigm for various ecosystem studies and its application beyond oceanic 

islands and archipelagoes to terrestrial systems has become ubiquitous in ecological literature 

(Dunn & Loehle 1988, Bender et al. 1998, Krauss et al. 2003, Peintinger et al. 2003, Paracuellos 

2006a, Skorka et al. 2006). However, while the species-area relationship is well-established 

(Arrenius 1921, Simberloff 1976, Triantis et al. 2003, Watson et al. 2005, Paracuellos 2006a) 

and is a focus of this study in establishing a surrogate measure of metacommunity connectivity, 
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it may also create a miasma that conceals the importance of other variables such as scale, trophic 

interactions, levels of isolation, and ephemeral characters such as hydroperiod (the length of 

inundation) that can also greatly influence habitat occupation. For example, recent studies have 

tied hydroperiod to species richness for a number of prey organisms, ranging from plants and 

zooplankton to amphibians and mammals (Brooks and Doyle 2001, Weyrauch and Grubb 2004, 

Serrano & Fahd 2005, Tavernini et al. 2005, Battaglia and Collins 2006). The implication being 

that in wetland systems, hydroperiod may be a more accurate predictor of prey species richness 

and possibly an alternative to patch area in assessing metacommunity connectivity worth 

exploration. 

 The second objective is to measure the strength and validity of this approach toward 

measuring metacommunity connectivity. Patch area may serve as a suitable broad scale predictor 

for overall predator species richness, whereas other variables like hydroperiod, isolation and 

vegetation structure tend to act at another level, applicable toward finer scale measures including 

foraging guilds and presence/absence data of individual species (Mortberg 2001, Bradford et al. 

2003, Paracuellos 2006b). This change of scale makes these measures important for studying 

populations in greater detail but tend to be more difficult to measure and usually require 

moderate to extensive field work. Thus, they are less attractive for use in both short and long 

term studies. The purpose of their inclusion in this study is to determine if results of finer scale 

measures coincide with the findings of the broader scale predator species-area relationship that is 

the focus of investigation.   

 Finally, the third objective is to form an argument for the use of this measure, i.e. 

predator/ higher trophic level species richness, in assessing metacommunity connectivity levels 

for forming conservation policy, for expanding the protections granted geographically isolated 
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wetlands, and for the use of predator species richness as an indicator of ecosystem function. 

Habitat loss is occurring at an unprecedented rate. The need for quick, effective measures to 

assess habitat conservation value is clear. While the potential level of information associated 

with this measure is clearly not as great as those found in metapopulation based approaches, it 

does allow for a simple assessment of multiple target conservation areas to direct further, more 

specific and finer scale assessment measures. In the end, expediting the identification of potential 

habitat patches for inclusion in reserve design is the goal of this study.   

 This study tested two null hypotheses concerning the relationship of predator species 

richness with patch area, isolation, hydroperiod and measures of vegetation structure in 

geographically isolated freshwater marshes. 

 

Ho1: Predator species richness is independent of patch area. 

Ho2: Predator species richness is independent habitat patch specific measures including of 

isolation, hydroperiod, and measures of vegetation structure.  
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CHAPTER TWO: METHODS 

 

Study area 

Conservation area description and history 

 Two conservation areas were selected for this study, Three Lakes Wildlife Management 

Area (TLWMA) and Kissimmee Prairie Preserve State Park (KPPSP) (Figure 2). Both areas 

consist of large tracts of dry prairie dotted with widespread isolated freshwater marshes. Dry 

prairie is an ecosystem that is endemic to Florida, distinguished from other Florida habitats by it 

vast treeless expanses and grass-covered nature (Taylor 1998). The ecosystem is thought to have 

a natural fire frequency of 1-3 years, but now is subjected primarily to prescribed burns during 

the winter months (Watts et al. 2004). This shrub-grassland landscape is dominated by wiregrass 

(Aristida stricta), saw palmetto (Serenoa repens), running oak (Quercus pumila & Q. minima) 

and a variety of clonal re-sprouting shrubs including gallberry (Ilex glabra), staggerbush (Lyonia 

fruticosa) and shiny blueberry (Vaccinium myrsinites) (Orzel & Bridges 2004). The term “dry” 

prairie can be misleading as this ecosystem can flood during periods of heavy rainfall and be 

subject to overland sheet flow, however the water table is usually well below ground level 

leading to near xeric conditions throughout most of the year (Abrahamson & Hartnett 1990).  

Both conservation areas have been subjected to significant levels of hydrologic manipulation that 

have affected the natural drainage of water across the landscape, but multiple efforts to restore 

hydrology of the dry prairie to a more natural state, i.e. allowing for greater sheet flow, are 

presently underway or planned (Florida Ecological Restoration Inventory, personal 

communications).  

 The more northern conservation area, TLWMA, was established in 1974 to protect and 

manage the wet prairies and freshwater marshes within the dry prairie ecosystem that provide for 

 8



natural flood storage. Formally known as the Three Lakes Ranch, it was purchased under the 

Environmentally Endangered Lands Program and is administered by the Florida Fish and 

Wildlife Conservation Commission (www.floridaconservation.org). The area allows for a 

number of recreation opportunities, including more intensive activities such as hunting and ATV 

use. Unfortunately, illegal off-road ATV and other vehicle use have led to some habitat 

degradation during the hunt seasons (personal observation).  

 

TLWMA

KPPSP 

Figure 2. Located approximately 45 km south of Orlando, FL, Three Lakes Wildlife 

Management Area (TLWMA) and Kissimmee Prairie Preserve State Park (KPPSP) 

contain two of the largest tracts of remaining dry prairie ecosystem in Florida  
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 The other study area, KPPSP, does not allow for hunting and strictly bans ATV use, with 

exceptions made for land managers and researchers, thus it has virtually no ongoing habitat 

degradation. This 18,500 ha preserve park was established 1998 and lies approximately 24 km to 

the south of TLWMA. While KPPSP policies do allow for a greater level of protection, this 

relatively new conservation area has been subjected to more recent cattle grazing, has over 2,500 

ha of improved pasture lands, and more extensive hydrologic manipulations than TLWMA. 

However, habitat restorations are ongoing here with efforts focused on filling artificial ditches 

and controlling invasive species.  

Wetland patch selection 

 National Wetlands Inventory (NWI) maps were the primary source of data used in the 

site selection process (U.S. Fish and Wildlife Service 2006). The first step in site selection was to 

determine the number and distribution of prospective freshwater marsh sites by patch area. Given 

the dominance of smaller wetland patches in the landscape (Figure 3), sorting by patch area was 

done to insure there was sampling of a continuum of wetland patches of various sizes. Site 

selection involved modification of NWI maps using ArcGIS 9.1 software (ESRI 2006).  An 

altered version of a second GIS map, the Florida Natural Areas Inventory Management Areas 

(FNAIMA) map, which included only the two study conservation areas (Florida Natural Areas 

Inventory 2006), was used to modify the NWI maps so they only included wetland habitat within 

the targeted study areas. Next, a new attribute field was added to the modified NWI map, based 

on whether a wetland was either geographically isolated or connected. Geographically isolated 

wetlands were defined as a wetland patches that were entirely surrounded by upland systems. 

Any remaining wetlands not classified as isolated were considered geographically connected 

either by association with a body of water or being adjacent to a wetland categorized as 
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connected. High resolution aerials (Land Boundary Information System 2005) were overlaid 

with the modified NWI maps to confirm classification decisions. 

