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ABSTRACT

Outbreaks of infectious diseases can devastate a population. Researchers thus study

the spread of an infection in a habitat to learn methods of control. In mathemati-

cal epidemiology, disease transmission is often assumed to adhere to the law of

mass action, yet there are numerous other incidence terms existing in the literature.

With recent global outbreaks and epidemics, spatial heterogeneity has been at the

forefront of these epidemiological models.

We formulate and analyze a model for humans in a homogeneous population with

a nonlinear incidence function and demographics of birth and death. We allow for

the combination of host immunity after recovery from infection or host susceptibil-

ity once the infection has run its course in the individual. We compute the basic

reproduction number, R0, for the system and determine the global stability of the

equilibrium states. If R0 ≤ 1, the population tends towards a disease-free state. If

R0 > 1, an endemic equilibrium exists, and the disease is persistent in the pop-

ulation. This work provides the framework needed for a spatially heterogeneous

model.

The model is then expanded to include a set of cities (or patches), each of which is

structured from the homogeneous model. Movement is introduced, allowing travel

between the cities at different rates. We assume there always exists a potentially

non-direct route between two cities, and the movement need not be symmetric be-

tween two patches. Further, each city has its own nonlinear incidence function,

demographics, and recovery rates, allowing for realistic interpretations of country-
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wide network structures. New global stability results are established for the disease-

free equilibrium and endemic equilibrium, the latter utilizing a graph theoretic ap-

proach and Lyapunov functions. Asymptotic profiles are determined for both the

disease-free equilibrium and basic reproduction number as the diffusion of human

individuals is faster than the disease dynamics. A numerical investigation is per-

formed on a star network, emulating a rural-urban society with a center city and

surrounding suburbs. Numerical simulations give rise to similar and contrasting

behavior for symmetric movement to the proposed asymmetric movement. Conjec-

tures are made for the monotonicty of R0 in terms of the diffusion of susceptible

and infectious individuals. The limiting behavior of the system as the diffusion of

susceptibles halts is shown to experience varying behavior based on the location of

hot spots and biased movement.
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CHAPTER 1: INTRODUCTION

Throughout history, outbreaks of infectious diseases can be catastrophic within a

civilization. Cholera, measles, SARS, smallpox, and other infections can lead to

devastating amounts of deaths. Viral infections, like measles [31] and chicken-

pox [1], do grant long-term immunity to the host individual after recovery. How-

ever, many bacterial and sexually transmitted infections, such as gonorrhea [11]

and chlamydia [30], have the ability to infect an individual numerous times. Even

tuberculosis also offers no immunity to the host [38]. With such a diverse scope in

the dynamics of each type of infection, strategies for prevention and control have

been at the forefront of many scholars’ research.

Mathematicians, biologists, physicians, epidemiologists, and other researchers have

studied the spread of infectious diseases in a host population. There have been many

outstanding papers published shaping the influence of epidemiology, but three pa-

pers published by Kermack and McKendrick in the early 20th century greatly im-

pacted the field [43–45]. Kermack and McKendrick created a foundation for mod-

eling the spread of an infectious disease within a population. Within these papers,

the susceptible-infected-removed (SIR) compartmental model was first formulated,

which has proven to be effective in modeling diseases that provide immunity to the

host after recovery.

From these models, scholars have been able to expand their work to include dif-

ferent characteristics that might impact the spread of diseases. We can now in-

corporate for more diverse dynamics, like networks in a population, age-structured
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models, demographics, and much more. Compartments can be added in a model

or removed as well. We can remove host immunity and allow infectives to re-

turn to the susceptible class immediately after the infection ends. This creates

a susceptible-infectious-susceptible (SIS) model. For other models, allowing for

a transitioning phase before the individual becomes infectious can be pertinent.

An exposure period is introduced, where the host is infected but cannot transmit

the disease to the susceptible individuals immediately. This type of model can

be classified as susceptible-exposed-infectious-removed (SEIR) or as susceptible-

exposed-infectious-susceptible (SEIS) model, depending on the particular disease;

e.g. [14, 34]. The addition of vectors can help provide insight to mosquito-borne

diseases like Zika [27, 62, 66] and malaria [7, 29, 56] or bacterial infections like

cholera [13, 23, 66].

Researchers are commonly concerned with the global stability of the equilibria in

these systems. A common threshold value, called the basic reproduction number

R0, is often calculated. Biologically, this threshold parameter represents the num-

ber of secondary cases resulting from a single infectious individual introduced into

a wholly susceptible population, see [21] and [68]. If R0 ≤ 1, the disease should

become extinct, leading researchers to be concerned with global stability of the

disease-free equilibrium. If R0 > 1, the disease should persist and give rise to the

existence of an endemic equilibrium. For the homogeneous model, we have com-

mon Lyapunov functions and methods used to guarantee global asymptotic stability

of this disease-free and endemic equilibrium; e.g. [14, 35, 36, 46, 67, 69].

Since these homogeneous populations have been meticulously studied, the sensible
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next step is to investigate the impact on the disease dynamics when neighboring

populations interact. Global outbreaks have been prominent throughout history.

The SARS epidemic from 2002-2003 spread from China to Singapore, Vietnam,

Taiwan, and numerous other countries in the Asia-Pacific region [40]. In 2009, the

H1N1 influenza caused a widespread epidemic across the United States and into

Mexico [50]. The Ebola virus ravaged several countries in West Africa [16]. The

Zika virus gained prominence in the news after cases began appearing in Brazil,

Puerto Rico, and other nations [25]. More recently, another Ebola virus outbreak

occurred in the North Kivu and Ituri provinces in the Democratic Republic of the

Congo [75]. Although these infections may have been dominant in one nation,

travel between neighboring populations may lead to a global spread.

Models involving spatial heterogeneity have been considered lately as a result of

these global epidemics. If the spatial habitat is assumed to be discrete, a patchy

environment emerges, where each region or city is represented by a patch in the

environment. The disease dynamics within each patch can be described by the ho-

mogeneous epidemiological model mentioned before, while travel between patches

couples these homogeneous models together, forming a heterogeneous model. Due

to the high dimension and nonlinearity, complex dynamical phenomena can arise

in heterogeneous disease models, which also pose significant challenges in their

mathematical investigation. For example, Kang and Castillo-Chavez showed dif-

ferent dynamics existed for a two-patch SI model in 2014 [42]. Depending on the

strength of dispersal of individuals, source-sink dynamics, stabilization, or synchro-

nization were exhibited within the model. As a result, studying global stability can

be a challenging barrier to overcome, since the dynamics can vary widely as a result
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of the coupling and high dimension.

Many researchers have made great advances into the mathematical investigation of

these models though. Wang and Mulone [70] proposed a two patch SIS model in

2002 and proved global stability for the disease-free equilibrium. Local stability

results are established for the endemic equilibrium when movement of susceptibles

or infectives is inhibited. In 2003, Arino and van den Driessche [9] established an

n-patch SIS model. They proved local stability results for a constant population

size, and numerical simulations indicated R0 acts as a threshold between extinction

and persistence of the infectious disease. That same year, Arino and van den Driess-

che [8] provided lecture notes on calculating the basic reproduction number for a

multi-city SEIRS model and proving local asymptotic stability of the disease-free

equilibrium. Wang and Zhao [71] proposed an SIS model in a patchy environment

allowing for a varying population size in 2004. Arino [5] published lecture notes

regarding known structures and techniques to study global stability of the disease-

free equilibrium and existence of an endemic equilibrium. In 2017, Arino [6] fur-

ther showed the persistence of a population under certain movement criteria and

provided restrictions for local stability in an SLIRS (susceptible-latent-infective-

recovered-susceptible) population. Global stability for the disease-free equilibrium

is established when the dispersal of individuals occurs at the same rate, while vary-

ing dispersal can allow for the spread of the infection even when the disease would

not persist in isolated patches.

Techniques to establish global stability of the endemic equilibrium are not as read-

ily known. Currently, there are two main methods to obtaining such stability results.
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For the patch SIR model, a graph theoretic approach has been used in the construc-

tion of a Lyapunov function to prove global stability of the endemic equilibrium,

e.g. [53]. In the case of an SIS patch model, theory from monotone dynamical

systems can potentially be used if the patch model can be reduced to a monotone

dynamical system, e.g. [28, 41, 65]. However, if the system cannot be reduced,

global stability results regarding the endemic equilibria are still widely left open.

Since the homogeneous systems can be more readily studied, we can utilize the

knowledge regarding the dynamics on each patch to study the dynamics of the

coupled system. For instance, studying the asymptotic profile of the system has

proven to be beneficial in studying these global dynamics. In 2007, Allen, Bolker,

Lou, and Nevai [2] showed the limiting behavior of the population in a patch SIS

model, in which patches were classified as high-risk and low-risk for the infection.

Movement between patches was assumed symmetric, allowing them to show the

infectives tended towards extinction as the movement of the susceptible individuals

halted. Further, the susceptible population persisted on the low-risk patches, lead-

ing to important implications for the control of an infection. This paper in particular

sparked inspiration for the impact of the effect of asymmetric movement on the spa-

tial spread of an infection in a heterogeneous environment. Results regarding asym-

metric movement are largely open for the discrete spatially heterogeneous habitat,

but researchers in partial differential equation models have made some progress in

the field.

If the spatial habitat is assumed to be continuous, a partial differential equation

model can be used to describe the spatial spread of the infectious disease. These
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models can incorporate asymmetric or symmetric movement by using an advection-

diffusion model or a convection-diffusion model. For example, Allen, Bolker, Lou,

and Nevai [3] produced results similar to the patch model [2] regarding this partial

differential equation SIS model. Since then, researchers have been able to show

various phenomena within these types of heterogeneous disease models, see for ex-

ample [20, 59, 61, 74]. Recently, Cui, Lam, and Lou included advection in the SIS

partial differential equation model and explored the impact of asymmetric move-

ment (advection) on the disease spread [18]. Other researchers have also incor-

porated the use of advection into their models, which has helped in determining

whether the infection will persist in this heterogeneous environment [17,19,47,58].

These studies on advection models motivate our studies in the patchy environment.

In this thesis, we will propose a general framework of a heterogeneous model in

a patchy environment to investigate the spatial spread of an infectious disease. In

particular, our model will include both the SIS and SIR models as special cases,

where both models cannot be reduced to a monotone dynamical system. The global

stability of the endemic equilibrium for both the SIS and SIR models will be es-

tablished using the graph theoretic approach. With this framework, we are able to

explore how biased movement can affect disease transmission and spread in a het-

erogeneous environment. For example, if an outbreak occurs in a city, people may

travel out rapidly to try to avoid the infection. With this skewed movement, will an

outbreak spread throughout the country? On the contrary, if the movement between

cities stays symmetric, will the dynamics stay the same? Will halting the move-

ment of susceptible individuals allow for extinction of the infection as in [2]? To

answer these questions, we will utilize our knowledge and techniques from the ho-
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mogeneous model to help obtain these results in the spatially heterogeneous model.

Specifically, we will investigate how asymmetric movement ultimately effects the

spatial spread of the disease theoretically and via simulations. Many varying dy-

namics will be incorporated in our model to account for the diverse differences

between cities. This highlights the difference of symmetric and asymmetric move-

ment on the disease impact.

This document is arranged in the following chapters:

In Chapter 2, we propose a general framework of homogeneous infectious disease

models and provide basic results in mathematical epidemiology. Sharp-threshold

results are revisited, along with the terminology and background for this foundation

model. We also provide the necessary definitions and terminology from matrix

theory and graph theory.

In Chapter 3, a spatially heterogeneous model is built based on the homogeneous

model in Chapter 2, which also incorporates nonlinear incidence. We allow a vary-

ing population size, with each patch varying at a different rate. Each patch will

have its own dynamics and directed asymmetric movement is permitted between

the patches. Existence and uniqueness of the disease free equilibrium is proven.

We determine the threshold value, R0, for this heterogeneous model. Global sta-

bility results for the disease-free equilibrium and varying cases for stability of the

endemic equilibrium for both the SIS and SIR models are established.

In Chapter 4, the limiting profile for both the disease free equilibrium and the basic

reproduction number are derived when the diffusion of human individuals is faster

7



than the disease dynamics. An explicit form is calculated for two well-known inci-

dence functions.

In Chapter 5, we employ a star network to simulate the spread of an infectious

disease in a metropolitan area. The frequency dependent incidence function is used

in this chapter, while mass action incidence is used in Chapter 6. Known results for

a population without demographics are revisited via simulations, and we determine

the demographic effect in persistence of an infection. The impact of asymmetric

movement on disease persistence is investigated when no demographics are present.

In Chapter 6, the monotone/non-monotone property of the basic reproduction num-

ber in terms of diffusion coefficients is explored numerically. A new phenomenon

of a movement induced hot spot is demonstrated.

In Chapter 7, the results are summarized and ideas for future studies are formulated.
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CHAPTER 2: PRELIMINARIES

2.1 Mathematical Epidemiology

In this section, we will provide terminology, concepts, and new results within math-

ematical epidemiology to be used throughout this thesis.

When creating a compartmental epidemiological model, the population is divided

into different compartments of individuals that depend on the type of infection we

want to study. In this section, we present a general homogeneous model that com-

bines the SIS and SIR compartmental models. By allowing for an arbitrary inci-

dence function, which represent the rate of new infections in the population, this

model can be used in various future epidemic studies. We begin by investigating

this homogeneous model, providing the framework to introduce spatial interaction

between neighboring populations in Chapter 3.

2.1.1 A Basic Homogeneous Model

Consider the following homogeneous epidemiological model that includes demo-

graphics, i.e. birth and death within the population. We have

S ′ = Λ− f(S, I)− µSS + δI, (2.1)

I ′ = f(S, I)− (µI + γ + δ)I, (2.2)

R′ = γI − µRR, (2.3)
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where S = S(t), I = I(t), and R = R(t) represent the population density of

susceptible, infectious, and removed individuals, respectively, at time t, with non-

negative initial conditions S(0), I(0), R(0), and S(0) + I(0) +R(0) > 0. Here ′ is

the derivative with respect to time. Table 2.1 provides an outline for the parameter

definitions. Each of these parameters Λ, µS , µI , and β are positive values, while δ

and γ are non-negative. Figure 2.1 gives a visualization of the model.

µSS µII µRR

S I R
Λ f(S, I) γI

δI

Figure 2.1: Flowchart for the basic model with demographics.

Table 2.1: A table outlining the parameters used in (2.1)-(2.3)

Parameter Definition Units

Λ birth rate of susceptible individuals people/time
β transmission coefficient (people · time)−1

µS death rate of susceptible individuals time−1

µI death rate of infectious individuals time−1

µR death rate of removed individuals time−1

δ, γ disease recovery rates time−1

Notice the model (2.1)-(2.3) includes both the SIS and SIR model as special cases.

For example, if γ = 0 and δ > 0, host immunity is lost and R is completely
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decoupled from the system, resulting in a Susceptible-Infectious-Susceptible (SIS)

model. On the other hand, if γ > 0 and δ = 0, all individuals recovering from the

infection gain immunity, yielding a Susceptible-Infectious-Removed (SIR) model.

The incidence function f(S, I) can take many forms. For instance, if one assumes

an average member of the population makes contact sufficient to transmit the in-

fection with βN̄ others per unit of time, where N̄ = S + I + R denotes the total

population size, the number of new infections per unit time is βN̄ ·S/N̄ . This leads

to the rate of new infections as f(S, I) = βN̄ ·S/N̄ ·I = βSI , commonly known as

mass action incidence. Another option for the incidence function is βSI/N̄ , called

standard incidence [14, Chapter 2]. Additionally, there are other nonlinear inci-

dence terms, such as βSI/(S + I), βSqIp, and βSIp/(1 + αIp); see [2], [52], [37]

respectively.

The following assumptions on f(S, I) are required either biologically or for the

need of mathematical rigor:

(i) f(S, I) ≥ 0 for all S, I ≥ 0;

(ii) f ∈ C([0,∞)×[0,∞)); i.e. f is continuous for 0 ≤ S < ∞ and 0 ≤ I < ∞;

(iii) f(S, 0) = f(0, I) = 0 for all S, I ≥ 0;

(iv) lim
I→0+

f(S, I)

I
exists for all S ≥ 0.
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Since R does not appear in (2.1) and (2.2), we can study the reduced system

S ′ = Λ− f(S, I)− µSS + δI, (2.4)

I ′ = f(S, I)− (µI + γ + δ)I. (2.5)

Then, the dynamics of R can be further studied.

2.1.2 Disease-Free and Endemic Equilibria

The system (2.4)-(2.5) admits two types of equilibria: a disease-free equilibrium

(DFE), denoted P 0 = (S0, 0) with S0 =
Λ

µS
, and a possible endemic equilibrium

(EE), denoted P ∗ = (S∗, I∗) where S∗ > 0 and I∗ > 0. A solution to the EE must

satisfy

0 = Λ− f(S∗, I∗)− µSS∗ + δI∗, (2.6)

0 = f(S∗, I∗)− (µI + γ + δ)I∗. (2.7)

The existence of an EE will be further discussed in Section 2.1.6.

2.1.3 Feasible Region

Biologically, a population cannot contain negative individuals, but there are other

conditions arriving from our system. Let µ∗ = min{µS, µI+γ+δ} and N = S + I ,

where N represents the total population influencing the disease dynamics. It fol-
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lows that

N ′ = S + I ≤ Λ− µ∗N.

Solving the differential inequality, we arrive at N(t) ≤ Λ/µ∗ − N(0)e−µ∗t, and

hence lim sup
t→∞

N(t) ≤ Λ/µ∗. We call our feasible region Γ and define it as

Γ =

{
(S, I) ∈ R

2
+

∣∣∣∣S + I ≤
Λ

µ∗

}
.

A region is positively invariant with respect to a system if trajectories that start

within the region remain there for all time, see [76] and [33].

Lemma 2.1.1. Feasible region Γ is a positively invariant set and globally attractive

with respect to (2.4)-(2.5).

Proof. Note that

dS

dt

∣∣∣
S=0

= Λ + δI > 0 and
dI

dt

∣∣∣
I=0

= 0,

hence S and I are non-negative if S(0) ≥ 0 and I(0) ≥ 0. Further, since

N ≤ Λ/µ∗ −N(0)e−µ∗t,

we obtain N ≤ Λ/µ∗ if N(0) ≤ Λ/µ∗, giving us Γ is a positively invariant set. If

N(0) > Λ/µ∗, then lim sup
t→∞

N(t) ≤ Λ/µ∗. Thus, Γ is globally attractive.

�
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2.1.4 Basic Reproduction Number

To study local stability of our equilibrium points, we typically linearize the sys-

tem around the equilibrium point and study the eigenvalues of the corresponding

Jacobian matrix; e.g. [32, Chapter 4].

