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ABSTRACT

This dissertation explores two separate topics on graphs.

We first study a far-reaching generalization of the Four Color Theorem. Given a graph G,

we use χ(G) to denote the chromatic number; α(G) the independence number; and h(G)

the Hadwiger number, which is the largest integer t such that the complete graph Kt can

be obtained from a subgraph of G by contracting edges. Hadwiger’s conjecture from 1943

states that for every graph G, h(G) ≥ χ(G). This is perhaps the most famous conjecture

in Graph Theory and remains open even for graphs G with α(G) ≤ 2. Let W5 denote the

wheel on six vertices. We establish more evidence for Hadwiger’s conjecture by proving that

h(G) ≥ χ(G) for all graphs G such that α(G) ≤ 2 and G does not contain W5 as an induced

subgraph.

Our second topic is related to Ramsey theory, a field that has intrigued those who study

combinatorics for many decades. Computing the classical Ramsey numbers is a notoriously

difficult problem, leaving many basic questions unanswered even after more than 80 years.

We study Ramsey numbers under Gallai-colorings. A Gallai-coloring of a complete graph

is an edge-coloring such that no triangle is colored with three distinct colors. Given a

graph H and an integer k ≥ 1, the Gallai-Ramsey number, denoted GRk(H), is the least

positive integer n such that every Gallai-coloring of Kn with at most k colors contains

a monochromatic copy of H. It turns out that GRk(H) is more well-behaved than the

classical Ramsey number Rk(H), though finding exact values of GRk(H) is far from trivial.

We show that for all k ≥ 3, GRk(C2n+1) = n · 2k + 1 for n ∈ {4, 5, 6, 7}, and GRk(C2n+1) ≤

(n lnn) · 2k − (k + 1)n+ 1 for all n ≥ 8, where C2n+1 denotes a cycle on 2n+ 1 vertices.
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CHAPTER 1: INTRODUCTION

The first part of this dissertation explores a deep conjecture attributed to Swiss mathemati-

cian Hugo Hadwiger. Motivated by what was then the Four Color Conjecture, Hadwiger

posed his famous conjecture at a colloquim at Eidgenössiche Technische Hochschule on De-

cember 15, 1942 [84]. This conjecture is regarded by many as one of the most profound in

Graph Theory because of its relationship to what is now the Four Color Theorem (4CT)

(see [84] or [77]). Specifically, Hadwiger’s Conjecture (HC) implies 4CT, and in two cases

is actually equivalent to 4CT. As a result, HC is viewed as a far-reaching generalization of

4CT. To date, only five cases are known, but many partial results have been subsequently

shown. In this dissertation, we develop more partial results by restricting the maximum

order of an independent set in a graph to two and forbidding certain induced subgraphs.

The second area of focus in this dissertation concerns Ramsey theory, named after British

mathematician Frank Ramsey [45]. Problems in Ramsey theory can typically be simply

stated and easily understood even by those without much formal mathematical training.

However, this subject is quite profound despite its apparent simplicity. Ramsey theory

asserts that “complete disorder is an impossibility,” a characterization often attributed to

mathematician Theodore Motzkin [45]. Due to the incredible level of difficulty, many basic

problems in Ramsey theory remain unsolved despite being nearly a century old. Often the

best information we have on a classical Ramsey number is a relatively poor bound. Motivated

by this, we study Gallai-Ramsey numbers, a topic which falls under the umbrella of Ramsey

theory, but whose computations usually prove to be more tractable due to a structural result

of Hungarian mathematician Tibor Gallai [44, 65]. However, Gallai-Ramsey numbers are still

far from trivial to compute.
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We begin this dissertation by providing a review of the relevant graph-theoretic definitions

and then move on to supply historical context and motivation for the problems we study.

The remainder of the dissertation is organized as follows. First, we provide our partial

results concerning HC. Next, we supply the proofs for the Gallai-Ramsey numbers of four

odd cycles, and then establish an improved upper bound on the Gallai-Ramsey numbers of

all odd cycles. Finally, we conclude this dissertation with a discussion of possible avenues

for future research.

1.1 Preliminary Definitions and Results

Following the conventions set out in [26], a graph G = (V,E) is a pair such that E ⊆ [V ]2,

where the notation [A]r denotes the set of r-element subsets of a set A. The elements of V

represent the vertices and the elements of E the edges of a graph G. The notation V (G) and

E(G) is commonly used to denote the vertex set and edge set, respectively, of a graph G. A

loop is an edge such that both ends are the same vertex. A graph G has multiple edges if

there are at least two edges sharing the same ends. A graph G is simple if it contains neither

loops nor multiple edges. The number of vertices in a graph G is its order, commonly denoted

either as |G| or |V (G)|. Similarly, the number of edges in a graph G is its size, denoted either

‖G‖ or |E(G)|. A graph G is finite if |G| is finite; otherwise it is infinite. For the purposes of

this dissertation, we shall assume that all graphs here and henceforth are finite and simple.

If the 2-element set defining e ∈ E(G) contains v ∈ V (G), we say the vertex v is incident

with the edge e. Two vertices u, v ∈ V (G) are adjacent in G if both u ∈ e and v ∈ e for

some e ∈ E(G), and we say that u and v are the ends of e. Similarly, e, f ∈ E(G) are

said to be adjacent if v ∈ e ∩ f for some v ∈ V (G). If u, v ∈ V (G) are adjacent, we will

use the notation uv to denote the edge containing them; additionally, we will say u and v

2



are neighbors and call the set of vertices adjacent to u its neighborhood, denoted by N(u).

Similarly, we define N [u] := N(u)∪{u} to be the closed neighborhood of the vertex u. More

generally, let U,W ⊆ V (G). We say that U is complete to W if for every u ∈ U and w ∈ W

we have uw ∈ E(G). Likewise, U is anticomplete to W if for every u ∈ U and w ∈ W we

have uw 6∈ E(G). The degree of a vertex v, denoted dG(v) or simply d(v) if the graph G is

understood, is the number of edges incident with v, or equivalently, the number of neighbors

of v. A matching M is a set of independent edges in a graph G. The complement of the

graph G is denoted G, where G has vertex set V and edge set [V ]2 \ E. In other words, for

u, v ∈ V (G), uv ∈ E(G) if and only if uv 6∈ E(G).

A graph H = (V ′, E ′) is a subgraph of G = (V,E), denoted by H ⊆ G, if both V ′ ⊆ V and

E ′ ⊆ E. Given A ⊆ V (G), let G[A] denote the subgraph of G obtained from G by deleting

all vertices in V (G) \ A. A graph H is an induced subgraph of G if H = G[A] for some

A ⊆ V (G). We say that two graphs G and H are isomorphic, denoted G ' H, if there exists

a bijection ϕ : V (G) → V (H) such that xy ∈ E(G) if and only if ϕ(x)ϕ(y) ∈ E(H). We

say the graph G is H-free if G contains no induced subgraph isomorphic to the graph H. If

e = uv ∈ E(G), we denote by G/e the graph obtained from G by contracting the edge e into

a new vertex, say w, which is adjacent to all the former neighbors of u and v. In particular,

we have G/e = (V ′, E ′), where V ′ := V (G \ {u, v}) ∪ {w} and E ′ := E(G \ {u, v}) ∪ {wz :

uz ∈ E(G) \ uv or vz ∈ E(G) \ uv}. Therefore, we say a graph G contains an H minor,

denoted G < H, if H can be obtained from a subgraph of G through a sequence of (possibly

empty) edge contractions. A graph G is said to be H minor-free if G does not contain the

graph H as a minor. See Figure 1.1 for examples of these definitions.
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Figure 1.1: A graph G with example subgraphs and minor

Let us now describe some frequently used graphs. A path P = (V,E) of order n, denoted

Pn, is a graph of the form V = {v1, v2, . . . , vn} and E = {v1v2, v2v3, . . . , vn−1vn}. If n ≥ 3,

the graph Pn ∪ {vnv1} is called a cycle of order n, denoted Cn. A cycle Cn (resp., path

Pn) is odd if n is odd, and even if n is even. If G is a simple graph with |G| = n and all

vertices in G are pairwise adjacent, we say G is a complete graph on n vertices, or more

simply a complete graph, denoted by Kn. A set of pairwise adjacent vertices is called a

clique. A complete bipartite graph G admits a partition of V (G) into two sets, called partite

sets, such that two vertices are adjacent if and only if they belong to different partite sets.

A complete bipartite graph G with partite sets A and B where |A| = n and |B| = m is

denoted by Kn,m. A star is a complete bipartite graph of the form K1,n, with the singleton

vertex set in the vertex partition being the center of the star. The notation G+H = (V,E)

to denotes the join of two vertex disjoint graphs G and H, where V := V (G) ∪ V (H) and

E = E(G) ∪ E(H) ∪ {uv : u ∈ V (G) and v ∈ V (H)}. Thus using this notation we see that

K1,n ' K1 +Kn. Finally, we use K−n or K=
n to represent the graph obtained by deleting one

edge or two edges from Kn, respectively. Examples of these graphs are depicted in Figure

1.2.
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Figure 1.2: Examples of common graphs

Some important graph invariants we shall need are as follows. Define the minimum degree of

a graph G to be δ(G) := min{d(v) : v ∈ V (G)}. Similarly, ∆(G) := max{d(v) : v ∈ V (G)}

denotes the maximum degree. Next, the clique number of a graph G, denoted ω(G), is the

largest integer t such that Kt ⊆ G. A set of pairwise non-adjacent vertices in G is called an

independent set, or sometimes a stable set. Thus, the independence number, denoted α(G),

is the largest integer t such that Kt ⊆ G. In other words, the independence number is

simply the order of the largest independent set in G. From here one readily observes that

α(G) = ω(G) and α(G) = ω(G).

With the definition of independent sets in mind, let us discuss general bipartite graphs.

A graph G is said to be bipartite if V (G) can be partitioned into two (possibly empty)

independent sets. It is easy to see that every odd cycle is not bipartite, and so every

bipartite graph contains no odd cycles. A well-known result of König from 1936 [60] states

that this obvious necessary condition is also sufficient.

Theorem 1.1.1 ([60]) A graph is bipartite if and only if it contains no odd cycle.

The notion of bipartite graphs can be generalized. An r-partite graph G admits a partition

of V (G) into r independent sets such that every edge in G has its ends in distinct sets

in the partition. A complete r-partite graph (or a complete multipartite graph) is an r-

5



partite graph such that every pair of vertices belonging to distinct sets in the partition are

adjacent. A complete r-partite graph with partite sets A1, A2, . . . , Ar, where ni := |Ai| for

all i ∈ {1, 2, . . . , r} is denoted Kn1,...,nr .

A Hamilton cycle contains all vertices of the graph. If a graph G contains a Hamilton cycle,

we say G is Hamiltonian. There are many well-known sufficient conditions which guarantee

a graph G to be Hamiltonian. We state a particularly useful one here, due to Dirac in 1952

[28].

Theorem 1.1.2 ([28]) Every graph G with |G| ≥ 3 and δ(G) ≥ |G|/2 is Hamiltonian.

Define [k] := {1, 2, . . . k} for any positive integer k. A k-coloring of the vertices of a graph

G is a function c : V (G) → [k] such that c(u) 6= c(v) for all uv ∈ E(G). If a graph G

admits a k-coloring, we say that G is k-colorable. The minimum value of k for which the

graph G is k-colorable is the chromatic number of G, denoted χ(G). For all i ∈ [k], we say

Vi := {v ∈ V (G) : c(v) = i} is the vertex color class (or just color class) associated with

color i. Similarly, a k-edge coloring of a graph G is a function c : E(G)→ [k], and a proper

edge coloring is one in which c(e) 6= c(f) for any pair of adjacent edges in G. Likewise, we

say Ei := {e ∈ E(G) : c(e) = i} is the edge color class associated with color i for all i ∈ [k].

For two disjoint sets U,W ⊆ V (G), we say U is mc-complete to W under the edge coloring

c if all the edges between U and W in G are colored the same color under c. In particular,

we say U is j-complete to W if all the edges between U and W in G are colored by color

j ∈ [k] under c. Thus, for example, we will often say U is blue-complete to W if all the edges

between U and W in G are colored blue under c. On occasion we shall wish to focus on

the graph induced by a particular edge color. We will use the notation Gi[U ] to denote the

graph induced by all edges with both ends in the vertex set U having the color i under the

k-edge coloring c. In particular, we will use the notation Gb[U ] (resp., Gr[U ]) when i is blue

(resp., i is red).

6



Finally, we shall require the following simple but well-known result, often referred to as the

Pigeonhole Principle. It is stated here in the mould of [87].

Theorem 1.1.3 Let k and n be positive integers. If a set consisting of more than kn ele-

ments is partitioned into n subsets, then some subset contains more than k elements.

1.2 Hadwiger’s Conjecture

The story of Hadwiger’s Conjecture begins with a well-known problem in Graph Theory that

traces its origins back to 1852. According to the account by Maritz and Mouton [67], a young

South African lawyer at University College London by the name of Francis Guthrie had been

coloring the counties on a map of England when he noticed he never needed more than four

colors to ensure no two counties with a common border would share a color. Though at the

time he was studying law, Francis had previously been a student of Augustus De Morgan,

and by this time his brother Frederick Guthrie was studying under De Morgan. Francis

asked Fredrick to relay this problem to De Morgan, who ultimately passed it along to Sir

William Rowan Hamilton for insight, though Hamilton declined to consider it further. De

Morgan would spend the remainder of his life looking for a solution to this problem, which

came to be known as the Four Color Conjecture.

We need a definition to formally state this problem in graph-theoretic terms. A graph G is

planar if it can be drawn in such a way that no two edges intersect, except for the possibility

that they share a common end. Francis Guthrie’s original observation can then be reduced to

a graph theory problem by replacing each county in England with a vertex and drawing edges

to represent their border relationships. Naturally, such a graph is planar. Thus Guthrie’s

question can be generalized and restated as follows: is it true that every planar graph G is

4-colorable?

7



As Thomas points out in [83], two failed attempts to prove this conjecture arose in 1879

and 1880 by Kempe and Tait, respectively. Both proofs stood intact for 11 years, with

Kempe’s finally being disproven by Heawood in 1890, and Tait’s falling one year later in

1891 due to Petersen. Even though both Kempe and Tait had incorrect proofs, neither

one was completely without merit. Kempe managed to show that all planar graphs are 5-

colorable in addition to developing a still-useful tool known as Kempe chains. Similarly, Tait

showed the conjecture is actually equivalent to a cubic (meaning the degree of every vertex is

three) planar graph having a proper 3-edge coloring. Finally in 1977, albeit with the help of

computers, Appel and Haken proved what is now known as the Four Color Theorem (4CT).

Theorem 1.2.1 ([3, 4]) Every planar graph is 4-colorable.

However, this proof was not entirely clear, so Robertson, Sanders, Seymour and Thomas

deduced a much shorter proof (see [72]), though still computer-assisted.

As many learn early on in any traditional course in Graph Theory, neither K5 nor K3,3 are

planar. These two graphs turn out to be a certificate of planarity of sorts, as discovered

by Kuritowski and Wagner in the 1930’s. Before stating the formal results, we shall need a

definition. We say two paths are independent if they do not share an inner vertex. Suppose

now that given a graph H, we replace all the edges of H with independent paths to obtain

a graph H ′. Then H ′ is a subdivision of H. If H ′ is a subgraph of another graph G, we then

say that H is a topological minor of G. As a note, a graph H may be a minor of a graph

G, but not necessarily a topological minor. To see a demonstration of this, consider the

Petersen graph G. Upon making 5 edge contractions, we find that G < K5 (see Figure 1.3).

However, because there is no vertex of degree 4 in G, we see that K5 is not a topological

minor of G. Thus every topological minor is a minor, but in general the converse is not true.

8



Figure 1.3: Contracting the red edges of the Petersen graph gives a K5 minor

We now state the well-known results of Kuratowski and Wagner, given in 1930 and 1937,

respectively.

Theorem 1.2.2 ([62]) A graph G is a planar graph if and only if neither K5 nor K3,3 is a

topological minor of G.

Theorem 1.2.3 ([86]) A graph G is a planar graph if and only if neither K5 nor K3,3 is a

minor of G.

As Seymour points out in his survey [77], it seems completely reasonable on some level that

K5 should be excluded as a minor, because K5 is not 4-colorable. But one may wonder: why

is it necessary to also exclude K3,3? Suppose we relaxed these restrictions and only excluded

K5 as a minor. Is the resulting class of such graphs still 4-colorable? More generally, one

may ask: if K5 is changed to Kt+1, and 4-colorable to t-colorable, is the result true?

This is exactly what Swiss mathematician Hugo Hadwiger first proposed during a colloquium

at Eidgenössiche Technische Hochschule on December 15, 1942 [84], which has since come to

be known as Hadwiger’s Conjecture (HC), and first appeared in print the following year.

9



Conjecture 1.2.4 ([50]) For all t ≥ 0, every Kt+1 minor-free graph is t-colorable.

An equivalent formulation of this conjecture is frequently stated as follows: every t-chromatic

graph has a Kt minor. As Toft points out in his survey [84], Hadwiger had actually been

originally inspired by Wagner’s proof in 1937 [86] that HC and 4CT were logically equivalent.

Interestingly, Thomas [83] and many others have noted that for all t ≥ 4, HC implies

4CT. This fact can be seen by starting with any planar graph G, then adding a Kt−4 to

obtain a new graph H := G + Kt−4. Since G is planar, then by Theorem 1.2.3, G 6< K5,

meaning that H must be Kt+1 minor-free. Assuming HC is true, we have χ(H) ≤ t. Since

no vertex in G can share the same color as any vertex in Kt−4 under a proper coloring,

χ(G) + (t − 4) = χ(G) + χ(Kt−4) = χ(H) ≤ t, giving χ(G) ≤ 4 as desired. Therefore, HC

can be viewed as a generalization of 4CT.

Hadwiger’s original presentation of the conjecture [50] contains proofs for the cases t ≤ 3.

Dirac [27] also independently supplied a proof for these cases in 1952. Wagner [86] proved

that 4CT is equivalent to HC, establishing the case t = 4. It was not until 1993 that

Robertson, Seymour and Thomas [73] proved the case t = 5, a result which earned them the

1994 Fulkerson Prize. The cases t ≥ 6 remain open as of this writing.

Further historical explanation of the development of HC can be found in [84]. We now move

on to set the stage for our particular results concerning HC.

Given the considerable effort expended by many to show even the first six cases of HC, and

with no real promise of generalization, researchers began to apply restrictions on the graphs

being investigated in a hopes of discovering either further confirmation of the conjecture or

possibly a counterexample. We presently survey some of these results for the purposes of

this dissertation, though a fairly recent and comprehensive collection of partial results can
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be found in [77].

Although HC appears too difficult to prove in general, some have managed to obtain partially

affirming results, summarized in Table 1.1. We also note in particular the proof of the result

mentioned in the table due to [1] is computer-assisted. In 2016, Rolek and Song supplied a

much shorter, computer-free version in addition to the results listed in the table.

Table 1.1: Partial Results for HC

Excluded Minor(s) χ(G) ≤ t Reference

K7, K4,4 t = 6 [57]

K=
7 t = 6 [52]

K−7 t = 8 [53]

K7 t = 8
[1]

K8 t = 10

K=
8 t = 8

[75]K−8 t = 9

K9 t = 12

K=
9 t = 10 [74]

Rather than look at general graphs with excluded minors, some have instead chosen to re-

strict the class of graph in question. Some promising and affirming results have consequently

arisen. First, let us briefly mention a special class of graphs. A graph G is said to be per-

fect if every induced subgraph H of G satisfies χ(H) = ω(H). Hence, every perfect graph

satisfies HC. Far less trivial classes of graphs have of course been studied. We say a graph

G is claw-free if G is K1,3-free. A graph G is quasi-line if for every vertex v ∈ V (G), the

neighborhood N(v) can be partitioned into two cliques. Finally, given a graph G, its line

graph L(G) is defined such that each vertex of L(G) is an edge in G, and two vertices in L(G)

are adjacent if and only if their corresponding edges in G share an end vertex. As pointed
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out in [21], line graphs are a proper subclass of quasi-line graphs, which in turn are a proper

subclass of claw-free graphs. The results for these classes are summarized in Table 1.2.

Table 1.2: HC Results for Graph Classes

Graph Class G < Kt Reference

Line Graphs t = χ(G) [71]

Quasi-line Graphs t = χ(G) [19]

Claw-free Graphs t =
⌈
2
3
χ(G)

⌉
[20]

Given a graph G, let c : V (G) → [k] be a k-coloring of V (G), with color classes Vi, for all

i ∈ [k]. Since |Vi| ≤ α(G) for all i ∈ [k], we have the following fact.

Fact 1.2.5 |G| ≤ χ(G)α(G) for any graph G.

In other words, Fact 1.2.5 gives that χ(G) ≥ |G|/α(G) for any graph G.

Let us now introduce some new notation which we shall use frequently. Define the Hadwiger

number to be h(G) := max{t : G < Kt}. Conjecture 1.2.4 can now be restated as follows:

for every graph G, h(G) ≥ χ(G). Motivated by this observation, one direction is to try to

prove (or disprove) that h(G) = d|G|/α(G)e, as this would be the minimum-order minor one

should now expect. One of the earliest results in this direction, due to Duchet and Meyniel

in 1982, is as follows.

Theorem 1.2.6 ([29]) h(G) ≥ |G|/(2α(G)− 1).

This is not ideal, of course, primarily because of the factor of two. In 2010, Fox [40] improved

this to the following.

Theorem 1.2.7 ([40]) h(G) ≥ |G|/(1.983α(G)).
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One year later, Balogh and Kostochka [5] proved a slightly better result.

Theorem 1.2.8 ([5]) h(G) ≥ |G|/(1.94792α(G)).

Still other work was done by Kawarabayashi and Song [58] to improve the previous results

for smaller values of α(G).

Theorem 1.2.9 ([58]) If α(G) ≥ 3, then h(G) ≥ |G|/(2α(G)− 2).

Additionally, B. Thomas and Song [82] showed that upon forbidding certain induced sub-

graphs, HC can be verified outright, by way of quasi-line graphs.

Theorem 1.2.10 ([82]) If α(G) ≥ 3 and G is {C4, C5, C6, . . . , C2α(G)−1}-free, then h(G) ≥

χ(G).

The case of verifying HC when α(G) = 2 is of particular interest. This may seem to be

quite a substantial limitation at first, but this restriction means that G is triangle-free. As

Plummer, Stiebitz and Toft observe in [68], a vast number of triangle-free graphs exist so

this limitation is not as restrictive as one may initially think. In his survey, Seymour says

the following about the case α(G) = 2, which we quote directly (pp. 424–425, [77]).

“This seems to me to be an excellent place to look for a counterexample. My

own belief is, if it is true for graphs with stability number two then it is probably

true in general, so it would be very nice to decide this case.”

We first mention a very useful result of Plummer, Stiebitz and Toft [68] that establishes an

equivalence of Hadwiger’s conjecture in this context.
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Figure 1.4: The graphs H6, H7 and W5

Theorem 1.2.11 ([68]) Let G be a graph with α(G) = 2. Then h(G) ≥ χ(G) if and only

if h(G) ≥ d|G|/2e.

In the same paper, Plummer, Stiebitz and Toft [68] proved the following.

Theorem 1.2.12 ([68]) Let G be a graph with α(G) ≤ 2. If G is H-free, where H is a graph

with |H| = 4 and α(H) ≤ 2, or H = C5, or H = H7 (see Figure 1.4), then h(G) ≥ χ(G).

In 2010, Kriesell [61] further augmented this list of forbidden subgraphs to include all cases

of graphs with independence number at most two on five vertices.

Theorem 1.2.13 ([61]) Let G be a graph with α(G) ≤ 2. If G is H-free, where H is a

graph with |H| = 5 and α(H) ≤ 2, or H = H6 (see Figure 1.4), then h(G) ≥ χ(G).

Let W5 denote the wheel on six vertices (see Figure 1.4). We study Conjecture 1.2.4 for

W5-free graphs with independence number at most two. Our main result is stated as follows.

Theorem 1.2.14 ([8]) Let G be a graph with α(G) ≤ 2. If G is W5-free, then h(G) ≥ χ(G).

The proof of Theorem 1.2.14, given in Chapter 2, relies only on Theorem 1.2.11, Theo-

rem 1.2.12 when H = C5 and the following result of Chudnovsky and Seymour [22].
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Theorem 1.2.15 ([22]) Let G be a graph with α(G) ≤ 2. If

ω(G) ≥


|G|/4, if |G| is even

(|G|+ 3)/4, if |G| is odd,

then h(G) ≥ χ(G).

Before we continue, let us recall several useful results.

Theorem 1.2.16 ([75]) For 7 ≤ t ≤ 9, let G be a graph with 2t− 5 vertices and α(G) = 2.

Then h(G) ≥ t− 2.