 The wetland patch area field attribute was used to generate a histogram of all isolated 

emergent wetlands within the conservation areas. This histogram was divided into five size 

classes with equal numbers of wetland patches (Figure 3). From each size class three groups of 

ten wetlands were randomly selected. One group of ten served as a sampling from the size class, 

while the other groups served as a pool of alternate sites should a selected wetland patch prove to 

be inaccessible for logistical reasons or highly disturbed, i.e. subjected to ditching, ATV damage,  

 
 

 

 

Figure 3. Five size classes for site selection determined from histogram results. Class I is 

comprised of all patches less than .75 ha in size, class II sites ranged between .75 and 1.5 ha, 

class III sites ranged between 1.5 and 3 ha, class IV sites ranged between 3 and 5 ha, class V 

was comprised of all remaining sites larger than 5 ha 
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adjacent to an improved road, or transected by a road. All sites were at least 250 m apart. 

Ultimately, 50 freshwater marsh sites were selected that ranged in size from 0.28 to 9.75 ha, with 

twenty-eight of these sites located at TLWMA and the remaining twenty-two sites at KPPSP 

(figures 4 & 5 and Appendix A). As site selection was completed, the final sites were numbered 

based on a two digit classification system composed of size class (1-5) (Figure 3) and order of 

confirmation (0-9). Sites were numbered as they were accepted, so while this classification 

system allows for a quick assessment of site size based on its number, sites are not ranked within 

classes by size from smallest to largest, i.e. site 18 is not larger than site 10, it was merely 

confirmed later in the selection process (Appendix A). 
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Figure 4. Geographically isolated wetlands (solid black polygons) and connected wetlands 

(cross-hatched polygons) at Three Lakes Wildlife Management Area. Red triangles and 

associated numbers indicate where sampling sites were located within the conservation area. 
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Figure 5. Geographically isolated wetlands (solid black polygons) and connected wetlands 

(cross-hatched polygons) at Kissimmee Prairie Preserve State Park . Red triangles and 

associated numbers indicate where sampling sites were located within the conservation area. 

 Finally, given the 1992 publication of the NWI maps, the information in these maps 

required verification. NWI maps have been shown in previous studies to be accurate (Kudray & 

Gale 2000, Stolt & Baker 1995). However, as an additional check for this study, published NWI 

data of wetland area and associated edge were verified by generating a digitized map from 2005 

high resolution aerials and collecting GPS field measurements using a Trimble Geo XT for each 

selected site. These three measures of area and edge were then compared and tested for 

significant differences (Appendix B). 
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Bird survey methodology and preliminary assessments of accuracy 

 Area counts were conducted at each site and sampling design was primarily modeled 

after the methodology described by Bibby et al. (2000). Three visits were made to each site per 

season, usually within a four-week period. This was done for two reasons, to allow for detection 

of possible changes in site species composition through the season and due to study logistics. 

This was the shortest period possible in which all sites could be sampled to create a “snapshot” 

of the seasonal species richness. Each visit to a sampling site was at least seven to ten days apart 

and if multiple count stations were located at a site, then all stations, at that location, were visited 

on the same day.  

 Prior to starting the first season of sampling, count stations which would act as regular 

stopping points during counts were established with semi-permanent markers at each site. To 

compensate for differences in size of habitat patches, some sites had multiple count stations. 

Sites that were less than 2 ha had one count station, sites having an area between 2 and 5 ha had 

two stations, and sites that were greater than 5 ha in size had three stations (Huff et al. 2000). 

Each station marker was set at least 150 m from any other stations placed at a single site and 

stations were placed to allow for ease of access, most efficient travel between adjacent stations 

and changes in the order in which stations were visited. Finally, count stations were established 

at positions along the edge of the freshwater marsh sites that allowed for the greatest level of 

detection of bird species within or at the edge of the habitat patch.  

 Preliminary counts were conducted during the spring and summer seasons of 2005. The 

purpose of these preliminary counts were threefold: to familiarize myself with the study area, to 

familiarize myself with the avian community present within the dry prairie, and to ferret out 

possible weaknesses in the censusing protocols. Both study areas are vast expanses of land, with 
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site locations being widespread. Time was a limiting factor in effectively assessing species 

composition seasonally, knowledge of the exact locations of all sites and how to reach them as 

quickly as possible was necessary. This period served to allow the observer to get the “lay of the 

land” so to speak. This time also allowed for practicing counts and development of skills to 

quickly and accurately identify species. Finally, observations allowed for habitat specific count 

constraints to be determined and logistic problems in the study design to be discovered. As a 

result, several previously accepted sites were relocated due to logistical time constraints and an 

earlier decision to assess the bird community during the summer season was removed from the 

study design. Due to the size of the study area and the shorter observation period resulting from 

rapid temperature rise in the morning hours, summer counts were simply not feasible.    

 Sampling was spread across three seasons: fall 2005, winter 2005/06 and spring 2006, 

with the summer season being excluded from this study. Fall season counts were made between 

October 27
th

 and November 30
th

, winter counts were made between January 21
st
 and February 

22
nd

, and spring counts were made between March 24
th

 and April 29
th

. Observations were made 

starting at dawn and completed within four hours. Detections of birds within the site habitat 

patch were made by both visual and auditory confirmation. Counts were taken on days with no 

or light winds (<8 km/h) and in no or light fog when conditions for bird detection were 

considered acceptable. When conditions included heavy wind, rain, and/or temperatures greater 

than 29°C, counts were not conducted. The decision to stop counts if temperatures exceeded 

29°C was based on observed drops in avian activity above this temperature. This may be a result 

of a similar drop observed in activity of certain prey species (amphibians, flying insects) within 

sites. While it is unclear exactly why avian activity in isolated wetlands does drop off at 29°C, it 

was clear early in this study that little information on species composition would be gained with 
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observations made at higher temperatures. Finally, weather conditions and time of day of all 

censuses were recorded following Hanowski & Niemi (1995).  

 Each site visit consisted of a five minute count period split into two recording intervals, a 

three minute period spent at the count station, followed by a minimal two minute search period. 

An additional one minute period was included prior to the start of the count period to allow for a 

settling down time after reaching the count station (Gibbons & Gregory 2006). If any bird was 

detected while approaching the count station or flushed upon arrival, it was included in first three 

minutes of the count based on its approximate location within the site. During the count period, 

any species detected was recorded in one of five categories: flushed during count, within 50 m of 

station, greater than 50 m from station, aerial and associated with wetland site, or aerial and 

independent of site. For birds detect by auditory means, distance and location from observer was 

estimated. Additional time was include at the end of the 5-minute count period(s) to allow for a 

short walk through the wetland to flush and/or detect some of the more secretive birds, i.e. 

bitterns, snipes, etc., that hide in the vegetation and may not otherwise be counted. If a site had 

more than one count station, then the path between stations was slowly and quietly walked with 

any observations being split between adjacent stations. Any bird detected in this manner was 

counted in the flushed category. Throughout the count period within a single habitat patch, great 

effort was made to avoid double counting of individuals. Observed birds were tracked to the best 

of the observer’s ability and if a bird was suspected of already being counted for any reason, it 

was not included. For the purposes of data analysis, birds counted as aerial and habitat 

independent were not included in species richness estimates and species presence/absence data. 

Finally, species richness measurements were subdivided by foraging guild and season for data 

analysis purposes. The three foraging guilds were based on the primary foraging characteristic 
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utilized by the species and consisted of swimmers, waders, and perchers (classification of 

specific species into guilds can be found in Appendix A).  