For example, consider a system of autonomous ordinary differential equations

ẋ = f(x),

where x = (x1, x2, . . . , xn)
T and f = (f1, f2, . . . , fn)

T . Suppose an equilibrium x
∗

exists such that f(x∗) = 0. The Jacobian matrix

J =




∂f1
∂x1

∂f1
∂x2

· · ·
∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · ·
∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · ·
∂fn
∂xn




is then evaluated at the equilibrium to obtain the matrix J(x∗). From Theorem 4.4

of [32], x∗ will be locally stable if all eigenvalues of J(x∗) have negative real part.

In mathematical epidemiology, a basic reproduction number, R0, is often calculated

to determine the stability of the DFE, and hence correspondingly determining the

dynamics of the disease. Biologically, the basic reproduction number is the average

number of secondary cases produced by a single infectious individual when intro-
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duced in a wholly susceptible population; e.g. [4], [21], and [68] and [14, Chapter

6]. In order to compute R0 for an epidemiological model, the method of the next-

generation matrix will be used; e.g. [21], and [68].

We will study the infectious compartment and linearize around the disease-free

equilibrium. The infectious compartment can be split into two categories:

ẋi = fi(x) = Fi(x)− Vi(x), i = 1, 2, . . . , n,

where Fi(x) is the rate of new infectious individuals in compartment i and Vi(x)

is the rate of transfers of infectious individuals out of compartment i. Essentially,

these will be infectious individuals recovering, being quarantined, dying, or moving

to some other category set-up by the compartmental model.

We linearize this splitting about the disease-free equilibrium, x0, to obtain

ẋ = (F − V )x,

where x = (x1, x2, . . . , xn)
T , F − V = Df(P 0), and f = (f1, f2, . . . , fn)

T .

Here F represents the rate of appearance of new infected individuals and V is com-

prised of the number of infected transferred between patches. From [21], the ma-

trix FV −1 is the next-generation matrix for the model. Biologically, the entries

of FV −1 represent the expected number of new infections produced by this single

infectious individual introduced into the population.

We can then define R0 = ρ(FV −1), where ρ represents the spectral radius. Theo-
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rem 2 of [68] shows the the disease-free equilibrium is locally asymptotically stable

if R0 < 1 but unstable if R0 > 1. This is equivalent to showing the eigenvalues of

F − V have negative real part.

If the partial derivative of f with respect to I exists, then ∂f

∂I
(S0, 0) = limI→0+

f(S0,I)
I

.

The assumptions on f guarantee this Jacobian matrix exists without requiring the

differentiability of f . Thus, for system (2.4)-(2.5), we can perform this splitting to

find the basic reproduction number. Define the 1× 1 new disease matrix

F =

[
lim
I→0+

f(S0, I)

I

]

and the 1× 1 disease transfer matrix

V =

[
µI + γ + δ

]
.

The next-generation matrix is FV −1 =

[
1

µI + γ + δ
· lim
I→0+

f(S0, I)

I

]
and hence

for system (2.4)-(2.5), the basic reproduction number is

R0 =
1

µI + γ + δ
· lim
I→0+

f(S0, I)

I
. (2.8)

2.1.5 Global Stability of Disease-Free Equilibrium

From Theorem 2 of van den Driessche and Watmough [68], we know the DFE is

locally asymptotically stable if R0 < 1 and locally unstable if R0 > 1, giving us

the following proposition.
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Proposition 2.1.2. If R0 < 1, the DFE of (2.4)-(2.5) is locally stable. If R0 > 1,

the DFE is unstable.

The following results show the DFE is globally asymptotically stable if R0 ≤ 1.

Theorem 2.1.3. Assume R0 ≤ 1, and

0 ≤ f(S, I) ≤

(
lim
I→0+

f(S0, I)

I

)
I (2.9)

with equality if and only if S = S0. Then the DFE is globally asymptotically stable

in Γ.

Proof. Using the Lyapunov function L = I , we can obtain global asymptotic sta-

bility.

Taking the derivative of L along a trajectory in Γ gives us

L̇ = I ′

= f(S, I)− (µI + γ + δ)I

≤

(
lim
I→0+

f(S0, I)

I

)
I − (µI + γ + δ)I

=
1

µI + γ + δ
(R0 − 1) I

≤ 0

since R0 ≤ 1. Now, L̇ = 0 implies either R0 = 1 or I = 0. If R0 < 1, then we

must have I = 0 and hence S = S0. If R0 = 1, from our assumption we obtain
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S = S0. As a result, the largest invariant set in Γ is thus the singleton {P 0}. By the

LaSalle Invariance Principle [49], we obtain P 0 is globally asymptotically stable.

�

Commonly used incidence functions in the literature satisfy condition (2.9). In par-

ticular, the following corollary holds for the frequency dependent incidence func-

tion.

Corollary 2.1.4. Let f(S, I) = β
SI

S + I
, then R0 =

β

µI + γ + δ
. If R0 ≤ 1, the

disease-free equilibrium P 0 of (2.4)-(2.5) is globally asymptotically stable in Γ.

Proof. Note that

(
lim
I→0+

f(S0, I)

I

)
I =

(
lim
I→0+

S0

S0 + I

)
I

= I,

and

0 ≤
SI

S + I
≤ I,

with equality holding if and only if I = 0 and hence S = S0. Thus, the frequency

dependent function f(S, I) = β
SI

S + I
satisfies condition (2.9), giving us global

asymptotic stability.

�

For mass action incidence, condition (2.9) will hold for the SIR model. Since
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S ′ = Λ− f(S, I)− µSS

≤ Λ− µSS,

solving this differential inequality leads to lim supt→∞ S(t) ≤
Λ

µS
= S0. Thus, the

additional condition S(t) ≤ S0 can be imposed in the feasible region. As a result,

condition (2.9) is satisfied, leading to the following corollary.

Corollary 2.1.5. Let f(S, I) = βSI and δ = 0, then R0 =
Λβ

µS(µI + γ)
. If R0 ≤ 1,

the disease-free equilibrium P 0 of (2.4)-(2.5) is globally asymptotically stable in

Γ.

Proof. Note that

(
lim
I→0+

f(S0, I)

I

)
I =

(
lim
I→0+

βS0

)
I

= βS0I,

and since

0 ≤ βSI ≤ βS0I

with equality holding if and only if I = 0 or S = S0. Thus, the mass action inci-

dence function f(S, I) = βSI satisfies condition (2.9), giving us global asymptotic

stability.

�
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A similar argument cannot be applied for the SIS model. In Section 2.1.8, the SIS

model with mass action incidence will be further discussed.

2.1.6 Existence of Endemic Equilibrium

An explicit expression of the EE exists for certain types of incidence functions. For

example, if f(S, I) = βSI , we obtain P ∗ = (S∗, I∗) where

S∗ =
µI + γ + δ

β
, (2.10)

I∗ =
µS

µI

(
S0 − S∗

)
(2.11)

=
µS(µI + γ + δ)

βµI
(R0 − 1) . (2.12)

For the frequency dependent incidence function, f(S, I) = βSI/(S + I), the EE is

given by

S∗ =
Λ− (µI + γ + δ)

µS + (R0 − 1)δ
, (2.13)

I∗ =
(R0 − 1)(Λ− (µI + γ + δ))

µS + (R0 − 1)δ
. (2.14)

Theorem 2.1.6 shows existence of an endemic equilibrium for a general incidence

function when R0 > 1 through the theory of uniform persistence.

Theorem 2.1.6. If R0 > 1, then there exists at least one endemic equilibrium

P ∗ = (S∗, I∗) for the system (2.4)-(2.5) in the interior of Γ.
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Proof. Let L = I . Then,

L̇ = f(S, I)− (µI + γ + δ)I

=

(
f(S, I)

I
− V

)
I,

where V is as defined in Section 2.1.4. Note, lim(S,I)→(S0,0)

f(S, I)

I
= F . Taking

the limit of L̇ as the system approaches the disease-free equilibrium, we obtain

lim
(S,I)→(S0,0)

L̇ = lim
(S,I)→(S0,0)

(
f(S, I)

I
− V

)
I

= (F − V ) lim
(S,I)→(S0,0)

I

= V
(
FV −1 − 1

)
lim

(S,I)→(S0,0)
I

= V (R0 − 1) lim
(S,I)→(S0,0)

I.

Thus, if R0 > 1, we have L̇ > 0 for some neighborhood Nǫ(P0) about P0, im-

plying P0 is unstable. Trajectories beginning close enough to the DFE will thus

leave Nǫ(P0). The system (2.4)-(2.5) is uniformly persistent by [26, Theorem 4.3]

utilizing a similar argument as in [51, Proposition 3.3]. Boundedness of solutions

and uniform persistence in the interior of Γ thus imply the existence of at least one

endemic equilibrium (see Theorem D.3 in [64] or Theorem 2.8.6 in [12]).

�
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2.1.7 Global Stability of Endemic Equilibrium

In this section, we will assume R0 > 1, and hence by Theorem 2.1.6, an endemic

equilibrium exists.

Proposition 2.1.7 provides criteria for f to obtain global asymptotic stability for an

SIR model.

Proposition 2.1.7. Let R0 > 1, δ = 0, and γ > 0. Assume

(S − S∗) (f(S, I∗)− f(S∗, I∗)) ≥ 0 (2.15)

and

(
f(S, I)

f(S, I∗)
− 1

)(
1−

f(S, I∗)

f(S, I)

I

I∗

)
≤ 0 (2.16)

with equality if and only if (S, I) = (S∗, I∗). Then the endemic equilibrium

P ∗ = (S∗, I∗) is unique and globally asymptotically stable in the interior of Γ.

Proof. At the endemic equilibrium, we have

Λ = f(S∗, I∗) + µSS∗

µI + γ =
f(S∗, I∗)

I∗
.

Consider the Lyapunov function

V =

∫ S

S∗

(
1−

f(S∗, I∗)

f(ξ, I∗)

)
dξ + I − I∗ − I∗ ln

I

I∗
.
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We will utilize

∫ x

1

1− u

u
du < 0 when x > 1, and n n

√
n∏

i=1

ai −
n∑

i=1

ai ≤ 0, with

equality if and only if each ai are equivalent. Taking the derivative of V along a

trajectory in Γ gives us

V̇ = S ′ −
f(S∗, I∗)

f(S, I∗)
S ′ + I ′ −

I∗

I
I ′

= Λ− f(S, I)− µSS −
f(S∗, I∗)

f(S, I∗)

(
Λ− f(S, I)− µSS

)

+ f(S, I)− (µI + γ)I −
I∗

I

(
f(S, I)− (µI + γ)I

)

=
(
f(S∗, I∗) + µSS∗

)
− µSS

−
f(S∗, I∗)

f(S, I∗)

((
f(S∗, I∗) + µSS∗

)
− f(S, I)− µSS

)

− f(S∗, I∗)
I

I∗
−

I∗

I

(
f(S, I)− f(S∗, I∗)

I

I∗

)

= f(S∗, I∗) + µSS∗ − µSS − f(S∗, I∗)
f(S∗, I∗)

f(S, I∗)

− µSS∗f(S
∗, I∗)

f(S, I∗)
+ f(S, I)

f(S∗, I∗)

f(S, I∗)
+ µS f(S

∗, I∗)

f(S, I∗)
S

− f(S∗, I∗)
I

I∗
− f(S, I)

I∗

I
+ f(S∗, I∗)

= − µSS

(
−
S∗

S
+ 1 +

f(S∗, I∗)

f(S, I∗)

S∗

S
−

f(S∗, I∗)

f(S, I∗)

)

+ f(S∗, I∗)

(
2−

f(S∗, I∗)

f(S, I∗)
+

f(S, I)

f(S, I∗)
−

I

I∗
−

f(S, I)

f(S∗, I∗)

I∗

I

)

= −
µS

f(S, I∗)
(S − S∗) (f(S, I∗)− f(S∗, I∗))

+ f(S∗, I∗)

(
3−

f(S∗, I∗)

f(S, I∗)
−

f(S, I)

f(S∗, I∗)

I∗

I
−

f(S, I∗)

f(S, I)

I

I∗

)

+ f(S∗, I∗)

(
f(S, I)

f(S, I∗)
− 1

)(
1−

f(S, I∗)

f(S, I)

I

I∗

)

≤ 0.
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Since V̇ = 0 implies S = S∗ and I = I∗, the largest invariant set in Γ is the

singleton {P ∗}. By the LaSalle Invariance Principle [49], we obtain P ∗ is globally

asymptotically stable and it is unique.

�

The construction for this Lyapunov function can be found in [63]. If f(S, I) is

a monotone increasing function of S and I , and concave down in I , then condi-

tions (2.15) and (2.16) will be satisfied. As a result, we can obtain the following

corollaries.

Corollary 2.1.8. Let δ = 0, f(S, I) = βSI , and R0 =
Λβ

µS(µI + γ)
> 1. Then the

endemic equilibrium P ∗ of system (3.1)-(3.2) is unique and globally asymptotically

stable in the interior of Γ.

Proof. If f(S, I) = βSI , then

(S − S∗) (f(S, I∗)− f(S∗, I∗)) = (S − S∗) (βSI∗ − βS∗I∗)

= βI∗ (S − S∗)2

> 0

and

(
f(S, I)

f(S, I∗)
− 1

)(
1−

f(S, I∗)

f(S, I)

I

I∗

)
=

(
βSI

βSI∗
− 1

)(
1−

βSI∗

βSI

I

I∗

)

=

(
I

I∗
− 1

)
(1− 1)

= 0
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with equality holding if and only if S = S∗ and I = I∗. Thus conditions (2.15) and

(2.16) are satisfied.

�

Corollary 2.1.9. Let δ = 0, f(S, I) = β
SI

S + I
, and R0 =

β

µI + γ
> 1. Then the

endemic equilibrium P ∗ of system (3.1)-(3.2) is unique and globally asymptotically

stable in the interior of Γ.

Proof. If f(S, I) = β
SI

S + I
, then

(S − S∗) (f(S, I∗)− f(S∗, I∗)) = (S − S∗)

(
β

SI∗

S + I∗
− β

S∗I∗

S∗ + I∗

)

= βI∗ (S − S∗)

(
S

S + I∗
−

S∗

S∗ + I∗

)

= βI∗ (S − S∗)

(
S(S∗ + I∗)− S∗(S + I∗)

(S + I∗)(S∗ + I∗)

)

= βI∗ (S − S∗)

(
SI∗ − S∗I

(S + I∗)(S∗ + I∗)

)

= β
(I∗)2(S − S∗)2

(S + I∗)(S∗ + I∗)

≥ 0

and

(
f(S, I)

f(S, I∗)
− 1

)(
1−

f(S, I∗)

f(S, I)

I

I∗

)
=

(
βSI

S + I

S + I∗

βSI∗
− 1

)(
1−

βSI∗

S + I∗
S + I

βSI

I

I∗

)

=

(
I

I∗
S + I∗

S + I
− 1

)(
1−

S + I

S + I∗

)

=
S(S + I∗)

I∗(S + I)
(I − I∗) (I∗ − I)
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= −
S(S + I∗)

I∗(S + I)
(I − I∗)2

≤ 0

with equality holding if and only if S = S∗ and I = I∗. Thus conditions (2.15) and

(2.16) are satisfied.

�

Global asymptotic stability has been shown for both of these functions for an SIR

model before, but knowing these conditions are satisfied in the homogeneous case

will allow us to use a combination of these functions for a heterogeneous model.

Further, we can gain an equivalent condition if f(S, I) is a separable nonlinear

function.

Corollary 2.1.10. Let δ = 0, f(S, I) = g(S)h(I), and

R0 =
g(S0)

µI + γ
lim
I→0+

h(I)

I
> 1.

Then the endemic equilibrium P ∗ of system (3.1)-(3.2) is globally asymptotically

stable in Γ if

(S − S∗) (h(S)− h(S∗)) ≥ 0

and

(g(I)− g(I∗))

(
g(I)

I
−

g(I∗)

I∗

)
≤ 0
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with equality holding if and only if S = S∗ and I = I∗.

Not all incidence functions will satisfy conditions (2.15) and (2.16). For example,

[55] gives rise to the interesting dynamics for incidence function f(S, I) = λSqIp,

where λ and q are positive parameters and p > 1. If q = 1 and p = 2, then the

endemic equilibrium is not unique and cannot be globally asymptotically stable.

Other dynamics arise for this incidence function, including the occurrence of Hopf

bifurcation.

For the case of SIS type models, i.e. δ > 0 and γ = 0, we can use similar Lya-

punov functions with some coefficient modifications. For mass action incidence,

i.e. f(S, I) = βSI where β is a transmission coefficient, we can use the following

Lyapunov function, modified from [69].

Proposition 2.1.11. Assume δ > 0, γ = 0, f(S, I) = βSI . If

R0 =
Λβ

µS (µI + δ)
> 1,

then the endemic equilibrium is unique and globally asymptotically stable in the

interior of Γ.

Proof. From (2.4)-(2.5) evaluated at P ∗ we have

µS =
Λ

S∗
− βI∗ +

γI∗

S∗

µI + γ = βS∗.
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We will use the fact that

∫ x

1

1− u

u
du < 0 when x > 1, with equality holding if

and only if x = 1. Define

V =

(
S − S∗ − S∗ ln

S

S∗

)
+

βS∗I∗ − γI∗

βS∗I∗

(
I − I∗ − I∗ ln

I

I∗

)
≥ 0

Note from (2.7) it follows that

βS∗I∗ − γI∗ = µII∗ > 0

inside of Γ. Differentiating along P ∗ gives us

V̇ = S ′ −
S∗

S
S ′ +

βS∗I∗ − δI∗

βS∗I∗

(
I ′ −

I∗

I
I ′
)

=

(
Λ− βSI − µSS + γI −

S∗

S

(
Λ− βSI − µSS + γI

))

+
βS∗I∗ − δI∗

βS∗I∗

[
βSI −

(
µI + γ

)
I −

I∗

I

(
βSI −

(
µI + γ

)
I
)]

=

(
Λ− βSI − µSS + γI −

S∗

S

(
Λ− βSI − µSS + γI

))

+
βS∗I∗ − δI∗

βS∗I∗

[
βSI −

(
µI + γ

)
I −

I∗

I

(
βSI −

(
µI + γ

)
I
)]

= ( Λ− βSI −

(
Λ

S∗
− βI∗ +

γI∗

S∗

)
S + γI − Λ

S∗

S
+ βS∗I

+

(
Λ

S∗
− βI∗ +

γI∗

S∗

)
S∗ − γ

S∗

S
I )+

βS∗I∗ − δI∗

βS∗I∗
[βSI − βS∗I − βSI∗ + βS∗I∗]
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= Λ

(
2−

S

S∗
−

S∗

S

)
+ βS∗I∗

(
−

SI

S∗I∗
+

S

S∗
+

I

I∗
− 1

)

+ γI

(
−
SI∗

S∗I
+ 1 +

I∗

I
−

S∗

S

)

+ (βS∗I∗ − γI∗)

[
SI

S∗I∗
−

I

I∗
−

S

S∗
+ 1

]

= Λ

(
2−

S

S∗
−

S∗

S

)
+ βS∗I∗

(
−

SI

S∗I∗
+

S

S∗
+

I

I∗
− 1

)

+ γI

(
2−

S∗

S
−

S

S∗
− 1−

SI∗

S∗I
+

I∗

I
+

S

S∗

)

+ (βS∗I∗ − γI∗)

[
SI

S∗I∗
−

I

I∗
−

S

S∗
+ 1

]

= (Λ + γI)

(
2−

S

S∗
−

S∗

S

)

≤ 0

hence V is a Lyapunov function for system (2.4)-(2.5). Since V̇ = 0 implies

S

S∗
= 1, the only invariant set such that V̇ = 0 is {P ∗}. By the LaSalle Invari-

ance Principle [49], we obtain P ∗ is globally asymptotically stable and it is unique.