Theorem 1.2.17 ([55]) Let G be a graph on n vertices with e(G) ≥ 6n− 19. Then

h(G) ≥ 8.

Theorem 1.2.18 ([78]) Let G be a graph on n vertices with e(G) ≥ 7n− 26. Then

h(G) ≥ 9.

Using the above theorems we can prove a similar result for K1,5-free graphs.

Corollary 1.2.19 ([8]) Let G be a graph with α(G) ≤ 2. If G is K1,5-free, then h(G) ≥

χ(G).

Proof. Let G be a K1,5-free graph on n vertices with α(G) ≤ 2. By Theorem 1.2.11, it

suffices to show that h(G) ≥ dn/2e. Suppose that h(G) < dn/2e, where G is chosen with n

to be minimum. By the minimality of n, G has no dominating edges. By Theorem 1.2.14,

G must contain an induced W5. Since h(W5) ≥ 4, we see that n ≥ 9. We next claim that

n ≤ 17. Let v ∈ V (G) be a vertex of minimum degree. Then d(v) ≥ n − 5 because G
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is K1,5-free. Let A := V (G) \ N [v] and B := N(v). Then |A| ≤ 4 and G[A] is a clique

because α(G) ≤ 2. Note that every vertex in A has at most three non-neighbors in B.

Additionally, every vertex b ∈ B must have a non-neighbor in A, else bv is a dominating

edge. Hence, by counting the number of edges between A and B in G, |B| ≤ 3|A| ≤ 12.

Then n = |G| ≤ |A| + |B| + |{v}| ≤ 4 + 12 + 1 = 17. Since e(G) ≥ (n − 5)n/2, from

Theorems 1.2.16, 1.2.17 and 1.2.18, it is straightforward to check that h(G) ≥ dn/2e for all

9 ≤ n ≤ 17, a contradiction.

This completes the proof of Corollary 1.2.19. �

It is worth noting that if G is a K6-free graph on n vertices with α(G) ≤ 2 but does not

satisfy Conjecture 1.2.4, then G contains a K5 subgraph by Theorem 1.2.13, and n ≤ 17

because R(K3, K6) = 18 (see [59], and Section 1.3 for a discussion of Ramsey numbers). But

then by Theorem 1.2.15, h(G) ≥ χ(G), a contradiction. Thus Conjecture 1.2.4 holds for

K6-free graphs G with α(G) ≤ 2.

Similarly, if G is a K7-free graph on n vertices with α(G) ≤ 2 but does not satisfy Conjec-

ture 1.2.4, then G contains a K6 subgraph from the previous paragraph, and n ≤ 22 because

R(K3, K7) = 23 (see [46] and [56]). But then by Theorem 1.2.15, h(G) ≥ χ(G), a contra-

diction. Thus Conjecture 1.2.4 holds for K7-free graphs G with α(G) ≤ 2. We summarize

these results in the following remark.

Remark 1.2.20 ([8]) Let G be a Kt-free graph with α(G) ≤ 2, where t ≤ 7. Then h(G) ≥

χ(G).

We now spend the remainder of this chapter introducing our primary area of study in this

dissertation.
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1.3 Ramsey Theory

In 1930, Frank Ramsey tragically passed away at the young age of 26 from complications of

abdominal surgery, but in the same year a paper of his appeared posthumously, entitled On

a Problem of Formal Logic. His main goal was to address “the problem of finding a regular

procedure to determine the truth or falsity of any given logical formula [70],” but along the

way proved two famous results which now bear his name, and consequently founded an entire

branch of combinatorics.

1.3.1 Classical Ramsey Numbers

Consider any k-edge coloring (not a proper edge coloring) of the complete graph Kn. Then

H ⊆ Kn is monochromatic if all edges of the subgraph H are colored the same.

Let G,H1, . . . , Hk be graphs. A common and useful notational convention used in this area,

as observed in [7], is as follows. We write G −→ (H1, . . . , Hk) if every k-edge coloring of G

contains a monochromatic copy of Hi for some color i ∈ [k]. For a given collection of graphs

we write R(H1, . . . , Hk) = min{n : Kn −→ (H1, . . . , Hk)}. In particular, if Hi is isomorphic

to the graph H for all i ∈ [k], we write Rk(H). If R(H1, . . . , Hk) = R for some collection of

graphs, then there is some k-edge coloring of KR−1 such that for all i ∈ [k], no monochromatic

copy of Hi in color i appears. To indicate this, we will write KR−1 6−→ (H1, . . . , Hk), and

we call such a k-edge coloring of KR−1 bad.

We now state Ramsey’s theorem below with modern phrasing and notation.

Theorem 1.3.1 ([70]) For any k ≥ 1, let H1, . . . , Hk be any collection of graphs. Then

there exists a number R(H1, . . . , Hk) such that for any k-edge coloring of Kn with n ≥
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R(H1, . . . , Hk), Kn contains a monochromatic copy of Hi in color i for some i ∈ [k].

One of the most attractive aspects of Ramsey-related problems is the simplicity in which they

can be stated. Often encountered early in one’s exposure to Graph Theory is the so-called

“Party Problem.” Here, it is stated as presented in [12].

“Prove that at a gathering of any six people, some three of them are either mutual

acquaintances or complete strangers to each other.”

Interestingly, this problem also appeared on a Putnam exam in 1953 [15], phrased slightly

differently.

“Six points are in general position in space (no three in a line, no four in a plane).

The fifteen line segments joining them in pairs are drawn and then painted, some

segments red, some blue. Prove that some triangle has all its sides the same

color.”

Restated in graph-theoretic terms, the above asks for proof that R(K3, K3) = 6. As it turns

out, this proof is quite elegant and straightforward, and as such is quite commonly assigned

as a “homework problem” for those learning Ramsey theory. Many versions of the solution

exist, see for example [12]. For completeness, we supply a proof here.

Proof. To see that K5 6−→ (K3, K3), consider the bad coloring of K5 depicted in Figure 1.5.

To see that K6 −→ (K3, K3), choose one vertex v. Label its neighbors u1, . . . , u5. By the

Pigeonhole Principle (Theorem 1.1.3), at least three of the edges vui, i ∈ [5] must be the

same color, say blue. In particular, we may assume that vu1, vu2 and vu3 are blue.
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Figure 1.5: A bad coloring of K5

If any of u1u2, u2u3 or u1u3 are blue, then we find a blue triangle with vertices v, u1, u2, or

v, u2, u3, or v, u1, u3. Thus, each of u1u2, u2u3 or u1u3 are red, giving a red triangle with

vertices u1, u2, u3.

Taken together, the above shows that R(K3, K3) ≥ 6 and R(K3, K3) ≤ 6, from which we

conclude that R(K3, K3) = 6. �

After witnessing the beauty of the proof for R(K3, K3) = 6, one might have hope that a

general formula for R(Kt, Kt) may exist for all t ≥ 1. In 1955, Greenwood and Gleason

[47] provided a proof for R(K4, K4) = 18. However, it was beyond evident by this point in

time that calculating exact Ramsey numbers is, to say the least, a nontrivial task. As of

this writing, even the exact value of R(K5, K5) remains unknown. Graham and Spencer [45]

shared the following anecdote of Erdős to convey the true difficulty of calculating Ramsey

numbers.

“Aliens invade the earth and threaten to obliterate it in a year’s time unless

human beings can find the Ramsey number for red five and blue five. We could

marshall the world’s best minds and fastest computers, and within a year we

could probably calculate the value. If the aliens demanded the Ramsey number
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for red six and blue six, however, we would have no choice but to launch a

preemptive attack.”

A natural follow-up question is: what general bounds can be achieved if the exact values are

too difficult to compute? Ramsey [70] was able to show in his original paper that R(Kt, Kt) ≤

22t−3. In 1947, Erdős [33] proved that R(Kt, Kt) > 2t/2, and thus according to these bounds,

6 ≤ R(K5, K5) ≤ 128. Since that time, these bounds have been improved considerably. The

best known lower bound of 43 was provided by Exoo [36] in 1989. More recently, in 2017

Angeltveit and McKay [2] improved the upper bound to 48 with the assistance of a computer

program. More diagonal and off-diagonal Ramsey numbers and bounds of complete graphs

can be found in [69].

Generalizations of the two-edge coloring complete graph case explored above have also been

studied extensively. One naturally can extend the problem to the case of multiple colors

and other collections of graphs. In fact, Greenwood and Gleason also proved [47] that

R3(K3) = 17. In the early 1970’s, other collections of graphs began to be examined in

more depth, including cycles, paths and much more (see for example [16] and [24]). The list

of known results pertaining to classical Ramsey numbers has vastly grown throughout the

years, with perhaps the most complete and up-to-date collection appearing in the dynamic

survey by Radziszowski [69].

Since this dissertation focuses primarily on the Ramsey-type results for cycles, we highlight

in the below theorem a particularly useful set of results. These and other known diagonal

Ramsey numbers are summarized also in Table 1.3.

Theorem 1.3.2 ([39, 76]) For all n ≥ 4, R(C2n, C2n) = 3n − 1. Moreover, for all n ≥ 2,

R(C2n+1, C2n+1) = 4n+ 1.
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Table 1.3: Diagonal Ramsey Numbers of Cycles

Ramsey Number Reference(s)

R(C4, C4) = 6 [16]

R(C6, C6) = 8 [16]

RC2n, C2n) = 3n− 1, n ≥ 4 [39, 76]

R(C2n+1, C2n+1) = 4n+ 1, n ≥ 2 [39, 76]

R3(C3) = 17 [47]

R3(C4) = 11 [6]

R3(C5) = 17 [89]

R3(C6) = 12 [90]

R3(C7) = 25 [37]

R3(C8) = 16 [80]

R4(C4) = 18 [35, 81]

To the author’s knowledge, this is the most up-to-date list of known diagonal results. In

particular, the two-color Ramsey numbers for cycles were completely solved independently

by Faudree and Schelp [39] and Rosta [76] in the early 1970’s. Additionally, mixed parity

cycles for the two-color case were considered in the same papers.

Theorem 1.3.3 ([39, 76]) For 4 ≤ m < ` with m even and ` odd, R(Cm, C`) = max{` −

1 +m/2, 2m− 1}.

Permitting additional edge colors naturally complicates the computation of Ramsey numbers.

As of this writing, R3(Cn) remains open for all n ≥ 9. With regard to odd cycles, Bondy

and Erdős [7] are often credited with making the following conjecture for the three-color

case, sometimes called the Triple Odd Cycle Conjecture. However, it should be noted that

although researchers frequently point to [7] as the source of this conjecture, it does not

explicitly appear there.

Conjecture 1.3.4 R3(C2n+1) = 8n+ 1 for all n ≥ 2.
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Figure 1.6: A lower bound construction showing R3(C2n+1) ≥ 8n+ 1

It is not difficult to show that R3(C2n+1) ≥ 8n+ 1 for all n ≥ 2. Following the construction

of a bad coloring outlined in [34], begin with a K2n and color all edges the same color, say

blue. Since |K2n| = 2n, there is no possibility of a blue C2n+1 appearing as a subgraph. For

the second step, create two copies of the K2n with all edges colored blue and insert all edges

between these copies colored the same color, say red. The graph induced on the blue edges

certainly contains no blue C2n+1 because both cliques have order 2n. Moreover, there is no

red C2n+1 because the graph induced on the red edges is bipartite and thus contains no odd

cycle by Theorem 1.1.1. Finally, create two copies of the graph in step two, this time joined

together by all edges of a new color, say green. Again, there is no blue or red C2n+1 for the

same reasons as above, and no green C2n+1 because the graph induced on the green edges is

again bipartite. This process is illustrated in the Figure 1.6. Note that the rightmost graph

in Figure 1.6 has exactly 8n vertices and no monochromatic C2n+1.

Although Conjecture 1.3.4 remains open, there are asymptotic results. The following was

proved by  Luczak in 1999.

Theorem 1.3.5 ([64]) R3(C2n+1) ≤ 8n+ o(n).

In 2016, Jenssen and Skokan [54] proved that the conjecture holds for sufficiently large n.
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Theorem 1.3.6 ([54]) R3(C2n+1) = 8n+ 1 for sufficiently large n.

An analogous situation exists for even cycles. In 2005, Dzido, Nowik and Szuca [31] supplied

a lower bound construction.

Theorem 1.3.7 ([31]) R3(C2n) ≥ 4n for all n ≥ 2.

As such, a similar “Triple Even Cycle Conjecture” exists, where R3(C2n) is conjectured to

be 4n for all n ≥ 3 due to Dzido [30] in his Ph.D. thesis. Related asymptotic results have

been similarly shown, but since this dissertation focuses on examining odd cycles, they are

omitted here. We do wish to point out, however, that as of this writing R3(C10) remains the

first open case for even cycles, but by Theorem 1.3.7 we know that R3(C10) ≥ 20.

Interestingly, the lower bound construction given above for odd cycles extends to k colors by

simply continuing the aforementioned process. For example, a bad coloring with four colors

would be achieved by creating two copies of the rightmost graph in Figure 1.6 and joining

these copies with all edges between them colored by a new color, say yellow. Again no yellow

C2n+1 occurs because the graph induced on the yellow edges is bipartite. In general, if Gk−1

is the graph formed with the bad coloring as described above using k − 1 colors, we find

a bad coloring with k colors by creating two copies of Gk−1 and coloring all edges between

them with color k, forming Gk. By construction, |Gk| = n · 2k, from which the following

conjecture arises. Bondy and Erdős are likewise credited with this conjecture in [7], although

the explicit statement of it does not appear there.

Conjecture 1.3.8 Rk(C2n+1) = n · 2k + 1 for all n ≥ 2.

When k ≥ 2 is fixed and n is sufficiently large, Jenssen and Skokan [54] proved that the

conjecture holds.
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Theorem 1.3.9 ([54]) For any fixed k ≥ 2 and n sufficiently large, Rk(C2n+1) = n · 2k + 1.

Curiously, however, Day and Johnson disproved Conjecture 1.3.8 when n is fixed and k is

sufficiently large.

Theorem 1.3.10 ([25]) For all n there exists a constant ε = ε(n) > 0 such that, for all

sufficiently large k, Rk(C2n+1) > 2n · (2 + ε)k−1.

As one may imagine, many variants of the problem discussed above exist. For example,

researchers have extended this problem to include hypergraphs, where edges may contain

more than two vertices. Another avenue of research involves coloring graphs which are not

complete. For instance, what is the smallest value of n such thatKn,n −→ (Kt,t, Kt,t) for some

t? Yet another is the size Ramsey number. Let G denote the set of all graphs G such that

G −→ (H1, H2). The size Ramsey number is defined as R̂(H1, H2) = min{|E(G)| : G ∈ G}.

In this way we study particular variant which is computationally more feasible though still

far from trivial.

1.3.2 Gallai-Ramsey Numbers

A rainbow triangle is a copy of K3 with all edges colored differently. A Gallai coloring of a

complete graph is an edge-coloring that contains no rainbow triangle. A Gallai k-coloring is

a Gallai coloring that uses at most k colors. Let G,H1, H2, . . . , Hk be a collection of graphs.

Following the notational convention of the previous section, we write G
Gallai−−−→ (H1, . . . , Hk) if

every Gallai k-coloring of G contains a monochromatic copy of Hi for some color i ∈ [k]. We

can therefore define the Gallai-Ramsey number to be GR(H1, . . . , Hk) := min{n : Kn
Gallai−−−→

(H1, . . . , Hk)}. If Hi is isomorphic to the graph H for all i ∈ [k], we simply write GRk(H).
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Because we must have k ≥ 3 for a rainbow triangle to occur, we note the following.

Fact 1.3.11 Let H1, H2 be any graphs. Then GR(H1, H2) = R(H1, H2).

Alternatively, one may define the Gallai-Ramsey number as the least integer n such that

every k-edge coloring of Kn contains either a rainbow triangle or a monochromatic copy of

the graph Hi for some color i ∈ [k]. Therefore, intuitively one expects n to be smaller when

searching for a rainbow triangle or a monochromatic copy of Hi for some color i in a given

k-edge coloring, as opposed to searching for only a monochromatic copy of Hi for some color

i. Because of this, we have the following fact.

Fact 1.3.12 GR(H1, . . . , Hk) ≤ R(H1, . . . Hk).

Therefore the Gallai-Ramsey number provides a natural lower bound to the classical Ramsey

number. In particular, GRk(H) ≤ Rk(H) for any graph H.

Central to the theory behind Gallai-Ramsey numbers is a structural result due to Tibor

Gallai in 1967 [44]. Originally intended to discuss the properties of “transitively orientable

graphs,” Gallai’s paper also included some structural results that happen hold for all graphs,

which have found a variety of other applications. It should be noted that Gallai’s original

paper appeared in German but an English translation of it was published in 2001 by Maffray

and Preissmann [65].

Theorem 1.3.13 ([44, 65]) For any Gallai k-coloring c of a complete graph G with |G| ≥

2, V (G) can be partitioned into nonempty sets V1, V2, . . . , Vp with p > 1 so that at most two

colors are used on the edges in E(G)\ (E(G[V1])∪ · · · ∪E(G[Vp])) and only one color is used

on the edges between any fixed pair (Vi, Vj) under c, for all i 6= j.
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Figure 1.7: A Gallai partition and the corresponding reduced graph

We call the partition of V (G) into V1, V2, . . . , Vp described in Theorem 1.3.13 a Gallai par-

tition of the vertices. Often we will refer to Vi, where i ∈ [p], as the parts of the Gallai

partition. Although Theorem 1.3.13 is indeed a powerful structural result, we are careful

to note that no information is provided regarding |G[Vi]|, nor about the colors appearing

on the edges in G[Vi], for all i ∈ [p]. Given a Gallai partition, we can define a new graph.

Let vi ∈ Vi for each i ∈ [p]. Define the reduced graph R to be the graph G[{v1, v2, . . . , vp}].

In other words, contracting each part of the Gallai partition to one vertex produces a new

complete graph of smaller order, the reduced graph, with at most two colors appearing on

its edges. An example of a Gallai partition and its corresponding reduced graph is shown in

Figure 1.7. If H is any graph, we therefore see that a monochromatic copy of H appearing

as a subgraph of R must also appear as a subgraph of G. For this reason, R(H,H) closely

relates to GRk(H).

Fortunately, the behavior of the Gallai-Ramsey number is more predictable than that of the

classical Ramsey number. In 2010, Gyárfás, Sárközy, Sebő, and Selkow [49] classified the
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nature of GRk(H) depending on whether or not H is bipartite.

Theorem 1.3.14 ([49]) Let H be a fixed graph with no isolated vertices and let k ≥ 1 be an

integer. Then GRk(H) is exponential in k if H is not bipartite, linear in k if H is bipartite

but not a star, and constant (does not depend on k) when H is a star.

We now survey some of the relevant known results for Gallai-Ramsey numbers. In 1983,

Chung and Graham [23] contributed what is possibly the first result for Gallai-Ramsey

numbers. Their research was motivated by an earlier question attributed to T. A. Brown in

their paper, which we mention here.

“What is the largest number f(k) of vertices a complete graph can have such

that it is possible to k-color its edges so that every triangle has edges of exactly

two colors?”

Fascinatingly, their proof did not rely on Gallai’s structural result in [44].

Theorem 1.3.15 ([23]) For all k ≥ 1, GRk(K3) =


5k/2 + 1, if k is even

2 · 5(k−1)/2 + 1, if k is odd.

Gyárfás, Sárközy, Sebő, and Selkow [49] provided an alternative proof to Theorem 1.3.15 in

2010 which does use Gallai’s result, and is therefore somewhat shorter. Liu, Magnant, Saito,

Schiermeyer, and Shi [63] established the next open case in 2017.

Theorem 1.3.16 ([63]) For all k ≥ 1, GRk(K4) =


17k/2 + 1, if k is even

3 · 17(k−1)/2 + 1, if k is odd.
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Magnant and Schiermeyer [66] announced a proof of the analogous result for K5 in 2019,

though the author of this dissertation has not personally verified it. We state it here for

completeness.

Theorem 1.3.17 ([66]) For all k ≥ 2,

GRk(K5) =


(R(K5, K5)− 1)k/2 + 1, if k is even

4(R(K5, K5)− 1)(k−1)/2 + 1, if k is odd

unless R(K5, K5) = 43, in which case


GR(K5) = 43, if k = 2

42k/2 + 1 ≤ GRk(K5) ≤ 43k/2 + 1, if k ≥ 4 is even

169 · 42(k−3)/2 + 1 ≤ GRk(K5) ≤ 4 · 43(k−1)/2 + 1, if k ≥ 3 is odd.

In 2015, Fox, Grinshpun and Pach [41] posed a conjecture to describe this apparent pattern.

Conjecture 1.3.18 ([41]) For all k ≥ 1 and t ≥ 3,

GRk(Kt) =


(R(Kt, Kt)− 1)k/2 + 1, if k is even

(t− 1)(R(Kt, Kt)− 1)(k−1)/2 + 1, if k is odd.

As we have seen, Conjecture 1.3.18 has been verified for t = 3, 4 and 5. Interestingly,

Magnant and Schiermeyer [66] also constructed a three-edge-colored K169 that contains nei-

ther a rainbow K3 nor a monochromatic K5. If R(K5, K5) = 43 (the current best-known

lower bound from [36]), then the above conjecture is false because the formula would give

GR3(K5) = 4 · 42 + 1 = 169.
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Naturally, some have conducted research on the Gallai-Ramsey numbers of other graphs,

including stars, books, paths, and cycles among others. In the same 2010 paper mentioned

previously, Gyárfás, Sárközy, Sebő, and Selkow [49] established the Gallai-Ramsey number

of stars.

Theorem 1.3.19 ([49]) For all t ≥ 2 and k ≥ 3, GRk(K1,t) =


(5t− 3)/2, if t is odd

5t/2− 3, if t is even.

As a minor note regarding Theorem 1.3.19, the formula is not true for t = 2 as originally

stated. Clearly, one requires at least three vertices to obtain a monochromatic K1,2 or a

rainbow K3, so GRk(K1,2) ≥ 3. On the other hand, we see that GRk(K1,2) ≤ 3 because

with any k-coloring of the edges of a K3, there are exactly two choices: either there is

a monochromatic K1,2 subgraph; or all edges of the K3 are colored differently, yielding a

rainbow K3. However, the formula for Theorem 1.3.19 gives (5 · 2)/2− 3 = 2.

Noting that K1,2 ' P3, this result was proven in 2010 by Faudree, et. al. [38] along with the

Gallai-Ramsey number for other paths.

Theorem 1.3.20 ([38]) For all k ≥ 1 and n ∈ {3, 4, 5, 6}, GRk(Pn) = b(n− 2)/2c k +

dn/2e+ 1.

This list was subsequently expanded by J. Zhang, Lei, Shi and Song [91].

Theorem 1.3.21 ([91]) For all k ≥ 1 and n ∈ {7, 9, 10, 11}, GRk(Pn) = b(n− 2)/2c k +

dn/2e+ 1.

The bounds for all paths were also given in [38] and improved upon by Hall, Magnant, Ozeki

and Tsugaki [51] in 2014.
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Theorem 1.3.22 ([51]) For all integers k ≥ 1 and n ≥ 3,

⌊
n− 2

2

⌋
k +

⌈n
2

⌉
+ 1 ≤ GRk(Pn) ≤

⌊
n− 2

2

⌋
+ 3

⌊n
2

⌋

A list of the Gallai-Ramsey numbers for a variety of other graphs, as well as some mixed

and off-diagonal cases, can be found in the dynamic survey by Fujita, Magnant and Ozeki

[43]. However, as these other cases are not the primary focus of this dissertation, we now

turn our attention to the known results for the diagonal Gallai-Ramsey numbers of cycles.

In Table 1.4, we provide a list of the diagonal Gallai-Ramsey numbers and their references

for small even and odd cycles, including those proven in this dissertation.

We note that although Song and J. Zhang [79] are not credited with the original proofs

of GRk(C6) and GRk(C8), we cite them in Table 1.4 because their proof was different and

substantially shorter than those appearing in [42] and [48], respectively. We also wish to point

out that the new proof by Song and J. Zhang both fixes the incomplete proof for GRk(C8)

originally provided in [48] and handles some mixed Gallai-Ramsey numbers of even cycles

and paths.

When the original work was done for this dissertation, there were some best known general

bounds at the time, which we summarize in the following theorem. The lower bounds were

provided in 1976 by Erdős et. al. [34], whereas the upper bounds are found in the 2014 paper

by Hall et. al. [51].