 

Landscape variables 

 Measures of wetland patch area (m
2
) and wetland edge (m) for each site were taken from 

published NWI maps. Isolation indices were determined by utilizing the distance tool in ArcGIS 

9.1 to determine minimum Euclidean distance between two wetland patches. Three measures of 

isolation were calculated, adapted from previous studies that utilized patch isolation indices in 

studies of other habitat types (Lynch & Whigham 1984, Opdam et al. 1985, Brown & Dinsmore 

1986). The first measure, ISOa was the distance in meters from a selected site to the nearest 

isolated wetland. The second measure, ISOb was the distance in meters from a selected site to the 

nearest connected wetland. The final measure, ISOc was the average distance to the nearest five 

isolated wetlands for each site (Figure 6). All isolation measures were between the selected site 

and wetlands having similar vegetation types (i.e. if a forest wetland was closest to a selected 

freshwater marsh, then it was not counted as it is likely to play host to different avifauna).  
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Figure 6. ISOa is represented here by the red line, ISOb is represented by the blue line, and 

ISOc is the average distance of the five green lines.  

Hydrological variables 

 Water depth measures were based on the water depth readings for maidencane (Panicum 

hemitomen) as this ecotope was present and usually the most dominant of all ecotopes at each 

site. Field measures were made with a 1.2 m staff gauge by wading into the wetland 2 m past the 

outer edge of any given ecotope. Initial depth measures were taken for each ecotope present 

(refer to vegetation variables section for an in depth description of ecotope structure in the 

studied freshwater marshes). However, after the first five measurements, only the depth of the 

maidencane ecotope was monitored for the remainder of the study. Maidencane generally was 

the inner most ecotope for each site, so initial measures of the associated outer ecotopes acted as 

a baseline used to calculate water depth during latter visits and estimates of the hydroperiod for 
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other ecotopes. Three measurements of the maidencane ecotope were taken during seasonal bird 

counts and were averaged to generate a seasonal depth measure for each site.  

 Measurement of hydroperiod, the total number of days per year of inundation, was based 

on yearlong measures of water depth for 26 sites at TLWMA taken at ten day intervals. 

Estimates for KPPSP sites were calculated as regular measures at these sites were not logistically 

possible. If a site dried out completely between observations, the date of this event was 

estimated. In conjunction with data on daily rainfall totals and weather conditions, estimates of 

hydroperiod were made for the remaining sites not regularly monitored. While these estimates of 

hydroperiod could not be used to predict water depth, they were found to be accurate through 

field observations during seasonal bird counts. 

 

Vegetation structure 

 Percent cover measures were based on both high resolution aerials and field observations. 

Using a printed outline of the wetland patch perimeter, estimates of percent cover were made in 

the field by drawing the coverage of dominant ecotopes. Most wetland patches have well defined 

ecotopes that form in predictable patterns with sand cordgrass (Spartina bakeri) and wiregrass 

(Aristida stricta) taking peripheral positions as disjoint patches along the wetland edge. St. 

John’s Wort (Hypericum flasviculum) usually forms a large, well-defined outer ecotope 

interspersed with beakrush species (Rynchosporia spp.). Finally, maidencane (Panicum 

hemitomen) and other panic grasses usually form the largest inner ecotope, with pickerelweed  
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Figure 7.The finished percent cover map of site 47 at Kissimmee Prairie Preserve State Park. 

Ecotopes are mapped on the large, central map by distinct colors for each vegetation type. The 

inset provides a reference for comparison between the field map and what can be distinguished 

in the high resolution aerial.   

 

(Pontederia cordata) forming either a much smaller continuous or many patchy zones within the 

maidencane ecotope. The rough field map was then used to generate second map using high 

resolution aerials (Figure 7). Final percent cover estimates of species, vegetated/non-vegetated, 

and woody vegetation/non-woody vegetation coverage were made from these finished maps. 

Percent cover measures did not necessarily add up to 100% as some species ecotopes 

overlapped. Prior to data analysis, species percent coverage were converted using the Domin-
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Krajina scale (Table 4, Appendix A) for visual estimates of cover-abundance (Bullock 2006, 

Levesque 1996). 

 Percent patch edge (PPE) was measured as percentage of wetland edge adjacent to edge 

habitat, where edge habitat was defined as vegetation that was at least one half meter taller than 

the vegetation of the surrounding upland and was denser, older growth vegetation than was 

found in the neighboring upland. This edge was likely an artifact of the limited protection 

provided by the wetland from frequent fire events. This protection could be a result of overflow 

flooding of the wetland into the adjacent upland or due to the wetland acting as shield between 

the upland vegetation and unidirectional fire sweeping across the prairie.  

 Vertical structure within the dry prairie ecosystem was uncommon and was often 

associated with the presence of freshwater marshes. These marshes likely acted to provide 

protection from frequent fires and allowed for the establishment of scattered individuals or 

groups of trees. For some avian species, the presence of this limited vertical structure may act as 

an incentive for utilization of the associated wetland. Vertical structure measures were based on 

assessments of dbh, two size classes were defined. The first size class, VSS, included all vertical 

stems with a dbh less than 5 cm and the second class, VSL, included stems having a dbh greater 

than 5 cm. The total number and location of stems for each size class were counted and mapped 

during field visits within three buffers for each site. These buffers extended out from each 

wetland site perimeter to 10, 20 and 30 m. Final vertical structure maps were generated using 

field notes and high resolution aerials prior to determining size class stem density per square 

meter for each buffer. An abbreviated listing of the previously described variables can be found 

in Table 1. 
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Statistical analyses 

Area measure verification and correlations  

 Wetland patch area measures taken from NWI maps were compared with area measures 

from digitized 2005 aerials and GPS based maps using Paired-sample t-tests to determine if there 

was a significant difference between the area measures of any of these maps. Pearson’s 

correlation test was utilized to determine if there was a correlation between patch area and 

seasonal guild species richness numbers, isolation, hydroperiod, and vegetation structure 

variables. If an area-species richness correlation is found, a model will be derived to generate 

estimates of avian species richness across the landscape. Prior to this test and for all remaining 

statistical analysis, data transformations were made for normality. Area, edge, and isolation 

measures were log transformed, PPE, percent cover, and hydroperiod measures were arcsine 

transformed, and VSS and VSL were transformed using the square root function. Finally, all 

avian species richness measures were transformed using the log (x+1) function. Measures of 

patch water depth and individual species presence/absence data were not transformed prior to 

data analysis. 
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Table 1. List of abbreviations and descriptions of multi-scale predictor variables 

 

Variable Scale Description 

Area Landscape size of habitat patch in hectares 

ISOa Landscape distance of patch from nearest geographically isolated 

  patch with similar vegetation in meters 

ISOb Landscape distance of patch from nearest similar patch that is 

  not geographically isolated in meters 

ISOc Landscape average distance of patch from five nearest similar patches 

  that are geographically isolated in meters  

Hyd_pan Hydrological length of inundation for patch Panicum spp. 

   (Maidencane) ecotope in days 

Hyd_pon Hydrological length of inundation for patch Pontederia cordata 

   (Pickerelweed) ecotope in days 

Hyd_hyp Hydrological length of inundation for patch Hypericum flasviculum (St.  