�

Additionally, the Lyapunov function

V =
1

2
[(S − S∗) + (I − I∗)]2 +

µI + µS

β

(
I − I∗ − I∗ ln

(
I

I∗

))

as in [69] can be used to give global asymptotic stability in Proposition 2.1.11.

This combination of logarithmic Lyapunov function with a quadratic function being

positive does not rely on the condition βS∗I∗ − γI∗ > 0.
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Requiring this type of Lyapunov function for global stability to avoid secondary

conditions in the SIS causes obstacles to extend the homogeneous model to a het-

erogeneous model. In Chapter 3, we will overcome some of these barriers by im-

posing some biologically reasonable assumptions.

2.1.8 Equilibria Levels

In this section, we investigate the difference between the SIS and SIR models at the

equilibrium states, specifically for the mass action incidence function. Throughout

this section, we will assume f(S, I) = βSI .

For the SIR model, the additional condition S(t) ≤ S0 can be imposed in the

feasible region, see Section 2.1.5.

On the contrary, the same may not necessarily be true for the SIS model. The

endemic equilibrium is given by P ∗ = (S∗, I∗) =

(
µI + γ

β
,
µS

µI
(S0 − S∗)

)
. De-

pending on the values of the compartmental death rates, we can prove a relationship

between the two equilibrium states for mass action incidence.

Recall from Section 2.1.1, the total population influencing the disease dynamics is

given by N = S + I .

Theorem 2.1.12. Let P 0 = (S0, 0) and P ∗ = (S∗, I∗) be the disease-free equilib-

rium and endemic equilibrium for system (2.4)-(2.5), respectively.

(i) If µI = µS , then N∗ = N0.
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(ii) If µI > µS , then N∗ < N0.

(iii) If µI < µS , then N∗ > N0.

Proof. Consider

N∗ −N0 = I∗ + S∗ − S0

=
µS

µI

(
S0 − S∗

)
+ S∗ − S0

=

(
µS

µI
− 1

)(
S0 − S∗

)
.

If µI = µS , we have

(
µS

µI
− 1

)
= 0 and hence N∗ = N0 .

If µI > µS , we have

(
µS

µI
− 1

)
< 0 and hence N∗ < N0 .

If µI < µS , we have

(
µS

µI
− 1

)
> 0 and hence N∗ > N0 .

�

Thus, it is not guaranteed that S∗ + I∗ ≤ S0, unless the additional assumption

µS ≤ µI is imposed. Biologically, an infection does not typically guarantee host

immunity from natural death, so this may be a reasonable assumption for most

models. If this condition is imposed, it follows

N ′ = S ′ + I
′

= Λ− µSS − µII

≤ Λ− µSN.
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Solving this differential inequality leads to lim supt→∞ N(t) ≤
Λ

µS
= S0. Thus

the additional condition S(t) + I(t) ≤ S0 can be imposed in the feasible region,

and global asymptotic stability of the DFE for (2.4)-(2.5) with δ ≥ 0 and γ ≥ 0 is

obtained from Theorem 2.1.3.

In Chapter 3, we can impose a similar biologically reasonable assumption to help

obtain global stability of our equilibria.

2.2 Matrix Theory

In this section, we provide an overview of definitions and results from matrix theory

to be used in this thesis. Further definitions and properties can be found in [39]

and [77].

Throughout this section, let A be an n × n square matrix with real entries, i.e.

A ∈ Mn(R).

2.2.1 Basic Definitions

First, we start with our basic definitions.

Let A ∈ Mn(R). The minor associated to the (i, j)th entry is the determinant of the

submatrix of A formed by deleting the ith row and jth column. If i = j, then the

minor is called a principal minor. The minor associated the (i, j)th entry is often

denoted as M(i|j) or Mi,j .

32



The cofactor associated to the (i, j)th entry of A is denoted Ci,j . A cofactor is

simply a signed minor. Explicitly, we have Ci,j = (−1)i+jMi,j to define the rela-

tionship between cofactors and minors. The adjoint of matrix A is also an n × n

matrix, denoted adj(A); its entries are (adj(A))ij = Ci,j .

The adjoint of A, in conjunction with the determinant of A, is used to the find the

inverse of A. If the determinant is nonzero, i.e. det(A) 6= 0, then the matrix is

invertible and is defined by A−1 =
1

det(A)
adj(A); otherwise the inverse does not

exists [77].

We will utilize cofactors to find the limiting behavior of our disease-free equilibrium

and basic reproduction number in Chapter 3.

To introduce our next concept, we begin by defining a permutation matrix, P . A

permutation matrix, P , is a square matrix where each column and row has exactly

one entry with element 1 and all remaining entries with 0. A permutation matrix

will permute the rows of A by left multiplication, PA; likewise, it will permute the

columns of A by right multiplication, AP . From permutation matrices, we obtain

an important matrix characterization.

A matrix A is reducible if there exists a permutation matrix P such that P TAP is

an upper-block triangular matrix, i.e.

P TAP =



B C

0 D


 ,

where B ∈ Mk(R), C ∈ Mk,n−k(R) ,D ∈ Mn−k(R), and 0 is a k × (n− k) matrix
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whose entries are zero. If no such permutation matrix exists, then A is said to be

irreducible.

We will use the concept of a matrix being irreducible to impose assumptions for

our epidemiological model and in turn prove global asymptotic stability results. We

will also see a connection between irreducibility and a strongly connected digraph

in Section 2.3.

Finally, we introduce some common notation for comparing matrices. Let A = [aij]

and B = [bij] be matrices such that A,B ∈ Mn(R). We say A ≥ B if aij ≥ bij for

all i, j = 1, 2, . . . , n. Further, if aij > 0 for all i, j = 1, 2, . . . , n, then A > 0 is a

positive matrix.

2.2.2 M -Matrices

Properties of M -matrices will consistently be used throughout this dissertation, and

thus present a formal definition regarding this class of matrices.

Often in epidemiology, matrices of the form

A =




a11 −a12 −a13 · · · −a1n

−a21 a22 −a23 · · · −a2n

−a31 −a32 a33 · · · −a3n
...

...
...

. . .
...

−an1 −an2 −an3 · · · ann




,
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where aij ≥ 0 for all i, j ∈ {1, 2, . . . , n}, will arise. A matrix A of this form can be

classified as an M -matrix. More formally, we have the following definition.

If A = sI − B, where B = [bij] with bij ≥ 0 for all i, j ∈ {1, 2, . . . , n} and

s ≥ ρ(B), then A is said to be a M-matrix. Further, A is a non-singular M -matrix,

if s > ρ(B).

Plemmons provides a survey of forty conditions equivalent to the statement “A is a

non-singular M -matrix” in [60, Theorem 1]. The following proposition provides a

few such characterizations.

Proposition 2.2.1. If A ∈ Mn(R), then each of the following conditions is equiva-

lent to the statement: A is a nonsingular M -matrix.

(a) All principal minors of A are positive.

(b) Every real eigenvalue of A is positive.

(c) A+ αI is nonsingular for each scalar α ≥ 0.

(d) There exists lower and upper triangular matrices L and U , respectively, with

positive diagonals, such that A = LU .

(e) A is inverse-positive. That is A−1 exists and A−1 ≥ 0.

(f) A is monotone. That is, Ax ≥ 0 implies x ≥ 0 for all x ∈ R
n.

Equivalent condition (e) will be useful for many of our results in Chapter 3.
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2.2.3 Perron-Frobenius Theorem

Finally, we present the Perron-Frobenius Theorem. This theorem is particularly

important for the construction of Lyapunov functions in Chapter 3.

Perron-Frobenius Theorem: Let A ∈ Mn(R) be an irreducible nonnegative ma-

trix.

(i) The spectral radius ρ(A) of A is an eigenvalue of A, that is, A has a posi-

tive eigenvalue r that is greater than or equal to the absolute value of every

eigenvalue of A. The number r, which is the same as the spectral radius of

A, is sometimes called the Perron eigenvalue of A.

(ii) The algebraic multiplicity, and so the geometric multiplicity, of the Perron

eigenvalue r equals 1, that is, r is a simple root of the characteristic polyno-

mial of A.

(iii) Corresponding to the Perron eigenvalue r there is a positive eigenvector ω:

Aω = rω, where ω is a positive vector. The vector ω, and each of its positive

multiples, is called a Perron vector of A. The matrix A has no other non-

negative eigenvectors (corresponding to any eigenvalue) other than positive

multiples of its Perron vector.

(iv) If A′ is a principal submatrix of A, then

ρ(A′) ≤ ρ(A)

with equality if and only if A′ = A.
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(v) If B is a nonnegative matrix with A ≥ B, then

ρ(A) ≥ ρ(B)

with equality if and only if B = A.

A proof can be seen in [10].

2.3 Graph Theory

In this section, we provide an overview of definitions and results from graph theory

which will be used in this thesis. Further definitions and results can be found in

[15], [22], or [72].

2.3.1 Basic Terminology

1

2 3

Figure 2.2: Visualization of a graph with 3 nodes.

A graph is a pair G = (V,E) of two sets V and E where E ⊆ [V ]2. The elements

of V are the vertices, or nodes, and the elements of E are 2-element subsets of V ,
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called the edges. Figure 2.2 gives an example of a simple graph where the vertex

set is V = {1, 2, 3} and the edge set is E = {(1, 2), (1, 3), (2, 3)}.

In a graph, the edges are unordered pairs. For example, edge (1, 2) would be equiv-

alent to (2, 1) in Figure 2.2. For this thesis, the direction between nodes have a

significant impact in our results. Thus, we need to consider a directed graph, or

digraph. A directed graph is a pair G = (V,E), where E is a set of ordered pairs

called directed arcs. If e = (x, y) ∈ E and x, y ∈ V , then x is the initial vertex of

e and y is the terminal vertex of e. If x = y, then e = (x, x) is a loop at vertex x.

1

2 3

(a) A directed graph

1

2 3

5

π

8

0.1

1

(b) Weighted directed

graph

Figure 2.3: Visualizations of two directed graphs with the same arc set.

(a) is an unweighted directed graph and (b) is a weighted directed graph.

Figure 2.3 gives a visualization of a directed graph, where V = {1, 2, 3} and

E = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 2)}. Additionally, weights can be assigned

to each of the directed arcs, as shown in Figure 2.3.

Let A ∈ Mn(R) where A = [aij]. We can associate A to a directed graph D(A)

with n vertices. For each element aij 6= 0 for i, j = 1, 2, . . . , n, there exists a
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directed arc from vertex j to vertex i with weight aij . If aii 6= 0, then aii forms a

loop at vertex i. If aij = 0, then no edge exists between vertex j and vertex i [15].

For instance, Figure 2.3(b) is the directed graph associated to the matrix

A =




0 π 0

5 0 8

0.1 1 0



.

From D(A), the Laplacian matrix, L, is thus formed as follows:

L =




n∑

j 6=1

aj1 −a12 . . . −a1n

−a21

n∑

j 6=2

aj2 . . . −a2n

...
...

. . .
...

−an1 −an2 . . .

n∑

j 6=n

ajn




.

The off-diagonal entries of L are defined as the negative corresponding entries in A,

and the diagonal entries of L are chosen such that the column sums of L are zero,

hence L is a singular matrix.

A subgraph, G′ = (V ′, E ′), is a directed graph such that E ′ ⊆ E and V ′ ⊆ V .

We say G′ is a spanning subgraph if V ′ = V . Notationally, we can say G′ ⊆ G

whenever G′ is a subgraph of G. Figure 2.4 gives a simple visual of a subdigraph

and spanning subdigraph.
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1

2 3

5

π

8

0.1

1

(a)

1

2

5

π

(b)

1

2 3

π 0.1

1

(c)

Figure 2.4: Visualization of subgraphs. (a) The directed graph G. (b) A

subgraph G′ of G. (c) A spanning subgraph G′′ of G.

Within each directed graph, there are many structures, subgraphs, and characteriza-

tions that can be useful in determining properties about a directed graph or associ-

ated matrices.

A walk in a directed graph G joining vertices u and v is a sequence, γ, of vertices

u = x0, x1, . . . , xk = v and edges e0, e1, . . . , ek−1 such that ei = (xi, xi+1) is a

directed edge from vertex xi to xi+1 for all i = 0, 1, . . . , k − 1. If the vertices

u = x0, x1, . . . , xk = v are distinct, then we say γ is a path in G. If u = v, then γ

is a cycle in G. Figure 2.5 gives visualizations for each type of subgraph.

Further, paths lead to a second important characterization of a graph. A directed

graph G is strongly connected if for each pair of distinct vertices u and v, there

exists a path from u to v and a path from v to u.

Since each matrix is associated to a directed graph, a matrix A ∈ Mn(R) is ir-

reducible provided the associated digraph D(A) is strongly connected. Since A
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cannot be permuted to an upper-block triangular matrix, there is no partition of the

vertex set into two nonempty sets U and W such that each edge of D(A) has its

initial vertex in U and terminal vertex in W .

1

2 3

5

π

8

0.1

1

(a) Graph G

1

2 3

5

1

(b) Path P

1

2 3

π

8

0.1

(c) Cycle C

Figure 2.5: Visualization of some special subgraphs. (a) The directed

graph G. (b) A path P in G. (c) A cycle C in G.

1

2 3

5

π

8

0.1

1

(a)

1

2 3

π

8

(b)

1

2 3

5

8

(c)

Figure 2.6: Visualizations of spanning rooted-in trees. (a) The directed

graph G. (b) A spanning tree rooted at vertex 1 with weight 8π. (c) A

spanning tree rooted at vertex 2 with weight 40.

The last particular subgraph is a special spanning subgraph. A spanning tree rooted-

in at vertex k, denoted T = (E ′, V ′), is a spanning, acyclic, connected subgraph of
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G such that V ′ = V and for each vertex i 6= k, the out-degree of i = 1, while the

out-degree of k = 0. Further the subgraph is acyclic, and hence contains no cycles.

The weight of the spanning tree in a directed graph is the product of the weights

of the arcs in the spanning tree. Figure 2.6 gives a visualization of two spanning

rooted-in trees.

2.3.2 Matrix Tree Theorem

Kirchhoff’s Matrix Tree Theorem relates the cofactors of the Laplacian matrix to

the spanning trees of an undirected graph [72]. We present the generalized version

for directed graphs.

Matrix Tree Theorem for Directed Graphs: Assume n ≥ 2. Then

Ci,i =
∑

T ∈Ti

∏

(s,r)∈E(T )

ars

for i = 1, 2, . . . , n, where Ti is the set of all spanning trees T of G that are rooted

at vertex i and E(T ) is the arc set of T .

A proof can be found in [57].

In Figure 2.7, we provide an example to calculate the cofactors of the matrix

A =




0 π 0

5 0 8

0.1 1 0



.
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Figure 2.7(a) shows the visualization for the directed graph associated with A. Fig-

ure 2.7(b) shows the only spanning rooted-in tree at vertex 1, with weight 8π. Thus,

C1,1 = 8π from the Matrix Tree Theorem for Directed Graphs. In Figure 2.8, we

can see there are two spanning rooted-in trees at vertex 2, T and T ′. The weight of

T is 40 and the weight of T ′ is 0.8, hence C2,2 = 40.8.

1

2 3

5

π

8

0.1

1

(a) Graph G =
D(A)

1

2 3

π

8

(b) Spanning

rooted-in tree at

vertex 1

Figure 2.7: (a) The directed graph G. (b) The only spanning rooted tree

at vertex 1.

1

2 3

5

8

(a) T

1

2 3

8

0.1

(b) T ′

Figure 2.8: (a) One spanning rooted-in tree at vertex 2, denoted T . (b) A

second spanning rooted-in tree at vertex 2, denoted T ′.
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As a result of the Matrix Tree Theorem for Directed Graphs, the cofactors of the

Laplacian matrix are determined by the structure and arc weights of the correspond-

ing directed graph. Since L is a singular matrix and an associated eigenvector to

eigenvalue 0 has components Ci,i, we will see a connection to the rooted-in trees in

Chapter 3.
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CHAPTER 3: ANALYTICAL INVESITIGATION OF A

HETEROGENEOUS MODEL

In this chapter, an n-patch model is introduced. Each patch can represent a city,

country, etc., indexed by the set {1, 2, . . . , n}. Within each ith patch, a model

with the structure from Section 2.1 is applied. An arbitrary incidence function

and separate demographics are considered among each patch. Directed movement

is incorporated to account for travel between patches, where the movement can be

asymmetric between two locations. Asymmetric movement allows the travel to be

skewed towards some patches, since movement into a major city can have a larger

rate than the movement out into the surrounding areas. This extends the prior ho-

mogeneous model to account for spatial heterogeneity.

3.1 A General Heterogeneous Model

We will focus primarily on the following n-patch model (n ≥ 1) which includes

demographics. Let

S ′
i = Λi − fi(Si, Ii)− µS

i Si + δiIi + dS

n∑

j=1

mijSj − dS

n∑

j=1

mjiSi, (3.1)

I ′i = fi(Si, Ii)− (µI
i + γi + δi)Ii + dI

n∑

j=1

mijIj − dI

n∑

j=1

mjiIi, (3.2)

R′
i = γiIi − µR

i Ri + dR

n∑

j=1

mijRj − dR

n∑

j=1

mjiRi, (3.3)

45



for i = 1, 2, . . . , n, with nonnegative initial conditions Si(0), Ii(0), Ri(0), where

Si = Si(t), Ii = Ii(t), and Ri = Ri(t) represent the population density of suscepti-

ble, infectious, and removed individuals, respectively, at time t, and

n∑

i=1

(Si(0) + Ii(0)) > 0. (3.4)

Here ′ is the derivative with respect to time. Table 3.1 outlines the parameter defi-

nitions. Each of these parameters Λi, µ
S
i , µI

i , and βi are positive values, and γi and

δi are non-negative. Figure 3.1 gives a visualization of the model for n = 2. The

n × n matrix M = [mij] describes the directed movement of individuals among

the patches. Specifically, each (i, j) entry of the movement matrix represents the

directed moving from patch j to patch i, and hence mij ≥ 0 for all i and j.