Theorem 1.3.23 ([34, 51]) For all k ≥ 1 and n ≥ 2,

(i) (n− 1)k + n+ 1 ≤ GRk(C2n) ≤ (n− 1)k + 3n,

(ii) n · 2k + 1 ≤ GRk(C2k+1) ≤ (2k+3 − 3)n lnn.
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Table 1.4: Diagonal Gallai-Ramsey Numbers of Small Cycles

Gallai-Ramsey Number Reference(s)

GRk(C3) =

{
5k/2 + 1, if k is even

2 · 5(k−1)/2 + 1, if k is odd
[23]

GRk(C4) = k + 4 [38]

GRk(C5) = 2 · 2k + 1 [42]

GRk(C6) = 2k + 4 [42, 79]

GRk(C7) = 3 · 2k + 1 [13]

GRk(C8) = 3k + 5 [48, 79]

GRk(C9) = 4 · 2k + 1 [10, 9]

GRk(C10) = 4k + 6 [91]

GRk(C11) = 5 · 2k + 1 [10]

GRk(C12) = 5k + 7 [91]

GRk(C13) = 6 · 2k + 1 [11]

GRk(C15) = 7 · 2k + 1 [11]

Recently, the Gallai-Ramsey numbers for all even cycles were settled by Chen, Song and

F. Zhang [18].

Theorem 1.3.24 ([18]) For all k ≥ 2 and n ≥ 2,

GRk(C2n) =


(n− 1)k + n+ 1 if n ≥ 3

(n− 1)k + n+ 2 if n = 2.
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The upper bound for odd cycles was subsequently improved in 2018 by Chen, Li and Pei.

Theorem 1.3.25 ([17]) For all k ≥ 2, GRk(C2n+1) ≤ (4n+ n log2 n) · 2k.

With the exceptions of C3 and C4, it is believed that the lower bounds are likely the true

values of the Gallai-Ramsey numbers for all cycles. We also note here that GR3(C10) = 18

[91], but by Theorem 1.3.7, R3(C10) ≥ 20. Thus, in contrast with the odd cycle case, the

Gallai-Ramsey numbers for even cycles do not provide strong partial evidence for the “Triple

Even Cycle Conjecture.”

The first segment of our work in this area concerns GRk(C2n+1) for n ∈ {4, 5, 6, 7}. Due to

the nature of their proofs, we now state our results in the following separate theorems to be

proven in Chapter 3.

Theorem 1.3.26 ([9, 10]) For all k ≥ 1 and n ∈ {4, 5}, GRk(C2n+1) = n · 2k + 1.

Theorem 1.3.27 ([11]) For all k ≥ 1 and n ∈ {6, 7}, GRk(C2n+1) = n · 2k + 1.

After the above work was completed, we managed to improve Theorem 1.3.25 which was at

the time the best-known general upper bound. We supply the proof of Theorem 1.3.28 in

Chapter 4.

Theorem 1.3.28 ([11]) For all k ≥ 1 and n ≥ 8, GRk(C2n+1) ≤ (n lnn) ·2k− (k+1)n+1.

Since the time we completed our main work (see Chapters 3 and 4), Chen, Song and F.

Zhang [18] announced a generalization of our results which confirms the long-held belief that

the Gallai-Ramsey number for all odd cycles (with the exception of C3) should match the

lower bound. The results of this dissertation are indeed cited in [18].

Theorem 1.3.29 ([18]) For all k ≥ 1 and n ≥ 3, GRk(C2n+1) = n · 2k + 1.
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Let us then return to our main goal. In Chapter 2 we supply the proof of Theorem 1.2.14.

In Chapter 3 we prove Theorem 1.3.26 in Section 3.2 and Theorem 1.3.27 in Section 3.3.

We then prove Theorem 1.3.28 in Chapter 4. Finally, we conclude this dissertation with a

discussion of future work in Chapter 5.
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CHAPTER 2: HADWIGER’S CONJECTURE FOR W5-FREE

GRAPHS

2.1 Proof of Theorem 1.2.14

Let G be a W5-free graph on n vertices with α(G) ≤ 2. By Theorem 1.2.11, it suffices

to show that h(G) ≥ dn/2e. Suppose h(G) < dn/2e. We choose such a graph G with n

minimum. By Theorem 1.2.12, G must contain an induced C5. Then α := α(G) = 2. Note

that (n+ 3)/4 ≤ d(n+ 2)/4e for odd n. By Theorem 1.2.15, ω(G) < d(n+ 2)/4e when n is

odd, and ω(G) < dn/4e when n is even.

Since G has an induced C5, let X :=
⋃5
i=1Xi be a maximal inflation of C5 in G such that for

all i ∈ [5], G[Xi] is a clique, Xi is complete to Xi−1 ∪Xi+1 and anticomplete to Xi−2 ∪Xi+2,

where all arithmetic on indices here and henceforth is done modulo 5. Then Xi 6= ∅ for all

i ∈ [5]. Since α = 2 and G is W5-free, no vertex in V (G) \ X is complete to X and every

vertex in V (G) \ X must be complete to at least three consecutive Xi’s on the maximal

inflation of C5. For each i ∈ [5], let

Yi := {v ∈ V (G) \X | v is complete to X \Xi and has a non-neighbor in Xi}

Zi := {v ∈ V (G) \X | v is complete to X \ (Xi ∪Xi+1) and has a non-neighbor in Xi and in Xi+1}.

Let Y :=
⋃5
i=1 Yi and Z :=

⋃5
i=1 Zi. By definition, Y ∩ Z = ∅ and Y ∪ Z = V (G) \X. By

the maximality of |X|, no vertex in Zi is anticomplete to Xi ∪Xi+1 in G, else, such a vertex

can be placed in Xi+3 to obtain a larger inflation of C5.

Claim 2.1.1 For all i ∈ [5], G[Zi] is a clique.
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Proof. Suppose some G[Zi], say G[Z1], is not a clique. Then there exist z1, z
′
1 ∈ Z1 such that

z1z
′
1 6∈ E(G). By definition of Z1, there exist x1 ∈ X1 and x2 ∈ X2 such that z1x1, z1x2 6∈

E(G). Since α = 2, we see that z′1x1, z
′
1x2 ∈ E(G). But then G[{z′1, x1, x2, x3, x4, x5}] = W5,

where xi ∈ Xi for all i ∈ {3, 4, 5}, a contradiction. �

We can use similar reasoning to deduce an analogous statement for G[Yi] for all i ∈ [5].

Claim 2.1.2 For all i ∈ [5], Yi is anticomplete to Xi, and so G[Yi] is a clique.

With the following observation, we can partition the sets Zi for all i ∈ [5].

Claim 2.1.3 For all i ∈ [5], every vertex in Zi is either anticomplete to Xi, or anticomplete

to Xi+1, but not both.

Proof. As observed earlier, for all i ∈ [5], no vertex in Zi is anticomplete to Xi ∪ Xi+1.

Suppose there exists some i ∈ [5], say i = 1, such that some vertex, say z ∈ Z1 is neither

anticomplete to Xi nor anticomplete to Xi+1. Then there exist x1 ∈ X1 and x2,∈ X2 such

that zx1, zx2 6∈ E(G). Let xi ∈ Xi for all i ∈ {3, 4, 5}. By definition of Z1, z is complete to

{x3, x4, x5}. But then G[{z, x1, x2, x3, x4, x5}] = W5, a contradiction. �

For each i ∈ [5], let

Zi
i := {z ∈ Zi | z is anticomplete to Xi}

Zi+1
i := {z ∈ Zi | z is anticomplete to Xi+1}.

By Claim 2.1.3, Zi = Zi
i ∪ Zi+1

i and Zi
i ∩ Zi+1

i = ∅ for all i ∈ [5].
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Since α = 2, by the choice of Yi, Zi, Z
i
i , Z

i+1
i , we see that

Claim 2.1.4 For all i ∈ [5], both G[Zi
i−1 ∪ Yi ∪ Zi] and G[Zi−1 ∪ Yi ∪ Zi

i ] are cliques.

We next show that

Claim 2.1.5 For all i ∈ [5], every vertex in Zi
i is complete to Yi−1 or complete to Zi+2

i+1 .

Proof. Suppose the statement is false. We may assume that there exists some vertex z ∈ Z1
1

such that zy5, zz2 6∈ E(G), where y5 ∈ Y5 and z2 ∈ Z3
2 . Since α = 2, we see that y5z2 ∈ E(G).

Then G[{x4, y5, z2, x5, z, x3}] = W5, where xi ∈ Xi for all i ∈ {3, 4, 5}, a contradiction. �

Claim 2.1.6 For all i ∈ [5], every vertex in Yi is either complete to Yi−1 or complete to

Yi+2.

Proof. Suppose not. We may assume there exist vertices y1 ∈ Y1, y3 ∈ Y3 and y5 ∈ Y5 such

that y1y3, y1y5 6∈ E(G). Then y3y5 ∈ E(G) because α = 2. Then G[{x4, y5, y3, x5, y1, x3}] =

W5, where xi ∈ Xi for all i ∈ {3, 4, 5}, a contradiction. �

By Claim 2.1.5, Z1
1 = A1 ∪B1 and Z3

3 = A3 ∪B3, where Ai ∩Bi = ∅, and

Ai := {v ∈ Zi
i | v is complete to Yi−1}

Bi := {v ∈ Zi
i | v is complete to Zi+2

i+1 and has a non-neighbor in Yi−1}.
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for i ∈ {1, 3}. By Claim 2.1.6, Y1 = Y ′1 ∪ Y ′′1 , where

Y ′1 := {v ∈ Y1 | v is complete to Y5}

Y ′′1 := {v ∈ Y1 | v is complete to Y3 and has a non-neighbor in Y5}.

Then Y ′1 ∩ Y ′′1 = ∅. We claim that A3 is complete to Y ′′1 in G. To see this, suppose there

exist vertices z ∈ A3 and y1 ∈ Y ′′1 such that zy1 6∈ E(G). By the choice of Y ′′1 , there exists a

vertex y5 ∈ Y5 such that y1y5 6∈ E(G). Then zy5 ∈ E(G) because α = 2. Since z ∈ Z3
3 , there

exists some vertex x4 ∈ X4 such that zx4 ∈ E(G). But then G[{x4, z, y5, x3, y1, x5}] = W5,

where x3 ∈ X3 and x5 ∈ X5, a contradiction. This proves that A3 is complete to Y ′′1 in G,

as claimed. Let

H1 := G[X3 ∪X4 ∪ Y5 ∪ Z5 ∪ Y ′1 ∪ A1]

H2 := G[X4 ∪X5 ∪B1 ∪ Z2
1 ∪ Y2 ∪ Z2]

H3 := G[X1 ∪X2 ∪B3 ∪ Z4
3 ∪ Y4 ∪ Z4]

H4 := G[X5 ∪ Y ′′1 ∪ Y3 ∪ A3]

Note that each of H1, H2, H3 and H4 is a clique in G, and |H1| + |H2| + |H3| + |H4| =

|G|+ |X4|+ |X5| ≥ n+ 2. It follows that ω(G) ≥ max{|H1|, |H2|, |H3|, |H4|} ≥ d(n+ 2)/4e,

a contradiction.

This completes the proof of Theorem 1.2.14. �
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CHAPTER 3: GALLAI-RAMSEY NUMBERS OF SMALL ODD

CYCLES

In this chapter, our goal is to prove our results concerning Gallai-Ramsey numbers of odd

cycles. First, we introduce some very useful lemmas in Section 3.1 which we shall require at

various points later on. We then prove Theorem 1.3.26 in Section 3.2, followed by the proof

of Theorem 1.3.27 in Section 3.3 because its proof is substantially more complicated.

3.1 Preliminaries

Lemma 3.1.1 ([9, 10]) For all n ≥ 3 and k ≥ 1, let c be a k-coloring of the edges of a

complete graph G on at least 2n + 1 vertices. Let U,W ⊆ V (G) be two disjoint sets with

|U | ≥ n and |W | ≥ n. If U is mc-complete, say blue-complete, to W under the coloring c,

then no vertex in V (G) \ (U ∪W ) is blue-complete to U ∪W in G. Moreover, if |W | ≥ n+ 1

(resp. |U | ≥ n+ 1), then G[W ] (resp. G[U ]) has no blue edges.

Proof. For the first case, suppose there exists a vertex x ∈ V (G) \ (U ∪W ) such that x

is blue-complete to U ∪W in G. Let U = {u1, . . . , u|U|} and W = {w1, . . . , w|W |}. We then

obtain a blue C2n+1 with vertices u1, x, w1, u2, w2, . . . , un, wn in order when |U | ≥ n, |W | ≥ n.

For the second case, assume |W | ≥ n + 1 and w1w2 is colored blue under c. Then we find

a blue C2n+1 with the vertices u1, w1, w2, u2, w3, . . . , un, wn+1 in order, a contradiction. If

|U | ≥ n+ 1, the proof is identical. �

Lemma 3.1.2 ([9, 10]) For all ` ≥ 3 and n ≥ 1, let n1, n2, . . . , n` be positive integers such

that ni ≤ n for all i ∈ [`] and
∑̀
i=1

ni ≥ 2n+1. Then the complete multipartite graph Kn1,n2,...,n`
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has a cycle of length 2n+ 1.

Proof. Let G := Kn′1,n
′
2,...,n

′
`

be an induced subgraph of Kn1,n2,...,n`
such that: `′ ≥ 3;

`′∑
i=1

n′i = 2n + 1; and for all i ∈ [`′], 1 ≤ n′i ≤ n. Then δ(G) ≥ n + 1 ≥ |G|/2. By

Theorem 1.1.2, G has a Hamilton cycle, and so Kn1,n2,...,n`
has a cycle of length 2n+ 1. �

The final lemma due to Hall et. al. will be used in the proof of Theorem 1.3.28.

Lemma 3.1.3 ([51]) For 1 ≤ t ≤ n, any Gallai-colored complete graph having a Gallai

partition with at least 4dn/te + 1 parts each of order at least t contains a monochromatic

C2n+1.

3.2 Proof of Theorem 1.3.26

Let n ∈ {4, 5}. As mentioned in Section 1.3.1, Erdős, Faudree, Rousseau and Schelp [34]

gave a construction for the lower bound of Rk(C2n+1), illustrated in Figure 1.6. Because this

construction is also rainbow triangle-free, we have GRk(C2n+1) ≥ n · 2k + 1 for all k ≥ 1.

Therefore, the remainder of the proof will show that GRk(C2n+1) ≤ n · 2k + 1 for all k ≥ 1.

First, note that the case k = 1 is trivial. Combining the result R(C2n+1, C2n+1) = 4n+ 1 for

all n ≥ 2 [39, 76] with Fact 1.3.11, we may assume that k ≥ 3. Let G := Kn·2k+1 and let c

be any Gallai k-coloring of G.

Suppose that G does not contain any monochromatic C2n+1 under c, so that the coloring c is

bad. Among all complete graphs on n ·2k+1 vertices with a bad Gallai k-coloring, we choose

G with k minimum; that is, G is the minimum-order counterexample to the desired result.

We next show such a graph G cannot exist through a series of claims, therefore concluding
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that G must contain a monochromatic copy of C2n+1 under the coloring c.

The first claim asserts that provided enough vertices are mc-complete to certain vertex sets,

the order of these sets can be controlled.

Claim 3.2.1 ([9, 10]) Let W ⊆ V (G) and let ` ≥ 3 be an integer. Let x1, . . . , x` ∈

V (G) \ W such that {x1, . . . , x`} is mc-complete, say blue-complete, to W under c. Let

q ∈ {0, 1, . . . , k − 1} be the number of colors, other than blue, missing on G[W ] under c.

(i) If ` ≥ n, then |W | ≤ n · 2k−1−q.

(ii) If ` = n− 1, then |W | ≤ n · 2k−1−q + 2.

(iii) If ` = n− 2, then n = 5 and |W | ≤ 8 · 2k−1−q − 1.

Proof. If |W | < max{2n + 1 − `, n + 1}, then the above statements hold trivially, so

we may assume that |W | ≥ max{2n + 1 − `, n + 1}. We may further assume that G[W ]

contains at least one blue edge, otherwise by the minimality of k, |W | ≤ n · 2k−1−q, giving

the result. Note that q ≤ k − 1. If q = k − 1, then all the edges of G[W ] are colored only

blue. Since {x1, . . . , x`} is blue-complete to W and |W | ≥ max{2n + 1 − `, n + 1}, we see

that G[W ∪ {x1, . . . , x`}] contains a blue C2n+1, a contradiction. Thus q ≤ k − 2. Since

|W | ≥ n+ 1 and G[W ] contains at least one blue edge, by Lemma 3.1.1, ` ≤ n− 1. Let W ∗

be a minimal set of vertices in W such that G[W \W ∗] has no blue edges. By minimality

of k, |W \W ∗| ≤ n · 2k−1−q. Our strategy now is to examine the possible longest blue paths

that can occur in G[W ].

We now consider the case when ` = n−1. As there are exactly three possible ways to create

longest blue paths using three blue edges, define F := {3P2, P3 ∪ P2, P4}. Given F ∈ F ,
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enumerate its vertices with v1, v2, . . . , vj, where 4 ≤ j ≤ 6, and enumerate the remaining

vertices of W with vj+1, vj+2, . . . , v|W | , noting that |W | ≥ 2n+ 1− ` = n+ 2. If F ⊆ Gb[W ]

for some F ∈ F , we obtain a blue C2n+1 in one of the following ways.

C2n+1 =


x1P2x2P2x3P2x4v7 · · ·xn−1vn+2x1, if F = 3P2

x1P3x2P2x3v6 · · ·xn−1vn+2x1, if F = P3 ∪ P2

x1P4x2v5 · · ·xn−1vn+2x1, if F = P4

a contradiction. Thus |W ∗| ≤ 2, and so |W | ≤ n · 2k−1−q + 2. This establishes (ii).

Finally, let ` = n − 2. Since 3 ≤ `, then n = 5 and thus ` = 3. Note that |W | ≥

2n + 1 − ` ≥ 8. Let P be a longest blue path in G[W ] with vertices v1, . . . , v|P | in order.

Since {x1, x2, x3} is blue-complete to W , we see that |P | ≤ 5, else we obtain a blue C11 with

vertices x1, v1, . . . , v6, x2, v7, x3, v8 in order, where v7, v8 ∈ W \ {v1, . . . , v6}, a contradiction.

If |W ∗| ≤ 4, then

|W | = |W \W ∗|+ |W ∗| ≤ n · 2k−1−q + 4 < 8 · 2k−1−q − 1,

because q ≤ k − 2 and k ≥ 3. Thus we may assume that |W ∗| ≥ 5. By the choice of

W ∗, we see that |P | ∈ {2, 3}, else we obtain a blue C11. Furthermore, if |P | = 3, then

G[W \ V (P )] has no blue path on three vertices. Thus all the blue edges in G[W \ V (P )]

induce a blue matching. Let m := |W ∗ \ V (P )| and let u2w2, . . . , um+1wm+1 be all the blue

edges in G[W \ V (P )], where u2, . . . , um+1, w2, . . . , wm+1 are all distinct. By the choice of

W ∗, we may assume that u2, . . . , um+1 ∈ W ∗. Let u1 = v1 and w1 = v2, A := W \ (V (P ) ∪
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{u2, . . . , um+1, w2, . . . , wm+1}), and

B :=


{u1, u2, . . . , um+1}, if |A| ≤ 1

{u1, u2, . . . , um+1} ∪ {a1, a2}, if |A| ≥ 2

where a1, a2 ∈ A with a1 6= a2. We claim that |B| ≤ 3 · 2k−1−q. Suppose |B| ≥

3 · 2k−1−q + 1. By the main result of [13], G[B] has a monochromatic, say green, C7. Then

|V (C7) ∩ {u1, u2, . . . , um+1}| ≥ 5 and so C7 \ {a1, a2} has a matching of size two. We may

assume that u2u3, u4u5 ∈ E(C7). Since G has no rainbow triangles under the coloring c,

we see that for any i ∈ {2, 4}, {ui, wi} is green-complete to {ui+1, wi+1}. Thus we obtain a

green C11 from the C7 by replacing the edge u2u3 with the path u2w3w2u3 and edge u4u5

with the path u4w5w4u5, a contradiction (see Figure 3.1). Thus |B| ≤ 3 · 2k−1−q, as claimed.

Figure 3.1: An example of a green C11 arising from a green C7

When |A| ≤ 1, we have |W | = |A|+2|B|+ |V (P )\{v1, v2}| ≤ 1+6 ·2k−1−q+1 < 8 ·2k−1−q−1

because q ≤ k − 2 and k ≥ 3. When |A| ≥ 2, since G[A ∪ {w1, w2, . . . , wm+1}] has no blue
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edges, by minimality of k, |A ∪ {w1, w2, . . . , wm+1}| ≤ 5 · 2k−1−q. Hence,

|W | = |A ∪ {w1, w2, . . . , wm+1}|+ |B \ {a1, a2}|+ |V (P ) \ {v1, v2}|

≤ 5 · 2k−1−q + (3 · 2k−1−q − 2) + 1

= 8 · 2k−1−q − 1.

This completes the proof of Claim 3.2.1. �

As it turns out, although we are guaranteed a Gallai partition when c is bad, we have no

control over the partition itself. In particular, as mentioned in Section 1.3.2, the order of

the parts cannot be controlled. Parts that are too small are difficult to deal with, so we put

them aside for later use. We formally define this process below. An illustration of this can

be found in Figure 3.2.

Let X1, . . . , Xm be a disjoint subsets of V (G) such that m is maximum and for all j ∈ [m],

one of the following holds.

(a) 1 ≤ |Xj| ≤ 2, and Xj is mc-complete to V (G) \
⋃
i∈[j]Xi under c, or

(b) 3 ≤ |Xj| ≤ 4, and Xj can be partitioned into two non-empty sets Xj1 and Xj2 , where

j1, j2 ∈ [k] are two distinct colors, such that for each t ∈ {1, 2}, 1 ≤ |Xjt | ≤ 2, Xjt is

jt-complete to V (G) \
⋃
i∈[j]Xi but not jt-complete to Xj3−t , and all the edges between

Xj1 and Xj2 in G are colored using only the colors j1 and j2.

With the above in mind, define the set X :=
⋃
j∈[m]Xj. We point out that such a sequence

X1, . . . , Xm may not exist. For each x ∈ X, let c(x) be the unique color on the edges

between x and V (G) \X under c. For all i ∈ [k], let X∗i := {x ∈ X : c(x) = color i}. Then

X =
⋃
i∈[k]X

∗
i . Note that X∗i is possibly empty for all i ∈ [k]. In line with our notation thus

far, we write X∗b (resp., X∗r ) to denote X∗i when i = blue (resp., i = red).
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Figure 3.2: Constructing the set X

Claim 3.2.2 ([9, 10]) For all i ∈ [k], |X∗i | ≤ 2.

Proof. Suppose the statement is false. Then m ≥ 2. When choosing X1, X2, . . . , Xm, let

j ∈ [m − 1] be the largest index such that |X∗p ∩ (X1 ∪ X2 ∪ · · · ∪ Xj)| ≤ 2 for all p ∈ [k].

Then 3 ≤ |X∗i ∩ (X1 ∪ X2 ∪ · · · ∪ Xj ∪ Xj+1)| ≤ 4 for some color i ∈ [k] by the choice of

j, where the indices i and and j exist from our assumption that the statement is false. Let

A := X1 ∪ X2 ∪ · · · ∪ Xj ∪ Xj+1. By the choice of X1, X2, . . . , Xm, there are at most two

colors i ∈ [k] such that 3 ≤ |X∗i ∩ A| ≤ 4. We may assume that such a color i is either blue

or red. Let Ab := {x ∈ A : c(x) = blue} and Ar := {x ∈ A : c(x) = red}. It suffices to

consider the worst case, namely when 3 ≤ |Ab| ≤ 4 and 3 ≤ |Ar| ≤ 4. For any color p ∈ [k]

other than red and blue, |X∗p ∩ A| ≤ 2. Then by the choice of j, |A \ (Ab ∪ Ar)| ≤ 2(k − 2).

We may assume that |Ab| ≥ |Ar|. Suppose |Ab| ≥ n − 1. By Claim 3.2.1(ii) applied to any
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n− 1 vertices in Ab and V (G) \ A, then |V (G) \ A| ≤ n · 2k−1 + 2. Since |Ab| ≤ 4 ≤ n,

|G| = |A \ (Ab ∪Ar)|+ |Ab|+ |Ar|+ |V (G) \A| ≤ 2(k− 2) +n+n+ (n · 2k−1 + 2) < n · 2k + 1

for all k ≥ 3 and n ∈ {4, 5}, a contradiction. Finally, if 3 ≤ |Ab| ≤ n− 2, then |Ab| = 3 and

n = 5. By Claim 3.2.1(iii) applied to Ab and V (G) \A, we see that |V (G) \A| ≤ 8 · 2k−1− 1.