  John's Wort) ecotope in days 

Hyd_spa Hydrological length of inundation for patch Spartina bakeri  

  (sand cordgrass) ecotope in days 

Water depth Hydrological depth of water in the maidencane ecotope 

Percent 

cover Community percent of coverage of patch by a single type of 

  vegetation 

PPE Community percentage of patch edge that has a denser, taller 

  vegetation than adjacent upland matrix 

VSS Community density of small stems per m2 within 10 m of patch edge 

VSL Community density of large stems per m2 within 10 m of patch edge 

   

 

Avian community seasonal species richness and composition measures 

 Paired t-tests were used to assess if there were differences in seasonal species richness 

and to investigate possible changes in avian community composition by season. Species richness 

can change by season due to a number of factors including variability in prey availability, 

stochastic changes to habitat quality, and/or bolstered numbers from migratory species detected 

in the survey. Concern for the effect of migratory birds in particular on this study led to the 
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investigation of seasonal avian community composition as a possible source of differences in 

seasonal avian species richness. These tests would act as a test for significant seasonal shifts in 

avian community composition, and if species make up did not significantly change, allow for its 

elimination as a source of possible seasonal differences in species richness. A sequential 

Bonferroni test was run to adjust for error associated with multiple comparisons (Rice 1989). 

 

Multicollinearity tests 

 Multicollinearity occurs when one predictor variable is nearly equivalent to the linear 

combination of other predictors. These near linear relationships between predictors can lead to 

erroneous results when calculating multiple linear equations. Collinear variables must be omitted 

prior to calculations to eliminate deleterious effects that can lead to errors in interpreting 

resulting equations. Two approaches were utilized to check for multicollinearity in the sampled 

factors. The first was a principal components analysis (PCA) based approach described by Iles 

(1993). A PCA was performed on the correlation matrix of the variables and then the square root 

of the resultant of the largest eigenvalue divided by the smallest eigenvalue was calculated to 

produce the condition number. If this number exceeded 10, the variables were considered to 

likely be multicollinear. If the number was less than 10, then the variables were deemed 

acceptable. In cases where multicollinearity was detected, collinear variables were determined 

from the resulting output of the PCA conducted on the correlation matrix. The collinear variables 

were then plotted against each other in a scatter plot to confirm collinearity. One of the collinear 

variables was then dropped and the PCA was run again with all the remaining variables to 

determine the resulting condition number. This was done twice, once for each collinear variable. 

The PCA that produced the lower condition number was accepted and the collinear variable was 
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dropped from future analysis. The second approach used to test for multicollinearity was the 

Pearson’s test of correlation (Naugle et al. 1999). Sets of similar factors (i.e., percent cover 

variables, isolation indices) were tested and if any pair of factors were found to have an r value 

greater than 0.3, then one or more of those variables was dropped prior to further data analysis. 

 

Determination of variables related to species richness 

 For each season, guild species richness and all remaining landscape, hydrological, and 

vegetation structure variables that were not found to be collinear were entered into a forward 

stepwise multiple linear regression using the SPSS 13.1 statistical analysis software. Akaike’s 

Information Criterion (AIC) was used to determine the best model (Burnham & Anderson 1998). 

Finally, results of these regressions were then used to assess the strength of the area-species 

richness relationship and support the strength of using patch area and species richness correlation 

data to produce maps for projecting seasonal guild species richness within isolated wetlands for 

each conservation area (Figure 8).  

 

Determination of variables related to species presence 

 For each season, presence/absence data for each species were entered into a forward 

stepwise logistic regression with all remaining community and landscape scale variables after 

multicollinearity testing. The JMP 6.0 software package was used to run all logistic regressions. 

Significant variables remaining after analysis were then used to produce graphs to estimate the 

probability of occurrence for individual species by season. Finally, if possible, effective seasonal 

and annual habitat sizes were estimated from these graphs and a patch would be considered part 

of the effective species habitat when probability of occurrence was greater than 0.5 (Figure 9).   
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Figure 8. Flow chart showing the variable selection for forward stepwise multiple linear 

regressions. Following verification of the accuracy of NWI data and correlation of patch area to 

other community and landscape scale variables, the results of the linear regression were then 

used to confirm the strength of the area-species richness relationship and its validity for mapping 

projected patch species richness across the study area 

 27



Excluded 

community scale 

factors that were 

multicollinear 

Excluded 

landscape scale 

factors that were 

multicollinear 

Entered remaining 

variables into a forward 

stepwise logistic 

regression

 

Population 

presence/absence 

Kept all remaining 

significant variables 

Calculated probability of 

occurrence for all species 

by season 

Calculated and mapped 

effective seasonal and 

annual species habitat size 

across study area  

 
Figure 9. Flow chart showing the variable selection for forward stepwise logistic regression. 

Probability of occurrence was determined seasonally for each species and then probability of 

occurrence was used to estimate and map effective seasonal and annual species habitat sizes 

across the study area. 
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CHAPTER THREE: RESULTS 

Avian richness 

 

 Avian species richness varied greatly by foraging guild and by season (Figure 10). Birds 

classified as perchers showed the greatest species richness for each season and for all foraging 

guilds, species richness peaked during the winter season. Overall, 45 species of avifauna were 

detected during sampling. Broken down by foraging guilds, there were five swimming, 11 

wading, and 29 perching species. Of the 45 species detected, 25 were only detected from one to 

three times during the entire nine-month sampling period, classifying them as either difficult to 

detect or transient species. Despite this variability, there were no significant differences in 

overall avian species composition between seasons based on paired sample t-tests. However,  

 

a b b a a a 

a a b

 

 

 

Figure 10.  Boxplots comparing overall and guild species richness by season. The boxes 

represent quartiles, the darker line is the median, and error bars represent group extremes in 

maxima and minima. Within each group, differences in assigned letter designations for 

seasons indicate significant differences in observed guild species richness 
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seasonal species richness did vary significantly in some cases. Wading guild species richness 

was unchanged between fall and winter seasons, but both of these seasons were significantly 

different from species richness numbers recorded during spring. For the perching guild, fall 

richness numbers were significantly different from the other two seasons, while winter and 

spring numbers did not vary greatly. There were no significant seasonal differences in overall 

species richness. Swimming guild species richness data was included in analysis of overall 

species richness data, however, there were insufficient occurrences of swimming species within 

habitat patches recorded for statistical analysis to be done on swimming foraging guild data 

alone.   

 

Habitat variables 

 Geographically isolated freshwater marshes within the conservation areas varied greatly 

in size, with the majority of sites having an area of less than two hectares (Figure 3). Despite this 

variation in size, most wetland patches have many shared characteristics. Patch edge to area 

ratios are similar for most sites as these isolated wetlands are often formed as near circular, 

gently sloping depressions in the landscape. Sites also shared most of the common ecotopes 

previously mentioned. Although there are similarities in vegetation and shape between wetland 

patches, hydrological and community scale variables including hydroperiod, water depth, percent 

cover, percent patch edge, and edge stem density varied greatly between the sampled wetlands 

(Figure 11). Vegetation coverages for Maidencane, St. John’s Wort, and the beakrush species 

ranged from a low of 10-20% and a high of 40-75% for these ecotopes and the only discernable 

pattern in variations of site hydroperiod was that larger wetlands generally had greater periods of 

inundations for the inner most ecotopes. Finally, there was a correlation between patch area 
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measures and PPE and both measures of edge stem density, VSS and VSL (Table 2). Edge stem 

density measures ranged between 0.0004 and 0.0622 stems·m
2
 for VSS and between 0 and 

0.0043 stems·m
2
 for VSL. Percent patch edge coverage ranged between 5% and 99% for the 

sampled sites. All isolation indices were correlated with patch area measures (Table 3). Isolation 

indices varied greatly among sites, ranging between 118 and 585 m for ISOa, between 153 and 

2931 m for ISOb and between 250 and 747 m for ISOc.  
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Figure 11. Hydroperiod vs. percent cover in sampled wetlands. The largest ecotopes were usually 

panic grasses (Panicum spp.) and St. John’s Wort (Hypericum flasviculum), with the other 

species or cover types forming much smaller or disjoint patches. Generally, pickerelweed 

(Pontederia cordata) and the panic grasses dominated the center of each wetland, usually having 

the longest hydroperiod (total number of days of inundation per year)   
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Table 2. Correlation of area with community scale variables 

Variable Pearson Correlation Sig. (2-tailed) 

 

VSS -0.296 0.037

VSL 0.318 0.024

PPE -0.404 0.004

      

   

     

Table 3. Correlation of area with isolation indices (ISOc was not included due to 

multicollinearity with other measures) 

   

Variable Pearson Correlation Sig. (2-tailed)

 

ISOa 0.398 0.004

ISOb 0.341 0.015

      

   

 

Multicollinearity 

 Using the PCA based approach, patch edge, percent cover of horsetail (Eleocharis spp.), 

wiregrass (Aristida stricta), and beakrush (Rynchosporia spp.), all vertical structure measures in 

the 20 m and 30 m buffers, and beakrush hydroperiod measures were found to be multicollinear 

and dropped prior to statistical analysis. Following up with the Pearson’s correlation test, 

isolation index ISOc and both percent cover and hydroperiod for maidencane were also found to 

be multicollinear and dropped. 

