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ABSTRACT

Systems of coupled non-linear differential equations arise in science and engineering are inher-

ently nonlinear and difficult to find exact solutions. However, in the late nineties, Liao introduced

Optimal Homotopy Analysis Method (OHAM), and it allows us to construct accurate approxima-

tions to the systems of coupled nonlinear differential equations.

The drawback of OHAM is, we must first choose the proper auxiliary linear operator and then

solve the linear higher-order deformation equation by spending lots of CPU time. However, in the

latest innovation of Liao’s ” Method of Directly Defining inverse Mapping (MDDiM)” which he

introduced to solve a single nonlinear ordinary differential equation has great freedom to define the

inverse linear map directly. In this way, one can solve higher order deformation equations quickly,

and it is unnecessary to calculate an inverse linear operator.

Our primary goal is to extend MDDiM to solve systems of coupled nonlinear ordinary differen-

tial equations. In the first chapter, we will introduce MDDiM and briefly discuss the advantages

of MDDiM Over OHAM. In the second chapter, we will study a nonlinear coupled system using

OHAM. Next three chapters, we will apply MDDiM to coupled non-linear systems arise in me-

chanical engineering to study fluid flow and heat transfer. In chapter six we will apply this novel

method to study coupled non-linear systems in epidemiology to investigate how diseases spread

throughout time. In the last chapter, we will discuss our conclusions and will propose some future

work. Another main focus is to compare MDDiM with OHAM.
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CHAPTER 1: INTRODUCTION

Most of the real world problems are inherently non-linear and can be quantitatively model as sys-

tems of nonlinear differential equations. In the field of differential equations, solutions to most of

the linear problems are well-known and have been existence for quite a while. However, in many

cases, exact solutions to non-linear systems of differential equations not to be found, and used nu-

merical schemes to understand the non-linear phenomena. When exact or analytical solutions were

found, it is still difficult to generalize such results for other non-linear systems of differential equa-

tions. Due to such difficulties, we frequently seek mathematical techniques to obtain approximate

solutions to non-linear systems of differential equations.

In early nineteenth-century perturbation technique has been widely used to obtain analytical ap-

proximation of a nonlinear differential equation

A[u(x)] = f(x). (1.1)

If this nonlinear differential equation has a small physical parameter ǫ, and nonlinear operator A

contains a linear part L, such that A = L+N , then, assuming solution to the nonlinear differential

equation as

φ(x) = φ0(x) + φ1(x)ǫ+ φ2(x)ǫ
2 + ... (1.2)

and substituting it in to the (1.1), can transfer the original nonlinear problem into an infinite number

of linear sub problems

L[φ0(x)] = f(x), L[φk(x)] = Qk(φ0(x), φ1(x), ..., φk−1(x)). (1.3)
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In the perturbation method, we have no freedom to chose the linear operator. Even, subproblems

become singular if the order of the linear subproblems are less when compared to the original

problem. Further, the perturbation technique fails if there is no small physical parameter ǫ. To

overcome those issues, in 1992 Liao introduce Homotopy Analysis Method using a fundamental

concept in algebraic topology ( [1]-[2] ).

In topology, homotopy between two continuous functions f and g from a topological space X to a

topological space Y is defined to be a continuous function H : X × [0, 1] → Y from the product

of the space X with the unit interval [0, 1] to Y such that, if x ∈ X then H(x, 0) = f(x) and

H(x, 1) = g(x).

Let us consider the nonlinear ordinary differential equation

N [u(x)] = 0, x ∈ Ω (1.4)

subjecto to µ boundary conditions

Bi[u(x)] = βi, at x = αi, i = 1, 2, ..., µ, (1.5)

where u(x) is an unknown function, x is an independent variable, Ω is an interval of x, N denote

nonlinear operator, Bi denote linear operator, 1 ≤ µ ≤ n are positive integers, αi ∈ Ω, and βi

(1 ≤ µ ≤ n) are constants, respectively. We construct one-parameter family of equations with the

homotopy parameter q ∈ [0, 1] in order to obtain a continuous deformation, φ(x; q), using the idea
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of homotopy as follows

(1− q)L[φ(x, q)− u0(x)] = qc0N [φ(x, q)], q ∈ [0, 1], (1.6)

subject to conditions

(1− q)Bi[φ(x, q)− u0(x)] = qci{Bi(φ(x, q)− βi}, at x = αi. (1.7)

It is clear that φ(x, 0) = u0(x) when q = 0 and φ(x, 1) = u(x) when q = 1. So, φ(x, q) equation

continuously deform from u0(x) to u(x) when embedded parameter q varing from 0 to 1.

Assuming φ(x, q) analytic at q = 0, define homotopy-maclauriin series for the zeroth-deformation

as

φ(x, q) = u0(x) +
+∞∑

k=1

uk(x)q
k, (1.8)

where

uk(x) =
1

n!

∂k

∂qk
φ(x; q)

∣∣∣∣
q=0

= Dkφ(x, q), (1.9)

Here Dk is known as kth-order homotopy derivative.