Thus,

|G| = |A \ (Ab ∪Ar)|+ |Ab|+ |Ar|+ |V (G) \A| ≤ 2(k− 2) + 3 + 3 + (8 · 2k−1− 1) < 5 · 2k + 1

for all k ≥ 3, a contradiction. �

It immediately follows that |X| ≤ 2k from Claim 3.2.2. We now define a useful partition of

X. Let X ′ ⊆ X be such that for all i ∈ [k], |X ′ ∩X∗i | = 1 when X∗i 6= ∅. Let X ′′ := X \X ′.

Now, consider a Gallai partition A1, . . . , Ap of G \ X with p ≥ 2. We may assume that

1 ≤ |A1| ≤ · · · ≤ |As| < 3 ≤ |As+1| ≤ · · · ≤ |Ap|, where 0 ≤ s ≤ p. Let R be the

reduced graph of G \ X with vertices a1, a2, . . . , ap, where ai ∈ Ai for all i ∈ [p]. By

Theorem 1.3.13, we may assume that the edges of R are colored red and blue. As pointed

out in Section 1.3.2, any monochromatic C2n+1 in R would yield a monochromatic C2n+1 in

G, so R has neither a red nor a blue C2n+1. By Theorem 1.3.2, p ≤ 4n. Then |Ap| ≥ 2

because |G \ X| ≥ n · 2k + 1 − 2k ≥ 8n − 5, and further, if |Ap| = 2, then k = 3. Thus
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|Ap−4n+8| = 2, otherwise

|G| =
4n−7∑
i=0

|Ap−i|+
p−1∑

i=4n−8

|Ap−i|+ |X|

≤ 2(4n− 8) + [p− (4n− 8)] + 6

≤ 8n− 2

< n · 23 + 1,

a contradiction. By Theorem 1.3.2, we have R(C2n−3, C2n−3) = 4n − 7. Thus R[{ap−4n+8,

ap−4n+9, . . . , ap}] has a monochromatic, say blue, C2n−3, and so G[Ap−4n+8∪Ap−4n+9∪· · ·∪Ap]

has a blue C2n+1, a contradiction. Therefore we conclude |Ap| ≥ 3, giving p− s ≥ 1. Let

B := {ai ∈ {a1, . . . , ap−1} | aiap is colored blue in R}

R := {aj ∈ {a1, . . . , ap−1} | ajap is colored red in R}

Then |B| + |R| = p− 1. Let BG :=
⋃
ai∈B Ai and RG :=

⋃
aj∈RAj. We illustrate the above

ideas in Figure 3.3.

Claim 3.2.3 ([9, 10]) If |Ap| ≥ n and |B| ≥ 3 (resp. |R| ≥ 3), then |BG| ≤ 2n (resp.

|RG| ≤ 2n).

Proof. Suppose |Ap| ≥ n and |B| ≥ 3 but |BG| ≥ 2n + 1. By Claim 3.1.1, G[BG] has no

blue edges and no vertex in X is blue-complete to V (G) \X. Thus all the edges of R[B] are

colored red in R. Let q := |B| and let B := {ai1 , ai2 , . . . , aiq} with |Ai1 | ≥ |Ai2| ≥ · · · ≥ |Aiq |.

Then G[BG] \
⋃q
j=1E(G[Aij ]) is a complete multipartite graph with at least three parts. If

|Ai1| ≤ n, then by Lemma 3.1.2 applied to G[BG] \
⋃q
j=1E(G[Aij ]), G[BG] has a red C2n+1,

a contradiction. Thus |Ai1 | ≥ n+ 1.
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Figure 3.3: Gallai partition of G \X and a partition of X

LetQb := {v ∈ RG : v is blue-complete to Ai1}, andQr := {v ∈ RG : v is red-complete to Ai1}.

Then Qb∪Qr = RG. Let Q := (BG \Ai1)∪Qr∪X∗r . Then Q is red-complete to Ai1 and G[Q]

must contain red edges, because |B| ≥ 3 and all the edges of R[B] are colored red. By Claim

3.1.1 applied to Ai1 and Q, |Q| ≤ n. Note that |Ap ∪Qb| ≥ |Ap| ≥ |Ai1| ≥ n+ 1 and Ap ∪Qb

is blue-complete to Ai1 . By Claim 3.1.1 applied to Ai1 and Ap ∪Qb, G[Ap ∪Qb] has no blue

edges. Since no vertex in X is blue-complete to V (G)\X, we see that G[Ap∪Qb∪ (X ′ \X∗r )]

has no blue edges. By minimality of k, |Ap ∪Qb ∪ (X ′ \X∗r )| ≤ n · 2k−1. Suppose first that

Qr ∪ X∗r = ∅. Then Qb = RG and G[BG ∪ X ′′] has no blue edges. By minimality of k,
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|BG ∪X ′′| ≤ n · 2k−1. But then

|G| = |BG ∪X ′′|+ |Ap ∪Qb ∪X ′| ≤ n · 2k−1 + n · 2k−1 < n · 2k + 1,

a contradiction. Thus Qr ∪ X∗r 6= ∅. Since |B| ≥ 3, we see that |BG \ Ai1| ≥ 2. Thus

n ≥ |Q| ≥ 3.

Note that G[Ai1 ] has no blue edges and |X ′′ \X∗r | ≤ k− 2. By Claim 3.2.1 applied to Q and

Ai1 , we see that

|Ai1| ≤


n · 2k−2 if |Q| = n

n · 2k−2 + 2 if |Q| = n− 1

8 · 2k−2 − 1 if |Q| = n− 2 and n = 5.

But then

|G| = |Q|+ |Ai1|+ |Ap ∪Qb ∪ (X ′ \X∗r )|+ |X ′′ \X∗r |

≤


n+ n · 2k−2 + n · 2k−1 + (k − 2) if |Q| = n

(n− 1) + (n · 2k−2 + 2) + n · 2k−1 + (k − 2) if |Q| = n− 1

(n− 2) + (8 · 2k−2 − 1) + n · 2k−1 + (k − 2) if |Q| = n− 2 and n = 5

< n · 2k + 1

for all k ≥ 3, a contradiction. This proves that if |Ap| ≥ n and |B| ≥ 3, then |BG| ≤ 2n.

Similarly, one can prove that if |Ap| ≥ n and |R| ≥ 3, then |RG| ≤ 2n. �

Claim 3.2.4 p ≤ 2n− 1.
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Proof. Suppose p ≥ 2n. Then |B| + |R| = p − 1 ≥ 2n − 1. We claim that |Ap| ≤ n − 1.

Suppose |Ap| ≥ n. We may assume that |B| ≥ |R|. Then |BG| ≥ |B| ≥ n > 3. By

Claim 3.2.3, |BG| ≤ 2n. If |RG| ≥ n + 1, then applying Lemma 3.1.1 to Ap and RG, G[RG]

has no red edges, and X∗r = ∅. Then |X ′′| ≤ k − 1 and G[RG ∪X ′] has no red edges so that

by minimality of k, |RG ∪X ′| ≤ n · 2k−1. Then

|Ap| = |G| − |BG| − |RG ∪X ′| − |X ′′| ≥ n · 2k + 1− 2n− n · 2k−1 − (k − 1) ≥ 2n− 1,

for all k ≥ 3. By Lemma 3.1.1 applied to Ap and BG, G[Ap] has no blue edges and no vertex

in X is blue-complete to V (G) \X. Thus G[Ap ∪X ′′] has neither red nor blue edges, and so

|Ap ∪X ′′| ≤ n · 2k−2 by the choice of k. But then

|BG| = |G| − |RG ∪X ′| − |Ap ∪X ′′| ≥ n · 2k + 1− n · 2k−1 − n · 2k−2 ≥ 2n+ 1,

for all k ≥ 3, contrary to Claim 3.2.3. This proves that |RG| ≤ n. Then

|Ap ∪X ′| = |G| − |BG| − |RG| − |X ′′| ≥ (n · 2k + 1)− 2n− n− k > n · 2k−1 + 1.

By minimality of k, G[Ap ∪ X ′] must have blue edges. Since |Ap| ≥ n and |BG| ≥ n, by

Lemma 3.1.1 applied to Ap and BG, |Ap| = n and X∗b = ∅. Thus |X| ≤ 2(k − 1). But then

|G| = |BG|+ |RG|+ |Ap|+ |X| ≤ 2n+ n+ n+ 2(k − 1) < n · 2k + 1,

for all k ≥ 3, a contradiction. This proves that |Ap| ≤ n− 1, as claimed.

Since |Ap| ≥ 3, we have 3 ≤ |Ap| ≤ n−1. Then k = 3 because n ∈ {4, 5} and |G| = n ·2k+1,
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and so in particular, |G| = 8n+ 1 and |X| ≤ 6. Therefore,

|BG|+ |RG| = |G| − |Ap| − |X| ≥ (8n+ 1)− (n− 1)− 6 = 7n− 4.

We may thus assume that |BG| ≥ 2n + 3. We next prove that |Ap| ≤ n − 2. Suppose

|Ap| = n− 1. Let B∗ ⊆ BG with |B∗| minimal such that G[BG \ B∗] has no blue edges. By

the proof of Claim 3.2.1(ii), |B∗| ≤ 2. Then |BG \B∗| ≥ 2n+ 1, and so |B \B∗| ≥ 3 because

|Ai| ≤ n− 1 for all i ∈ [p]. By the choice of B∗, all the edges in R[B \ B∗] are colored red.

But then by Lemma 3.1.2, G[BG \B∗] has a red C2n+1, a contradiction.

From the above argument, 3 ≤ |Ap| ≤ n−2, and thus |Ap| = 3, n = 5, |G| = 41, and p ≤ 20.

If |Ap−7| = 3 or |Ap−12| ≥ 2, then R[{ap−8, ap−7, . . . , ap}] has a monochromatic C5, or

R[{ap−12, ap−11, . . . , ap}] has a monochromatic C7 because R(C5, C5) = 9 and R(C7, C7) =

13. In either case, G has a monochromatic C11, a contradiction. Thus |Ap−7| ≤ 2 and

|Ap−12| ≤ 1. Then |Ap−7| = 2, otherwise |G| ≤ 7 · 3 + 13 · 1 + 6 < 41, a contradiction. Since

R(C6, C6) = 8 (see Table 1.3) we see that R[{ap−7, ap−6, . . . , ap}] has a monochromatic, say

blue, C6, and so G \X has a blue C10. Thus X∗b = ∅, so |X| ≤ 2(k − 1) = 4. Furthermore,

if |Ap−8| = 2, then |Ap−4| = 2, else R[{ap−8, ap−7, . . . , ap}] has a monochromatic C5, and so

G has a monochromatic C11, a contradiction. But then

|G| =
p−1∑
i=0

|Ap−i|+ |X| ≤


[4 · 3 + 8 · 2 + (p− 12) · 1] + 4 ≤ 40, if |Ap−8| = 2

[7 · 3 + 2 + (p− 8) · 1] + 4 ≤ 39, if |Ap−8| ≤ 1.

In both cases, |G| < 41, a contradiction. �

Claim 3.2.5 ([9, 10]) |Ap| ≥ n+ 1.
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Proof. For a contradiction, suppose |Ap| ≤ n. Then |Ap−1| ≤ n. By Claim 3.2.4, p ≤ 2n−1.

We may assume that apap−1 is colored blue in R. Then |Ap ∪ Ap−1 ∪ X∗b | ≤ 2n, otherwise

|Ap| = n and |Ap−1 ∪ X∗b | ≥ n + 1 so that by Lemma 3.1.1 we create a blue C2n+1, a

contradiction. If |Ap−4| ≥ n−1, then R[{ap−4, ap−3, . . . , ap}] has a monochromatic C3 or C5,

and so G contains a monochromatic C2n+1, a contradiction. Thus |Ap−4| ≤ n− 2. But then

|G| = |Ap ∪ Ap−1 ∪X∗b |+ (|Ap−2|+ |Ap−3|) +

p−1∑
i=4

|Ap−i|+ |X \X∗b |

≤ 2n+ 2n+ (p− 4)(n− 2) + 2(k − 1)

≤ 4n+ (2n− 5)(n− 2) + 2k − 2

< n · 2k + 1

for all n ∈ {4, 5} and k ≥ 3, a contradiction. �

Let us now introduce some notation which we will employ for the rest of the proof.

Definition 3.2.6 B∗G := BG ∪X∗b and R∗G := RG ∪X∗r .

Claim 3.2.7 ([9, 10]) 2 ≤ p− s ≤ 3n− 7.

Proof. To see why the upper bound is true, suppose that p − s ≥ 3n − 6. Then

R[{ap−3n+7, ap−3n+8, . . . , ap}] has a monochromatic C2n−5 because R(C2n−5, C2n−5) = 3n− 6

when n ∈ {4, 5}. But then G contains a monochromatic C2n+1, giving the desired contra-

diction.

To see why the lower bound holds, now suppose p − s ≤ 1. As noted earlier, p − s ≥ 1.

Therefore, p − s = 1, and so |Ai| ≤ 2 for all i ∈ [p − 1]. By Claim 3.2.4, p ≤ 2n − 1. Then

|BG ∪RG| ≤ 2(p− 1) and so |B∗G ∪R∗G| ≤ 2(p− 1) + 2 + 2 = 2(p+ 1) ≤ 4n. We may assume
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that |B∗G| ≥ |R∗G|. Suppose first that |R∗G| ≥ n. Then |B∗G| ≥ n. By Claim 3.2.5 |Ap| ≥ n+1,

so by Lemma 3.1.1, G[Ap] has neither blue nor red edges. Then |Ap| ≤ n · 2k−2 from the

minimality of k. However,

|G| = |B∗G|+ |R∗G|+ |Ap|+ |X \ (B∗G ∪R∗G)| ≤ 4n+ n · 2k−2 + 2(k − 2) < n · 2k + 1

for all k ≥ 3, a contradiction. Thus |R∗G| ≤ n − 1. If |B| ≥ n + 1, then |BG| ≤ 2n by

Claim 3.2.3; otherwise, |B| ≤ n. In any case, |B∗G| ≤ 2n+ 2. If |B∗G| ≥ n− 1, then applying

Claim 3.2.1(i,ii) to B∗G and Ap implies that

|B∗G|+ |Ap| ≤


(n− 1) + (n · 2k−1 + 2), if |B∗G| = n− 1

(2n+ 2) + n · 2k−1, if |B∗G| ≥ n.

Either way, |B∗G|+ |Ap| ≤ 2n+ n · 2k−1 + 2. But then

|G| = |R∗G|+(|B∗G|+ |Ap|)+ |X \(B∗G∪R∗G)| ≤ (n−1)+(2n+n ·2k−1+2)+2(k−2) < n ·2k+1

for all k ≥ 3 and n ∈ {4, 5}, a contradiction. Thus |R∗G| ≤ |B∗G| ≤ n − 2. If |B∗G| = 3, then

n = 5. By Claim 3.2.1(iii) applied to B∗G and Ap, |Ap| ≤ 8 · 2k−1 − 1. But then,

|G| = |B∗G|+ |R∗G|+ |Ap|+ |X \ (B∗G ∪R∗G)| ≤ 3 + 3 + (8 · 2k−1 − 1) + 2(k − 2) < 5 · 2k + 1

for all k ≥ 3, a contradiction. Thus |R∗G| ≤ |B∗G| ≤ 2. Note that B 6= ∅ or R 6= ∅ because

p ≥ 2. The maximality of m when choosing X1, . . . , Xm by condition (a) implies B∗ 6= ∅,

R∗ 6= ∅, and B∗G is neither blue- nor red-complete to R∗G in G. On the other hand, the

maximality of m again implies by condition (b) that B∗G = ∅ and R∗G = ∅, contrary to p ≥ 2,

therefore yielding the desired result. �
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Claim 3.2.8 ([9, 10]) |Ap−2| ≤ n− 1.

Proof. We will prove this claim by contradiction. Suppose |Ap−2| ≥ n, so that n ≤

|Ap−2| ≤ |Ap−1| ≤ |Ap|. As is our custom, we may assume that R contains blue and red

edges. Now, R[{ap−2, ap−1, ap}] is not a monochromatic triangle in R, for otherwise we find

a monochromatic C2n+1. Without loss of generality, let B1, B2, B3 be a permutation of Ap−2,

Ap−1, Ap such that B2 is blue-complete, to B1 ∪ B3 in G. Then B1 must be red-complete

to B3 in G. We may assume that |B1| ≥ |B3|. By Lemma 3.1.1, X∗b = ∅ and X∗r = ∅. Let

A := V (G) \ (B1 ∪ B2 ∪ B3 ∪X). Then no vertex in A is red-complete to B1 ∪ B3 in G by

Lemma 3.1.1, and no vertex in A is blue-complete to B1 ∪ B2 or B2 ∪ B3 in G. Together,

these conditions imply that A is red-complete to B2 in G; otherwise we find a blue C2n+1 by

way of Lemma 3.1.1. Next, let us define the following sets:

B∗1 := {b ∈ A | b is blue-complete to B1 only in G}

B∗2 := {b ∈ A | b is blue-complete to both B1 and B3 in G}

B∗3 := {b ∈ A | b is blue-complete to B3 only in G}.

Note that B∗1 , B
∗
2 , B

∗
3 are pairwise disjoint and possibly empty. Then A = B∗1 ∪B∗2 ∪B∗3 . An

illustration of this entire configuration is depicted in Figure 3.4.

We now claim that G[A] has no blue edges. Suppose that G[A] has a blue edge, say, uv. Let

b1, . . . , bn−1 ∈ B1, bn, . . . , b2n−2 ∈ B2, and b2n−1 ∈ B3. If uv is an edge in G[B∗1 ∪B∗2 ], then we

obtain a blue C2n+1 with vertices b1, u, v, b2, bn, b2n−1, bn+1, b3, bn+2, . . . , bn−1, b2n−2 in order,

a contradiction. Similarly, uv is not an edge in G[B∗2 ∪ B∗3 ]. Thus uv must be an edge in

G[B∗1∪B∗3 ] with one end in B∗1 and the other in B∗3 . We may assume that u ∈ B∗1 and v ∈ B∗3 .

Then we obtain a blue C2n+1 with vertices b1, u, v, b2n−1, bn, b2, bn+1, . . . , bn−1, b2n−2 in order,

a contradiction. Therefore G[A] has no blue edges, so that |A| ≤ n · 2k−1 by minimality of k.
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Figure 3.4: Three large parts in the Gallai partition

Next, we claim that |B2 ∪ A ∪ X ′| ≤ n · 2k−1. If not, then |B2 ∪ A ∪ X ′| ≥ n · 2k−1 + 1

so that by minimality of k, G[B2 ∪ A ∪ X ′] must contain blue edges. Since G[A] has no

blue edges, A is red-complete to B2, and X∗b = ∅, it follows G[B2] must contain blue edges.

By Lemma 3.1.1, |B2| = n, and so B2 6= Ap by Claim 3.2.5. Without loss of generality,

assume B1 = Ap. Then G[B1] has neither red nor blue edges by Lemma 3.1.1, and thus

G[B1 ∪X ′] has neither red nor blue edges. By minimality of k, |B1 ∪X ′| ≤ n · 2k−2 and so

|B3 ∪X ′′| ≤ |B1 ∪X ′| ≤ n · 2k−2. Note that A = ∅. If not, then for any v ∈ A, G[B2 ∪ {v}]

has blue edges and B2 ∪ {v} is blue-complete to either B1 or B3, contrary to Lemma 3.1.1.

But then

|G| = |B1 ∪X ′|+ |B2|+ |B3 ∪X ′′| ≤ n · 2k−2 + n+ n · 2k−2 < n · 2k + 1,

for all k ≥ 3, a contradiction. This proves that |B2 ∪ A ∪X ′| ≤ n · 2k−1.
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Now, |B1| ≥ |B3| and |B1|+ |B3| = |G|−|B2∪A∪X ′|−|X ′′| ≥ n ·2k−1+1−(k−2) ≥ 2n+1,

so |B1| ≥ n + 1. Since |B2| ≥ n and |B3| ≥ n, by Lemma 3.1.1 G[B1] has neither red nor

blue edges. Further, since X∗r = ∅ and X∗b = ∅, G[B1 ∪X ′′] has neither red nor blue edges,

so that |B3| ≤ |B1 ∪X ′′| ≤ n · 2k−2 by minimality of k. But then

|G| = |B2 ∪ A ∪X ′|+ |B1 ∪X ′′|+ |B3| ≤ n · 2k−1 + n · 2k−2 + n · 2k−2 = n · 2k,

a contradiction. �

By Claim 3.2.7, 2 ≤ p− s ≤ 3n− 7 and so |Ap−1| ≥ 3. We may now assume that apap−1 is

colored blue in R. Then ap−1 ∈ B and so Ap−1 ⊆ BG. Thus |BG| ≥ |Ap−1| ≥ 3.

Claim 3.2.9 ([9, 10]) |R∗G| ≤ 2n.

Proof. Suppose |R∗G| ≥ 2n + 1. By Claim 3.2.5, |Ap| ≥ n + 1. Further, G[R∗G] has no

red edges by Lemma 3.1.1, so X∗r = ∅, |R∗G| = |RG|, and all the edges in R[R] are colored

blue. Note that by Claim 3.2.3, |R| ≤ 2. Additionally, |Ap−2| ≤ n− 1 by Claim 3.2.8. Since

Ap−1 ∩RG = ∅ and |RG| ≥ 2n+ 1, then |R| ≥ 3, a contradiction. �

Claim 3.2.10 ([9, 10]) |Ap−1| ≤ n.

Proof. For the sake of contradiction, suppose |Ap−1| ≥ n + 1. Then from our above

assumption, |BG| ≥ |Ap−1| ≥ n + 1. Lemma 3.1.1 guarantees that neither G[Ap] nor G[BG]

has blue edges, and X∗b = ∅, giving |X| ≤ 2(k− 1). Again from the choice of k, |BG ∪X ′′| ≤

n · 2k−1 and |Ap ∪X ′| ≤ n · 2k−1.

We claim that G[RG] has blue edges. Suppose not. Then G[Ap∪RG∪X ′] has no blue edges.

By the choice of k, |Ap ∪RG ∪X ′| ≤ n · 2k−1. But then |BG ∪X ′′| = |G| − |Ap ∪RG ∪X ′| ≥
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n · 2k−1 + 1, a contradiction. Thus G[RG] has blue edges, as claimed. Combining this with

Claim 3.2.9, 2 ≤ |RG| ≤ |R∗G| ≤ 2n. We complete this claim in two cases.

First, consider the case when |R∗G| ≥ n − 1. We will show that |Ap ∪ (X ′ \ X∗r )| + |R∗G| ≤

n · 2k−2 + max{2n, k + n− 1} (recall by Definition 3.2.6, R∗G = RG ∪X∗r ). If |R∗G| ≥ n, then

Lemma 3.1.1 implies G[Ap] has no red edges, so G[Ap∪ (X ′ \X∗r )] has no red edges and thus

|Ap ∪ (X ′ \ X∗r )| ≤ n · 2k−2 by the minimality of k. Therefore, |Ap ∪ (X ′ \ X∗r )| + |R∗G| ≤

n ·2k−2 +2n. If |R∗G| = n−1, then applying Claim 3.2.1(ii) to R∗G and Ap, |Ap| ≤ n ·2k−2 +2.

Thus |Ap ∪ (X ′ \X∗r )|+ |R∗G| ≤ n · 2k−2 + 2 + (k− 2) + (n− 1) = n · 2k−2 + k+ n− 1, giving

the desired result. But then

|G| = (|Ap∪(X ′\X∗r )|+|R∗G|)+|BG∪(X ′′\X∗r )| ≤ (n·2k−2+max{2n, k+n−1})+n·2k−1 < n·2k+1,

for all k ≥ 3, a contradiction.

Finally, we examine the case when 2 ≤ |RG| ≤ |R∗G| ≤ n − 2. If |R∗G| = 3, then n = 5. By

applying Claim 3.2.1(iii) to R∗G and Ap, |Ap| ≤ 8 · 2k−2 − 1. However,

|G| ≤ |Ap|+ |BG ∪X ′′|+ |R∗G|+ |X ′ \X∗r | ≤ (8 · 2k−2− 1) + 5 · 2k−1 + 3 + (k− 2) < 5 · 2k + 1,

for all k ≥ 3, a contradiction. Thus, because G[RG] contains a blue edge, |R∗G| = |RG| = 2,

and so in particular, X∗r = ∅ and |X ′′| ≤ k − 2. Let RG = {a, b}. Then ab must be colored

blue under c. Without loss of generality, suppose b is red-complete to BG in G. Then neither

G[Ap∪{a}∪X ′] nor G[BG∪{b}∪X ′′] has blue edges. By minimality of k, |Ap∪{a}∪X ′| ≤

n · 2k−1 and |BG ∪ {b} ∪X ′′| ≤ n · 2k−1. But then |G| = |Ap ∪ {a} ∪X ′|+ |BG ∪ {b} ∪X ′′| ≤

n·2k−1+n·2k−1 < n·2k+1 for all k ≥ 3, a contradiction. Thus neither a nor b is red-complete

to BG in G. Let a′, b′ ∈ BG be such that aa′ and bb′ are colored blue under c. Then a′ = b′,
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or else we obtain a blue C2n+1 in G with vertices a′, a, b, b′, x1, y1, x2, . . . , yn−2, xn−1 in order,

where x1, . . . , xn−1 ∈ Ap and y1, . . . , yn−2 ∈ BG \ {a′, b′}, a contradiction. Thus {a, b} is red-

complete to BG \ a′ in G. Then there exists i ∈ [s] such that Ai = {a′}. Since G[BG] has no

blue edges, we see that {a, b, a′} must be red-complete to BG \ a′ in G. By Claim 3.2.1(ii,iii)

applied to {a, b, a′} and BG \ a′, we have |BG \ a′| ≤ (4n− 12) · 2k−2 + (14− 3n). But then

|G| = |Ap ∪X ′|+ |BG \ a′|+ |{a, b, a′}|+ |X ′′|

≤ n · 2k−1 + [(4n− 12) · 2k−2 + (14− 3n)] + 3 + (k − 2)

< n · 2k + 1

for all k ≥ 3, a contradiction. Hence, |Ap−1| ≤ n. �

With these claims in mind, we are now ready to complete the proof. From Claim 3.2.9,

|RG| ≤ |R∗G| ≤ 2n. This allows us to divide the remaining proof into two cases.