 

Relationship of environmental variables to species richness

 Wading guild species richness was primarily correlated with community level variables 

(PPE, VSL) during the fall season (R
2
 = 0.448) (Table 4). Although additional models were 

produced by the multiple linear regressions, AIC values indicated that only the first two models 

 33



explained the data without to great of a loss in information content. Fall wading guild species 

richness was negatively correlated with both predictors. For the winter and spring seasons, 

wading guild species richness was positively correlated only with hydroperiod measures.  In 

winter, wading guild species richness was positively correlated with pickerelweed hydroperiod 

and negatively correlated with sand cordgrass hydroperiod (R
2 
= 0.529). During the spring 

season, wading guild species richness was positively correlated with pickerelweed hydroperiod 

(R
2 
= 0.562). AIC values indicate all models generated for both these seasons were acceptable. 

Perching guild species richness was correlated with isolation and edge stem density (ISOa, VSS) 

for the fall season (R
2 
= 0.388) (Table 5). Both of these variables were positively correlated with 

fall perching guild species richness. Although three models were produced by the multiple linear 

regressions for this season, AIC values indicated only the first two models were acceptable. 

During the winter season, only sand cordgrass hydroperiod was found to be a predictor variable 

(R
2 
= 0.240), while wetland patch area and water depth, were predictors of perching guild species 

richness in the spring (R
2 
= 0.415). No one variable was found to predict perching guild species 

richness across seasons.  
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Table 4. Results from forward stepwise multiple linear regressions of seasonal wading guild 

species richness and independent variables. Correlation (+ or -) of individual predictors to 

avian species richness is indicated.   

Fall season      

Model R
2

F Sig. Predictors AIC ∆AIC 

1 0.224 5.211 0.035 PPE(-) -21.944 0.000

2 0.448 6.885 0.006 PPE, VSL(-) -18.190 3.755

3 0.598 7.934 0.002 PPE, VSL, ISOa(+) -14.606 7.338

4 0.718 9.569 0.000 PPE, VSL, ISOa, Hyd_spa(-) -10.952 10.992

` 0.833 13.998 0.000 PPE, VSL, ISOa, Hyd_spa, ISOb(+) -6.821 15.124

        

Winter season      

Model R
2

F Sig. Predictors AIC ∆AIC 

1 0.371 10.595 0.004 Hyd_spa(-) -22.357 0.000

2 0.529 9.539 0.002 Hyd_spa, Hyd_pon(+) -18.772 3.586

       

Spring season      

Model R
2

F Sig. Predictors AIC ∆AIC 

1 0.562 23.119 0 Hyd_pon(+) -21.549 0.000

       

Table 5. Results from forward stepwise multiple linear regressions of seasonal perching guild 

species richness and independent variables. Correlation (+ or -) of individual predictors to 

avian species richness is indicated.   

Fall season      

Model R
2

F Sig. Predictors AIC ∆AIC 

1 0.21 4.791 0.042 ISOa(+) -23.153 0.000

2 0.388 5.399 0.015 ISOa, VSS(+) -19.651 3.502

3 0.526 5.914 0.006 ISOa, VSS, PCwater(+) -16.184 6.968

       

Winter season      

Model R
2

F Sig. Predictors AIC ∆AIC 

1 0.24 5.697 0.028 Hyd_spa(-) -29.275 0.000

       

Spring season      

Model R
2

F Sig. Predictors AIC ∆AIC 

1 0.224 5.193 0.035 Area(+) -19.630 0.000

2 0.415 6.027 0.011 Area, Water depth(-) -16.365 3.265
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Estimates of species richness by patch area 

 Overall, wading, and perching guild seasonal species richness were found to be correlated 

with wetland patch area (Table 6). While this correlation was not as strong as those found in the 

regression models, it was significant, matching the expected predator species-area relationship 

described by figure 1. These correlations also varied by season for guilds and overall predator 

species richness with the strongest correlations occurring during winter for wading guild and 

overall species richness and during spring for perching guild species richness. In each case, 

species richness was found to increase with increases in patch size (Figure 12). Given these 

correlations, the linear regression equation for each season of overall, wading and perching guild 

species richness versus patch area comparisons was also used to generate projected seasonal 

species richness by patch area within each of the conservation areas utilized for this study. 

Table 6. Correlations of area with overall and guild seasonal species richness. 

guild/season Pearson Correlation Sig. (2-tailed)

 

overall/fall 0.411 0.003

overall/winter 0.508 0.000

overall/spring 0.493 0.000

 

wading/fall 0.433 0.002

wading/winter 0.496 0.000

wading/spring 0.343 0.015

   

perching/fall 0.359 0.010

perching/winter 0.418 0.002

perching/spring 0.445 0.001
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Figure 12. Correlations of overall(a), wading guild(b) and perching guild(c) species richness 

with patch area.  
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 The expected overall species richness estimated by patch area varied greatly by season. 

The winter season had the highest expected species richness at 11 and the maximum for expected 

species richness never fell below six for all seasons (Figure 13). The winter season also had the 

highest number of patches expected to have zero species present. For the wading guild, results 

were similar for the fall and winter seasons and projected richness never exceeded one annually, 

with the majority of sites projected to have no wading species present. However, expected 

number of patches with wading species present declined greatly for the spring season in 

comparison with other seasons.  Finally, for the perching guild, the greatest expected species 

richness was during the spring season and the lowest species richness is expected during the fall 

season. While estimated overall and guild species richness numbers did fluctuate by season, 

these differences were not found to be significant within any of the guilds. 

 

 

 

 

 

 

 38



11109876543210

Projected Species Richness

500

400

300

200

100

0

N
u

m
b

er
 o

f 
P

a
tc

h
es

 

a) 

11109876543210

Projected Species Richness

1200

1000

800

600

400

200

0

N
u

m
b

er
 o

f 
P

a
tc

h
es

 

b) 

11109876543210

Projected Species Richness

600

400

200

0

N
u

m
b

er
 o

f 
P

a
tc

h
es _spring

_winter

_fall

 

c) 

Figure 13. Comparisons of seasonal differences for projected a) overall, b) wading and  

c) perching guild species richness by number of geographically isolated freshwater marshes  
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Relationship of environmental variables to species presence  

 Of the 45 species detected, only 14 were found to occur in sufficient enough numbers to 

permit forward stepwise logistic regression.  Thirteen of these species were detected for all three 

seasons and the final species, Eastern Towhee, was only present during two seasons. The 

forward stepwise logistic regression was used to ferret out the strongest correlations between 

landscape, community and hydrological variables with individual species presence/absence data 

by season. The results of this analysis were used as a prediction profiler to generate logistic plots 

of the seasonal probability of occurrence for a species. Ultimately, only five of the remaining 14 

species were found to have significant correlations with one or more variables. Presence/absence 

of Red-winged Blackbirds (Agelaius phoeniceus) was found to be correlated with wetland water 

depth (> 51cm) during the fall season and St. John’s Wort hydroperiod (> 248 days) in the spring 

at a 50% or greater chance of occurrence (Figure 14). Eastern Meadowlarks (Sturnella magna) 

were correlated to ISOa during fall and spring season, > 254m and > 169m respectively and area 

(< 0.89ha) in winter (Figure 15). St. John’s Wort hydroperiod (< 267 days) and St. John’s Wort 

percent cover (< 26%) were correlated with Eastern Towhee (Pipilo erythrophthalmus) 

presence/absence in spring and sand cordgrass hydroperiod (< 246 days) in winter (Figure 16). 