Then applying Homotopy derivative Dk in to zeroth-order deformation equations (1.6)-(1.7), we

can obtain higher order deformation equation in the frame of OHAM

L[uk − χkuk−1] = c0δk−1(x), for k ≥ 1, (1.10)
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subject to boundary conditions

Bi[uk − χkuk−1] = ci∆i,k(x), at x = αi, for k ≥ 1, i = 1, 2, ..., µ. (1.11)

where

δk(x) = Dk{N [φ(x; q)]} (1.12)

∆i,k(x) = Dk{Bi[φ(x; q)]− βi} = Bi[uk(x)]− (1− χk+1)βi. (1.13)

Here

χk =





0, k ≤ 1,

1, k > 1.

(1.14)

Now solving linear subproblems (1.10)-(1.13), we obtain the approximate series solution to the

original nonlinear problem (1.4) in the frame of OHAM. Due to the way we define the zeroth order

deformation equation we have considerable freedom to choose a linear operator. However, still

finding the inverse operator to solve linear sub-problems will take lots of CPU time. To overcome

this obstacle, Liao introduced the Method of Directly Defining the inverse Mapping (see [3]).

Here, the freedom of choosing the linear operator in OHAM leads Liao to define the inverse linear

mapping J directly in MDDiM.

Let S∞ = {φ1(x), φ2(x), ...} be a set of infinite number of base functions that are linearly inde-

pendent and define the space of functions that is their linear combinations to be V =
∑+∞

k=0 φk(x).

This is the space where approximate solution comes from. Next define the space for the ini-

tial guess V ∗ =
∑µ

k=0 φk(x), taking linear combination of first µ functions of the set S∞, and

V̂ =
∑+∞

k=µ+1 φk(x) so that V = V ∗ ∪ V̂ . Similarly, letting SR = {ψ1(x), ψ2(x), ...}, define

U =
∑+∞

k=0 ψk(x) so that u(x) ∈ U . Finaly, directly defining the inverse map J : U → V we
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obtain following higher order deformation equations for the Method of Directly defining inverse

Mapping

uk(x) = χkuk−1(x) + c0J [δk−1(x)] +

µ∑

n=1

ak,nφn(x). (1.15)

For the error analysis we first consider the n-term series solution

û(x) = u0(x) +
n−1∑

k=1

uk(x) (1.16)

by adding the first n terms of the series solution. If n-term solution is exact solution to the original

nonlinear problem (1.4), then N [û(x)] must be equal to zero. Otherwise N [û(x)] 6= 0 and it gives

residual error. This leads to define total error function E[h] by taking square of the L2-norm of the

residual error function

E[h] =

∫

Ω

(N [û])2(x)dx. (1.17)

Now total error function is only depend on converge control parameter h. Finally we can obtain

n-term OHAM solution by substituting value of h which minimize the total error.

The goal of this dissertation is to extend MDDiM to solve systems of nonlinear ordinary differ-

ential equations, which has been previously used to solve a single nonlinear ordinary differential

equation. Also, we demonstrate the advantage of directly defining the inverse map in MDDiM

compare to the auxiliary linear operator in OHAM.

In Chapter 2, the influence of the magnetic field on flow and heat transfer of an electrically con-

ducting fluid at an impermeable elastic sheet is analyzed. The governing nonlinear differential

equations are solved analytically via OHAM.
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In chapter 3, convective heat transfer at a porous flat plate is studied. Approximate series solutions

were obtained for a second order non linear coupled system of two differential equations by ex-

tending Liao’s Method of Directly Defining the inverse Mapping Method.

In chapter 4, approximate series solutions to a fourth order coupled nonlinear system of two non

linear differential equations in combine free and forced convection flow of a second-grade fluid

over a stretching sheet were obtained by using extended version of MDDiM.

In chapter 5, we further extended MDDiM to study a third order non linear system of three ordinary

differential equations arise in a steady, incompressible laminar flow of a nanofluid at a vertical wall.

In chapter 6, MDDiM used to solve the SIR and SIS models in epidemiology and this is the first

time some one used MDDiM to solve problems arise in epidemiology. This analytical approach

is more general and can be used to analyze complicated models arise in mathematical biology,

physics and engineering.
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CHAPTER 2: MIXED CONVECTIVE BOUNDARY LAYER MHD FLOW

ALONG A VERTICAL ELASTIC SHEET

In this chapter, the influence of magnetic field on flow and heat transfer of an electrically conduct-

ing fluid at an impermeable elastic sheet is analyzed. The governing nonlinear differential equa-

tions are solved analytically via homotopy analysis method. To validate the approximate-analytical

method, comparisons are made with the available results in the literature for some special cases

and the results are found to be in good agreement. These results were considered in Vajravelu et

al. [4].

2.1 Background

In recent years, the study of flow and heat transfer characteristics of a Newtonian fluid past a

stretching sheet has attracted the attention of numerous researchers due to its extensive industrial

and technological applications. In order to describe the motion of a viscous fluid adjacent to the

surface, boundary layer equations are used. Blasius [5] initiated the study of velocity boundary

layer on a flat surface. Several researchers (Pohlhausen [6], Howarth [7], Abu-Sitta [8], Wang [9]

and Cortell [10]) extended the Blasius flow problem by considering several geometrical and phys-

ical aspects. Sakiadis [11] considered different boundary conditions than those in Ref. [1] and

obtained similar equations as derived by Blasius. Crane [12] introduced the concept of a stretch-

ing sheet and extended the work of Sakiadis [11]. Furthermore, many researchers worked on

the stretching sheet concept by considering heat and mass transfer with various geometric shapes

(Chen and Char [13], Ali [14], Aman et al. [15], Abbas et al. [16], Rashidi et al. [17], [18],

Garoosi et al. [19], and Bég et al. [20]).
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All the above researchers restricted their analyses to flowand heat transfer in the absence of a mag-

netic field. There are many industrial and technological applications of MHD flow and heat trans-

fer, such as petroleum industries, plasma studies, and geothermal energy extractions. In view of

these applications, Chakrabarti and Gupta [21] analyzed the flow and heat transfer over a stretch-

ing sheet in the presence of a magnetic field. Vajravelu et al. [22] obtained exact solutions for

the hydrodynamic and hydromagnetic unsteady flow of a viscous fluid with free stream velocity

[u∞ = f(t)]. Furthermore, Andersson [23] extended the work in Ref. [21] to power law fluid.