First consider the case when |RG| ≥ n. Recall that |Ap| ≥ n + 1 by Claim 3.2.5. By

Lemma 3.1.1, G[Ap] has no red edges and X∗r = ∅, so |X| ≤ 2(k− 1). We assert that in this

case, |BG| ≥ n. To see why, suppose |BG| ≤ n− 1. If |BG| = n− 1, then |Ap| ≤ n · 2k−2 + 2

by Claim 3.2.1(ii) applied to BG and Ap. However, then

|G| = |Ap|+ |BG|+ |RG|+ |X| ≤ (n · 2k−2 + 2) + (n− 1) + 2n+ 2(k − 1) < n · 2k + 1

for all k ≥ 3, a contradiction. Hence we consider when 3 ≤ |BG| ≤ n − 2. Then n = 5 and

|BG| = 3, so by Claim 3.2.1(iii) applied to BG and Ap, |Ap| ≤ 8 · 2k−2 − 1. Adding back

together,

|G| = |Ap|+ |BG|+ |RG|+ |X| ≤ (8 · 2k−2 − 1) + 3 + 10 + 2(k − 1) < 5 · 2k + 1
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for all k ≥ 3, a contradiction, so |BG| ≥ n, as claimed. Therefore, G[Ap] has no blue edges

and X∗b = ∅ from Lemma 3.1.1. Since G[Ap ∪X ′] has neither red nor blue edges, and both

X∗r and X∗b are empty, it follows that |X ′′| ≤ k − 2 and |Ap ∪X ′| ≤ n · 2k−2 by minimality

of k. If |BG| = n, then

|G| = |Ap ∪X ′|+ |X ′′|+ (|BG|+ |RG|) ≤ n · 2k−2 + (k − 2) + (n+ 2n) < n · 2k + 1,

for all k ≥ 3, a contradiction, so we conclude |BG| ≥ n + 1. Invoking Lemma 3.1.1 again,

G[BG] has no blue edges and so G[BG∪X ′′] has no blue edges, giving again that |BG∪X ′′| ≤

n · 2k−1 by minimality of k. But then

|G| = |Ap ∪X ′|+ |BG ∪X ′′|+ |RG| ≤ n · 2k−2 + n · 2k−1 + 2n < n · 2k + 1,

for all k ≥ 3, a contradiction.

Finally, we consider the case when |RG| ≤ n−1. If |BG| ≥ 2n+1, then by Lemma 3.1.1, G[BG]

has no blue edges, so all the edges in R[B] are colored red. However, |Ap−1| ≤ n by Claim

3.2.10, and consequently |B| ≥ 3, contrary to Claim 3.2.3. Thus 3 ≤ |Ap−1| ≤ |BG| ≤ 2n.

As we have done above, if |BG| = n−1, we apply Claim 3.2.1(ii) to BG and Ap. If |BG| ≥ n,

apply Claim 3.2.1(i) to BG and Ap, and Lemma 3.1.1 to X. Putting these results together,

|Ap|+ |BG|+ |X| ≤


(n · 2k−1 + 2) + (n− 1) + 2k, if |BG| = n− 1

n · 2k−1 + 2n+ 2(k − 1), if |BG| ≥ n.

Regardless, |Ap|+ |BG|+ |X| ≤ n · 2k−1 + 2n+ 2k − 2. But then

|G| = (|Ap|+ |BG|+ |X|) + |RG| ≤ (n · 2k−1 + 2n+ 2k − 2) + (n− 1) < n · 2k + 1,
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for all k ≥ 3, a contradiction, so it must be that 3 ≤ |BG| ≤ n − 2, meaning |BG| = 3 and

n = 5. If |R∗G| ≥ 4 or |B∗G| ≥ 4, applying Claim 3.2.1(ii) to any four vertices in R∗G or B∗G

and Ap yields |Ap| ≤ 5 · 2k−1 + 2. Consequently,

|G| = |Ap|+ |BG|+ |RG|+ |X| ≤ (5 · 2k−1 + 2) + 3 + 4 + 2k < 5 · 2k + 1,

for all k ≥ 3, a contradiction. Therefore |BG| = |B∗G| = 3, whence X∗b = ∅, and |RG| ≤

|R∗G| ≤ 3. Thus |X \X∗r | ≤ 2(k−2). Moreover, |Ap| ≤ 8 ·2k−1−1 by Claim 3.2.1(iii) applied

to BG and Ap. As a result,

|G| = |Ap|+ |BG|+ |R∗G|+ |X \X∗r | ≤ (8 · 2k−1 − 1) + 3 + 3 + 2(k − 2) < 5 · 2k + 1,

for all k ≥ 3, a contradiction.

This completes the proof of Theorem 1.3.26. �

3.3 Proof of Theorem 1.3.27

Let n ∈ {6, 7}. It suffices to show that GRk(C2n+1) ≤ n ·2k +1 for all k ≥ 1. This is trivially

true for k = 1. By Theorem 1.3.2 and the fact that GR(C2n+1, C2n+1) = R(C2n+1, C2n+1),

we may assume that k ≥ 3. Let G := Kn·2k+1 and let c : E(G)→ [k] be any Gallai coloring

of G. We next show that G contains a monochromatic copy of C2n+1 under the coloring c.

Suppose that G does not contain any monochromatic copy of C2n+1 under c. Then c is bad.

Among all complete graphs on n ·2k +1 vertices with a bad k-edge-coloring, we again choose

G to be a minimum-order counterexample with respect to k.

Claim 3.3.1 Let W ⊆ V (G) and let ` ≥ 3 be an integer. Let x1, . . . , x` ∈ V (G) \W such
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that {x1, . . . , x`} is mc-complete, say blue-complete, to W under c. Let q ∈ {0, 1, . . . , k − 1}

be the number of colors, other than blue, missing on G[W ] under c.

(i) If ` ≥ n, then |W | ≤ n · 2k−1−q.

(ii) If ` = n− 1, then |W | ≤ n · 2k−1−q + 2.

(iii) If ` = n− 2, then |W | ≤ (21− 2n) · 2k−1−q + (5n− 31)

(iv) If ` = n− 3, then |W | ≤ 11 · 2k−1−q + (n− 7)

(v) If ` = n− 4, then n = 7 and |W | ≤ 13 · 2k−1−q.

Put another way, Claim 3.3.1 asserts that

|W | ≤


(2n− 1) · 2k−1−q + (n− 7), if ` ≥ 3

(2n− 3) · 2k−1−q + (n− 7), if ` ≥ 4.

Proof. Each statement (i)-(v) is trivially true if |W | < max{2n + 1 − `, n + 1}. Thus, we

may assume that |W | ≥ max{2n + 1 − `, n + 1}. Note that q ≤ k − 1. If q = k − 1, then

all the edges of G[W ] are colored only blue. Since {x1, . . . , x`} is blue-complete to W and

|W | ≥ max{2n + 1 − `, n + 1}, we see that G[W ∪ {x1, . . . , x`}] contains a blue C2n+1, a

contradiction. Thus q ≤ k − 2.

First, assume ` ≥ n. Since |W | ≥ n+ 1, by Lemma 3.1.1, G[W ] contains no blue edges. By

minimality of k, |W | ≤ n · 2k−1−q, establishing (i).

For the remainder of the proof, we may assume that ` ≤ n− 1, and that G[W ] contains at

least one blue edge, otherwise |W | ≤ n ·2k−1−q by minimality of k, giving the result. Let W ∗
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be a minimal set of vertices in W such that G[W \W ∗] has no blue edges. By minimality of

k, |W \W ∗| ≤ n · 2k−1−q.

Let P be a longest blue path in G[W ] with vertices v1, . . . , v|P | in order, where |P | ≥ 2. It

can be easily checked that if |P | ≥ 2(n − `) + 2, or |P | = 2(n − `) + 1 along with a blue

edge in G[W \ V (P )], then G[W ∪ {x1, . . . , x`}] has a blue C2n+1, a contradiction. Thus

|P | ≤ 2(n − `) + 1. Assume |P | = 2(n − `) + 1. Then G[W \ {v2, . . . , v|P |}] has no blue

edges. By minimality of k, |W | = |W \ {v2, . . . , v|P |}|+ |P \ {v1}| ≤ n · 2k−1−q + (|P | − 1) =

n·2k−1−q+2(n−`), as desired for each ` ∈ {n−1, n−2, n−3, n−4}. Thus 2 ≤ |P | ≤ 2(n−`).

We now consider the case ` = n− 1. Then |P | = 2. If G[W ] contains three blue edges, say

u1w1, u2w2, u3w3, such that u1, u2, u3, w1, w2, w3 are all distinct, then we obtain a blue C2n+1

with vertices 
v1, u1, w1, v2, u2, w2, v3, u3, w3, v4, u4, v5, u5, if n = 6

v1, u1, w1, v2, u2, w2, v3, u3, w3, v4, u4, v5, u5, v6, u6, if n = 7

in order, where u4, u5, u6 ∈ W \ {u1, u2, u3, w1, w2, w3}, a contradiction. Thus |W ∗| ≤ 2

because |P | = 2. Hence, |W | = |W \W ∗|+ |W ∗| ≤ n · 2k−1−q + 2. This establishes (ii).

Thus ` ∈ {n− 2, n− 3, n− 4}. Assume first that |P | = 2. Then all the blue edges of G[W ]

form a matching. Let u1w1, . . . , umwm be all the blue edges of G[W ]. Let

A :=


{u1, . . . , um}, if |W | = |{u1, . . . , um, w1, . . . , wm}| = 2m

{u1, . . . , um} ∪ {a}, if |W | − 2m ≥ 1 and a ∈ W \ {u1, . . . , um, w1, . . . , wm}

{u1, . . . , um} ∪ {a1, a2}, if n = 7, |W | − 2m ≥ 2 and a1, a2 ∈ W \ {u1, . . . , um, w1, . . . , wm}.
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Figure 3.5: Possible ways a green C15 arises from a green C9

Suppose |A| ≥ (n− 3) · 2k−1−q + 1. By [13] and Theorem 1.3.26, G[A] has a monochromatic,

say green, C2n−5 with |V (C2n−5)∩{u1, . . . , um}| ≥ 12−n. If n = 6, then we may assume that

E(C7) = {u1u2, u2u3, . . . , u6u7, u7u1}. Since G has no rainbow triangles under the coloring

c, then for any i ∈ {1, 3, 5}, {ui, wi} is green-complete to {ui+1, wi+1}. Thus we obtain a

green C13 from the green C7 by replacing the edge uiui+1 with the path uiwi+1wiui+1 for

each i ∈ {1, 3, 5}. If n = 7, there are four possible ways up to permutation that a1 and a2

can be arranged on the green C9 (see Figure 3.5). Similar to the case for n = 6, we therefore

obtain a green C15, a contradiction. Thus, |A| ≤ (n− 3) · 2k−1−q. Therefore,

|W | = |W \ A|+ |A|

≤


2[(n− 3) · 2k−1−q], if |W | = 2m

(7 · 2k−1−q − 1) + 4 · 2k−1−q, if |W | ≥ 2m+ 1

(n · 2k−1−q − 2) + (n− 3) · 2k−1−q, if n = 7 and |W | ≥ 2m+ 2
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=


(n− 3) · 2k−q, if |W | = 2m

(2n− 3) · 2k−1−q − 1, if |W | ≥ 2m+ 1

11 · 2k−1−q − 2, if n = 7 and |W | ≥ 2m+ 2,

(3.1)

as desired for each ` ∈ {n− 2, n− 3, n− 4}. So we may assume that 3 ≤ |P | ≤ 2(n− `).

Next suppose ` = n − 2. Then |P | ∈ {3, 4}. Thus |W ∗| ≤ 4, else we obtain a blue C2n+1.

Hence, |W | = |W \W ∗|+ |W ∗| ≤ n · 2k−1−q + 4, establishing (iii).

By the above arguments, we may now assume that ` ∈ {n − 3, n − 4}. Suppose |P | = 3.

Then each component of the subgraph of G[W ] induced by all its blue edges is isomorphic

to a K3, a star, or a P2. Partition W into the sets W1, W2 and W3, described below.

W1 : Select one vertex from each blue K3

W2 : Select one vertex from each blue K3 not in W1, the center vertex

in each blue star, and one vertex from each blue P2

W3 : = W \ (W1 ∪W2)

Then W = W1 ∪W2 ∪W3 with |W | = |W1| + |W2| + |W3|. This partition is illustrated in

Figure 3.6.

Note |W3| ≤ n · 2k−1−q due to the minimality of k. By an argument similar to the case

|P | = 2, we have |W2| ≤ (n− 3) · 2k−1−q. Therefore, our task is to appropriately bound W1.
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Figure 3.6: Partition of W

Define

A :=


W1, if n = 6, ` = n− 3 and |W | = 3|W1|

W1 ∪ {a}, if n = 6, ` = n− 3 and |W | > 3|W1|

W1, if n = 7 and ` ∈ {n− 3, n− 4},

where a ∈ W does not belong to a blue K3.

We claim that |A| ≤ 2 · 2k−1−q. First note if n = 7 and ` = n − 3, then |A| ≤ 3 otherwise

we find a blue C15, giving the result. Now, suppose |A| ≥ 2 · 2k−1−q + 1. Then G[A] has

a monochromatic, say green, C5 with vertices u1, u2, u3, u4, u5 in order. We may assume

that a /∈ {u1, u2, u3, u4}. Enumerate the vertices of the corresponding blue K3’s in G[W ]

as ui, yi, zi for all i ∈ [n − 2]. Since G has no rainbow triangles under the coloring c, then

for any i ∈ [n − 3], {ui, yi, zi} is green-complete to {ui+1, yi+1, zi+1}. Additionally, we note

{u5, y5, z5} is green-complete to {u1, y1, z1} when n = 7. Then we obtain a green C2n+1 with

vertices 
u1, u2, y1, y2, z1, z2, z3, z4, y3, y4, u3, u4, u5, if n = 6

u1, y2, y3, y4, y5, y1, z2, z3, z4, z5, z1, z2, u3, u4, u5, if n = 7

in order, a contradiction (see Figure 3.7). Thus |A| ≤ 2 · 2k−1−q.
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Figure 3.7: A green C13 arising from a green C5

Therefore,

|W | = |W1|+ |W2|+ |W3|

≤



3(2 · 2k−1−q) if n = 6, ` = n− 3 and |W | = 3|W1|

(2 · 2k−1−q − 1) + 3 · 2k−1−q + 6 · 2k−1−q if n = 6, ` = n− 3 and |W | > 3|W1|

3 + 3 · 2k−1−q + 6 · 2k−1−q if n = 7 and ` = n− 3

2 · 2k−1−q + 4 · 2k−1−q + 7 · 2k−1−q if n = 7 and ` = n− 4

=



6 · 2k−1−q if n = 6, ` = n− 3 and |W | = 3|W1|

11 · 2k−1−q − 1 if n = 6, ` = n− 3 and |W | > 3|W1|

9 · 2k−1−q + 3 if n = 7 and ` = n− 3

13 · 2k−1−q if n = 7 and ` = n− 4

as desired. So we may assume that 4 ≤ |P | ≤ 2(n− `).
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Now suppose ` = n− 3. Then 4 ≤ |P | ≤ 6. Assume first that |W ∗| ≤ 7. Then

|W | = |W \W ∗|+ |W ∗| ≤ n · 2k−1−q + 7 < 11 · 2k−1−q + n− 7

because q ≤ k − 2 and k ≥ 3. So we may assume that |W ∗| ≥ 8. Let P ′ be a longest blue

path in G[W \ V (P )].

Let us first handle the case when n = 6. Because |W ∗| ≥ 8, we have |P | ∈ {4, 5}, and

|P ′| ≤


3, if |P | = 4

2, if |P | = 5.

Moreover, when |P | = 4, there is at most one P ′ such that |P ′| = 3, otherwise we obtain

a blue C13. When |P | = 4, it suffices to consider the worst-case scenario, namely when

|P ′| = 3, with vertices y1, y2, y3 in order. Define

A :=


{v2, v3, v4, y3}, if |P | = 4

{v2, v3, v4, v5}, if |P | = 5

Then the blue edges of G[W \A] induce a matching. Similar to the above case when |P | = 2,

we obtain |W \ A| ≤ 9 · 2k−1−q − 1. Hence,

|W | = |W \ A|+ |A| ≤ 9 · 2k−1−q − 1 + 3 = 9 · 2k−1−q + 2,

which is less than the desired bound.

Now we consider when n = 7. Again because |W ∗| ≥ 8, we have |P | = 4 and |P ′| = 2, else

we obtain a blue C15. Thus the blue edges in G[W \ V (P )] form an induced matching. Let
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u1w1, . . . , umwm comprise the blue edges of G[W \ V (P )]. Define

A := W \ {v1, v2, v3, v4, u1, . . . , um, w1, . . . , wm}

B :=


{v1, u1, . . . , um} ∪ A, if |A| ≤ 1

{v1, u1, . . . , um} ∪ {a1, a2}, if |A| ≥ 2, where a1, a2 ∈ A

By similar reasoning to the case when |P | = 2, we have |B| ≤ 4 · 2k−1−q. Note that when

|A| ≥ 2, |W \ {v1, v2, v3, u1, . . . , um}| ≤ 7 · 2k−1−q by minimality of k. Therefore,

|W | =


2|B \ (A ∪ {v1})|+ |A|+ |P | |A| ≤ 1

|W \ {v1, v2, v3, u1, . . . , um}|+ |B \ {a1, a2}|+ |{v2, v3}| |A| ≥ 2,

≤


2(4 · 2k−1−q − 1) + 1 + 4 if |A| ≤ 1

7 · 2k−1−q + (4 · 2k−1−q − 2) + 2 if |A| ≥ 2,

yielding the desired bound because q ≤ k − 2 and k ≥ 3. This establishes case (iv).

Finally, we prove case (v), when ` = n− 4 and n = 7. Assume first that |W ∗| ≤ 12. Then

|W | = |W \W ∗|+ |W ∗| ≤ 7 · 2k−1−q + 12 ≤ 13 · 2k−1−q

because q ≤ k − 2 and k ≥ 3. Thus we may assume that |W ∗| ≥ 13. Hence, 4 ≤ |P | ≤ 7,

else we obtain a blue C15. Again we will let P ′ be a longest blue path in G[W \ V (P )].

Let us first handle the cases when |P | ∈ {6, 7}. Then there exists a subset A ⊆ W such that

|A| ≤ 5 and all the blue edges in G[W \ A] form a matching. By similar reasoning to the
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case |P | = 2, we have |W \ A| ≤ 11 · 2k−1−q − 1, which yields

|W | = |W \ A|+ |A| ≤ 11 · 2k−1−q − 1 + 5 ≤ 13 · 2k−1−q,

because q ≤ k − 2 and k ≥ 3.

Now suppose |P | = 5. Except for one case, we may apply identical reasoning as when

|P | ∈ {6, 7}. The only case we need to consider is when |P ′| = 3 for possibly many disjoint

longest blue paths in G[W \ V (P )]. Apply the partition on G[W \ {v1, v2}] used to derive

the case when |P | = 3, to obtain corresponding parts W ′
1, W

′
2 and W ′

3 (see Figure 3.6). By

similar reasoning, we find |W ′
1| ≤ 2 ·2k−1−q, and |W ′

3| ≤ 7 ·2k−1−q. From an argument similar

to the case |P | = 2 used to obtain (3.1), |W ′
2| ≤ 4 · 2k−1−q − 2. Adding the parts together,

|W | = |W ′
1|+ |W ′

2|+ |W ′
3|+ |{v1, v2}|

≤ 2 · 2k−1−q + (4 · 2k−1−q − 2) + 7 · 2k−1−q + 2

= 13 · 2k−1−q

since q ≤ k − 2 and k ≥ 3, as desired.

Thus |P | = 4. Then G[W \ V (P )] has at most one blue P4, else we obtain a blue C15.

It suffices to consider the worst-case scenario when G[W \ V (P )] has exactly one blue P4,

with vertices y1, y2, y3, y4 in order. Then each component of the subgraph of G[W \ {v4, y4}]
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induced by all its blue edges is isomorphic to a K3, a star, or a P2. Define the following sets:

A0 : All vertices v ∈ W such that v is not incident with any blue edge in G[W ]

A1 : Select one vertex from each blue K3

A2 : Select one vertex from each blue K3 not in W1, the center vertex

in each blue star, and one vertex from each blue P2

We next choose W1 and W2 judiciously. If G[W \ {v4, y4}] has no blue star, let

W1 := A1

W2 :=


A2 ∪ A0, if |A0| ≤ 1

A2 ∪ {a1, a2}, if |A0| ≥ 2, where a1, a2 ∈ A0

W3 := W \ (A1 ∪ A2) ∪ {v4, y4}.

If on the other hand G[W \ {v4, y4}] has at least one blue star with center vertex x and two

leaves x1, x2, let

W1 := A1 ∪ {x1}

W2 := (A2 \ {x}) ∪ {x1, x2}

W3 := W \ (A1 ∪ A2 ∪ {v4, y4}).

By a similar argument to that given for the case |P | = 3 (with ` = n − 4 and n = 7),
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|W1| ≤ 2 · 2k−1−q, |W2| ≤ 4 · 2k−1−q and |W3| ≤ 7 · 2k−1−q. Therefore,

|W | =


|W1|+ 2|W2 \ A0|+ |A0|+ |{v4, y4}| |A0| ≤ 1 and G[W ] has no blue star

|W1|+ |W2 \ {a1, a2}|+ |{v4, y4}|+ |W3| |A0| ≥ 2 and G[W ] has no blue star

|W1 \ {y1}|+ |W2 \ {y1, y2}|+ |{x, v4, y4}|+ |W3| G[W ] has a blue star,

≤


2 · 2k−1−q + 8 · 2k−1−q + 1 + 2 |A0| ≤ 1 and G[W ] has no blue star

2 · 2k−1−q + (4 · 2k−1−q − 2) + 2 + 7 · 2k−1−q |A0| ≥ 2 and G[W ] has no blue star

(2 · 2k−1−q − 1) + (4 · 2k−1−q − 2) + 3 + 7 · 2k−1−q G[W ] has a blue star,

yielding the desired bound because q ≤ k − 2 and k ≥ 3.

This completes the proof of Claim 3.3.1. �

Let X1, . . . , Xm be a maximum sequence of disjoint subsets of V (G) such that, for all j ∈ [m],

one of the following holds:

(a) 1 ≤ |Xj| ≤ 3, and Xj is mc-complete to V (G) \
⋃
i∈[j]Xi under c, or

(b) 4 ≤ |Xj| ≤ 6, and Xj can be partitioned into two non-empty sets Xj1 and Xj2 , where

j1, j2 ∈ [k] are two distinct colors, such that for each t ∈ {1, 2}, 1 ≤ |Xjt | ≤ 3, Xjt is

jt-complete to V (G) \
⋃
i∈[j]Xi but not jt-complete to Xj3−t , and all the edges between

Xj1 and Xj2 in G are colored using only the colors j1 and j2.

Note that such a sequence X1, . . . , Xm may not exist. Let X :=
⋃
j∈[m]Xj. For each x ∈ X,

let c(x) be the unique color on the edges between x and V (G)\X under c. For all i ∈ [k], let

X∗i := {x ∈ X : c(x) is color i}. Then X =
⋃
i∈[k]X

∗
i . It is worth noting that for all i ∈ [k],

X∗i is possibly empty. By abusing the notation, we use X∗b , X∗r and X∗g to denote X∗i when

i is blue, red or green, respectively.
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Claim 3.3.2 For all i ∈ [k], |X∗i | ≤ 3. Hence, |X| ≤ 3k.