Table 3.1: A table outlining the parameters used in (3.1)-(3.3)

Parameter Definition Units

Λi birth rate of susceptible individuals in patch i people/time
βi transmission coefficient in patch i (people · time)−1

µS
i death rate of susceptible individuals in patch i time−1

µI
i death rate of infectious individuals in patch i time−1

µR
i death rate of removed individuals in patch i time−1

γi, δi disease recovery rates in patch i time−1

mij movement rate of individuals from patch j to patch i time−1

dS diffusion coefficient for susceptible individuals unitless

dI diffusion coefficient for infectious individuals unitless

dR diffusion coefficient for removed individuals unitless
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µS
1
S1 µI

1
I1 µR

1
R1

µS
2
S2 µI

2
I2 µR

2
R2

S1 I1 R1

S2 I2 R2

Λ1
f1(S1, I1)

δ1I1

γ1I1

Λ2

f2(S2, I2)

δ2I2

γ2I2

dSm21S1dSm12S2 dIm21I1dIm12I2 dRm21R1dRm12R2

Figure 3.1: Flowchart for 2-patch model with demographics.

In a similar manner as the heterogeneous model, the following assumptions on

fi(Si, Ii), for i = 1, 2, . . . , n, are required either biologically or mathematically:

(i) fi(Si, Ii) ≥ 0 for all Si, Ii ≥ 0;

(ii) fi ∈ C([0,∞)× [0,∞));

(iii) fi(Si, 0) = fi(0, Ii) = 0 for all Si, Ii ≥ 0;

(iv) lim
Ii→0+

fi(Si, Ii)

Ii
exists for all Si ≥ 0.

Similar to the homogeneous model, since Ri does not appear in (3.1)-(3.2) we can
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study the reduced system

S ′
i = Λi − fi(SiIi)− µS

i Si + δiIi + dS

n∑

j=1

mijSj − dS

n∑

j=1

mjiSi, (3.5)

I ′i = fi(SiIi)− (µI
i + γi + δi)Ii + dI

n∑

j=1

mijIj − dI

n∑

j=1

mjiIi. (3.6)

Then, the dynamics of Ri can be further studied.

3.2 Disease-Free Equilibrium

The system (3.5)-(3.6) admits two types of equilibria. To find the DFE, each Ii = 0

for i = 1, 2, . . . , n. Thus, from (3.5)-(3.6), for i = 1, 2, . . . , n we have

0 = Λi − fi(Si, 0)− µS
i Si + dS

n∑

j=1

mijSj − dS

n∑

j=1

mjiSi.

= Λi − µS
i Si + dS

n∑

j=1

mijSj − dS

n∑

j=1

mjiSi.

Hence,

Λi =

(
µS
i + dS

n∑

j=1

mji

)
Si − dS

n∑

j=1

mijSj, for i = 1, 2, . . . , n. (3.7)
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Let Λ = (Λ1,Λ2, . . . ,Λn)
T , S = (S1, S2, . . . , Sn)

T , and define

D =




µS
1 + dS

n∑

j 6=1

mj1 −dSm12 . . . −dSm1n

−dSm21 µS
2 + dS

n∑

j 6=2

mj2 . . . −dSm2n

...
...

. . .
...

−dSmn1 −dSmn2 . . . µS
n + dS

n∑

j 6=n

mjn




.

We can write the linear system (3.7) as the matrix equation Λ = DS.

Lemma 3.2.1. There exists a unique solution to Λ = DS, and hence the disease

free equilibrium is unique.

Proof. Since D is a nonsingular M-matrix, D−1 exists and is non-negative [60],

hence S = D−1Λ ≥ 0.

�

Defining S0 = (S0
1 , S

0
2 , . . . , S

0
n) = D−1Λ, we then denote the disease-free equilib-

rium to be P0 = (S0
1 , 0, S

0
2 , 0, . . . , S

0
n, 0).

3.3 Positively Invariant Sets

In this section, two different positively invariant sets are determined. First, a feasi-

ble region is calculated in Section 3.3.1 which is determined by the system (3.5)-

(3.6). In this region, global asymptotic stability of the SIR heterogeneous model
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with nonlinear incidence is studied. In Section 3.3.2, a second positively invariant

set is calculated after two biological assumptions, in which global stability of the

SIS heterogeneous model with mass action incidence is studied.

3.3.1 Feasible Region Γ

Let Λ =
∑n

i=1(Λi), µ
∗ = min{µS

i , µ
I
i + γi + δi}, and N =

∑n

i=1(Si + Ii), where

N represents the total population influencing the disease dynamics. It follows that

N ′ =
n∑

i=1

(S ′
i + I ′i) ≤ Λ− µ∗N.

Solving the differential inequality, we arrive at N(t) ≤ Λ/µ∗ − N(0)e−µ∗t, and

hence lim sup
t→∞

N(t) ≤ Λ/µ∗. We call our feasible region Γ and define it as

Γ =

{
(S1, I1, . . . , Sn, In) ∈ R

2n
+

∣∣∣∣∣

n∑

i=1

(Si + Ii) ≤
Λ

µ∗

}
.

It can be verified Γ is positively invariant in a similar method to Lemma 2.1.1.

Next, we verify there are no other equilibria on the boundary of Γ.

Theorem 3.3.1. Assume the movement matrix M = [mij] is irreducible. Then P0

is the only equilibrium point on the boundary of Γ.

Proof. Let Ii = 0 for some i. From (3.6) we obtain

0 =
n∑

j 6=i

mijIj. (3.8)
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Thus, if Ii = 0 and mij > 0, then Ij = 0 for some j. Using our irreducibility

assumption on M , we know that there exists a path from Ii to Ij . Applying (3.8),

we see

0 = mie1Ie1 +me1e2Ie2 + · · ·+mem−1emIm +memjIj,

and hence

Ie1 = 0, Ie2 = 0, . . . , Im = 0.

It thus follows Ij = 0 for all j. Thus, when M is irreducible and Ii = 0 for some i,

we must have Ii = 0 for all i = 1, . . . , n. It follows P0 is the only equilibrium point

on the boundary.

�

3.3.2 Region Γ̃

In this section, we assume µS
i ≤ µI

i for i = 1, 2, . . . , n, and hence infection does not

grant the host individual immunity against natural death. Consider a second region,

Γ̃ =

{
(S1, I1, . . . , Sn, In) ∈ R

2n
+

∣∣∣∣∣Si + Ii ≤ S0
i ,

n∑

i=1

(Si + Ii) ≤
Λ

µ∗

}
.

We define this second region to obtain a positively invariant set for the system. The

following theorem shows this result.

Theorem 3.3.2. The feasible region Γ̃ is positively invariant set with respect to

(3.5)-(3.6) when dS = dI .
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Proof. Assume dS = dI and let N = (N1, N2, . . . , Nn) where Ni = Si + Ii. Since

N ′
i = Si

′ + Ii
′

≤ Λi − µSNi + dS

n∑

j=1

mijNj − dS

n∑

j=1

mjiNi

= Λi −

((
µS + dS

n∑

j=1

mijNi

)
Ni − dS

n∑

j=1

mijNj

)

=
[
DS0 −DN

]
i

we have Ni
′ ≤ 0 if Ni ≤ S0

i . By a similar method in the proof of Lemma 2.1.1, we

can obtain Γ̃ is positively invariant with respect to (3.5)-(3.6).

�

This second region is a smaller region, in which we can study global asymptotic

stability for the SIS multipatch model with mass action incidence. It requires two

assumptions: µS
i ≤ µI

i for each i and dS = dI . The first assumption is a natural

biological assumption, while the second tells us the infection does not inhibit the

travel of infectious individuals. For most sexually transmitted infections, this is a

biological reasonable assumption, since the infection would not prevent the host

individual from traveling.

Corollary 3.3.3. Assume the movement matrix M = [mij] is irreducible and that

Ii = 0 for some i = 1, . . . , n, then Ij = 0 for all j 6= i. It then follows P0 is the

only equilibrium point on the boundary of Γ̃.

This result follows in the same fashion as Theorem 3.3.1.
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3.4 Basic Reproduction Number R0

Utilizing the next generation method as described in the paper by van den Driessche
and Watmough [68], and as outlined in Section 2.1.4, we define the new disease
matrix

F =

































lim
I1→0+

f1(S
0
1 , I1)

I1
0 . . . 0

0 lim
I2→0+

f2(S
0
2 , I2)

I2
. . . 0

.

.

.

.

.

.

.
.
.

.

.

.

0 0 . . . lim
In→0+

fn(S0
n, In)

In

































and the disease transfer matrix

V =



































(µI
1 + γ1 + δ1) + dI

n
∑

j 6=1

mj1 −dIm12 . . . −dIm1n

−dIm21 (µI
2 + γ2 + δ2) + dI

n
∑

j 6=2

mj2 . . . −dIm2n

.

.

.

.

.

.

.
.
.

.

.

.

−dImn1 −dImn2 . . . (µI
n + γn + δ + n) + dI

n
∑

j 6=n

mjn



































.

The basic reproduction number is the spectral radius of the next-generation matrix,

i.e. R0 = ρ(FV −1).

3.5 Global Stability of Disease-Free Equilibrium

By Theorem 2 from van den Driessche and Watmough [68], the DFE is locally

asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proposition 3.5.1. If R0 < 1, the DFE of (3.1)-(3.2) is locally stable. If R0 > 1,

the DFE is unstable.
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The following results show the DFE is globally asymptotically stable if R0 ≤ 1.

Theorem 3.5.2. Assume R0 ≤ 1, M = [mij] is irreducible, and

0 ≤ fi(S, I) ≤

(
lim

Ii→0+

fi(S
0
i , Ii)

Ii

)
Ii, for i = 1, 2, . . . , n (3.9)

with equality if and only if Si = S0
i for i = 1, 2, . . . , n. Then the DFE for system

(3.5)-(3.6) is globally asymptotically stable in the interior of Γ.

Proof. Since V is column diagonally dominant, we can obtain that V is a non-

singular M-matrix. Thus V −1 ≥ 0. Further, since [mij] is irreducible, from The-

orem 1.3d in Plemmons and Berman [10] we obtain V −1 is also irreducible, and

hence FV −1 is irreducible. Applying the Perron-Frobenius Theorem, there exists

a largest, positive eigenvalue ν = ρ(V −1F ) = ρ(FV −1) = R0 that is a simple

root of the associated characteristic polynomial. Further, the left eigenvector, ω,

associated to ν has a one-dimensional eigenspace, and ω > 0. Hence

ωV −1F = ωR0

1

R0

ω = ωF−1V.

Define ci = ωi/

(
limIi→0+

fi(S
0
i , Ii)

Ii

)
for i = 1, 2, . . . , n and L =

∑n

i=1 ciIi.

Taking the derivative of L along a trajectory in Γ gives us

L̇ =
n∑

i=1

ciIi
′

=
n∑

i=1

ci

(
fi(Si, Ii)− (µI

i + γi + δi)Ii + dI

n∑

j=1

mijIj − dI

n∑

j=1

mjiIi

)
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≤
n∑

i=1

ci

((
lim

Ii→0+

f(S0
i , Ii)

Ii

)
Ii − (µI

i + γi + δi)Ii + dI

n∑

j=1

mijIj − dI

n∑

j=1

mjiIi

)

= c(F − V )I

= cF (1− F−1V )I

= ω((1− F−1V )I

= ω

(
1−

1

R0

)
I

≤ 0,

since R0 ≤ 1. Now, L̇ = 0 implies either R0 = 1 or I = 0. If R0 < 1, then

we must have Ii = 0 for i = 1, 2, . . . , n and hence Si = S0
i . If R0 = 1, from our

assumption we obtain Si = S0
i . As a result, the largest invariant set in Γ is thus the

singleton {P 0}. By the LaSalle Invariance Principle [49], we obtain P 0 is globally

asymptotically stable.

�

Incidence functions as seen in Corollaries 2.1.4 and 2.1.5 will satisfy Theorem 3.5.2

under the same conditions. The benefit of Theorem 3.5.2 allows a combination of

different incidence functions to be used. Thus, if it is beneficial to model one patch

using frequency dependent incidence but mass action on another, global stability

of the DFE can still be obtained for the SIR model. If the additional assumptions

µS
i ≤ µI

i for i = 1, 2, . . . , n and dS = dI are imposed, then global stability of the

DFE is obtained for the combination SIR and SIS model given by (3.5)-(3.6).
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3.6 Existence of Endemic Equilibrium

Theorem 3.6.1. Let lim
Ii→0+

fi(S
0
i , Ii)

Ii
> 0 for i = 1, 2, . . . , n. If R0 > 1, then there

exists at least one endemic equilibrium P ∗ = (S∗, I∗) for the system (3.5)-(3.5) in

the interior of Γ.

Proof. Let ωi be the components of the left Perron eigenvector, ω, corresponding to

eigenvalue R0 = ρ(V −1F ) = ρ(FV −1). Let ci = ωi/

(
limIi→0+

fi(S
0
i , Ii)

Ii

)
and

L =
n∑

i=1

ciIi. Taking the derivative of L along a trajectory in Γ gives us

L̇ =
n∑

i=1

ciIi
′

=
n∑

i=1

ci

(
fi(Si, Ii)− (µI

i + γi + δi)Ii + dI

n∑

j=1

mijIj − dI

n∑

j=1

mjiIi

)

=
n∑

i=1

ci

[(
fi(Si, Ii)

Ii
− (µI

i + γi + δi)− dI

n∑

j=1

mji

)
Ii + dI

n∑

j=1

mijIj

]

= c
(
F̃ − V

)
I,

where F̃ = [F̃ij] is the n × n matrix with F̃ii =
fi(Si, Ii)

Ii
and F̃ij = 0 for i 6= j.

Further, lim
(Si,Ii)→(S0

i ,0)
F̃ii = Fii. Thus, taking the limit of L̇ as the system approaches

the disease-free equilibrium, gives us

lim
(S,I)→(S0,0)

L̇ = lim
(S,I)→(S0,0)

(
c
(
F̃ − V

)
I
)

= c(F − V ) lim
(S,I)→(S0,0)

I
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= ω

(
1−

1

R0

)
lim

(S,I)→(S0,0)
I

> 0.

Thus, if R0 > 1, we have L̇ > 0 for some neighborhood Nǫ(P0) about P0, implying

P0 is unstable. All trajectories that start close enough to the DFE will leave Nǫ(P0).

The system (2.4)-(2.5) is uniformly persistent by [26, Theorem 4.3] using a similar

argument as [51, Proposition 3.3]. Uniform persistence and boundedness of solu-

tions in the interior of Γ imply the existence of at least one endemic equilibrium

(see Theorem D.3 in [64] or Theorem 2.8.6 in [12]).

�

3.7 Global Stability of Endemic Equilibrium

In this section, the global stability of the EE will be studied. First, stability of the

EE for the SIR model with nonlinear incidence is studied. Second, the stability of

the EE for the SIS model with mass action incidence is studied in the region Γ̃.

3.7.1 Multipatch SIR Model

Theorem 3.7.1. Let R0 > 1, δi = 0 and γi > 0 for i = 1, 2, . . . , n. Assume

M is irreducible, dI > 0, dS = 0, and the following two conditions hold for
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i = 1, 2, . . . , n:

(Si − S∗
i ) (fi(Si, I

∗
i )− fi(S

∗
i , I

∗
i )) ≥ 0, (3.10)

(
fi(Si, Ii)

fi(Si, I∗i )
− 1

)(
1−

fi(Si, I
∗
i )

fi(Si, Ii)

Ii
I∗i

)
≤ 0 (3.11)

with equality if and only if Si = S∗
i and Ii = I∗i for i = 1, 2, . . . , n. Then the

endemic equilibrium P ∗ is unique and globally asymptotically stable in the interior

of Γ.

Proof. For i = 1, 2, . . . , n, evaluating (3.5)-(3.6) at P ∗ gives us

Λi = fi(S
∗
i , I

∗
i ) + µS

i S
∗
i

µI
i + γi =

fi(S
∗
i , I

∗
i )

I∗i
+ dI

n∑

j=1

mij

I∗j
I∗i

− dI

n∑

j=1

mij.

We will utilize

∫ x

1

1− u

u
du < 0 when x > 1, and n n

√
n∏

i=1

ai −
n∑

i=1

ai ≤ 0, with

equality if and only if each ai are equivalent. Define

Vi =

∫ Si

S∗

i

(
1−

fi(S
∗
i , I

∗
i )

fi(ξ, I∗i )

)
dξ + Ii − I∗i − I∗i ln

Ii
I∗i

.

Taking the derivative of Vi along a trajectory in Γ gives us

V̇i = Si
′ −

fi(S
∗
i , I

∗
i )

fi(Si, I∗i )
Si

′ + Ii
′ −

I∗i
Ii
Ii

′
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= Λi − fi(Si, Ii)− µS
i Si −

fi(S
∗
i , I

∗
i )

fi(Si, I∗i )

(
Λi − fi(Si, Ii)− µS

i Si

)

+ fi(Si, Ii)− (µI
i + γi)Ii + dI

n∑

j=1

mijIj − dI

n∑

j=1

mjiIi

−
I∗i
Ii

(
fi(Si, Ii)− (µI

i + γi)Ii + dI

n∑

j=1

mijIj − dI

n∑

j=1

mjiIi

)

= fi(S
∗
i , I

∗
i ) + µS

i S
∗
i − µS

i Si −
(
fi(S

∗
i , I

∗
i ) + µS

i S
∗
i

) fi(S∗
i , I

∗
i )

fi(Si, I∗i )

+
fi(S

∗
i , I

∗
i )

fi(Si, I∗i )
fi(Si, Ii) + µS

i

fi(S
∗
i , I

∗
i )

fi(Si, I∗i )
Si

−

(
fi(S

∗
i , I

∗
i )

I∗i
+ dI

n∑

j=1

mij

I∗j
I∗i

− dI

n∑

j=1

mij

)
Ii + dI

n∑

j=1

mijIj − dI

n∑

j=1

mjiIi

− fi(Si, Ii)
I∗i
Ii

+

(
fi(S

∗
i , I

∗
i )

I∗i
+ dI

n∑

j=1

mij

I∗j
I∗i

− dI

n∑

j=1

mij

)
I∗i

− dI

n∑

j=1

mijIj
I∗i
Ii

+ dI

n∑

j=1

mjiI
∗
i

= − µS
i Si

(
−
S∗
i

Si

+ 1 +
fi(S

∗
i , I

∗
i )

fi(Si, I∗i )

S∗
i

Si

−
fi(S

∗
i , I

∗
i )

fi(Si, I∗i )

)

+ fi(S
∗
i , I

∗
i )

(
2−

fi(S
∗
i , I

∗
i )

fi(Si, I∗i )
+

fi(Si, Ii)

fi(Si, I∗i )
−

Ii
I∗i

−
fi(Si, Ii)

fi(S∗
i , I

∗
i )

I∗i
Ii

)

+ dI

n∑

j=1

mijI
∗
j

(
1−

IjI
∗
i

I∗j Ii
−

Ii
I∗i

+
Ij
I∗j

)

= −
µS
i

fi(Si, I∗i )
(Si − S∗

i ) (fi(Si, I
∗
i )− fi(S

∗
i , I

∗
i ))

+ fi(S
∗
i , I

∗
i )

(
3−

fi(S
∗
i , I

∗
i )

fi(Si, I∗i )
−

fi(Si, Ii)

fi(S∗
i , I

∗
i )

I∗i
Ii

−
fi(Si, I

∗
i )

fi(Si, Ii)

Ii
I∗i

)

+ fi(S
∗
i , I

∗
i )

(
fi(Si, Ii)

fi(Si, I∗i )
− 1

)(
1−

fi(Si, I
∗
i )

fi(Si, Ii)

Ii
I∗i

)

+ dI

n∑

j=1

mijI
∗
j

(
1−

IjI
∗
i

I∗j Ii
−

Ii
I∗i

+
Ij
I∗j

)

≤ dI

n∑

j=1

mijI
∗
j

(
1−

IjI
∗
i

I∗j Ii
−

Ii
I∗i

+
Ij
I∗j

)
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≤ dI

n∑

j=1

mijI
∗
j

(
− ln

(
IjI

∗
i

I∗j Ii

)
−

Ii
I∗i

+
Ij
I∗j

)

= dI

n∑

j=1

mijI
∗
j

[(
Ij
I∗j

− ln
Ij
I∗j

)
−

(
Ii
I∗i

− ln
Ii
I∗i

)]

= di

n∑

j=1

mijI
∗
j [Hj(Ij)−Hi(Ii)]

where

Hi(Ii) =
Ii
I∗i

− ln
Ii
I∗i

.