Seini and Makinde [24] used an exponentially stretching surface to analyze MHD boundary layer

flow with radiation andchemical reaction. Recently, Rashidi et al. [25] employed an optimal ho-

motopy analysis method (OHAM) and analyzed convective flow of a non-Newtonian fluid over a

linearly stretching sheet in the presence of a magnetic field. However, all these studies are centered

on a linearly or nonlinear stretching sheet. Fang et al. [26] examined the fluid flow using a special

form of non-linear stretching, uw(x) = U0(x + b)m at y = A(x + b)(1−m)/2, for different values

of m (that is, a stretching sheet with variable thickness). Lee [27] studied the boundary layer flow

over a slender body with variable thickness (the flow passing a needle with variable diameters).

Ishak et al. [28] examined the boundary layer flow over a horizontal thin needle and Ahmed et

al. [29] analyzed mixed convection flow over a vertically moving thin needle. Recently, Khader

and Megahed [30], Vajravelu et al. [31] and Prasad et al. [32] explained the effects of various

physical parameters on the flow and heat transfer by considering a special form of stretching sheet

and examined the effects of velocity power index m and variable thickness α on the flow pattern.

Motivated by the above studies, the problem studied here is the mixed convective flow and heat

transfer with variable thickness in the presence of a magnetic field. By using a suitable similar-

ity transformation, the governing nonlinear system of coupled partial equations has been reduced

to a system of coupled nonlinear ordinary differential equations. An efficient homotopy analysis
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method (HAM) is employed to solve the system of equations. The obtained results are analyzed

graphically. The analysis revels that the fluid flow is appreciably influenced by the physical param-

eters. It is expected that the results obtained will not only provide useful information for industrial

applications but also complement the existing literature.

2.2 Mathematical Formulation

Consider a steady, mixed convection boundary layer flow of a viscous incompressible fluid over a

continuously stretching sheet of variable thickness, subject to a transverse magnetic field B(x). The

sheet is drawn through a slit located at the origin, where the x-axis runs along the stretching surface,

in the direction of the sheet motion, and the y-axis is perpendicular to it. The flow configuration is

illustrated in Fig.2.1.

(i). The wall is impermeable [see for details Liao [33],[34], (vw = 0)].

(ii). The sheet is stretched with a velocity Uw(x) = U0(x + b)m where U0 is constant, b is a

physical parameter related to stretching sheet and m is the velocity exponent parameter.

(iii). The sheet is not flat and its thickness is defined by y = A(x+b)(1−m)/2 , where the coefficient

A is small so that the sheet is sufficiently thin, to avoid pressure gradient along the sheet

(∂p/∂x = 0).

(iv). The magnetic Reynolds number is assumed to be small so that the induced magnetic field is

negligible.

(v). The viscous dissipation and Ohmic heating terms are not included in the energy equation

since they are generally small.
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Figure 2.1: Schematic of the stretching sheet with variable thickness.

Under the usual boundary layer assumptions, the governing equations for mass, momentum and

energy (see Fang et al. [26], and Ahmed et al. [29] for details) are

∂u

∂x
+
∂v

∂y
= 0, (2.1)

u
∂u

∂x
+ v

∂v

∂y
= ν

∂2u

∂y2
− σB2

0

ρ
u+ gβ(T − T∞), (2.2)

u
∂T

∂x
+ v

∂T

∂y
= α0

∂2T

∂y2
, (2.3)
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where u, v are respectively the x, y-components of the fluid velocity; σ is the electrical conductiv-

ity; ρ is the density of the fluid and B2
0(x) is the strength of the magnetic field. The last term in

right hand side of the Eq.(2.2) represents the influence of thermal buoyancy force on the flow field,

with ”+” and ”−” signs refer to the buoyancy assisting and buoyancy opposing flows respectively.

Figure 2.1 provides the necessary information of such a flow field for a stretching vertical heated

sheet. For the assisting flow, the x-axis points upwards in the direction of the stretching hot surface

such that the stretching induced flow and the thermal buoyant flow assist each other. For the oppos-

ing flow, the x-axis points vertically downwards in the direction of the stretching hot surface but in

this case the stretching induced flow and the thermal buoyant flow oppose each other. The reverse

trend occurs if the sheet is cooled below the ambient temperature. Here g is the acceleration due

to gravity, β is the thermal expansion coefficient, T is the temperature of the fluid, and α0 is the

thermal diffusivity.We consider B2
0(x) = B0

2(1 + x)1−m (for details see Prasad et al. [32]). The

corresponding boundary conditions are

u(x, y) = U0(x+ b)m, v(x, y) = 0, T (x, y) = Tw = D
(x+ b

l

)2m−1

at y = A(x+ b)
1−m

2 ,

u(x, y) → 0, T → T∞ as y → ∞,

(2.4)

where Tw is the temperature at the surface, T∞ is the free stream temperature, D is the thermal

slip factor, and l is the characteristic length.We look for similarity solutions to Eqs. (2.1), (2.2) and