Great Egret (Ardea alba) presence/absence was correlated with pickerelweed hydroperiod (> 365 

days) during winter and spring seasons (Figure 17).  Finally, Great Blue Heron (Ardea herodias) 

presence/absence was correlated with ISOb during winter and fall, > 3150m and > 1778m 

respectively, and pickerelweed hydroperiod (> 365) during spring (Figure 18).   
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b) 

 

Figure 14. Logistic plots of probability of Red-winged Blackbird occurrence as a function of  

a) water depth in fall and b) St. John’s Wort (Hypericum flasviculum) hydroperiod in spring. 

Hydroperiod measures are arcsine transformed from total number of days of inundation. Solid 

squares indicate species presence, hollow squares indicate species absence. 
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b) 

c) 

Figure 15. Logistic plots of probability of Eastern Meadowlark occurrence as a function of  

a) isolation in fall and c) spring and b) area in winter. Isolation and patch area measures are log 

transformed from distance in meters and hectares, respectively. Solid squares indicate species 

presence, hollow squares indicate species absence. 
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b) 

 

c) 

 

Figure 16. Logistic plots of probability of Eastern Towhee occurrence as a function of a) sand 

cordgrass (Spartina bakerii) hydroperiod in winter and b) St. John’s Wort (Hypericum 

flasviculum) percent cover and c) hydroperiod in spring. Hydroperiod and percent cover 

measures are arcsine transformed from total number of days of inundation and percent cover, 

respectively. Solid squares indicate species presence, hollow squares indicate species absence.  
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b) 

 

Figure 17. Logistic plots of probability of Great Egret occurrence as a function of hydroperiod in 

a) winter and b) spring. Hydroperiod measures are arcsine transformed from total number of 

days of inundation. Solid squares indicate species presence, hollow squares indicate species 

absence. 
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b) 
 

c) 
 

Figure 18. Logistic plots of probability of Great Blue Heron occurrence as a function of isolation 

in a) fall and b) winter and c) hydroperiod during spring. Isolation measures are log transformed 

and hydroperiod measures are arcsine transformed from distance in meters and total number of 

days of inundation, respectively. Solid squares indicate species presence, hollow squares indicate 

species absence. 
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CHAPTER FOUR: DISCUSSION 

Foraging guilds and habitat use 

 Within the study area, avian species richness in geographically isolated wetlands was 

correlated with multiple variables. Hydroperiod, patch area, water depth, vertical structure and 

isolation all factored into species richness throughout the year. Predictors from multiple scales 

were shown to interact to determine guild species richness and habitat selection (Naugle et al 

1999, Custer et al. 2004, Trocki & Paton 2006). These predictors can and usually do change with 

each season and each foraging guild. These variations are implicitly linked to foraging 

preferences associated with the presence/absence of standing water within the patch habitat.   

During the fall season, water levels were near maximum for most wetland patches, likely 

negating the importance of hydroperiod, water depth, and to a lesser extent area (as an indicator 

of presence of water) as predictors since they are uniform for all patches. For perching guild 

species, this means that isolation and vegetation structure variables act as predictors observed in 

other studies (Ozesmi & Mitsch 1997, Mortberg 2001, Pearman 2002). Perching species focus on 

minimal travel distance between patches (ISOa) and availability of small stem vertical structure 

(VSS) within the wetland. As water levels plateau and begin to drop during winter and spring 

seasons, the predictors for perching guild species richness change. In winter, the focus becomes 

hydroperiod for the sand cordgrass ecotope. This ecotope is a peripheral zone and during this 

season is usually drying out or covered by only a shallow inundation, likely a prime zone for 

foraging for adult and larval stage amphibians, insects, and macroinvertebrates. As the water 

levels draw farther down through spring, foraging for prey associated within the wetland patches 

becomes more difficult. Only the larger patches still have water, so area and water depth become 

the best predictors of perching guild species richness.   
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  A similar story plays out for wading foraging guild species. During the fall season, two 

vegetation structure variables act as predictors. These factors (PPE, VSL) are likely perceived as 

landscape variables, acting as vertical signposts embedded within the otherwise flat, ubiquitous 

landscape of the dry prairie, indicating where wetland habitat can be found from the aerial 

perspective. In the following seasons, as water levels draw down, these other variables fall away 

as predictors and wading species rely heavily on hydroperiod. During winter, both sand 

cordgrass and pickerelweed hydroperiod are predictors, indicating the use of peripheral and the 

more central areas of wetland patches as foraging sites. Finally, as most the water dries out, the 

pickerelweed hydroperiod becomes the sole predictor in spring. Hydroperiod has been found to 

be a strong predictor for many prey species in other studies (Weyrauch & Grubb 2004, Tavernini 

et al. 2005, Battaglia & Collins 2006).  Waders seek out wetlands with a longer hydroperiod and 

forage in the peripheral shallows and mudflats on the exposed macroinvertebrates, amphibians, 

and small fish, changing foraging position as the wetland shoreline recedes or expands.  

 

Species level habitat factors 

   At a finer scale, i.e. the individual species level, predictors of species occurrence varied 

greatly by species and by season. Water depth acted as a predictor of species occurrence for Red-

winged blackbirds during the fall season while St. John’s Wort hydroperiod was a predictor 

during spring. Though both of these predictors represent different variables, they are both types 

of measures of water presence within the wetland patch. This commonality likely indicates the 

importance of water for use of isolated marshes for foraging and breeding. In other studies of 

Red-winged blackbirds, similar results have been found (Ozesmi & Mitsch 1997, Lariviere and 

Lepage 2000).  
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Landscape variables proved the best indicator for probability of species occurrence for 

Eastern Meadowlarks, with ISOa acting as a predictor in fall and spring and patch area a 

predictor during winter. This species showed a preference for patches that were located close to 

other freshwater habitat patches and had a smaller patch area. While this species is generally 

considered a grassland bird, it was observed often within wetland patches during counts, with 

less than half of all sightings associated with the wetland edge habitat, which could be construed 

as upland habitat by some researchers. Little previous work on Eastern Meadowlarks within 

wetlands can be found in the literature and but patch area relations established by previous 

studies of grassland habitat match those found in this study, meadowlarks use smaller wetlands 

over larger patches (Helzer & Jelinski 1999, Horn et al. 2000).   