Let W be the weight matrix with entries [wij] =
[
dImijI

∗
j

]
. Then we define the

weighted digraph D with associated weight matrix W as the ordered pair (D,W).

Now, since M is irreducible, it follows W is irreducible. Let ci =
∑

T ∈Ti
w(T ) > 0

as defined in Proposition 2.1 of [54]. Thus, by Theorem 2.3 of [54], we obtain

n∑

i,j=1

cidImijI
∗
j (Hj(Ij)−Hi(Ii)) = 0.

By defining V (S1, I1, . . . , Sn, In) =
∑n

i=1 ciVi(Si, Ii), with ci > 0 if (D,W) is

irreducible, it follows

V̇ =
n∑

i=1

ciV̇i(Si, Ii)

≤
n∑

i=1

ci

(
n∑

j=1

dImijI
∗
j (Hj(Ij)−Hi(Ii))

)

= 0

for all (S1, I1, . . . , Sn, In) ∈ Γ̃ and V is a Lyapunov function for system (3.5)- (3.6).
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Since ci > 0 for all i, V̇ = 0 implies both S∗
i = Si and

I∗i
Ii

= 1 for i = 1, 2, . . . , n.

Thus, the only invariant set such that V̇ = 0 is {P ∗}. By the LaSalle Invariance

Principle [49], we obtain P ∗ is globally asymptotically stable and it is unique.

�

3.7.2 Multipatch SIS Model

As seen in Section 2.1.7, a different type of Lyapunov function is needed to prove

global asymptotic stability of the EE for the homogeneous model. A similar Lya-

punov function can be used for the heterogeneous model with mass action inci-

dence.

Throughout this subsection, assume γi = 0 and fi(Si, Ii) = βiSiIi for i = 1, 2, . . . , n.

Theorem 3.7.2. Let γi = 0, δi > 0 and fi(Si, Ii) = βiSiIi for i = 1, 2, . . . , n. If

R0 > 1, an endemic equilibrium P ∗ of the system (3.5)- (3.6) exists. Suppose one

of the following assumptions holds:

(i) dS = 0 and M = [mij] is irreducible

(ii) dI = 0 and M = [mij] is irreducible

(iii) There exists a λ > 0 such that

dSS
∗
j = λ

βiS
∗
i I

∗
i − δiI

∗
i

βiS∗
i I

∗
i

dII
∗
j

for all i, j = 1, 2, . . . , n
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Then the endemic equilibrium P ∗ is globally asymptotically stable and unique in

the interior of Γ̃.

Proof. We will show the result holds when Assumption (iii) is satisfied, as the other

two results can be proven similarly. From (3.5)- (3.6) evaluated at P ∗, we have

µS
i = Λi

1

S∗
i

− βiI
∗
i − δiI

∗
i

1

S∗
i

+ dS

n∑

j=1

mijS
∗
j

1

S∗
i

− dS

n∑

j=1

mji

µI
i + δi = βiS

∗
i + dI

n∑

j=1

mijI
∗
j

1

I∗i
− dI

n∑

j=1

mji

We will use the fact that

∫ x

1

1− u

u
du < 0 for x > 1. Define

Vi = Si − S∗
i − S∗

i ln

(
Si

S∗
i

)
+

βiS
∗
i I

∗
i − δiI

∗
i

βiS∗
i I

∗
i

(
Ii − I∗i − I∗i ln

(
Ii
I∗i

))
.

Note that

βiS
∗
i I

∗
i − δiI

∗
i = Λi − µS

i S
∗
i + dS

n∑

j=1

mijS
∗
j − dS

n∑

j=1

mjiS
∗
i > 0

inside Γ̃. Differentiating along P ∗ gives us

V̇i = S ′
i −

S∗
i

Si

S ′
i +

βiS
∗
i I

∗
i − δiI

∗
i

βiS∗
i I

∗
i

(
I ′i −

I∗i
Ii
I ′i

)
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= Λi − βiSiIi − µS
i Si + δiIi + dS

n∑

j=1

mijSj − dS

n∑

j=1

mjiSi

−
S∗
i

Si

(
Λi − βiSiIi − µS

i Si + δiIi + dS

n∑

j=1

mijSj − dS

n∑

j=1

mjiSi

)

+
βiS

∗
i I

∗
i − δiI

∗
i

βiS∗
i I

∗
i

[
βiSiIi − (µI

i + δi)Ii + dI

n∑

j=1

mijIj − dI

n∑

j=1

mjiIi

−
I∗i
Ii

(
βiSiIi − (µI

i + δi)Ii + dI

n∑

j=1

mijIj − dI

n∑

j=1

mjiIi

)]

= Λi − βiSiIi − µS
i Si + δiIi + dS

n∑

j=1

mijSj − dS

n∑

j=1

mjiSi

− Λi

S∗
i

Si

+ βiS
∗
i Ii + µS

i S
∗
i − δiIi

S∗
i

Si

− dS

n∑

j=1

mijSj

S∗
i

Si

+ dS

n∑

j=1

mjiS
∗
i

+
βiS

∗
i I

∗
i − δiI

∗
i

βiS∗
i I

∗
i

[ βiSiIi − (µI
i + δi)Ii + dI

n∑

j=1

mijIj − dI

n∑

j=1

mjiIi

− βiSiI
∗
i + (µI

i + δi)I
∗
i − dI

n∑

j=1

mijIj
I∗i
Ii

+ dI

n∑

j=1

mjiI
∗
i ]
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= Λi − βiSiIi −

(
Λi

1

S∗
i

− βiI
∗
i − δiI

∗
i

1

S∗
i

+ dS

n∑

j=1

mijS
∗
j

1

S∗
i

− dS

n∑

j=1

mji

)
Si

+ δiIi + dS

n∑

j=1

mijSj − dS

n∑

j=1

mjiSi − Λi

S∗
i

Si

+ βiS
∗
i Ii

+

(
Λi

1

S∗
i

− βiI
∗
i − δiI

∗
i

1

S∗
i

+ dS

n∑

j=1

mijS
∗
j

1

S∗
i

− dS

n∑

j=1

mji

)
S∗
i

− δiIi
S∗
i

Si

− dS

n∑

j=1

mijSj

S∗
i

Si

+ dS

n∑

j=1

mjiS
∗
i

+
βiS

∗
i I

∗
i − δiI

∗
i

βiS∗
i I

∗
i

[ βiSiIi −

(
βiS

∗
i + dI

n∑

j=1

mijI
∗
j

1

I∗i
− dI

n∑

j=1

mji

)
Ii

+ dI

n∑

j=1

mijIj − dI

n∑

j=1

mjiIi − βiSiI
∗
i +

(
βiS

∗
i + dI

n∑

j=1

mijI
∗
j

1

I∗i
− dI

n∑

j=1

mji

)
I∗i

− dI

n∑

j=1

mijIj
I∗i
Ii

+ dI

n∑

j=1

mjiI
∗
i ]

= Λi − βiSiIi − Λi

Si

S∗
i

+ βiSiI
∗
i + δiI

∗
i

Si

S∗
i

− dS

n∑

j=1

mijS
∗
j

Si

S∗
i

+ dS

n∑

j=1

mjiSi

+ δiIi + dS

n∑

j=1

mijSj − dS

n∑

j=1

mjiSi − Λi

S∗
i

Si

+ βiS
∗
i Ii + Λi − βiS

∗
i I

∗
i

− δiI
∗
i + dS

n∑

j=1

mijS
∗
j − dS

n∑

j=1

mjiS
∗
i − δiIi

S∗
i

Si

− dS

n∑

j=1

mijSj

S∗
i

Si

+ dS

n∑

j=1

mjiS
∗
i

+
βiS

∗
i I

∗
i − δiI

∗
i

βiS∗
i I

∗
i

[ βiSiIi − βiS
∗
i Ii − dI

n∑

j=1

mijI
∗
j

Ii
I∗i

+ dI

n∑

j=1

mjiIi

+ dI

n∑

j=1

mijIj − dI

n∑

j=1

mjiIi − βiSiI
∗
i + βiS

∗
i I

∗
i + dI

n∑

j=1

mijI
∗
j

− dI

n∑

j=1

mjiI
∗
i − dI

n∑

j=1

mijIj
I∗i
Ii

+ dI

n∑

j=1

mjiI
∗
i ]
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= Λi

(
2−

Si

S∗
i

−
S∗
i

Si

)
+ βiS

∗
i I

∗
i

(
−

SiIi
S∗
i I

∗
i

+
Si

S∗
i

+
Ii
I∗i

− 1

)

+ δiIi

(
−
I∗i Si

IiS∗
i

+ 1 +
I∗i
Ii

−
S∗
i

Si

)
+ dS

n∑

j=1

mijS
∗
j

(
1−

SjS
∗
i

S∗
jSi

−
Si

S∗
i

+
Sj

S∗
j

)

+
βiS

∗
i I

∗
i − δiI

∗
i

βiS∗
i I

∗
i

[ βiS
∗
i I

∗
i

(
SiIi
S∗
i I

∗
i

−
Ii
I∗i

−
Si

S∗
i

+ 1

)

+ dI

n∑

j=1

mijI
∗
j

(
1−

IjI
∗
i

I∗j Ii
−

Ii
I∗i

+
Ij
I∗j

)
]

= Λi

(
2−

Si

S∗
i

−
S∗
i

Si

)
+ βiS

∗
i I

∗
i

(
−

SiIi
S∗
i I

∗
i

+
Si

S∗
i

+
Ii
I∗i

− 1

)

+ δiIi

(
2−

S∗
i

Si

−
Si

S∗
i

− 1 +
Si

S∗
i

−
I∗i Si

IiS∗
i

+
I∗i
Ii

)

+ dS

n∑

j=1

mijS
∗
j

(
1−

SjS
∗
i

S∗
jSi

−
Si

S∗
i

+
Sj

S∗
j

)

+
βiS

∗
i I

∗
i − δiI

∗
i

βiS∗
i I

∗
i

βiS
∗
i I

∗
i

(
SiIi
S∗
i I

∗
i

−
Ii
I∗i

−
Si

S∗
i

+ 1

)

+
βiS

∗
i I

∗
i − δiI

∗
i

βiS∗
i I

∗
i

dI

n∑

j=1

mijI
∗
j

(
1−

IjI
∗
i

I∗j Ii
−

Ii
I∗i

+
Ij
I∗j

)

= (Λi + δiIi)

(
2−

Si

I∗i
−

S∗
i

Si

)
+ βiS

∗
i I

∗
i

(
−

SiIi
S∗
i I

∗
i

+
Si

I∗i
+

Ii
I∗i

− 1

)

+ δiIi

(
−1 +

Si

I∗i
−

I∗i Si

IiI∗i
+

I∗i
Ii

)
+ dS

n∑

j=1

mijS
∗
j

(
1−

SjS
∗
i

S∗
jSi

−
Si

S∗
i

+
Sj

S∗
j

)

+ (βiS
∗
i I

∗
i − δiIi)

(
SiIi
S∗
i I

∗
i

−
Ii
I∗i

−
Si

S∗
i

+ 1

)

+
βiS

∗
i I

∗
i − δiI

∗
i

βiS∗
i I

∗
i

dI

n∑

j=1

mijI
∗
j

(
1−

IjI
∗
i

I∗j Ii
−

Ii
I∗i

+
Ij
I∗j

)
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= (Λi + δiIi)

(
2−

Si

I∗i
−

S∗
i

Si

)
+ βiS

∗
i I

∗
i

(
−

SiIi
S∗
i I

∗
i

+
Si

I∗i
+

Ii
I∗i

− 1

)

− δiI
∗
i

(
Ii
I∗i

−
SiIi
S∗
i I

∗
i

+
Si

S∗
i

− 1

)
+ dS

n∑

j=1

mijS
∗
j

(
1−

SjS
∗
i

S∗
jSi

−
Si

S∗
i

+
Sj

S∗
j

)

+ (βiS
∗
i I

∗
i − δiIi)

(
SiIi
S∗
i I

∗
i

−
Ii
I∗i

−
Si

S∗
i

+ 1

)

+
βiS

∗
i I

∗
i − δiI

∗
i

βiS∗
i I

∗
i

dI

n∑

j=1

mijI
∗
j

(
1−

IjI
∗
i

I∗j Ii
−

Ii
I∗i

+
Ij
I∗j

)

= (Λi + δiIi)

(
2−

Si

I∗i
−

S∗
i

Si

)
+ dS

n∑

j=1

mijS
∗
j

(
1−

SjS
∗
i

S∗
jSi

−
Si

S∗
i

+
Sj

S∗
j

)

+
βiS

∗
i I

∗
i − δiI

∗
i

βiS∗
i I

∗
i

dI

n∑

j=1

mijI
∗
j

(
1−

IjI
∗
i

I∗j Ii
−

Ii
I∗i

+
Ij
I∗j

)

≤ dS

n∑

j=1

mijS
∗
j

(
1−

SjS
∗
i

S∗
jSi

−
Si

S∗
i

+
Sj

S∗
j

)

+
βiS

∗
i I

∗
i − δiI

∗
i

βiS∗
i I

∗
i

dI

n∑

j=1

mijI
∗
j

(
1−

IjI
∗
i

I∗j Ii
−

Ii
I∗i

+
Ij
I∗j

)

≤
n∑

j=1

S∗
j

(
− ln

(
SjS

∗
i

S∗
jSi

)
−

Si

S∗
i

+
Sj

S∗
j

)

+
βiS

∗
i I

∗
i − δiI

∗
i

βiS∗
i I

∗
i

dI

n∑

j=1

mijI
∗
j

(
− ln

(
IjI

∗
i

I∗j Ii

)
−

Ii
I∗i

+
Ij
I∗j

)

= dS

n∑

j=1

mijS
∗
j

[(
Sj

S∗
j

− ln
Sj

S∗
j

)
−

(
Si

S∗
i

− ln
Si

S∗
i

)]

+
βiS

∗
i I

∗
i − δiI

∗
i

βiS∗
i I

∗
i

dI

n∑

j=1

mijI
∗
j

[(
Ij
I∗j

− ln
Ij
I∗j

)
−

(
Ii
I∗i

− ln
Ii
I∗i

)]

=
βiS

∗
i I

∗
i − δiI

∗
i

βiS∗
i I

∗
i

dI

n∑

j=1

mijI
∗
j [

(
λ
Sj

S∗
j

− λ ln
Sj

S∗
j

+
Ij
I∗j

− ln
Ij
I∗j

)

−

(
λ
Si

S∗
i

− λ ln
Si

S∗
i

+
Ii
I∗i

− ln
Ii
I∗i

)
]

=
βiS

∗
i I

∗
i − δiI

∗
i

βiS∗
i I

∗
i

dI

n∑

j=1

mijI
∗
j [Hj(Sj, Ij)−Hi(Si, Ii)]
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where

Hi(Si, Ii) = λ
Si

S∗
i

− λ ln
Si

S∗
i

+
Ii
I∗i

− ln
Ii
I∗i

.

Let W be the weight matrix with entries [wij] =

[
βiS

∗
i I

∗
i − δiI

∗
i

βiS∗
i I

∗
i

dImijI
∗
j

]
. Then

we define the weighted digraph D with associated weight matrix W as the ordered

pair (D,W). Now, since B is irreducible and (βiS
∗
i I

∗
i − δiI

∗
i ) > 0, it follows W is

irreducible. Let ci =
∑

T ∈T w(T ) > 0 as defined in Proposition 2.1 of [54]. Thus,

by Theorem 2.3 of [54], we obtain

n∑

i,j=1

ci
βiS

∗
i I

∗
i − δiI

∗
i

βiS∗
i I

∗
i

dImijI
∗
j (Hj(Sj, Ij)−Hi(Si, Ii)) = 0.

By defining V (S1, I1, . . . , Sn, In) =
∑n

i=1 ciVi(Si, Ii), with ci > 0 if (D,W) is

irreducible, it follows

V̇ =
n∑

i=1

ciV̇i(Si, Ii)

≤
n∑

i=1

ci

(
n∑

j=1

βiS
∗
i I

∗
i − δiI

∗
i

βiS∗
i I

∗
i

dImijI
∗
j (Hj(Ij)−Hi(Ii))

)

= 0

for all (S1, I1, . . . , Sn, In) ∈ Γ̃ and V is a Lyapunov function for system (3.5)-

(3.6). Since ci > 0 for all i, V̇ = 0 implies both
S∗

i

Si
= 1 and

I∗i
Ii

= 1. Thus, the only

invariant set such that V̇ = 0 is {P ∗}. By the LaSalle Invariance Principle [49], we

obtain P ∗ is globally asymptotically stable and it is unique.

�
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CHAPTER 4: ASYMPTOTIC PROFILES

In this chapter, we present the limiting behavior of the disease-free equilibrium and

the basic reproduction number as the movement of the susceptibles and infectives

increases.

4.1 Laurent Series Expansion of the Laplacian Matrix

Recall, the singular Laplacian matrix, L, associated with D(M) is

L =




n∑

j 6=1

mj1 −m12 . . . −m1n

−m21

n∑

j 6=2

mj2 . . . −m2n

...
...