(2.3), subject to the boundary conditions (2.4), of the form

η = y

√
m+ 1

2

U0(x+ b)m−1

v
, (2.5)
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ψ(x, y) = F (η)

√
2

m+ 1
vU0(x+ b)m+1, (2.6)

Θ(η) =
T − T∞
Tw − T∞

, (2.7)

where η is the dimensionless similarity variable, ψ(x, y) is the dimensionless stream function,

and Θ(η) is the dimensionless temperature distribution. The stream function ψ(x, y) identically

satisfies the continuity Eq. (2.1), with u = ∂ψ
∂y

and v = −∂ψ
∂x

. From Eqs. (2.6) and (2.7), the

velocity components can be written as

u = Uwf
′(η) and v = −

√
ν
m+ 1

2
U0(x+ b)m−1

[
ηf ′(η)

(
m− 1

m+ 1

)
+ f(η)

]
, (2.8)

where v = µ
ρ

is the kinematic viscosity and µ is the dynamic viscosity. In the present work, it is

assumed m > −1 for the validity of the similarity transformations. Substituting Eqs. (2.5), (2.6)

and (2.7) into Eqs. (2.1), (2.2) and (2.3), the non-dimensional governing equations become

F ′′′ + FF ′′ −
[ 2m

m+ 1

]
(F ′)2 −MnF ′ + λΘ = 0, (2.9)

Θ′′ + Pr
[
FΘ′ − 2(2m− 1)

m+ 1
F ′Θ

]
= 0, (2.10)

subject to the boundary conditions

F (α) = α
(1−m

1 +m

)
, F ′(α) = 1, F ′(∞) = 0, Θ(α) = 1, and Θ(∞) = 0, (2.11)

where λ = Grx
Re2x

is the mixed convection parameter,Grx =
gβ(Tw−T∞)x3

γ2
is the local Grashof number,
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Rex = Uwx
γ

is the local Reynolds number, and Pr = µCp

k∞
is the Prandlt number. It should be

mentioned that λ > 0 corresponds to the case of assisted flow, whereas λ < 0 corresponds to

opposing flow, and λ = 0 corresponds to forced convection flow. Here, α = A
√

m+1
2

U0

ν
is a

parameter related to the thickness of the wall (referred to as the wall thickness parameter) and

η = α = A
√

m+1
2

U0

ν
indicates the plate surface.

In order to facilitate the computation, we define F (η) = F (η−α) = f(ξ) and Θ(η) = Θ(η−α) =

θ(ξ). The similarity Eqs. (2.9) - (2.10) and associated boundary conditions (2.11) become

f ′′′ + ff ′′ −
[ 2m

m+ 1

]
(f ′)2 −Mnf ′ + λθ = 0, (2.12)

θ′′ + Pr
[
fθ′ − 2(2m− 1)

m+ 1
f ′θ
]
= 0, (2.13)

f(0) = α
(1−m

1 +m

)
, f ′(0) = 1, f ′(∞) = 0, θ(0) = 1, and θ(∞) = 0, (2.14)

where the prime denotes differentiation with respect to ξ. The non-dimensional magnetic parame-

ter, Prandtl number, and mixed convection parameter are defined as follows:

Mn =
σB2

0

ρU0

, P r =
ν

α0

, and λ =
gβD

l2m−1U2
0

. (2.15)

The physical quantities of interest are the skin friction coefficient Cfx and the local Nusselt number

Nux, which are defined by

Cfx =
2τwx
ρU2

w

and Nux =
(x+ b)qw

k
(
Tw − T∞

) . (2.16)
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Here, τwx and qw are the wall skin friction and heat flux, respectively

τwx = µ

(
∂u

∂y

)

y=A(x+b)
1−m

2

and qw = −k
(
∂T

∂y

)

y=A(x+b)
1−m

2

, (2.17)

where k is the thermal conductivity of the fluid. The non-dimensional local skin friction coefficient

and non-dimensional local Nusselt number are

(Re)
1

2Cfx

√
2

m+ 1
= f ′′(0) and (Re)−

1

2Nux

√
2

m+ 1
= −θ′(0), (2.18)

where Re = Uw(x+b)
ν

is the local Reynolds number.

2.3 Homotopy Analysis Method

The governing equations are highly nonlinear, coupled ODEs with variable coefficients. We use

the homotopy analysis method (HAM) to obtain appropriate analytic solutions to Eqs. (2.12)-

(2.13) with associated boundary conditions (2.14). The HAM is based on the homotopy concept

from topology. In this regard, a nonlinear problem is transformed into an infinite number of linear

sub-problems. In the frame of the HAM, we have great freedom to choose the auxiliary linear

operators and initial approximations. This is advantageous over other iterative techniques, where

convergence is largely tied to good initial approximation of the solution. The HAM differs from

other analytic approximation methods in that it does not depend on small or large physical param-

eters. This is achieved by inclusion of an artificial “convergence-control parameter,” which conve-

niently guarantees convergence of the solution series. The HAM has been successfully applied to

a wide variety of nonlinear problems(see for details Van Gorder and Vajravelu [35], Mallory and