Proof. Suppose the statement is false. Then m ≥ 2. When choosing X1, X2, . . . , Xm, let

j ∈ [m − 1] be the largest index such that |X∗p ∩ (X1 ∪ X2 ∪ · · · ∪ Xj)| ≤ 3 for all colors

p ∈ [k]. Then 4 ≤ |X∗i ∩ (X1 ∪X2 ∪ · · · ∪Xj ∪Xj+1)| ≤ 6 for some color i ∈ [k] by the choice

of j. Such a color i and an index j exist due to the assumption that the statement of Claim

3.3.2 is false. Let A := X1∪X2∪· · ·∪Xj ∪Xj+1. By the choice of X1, X2, . . . , Xm, there are

at most two colors i ∈ [k] such that 4 ≤ |X∗i ∩ A| ≤ 6. We may assume that such a color i

is red or blue. Let Ab := {x ∈ A : c(x) is color blue} and Ar := {x ∈ A : c(x) is color red}.

It suffices to consider the worst-case scenario when 4 ≤ |Ab| ≤ 6 and 4 ≤ |Ar| ≤ 6. Then

for any color p ∈ [k] other than red and blue, |X∗p ∩ A| ≤ 3. Thus by the choice of j,

|A \ (Ab ∪ Ar)| ≤ 3(k − 2). We may assume that |Ab| ≥ |Ar|. Note that 4 ≤ |Ab| ≤ 6 ≤ n.

By Claim 3.3.1 applied to Ab and V (G) \ A, we see that

|V (G) \ A| ≤


(2n− 3) · 2k−1 + (n− 7), if |Ab| = 4

n · 2k−1 + (2n− 10), if |Ab| = 5

n · 2k−1 + (2n− 12), if |Ab| = 6.

But then,

|G| = |A \ (Ab ∪ Ar)|+ |Ab|+ |Ar|+ |V (G) \ A|

≤ 3(k − 2) +


4 + 4 + [(2n− 3) · 2k−1 + (n− 7)], if |Ab| = 4

5 + 5 + [n · 2k−1 + (2n− 10)], if |Ab| = 5

6 + 6 + [n · 2k−1 + (2n− 12)], if |Ab| = 6

< n · 2k + 1
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for all k ≥ 3 and n ∈ {6, 7}, a contradiction. �

By Claim 3.3.2, |X| ≤ 3k. Let X ′ ⊆ X be such that for all i ∈ [k], |X ′ ∩ X∗i | = 1 when

X∗i 6= ∅. Similarly, define X ′′ ⊆ X such that for all i ∈ [k], |X ′′ ∩ (X∗i \ X ′)| = 1 when

X∗i \X ′ 6= ∅. Finally, let X ′′′ := X \ (X ′ ∪X ′′). Now consider a Gallai partition A1, . . . , Ap

of G \X with p ≥ 2. We may assume that 1 ≤ |A1| ≤ · · · ≤ |As| < 3 ≤ |As+1| ≤ · · · ≤ |Ap|,

where 0 ≤ s ≤ p. Let R be the reduced graph of G \ X with vertices a1, a2, . . . , ap, where

ai ∈ Ai for all i ∈ [p]. By Theorem 1.3.13, we may assume that every edge of R is colored

either red or blue. Note that any monochromatic C2n+1 in R would yield a monochromatic

C2n+1 in G. Thus R has neither a red nor a blue C2n+1. By Theorem 1.3.2, p ≤ 4n. Then

|Ap| ≥ 2 because |G \X| ≥ n · 2k + 1− 3k ≥ 8n− 8 and n ∈ {6, 7}.

Claim 3.3.3 |Ap−8| ≤ 2 and |Ap−4n+12| ≤ 1. Moreover, if |Ap−7| ≥ 3, then |Ap−4n+16| ≤

n− 6. Similarly, if |Ap−4n+13| ≥ 2, then p ≤ 4n− 12.

Proof. Suppose |Ap−8| ≥ 3 or |Ap−7| ≥ 3 and |Ap−4n+16| ≥ n − 5. By Theorem 1.3.2,

R(C2n−7, C2n−7) = 4n − 15. We see that either R[{ap−8, ap−7, . . . , ap}] has a monochro-

matic C5 that gives a monochromatic C2n+1 in G, or R[{ap−4n+16, ap−4n+15, . . . , ap}] has a

monochromatic C2n−7 which again yields a monochromatic C2n+1 in G, a contradiction. Sim-

ilarly, suppose |Ap−4n+12| ≥ 2 or |Ap−4n+13| ≥ 2 and p ≥ 4n − 11 (and so |Ap−4n+12| ≥ 1).

By Theorem 1.3.2, R(C2n−5, C2n−5) = 4n − 11. Thus R[{ap−4n+12, ap−4n+13, . . . , ap}] has a

monochromatic C2n−5, again yielding a monochromatic C2n+1 in G, a contradiction. �

Claim 3.3.4 |Ap| ≥ 4.

Proof. Suppose |Ap| ≤ 3. Then n · 2k + 1 − 3k ≤ |G \X| ≤ p|Ap| = 12n because p ≤ 4n

and |X| ≤ 3k. It follows that k = 3 and so |X| ≤ 3k = 9 and |G| = 8n+ 1. Thus p ≥ 2n+ 1
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because |Ap| ≤ 3. Let green be the third color. Since |Ap| ≤ 3, we see that G has no green

C2n under the coloring c. We claim that either |X∗r | = 0 or |X∗b | = 0. Suppose |X∗r | ≥ 1 and

|X∗b | ≥ 1. Since G has no green C2n and

|G| − |Ap ∪X| ≥ (8n+ 1)− 3− 9 ≥ 8n− 11 > 6n− 3 ≥ GR3(C2n),

by Theorem 1.3.23 (i), there is either a red or a blue C2n in G\ (Ap∪X). Thus G\ (Ap∪X∗g )

has either a red or a blue C2n+1 under c, a contradiction. This proves that either |X∗r | = 0

or |X∗b | = 0. We may assume that |X∗b | = 0. Then |X ′| ≤ 2 and so |X| = |X∗r ∪X∗g | ≤ 6. By

Claim 3.3.3, |Ap−8| ≤ 2 and |Ap−4n+12| ≤ 1. If p ≤ 4n− 6 or |X| ≤ 4, then

|G| =
p∑
i=1

|Ai|+ |X| ≤ 3 · 8 + 2(4n− 20) + (p− 4n+ 12) + |X| ≤ 8n < 8n+ 1,

a contradiction. Thus p ≥ 4n− 5 and |X| ≥ 5. Since |X ′| ≤ 2 and |X| ≥ 5, by Claim 3.3.2,

|X ′| = 2 and |X∗r | ≥ 2. By Theorem 1.3.3, R(C2n−2, C2n+1) = 4n − 5. It follows that

R[{a1, . . . , a4n−5}] has either a red C2n−2 or a blue C2n+1. Since c is bad, we see that

R[{a1, . . . , a4n−5}] has a red C2n−2. But then G[V (C2n−2) ∪X∗r ∪ {v}], where v ∈ Ap, has a

red C2n+1, a contradiction. �

Claim 3.3.5 If |Ap| ≤ n, then |Ap−2| ≤ 3.

Proof. Suppose |Ap| ≤ n but |Ap−2| ≥ 4. Since |Ap| ≤ n, we have |G|− |Ap∪Ap−1∪Ap−2|−

|X| ≥ n · 2k + 1− 3n− 3k ≥ 5n− 8. Let B1, B2, B3 be a permutation of Ap−2, Ap−1, Ap such

that B2 is, say, blue-complete to B1 ∪B3 in G. This is possible due to Theorem 1.3.13. Let

b1, . . . , b4 ∈ B1, b5, . . . , b8 ∈ B2, and b9, . . . , b12 ∈ B3. Let A := V (G) \ (B1 ∪ B2 ∪ B3 ∪X),
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and define

B∗1 := {v ∈ A | v is blue-complete to B1 and red-complete to B3 in G}

B∗2 := {v ∈ A | v is blue-complete to B1 ∪B3 in G}

B∗3 := {v ∈ A | v is red-complete to B1 ∪B3 in G}

B∗4 := {v ∈ A | v is red-complete to B1 and blue-complete to B3 in G}.

Then A = B∗1∪B∗2∪B∗3∪B∗4 and so |B∗1∪B∗2∪B∗3∪B∗4 | ≥ 5n−8. Note that B∗1 , B
∗
2 , B

∗
3 , B

∗
4 are

pairwise disjoint. Suppose first that B1 is red-complete to B3 in G. By Lemma 3.1.1 applied

to B∗3 and B1∪B3, |B∗3 | ≤ n−1. Thus |B∗1 |+ |B∗2 |+ |B∗4 | ≥ 5n−8−(n−1) = 4n−7 ≥ 2n+5

because n ∈ {6, 7}. By symmetry, we may assume that |B∗1 |+ |B∗2 | ≥ n+ 3. We claim that

G[B∗1 ∪B∗2 ∪B∗4 ] has no blue edges. Suppose not. Let uv be a blue edge in G[B∗1 ∪B∗2 ∪B∗4 ].

Since |B∗1 |+ |B∗2 | ≥ n+ 3, let x, y ∈ B∗1 ∪B∗2 be two distinct vertices that are different from

u and v. If u, v ∈ B∗1 ∪B∗2 , then we find a blue C2n+1 with vertices


u, v, b1, b5, b9, b6, b10, b7, b11, b8, b2, x, b3, if n = 6

u, v, b1, b5, b9, b6, b10, b7, b11, b8, b2, x, b3, y, b4, if n = 7

in order, a contradiction. Thus we may assume that v ∈ B∗4 . If u ∈ B∗1 ∪B∗2 , then we find a

blue C2n+1 with vertices


u, v, b9, b5, b10, b6, b11, b7, b12, b8, b1, x, b2, if n = 6

u, v, b9, b5, b10, b6, b11, b7, b12, b8, b1, x, b2, y, b3, if n = 7
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in order, a contradiction. Thus u, v ∈ B∗4 . But similarly, we obtain a blue C2n+1 with vertices


u, v, b9, b5, b1, x, b2, b6, b3, y, b4, b7, b10, if n = 6

u, v, b9, b5, b1, x, b2, b6, b10, b7, b3, y, b4, b8, b11, if n = 7

in order, a contradiction. This proves that G[B∗1 ∪ B∗2 ∪ B∗4 ] contains no blue edges. Since

|B∗1 |+ |B∗2 |+ |B∗4 | ≥ 2n+ 5 and |Ap| ≤ n, by Lemma 3.1.2, G[B∗1 ∪B∗2 ∪B∗4 ] has a red C2n+1,

a contradiction. Thus B1 must be blue-complete to B3. Then |B1 ∪ B2 ∪ B3| ≤ 2n, else we

obtain a blue C2n+1 in G[B1 ∪ B2 ∪ B3]. By Lemma 3.1.1 applied to B2 ∪ B∗2 and B1 ∪ B3,

we see that |B∗2 | ≤ n − 5. If |B∗1 | ≥ 3, let x, y, z ∈ B∗1 be distinct vertices. Then we find a

blue C2n+1 with vertices


b1, b5, b9, b6, b10, b7, b11, b8, b12, b2, x, b3, y, if n = 6

b1, b5, b9, b6, b10, b7, b11, b8, b12, b2, x, b3, y, b4, z, if n = 7

in order, a contradiction. Thus |B∗1 | ≤ 2. Similarly, |B∗4 | ≤ 2. Therefore,

|B∗3 | = |G|−|X|−|B1∪B2∪B3|−|B∗1∪B∗2∪B∗4 | ≥ n·2k+1−3k−2n−(n−5+2+2) ≥ 5n−7.

By Lemma 3.1.1 applied to B∗3 and B1 ∪ B3, G[B∗3 ] contains no red edges. But then by

Lemma 3.1.2 and the fact that |Ap| ≤ n and |B∗3 | ≥ 5n − 7, G[B∗3 ] must contain a blue

C2n+1, a contradiction. This proves that if |Ap| ≤ n, then |Ap−2| ≤ 3. �

By Claim 3.3.4, |Ap| ≥ 4 and so p− s ≥ 1. Let

B := {ai ∈ {a1, . . . , ap−1} | aiap is colored blue in R}

R := {aj ∈ {a1, . . . , ap−1} | ajap is colored red in R}
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Then |B|+ |R| = p− 1. Let BG :=
⋃
ai∈B Ai and RG :=

⋃
aj∈RAj.

Claim 3.3.6 If every vertex in X is neither i- nor j-complete to V (G) \X for two distinct

colors i, j ∈ [k], then X ′′′ = ∅.

Proof. Suppose X ′′′ 6= ∅. We may assume that every vertex in X is neither red- nor

blue-complete to V (G) \X. Then there exists at least one color ` ∈ [k] other than red and

blue such that |X∗` | = 3. We claim that k ≥ 4. Suppose k = 3. Then |G| = 8n+ 1. We may

assume the third color is green. Then |X| = |X∗g | = 3. By Claim 3.3.1 applied to X∗g and

V (G) \X∗g , |V (G) \X∗g | ≤ 4(2n− 1) + (n− 7). But then

|G| = |X∗g |+ |V (G) \X∗g | ≤ 3 + 4(2n− 1) + (n− 7) < 8n+ 1,

because n ∈ {6, 7}, a contradiction. Thus k ≥ 4, as claimed. When choosing X1, X2, . . . , Xm,

let q ∈ [m] be the smallest index such that for some color `′ ∈ [k] other than red and blue,

|X∗`′ ∩ (X1∪· · ·∪Xq)| = 3. By the choice of q, |X∗j ∩ (X1∪· · ·∪Xq−1)| ≤ 2 for all j ∈ [k]. By

the property (b) when choosing X1, X2, . . . , Xm, there are possibly two colors q1 := `′ and

q2 ∈ [k] such that |X∗q1 | = 3 and |X∗q2| ≤ 3. Since no vertex in X is red- or blue-complete to

V (G) \X, we see that |(X1 ∪ · · · ∪Xq) \ (X∗q1 ∪X
∗
q2

)| ≤ 2(k − 4). By Claim 3.3.1 applied to

X∗q1 and V (G)\ (X1∪ · · ·∪Xq), |V (G)\ (X1∪ · · ·∪Xq)| ≤ (2n− 1) · 2k−1 + (n− 7). But then

|G| = |(X1 ∪ · · · ∪Xq) \ (X∗q1 ∪X
∗
q2

)|+ |X∗q1 ∪X
∗
q2
|+ |V (G) \ (X1 ∪ · · · ∪Xq)|

≤ 2(k − 4) + 6 + [(2n− 1) · 2k−1 + (n− 7)]

< n · 2k + 1

for all k ≥ 4, a contradiction. �
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Claim 3.3.7 If |Ap| ≥ n and |B| ≥ 3 (resp. |R| ≥ 3), then |BG| ≤ 2n (resp. |RG| ≤ 2n).

Proof. Suppose |Ap| ≥ n and |B| ≥ 3 but |BG| ≥ 2n + 1. By Claim 3.1.1, G[BG] has no

blue edges and no vertex in X is blue-complete to V (G) \X. Thus all the edges of R[B] are

colored red in R. Let q := |B| and let B := {ai1 , ai2 , . . . , aiq} with |Ai1| ≥ |Ai2| ≥ · · · ≥ |Aiq |.

Then G[BG] \
⋃q
j=1E(G[Aij ]) is a complete multipartite graph with at least three parts. If

|Ai1 | ≤ n, then by Lemma 3.1.2 applied to G[BG]\
⋃q
j=1E(G[Aij ]), G[BG] has a red C2n+1, a

contradiction. Thus |Ai1| ≥ n+1. LetQb := {v ∈ RG : v is blue-complete to Ai1}, andQr :=

{v ∈ RG : v is red-complete to Ai1}. Then Qb ∪ Qr = RG. Let Q := (BG \ Ai1) ∪ Qr ∪X∗r .

Then Q is red-complete to Ai1 and G[Q] must contain red edges, because |B| ≥ 3 and all

the edges of R[B] are colored red. By Claim 3.1.1 applied to Ai1 and Q, |Q| ≤ n. Note that

|Ap∪Qb| ≥ |Ap| ≥ |Ai1| ≥ n+1 and Ap∪Qb is blue-complete to Ai1 . By Claim 3.1.1 applied

to Ai1 and Ap ∪ Qb, G[Ap ∪ Qb] has no blue edges. Since no vertex in X is blue-complete

to V (G) \ X, we see that G[Ap ∪ Qb ∪ (X ′ \ X∗r )] has no blue edges. By minimality of k,

|Ap ∪ Qb ∪ (X ′ \ X∗r )| ≤ n · 2k−1. Suppose first that Qr ∪ X∗r = ∅. Then Qb = RG and

G[BG ∪X ′′] has no blue edges. By minimality of k, |BG ∪X ′′| ≤ n · 2k−1. Since no vertex in

X is red- or blue-complete to V (G) \X, by Claim 3.3.6, X ′′′ = ∅. But then

|G| = |BG ∪X ′′|+ |Ap ∪Qb ∪X ′| ≤ n · 2k−1 + n · 2k−1 < n · 2k + 1,

a contradiction. Thus Qr ∪ X∗r 6= ∅. Since |B| ≥ 3, we see that |BG \ Ai1| ≥ 2. Thus

n ≥ |Q| ≥ 3.

We next claim that either |Q| ≥ 4 or k ≥ 6. Suppose |Q| = 3 and k ≤ 5. Then |Qr∪X∗r | = 1

and |BG \ Ai1| = 2. Suppose k = 3. We may assume that the third color is green. Since

Q is red-complete to Ai1 , we see that G[Ai1 ] has neither red C2n−2 nor a green C2n+1. By
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Theorem 1.3.3, |Ai1| ≤ R(C2n−2, C2n+1)− 1 = 4n− 6. But then

|G| = |Q|+ |Ai1 |+ |Ap ∪Qb|+ |X∗g | ≤ 3 + (4n− 6) + n · 23−1 + 3 = 8n < 8n+ 1,

a contradiction. Thus k ∈ {4, 5}. Then |X ′ \ X∗r | ≤ k − 3, else, by Theorem 1.3.23 (i),

|Ai1 | ≤ GRk−1(C2n)− 1 ≤ (k − 1)(n− 1) + 3n− 1. But then

|G| = |Q|+ |Ai1|+ |Ap ∪Qb ∪ (X ′ \X∗r )|+ |(X ′′ ∪X ′′′) \X∗r |

≤ 3 + [(k − 1)(n− 1) + 3n− 1] + n · 2k−1 + 2(k − 2)

< n · 2k + 1

for all k ∈ {4, 5} and n ∈ {6, 7}, a contradiction. Thus |X ′ \X∗r | ≤ k−3, and so |X ′′ \X∗r | ≤

k − 3. In particular, by Claim 3.3.6, this implies X ′′′ = ∅. By Claim 3.3.1 applied to Q and

Ai1 , |Ai1| ≤ (2n− 1) · 2k−2 + (n− 7). But then

|G| = |Q|+ |Ai1|+ |Ap ∪Qb ∪ (X ′ \X∗r )|+ |X ′′ \X∗r |

≤ 3 + [(2n− 1) · 2k−2 + (n− 7)] + n · 2k−1 + (k − 3)

< n · 2k + 1

for k ∈ {4, 5}, a contradiction. This proves that either |Q| ≥ 4 or k ≥ 6, as claimed.

Note that G[Ai1 ] has no blue edges and |(X ′′∪X ′′′)\X∗r | ≤ 2(k−2). By Claim 3.3.1 applied
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to Q and Ai1 , we see that

|Ai1 | ≤



n · 2k−2 if |Q| = n

n · 2k−2 + 2 if |Q| = n− 1

(21− 2n) · 2k−2 + (5n− 31) if |Q| = n− 2

11 · 2k−2 + (n− 7) if |Q| = n− 3

13 · 2k−2 if |Q| = n− 4 and n = 7.

But then

|G| = |Q|+ |Ai1|+ |Ap ∪Qb ∪ (X ′ \X∗r )|+ |(X ′′ ∪X ′′′) \X∗r |

≤



n+ n · 2k−2 + n · 2k−1 + 2(k − 2) if |Q| = n

(n− 1) + (n · 2k−2 + 2) + n · 2k−1 + 2(k − 2) if |Q| = n− 1

(n− 2) + [(21− 2n) · 2k−2 + (5n− 31)] + n · 2k−1 + 2(k − 2) if |Q| = n− 2

(n− 3) + [11 · 2k−2 + (n− 7)] + n · 2k−1 + 2(k − 2) if |Q| = n− 3 and n = 7

3 + [(2n− 1) · 2k−2 + (n− 7)] + n · 2k−1 + 2(k − 2) if |Q| = 3 and k ≥ 6.

In each case, we have |G| < n · 2k + 1, a contradiction. This proves that if |Ap| ≥ n and

|B| ≥ 3, then |BG| ≤ 2n. Similarly, one can prove that if |Ap| ≥ n and |R| ≥ 3, then

|RG| ≤ 2n. �

Claim 3.3.8 p ≤ 2n+ 1.

Proof. Suppose p ≥ 2n + 2. Then |B| + |R| = p − 1 ≥ 2n + 1. We claim that |Ap| ≤ n.

Suppose |Ap| ≥ n + 1. We may assume that |B| ≥ |R|. Then |BG| ≥ |B| ≥ n + 1. By
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Claim 3.3.7, |BG| ≤ 2n, and by Claim 3.1.1, G[Ap] has no blue edges and X∗b = ∅. Then

|X ′′ ∪X ′′′| ≤ 2(k − 1). If |RG| ≥ n + 1, then by Claim 3.1.1, neither G[RG] nor G[Ap] has

red edges and X∗r = ∅. By Claim 3.3.6, X ′′′ = ∅. Note that G[Ap ∪X ′] has neither red nor

blue edges, and G[RG ∪X ′′] has no red edges. Then by minimality of k,

|G| = |Ap ∪X ′|+ |BG|+ |RG ∪X ′′|+ |X ′′′| ≤ n · 2k−2 + 2n+ n · 2k−1 < n · 2k + 1

for all k ≥ 3, a contradiction. Thus, |RG| ≤ n. Then for all k ≥ 3,

|Ap ∪X ′| = |G| − |BG| − |RG| − |X ′′ ∪X ′′′| ≥ n · 2k + 1− 2n− n− 2(k − 1) > n · 2k−1 + 1.

Since G[Ap ∪ X ′] has no blue edges, by the choice of k, G[Ap ∪ X ′] has a monochromatic

C2n+1, a contradiction. This proves that |Ap| ≤ n, as claimed.

Note that by Claim 3.3.4, |Ap| ≥ 4. Additionally, Claims 3.3.5 and 3.3.3 give |Ap−2| ≤ 3 and

|Ap−8| ≤ 2 with |Ap−4n+12| ≤ 1, respectively. Therefore, k = 3, |G| = 8n + 1 and |X| ≤ 9.

Because n ∈ {6, 7},

|BG|+ |RG| = |G| − |Ap| − |X| ≥ (8n+ 1)− n− 9 = 7n− 8 > 6n− 3 ≥ GR3(C2n)

by Theorem 1.3.23 (i). Therefore, |X| ≤ 6, otherwise we find a monochromatic C2n+1.

Recalculating the above inequality with this fact, we obtain

|BG|+ |RG| = |G| − |Ap| − |X| ≥ (8n+ 1)− n− 6 = 7n− 5.

Thus at least one of |BG| ≥ 3n+ 1 or |RG| ≥ 3n+ 1, so we may assume |BG| ≥ 3n+ 1. We

next prove that 4 ≤ |Ap| ≤ n is impossible.
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Suppose first that 5 ≤ |Ap| ≤ n and let B∗ ⊆ BG be a minimal set such that G[BG \B∗] has

no blue edges. If |B∗| ≤ 2n− 10, then |BG \B∗| ≥ (3n+ 1)− (2n− 10) = n+ 11 ≥ 2n+ 4,

because n ∈ {6, 7}. Therefore, |B \ B∗| ≥ 3, and all edges of R[B \ B∗] are colored red, so

that by Lemma 3.1.2 we find a monochromatic C2n+1, a contradiction. Thus, |B∗| ≥ 2n− 9.

Define the family of graphs

H1 := {(2n− 9)K2, (2n− 11)K2 ∪ P3, (15− 2n)K2 ∪ 2P2n−11,

2Pn−5 ∪ P4, P2n−11 ∪ P4, (15− 2n)K2 ∪ P4n−23, P2n−8}

It follows that G[BG] contains a blue H ∈ H1, so that along with the vertices in Ap, we find

a blue C2n+1, a contradiction.

Therefore suppose |Ap| = 4. Then |BG|+ |RG| = |G| − |Ap| − |X| ≥ 8n+ 1− 4− 6 ≥ 8n− 9,

so that |BG| ≥ 4n − 4. Let B∗ be defined as above. If |B∗| ≤ 2n − 5, then |BG \ B∗| ≥

(4n − 4) − (2n − 5) = 2n + 1, and thus |B \ B∗| ≥ 3. Since R[B \ B∗] contains only red

edges, by Lemma 3.1.2, there is a red C2n+1, a contradiction. Thus, |B∗| ≥ 2n − 4. Define

the family of graphs

H2 := {(2n− 4)K2, (14− n)K2 ∪ P3n−17, (20− 2n)K2 ∪ 2P2n−11, 8K2 ∪ P2n−11}.