 A third perching species, the Eastern Towhee, was found in sufficient enough numbers to 

generate probability of occurrence models for two seasons. The Towhee was only present during 

winter and spring, and hydroperiod was found to be a predictor during both seasons. Since the 

Eastern Towhee is generally considered a forest dwelling and breeding species in previous 

studies (Twedt et al. 2000, Lohr et al. 2002), little published data are available concerning its 

habitat use during the non-breeding seasons or its activities in other habitat types. It has also 

been classified as an opportunistic gap species by some studies (Bell & Whitmore 2000, 

Greenberg & Lanham 2001, Fink et al. 2006), explaining its use of “edge” habitat, but its use of 

wetlands and the expansive non-forested dry prairie speaks to the need for more research on this 

and other avian species during non-breeding periods. Its presence in this study was likely a result 

of the prey availability within isolated wetlands provided for all avian species present in the dry 

prairie ecosystem. 
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 Finally, two wading bird species, the Great Egret and Great Blue Heron, were found to 

have higher probabilities of occurrence based on the longer pickerelweed hydroperiod and the 

latter also showed a positive correlation to isolated wetlands that were closer to larger, 

continuous wetlands.   

 

Patch area correlations 

At a broader scale, overall avian and guild species richness were correlated with patch 

area. As expected for generalist predators, it was not a strong correlation, but it was significant, 

making patch area an easily assessed (through the use of high resolution aerials and published 

GIS maps) landscape variable that can be used in conjunction with predator species richness to 

assess metacommunity connectivity as well as to generate projected seasonal patch species 

richness with applicability toward widespread use as a conservation planning tool. In addition to 

confirming metacommunity connectivity, average annual patch overall and guild species 

richness were estimated and maps were generated to show projected clustering patterns that 

occurred within the landscape (Figures 19-21). Additionally, detailed maps of projected patch 

species richness for each season and study area by overall or guild species richness can be found 

in the Appendix C. Ideally, this mapping technique could be used to model the location of 

diversity hotspots in cases were only a select portion of a natural area can be retained for a 

proposed reserve. 

 

 

 

 

 49



 

a) 

 

b) 

Figure 19. Projected average annual overall species richness clusters for a) TLWMA and b) 

KPPSP study areas. Red circles indicate an average species richness of ≤ 1, blue 1-2, orange 2-3, 

green ≥ 3 
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a) 

 

b) 

Figure 20. Projected average annual perching guild species richness clusters for a) TLWMA and 

b) KPPSP study areas. Red circles indicate an average species richness of ≤ 1, blue 1-2, orange 

2-3, green ≥ 3. 
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a) 

 

b) 

Figure 21. Projected average annual wading guild species richness clusters for a) TLWMA and 

b) KPPSP study areas. Red circles indicate an average species richness of ≤ 1, blue 1-2, orange 

2-3, green ≥ 3 
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CHAPTER FIVE: CONCLUSIONS 

 The metacommunity approach toward analyzing and understanding how populations 

persist in patchy landscapes is still in development. However, the potential applications of this 

approach are made clear by the results of this study. By assessing predator species richness in a 

naturally patchy landscape free of significant anthropogenic effects, i.e. habitat loss, this study 

shows that the resulting generalist predator species-area relationship matches the expected 

regression fit line in figure 1, confirming metacommunity connectivity. Its application toward 

systems subject to habitat loss is the next logical step. Habitat loss is generating greatly 

fragmented systems and these newly formed patch networks respond by organizing into 

metacommunities that have issues of connectivity associated with them that change with trophic 

level. The effects of isolation on a habitat patch vary greatly between birds, mammals, 

amphibians, and aquatic microorganisms as each perceives the landscape and dispersal barriers 

differently. The effect of this perception on the resulting metapopulations is not clear, but 

intuitively if a highly mobile predator species is impacted negatively by habitat loss and 

fragmentation, it seems likely that less mobile or sessile organisms could be impacted even more 

negatively. At the same time, the less mobile groups tend to comprise the lower trophic levels, 

suggesting that any negative fragmentation effects could actually cascade up the food web, 

influencing the distribution or existence of top predators within the system. This approach to 

testing for metacommunity connectivity would detect the impacts of habitat loss on a 

metacommunity.  

 Additionally, sound conservation strategies require accurate information about the 

driving forces behind habitat use by local populations and communities. Without the most 

accurate information, management efforts are haphazard and may even be detrimental. This 

 53



becomes clear with the wetland systems studied here. While the species-area relationship works 

well in describing most upland systems, it should be carefully used in wetland systems. Unlike 

their upland counterparts, these systems tend to be ephemeral, expressing temporally dramatic 

local community shifts with changes in hydrology. While area does correlate with predator 

species richness in this study, it does so while water is present. The presence of water drives the 

food web in these systems. Without it, aquatic microorganisms disappear, along with much of 

the macroinvertebrates and amphibians which are prey for the higher trophic predator species, 

i.e. birds. This relationship became apparent during the final season of this study as dried 

wetlands were virtually abandoned in favor of the few remaining marshes still inundated. Water 

is the driving force behind habitat use in geographically isolated freshwater marshes. 

Conservation policies should carefully consider measures to preserve hydrologic state and 

variability in maintaining isolated wetland systems in particular. 

Finally, future studies should expand beyond the species-area relationship and the limited 

metacommunity application explored by this study. Metacommunity studies are the next 

evolution of ecological study toward better understanding the planet and how we can be better 

stewards for its preservation.  The metacommunity concept should be fully explored. Until then 

broad scale measures like predator species richness and patch area will have to remain the 

mainstay for the cautious formation of conservation policy into the near future. 
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APPENDIX A: DATA 
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Species

Foraging 

Guild

Breeding 

Status

Feeding 

Classification Prey

AMBI W Y* Carnivore fish,insects,frogs,crabs, other invertebrates

AMCR P Y Omnivore insects, rodents, snakes, lizards, young birds, seeds and fruit

AMRO P Y* Omnivore insects and fruits

BAEA P N Carnivore fish, birds, carrion

BEKI P N Carnivore fish, crayfish, frogs, and insects

BLVU P N Carnivore carrion

BTGR P Y Omnivore beetles, crayfish, crabs, insects and grain

BWTE S Y* Omnivore mostly seeds and vegetation, insects

CAWR P Y Carnivore insects

CGDO P Y Herbivore grains and seeds

CONI P N Carnivore insects, mostly flying insects  

COYE P Y Carnivore aquatic and terrestrial insects

CRCA P N Carnivore reptiles, birds, mammals,and carrion

EAME P Y Omnivore mostly insects, some seeds and grains

EAPH P N Omnivore insects, also eats fruits

EATO P Y Omnivore insects, earthworms, spiders, seeds and berries 

GBHE W N Carnivore fish, eggs, insects, frogs, snakes, crabs, shrimp, small birds, small mammals

GRCA P Y Omnivore mostly fruits, some insects and other invertebrate

GREG W N Carnivore fish, frogs, snakes, small invertebrates, small birds, small mammals

HOME S N Carnivore small fish, crustaceans, aquatic insects

KILL W Y Carnivore insects and other invertebrates

KIRA W Y Omnivore aquatic insects, seed, and other vegetation

LBHE W N Carnivore fish, frogs, small invertebrates

LEBI W Y* Carnivore fish, insects, frogs, crabs, other invertebrates

LESC S N Carnivore snails, crabs, shrimp, insects

LOSH P Y* Carnivore insects, grasshoppers, caterpillars, rodents, lizards, and small birds

MAWR P Y* Carnivore insects and spiders

MODO P Y Herbivore grains and seeds

MODU S N Omnivore mostly seeds and vegetation, insects, snails

NOBO P N Omnivore grains, grasses, seeds, and insects

NOCA P Y Omnivore seeds and fruits, also insects

NOMO P Y Omnivore mostly fruits, some insects and other invertebrate

OSPR P Y Carnivore fish

PUGA W Y* Omnivore frogs, grasshoppers, spiders, other invertebrates, and aquatic vegetation