Van Gorder [36], Mallory and Van Gorder [37], Li et al. [38], Van Gorder et al. [39]).
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For the considered problem, we choose the auxiliary linear operators Lf and Lθ as

Lf =
∂3

∂ξ3
−Mn

∂

∂ξ
, (2.19)

Lθ =
∂2

∂ξ2
− 1, (2.20)

and assume the following initial approximations

f0(ξ) =
1√
Mn

[
1 + α

(1−m

1 +m

)√
Mn− e−

√
Mnξ
]
, (2.21)

θ0(ξ) = e−ξ, (2.22)

which satisfy the boundary conditions (2.14). The so-called zeroth-order deformation equations

are given by

(1− q)Lf [f̂(ξ; q)− f0(ξ)] + q~fNf [f̂(ξ; q), θ̂(ξ; q)] = 0, (2.23)

(1− q)Lθ[θ̂(ξ; q)− θ0(ξ)] + q~θNθ[f̂(ξ; q), θ̂(ξ; q)] = 0. (2.24)

Here, q ∈ [0, 1] is an embedding parameter, ~f 6= 0 and ~θ 6= 0 are the convergence-control

parameters, and the nonlinear differential operators Nf and Nθ are defined from Eqs. (2.12)-(2.13)

as

Nf [f̂ , θ̂] =
∂3f̂

∂ξ3
+ f̂

∂2f̂

∂ξ2
−
[ 2m

m+ 1

](∂f̂
∂ξ

)2
−Mn

∂f̂

∂ξ
+ λθ̂, (2.25)

Nθ[f̂ , θ̂] =
∂2θ̂

∂ξ2
+ Pr

[
f̂
∂θ̂

∂ξ
− 2(2m− 1)

m+ 1

∂f̂

∂ξ
θ̂
]
. (2.26)

It can be seen that when q = 0, we have f̂(ξ; 0) = f0(ξ) and θ̂(ξ; 0) = θ0(ξ), while when q = 1
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we have f̂(ξ; 1) = f(ξ) and θ̂(ξ; 1) = θ(ξ). By defining

fn(ξ) =
1

n!

dnf(ξ; q)

dξn

∣∣∣∣
q=0

and θn(ξ) =
1

n!

dnf(ξ; q)

dξn

∣∣∣∣
q=0

, (2.27)

we may expand f̂(ξ; q) and θ̂(ξ; q) about q, by means of Taylor series expansion to obtain

f̂(ξ; q) = f0(ξ) +
∞∑

n=1

fn(ξ)q
n, and θ̂(ξ; q) = θ0(ξ) +

∞∑

n=1

θn(ξ)q
n. (2.28)

According to the method, if the series 2.28 converges at q = 1, then the HAM solution is given by

f(ξ) = f0(ξ) +
∞∑

n=1

fn(ξ) and θ(ξ) = θ0(ξ) +
∞∑

n=1

θn(ξ). (2.29)

Thus, as q varies from 0 to 1, f̂(ξ; q) and θ̂(ξ; q) vary continuously from the initial approximations,

f0(ξ) and θ0(ξ), to the solution of interest, f(ξ) and θ(ξ).

To obtain fn(ξ) and θn(ξ), we recursively solve the so-called nth-order deformation equations

Lf [fn(ξ)− χnfn−1(ξ)] = ~fRf
n, (2.30)

Lθ[θn(ξ)− χnθn−1(ξ)] = ~θRθ
n, (2.31)

with boundary conditions

fn(0) = 0, f ′
n(0) = 0, f ′

n(∞) = 0, θn(0) = 0, θn(∞) = 0, (2.32)

16



where

Rf
n =

1

(n− 1)!

∂n−1Nf [f̂(ξ; q), θ̂(ξ; q)]

∂qn−1

∣∣∣∣
q=0

, (2.33)

Rθ
n =

1

(n− 1)!

∂n−1Nθ[f̂(ξ; q), θ̂(ξ; q)]

∂qn−1

∣∣∣∣
q=0

, (2.34)

and

χn =





0, n ≤ 1,

1, n > 1.

(2.35)

Finally, kth-order approximate solution can be obtained by the partial sum

fk(ξ) = f0(ξ) +
k∑

n=1

fn(ξ) and θk(ξ) = θ0(ξ) +
k∑

n=1

θn(ξ). (2.36)

To compute the optimal value of the convergence-control parameters ~f and ~θ, we evaluate the

error and minimize over ~f and ~θ. For the kth-order approximation, the exact squared residual

error is given by

ˆEfk (~f , ~θ) =
∞∫

0

(
Nf

[
fk(ξ), θk(ξ)

])2

dξ, (2.37)

Êθk(~f , ~θ) =
∞∫

0

(
Nθ

[
fk(ξ), θk(ξ)

])2

dξ. (2.38)

In practice, it is often too CPU intensive to evaluate
ˆEfk and Êθk , even for relatively low orders of

approximation. To greatly decrease the computation time, we instead calculate the average squared

17



Figure 2.2: Residual error vs. order of approximation.

residual error,

Efk (~f , ~θ) =
1

N + 1

N∑

i=0

(
Nf

[ k∑

j=0

fj(ξi),
k∑

j=0

θj(ξi)

])2

, (2.39)

Eθk(~f , ~θ) =
1

N + 1

N∑

i=0

(
Nθ

[ k∑

j=0

fj(ξi),
k∑

j=0

θj(ξi)