. . .
...

−mn1 −mn2 . . .
n∑

j 6=n

mjn




.

Let Ck,k be the cofactor of the kth diagonal element of L. Let Tk be the set of all

spanning trees, T , of D(M) that are rooted in at vertex k. Let E(T ) be the arc set

of T . By the Matrix Tree Theorem for Directed Graphs [57], we have

Ck,k =
∑

T ∈Tk

∏

(s,r)∈E(T )

mrs.

The following lemma shows the existence and convergence of the Laurent series
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for a small perturbation to L.

Lemma 4.1.1. There exists a convergent Laurent series for (L+ εB)−1 in a punc-

tured neighborhood of 0, where 0 < ε ≪ 1 and B = [bij] is a diagonal matrix with

bii > 0 for i = 1, 2, . . . , n. The Laurent series has a simple pole.

A proof can be seen in [24]. Further, the Laurent series for (L+ εB)−1 is given by

(L+ εB)−1 =
1

ε
X−1 +X0 + εX1 + . . . , (4.1)

where

X−1 =
1∑

j θjµ
S
j




θ1 θ1 . . . θ1

θ2 θ2 . . . θ2
...

...
. . .

...

θn θn . . . θn




and θk =
Ck,k∑
j Cj,j

. The matrix X0 is the generalized inverse of L. Langenhop [48]

showed the higher order terms can be written in terms of the generalized inverse as

follows:

Xk = (−X0B)KX0, for k ≥ 1.

Thus, for a small perturbation ε, we can obtain

(L+ εB)−1 ≈
1

ε
X−1. (4.2)

The expansion of (L + εB)−1 is used in the following two sections to find the

69



limiting behavior of the DFE and R0 for fast movement of individuals.

4.2 Disease-Free Equilibrium

To solve for the DFE, the matrix

D = diag(µS
i ) + dS




∑n

j 6=1 mj1 −m12 . . . −m1n

−m21

∑n

j 6=2 mj2 . . . −m2n

...
...

. . .
...

−mn1 −mn2 . . .
∑n

j 6=n mjn




= diag(µS
i ) + dSL

must be inverted, where L is the Laplacian matrix corresponding to D(M). Thus,

we can find the limiting behavior of the DFE in terms of the spanning rooted-in

trees of D(M).

Since

D−1 =
(
diag(µS

i ) + dSL
)−1

=
1

dS

(
L+

1

dS
diag

(
µS
i

))−1

,

for fast movement 1
dS

is a small perturbation of L. From (4.2), we have

D−1 =
1

dS

(
dSX−1 +X0 +

1

dS
X1 + . . .

)
.
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Thus,

S0 = D−1Λ ≈ X−1Λ.

For fast movement we have

S0
i ≈

θi
∑

j Λj∑
j θjµ

S
j

(4.3)

for i = 1, . . . , n. For patches with high movement in, we can thus presume there

will be more susceptible individuals at the disease-free equilibrium.

We can verify the validity of this approximation using MATLAB, specifically for

the mass action incidence function. We use MATLAB to produce a random n × 1

birth rate vector Λ, with entries between 1000 people/year and 50,000 people/year.

Similarly, we create random n × 1 birth rate vector µS, with an average life ex-

pectancy between 50 and 100 years for each individual patch. In Figures 4.1-4.3,

we compare the true disease-free equilibrium versus the approximated disease-free

equilibrium for three different diffusion coefficients, for a 20-patch population.

Observe in Figure 4.3, the approximated solution is within 5 people for a larger

diffusion coefficient (dS = 10, 000), but nearly there is a difference of nearly 50,000

people for small diffusion coefficients (dS = 1), see Figure 4.1. Thus, we can see

as the diffusion of susceptibles increase, we can use our approximation to obtain

a realistic value for the number of susceptibles at each patch in the disease-free

equilibrium.
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Figure 4.1: Here we let n = 20 and dS = 1 to represent slow movement

of susceptible individuals. The top figure plots the actual DFE vs. the

approximated DFE, the middle represents the error (in people), and the

bottom figure is the sum of the movement rates in each patch vs. the sum

of the movement rates out of the patch.
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Figure 4.2: Here we let n = 20, and vary the diffusion coefficient. We let

dS = 1000 to represent intermediate movement of susceptible individuals.

The top figure plots the actual DFE vs. the approximated DFE, the middle

represents the error (in people), and the bottom figure is the sum of the

movement rates in each patch vs. the sum of the movement rates out of

the patch.
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Figure 4.3: Here we let n = 20, and vary the diffusion coefficient. We

let dS = 10, 000 to represent fast movement of susceptible individuals.

The top figure plots the actual DFE vs. the approximated DFE, the middle

represents the error (in people), and the bottom figure is the sum of the

movement rates in each patch vs. the sum of the movement rates out of

the patch.
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4.3 Basic Reproduction Number

As in Section 4.2, we can find the limiting behavior of the basic reproduction num-

ber, since V can be written in terms of the singular Laplacian matrix, L, as follows:

V = diag
(
µI
i + γi + δi

)
+ dIL

Hence to find R0 through the next-generation matrix approach [68], we must cal-

culate V −1. As a result,

V −1 =
(
diag(µI

i + γi + δi) + dIL
)−1

=
1

dI

(
L+

1

dI
diag

(
µI
i + γi + δi

))−1

,

so for fast movement, 1
dI

is a small perturbation of the singular matrix L. Using the

Laurent series expansion for V −1, we have

V −1 =
1

dI

(
dIX−1 +X0 +

1

dI
X1 + . . .

)
.

From [24], we obtain

X−1 =
1∑

j θj
(
µI
j + γj + δj

)




θ1 θ1 . . . θ1

θ2 θ2 . . . θ2
...

...
. . .

...

θn θn . . . θn




where θj is as defined in Section 4.2.
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Thus, V −1 ≈ X−1. To find R0, we first find an approximation to FV −1. We have

FV −1 ≈ FX−1

=
1∑

j θj
(
µI
j + γj + δj

)




lim
I1→0+

f1(S
0

1
, I1)

I1
θ1 lim

I1→0+

f1(S
0

1
, I1)

I1
θ1 . . . lim

I1→0+

f1(S
0

1
, I1)

I1
θ1

lim
I2→0+

f2(S
0

2
, I2)

I2
θ2 lim

I2→0+

f2(S
0

2
, I2)

I2
θ2 . . . lim

I2→0+

f2(S
0

2
, I2)

I2
θ2

...
...

. . .
...

lim
In→0+

fn(S
0

n, In)

In
θn lim

In→0+

fn(S
0

n, In)

In
θn . . . lim

In→0+

fn(S
0

n, In)

In
θn




= F̃ V
−1

.

Since F̃ V
−1

is a rank one matrix, it follows ρ
(
F̃ V

−1
)
= tr

(
F̃ V

−1
)

, where ρ is

the spectral radius. Utilizing this, and our approximation for S0
j in Section 4.2, we

obtain

R0 = ρ
(
FV −1

)

≈ ρ
(
F̃ V

−1
)

=
1∑n

j=1 θj
(
µI
j + γj + δj

)
n∑

j=1

(
lim

Ij→0+

fj(S
0
j , Ij)

Ij
θj

)

≈
1∑n

j=1 θj
(
µI
j + γj + δj

)
n∑

j=1


 lim

Ij→0+

fj

(
θj

∑
k Λk∑

k θkµ
S
k

, Ij

)

Ij
θj
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Thus the limiting behavior of the basic reproduction number is

R0 ≈
1∑n

j=1 θj
(
µI
j + γj + δj

)
n∑

j=1


 lim

Ij→0+

fj

(
θj

∑
k Λk∑

k θkµ
S
k

, Ij

)

Ij
θj


 . (4.4)

For mass action incidence, i.e. fi(Si, Ii) = βiSiIi for i = 1, 2, . . . , n, it follows

lim
Ij→0+

fj(S
0
j , Ij)

Ij
= lim

Ij→0+
βjS

0
j = βjS

0
j .

Thus, the limiting behavior of R0 is

R0 ≈

(∑n

j=1 βjθ
2
j

)∑n

j=1 Λj

(∑n

j=1 θj
(
µI
j + γj + δj

))(∑n

j=1 θjµ
S
j

) . (4.5)

For the frequency dependent incidence function fi(Si, Ii) = βi

SiIi
Si + Ii

, it follows

lim
Ij→0+

fj(S
0
j , Ij)

Ij
= lim

Ij→0+

βjS
0
j

S0
j + Ij

= βj.

The limiting behavior of R0 becomes

R0 ≈

∑n

j=1 βjθj∑n

j=1 θj
(
µI
j + γj + δj

) . (4.6)
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CHAPTER 5: THE CORRELATION OF A HOT SPOT

LOCATION TO THE PERSISTENCE OF INFECTION

In this chapter, numerical simulations will be applied to investigate the impact of

biased movement in contrast to symmetric movement for the model with frequency

dependent incidence. The simulations will be built with the following goals in

mind:

(i) Revist the results from [2] on multipatch SIS model with symmetric move-

ment and the exclusion of demographics.

(ii) Demonstrate how the location of the disease hot spot impacts persistence of

the infection with asymmetric movement.

(iii) See how demographics of birth and death alter the limiting behavior in [2].

(iv) Explore the limiting behavior when diffusion of the susceptible individuals is

halted for the SIR and SIS models.

5.1 Rural-Urban Star Network Structure

We begin by examining a star network, as depicted in Figure 5.1. In most metropoli-

tan areas, there is often a major city where the majority of people congregate for

work or social activities, but surrounding the cities are many smaller suburbs where

interaction between the population is higher. The star network represents this com-
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munity structure, where the major city is located in the hub (node 1), and the sur-

rounding suburbs are the leafs (nodes 2-5).

1

2

3

4

5

Figure 5.1: Visualization of the star network with one hub and four leafs.

5.2 Set-up of Numerical Experiments

Consider the system (3.5)-(3.6) with n = 5 and movement matrix, M = [mij],

corresponding to the star network as in Figure 5.1. We have

M =




0 m12 m13 m14 m15

m21 0 0 0 0

m31 0 0 0 0

m41 0 0 0 0

m51 0 0 0 0




.
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In this Chapter, we assume frequency dependent incidence

fi(Si, Ii) =
βiSiIi
Si + Ii

, (5.1)

for i = 1, 2, 3, 4, 5, while mass action incidence will be studied in Chapter 6.

Table 5.1: A list of fixed parameter values throughout the simulations.

Parameter Value

Λi 300 people · year−1

µS
i

1
80

year−1

µI
i

1
80

year−1

γi
1
2
year−1

δi 0 year−1

βi varies

mij varies

dS varies

dI varies

Parameters that will be commonly used in our simulations are listed in Table 5.1.

Fixed parameters are chosen to closely mirror current population demographics in

the Orlando region experiencing a sexually transmitted infection outbreak. We keep

the current parameters equivalent among patches to be able to clearly see the impact

of biased movement. Each patch initially has 8000 susceptible and 2 infectious

individuals.

In (5.1), we fix β2 = 0.9 and βi = 0.225 for i = 1, 3, 4, 5. With these values, the
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patch reproduction numbers can be computed as the following:

R
[1]
0 ≈ .4390 R

[2]
0 ≈ 1.7561 R

[3]
0 ≈ .4390 R

[4]
0 ≈ .4390 R

[5]
0 ≈ .4390.

Note that Patch 2 is the disease hot spot.

Three kinds of parameters will be varied in our simulations: some movement rates

mij , the diffusion coefficients dS and dI , and a possible new hot spot location.

Specifically, varying some movement rate from one patch to another patch (only

one direction) will create an asymmetric network, on which the disease impact will

be investigated.

5.3 Symmetric Movement

In this section, we revisit the well-known results for symmetric movement without

demographics and further explore the disease dynamics with demographics.

5.3.1 Monotone Property of R0

By (3.7), the disease-free equilibrium for both the SIS and SIR models is the solu-

tion to the matrix equation Λ = DS0, where D = diag(µS
i ) + dSL. Thus, dS is the

only diffusion coefficient that will play a role in the patch sizes at the disease-free

equilibrium, and hence a role in the patch reproduction numbers. Further, the num-

ber of susceptibles at the DFE in each patch for the frequency dependent function

will vary in the same manner for the mass action incidence function, since the same
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matrix equation must be solved. However, the DFE does not play a role in the patch

reproduction numbers for the frequency dependent incidence function. The patch

reproduction number for Patch i is

R
[i]
0 =

βi

µI
i + γi + δi

.

Thus, each R
[i]
0 is independent of dS . Further, the patch reproduction numbers for

the SIS and SIR models are equivalent if the same value is chosen for the recovery

rate in the two infections. Thus, we will run the results using the SIS model, but an

analogous conclusion can be made for the SIR model.

Figure 5.2(b) shows this independence in the patch reproduction numbers. Further,

the number of individuals in each patch at the disease-free equilibrium is unaltered

by the movement of susceptible individuals; see Figure 5.2(b). Since the birth rate,

death rate, and recovery rate parameters are chosen to be equivalent for each patch,

there are an equal number of susceptibles in each patch at the DFE.
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(a) (b)

Figure 5.2: Effect of varying the diffusion of susceptibles on the disease-

free equilibrium and patch basic reproduction numbers for frequency de-

pendent incidence in the SIS model. (a) The total number of susceptibles

at the DFE vary as dS increases from 0 to 400. The dashed green line rep-

resents the approximated DFE from Section 4.2. (b) The corresponding

effects on each R
[i]
0 as dS varies.

From [73], it is known R0 is a monotone decreasing function of dI when there are

no demographics. However, even with demographics, we can see R0 appears to be
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monotonically decreasing with respect to dI ; see Figure 5.3.

Since M = [mij] is symmetric for this experiment, we can obtain θj = 1
5

for

j = 1, 2, 3, 4, 5. It follows from (4.6) and Table 5.1 that as dI → ∞,

R0 −→
1

5

5∑

j=1

R
[j]
0 ≈ 0.70242, (5.2)

which is the horizontal dashed line in Figure 5.3.

Figure 5.3: The effect on R0 as dI increases from 0 to 10,000.

5.3.2 Profile of Endemic Equilibrium: Demographic Effect

For system (3.5)-(3.6) with no demographics, Allen, Lou, Bolker, and Nevai [2]

were able to show the limiting behavior of the system as dS → 0. In particular,

when R0 > 1, the solution of the system tends to a disease-free state as dS → 0,

i.e. (S, I) → (S∗, 0). In Figure 5.4, we replicate these results by setting the demo-
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graphics of Λi = µS
i = µI

i = 0 for all i and dI = 4, 000 fixed. Although R0 is

unchanged and always above 1 as dS → 0, we can see the infection is eradicated

from the population; see (b) and (d) of Figure 5.4. It follows from Figure 5.4(c) that

as dS → 0, the susceptibles in the disease hot spot, Patch 2, approach 0.

Symmetric Movement with No Demographics

Hot Spot In Leaf 2

(a) (b)

(c) (d)

Figure 5.4: dI = 4, 000 is fixed. (a) The basic reproduction number as dS
tends to 0. (b)-(c) The total number of infectives and susceptibles on each

patch, respectively. (d) The total number of infectives in the population.

If we only choose a hot spot located in the hub, similar results hold; see Figure

5.5. Here, the disease dies out as dS → 0, yet R0 > 1. Further, we can see the
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susceptibles in the hub go extinct, and the population is distributed equally among

the remaining leaves.

Symmetric Movement with No Demographics

Hot Spot In Hub

(a) (b)

(c) (d)

Figure 5.5: dI = 4, 000 is fixed. (a) The basic reproduction number as dS
tends to 0. (b)-(c) The total number of infectives and susceptibles on each

patch, respectively. (d) The total number of infectives in the population.
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Symmetric Movement with No Demographics

Hot Spots In Hub and Leaf 2

(a) (b)

(c) (d)

Figure 5.6: dI = 4, 000 is fixed. (a) The basic reproduction number as dS
tends to 0. (b)-(c) The total number of infectives and susceptibles on each

patch, respectively. (d) The total number of infectives in the population.

Next, we would like to further explore the situation with multiple hot spots. If we

allow a hot spot in the Hub and another hot spot in Leaf 2, then the infection also

dies out and the susceptibles in the Hub and Patch 2 both tend to zero as dS → 0;

see Figure 5.6. We will show later asymmetric movement would alter this.
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Symmetric Movement with Demographics

Hot Spot In Leaf 2

(a) (b)

(c) (d)

Figure 5.7: dI = 4, 000 is fixed. (a) The basic reproduction number as dS
tends to 0. (b)-(c) The total number of infectives and susceptibles on each

patch, respectively. (d) The total number of infectives in the population..

Now, we show that the introduction of demographics in our simulation would per-

sist the infection. The simulation shows that when R0 > 1, halting the movement

of the susceptibles does not cause extinction of the disease; see Figure 5.7. With

demographics, similar results hold for the situation with one hot spot located in the

Hub, or two hot spots located in the Hub and Patch 2. We omit these figures.
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5.4 Asymmetric Movement

In this section, we see how asymmetric movement impacts the known results for

the symmetric movement, and if it causes different behavior.

5.4.1 Monotone Property of R0

To contrast the known results from Section 5.3, we introduced biased movement

between two patches. The non-zero movement rate, mij , will be chosen as either

normal value 0.0001 or larger value 0.001. In particular, the larger value is corre-

sponding to the large arc in the network; see, for example, in Figure 5.8. We will

vary the location of the large arc to represent all possible situations. Namely, the

large arc will be placed from Patch 2 to Patch 1, Patch 1 to Patch 2, Patch 3 to

Patch 1, and Patch 1 to Patch 3, respectively, as (a), (b), (c), and (d) in Figure 5.8.

Since R0 is independent of the DFE for the system with frequency dependent inci-

dence, varying dS has no effect on the overall basic reproduction number. Instead,

we will solely vary dI and see the effect on R0. When considering a single diffusion

coefficient, d = dS = dI , will be completely determined from the value of dI .

As shown in Figure 5.8, R0 is a monotone decreasing function of dI . However, the

location of the large arc relative to the disease hot spot is essential in determining

the persistence of the disease. Figure 5.8(b) shows disease persistence regardless

of the dI value, while all three other cases, Figure 5.8(a), (c), and (d), can lead to

disease extinction with large diffusion coefficient dI .
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(a) (b)

1 3

4

5

2

1 3

4

5

2

(c) (d)

Figure 5.8: The effect on R0 as dI increases for large arc locations.

90



The above phenomena can be explained using the approximation formula (6.1),

R0 →
∑5

j=1 θjR
[i]
0 as dI → ∞. Because of the structure of the star network, each

node only has one rooted-in tree. As a result, the cofactors of the Laplacian matrix

can be determined as follows:

C1,1 = m12 m13 m14 m15

C2,2 = m21 m13 m14 m15

C3,3 = m31 m12 m14 m15

C4,4 = m41 m12 m13 m15

C5,5 = m51 m12 m13 m14

Then each θj = Cj,j/
∑

k Ck,k can be calculated. Table 5.2 outlines these values for

each large arc location.