RBWO P N Omnivore seeds, nuts, and insects

RSHA P N Carnivore small mammals, lizards, snakes, frogs, crayfish, and insects

RWBL P Y Omnivore seeds, grasshoppers, dragonflies, and other insects

SACR W Y Omnivore plants, seeds, and invertebrates

STHA P N Carnivore birds, particularly red-winged blackbirds and eastern meadowlarks

SWSP P N Omnivore seeds and insects

TRSW P N Omnivore insects and wax myrtle fruits

TUVU P N Carnivore carrion

WHIB W N Carnivore aquatic insects, grasshoppers, crabs, crayfish, small snakes, invertebrates

WISN W N Carnivore worms, insects, and other invertebrates

WOST W N Carnivore fish, frogs, snakes, aquatic worms, crabs, crayfish, other invertebrates

Species list, foraging guild classification, breeding status and associated prey

* denotes species known to breed in habitat and present, but not counted during breeding season  
P denotes species is classified as belonging to the perching foraging guild   

 W

Sources: Sibley, D.A. 2003; National Geographic 2003; Maher, D.S. & H.W. Kale II 2005   

 denotes species is classified as belonging to the wading foraging guild   

S denotes species is classified as belonging to the swimming foraging guild   
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SITE Latitude Longitude Area (ha)

11 27° 52' 05" N 81° 10' 10" W 0.74

12 27° 51' 58" N  81° 09' 44" W 0.58

15 27° 50' 34" N 81° 09' 23" W 0.5

16 27° 49' 25" N 81° 08' 17" W 0.71

17 27° 52' 40" N 81° 10' 15" W 0.52

19 27° 54' 23" N 81° 09' 00" W 0.68

21 27° 53' 32" N 81° 11' 00" W 1.06

23 27° 52' 42" N 81° 10' 22" W 1.19

24 27° 51' 17" N 81° 09' 18" W 1.36

26 27° 53' 55" N 81° 08' 55" W 1.34

27 27° 53' 44" N 81° 08' 32" W 1.01

28 27° 51' 50" N  81° 09' 35" W 1.3

30 27° 51' 22" N  81° 09' 35" W 1.69

31 27° 50' 44" N  81° 08' 51" W 2.02

33 27° 51' 23" N 81° 09' 50" W 1.73

34 27° 49' 30" N 81° 00' 31" W 1.92

35 27° 51' 44" N 81° 10' 14" W 2.46

36 27° 49' 33" N 81° 08' 55" W 2.26

37 27° 53' 44" N  81° 09' 12" W 1.62

38 27° 54' 06" N 81° 08' 48" W 2.01

41 27° 50' 34" N  81° 08' 30" W 3.04

45 27° 51' 44" N  81° 10' 42" W 4.28

46 27° 51 07" N  81° 08' 03" W 3.27

49 27° 52' 36" N  81° 09' 22" W 3.01

54 27° 51 12" N  81° 07' 52" W 5.58

55 27° 50' 35" N  81° 08' 59" W 4.32

57 27° 51' 44" N 81° 09' 14" W 5.71

59 27° 53' 15" N  81° 11' 30" W 9.06

Locations and size of study habitat patches at Three Lakes Wildlfie 

Management Area
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SITE Latitude Longitude Area (ha)

10 27° 34' 16" N 81° 02' 16" W 0.46

13 27° 35' 10" N 81° 05' 38" W 0.59

14 27° 34' 53" N 81° 04' 39" W 0.65

18 27° 35' 01" N 81° 07' 53" W 0.28

20 27° 35' 20" N 81° 05' 50" W 0.92

22 27° 35' 28" N 81° 07' 06" W 1.46

25 27° 35' 10" N 81° 06' 52" W 0.92

29 27° 34' 05" N 80° 58' 43" W 1.45

32 27° 33' 40" N 80° 58' 30" W 3.14

39 27° 35' 26" N 81° 07' 50" W 2.35

40 27° 32' 48" N 80° 59' 24" W 4.04

42 27° 35' 10" N 81° 08' 07" W 2.78

43 27° 33' 46" N 81° 01' 13" W 3.73

44 27° 33' 36" N 80° 58' 50" N 4.05

47 27° 36' 10" N 81° 06' 40" W 4.14

48 27° 33' 54" N 80° 58' 29" W 3.56

50 27° 33' 40" N 80° 59' 10" W 7.62

51 27° 35' 45" N 81° 06' 50" W 7.03

52 27° 36' 12" N 81° 02' 46" W 8.92

53 27° 32' 55" N 81° 01' 02" W 6.04

56 27° 34' 26" N 81° 01' 28" W 6.51

58 27° 34' 32" N 81° 02' 54" W 9.75

Locations and size of study habitat patches at Kissimmee Prairie Preserve 

State Park
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Number of sites species were detected at by season

Species fall winter spring

AMBI 2 1 0

AMCR 5 1 3

AMRO 1 0 0

BAEA 0 1 0

BEKI 1 0 0

BLVU 5 4 3

BTGR 0 0 1

CAWR 0 0 2

CGDO 2 0 3

CONI 0 0 1

COYE 30 40 36

CRCA 1 0 2

EAME 24 35 32

EAPH 4 3 0

EATO 0 20 25

GBHE 3 10 4

GRCA 4 6 1

GREG 10 10 4

HOME 0 4 0

KILL 1 1 0

LBHE 2 0 1

LEBI 2 0 0

LESC 1 2 0

LOSH 1 0 0

MAWR 1 0 0

MODO 2 0 5

MODU 3 5 1

NOBO 0 0 3

NOCA 0 1 2

NOMO 6 6 3

OSPR 0 1 1

RBWO 0 0 2

RSHA 4 7 7

RWBL 13 13 33

SACR 2 3 5

STHA 0 1 0

SWSP 0 1 0

TRSW 0 6 0

TUVU 0 0 2

WHIB 1 0 1

WISN 6 4 1

WOST 0 0 1
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Percent

cover Domin- Braun-

measured Krajina Blanquet

(%) Scale Scale

0 to 0.2 1 1

0.2 to 1 2

1 to 5 3

5 to 10 4 2

10 to 25 5

25 to 33 6 3

33 to 50 7

50 to 75 8 4

75 to 99 9 5

100 10

Percent cover measures and associated scales. Braun-

Blanquet scale included for comparison purposes only
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APPENDIX B: NWI MAP VERIFICATION 
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a) 

b) 

Comparisons of NWI area data with other measures based on a.)2005 high resolution aerials and 

b.)ground GPS mapping of each site. 
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APPENDIX C: SPECIES RICHNESS MAPS 
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a) 

 

b) 

Fall season overall patch species richness estimates for a) TLWMA and b) KPPSP 
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a) 

 

b) 

Winter season overall patch species richness estimates for a) TLWMA and b) KPPSP  
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a) 

b) 

Spring season overall patch species richness estimates for a) TLWMA and b) KPPSP  
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a) 

 

b) 

Fall perching guild patch species richness estimates for a) KPPSP and b) TLWMA 
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a) 

b) 

Winter perching guild patch species richness estimates for a) TLWMA and b) KPPSP  
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a) 

 

b) 

Spring perching guild patch species richness estimates for a) TLWMA and b) KPPSP  
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a) 

b) 

Fall wading guild patch species richness estimates for a) TLWMA and b) KPPSP  

 70



 

a) 

 

b) 

Winter wading guild patch species richness estimates for a) TLWMA and b) KPPSP  
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a) 

 

b) 

Spring wading guild patch species richness estimates for a)TLWMA and b) KPPSP  
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