])2

, (2.40)

where ξi = iδξ, and N is an integer. For the kth-order approximation, the optimal values of ~f

and ~θ are determined by the minimizing the total error, defined by E tk(~f , ~θ) = Efk (~f , ~θ) +

Eθk(~f , ~θ). For computational purposes, we utilized the Mathematica package BVPH 2.0, devel-

oped by Liao. For more details, please refer to (http://numericaltank.sjtu.edu.cn/BVPH.htm).
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2.4 Error Analysis

Here, we illustrate the accuracy of the method used in the present study. Without loss of generality,

consider the case where α = 0.1, λ = 0.1, Mn = 1.0, m = 1.0, and Pr = 1.0. Using the afore-

mentioned technique, we obtain the 40th-order approximate solution. The corresponding optimal

convergence-control parameters are found to be ~f = −0.6139 and ~θ = −1.2963 with a total

error of E t40 = 9.9× 10−21. It is found that the residual error of each governing equation decreases

as a function of order of approximation, as shown in Fig. 2.2. Moreover, errors of Ef2 = 1.3×10−4

and Eθ2 = 8.0× 10−4 can be obtained at only the 2nd-order approximation.

To validate the results obtained in the present work, we compare −f ′′(0) with the numerical so-

lution reported by Fang et al. [26], Khader and Megahed [30] for a special case where the mixed

convection parameter and magnetic parameters have been neglected. The results, shown in Table

2.1, are in very good agreement. The effects of various pertinent parameters on the horizontal

velocity field and temperature field are illustrated graphically in Figs. 2.3-2.13. It can be seen

that both f ′(ξ) and θ(ξ) decrease monotonically and tend to zero asymptotically as the distance

from the boundary increases. The effects of several parameters on the velocity and temperature

gradients at the surface are shown in Table 2.2.

2.5 Results and Error Analysis

Figures 2.3-2.7 elucidate the effects of various pertinent parameters on the horizontal velocity.

As m increases, f ′(ξ) increases and in turn velocity boundary layer thickness increases. This

phenomenon is true even in the case of α and λ. Physically λ > 0 means heating of the fluid
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Figure 2.3: Horizontal velocity profiles for different values of α and m.

Figure 2.4: Horizontal velocity profiles for different values of α and Mn.
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Figure 2.5: Horizontal velocity profiles for different values of α and Pr.

or cooling of the surface, λ < 0 means cooling of the fluid or heating of the surface, and λ = 0

corresponds to the absence of the mixed convection parameter. However, in the case of Mn and

Pr the effect is completely reversed. Increase in Mn and Pr reduces the velocity and squeezes

the thickness of the boundary layer (see Figs. 2.4-2.7). A change in the Lorentz force may be

attributed to a change in Mn. Lorentz force produces resistance to the transport phenomena.

Figures 2.8- 2.13 demonstrate the nature of the temperature profiles with changes in the various

physical parameters. Increasing values of m,α and λ reduce the profiles and decrease the thermal

boundary layer thickness. Moreover, the effect of Mn and Pr is quite opposite to that of m and

this is due to the Lorentz force phenomenon. However, the fluid with higher value of Pr possesses

a large heat capacity, and hence intensifies the heat transfer.
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Table 2.1: Comparison of results for −f ′′(0) when λ = 0 and Mn = 0.

Khader and Present work

α m Megahed [30] Fang et al. [26] −f ′′(0) −~f Ef10
1/2 10 1.0603 1.0603 1.0603 1.0050 1.8× 10−10

5 1.0486 1.0486 1.0486 1.0145 5.5× 10−11

3 ∗ ∗ ∗ 1.0359 1.0359 1.0299 9.2× 10−12

2 ∗ ∗ ∗ 1.0234 1.0234 1.0493 6.8× 10−13

1/2 ∗ ∗ ∗ 0.9799 0.9799 1.1012 1.9× 10−14

0 0.9577 0.9576 0.9578 1.1438 6.2× 10−8

1/4 10 1.1433 1.1433 1.1433 0.8750 1.6× 10−10

5 1.1186 1.1186 1.1186 0.9068 4.6× 10−11

3 ∗ ∗ ∗ 1.0905 1.0905 0.9463 7.6× 10−12

1/2 ∗ ∗ ∗ 0.9338 0.9338 1.1334 7.3× 10−15

0 0.7843 0.7843 0.7845 1.2391 1.2× 10−8

Table 2.2: HAM results for −f ′′(0) and −θ′(0) for different values of α, λ, Mn, m, and Pr.

α λ Mn m Pr −f ′′(0) −θ′(0) −~f −~θ Ef10 Eθ10
.5 .5 1 2 .71 1.2024 0.9763 0.7532 1.2563 1.9× 10−9 1.3× 10−9

1 1.1322 0.9304 0.7645 1.2952 3.7× 10−9 2.4× 10−9

1 0.9481 0.9762 1.0978 1.1446 5.4× 10−10 5.2× 10−10

2 1.2738 0.9064 1.1057 1.2091 1.3× 10−8 5.4× 10−9

5 1.2398 1.0402 1.0090 0.9538 2.0× 10−7 1.1× 10−7

7 1.3567 2.7146 0.1500 0.4551 2.3× 10−5 1.1× 10−7

The skin friction at the surface as a function of m is shown in Fig. 2.14 for various values of Pr.