Table 5.2: Calculation of θj’s and limiting R0 for Figure 5.8.

Large Arc Location θ1 θ2 θ3 θ4 θ5 Limiting R0

(a) Leaf 2 to Hub 0.2439 0.0244 0.2439 0.2439 0.2439 0.4829

(b) Hub to Leaf 2 0.0714 0.7143 0.0714 0.0714 0.0714 1.4143

(c) Leaf 3 to Hub 0.2439 0.2439 0.0244 0.2439 0.2439 0.7793

(d) Hub to Leaf 3 0.0714 0.0714 0.7143 0.0714 0.0714 0.5464

5.4.2 Profile of Endemic Equilibrium: the Effect of Biased Movement

In this section, we investigate the impact of asymmetric movement on the limiting

behavior as dS → 0. In order to compare with the results from [2] and Section 5.3.2,
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we set Λi = µS
i = µI

i = 0 for all i and dI = 4, 000 fixed; namely, there are no

demographics for the population and the total number of individuals is fixed.

Figure 5.9 shows the results when the movement is biased towards the hot spot.

In Figure 5.9(b), we can see the basic reproduction number does not change as

dS → 0, and it is above the threshold value of 1. However, Figure 5.9(c) shows

the number of infectives still tends to zero on each patch as dS → 0. In Figure

5.9(d), we can see the susceptibles do die out in the hot spot, mirroring the results

for symmetric movement. Analogous results hold when altering the location of the

large arc or switching the location of the hot spot to the hub.

However, the presence of two multiple hot spots and asymmetric movement might

alter this limiting behavior. For example, in Figure 5.10, there are two hot spots in

the star network: one in the main hub and one in a surrounding leaf. We allow the

biased movement from the main hub to the hot spot leaf. Although R0 > 1 and

there are no demographics in the population, Figure 5.10(b) shows persistence of

the infectives for very small diffusion of susceptibles.

For symmetric movement, the disease does not persist as dS → 0, see Figure 5.6.

Note that the persistence of the infectious population is solely in Patch 2. Both the

infectives and susceptibles die out in the main hub, essentially leaving Patch 2 iso-

lated from the remainder of the population. The infectives die out on the remaining

leafs, leaving the susceptible population unaltered there.
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(a)

(b) (c)

(d) (e)

Figure 5.9: (a) Movement network with a large arc from the Hub to

Patch 2. (b) The basic reproduction number is independent of dS . (c)-

(d) The total number of infectives and susceptibles on each patch, respec-

tively. (e) The total number of infectives in the population.

93



1 3

4

5

2

(a)

(b) (c)

(d) (e)

Figure 5.10: (a) Movement network. (b) The basic reproduction number

as dS tends to 0. (c) The total number of infectives on each patch. (d) The

total number of susceptibles per patch. (e) The total number of infectives

in the population.
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(a)

(b) (c)

(d) (e)

Figure 5.11: (a) Movement network. (b) The basic reproduction number

as dS tends to 0. (c)-(d) The total number of infectives and susceptibles per

patch, respectively. (e) The total number of infectives in the population.
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This sole location for the biased movement gives persistence of the infection when

multiple hot spots exist. Figure 5.11 shows when the large arc is placed from Patch

2 to the hub, the infection will not persist as dS → 0. The susceptibles in both the

hub and Patch 2 tend to 0. When the location of the large arc is varied from the

hub to Patch 3 or Patch 3 to the hub, analogous behavior is exhibited. Thus, under

this situation, the biased movement from the center city towards a hot spot causes

persistence of the infection.

5.5 Distinction Between SIS and SIR Models

Finally, we contrast the behavior between the SIS and SIR models without demo-

graphics in the limiting case as dS → 0. We will focus on the situation when

multiple hot spots exist in the network.

Figure 5.12 shows the results for the SIR model when hot spots are located in the

hub and Patch 2 with symmetric movement. The infectious population does not

persist on any of the patches, but the infection still passes through some individuals,

since R∗
i > 0 for each i. However, unlike the SIS model, the susceptibles are able to

persist in one of the hot spots. Further, as dS increases, the susceptible population

dies out and most individuals move to the recovered class.

Finally, we see if similar behavior is present for this skewed movement case with

a hot spot in the leaf and a hub. In Figure 5.13, the disease does not persist in the

population as dS → 0, but the susceptibles population in the Patch 2 still tend to

zero; however, the hub has a larger amount of susceptibles than the symmetric case,
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causing few individuals to become infected in this hot spot. Similar results hold

when the biased movement is from the hub to Patch 3 and Patch 3 to the hub, thus

we omit their figures.

Symmetric Movement with No Demographics SIR Model

Hot Spot In Hub and Leaf 2

(a) (b)

(c) (d)

Figure 5.12: Here dI = dR = 4, 000 is fixed. (a) The basic reproduction

number as dS tends to 0. (b)-(c) The total number of infectives and sus-

ceptibles on each patch, respectively. (d) The total number of infectives

in the population.
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Asymmetric Movement with No Demographics SIR Model

Hot Spot In Hub and Leaf 2

1 3

4

5

2

(a)

(b) (c)

(d) (e)

Figure 5.13: Limiting behavior for a population without demographics as

dS → 0 for frequency dependent incidence with symmetric movement

when a hot spot exists in a rural area and center city (SIR model). Here

dI = dR = 4, 000 is fixed. (a) Movement network. (b) The basic repro-

duction number as dS tends to 0. (c)-(d) The total number of infectives

and susceptibles on each patch, respectively.
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Table 5.3: Summary of behavior of each I∗i as dS → 0 for each i on the

SIS and SIR models.

SIS Model SIR Model

Symmetric Movement (No Demographics) I∗i → 0 I∗i → 0

Symmetric Movement (Demographics) I∗i 6→ 0 I∗i → 0

Asymmetric Movement (No Demographics) I∗i might not approach 0 I∗i → 0

Asymmetric Movement (Demographics) I∗i 6→ 0 I∗i → 0

Table 5.3 summarizes the comparison between the SIS and SIR models utilizing

frequency dependent incidence with and without demographics.

5.6 Summary of Results

Clearly both demographics and asymmetric movement can cause interesting behav-

ior in the persistence of an infection. For symmetric movement, stopping the move-

ment of susceptible individuals causes extinction in the population when using the

frequency dependent incidence function without demographics [2], regardless of

the location and number of hot spots in the structure.

If demographics are introduced, this phenomenon does not hold anymore. The in-

flux of individuals fuels the infection and allows for persistence even in the absence

of movement for susceptible individuals. This influx can also represent a multi-

tude of realistic representations including birth, tourism, and immigration. These

dynamics coupled with movement can then help the persistence of the infection.

More interestingly, the dynamics as dS → 0 for asymmetric movement can vary
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according to number of hot spots and location of the biased movement without

demographics. Without the presence of new influx of individuals, the infection can

also persist in the population as the movement of the susceptibles tends to zero. This

behavior varies for our different experiments, but when two hot spots exists and the

biased movement is between the two, the infection persists. Consequently, more

detailed information is required to determine the limiting behavior of the system.

Further, there is varying behavior for SIS and SIR models utilizing frequency de-

pendent incidence with and without demographics. For the SIR model, the infec-

tives tend to 0 on each patch as dS → 0, but S∗
i 6→ 0 necessarily for each hot spot.

For the SIS model, the introduction of demographics allowed for persistence of the

infection even as dS → 0, but does not have the same effect in the SIR model.
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CHAPTER 6: CONTRAST IN BEHAVIOR FOR THE BASIC

REPRODUCTION NUMBER AND ENDEMIC LEVELS

In this chapter, we create numerical experiments mirroring the set-up from Chap-

ter 5, but utilizing the mass action incidence function. The main goals are outlined

below:

(i) Show biased movement alters the patch reproduction numbers, possibly in-

ducing new disease hot spots.

(ii) Demonstrate numerically monotone/non-monotone properties of R0 in terms

of dI , dS , or a single diffusion coefficient d = dS = dI .

(iii) Investigate the correlation between the endemic level and diffusion coeffi-

cient.

We will continue to use the Star Network as outlined in Section 5.1. Throughout

this Chapter, Leaf 2 will be a hot spot where the disease will persist, while all

other patches are considered favorable for extinction of the disease when movement

vanishes.

Further, we focus solely on the SIS model, since analogous results will hold for the

DFE, patch reproduction numbers, and R0 for the SIR model.
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6.1 Parameter Settings

We choose fixed parameters similar to those in Chapter 5; see Table 6.1. We let

β2 = 0.0000375 and βi = 0.0000093 for i = 1, 3, 4, 5. In the absence of movement,

each patch reproduction number can be computed as follows:

R
[1]
0 ≈ .4348 R

[2]
0 ≈ 1.7532 R

[3]
0 ≈ .4348 R

[4]
0 ≈ .4348 R

[5]
0 ≈ .4348,

where R
[i]
0 =

βiS
(0)
i

µI
i + δi

=
Λiβi

µS
i (µ

I
i + δi)

.

Two kinds of parameters will be varied in our experiments: some movement rates,

and the diffusion coefficients dI and dS . Further, we will allow for a single diffusion

coefficient, d = dS = dI , adopting the behavior for a sexually transmitted infection.

When introducing biased movement, we vary the rates in a similar manner to Sec-

tion 5.4, skewing movement between two patches. The non-zero movement rate,

mij , will be chosen as either normal value 0.0001 or larger value 0.001.

Table 6.1: A list of fixed parameter values throughout the simulations.

Parameter Value

Λi 300 people · year−1

µS
i = µI

i
1
80

year−1

δi
1
2
year−1

γi 0 year−1

βi, mij , dS , dI vary
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6.2 Symmetric Movement

For the system with mass action incidence, the DFE is dependent on dS , which

in turn determines the patch reproduction numbers. In this section, we carry out

simulations to show the impact of asymmetric movement on R0 and the EE. We will

see how these quantities are affected by the location of the large arc in correlation

to the hot spot.

(a) (b)

Figure 6.1: (a) The total number of susceptibles at the DFE vary as dS in-

creases from 0 to 400. The dashed green line represents the approximated

DFE from Section 4.2. (b) The corresponding effects on R
[i]
0 as dS varies.
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In Figure 6.1, we can see the symmetric movement does not alter the DFE and patch

reproduction numbers regardless of the value of dS , and thus the basic reproduction

number R0 is independent of dS , see Figure 6.2(b). However, in the next section,

this will be altered under asymmetric movement.

(a) (b)

(c)

Figure 6.2: (a) The effect on R0 as dI varies for fixed values of dS . (b)

The effect on R0 as dS varies for fixed values of dI . (c) The effect on R0

as a single diffusion coefficient d = dS = dI varies.

In contrast to the independence of dS , R0 is a monotone decreasing function of
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dI ; see Figure 6.2(a). Similarly, for a single diffusion coefficient, d = dS = dI ,

R0 is also a monotone decreasing function; see Figure 6.2(c). Using (4.5), we can

calculate the limiting value of R0 as follows:

R0 −→
1

5

5∑

j=1

R
[j]
0 ≈ 0.69848, (6.1)

since θj = 1
5

for all j. This limiting value is represented as the dashed line in

Figure 6.2(c).

Finally, we consider how dI alters the endemic equilibrium; see Figure 6.3. As

dI → ∞, the number of infectives on each patch tends to 0, while the susceptibles

increase monotonically. This results in the concentration of infectives tending to

zero; see Figure 6.3(c). The monotonic decrease of R0 and I∗ leads to extinction of

the infection when dI ≫ 1; however, we will see contrasting behavior with biased

movement in combination with varying of dS .
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: (a) The effect on the total number of infectives and suscepti-

bles in each patch, respectively, as dI increases. (c) The concentration of

infectives per patch. (d) The total number of infectives. (e) The plot of

the total number of infectives, I∗(t), as dI varies. (f) The effect on R0.
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6.3 Asymmetric Movement Induced Hot Spot

In the previous section, we have shown that the DFE, patch reproduction num-

bers, and the basic reproduction number are independent of the diffusion coefficient

dS . In contrast, all these values would depend on dS under asymmetric movement,

which will be demonstrated numerically in this section.

In Figure 6.4, the large arc is from the hot spot to the main hub. Naturally, the hot

spot has a quick decrease in the number of susceptibles at the disease-free equilib-

rium, which in turn causes the patch reproduction number to rapidly decline below

the threshold value 1.

As the individuals move to the hub, there is an initial increase in the size of the

population at the disease-free equilibrium; however, as the diffusion of the suscep-

tibles further increases, the population disperses evenly into the remaining leaves.

Even though all the remaining patches have a monotonic increase in the number

of susceptibles at the disease-free equilibrium, their patch reproduction numbers

all remain below 1. The resulting R0 could be a monotone decreasing function of

dS as shown in Figure 6.4(b) with dI = 0; however, for different dI values, R0

might not be a monotone function. This feature will be further explored in the next

section. For all cases, R0 will fall below the threshold value 1 for large diffusion

coefficient dS . Biologically, the disease might tend to die out, if there exists large

biased movement out of the hot spot.
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(c) (d)

Figure 6.4: (a) Location of the large arc in relation to the hot spot. (b) Ef-

fect on R0 as dS varies and dI = 0. (c) The total number of susceptibles

at the DFE vary as dS increases from 0 to 400. The dashed green line rep-

resents the approximated DFE from Section 4.2. (d) The corresponding

effects on each R
[i]
0 as dS varies.
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Considering the reverse case, see Figure 6.5, we allow the large arc to be placed

from the hub into the hot spot. Clearly, this would be problematic to skew individ-

uals towards the outbreak; this drastically increases the patch reproduction number

of the hot spot, since the number of susceptibles is monotonically increasing for the

disease-free equilibrium in Patch 2.

On the other hand, the remaining patches decline steadily in the number of sus-

ceptible individuals at the disease-free equilibrium. The flow is consistent between

the surrounding leaves and the main hub, so as they move towards the center, these

individuals are skewed to travel to the hot spot from the biased movement. Thus,

Patch 1, 3, 4, and 5 all have declining patch reproduction numbers. Since Patch 2’s

behavior is very dominating, the diffusion of the infectious individuals in combi-

nation with the diffusion of the susceptibles may result in interesting dynamics due

to contrasting behavior. Overall, the biased movement of susceptibles into the hot

spot causes a drastic increase in R0; see Figure 6.5(b).

In Figure 6.6, we let the biased movement occur from Patch 3 to the hub. As dS

grows, each S
(0)
i tends towards the weighted average, and each patch reproduc-

tion number mimics the same behavior as the disease-free equilibrium. Although

Patch 3 has a decline in the number of individuals at the disease-free equilibrium

and its patch reproduction number, the other remaining patches all see an increase

in these two quantities, in a similar manner to Figure 6.4. Patch 2 always remains a

hot spot, while the other patches stay below the threshold value of 1. In contrast to

Figure 6.4, Patch 2 does not have a drastic increase in its reproduction number as a

result of the skewed movement.
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Figure 6.5: (a) Location of the large arc in relation to the hot spot. (b) Ef-

fect on R0 as dS varies and dI = 0. (c) The total number of susceptibles

at the DFE vary as dS increases from 0 to 400. The dashed green line rep-

resents the approximated DFE from Section 4.2. (d) The corresponding

effects on each R
[i]
0 as dS varies.
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Figure 6.6: (a) Location of the large arc in relation to the hot spot. (b) Ef-

fect on R0 as dS varies and dI = 0. (c) The total number of susceptibles

at the DFE vary as dS increases from 0 to 400. The dashed green line rep-

resents the approximated DFE from Section 4.2. (d) The corresponding

effects on each R
[i]
0 as dS varies.
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Thus, the dynamics between the different diffusion coefficients may vary drasti-

cally. Further, we see the same non-monotonicity in the number of susceptibles at

the disease-free equilibrium in Patch 1, and the corresponding non-monotonicity in

R
[1]
0 . Overall, Figure 6.6(b) shows this causes a steady increase in R0 when dI = 0;

however, the basic reproduction number does not increase to the same extent as in

Figure 6.5(b), but still causes persistence of the infection.

In Figure 6.7, the largest movement is placed from the hub to Patch 3. Each S0
i and

R
[i]
0 are monotonic functions of dS , with only Patch 3 having monotone increasing

functions. Each patch reproduction number graph mimics the same behavior as the

graph in the size of the patch at the disease-free equilibrium and the disease-free

equilibrium tends towards the weighted average as the diffusion of susceptibles

increases.

Notice, as dS increases, Patch 3 becomes a secondary hot spot. When dS ≈ 100,

we have R
[3]
0 > 1 and R

[2]
0 > 1, causing an asymmetric movement induced hot

spot. Because of these contrasting behaviors, we can see non-monotonicty of R0

as a function of dS in Figure 6.7(b) when dI = 0. Some diffusion of susceptibles

is beneficial to the population, since the patch reproduction number in the hot spot

is decreasing. However, when dS is large enough, the creation of the secondary hot

spot causes an increase in R0.

Due to the symmetry of the parameters chosen, similar graphs as in Figures 6.6 and

6.7 are obtained when the large arc is varied between Patch 4 and the hub and Patch

5 and the hub. We thus omit their figures. With the behavior known in each patch,

we turn our attention to the basic reproduction number, R0.
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Figure 6.7: (a) Location of the large arc in relation to the hot spot. (b) Ef-

fect on R0 as dS varies and dI = 0. (c) The total number of susceptibles

at the DFE vary as dS increases from 0 to 400. The dashed green line rep-

resents the approximated DFE from Section 4.2. (d) The corresponding

effects on each R
[i]
0 as dS varies.
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6.4 Non-monotone Property of R0

In the previous section, we have seen the occurrence of non-monotonicity of R0

when asymmetric movement induces a new hot spot. In this section, we further

explore the non-monotone property of R0. Specifically, we will explore the overall

effect of R0 as the diffusion coefficients are varied. While varying the location of

the large arc, we will run three experiments. First, the diffusion of the infectives,

dI , is varied while the diffusion of the susceptibles, dS , is fixed. Second, dS varies

while dI is constant. Finally, a single diffusion coefficient d = dS = dI is varied to

represent infections that will not inhibit movement of infectives, e.g. representing

diffusion for a sexually transmitted infection model.

In Figure 6.8(a), we can see R0 is monotonic with respect to dI . On the other hand,

Figure 6.8(b) shows the behavior of R0 as a function of dS varies for fixed dI . When

dI is small, we can see R0 is a monotonic decreasing function of dI . However, for

dI ≫ 1, the behavior switches and R0 is a monotone increasing function of dS .