Let M denote a matching of size m ≥ 0. For any H ∈ H2, let H ′ := H ∪M . It follows

that G[BG] contains a blue H ′, where m is chosen to be as large as possible. Then removing

at most two vertices, say x, y ∈ V (H) from the longest blue subpaths in H, we obtain

M ′ := H ′ \ {x, y}, which is a matching of size m′ ≥ 6. Denote the edges in M ′ by uivi, for

all i ∈ [m′]. Put another way, this means the blue edges in G[BG \ {x, y}] induce a blue

matching. Let us define a new Gallai partition of G[BG \ {x, y}] in the following manner.

If |Aij | = |Ai` | = 1 for some pair j, ` ∈ [q], and if Aij is blue-complete to Ai` , then create
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the new part Ais := Aij ∪ Ai` , so that |Ais | = 2, where s ∈ [q′] and q′ ≤ q; otherwise,

define Aij to be the same. By construction, only red edges appear between any two parts

of this modified partition. We may assume Ai1 , . . . , Ait are all parts of the modified Gallai

partition of BG \ {x, y} containing blue edges. Because m′ ≥ 6, we see that
⋃t
j=1 |Aij | ≥ 12,

and because |Ap| = 4, we also have t ≥ 3. In particular, if
⋃t
j=1 |Aij | ≥ 2n + 1, we

are done by Lemma 3.1.2 because G
[⋃t

j=1Aij

]
−
⋃t
j=1E(Aij) is a complete multipartite

graph containing only red edges. Thus we may assume 12 ≤
∑t

j=1 |Aij | ≤ 2n. Note that

|BG \ {x, y}| −
∑t

j=1 |Aij | ≥ (4n − 4) − 2 − 2n = 2n − 6. Define r := 2n + 1 −
∑t

j=1 |Aij |,

and choose distinct vertices v1, . . . , vr ∈ BG \
(
{x, y} ∪

⋃t
j=1Aij

)
. Because v1, . . . , vr 6∈⋃t

j=1Aij , we see that {v1, . . . , vr} is red-complete to
⋃t
j=1Aij , again yielding a red C2n+1 by

Lemma 3.1.2, again forcing a contradiction. �

Claim 3.3.9 |Ap| ≥ n+ 1.

Proof. Suppose |Ap| ≤ n. Then p ≥ 9 because |G| ≥ 8n + 1. By Claim 3.3.8, we have

9 ≤ p ≤ 2n+1. We may assume that apap−1 is colored blue inR. Then |Ap∪Ap−1∪X∗b | ≤ 2n,

else |X∗b | ≥ 1 and so G[Ap ∪ Ap−1 ∪ X∗b ] has a blue C2n+1, a contradiction. It follows that

|Ap ∪Ap−1 ∪X| = |Ap ∪Ap−1 ∪X∗b |+ |X \X∗b | ≤ 2n+ 3(k − 1). By Claim 3.3.5 and Claim

3.3.3, |Ap−2| ≤ 3 and |Ap−8| ≤ 2. But then

|G| = |Ap ∪ Ap−1 ∪X|+
p−2∑
i=p−7

|Ai|+
p−8∑
i=1

|Ai|

≤ [2n+ 3(k − 1)] + 18 + 2(2n+ 1− 8)

= 6n+ 3k + 1

< n · 2k + 1,

for n ∈ {6, 7} and all k ≥ 3, a contradiction. �
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Claim 3.3.10 |Ap−2| ≤ n.

Proof. Suppose |Ap−2| ≥ n+1. Then n+1 ≤ |Ap−2| ≤ |Ap−1| ≤ |Ap| and soR[{ap−2, ap−1, ap}]

is not a monochromatic triangle inR (else G[Ap∪Ap−1∪Ap−2] has a a monochromatic C2n+1).

Let B1, B2, B3 be a permutation of Ap−2, Ap−1, Ap such that B2 is, say blue-complete, to

B1 ∪ B3 in G. Then B1 must be red-complete to B3 in G. By Claim 3.1.1, X∗r = ∅ and

X∗b = ∅. By Claim 3.3.6, X ′′′ = ∅. Let A := V (G) \ (B1 ∪ B2 ∪ B3 ∪ X ′ ∪ X ′′). By

Claim 3.1.1 again, G[B2] has no blue edges, and neither G[B1 ∪ X ′] nor G[B3 ∪ X ′′] has

red or blue edges. By minimality of k, |B1 ∪ X ′| ≤ n · 2k−2 and |B3 ∪ X ′′| ≤ n · 2k−2. It

follows that |A ∪ B2| = |G| − |B1 ∪ X ′| − |B3 ∪ X ′′| ≥ n · 2k−1 + 1. By minimality of k,

G[A ∪B2] must have blue edges. By Claim 3.1.1, no vertex in A is red-complete to B1 ∪B3

in G, and no vertex in A is blue-complete to B1 ∪ B2 or B2 ∪ B3 in G. This implies that

A must be red-complete to B2 in G. It follows that G[A] must contain a blue edge, say uv.

Let b1, . . . , bn−1 ∈ B1, bn, . . . , b2n−2 ∈ B2, and b2n−1 ∈ B3. If {u, v} is blue-complete to B1,

then we obtain a blue C2n+1 with vertices b1, u, v, b2, bn, b2n−1, bn+1, b3, bn+2, . . . , bn−1, b2n−2

in order, a contradiction. Thus {u, v} is not blue-complete to B1. Similarly, {u, v} is not

blue-complete to B3. Since no vertex in A is red-complete to B1∪B3, we may assume that u

is blue-complete to B1 and v is blue-complete to B3. But then we obtain a blue C2n+1 with

vertices b1, u, v, b2n−1, bn, b2, bn+1, . . . , bn−1, b2n−2 in order. �

Claim 3.3.11 |BG| ≥ 4 or |RG| ≥ 4.

Proof. Suppose |BG| ≤ 3 and |RG| ≤ 3. Since p ≥ 2, we see that BG 6= ∅ or RG 6= ∅. By

maximality of m (see condition (a) when choosing X1, X2, . . . , Xm), BG 6= ∅, RG 6= ∅, and

BG is neither red- nor blue-complete to RG in G. But then, since |BG| ≤ 3 and |RG| ≤ 3,

by maximality of m again (see condition (b) when choosing X1, X2, . . . , Xm), BG = ∅ and
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RG = ∅, a contradiction. �

Claim 3.3.12 2 ≤ p− s ≤ 8.

Proof. By Claim 3.3.3, |Ap−8| ≤ 2 and so p − s ≤ 8. Suppose p − s ≤ 1. Then p − s = 1

because p− s ≥ 1. Thus |Ai| ≤ 2 for all i ∈ [p− 1] by the choice of p and s. By Claim 3.3.8,

p ≤ 2n+1. Then |BG∪RG| ≤ 2(p−1) and so |B∗G∪R∗G| ≤ 2(p−1)+3+3 = 2(p+2) ≤ 4n+6.

We may assume that |B∗G| ≥ |R∗G|. If |R∗G| ≥ n, then |B∗G| ≥ n. By Claim 3.3.9 and Claim

3.1.1, G[Ap] has neither blue nor red edges. By minimality of k, |Ap| ≤ n · 2k−2. But then

|G| = |B∗G ∪R∗G|+ |Ap|+ |X \ (B∗G ∪R∗G)| ≤ (4n+ 6) + n · 2k−2 + 3(k − 2) < n · 2k + 1

for all k ≥ 3, a contradiction. Thus |R∗G| ≤ n − 1. We claim that |B∗G| ≤ 2n + 3. This is

trivially true if |B| ≤ n. If |B| ≥ n+ 1, then |BG| ≤ 2n by Claim 3.3.7. Thus |B∗G| ≤ 2n+ 3,

as claimed. If |B∗G| ≥ n− 1, then applying Claim 3.3.1 to B∗G and Ap implies that

|B∗G|+ |Ap| ≤


(n− 1) + (n · 2k−1 + 2), if |B∗G| = n− 1

(2n+ 3) + n · 2k−1, if |B∗G| ≥ n.

In either case, |B∗G|+ |Ap| ≤ (2n+ 3) + n · 2k−1. But then

|G| = |R∗G|+ |B∗G|+ |Ap|+ |X \(B∗G∪R∗G)| ≤ (n−1)+[(2n+3)+n ·2k−1]+3(k−2) < n ·2k+1,

for all k ≥ 3 and n ∈ {6, 7}, a contradiction. Thus |R∗G| ≤ |B∗G| ≤ n − 2. If |B∗G| = n − 2,

then by Claim 3.3.1, |Ap| ≤ (21− 2n) · 2k−1 + (5n− 31). But then

|G| = |R∗G|+|B∗G|+|Ap|+|X\(B∗G∪R∗G)| ≤ 2(n−2)+[(21−2n)·2k−1+(5n−31)]+3(k−2) < n·2k+1,
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for all k ≥ 3 and n ∈ {6, 7}, a contradiction. Thus |R∗G| ≤ |B∗G| ≤ n − 3. By Claim 3.3.11,

|R∗G| ≤ |B∗G| = |BG| = 4 and n = 7. By Claim 3.3.1, |Ap| ≤ 11 · 2k−1. But then

|G| = |R∗G|+ |B∗G|+ |Ap|+ |X \ (B∗G ∪R∗G)| ≤ 4 + 4 + 11 · 2k−1 + 3(k − 2) < 7 · 2k + 1,

for all k ≥ 3, a contradiction. �

By Claim 3.3.12, 2 ≤ p − s ≤ 8 and so |Ap−1| ≥ 3. We may now assume that apap−1 is

colored blue in R. Then ap−1 ∈ B and so Ap−1 ⊆ BG. Thus |B∗G| ≥ |BG| ≥ |Ap−1| ≥ 3.

Claim 3.3.13 |R∗G| ≤ 2n.

Proof. Suppose |R∗G| ≥ 2n + 1. By Claim 3.3.9, |Ap| ≥ n + 1. By Claim 3.1.1, G[R∗G] has

no red edges. Thus |R∗G| = |RG| and so X∗r = ∅. In particular, all the edges in R[R] are

colored blue. By Claim 3.3.7, |R| ≤ 2. By Claim 3.3.10, |Ap−2| ≤ n. Since Ap−1 ∩ RG = ∅

and |RG| ≥ 2n+ 1, we see that |R| ≥ 3, a contradiction. �

Claim 3.3.14 |Ap−1| ≤ n.

Proof. Suppose |Ap−1| ≥ n + 1. Then |BG| ≥ |Ap−1| ≥ n + 1. By Claim 3.1.1, neither

G[Ap] nor G[BG] has blue edges, and X∗b = ∅. Thus |X| ≤ 3(k− 1). We claim that X ′′′ = ∅.

Suppose X ′′′ 6= ∅. By Claim 3.3.6, |X∗i | ≥ 1 for every color i ∈ [k] other than blue, and

|X∗j | = 3 for some color j ∈ [k] other than blue. Then by Claim 3.3.1 applied to X∗j and

V (G) \X, |V (G) \X| ≤ (2n− 1) · 2k−1 + n− 7. Thus |X| ≥ 3k − 4, else,

|G| = |V (G) \X|+ |X| ≤ [(2n− 1) · 2k−1 + n− 7] + 3k − 5 < n · 2k + 1

for all k ≥ 3, a contradiction. We claim that k ≥ 4. Suppose k = 3. We may assume that the
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third color is green. Since |X| ≥ 3k− 4 = 5, we have |X∗r | ≥ 2 and |X∗g | ≥ 2. By Claim 3.1.1

applied to Ap and R∗G, |R∗G| ≤ n. Thus |Ap|+|BG| = |G|−|R∗G|−|X∗g | ≥ 8n+1−n−3 = 7n−2.

Thus either |Ap| ≥ 3n+2 or |BG| ≥ 3n+2. We may assume that |Ap| ≥ 3n+2. By Theorem

1.3.2, G[Ap] has either a red or a green C2n. Thus either G[Ap ∪ X∗r ] has a red C2n+1 or

G[Ap ∪X∗g ] has a green C2n+1, a contradiction, meaning that k ≥ 4, as claimed.

Since |X| ≥ 3k − 4, by Claim 3.3.2, we may assume that 2 ≤ |X∗g | ≤ 3, and |X∗i | = 3

for every color i ∈ [k] other than blue and green. When choosing X1, X2, . . . , Xm, let

q ∈ [m] be the smallest index such that for some color ` ∈ [k] other than blue, |X∗` ∩

(X1 ∪ · · · ∪ Xq)| = 3. By the choice of q, |X∗j ∩ (X1 ∪ · · · ∪ Xq−1)| ≤ 2 for all j ∈ [k]. By

property (b) when choosing X1, X2, . . . , Xm, there are possibly two colors q1, q2 ∈ [k] such

that q1 = `, |X∗q1 ∩ (X1 ∪ · · · ∪ Xq)| = 3 and |X∗q2 ∩ (X1 ∪ · · · ∪ Xq)| ≤ 3. Since X∗b = ∅,

k ≥ 4 and |X∗i | = 3 for every color i ∈ [k] other than blue and green, we see that q < m

and so |(X1 ∪ · · · ∪ Xq) \ (X∗q1 ∪ X
∗
q2

)| ≤ 2(k − 4). By Claim 3.3.1 applied to X∗q1 and

V (G) \ (X1 ∪ · · · ∪Xq), |V (G) \ (X1 ∪ · · · ∪Xq)| ≤ (2n− 1) · 2k−1 + (n− 7). But then

|G| = |(X1 ∪ · · · ∪Xq) \ (X∗q1 ∪X
∗
q2

)|+ |X∗q1 ∪X
∗
q2
|+ |V (G) \ (X1 ∪ · · · ∪Xq)|

≤ 2(k − 4) + 6 + [(2n− 1) · 2k−1 + (n− 7)]

< n · 2k + 1

for all k ≥ 4, a contradiction. This proves that X ′′′ = ∅, as claimed. Thus |X| ≤ 2(k − 1).

Since neither G[Ap] nor G[BG] has blue edges and X∗b = ∅, we see that neither G[Ap∪X ′] nor

G[BG∪X ′′] has blue edges. By the choice of k, |Ap∪X ′| ≤ n ·2k−1 and |BG∪X ′′| ≤ n ·2k−1.

We claim that G[RG] has blue edges.

Suppose G[RG] has no blue edges. Then G[Ap ∪ RG ∪X ′] has no blue edges. By the choice
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of k, |Ap ∪ RG ∪X ′| ≤ n · 2k−1. But then |BG ∪X ′′| = |G| − |Ap ∪ RG ∪X ′| ≥ n · 2k−1 + 1,

a contradiction. Thus G[RG] has blue edges, as claimed. Then |RG| ≥ 2. By Claim 3.3.13,

2 ≤ |RG| ≤ |R∗G| ≤ 2n. Suppose |R∗G| ≥ n − 1. We claim that |Ap ∪ (X ′ \ X∗r )| + |R∗G| ≤

n · 2k−2 + max{2n, k+ n− 1}. If |R∗G| ≥ n, then by Claim 3.1.1, G[Ap] has no red edges and

so G[Ap ∪ (X ′ \X∗r )] has no red edges. By the choice of k, |Ap ∪ (X ′ \X∗r )| ≤ n · 2k−2 and

so |Ap ∪ (X ′ \X∗r )|+ |R∗G| ≤ n · 2k−2 + 2n. If |R∗G| = n− 1, then applying Claim 3.3.1 to R∗G

and Ap, |Ap| ≤ n ·2k−2 + 2. Thus |Ap∪ (X ′ \X∗r )|+ |R∗G| ≤ (n ·2k−2 + 2) + (k−2) + (n−1) =

n · 2k−2 + k + n − 1, and so |Ap ∪ (X ′ \ X∗r )| + |R∗G| ≤ n · 2k−2 + max{2n, k + n − 1}, as

claimed. But then

|G| = |Ap∪(X ′\X∗r )|+|R∗G|+|BG∪(X ′′\X∗r )| ≤ (n·2k−2+max{2n, k+n−1})+n·2k−1 < n·2k+1,

for all k ≥ 3, a contradiction.

Next, suppose |R∗G| = n − 2. By applying Claim 3.3.1 to R∗G and Ap we see that |Ap| ≤

(21− 2n) · 2k−2 + (5n− 31). But then

|G| ≤ |Ap|+ |BG ∪X ′′|+ |R∗G|+ |X ′ \X∗r |

≤ [(21− 2n) · 2k−2 + (5n− 31)] + n · 2k−1 + (n− 2) + (k − 2)

< n · 2k + 1,

for all k ≥ 3, a contradiction. Thus |R∗G| ≤ n− 3. If |R∗G| = 4, then n = 7 and so by Claim

3.3.1 applied to R∗G and Ap, |Ap| ≤ 11 · 2k−2. However,

|G| ≤ |Ap|+ |BG ∪X ′′|+ |R∗G|+ |X ′ \R∗G|

≤ 11 · 2k−2 + 7 · 2k−1 + 4 + (k − 2)

< 7 · 2k + 1,
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for all k ≥ 3, a contradiction. Therefore, |R∗G| ≤ 3.

Let xy be a blue edge in G[RG]. This is possible because G[RG] has blue edges. We claim

that either x or y is red-complete to BG. Suppose there exist x′, y′ ∈ BG such that xx′ and

yy′ are colored blue. Then x′ = y′, else we obtain a blue C2n+1 by Claim 3.1.1 applied to

BG and Ap ∪ {x, y}. Thus x′ is the unique vertex in BG such that {x, y} is red-complete to

BG \ x′ in G and xx′, yx′ are colored blue. Then there exists i ∈ [s] such that Ai = {x′}.

Since G[BG] has no blue edges, we see that {x, y, x′} must be red-complete to BG \ x′ in G.

Now, if |R∗G| = 3, let R∗G = {x, y, z}. If either zx or zy is blue, then X∗r = ∅ and by the above

reasoning, z is also red-complete to BG \ x′. The same is true if z ∈ X∗r . By Claim 3.3.1,

|BG \ x′| ≤ (2n− 3) · 2k−2 + (n− 7) and |Ap| ≤ (2n− 1) · 2k−2 + (n− 7). But then

|G| = |Ap|+ |BG \ x′|+ |R∗G ∪ x′|+ |X|

≤ [(2n− 1) · 2k−2 + (n− 7)] + [(2n− 3) · 2k−2 + (n− 7)] + 4 + 2(k − 2)

< n · 2k + 1

for all k ≥ 3, a contradiction. Therefore, we may assume both zx and zy are red, but that

z 6∈ X∗r .

In what follows, we now assume 2 ≤ |RG| ≤ |R∗G| ≤ 3. By Claim 3.3.1 applied to {x, y, x′}

and BG \ x′, |BG \ x′| ≤ (2n− 1) · 2k−2 + n− 7. Note that G[Ap ∪X ′ ∪ {x, z}] has no blue

edges if |R∗G| = 3, and similarly G[Ap ∪X ′ ∪ {x}] if |RG| = 2. Then |X ′′| ≥ k − 2, else,

|G| = |Ap ∪X ′ ∪ {x, z}|+ |BG \ x′|+ |{y, x′}|+ |X ′′|

≤ n · 2k−1 + [(2n− 1) · 2k−2 + n− 7] + 2 + (k − 3)

< n · 2k + 1,
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for all k ≥ 3, a contradiction. Since 2 ≤ |RG| ≤ |R∗G| ≤ 3, we see that |X∗r | ≤ 1. It

follows that |X∗i | = 2 for all colors i ∈ [k] other than red and blue. Then neither G[Ap]

nor G[BG \ {x′}] has a monochromatic C2n−1 in any color i ∈ [k] other than red and blue.

Clearly, neither G[Ap] nor G[BG \ {x′}] has red C2n−1 because {x, y} is red-complete to

both Ap and BG \ {x′}. By Theorem 1.3.26 for n = 6 and Theorem 1.3.27 for n = 7,

|BG \x′| ≤ (n− 1) · 2k−1 and |Ap| ≤ (n− 1) · 2k−1 (note that although proved simultaneously

here, the proof for GRk(C13) is independent of the proof for GRk(C15), so we may use that

GRk(C13) = 6 · 2k + 1). But then

|G| = |Ap|+|BG\x′|+|R∗G∪{x′}|+|X\X∗r | ≤ (n−1)·2k−1+(n−1)·2k−1+4+2(k−2) < n·2k+1,

for all k ≥ 3, a contradiction. This proves that either x or y is red-complete to BG. We may

assume that x is red-complete to BG.

Suppose |RG| = 2. Then RG = {x, y} and |X∗r | ≤ 1. It follows that neither G[Ap ∪{y}∪X ′]

nor G[BG ∪ {x} ∪ X ′′] has blue edges. By minimality of k, |Ap ∪ {y} ∪ X ′| ≤ n · 2k−1

and |BG ∪ {x} ∪ X ′′| ≤ n · 2k−1. But then |G| = |Ap ∪ {y} ∪ X ′| + |BG ∪ {x} ∪ X ′′| ≤

n · 2k−1 + n · 2k−1 < n · 2k + 1 for all k ≥ 3, a contradiction. Thus |RG| = |R∗G| = 3. Then

X∗r = ∅ and G[Ap] has no red C2n. Clearly, |X ′| ≤ k − 2. We claim that |X ′| ≤ k − 3.

Suppose |X ′| = k − 2. Then |X∗i | ≥ 1 for all colors i ∈ [k] other than red and blue. Thus

G[Ap] has no monochromatic C2n in any colors i ∈ [k] other than blue. Since G[Ap] has no

blue edges, by Theorem 1.3.23, |Ap| ≤ (n− 1)(k − 1) + 3n− 1. Then k = 3, else,

|G| = |Ap|+ |BG∪X ′′|+ |RG|+ |X ′| ≤ [(n−1)(k−1)+3n−1]+n ·2k−1+3+(k−2) < n ·2k+1
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for all k ≥ 4. By Theorem 1.3.2, we see that |Ap| ≤ 3n− 2 if k = 3. But then

|G| = |Ap|+ |BG ∪X ′′|+ |RG|+ |X ′| ≤ (3n− 2) + 4n+ 3 + 1 = 7n+ 2 < 8n+ 1.

Thus |X ′′| ≤ |X ′| ≤ k − 3, as claimed. Since x is red-complete to BG, it follows that

G[BG ∪ {x} ∪X ′′] has no blue edges. By minimality of k, |BG ∪ {x} ∪X ′′| ≤ n · 2k−1. By

Claim 3.3.1 applied to RG and Ap, |Ap| ≤ (2n− 1) · 2k−2 + n− 7. But then

|G| = |Ap|+|BG∪{x}∪X ′′|+|RG\x|+|X ′| ≤ [(2n−1)·2k−2+n−7]+n·2k−1+2+(k−3) < n·2k+1

for all k ≥ 3, a contradiction. Hence, |Ap−1| ≤ n. �

By Claim 3.3.14, |Ap−2| ≤ |Ap−1| ≤ n. Then |BG| ≤ 2n, because this is trivially true when

|B| ≤ 2, and follows from Claim 3.3.7 when |B| ≥ 3. By Claim 3.3.13, |RG| ≤ |R∗G| ≤ 2n.

Then |BG|+ |RG| ≤ 4n. Finally, recall that |BG| ≥ |Ap−1| ≥ 3 because Ap−1 ⊆ BG. We first

consider the case when |R∗G| ≥ n. Since |Ap| ≥ n+1, by Claim 3.1.1, G[Ap] has no red edges.

We claim that |BG| ≥ n. Suppose 3 ≤ |BG| ≤ n− 1. Then |Ap| ≤ (2n− 1) · 2k−2 + n− 7 by

Claim 3.3.1 applied to BG and Ap. But then

|G| = |Ap|+|BG|+|R∗G|+|X \X∗r | ≤ [(2n−1)·2k−2+n−7]+(n−1)+2n+3(k−1) < n·2k+1,

for all k ≥ 3, a contradiction. Thus |BG| ≥ n, as claimed. By Claim 3.1.1, G[Ap] has no

blue edges and X∗b = ∅, so |X ′′′| ≤ |X ′′| ≤ k − 1. Since G[Ap ∪X ′] has neither red nor blue

edges, it follows that |Ap ∪X ′| ≤ n · 2k−2 by minimality of k. But then

|G| = |Ap ∪X ′|+ |X ′′ ∪X ′′′|+ (|BG|+ |RG|) ≤ n · 2k−2 + 2(k − 1) + 4n < n · 2k + 1,
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for all k ≥ 3, a contradiction.