It is found that the skin friction decreases with an increase in m and Pr. Figure 2.15 depicts the

local Nusselt number as a function of α for various values of Mn. It can be seen that the Nusselt

number increases with increasing Mn and α.
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Figure 2.6: Horizontal velocity profiles for different values of λ and Mn.

2.6 Discussion

Heat transfer characteristics for mixed convection boundary layer flow of a viscous incompressible

fluid over a continuously stretching sheet of variable thickness subject to a transverse magnetic

field are analyzed. A transformed set of self-similar equations is obtained. The reduced equations

are then solved via HAM. Fluid velocity is found to decrease with increasing magnetic param-

eter whereas quite the opposite is true with the temperature. The non-dimensional temperature

decreases with increasing Prandtl number. It is observed that an increasein the wall thickness

parameter significantly affect the velocity and the temperature gradients.
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Figure 2.7: Horizontal velocity profiles for different values of λ and Pr.

Figure 2.8: Temperature profiles for different values of α and m.
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Figure 2.9: Temperature profiles for different values of α and Mm.

Figure 2.10: Temperature profiles for different values of α and Pr.
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Figure 2.11: Temperature profiles for different values of λ and m.

Figure 2.12: Temperature profiles for different values of λ and Mn.
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Figure 2.13: Temperature profiles for different values of λ and Pr.

Figure 2.14: Skin friction coefficient versus m for different values of Pr.

27



Figure 2.15: Nusselt number versus Mn for different values of α.

28



CHAPTER 3: A METHOD OF DIRECTLY DEFINING THE INVERSE

MAPPING FOR SOLUTIONS OF COUPLED SYSTEMS OF

NONLINEAR DIFFERENTIAL EQUATIONS

Recently, Liao introduced a new method for finding analytical solutions to nonlinear differential

equations. In this chapter, we extend this idea to nonlinear systems. We study the system of

nonlinear differential equations that governs nonlinear convective heat transfer at a porous flat

plate, and find functions that approximate the solutions by extending Liao’s Method of Directly

Defining the Inverse Mapping (MDDiM). These results were considered in Baxter et al. [40].

3.1 Background

Consider the free convection flow at a vertical flat plate embedded in a saturated porous medium,

where the temperature of the plate is described by a power function of distance given by Tw =

T∞ ± Axλ (with T∞ denoting temperature far away from the plate, A > 0 and λ represents the

exponent of the power function) and the discharge or withdrawal rate is given by Vw = axn, where

n = λ−1
2

, and where a > 0 for the discharge of fluid and a < 0 for withdrawal of the fluid. The
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equations governing the fluid flow and heat transfer are (for details see Vajravelu et al. [41])

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u = −K
µ

[
∂p

∂x
± pg

]
, (3.2)

v = −
(
K

µ

)
∂p

∂y
, (3.3)

u
∂T

∂x
+ v

∂T

∂y
= α0

(
∂2T

∂x2
+
∂2T

∂y2

)
+

Q

(ρ∞Cρ)f
(T − T∞), (3.4)

ρ = ρ∞
[
1− β0(T − T∞)− β1(T − T∞)2

]
. (3.5)

The boundary conditions for the problem are

v = axn, T = T∞ ± Axn at y = 0, (3.6)

u→ 0, T → as y → ∞, (3.7)

where u, v are the Darcy velocities in the x and y directions, ρ, µ, and β are, respectively, the den-

sity, viscosity, and thermal expansion coefficient of the fluid, K is the permeability of the saturated

porous medium, and α0 =
Km

(ρ∞Cp)f
is the equivalent thermal diffusivity, whereKm denotes the ther-

mal conductivity of the saturated porous medium and (ρ∞Cp)f is the density and specific heat of

the fluid. T, p, and g are temperature, pressure, and gravitational acceleration, respectively. It can

be shown that similarity transformation and solutions to equations (2.1) - (2.7) exist if n = λ−1
2

.

Under this assumption and using the stream function ψ defined by u = ∂ψ
∂y

and v = −∂ψ
∂x

, the

governing equation and the conditions can be written as (see [42] for details)

f ′′ − (1 + γθ)θ′ = 0, (3.8)
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θ′′ +

(
1 + λ

2

)
fθ′ − (λf ′ − α) θ = 0, (3.9)

f(0) = fw, f ′ → 0 as η → ∞, (3.10)

θ(0) = 1, θ → 0, as η → ∞, (3.11)

where

η =

[
ρ∞gβ0K

µα0x
|Tw − T∞|

] 1

2

· y, (3.12)

ψ =

[
α0ρ∞gβ0K|Tw − T∞|x

µ

] 1

2

f(η), (3.13)

θ(η) =
T − T∞
Tw − T∞

, (3.14)

γ = 2β1|Tw − T∞|/β0, (3.15)

α = Qx2/αRax(ρ∞Cρ)f , (3.16)

Rax = ρ∞gβ0K|Tw − T∞|x/µα0. (3.17)

and

fw = −2a/(1 + λ)[α0ρ∞gβKA/µ]
1

2 . (3.18)

Existence and uniqueness as well as numerical results are established for this system in [41].