When considering a single diffusion coefficient, Figure 6.8(c), we see R0 is a mono-

tone decreasing function of d. Although we have contrasting behavior for R0 as a

function of dS and dI , the overall dynamic of R0 as a function of d is valid. In

both instances, R0 is well below the threshold value of 1. The disease would not

persist even for fast movement of susceptibles. Realistically, the individuals are

begin pulled from the hot spot at a very fast rate and spreading evenly throughout

the remaining patches. As a result, the patch reproduction number of the hot spot is

drastically decreased, see Figure 6.4, so the disease cannot persist in the population.
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Figure 6.8: (a)-(b) The effect on R0 as dI and dS vary, respectively. (c)

The effect on R0 as a single diffusion coefficient d = dS = dI varies. (d)

Movement network.

Even with the most movement into the hub, it still follows R0 is monotone decreas-

ing with respect to dI , see Figure 6.9(a). It was proven in 2009, the principle eigen-

value is a monotone decreasing function of dI for a system without demographics

and frequency dependent incidence [2].
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Figure 6.9: (a)-(b) The effect on R0 as dI and dS vary, respectively. (c)

The effect on R0 as a single diffusion coefficient d = dS = dI varies. (d)

Movement network.

More recently, in a personal conversation with Y. Wu, he discovered a proof to

show R0 is a monotone decreasing function of dI for the same system [73]. We

conjecture this holds true for the asymmetric case as well, but more work must be

proven for the principle eigenvalue of the system first.
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Recall, from Figure 6.5, the patch reproduction number in the hot spot drastically

increases as dS becomes larger. Thus, increasing the diffusion of the susceptibles

demonstrates R0 as a monotone increasing function of dS , see Figure 6.9(b). How-

ever, as dI is increased and fixed, the overall basic reproduction number decreases.

Thus, even with fast diffusion of susceptibles, increasing the diffusion of the infec-

tives lowers R0 and likely the size of the outbreak.

Unlike the prior case, this contrasting behavior between dS and dI causes non-

monotonicity of R0 as a function of a single diffusion coefficient, d. There is an

initial incline in R0, but after reaching a maximum R0 decreases slowly towards

the limiting R0 from (4.5). Although there was some contrasting behavior in Figure

6.8, both cases kept R0 < 1. Here, R0 > 1 in each instance, which causes the

interesting dynamics of this single diffusion coefficient.

Now, due to the symmetry of our parameter selection, we only need to consider the

two cases where the large arc is placed from the hub to one of the remaining leafs

and from the leaf to the hub. We will select Patch 3 to run these experiments with.

First, if we allow travel from one of the good patches into the main hub, regardless

of the dS choice, we can still obtain R0 is monotone decreasing with respect to dI ,

see Figure 6.10(a).

On the other hand, we can see R0 is monotone increasing with respect to dS in

Figure 6.10(b) in a similar manner to 6.8(b). Thus, when varying both diffusion

coefficients simultaneously, we obtain non-monotonicty of R0 as a function of d.

Initially, travel into the main hub creates problems, but eventually when the travel

is fast, the reproduction number decreases. From Figure 6.6, the patch reproduction
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number increases on Patch 1, 2, 4, and 5. Although only Patch 2 has R
[i]
0 > 1, by

pushing susceptibles towards the center, they are dispersing into the hot spot and

staying there long enough to become infected. As the diffusion increases, it likely

helps reduce the time individuals stay in the hot spot and thus reduces the spread of

the infection.

(a) (b)

(c)

1 3

4

5

2

(d)

Figure 6.10: (a)-(b) The effect on R0 as dI and dS vary, respectively. (c)

The effect on R0 as a single diffusion coefficient d = dS = dI varies. (d)

Movement network.
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Figure 6.11: (a)-(b) The effect on R0 as dI and dS vary, respectively. (c)

The effect on R0 as a single diffusion coefficient d = dS = dI varies. (d)

Movement network.

Finally, in Figure 6.11, we allow the most movement into one of the surrounding

leafs from the hub. Again R0 is monotone decreasing with respect to dI . Unlike

the previous experiments, we see a drastically different graph when dS = 1 and

dS ≫ 1 in Figure 6.11(a). Slow diffusion of both susceptibles and infectives seems

more problematic at first, but the overall basic reproduction number is only near
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1.8 since R
[2]
0 ≈ 1.7561. When little diffusion occurs for both compartments, it

is plausible the reproduction number is that high. However, once the diffusion of

infectives increases, the overall reproduction number drops below 1, which would

result in extinction of the infection. For dS ≫ 1, the disease would persist even

with fast diffusion of the infectives.

The behavior in Figure 6.11(a) can be explained via Figure 6.11(b), since R0 is not

always monotonic with respect to dS . Figure 6.11(a) picks an initial starting point

along the green dotted line in Figure 6.11(b), since dI = 1 here. With the drastic

change in behavior while varying dS , the initial conditions from the green dotted

line begin R0 near 1.8, 1.4, and 1.6 for dS = 1, dS = 500, and dS = 8000.

(a) (b)

Figure 6.12: Creation of an asymmetric movement induced hot spot. (a)

A zoom in of R
[3]
0 as dS varies and crosses the threshold value. (b) The

corresponding graph for R0 as a function of dS .

This drastic change in behavior is a result of the patch reproduction numbers. In

Section 6.3, too fast of diffusion of susceptibles created this asymmetric movement
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induced hot spot as R
[3]
0 crossed the threshold value of 1. In Figure 6.12, we can see

as R
[3]
0 nears 1, R0 begins to change in behavior. As a result, this non-monotonicity

is exhibited under a single diffusion coefficient, d; see Figure 6.11(c).

Figure 6.13: The overall effect on R0 for each location of the large arc as

dS and dI vary independently.
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Figure 6.13 gives one final visualization of the effect of dS and dI on R0. We can

easily see the non-monotonicity of R0 as a function of dS when the most move-

ment is between the hub and Patch 3. Further, the diagonal of each graph represents

how R0 is altered from a single diffusion coefficient d, allowing us to see the non-

monotonic cases more readily. Finally, we can see how symmetric movement is

consistent for each value of dS , a stark contrast from the skewed asymmetric move-

ment.

Clearly as a result of these simulations, we can see R0 is not monotone with respect

to a single diffusion coefficient, d. We do notice this behavior when dS and dI do

not agree in monotonicity. Table 6.2 provides a complete summary of our findings.

Table 6.2: Summary of monotonicity of R0 for mass action incidence with

a hot spot in a leaf.

Large Arc

Location

Monotonicity of

R0 (dI varies)

Monotonicity of

R0 (dS varies)

Monotonicity of R0

(dI = dS varies)

Leaf 2 to

Hub

monotone

decreasing

varies monotone

decreasing

Hub to

Leaf 2

monotone

decreasing

monotone

increasing

not monotonic

Leaf 3 to

Hub

monotone

decreasing

monotone

increasing

not monotonic

Hub to

Leaf 3

monotone

decreasing

not monotonic not monotonic
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From this, we conjecture the overall monotonicity of R0 as a function of d depends

solely on the monotonicity of R0 as a function of dS .

6.5 Effect on the Endemic Equilibrium

Since R0 is non-monotonic for some instances, a similar effect should be present

in the behavior of the endemic equilibrium. We examine the effect on the num-

ber of susceptibles individuals, the total number of infectious individuals, and the

concentration of infectives, e.g. Ii/(Si + Ii), at the EE as dS varies.

As dS increases, R0 decreases below the threshold 1 when the large arc is out of the

hot spot. As a result, there is no endemic state for larger movement. Thus, we begin

by examining the effect on the endemic equilibrium when the large arc is from the

hub into the hot spot.

In Figure 6.14, the effect on the total number of susceptibles and infectives in patch

is examined, along with the concentration of infectives in each patch, for a fixed

dI = 500. With the susceptibles being pushed into the hot spot, the number of in-

fectives skyrockets almost immediately as dS increases, which is biologically feasi-

ble. Recall, from Figure 6.5, the patch reproduction number increases significantly

as dS grows larger, and consequently the number of infectives in Patch 2 increases

in a similar manner.
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Figure 6.14: (a) The number of infectives in each patch at the endemic

equilibrium for varying dS . (b) The number of susceptibles in each patch

at the endemic equilibrium for varying dS . (c) The concentration of in-

fectives in each patch at the endemic equilibrium for varying dS . (d) The

total number of infectives at the EE. (e) The plot of the total number of

infectives, I∗(t), as dS varies. (f) The change in the basic reproduction

number.
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Most individuals are being pulled into the hot spot, causing a decrease in the number

of susceptibles for Patches 1, 3, 4, and 5; however, the number of susceptibles in

Patch 2 remains fairly constant. Initially, it seems the increase of dS should cause an

increase in S∗
2 , but realistically the increase in diffusion causes the infectives to grow

since the reproduction number is increasing rapidly in Patch 2. This is different

than the effect of dS on the number of susceptibles at the DFE. While dS grows,

we saw S0
2 decreases. As the new susceptibles enter, most become infected. The

influx of individuals seems to solely replenish the susceptible population. Once the

reproduction number reaches a more steady state, the number of infectives plateaus,

along with the number of susceptibles in the other patches, keeping the population

at this endemic state.

Finally, the behavior of the concentration of infectives is determined. Since each

patch now has a varying number of individuals, the concentration provides a good

insight to how problematic the infection is on each patch. With a low concentra-

tion of infectives, less people are ultimately affected by the disease. Clearly, Patch

2 is very problematic to the persistence of the infection. Even with small diffu-

sion of the susceptibles, the concentration of the infectives in Patch 2 reaches 80%

rapidly. Further, even though Patch 1 loses most of their susceptible individuals,

the infection spreads fairly quickly into the hub as dS increases. More than 50%

of the population becomes infected. Finally, the infection slowly dissipates into the

remaining leaves. Ultimately, there are three different levels to the infection, since

Patches 3-5 behavior in a similar manner.
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(c) (d)

(e)
(f)

Figure 6.15: (a) The number of infectives in each patch at the endemic

equilibrium for varying dS . (b) The number of susceptibles in each patch

at the endemic equilibrium for varying dS . (c) The concentration of in-

fectives in each patch at the endemic equilibrium for varying dS . (d) The

total number of infectives at the EE. (e) The plot of the total number of

infectives, I∗(t), as dS varies. (f) The change in the basic reproduction

number.
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In Figure 6.15, we allow the most movement from Patch 3 to the hub. We have

seen R0 is a monotone increasing function of dS from Section 6.4 and as shown

again in Figure 6.15(f). Since the susceptibles are sent to the main hub quickly as

dS increases, we can see the total number of infectives in Patch 2 increases, since

more susceptibles will be pushed into Patch 2 as a result of the fast diffusion.

Once again, the number of susceptibles in Patch 2 remains consistent, but the over-

all concentration increases, just as in Figure 6.14. The number of infectives in Patch

3 remains at the same level as the other leafs, but the concentration of infectives in-

creases due to the total number of susceptibles decreasing. Thus, there is a higher

concentration of infectives in Patch 2 than the other leafs. Although the concentra-

tion of infectives in the hot spot increases, it caps out at roughly 60%. When the

most movement is from the hub into the hot spot, the concentration reached over

80%, but here the susceptibles are sent into Patch 4 and 5 at the same rate as into

Patch 2. This allows for some individuals to evade infection.

Unlike the first case, it seems the infection remains more controlled in Patch 4 and

5. The total number of infectives remains fairly small, and although the number

of susceptibles is non-monotonic, the concentration of infectives remains less than

10%. With this, it may be interesting to see how re-routing individuals towards the

outer patches during an outbreak could alter the total number of infectives.

In our last scenario, we let the biased movement occur the hub into one of the

surrounding leafs, which provided interesting non-monotonicity of R0 in Section

6.4. As a result, similar dynamics occur involving the endemic equilibrium, see

Figure 6.16. First, the total number of infectives drastically increases for Patch 3,
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since a second hot spot is created when dS > 90. The number of infectives in

this patch slowly increases until that point, and then has a drastic increase. Even

though Patch 2 always has a patch reproduction number greater than 1, the number

of infectives in the hot spot is always decreasing, and eventually reaches a similar

level to those in the Patch 1, 4, and 5.

Again, the number of susceptibles stays consistent for Patch 2, which causes a de-

crease in the overall concentration of infectives. Further, Patch 2 and 3 essentially

swap roles when dS is large enough. The concentrations switch, and Patch 3 has

a higher percentage of infectives. Patch 2 even becomes similar in concentration

to the remaining surrounding leafs. The hub only experiences an increase in con-

centration from losing more susceptibles as dS ≫ 1. Thus, when the movement

is heavily skewed from the main hub into Patch 3, there are three main levels on

infectivity. Patch 3 is the highest, the hub is second, and the remaining leafs are

all similar, even though Patch 2 still has a patch reproduction number greater than

1. The concentration is less than 5% for higher values of dS , making Patch 3 more

prominent in the persistence of the infection.

Overall, this creation of a secondary hot spot leads to a less severe outbreak than

what is seen when the most movement is into the hub; however, it does show biased

travel away from the hot spot toward a particular location can be problematic in

persistence of the disease.
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Figure 6.16: (a) The number of infectives in each patch at the endemic

equilibrium for varying dS . (b) The number of susceptibles in each patch

at the endemic equilibrium for varying dS . (c) The concentration of in-

fectives in each patch at the endemic equilibrium for varying dS . (d) The

total number of infectives at the EE. (e) The plot of the total number of

infectives, I∗(t), as dS varies. (f) The change in the basic reproduction

number.
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6.6 Summary of Results

It has been shown numerically that R0 is a monotone decreasing function of dI , re-

gardless of the choice of incidence function and symmetric/asymmetric movement.

The theoretical establishment of this result remains open.

Interesting dynamics occurs with the mass action incidence function as a result of

the biased movement. New disease hot spots can be induced due to the asymmetric

movement, which further leads to a non-monotone property of R0 in terms of dS .

Similar to the frequency dependent function when demographics are introduced, the

infectives can persist on each population. Further, the concentration of infectives

can vary as dS increases, creating different levels of infectivity in the population.

Additionally, biased movement can be problematic in the persistence of the infec-

tion. When movement is heavily skewed away from a hot spot towards one partic-

ular location, it might create a new hot spot induced by this asymmetric movement.
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CHAPTER 7: CONCLUSIONS AND FUTURE STUDIES

A general epidemiological model with spatial heterogeneity has been proposed to

investigate the impact of asymmetric movement on the spatial spread of an infec-

tious disease. The initial study for the homogeneous model provides insight into

the construction of Lyapunov functions needed for global stability. Further, the

comparison of Lyapunov functions in the SIS and SIR model for the homogeneous

case exhibit the difficulty in global stability without additional assumptions. As a

result, global stability of the endemic equilibrium when R0 > 1 for the SIS model

cannot yet be achieved for an arbitrary nonlinear incidence function. When an in-

fection does not increase the risk of death nor effect the rate at which an infectious

individual can move, global stability can be proven for the mass action incidence

function in the homogeneous environment. If these assumptions are not met, a sec-

ondary Lyapunov function can be used, which cannot be readily extended to the

heterogeneous model.

For the heterogeneous model with general incidence, global asymptotic stability of

the disease-free equilibrium is established under biologically reasonable assump-

tions for the incidence function when R0 ≤ 1. The frequency dependent incidence

function will satisfy these assumptions, while the mass action incidence function

satisfies these conditions for the SIR model. Mass action incidence for the SIS

model will also satisfy these assumptions, when no disease-induced death or move-

ment inhibition for infectives occurs. When R0 > 1, the existence of an endemic

equilibrium is determined inside our feasible region. The uniqueness and global
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stability of the endemic equilibrium can be proven for the SIR model when the

movement of susceptible individuals is restricted. Global stability is still open

when movement of susceptibles or movement of all individuals is permitted. On

the contrary, for the SIS model with mass action incidence, global asymptotic sta-

bility of the endemic equilibrium can be shown in the following cases: movement

of susceptibles is restricted, movement of infectives is restricted, and movement of

susceptibles is proportional to the movement of infectious individuals for a specific

proportionality constant.

With these new global stability results, we focus our attention on the limiting behav-

ior of the system. An approximation for the disease-free equilibrium and the basic

reproduction number is derived when the movement of individuals is faster than

the disease dynamics. The overlaying network structure determines the limiting

behaviors, which is impacted by the biased movement.

Numerical explorations provide insight to the limiting behavior as the diffusion

of susceptibles, dS , tends to 0 for the frequency dependent model. It is known

for the SIS patch model without demographics, the system will tend to a disease-

free state as dS → 0 [2]. However, biased movement would alter this result. As

the diffusion of susceptibles is halted, persistence of the infection is possible with

the skewed movement is introduced between two hot spots. Further, the inclusion

of demographics would also lead to persistence of the infection as dS → 0 for

symmetric movement.

Our experiments exhibit R0 as a monotone decreasing function of dI . Recently, Y.

Wu proved this result for the SIS patch model without demographics [73]. When

132



demographics are introduced, we conjecture the same result holds for symmetric

and asymmetric movement. However, the biased movement is a factor for persis-

tence of the infection. For dI ≫ 1, the basic reproduction number falls below the

threshold value of 1 with symmetric movement. In contrast, it is possible R0 > 1

even as dI → ∞ when biased movement is present.

When other incidence functions are used besides the frequency dependent function,

we can see rise to interesting dynamics for R0 in terms of dS . For mass action

incidence, the biased movement can induce a hot spot, causing non-monotonicity

of R0 as a function of dS for both the SIS and SIR models. Further, when the

infection does not inhibit movement as in a sexually transmitted infection, there

are non-monotonic behaviors of R0 leading to non-monotonicty of the endemic

equilibrium level. Some movement may be beneficial for reducing R0, but too

much movement can worsen the infection. We conjecture the monotonicity of R0

will rely solely on the behavior of R0 as a function of dS; however, most instances

show fast movement of susceptibles lead to higher levels of infectivity.

We have established some global stability results for the endemic equilibrium un-

der various assumptions on the diffusion coefficients and/or the movement network,

using a graph theoretic approach and Lyapunov functions. It seems further devel-

opments of such approach or new global stability methods are required to tackle the

general situation. We leave them as a possible future research direction.

We would like to further explore the dependence of R0 on the diffusion coefficients.

For example, we hope to prove R0 is a monotone decreasing function of dI for the

asymmetric movement case. We will also perform a more realistic numerical in-
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vestigation for the greater Orlando area. Orlando will be located in the center city

with the frequency dependent function, while the surrounding suburbs will utilize

the mass action incidence function. We will determine how tourism impacts the

endemic level, and where the redirect individuals in case of an outbreak. Addition-

ally, further studies on the limiting behavior as the diffusion of individuals is halted

would be of interest. Another important and interesting area of study could be the

inclusion of time-dependent parameters, representing seasonal movement patterns

in metropolitan areas. An influx of individuals into a particular location either via

tourism, relocation, of seasonal travel could raise biased movement, which might

dramatically alter the disease dynamics. Further theoretical and numerical studies

equipped with empirical data could lead to a better understanding of the spread and

control of infectious diseases.
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