It remains to consider the case when |R∗G| ≤ n− 1. If |B∗G| ≥ n− 1, by Claim 3.3.1 applied

to B∗G and Ap, we have

|Ap|+ |B∗G|+ |X \ (X∗r ∪X∗b )| ≤


(n · 2k−1 + 2) + (n− 1) + 3(k − 2), if |B∗G| = n− 1

n · 2k−1 + (2n+ 3) + 3(k − 2), if |B∗G| ≥ n.

Thus in either case, |Ap|+ |B∗G|+ |X \ (X∗r ∪X∗b )| ≤ n · 2k−1 + 2n+ 3k − 3. But then

|G| = (|Ap|+ |B∗G|+ |X \ (X∗r ∪X∗b )|) + |R∗G| ≤ (n · 2k−1 + 2n+ 3k− 3) + (n− 1) < n · 2k + 1,

for all k ≥ 3, a contradiction. Thus 3 ≤ |B∗G| ≤ n− 2. By Claim 3.3.11, either |B∗G| ≥ 4 or

|R∗G| ≥ 4. By applying Claim 3.3.1 to B∗G when |B∗G| ≥ 4 (or R∗G when |R∗G| ≥ 4) and Ap,

we have |Ap| ≤ (2n− 3) · 2k−1 + n− 7. Then |R∗G| ≥ n− 2, else

|G| = |Ap|+ |B∗G|+ |R∗G|+ |X \ (X∗r ∪X∗b )|

≤ [(2n− 3) · 2k−1 + (n− 7)] + (n− 2) + (n− 3) + 3(k − 2)

< n · 2k + 1,

for all k ≥ 3 and n ∈ {6, 7}, a contradiction. Thus n − 2 ≤ |R∗G| ≤ n − 1. By Claim 3.3.1

applied to R∗G and Ap, |Ap| ≤ (21− 2n) · 2k−1−q + (5n− 31). But then

|G| = |Ap|+ |B∗G|+ |R∗G|+ |X \ (X∗r ∪X∗b )|

≤ [(21− 2n) · 2k−1 + (5n− 31)] + (n− 2) + (n− 1) + 3(k − 2)

< n · 2k + 1,
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for all k ≥ 3 and n ∈ {6, 7}, a contradiction.

This completes the proof of Theorem 1.3.27. �
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CHAPTER 4: IMPROVED UPPER BOUND FOR GRk(C2n+1)

4.1 Proof of Theorem 1.3.28

Let n ≥ 8 be given as in the statement. For all k ≥ 1, define the function

f(k, n) :=


2n+ 1 if k = 1

4n+ 1 if k = 2

(n lnn) · 2k − (k + 1)n+ 1 if k ≥ 3.

Clearly, GR1(C2n+1) ≤ f(1, n) and by Theorem 1.3.2, GR(C2n+1, C2n+1) ≤ f(2, n). It suffices

to show that GRk(C2n+1) ≤ f(k, n) for all k ≥ 3. Let G := Kf(k,n) and let c : E(G) → [k]

be any Gallai-coloring of G. Suppose that G does not contain any monochromatic copy of

C2n+1 under c. Then c is bad. Among all complete graphs on f(k, n) vertices with a bad

Gallai k-coloring, we choose G with k minimum. Let X1, . . . , Xk be disjoint subsets of V (G)

such that for each i ∈ [k], Xi (possibly empty) is mc-complete in color i to V (G) \
⋃k
i=1Xi.

Choose X1, . . . , Xk so that
∑k

i=1 |Xi| ≤ (k+1)n is as large as possible. Denote X :=
⋃k
i=1Xi.

Then |X| ≤ (k + 1)n. We next prove several claims.

Claim 4.1.1 For all i ∈ [k], |Xi| ≤ n− 3.

Proof. Suppose |Xi| ≥ n − 2 for some color i ∈ [k]. We may assume that color i is blue.

We next show that |G \X| ≤ f(k− 1, n) + 3. Suppose |G \X| ≥ f(k− 1, n) + 4. Let A be a

minimal set of vertices of G \X such that G \ (X ∪A) has no blue edges. By minimality of

k, |G\ (X ∪A)| ≤ f(k−1, n)−1. Then |A| ≥ 5 and so G\X must contain blue edges. Thus

|Xi| ≤ n−1, otherwise for any blue edge uv in G\X, we obtain a blue C2n+1 by Lemma 3.1.1.
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Let t := n−|Xi|. Then t ∈ {1, 2} because n−2 ≤ |Xi| ≤ n−1. It follows that G\X has a blue

H ∈ {(2t+ 1)K2, (2t− 1)K2 ∪ P3, K2 ∪ 2Pt+1, tK2 ∪ Pt+2, P4 ∪ (t− 1)P3, K2 ∪ P2t+1, P2t+2}.

But then we obtain a blue C2n+1 using n − t vertices in Xi, all vertices and edges of H,

and n + t + 1 − |H| vertices in V (G) \ (X ∪ V (H)), a contradiction. This proves that

|G \X| ≤ f(k − 1, n) + 3. Thus

|G| = |X|+ |G \X| ≤ (k + 1)n+ f(k − 1, n) + 3

=


4n+ (4n+ 1) + 3, if k = 3

(k + 1)n+ [(n lnn) · 2k−1 − kn+ 1] + 3, if k ≥ 4

so that in any case, |G| < f(k, n) for all k ≥ 3 and n ≥ 8, a contradiction. �

Claim 4.1.2 Xi = ∅ for some i ∈ [k].

Proof. Suppose Xi 6= ∅ for every i ∈ [k]. By Claim 4.1.1, |X| ≤ k(n− 3). Then

|G \X| ≥ f(k, n)− k(n− 3) = (n lnn) · 2k − (k + 1)n+ 1− k(n− 3) ≥ (n− 1)k + 3n,

for all k ≥ 3 and n ≥ 8. By Theorem 1.3.23, G \X contains a monochromatic C2n, and thus

G contains a monochromatic C2n+1, since Xi 6= ∅ for all i ∈ [k], a contradiction. �

By Claims 4.1.1 and 4.1.2, |X| ≤ (k − 1)(n− 3). Consider now a Gallai partition of G \X

with parts A1, . . . , Ap, where p ≥ 2 and |A1| ≤ |A2| ≤ · · · ≤ |Ap|. By Theorem 1.3.2, p ≤ 4n.

Additionally, let us define the sets

B := {ai ∈ {a1, . . . , ap−1} | aiap is colored blue in R}

R := {aj ∈ {a1, . . . , ap−1} | ajap is colored red in R}
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This motivates us to define the related sets in G as BG :=
⋃
ai∈B Ai and RG :=

⋃
aj∈RAj.

Moreover, we employ the notation Xr to indicate Xi when i = red, and likewise Xb when

i = blue.

Claim 4.1.3 |BG ∪RG| ≥ 2n+ 1.

Proof. Suppose |BG∪RG| ≤ 2n. Then every vertex in BG∪RG is either red- or blue-complete

to Ap. We may assume that X1 is red-complete to V (G) \ X and X2 is blue-complete to

V (G)\X. Let X ′1 := X1∪RG, X ′2 := X2∪BG, and X ′i := Xi for all i ∈ {3, . . . , k}. But then

∣∣∣∣∣
k⋃
i=1

X ′i

∣∣∣∣∣ = |X ∪BG ∪RG| ≤ (k − 1)(n− 3) + 2n = (k + 1)n− 3(k − 1) < (k + 1)n,

contrary to the choice of X1, . . . , Xk. Thus |BG ∪RG| ≥ 2n+ 1. �

Claim 4.1.4 If |Ap| ≤ n, then |Ap−2| ≤ bn/2c.

Proof. Let q := bn/2c. Suppose |Ap| ≤ n but |Ap−2| ≥ q + 1. Then |G| − |Ap ∪

Ap−1 ∪ Ap−2| − |X| ≥ f(k, n) − 3n − (n − 3)(k − 1) ≥ 4n for all k ≥ 3 and n ≥ 8. Let

B1, B2, B3 be a permutation of Ap−2, Ap−1, Ap such that B2 is, say, blue-complete to

B1 ∪ B3 in G. Let b1, . . . , bq+1 ∈ B1, bq+2, . . . , b2q+2 ∈ B2, and b2q+3, . . . , b3q+3 ∈ B3. Let

A := V (G) \ (B1 ∪B2 ∪B3 ∪X), and define

B∗1 := {v ∈ A | v is blue-complete to B1 and red-complete to B3 in G}

B∗2 := {v ∈ A | v is blue-complete to B1 ∪B3 in G}

B∗3 := {v ∈ A | v is red-complete to B1 ∪B3 in G}

B∗4 := {v ∈ A | v is red-complete to B1 and blue-complete to B3 in G}.
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Then A = B∗1 ∪ B∗2 ∪ B∗3 ∪ B∗4 and so |A| = |G| − |Ap ∪ Ap−1 ∪ Ap−2| − |X| ≥ 3n. Note

that B∗1 , B
∗
2 , B

∗
3 , B

∗
4 are pairwise disjoint. Suppose first that B1 is red-complete to B3 in

G. By Lemma 3.1.1 applied to B∗3 and B1 ∪ B3, |B∗3 | ≤ n − 1. Thus |B∗1 | + |B∗2 | + |B∗4 | ≥

3n− (n−1) = 2n+1. By symmetry, we may assume that |B∗1 |+ |B∗2 | ≥ n+1. We claim that

G[B∗1 ∪B∗2 ∪B∗4 ] has no blue edges. Suppose not. Let uv be a blue edge in G[B∗1 ∪B∗2 ∪B∗4 ].

Since |B∗1 | + |B∗2 | ≥ n + 1, let x1, . . . , xq−1 ∈ B∗1 ∪ B∗2 be distinct vertices that are different

from u and v. If u, v ∈ B∗1 ∪B∗2 , then we find a blue C2n+1 with vertices


u, v, b1, bq+2, b2q+3, bq+3, . . . , b3q+3, b2q+2, b2, x1, b3, . . . , xq−2, bq, if n is even

u, v, b1, bq+2, b2q+3, bq+3, . . . , b3q+3, b2q+2, b2, x1, b3, . . . , xq−2, bq, xq−1, bq+1, if n is odd

a contradiction. Thus we may assume that v ∈ B∗4 . If u ∈ B∗1 ∪ B∗2 , then we find a blue

C2n+1 with vertices


u, v, b2q+3, bq+2, b2q+4, . . . , b3q+3, b2q+2, b1, x1, . . . , xq−2, bq−1, if n is even

u, v, b2q+3, bq+2, b2q+4, . . . , b3q+3, b2q+2, b1, x1, . . . , bq−1, xq−1, bq, if n is odd

a contradiction. Thus u, v ∈ B∗4 . But then we obtain a blue C2n+1 with vertices


u, v, b2q+3, bq+2, b1, x1, b2, . . . , xq−1, bq, bq+3, b2q+4, bq+4, . . . , b2q+1, b3q+2, if n is even

u, v, b2q+3, bq+2, b1, x1, b2, . . . , xq−1, bq, bq+3, b2q+4, bq+4, . . . , b2q+2, b3q+3, if n is odd

a contradiction. This proves that G[B∗1 ∪B∗2 ∪B∗4 ] contains no blue edges.

Since |B∗1 |+ |B∗2 |+ |B∗4 | ≥ 2n+ 1 and |Ap| ≤ n, by Lemma 3.1.2, G[B∗1 ∪B∗2 ∪B∗4 ] has a red

C2n+1, a contradiction. Thus B1 must be blue-complete to B3. Then |B1 ∪ B2 ∪ B3| ≤ 2n,

else we obtain a blue C2n+1 in G[B1 ∪ B2 ∪ B3]. By Lemma 3.1.1 applied to B2 ∪ B∗2 and
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B1 ∪B3, we see that |B∗2 | ≤ q− 1. If |B∗1 | ≥ q, let x1, . . . , xq ∈ B∗1 be distinct vertices. Then

we find a blue C2n+1 with vertices


b1, bq+2, b2q+3, bq+3, . . . , b3q+3, b2, x1, . . . , bq, xq−1, if n is even

b1, bq+2, b2q+3, bq+3, . . . , b3q+3, b2, x1, . . . , bq, xq−1, bq+1, xq, if n is odd

a contradiction. Thus |B∗1 | ≤ q − 1, and similarly, |B∗4 | ≤ q − 1. Therefore,

|B∗3 | = |G| − |X| − |B1 ∪B2 ∪B3| − |B∗1 | − |B∗2 | − |B∗4 |

≥ f(k, n)− (k − 1)(n− 3)− 2n− (q − 1)− (q − 1)− (q − 1)

≥ 2n+ 1.

By Lemma 3.1.1 applied to B∗3 and B1 ∪ B3, G[B∗3 ] contains no red edges. But then by

Lemma 3.1.2 and the fact that |Ap| ≤ n and |B∗3 | ≥ 2n+1, G[B∗3 ] must contain a blue C2n+1,

a contradiction. �

Claim 4.1.5 |Ap| ≥ n+ 1.

Proof. Suppose |Ap| ≤ n. Let ri := |{j ∈ [p] : |Aj| ≥ i}|. Then |G \ X| =
∑n

i=1 ri. Let
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q := |Ap−2|. By Lemma 3.1.3 and Claim 4.1.4,

|G| = |X|+ (|Ap| − q) + (|Ap−1| − q) +

q∑
i=1

ri

≤ (k − 1)(n− 3) + (2n− 2q) +

q∑
i=1

4
⌈n
i

⌉
≤ (k − 1)(n− 3) + (2n− 2q) +

q∑
i=1

4
(n
i

+ 1
)

= (k − 1)(n− 3) + 2n+ 2q + 4n

q∑
i=1

1

i

≤



(k − 1)(n− 3) + 2n+ 8 + 4n
4∑
i=1

1

i
, n ∈ {8, 9}, q =

⌊
n
2

⌋
= 4

(k − 1)(n− 3) + 2n+ 10 + 4n
5∑
i=1

1

i
, n = 10, q =

⌊
n
2

⌋
= 5

(k − 1)(n− 3) + 2n+ 2
⌊n

2

⌋
+ 4n

(
1 +

∫ bn2 c
1

1

x
dx

)
, n ≥ 11, q =

⌊
n
2

⌋
(k − 1)(n− 3) + 2n+ 2

(⌊n
2

⌋
− 1
)

+ 4n

(
1 +

∫ bn2 c−1
1

1

x
dx

)
, n ≥ 8, q ≤

⌊
n
2

⌋
− 1.

≤



(k − 1)(n− 3) + 2n+ 8 +
25n

3
, n ∈ {8, 9}, q =

⌊
n
2

⌋
= 4

(k − 1)(n− 3) + 2n+ 10 +
137n

15
, n = 10, q =

⌊
n
2

⌋
= 5

(k − 1)(n− 3) + 2n+ 2
⌊n

2

⌋
+ 4n

(
1 + ln

n

2

)
, n ≥ 11, q =

⌊
n
2

⌋
(k − 1)(n− 3) + 2n+ 2

(⌊n
2

⌋
− 1
)

+ 4n
[
1 + ln

(n
2
− 1
)]
, n ≥ 8, q ≤

⌊
n
2

⌋
− 1.

< f(k, n),

for all k ≥ 3 and n ≥ 8, a contradiction. �
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Claim 4.1.6 |BG| ≥ n+ 1 and |RG| ≥ n+ 1. Moreover, both Xr and Xb are empty, giving

|X| ≤ (k − 2)(n− 3).

Proof. We may assume that |BG| ≥ |RG|. By Claim 4.1.3, |BG| ≥ n + 1. Suppose for a

contradiction that |RG| ≤ n. Since |Ap| ≥ n+1 by Claim 4.1.5, then by Lemma 3.1.1 Xb = ∅

and neither G[Ap] nor G[BG] has blue edges. By minimality of k, |Ap| ≤ f(k− 1, n)− 1 and

|BG| ≤ f(k − 1, n)− 1. Note that |X| > (k − 2)(n− 3), otherwise

|G| = |Ap|+ |BG|+ |RG|+ |X| ≤ 2[f(k − 1, n)− 1] + n+ (k − 2)(n− 3) < f(k, n)

for all k ≥ 3 and n ≥ 8, a contradiction. By Claim 4.1.1, Xi 6= ∅ for all i ∈ [k] other

than blue. Thus neither G[Ap] nor G[BG] has monochromatic C2n. By Theorem 1.3.23,

|Ap| ≤ (k − 1)(n− 1) + 3n− 1 and |BG| ≤ (k − 1)(n− 1) + 3n− 1. But then

|G| = |Ap|+ |BG|+ |RG|+ |X| ≤ 2[(k − 1)(n− 1) + 3n− 1] + n+ (k − 1)(n− 3) < f(k, n)

for all k ≥ 3 and n ≥ 8, a contradiction. Thus, |BG| ≥ n + 1 and |RG| ≥ n + 1. Therefore,

Lemma 3.1.1 implies Xr = ∅, and thus we have |X| ≤ (k − 2)(n− 3). �

Claim 4.1.7 |Ap−2| ≤ n.

Proof. Suppose |Ap−2| ≥ n+1. Then n+1 ≤ |Ap−2| ≤ |Ap−1| ≤ |Ap| and soR[{ap−2, ap−1, ap}]

is not a monochromatic triangle in R (else G[Ap∪Ap−1∪Ap−2] has a monochromatic C2n+1).

Let B1, B2, B3 be a permutation of Ap−2, Ap−1, Ap such that B2 is, say blue-complete, to

B1∪B3 in G. Then B1 must be red-complete to B3 in G. By Claim 4.1.6, |X| ≤ (k−2)(n−3).

Let A := V (G) \ (B1 ∪ B2 ∪ B3 ∪X). By Claim 3.1.1 again, G[B2] has no blue edges, and
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neither G[B1] nor G[B3] has red or blue edges. By minimality of k, |B1| ≤ f(k − 2, n) − 1

and |B3| ≤ f(k − 2, n)− 1. Observe that

|A ∪B2| = |G| − |B1| − |B3| − |X|

= f(k, n)− 2[f(k − 2, n)− 1]− (k − 2)(n− 3)

=


(8n lnn− 4n+ 1)− 2(2n)− (n− 3), k = 3

(16n lnn− 5n+ 1)− 2(4n)− 2(n− 3), k = 4

[(n lnn) · 2k − (k + 1)n+ 1]− 2[(n lnn) · 2k−2 − (k − 1)n]− (k − 2)(n− 3), k ≥ 5.

In any case, we see that |A ∪ B2| ≥ f(k − 1, n). By minimality of k, G[A ∪ B2] must

have blue edges. By Claim 3.1.1, no vertex in A is red-complete to B1 ∪ B3 in G, and

no vertex in A is blue-complete to B1 ∪ B2 or B2 ∪ B3 in G. This implies that A must

be red-complete to B2 in G. It follows that G[A] must contain a blue edge, say uv. Let

b1, . . . , bn−1 ∈ B1, bn, . . . , b2n−2 ∈ B2, and b2n−1 ∈ B3. If {u, v} is blue-complete to B1,

then we obtain a blue C2n+1 with vertices b1, u, v, b2, bn, b2n−1, bn+1, b3, bn+2, . . . , bn−1, b2n−2

in order, a contradiction. Thus {u, v} is not blue-complete to B1. Similarly, {u, v} is not

blue-complete to B3. Since no vertex in A is red-complete to B1∪B3, we may assume that u

is blue-complete to B1 and v is blue-complete to B3. But then we obtain a blue C2n+1 with

vertices b1, u, v, b2n−1, bn, b2, bn+1, . . . , bn−1, b2n−2 in order. �

We may assume that Ap−1 ⊆ BG. By Claim 4.1.7, |Ap−2| ≤ n. By Lemma 3.1.2, |RG| ≤ 2n

and |BG \ Ap−1| ≤ 2n. By Claim 4.1.6, |X| ≤ (k − 2)(n − 3). By minimality of k, |Ap| ≤

100



f(k − 2, n)− 1. Then

|G| = |Ap|+ |Ap−1|+ |BG \ Ap−1|+ |RG|+ |X|

≤ 2[f(k − 2, n)− 1] + 2n+ 2n+ (k − 2)(n− 3)

=


2(2n) + 2n+ 2n+ (n− 3), k = 3

2(4n) + 2n+ 2n+ 2(n− 3), k = 4

2[(n lnn) · 2k−2 − (k − 1)n] + 2n+ 2n+ (k − 2)(n− 3), k ≥ 5.

In any case, we see that |G| < f(k, n) for all k ≥ 3 and n ≥ 8, a contradiction.

This completes the proof of Theorem 1.3.28. �
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CHAPTER 5: FUTURE WORK

In this chapter we discuss some further possible research areas related to the work in this

dissertation.

5.1 Hadwiger Numbers

Several different avenues of study come to mind branching off of the work done in this

dissertation. Certainly the most obvious project, but perhaps the least helpful, would entail

exploring other forbidden subgraphs when α(G) = 2 to verify HC. To date, only six forbidden

subgraphs H such that α(H) ≤ 2 and |H| ≥ 6 are known, which are W5, K1,5, K6, K7, H6,

and H7 (four of these were proven in our work). One could then complete the list of six

vertex graphs (of which there are more than 30), but this seems a tedious task which may

not be very instructive.

A more interesting question is the following. Let us consider a notably weaker conjecture

that HC, attributed independently to Woodall, and Duchet and Meyniel (see [84]).

Conjecture 5.1.1 For any graph G, h(G) ≥ |G|/α(G).

Coupled with Fact 1.2.5, HC implies Conjecture 5.1.1. Proving this conjecture when α(G) ≤

2 would of course establish HC by the equivalence given in Theorem 1.2.11. But what if

α(G) ≥ 3? This conjecture seems too difficult to prove in full generality, so one could

certainly attempt a similar approach of forbidding certain subgraphs when, say, α(G) = 3

in order to obtain partial evidence. The author tried in several ways to forbid C5 and prove

the conjecture holds for α(G) = 3. However, this situation is far more complicated because
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of the increased difficulty in forcing cliques of the desired order. For α(G) ≥ 3 we are also

without an analogue to Theorem 1.2.15 which was extremely helpful in our work. Even if

one manages to show Conjecture 5.1.1 holds for α(G) = 3 with certain forbidden subgraphs,

such a result is still not general enough to satisfy most researchers interested in this topic.

Recall that if HC is true, then there must exist a partition of V (G) into t independent sets for

any Kt+1 minor-free graph. This condition on the partition can be relaxed in the following

ways. First, we can instead look for a partition of V (G) into t (not necessarily independent)

sets V1, . . . , Vt, called a defective coloring, such that ∆(G[Vi]) ≤ d for all i ∈ [t] for some

d ≥ 0, called the defect. Showing that such a partition exists with defect zero is exactly HC.

Some promising results have been obtained to this effect (see the dynamic survey by Wood

[88]). An initial result of Edwards, Kang, Kim, Oum, and Seymour [32] in 2015 showed

that every Kt+1 minor-free graph G is t-colorable with defect O((t+ 1)2 log(t+ 1)). Van den

Heuvel and Wood [85] improved this result in 2018 to show that G is t-colorable with defect

t − 1. Recall that HC remains open for all t ≥ 6. If considering all such values of t is too

hard, an interesting problem would then be to consider the case when t = 6 and improve the

defect to be as close to zero as possible. A second relaxation of HC comes about by asking

the same question, but instead of bounding the maximum degree we restrict the order of the

components found in V1, . . . , Vt. If the maximum order of any monochromatic component is

c, then we say G is t-colorable with clustering c. Several results have been obtained in this

direction as well but we omit them here (see [88] for more information).

5.2 Ramsey Theory and Gallai-Ramsey Numbers

As mentioned in Chapter 1, our result concerning the Gallai-Ramsey numbers of odd cycles

was generalized shortly after we completed our project by [18], though our work was cited
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by that group. It would be interesting if one could find general bounds on GRk(Kn) for all

n ≥ 6 because this could potentially help to improve bounds on R(Kn, Kn) in those cases.

For the case when n = 5, it would be extremely helpful to settle this case independent of

R(K5, K5). We ideally would like the Gallai-Ramsey number to indicate something about

the classical Ramsey number because the latter is typically so difficult to compute. Having

a proof of GRk(K5) independent of R(K5, K5) would either provide more evidence for or

disprove Conjecture 1.3.18.

Because GRk(C2n+1) has been settled for all n, another natural area of exploration is the

classical three-color Ramsey number. Currently, R3(Cn) is known only for 3 ≤ n ≤ 7 (see the

survey by Radziszowski [69]). Conjecture 1.3.4 (the Triple Odd Cycle conjecture) mentioned

in Chapter 1 remains open and so verifying that R3(C9) = 33 would provide more evidence

of the conjecture. However, the proof that R3(C7) = 25 is long and difficult (see [37]), so a

new technique must be introduced in order to make further progress in this area.

Recent work has also been conducted on Gallai-colorings of hypergraphs (see [14]). This

seems an interesting area of study since even fewer Ramsey-type results are known for hy-

pergraphs. Therefore, one could study the odd cycle Gallai-Ramsey problem in the context

of 3-uniform hypergraphs to further generalize the results in this dissertation.
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