The Homotopy Analysis Method (HAM) has been used to find analytical solutions to nonlinear

differential equations where only numerical results exist in the literature (see [1], [2], [37], [43]-

[52]). The method uses a homotopy of differential operators, where the homotopy parameter is
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Figure 3.1: Plot of E(c0, A), the squared residual error over η ∈ [0, 499] as a function of c0 and A
using parameter values fw = −1, α = −1, γ = −0.5, λ = −0.2. The error function has minimum

E(c0, A) = 6.6049× 10−7 where c0 = −1.3279 and A = 0.2869.

perturbed. This changes the nonlinear problem into infinitely many linear problems that can be

solved one at a time, where each successive equation depends on the previous iterates.

In this paper we study the coupled system through the Homotopy Analysis Method using the Di-

rectly Defined Inverse Method (MDDiM). This method was outlined by Liao for single equations

(see [3]). Here we extend this method to a coupled system of nonlinear differential equations.

3.2 HAM and MDDIM

In this section, we discuss the setup of the problem using the details of the HAM (see [1] and [2] for

details) and MDDiM for the nonlinear system. First, we discuss the spaces that the solutions and
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Figure 3.2: Plot of E(c0, A), the squared residual error over η ∈ [0, 499] as a function of c0 and

A using parameter values fw = −1, α = −1, γ = 0, λ = 0.2. The error function has minimum

E(c0, A) = 1.2539× 10−6 where c0 = −3 and A = 1.4257.

base functions are coming from. Then we derive the deformation equations we are trying to solve.

Finally, we use the Method of directly defining the inverse mapping to solve these deformation

equations, and discuss the solutions. Define two nonlinear operators

N1[f(η), θ(η)] = f ′′ − (1 + γθ)θ′, (3.19)

N2[f(η), θ(η)] = θ′′ +

(
1 + λ

2

)
fθ′ − (λf ′ − α) θ, (3.20)

so that N1[f(η), θ(η)] = 0 and N2[f(η), θ(η)] = 0 give the original coupled equations (3.8) and
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(3.9), respectively. Take the linearly independent set of functions

S∞ =
{
1, e−η, e−2η, . . .

}
, (3.21)

and define the space of functions that is their linear combinations to be

V =

{
∞∑

k=0

ake
−kη
∣∣ak ∈ R

}
. (3.22)

This is the space of functions that the approximate solutions f(η) and θ(η) will come from. Take

the first two members of S∞ and define

S∗ =
{
1, e−η

}
. (3.23)

Two members are chosen because there are two boundary conditions on each of the equations.

The functions from the space

V ∗ =
{
a0 + a1e

−η|a0, a1 ∈ R
}

(3.24)

have their coefficients determined in order to satisfy the boundary conditions. Then the primary

solution, µ(η) ∈ V ∗, which is the initial guess, has the form

µ(η) =
1∑

j=0

aje
−η. (3.25)

Next, define Ŝ to be the remaining base functions

Ŝ =
{
e−2η, e−3η, . . .

}
, (3.26)
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Figure 3.3: Plot of E(c0, A), the squared residual error over η ∈ [0, 499] as a function of c0 and

A using parameter values fw = −1, α = −1, γ = 0.5, λ = 0. The error function has minimum

E(c0, A) = 2.7322× 10−5 where c0 = −3 and A = 1.5851.

and define V̂ so that V = V̂ ∪ V ∗. That is,

V̂ =

{
∞∑

k=2

bke
−kη
∣∣bk ∈ R

}
. (3.27)

Define a linearly independent set of functions

SR = {ψ1(η), ψ2(η), . . .} , (3.28)

so that SR is a basis for expressions in the codomain of the operators N1 and N2. Then let U be
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Figure 3.4: Plot of f̂(η), where Curve 1 has fw = −1, α = −1, γ = −0.5, λ = −0.2, Curve 2 has

fw = −1, α = −1, γ = 0, λ = 0.2, and Curve 3 has fw = −1, α = −1, γ = 0.5, λ = 0 using

their respective error-minimizing convergence control parameter.

the set of all linear combinations of functions from SR:

U =

{
∞∑

k=1

ckψk(η)
∣∣ck ∈ R

}
. (3.29)

Assuming that N1[f(η), θ(η)], N2[f(η), θ(η)] ∈ U , then N1 : V → U and N2 : V → U . Now

let us look into the implementation of the Homotopy Analysis Method. Define two homotopies of

operators

0 ≡ H1(f, θ, q) = (1− q)L1[f ]− c0qN1[f, θ], (3.30)

0 ≡ H2(f, θ, q) = (1− q)L2[θ]− c1qN2[f, θ]. (3.31)
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Figure 3.5: Plot of θ̂(η), where Curve 1 has fw = −1, α = −1, γ = −0.5, λ = −0.2, Curve 2 has

fw = −1, α = −1, γ = 0, λ = 0.2, and Curve 3 has fw = −1, α = −1, γ = 0.5, λ = 0 using

their respective error-minimizing convergence control parameter.

Here H1 and H2 are the homotopies of operators between linear operators L1, L2 and nonlinear

operators N1, N2. The homotopy parameter q ∈ [0, 1] and the convergence control parameters are

c0 and c1. The convergence control parameters will be used to optimize the function approxima-

tions in the next section. Now assume expansions of f and θ in terms of the homotopy parameter:

f(η) = f0(η) +
∞∑

k=1

fk(η)q
k, (3.32)

θ(η) = θ0(η) +
∞∑

k=1

θk(η)q
k. (3.33)

Here f0(η) ∈ V ∗ and θ0(η) ∈ V ∗ are initial guesses that satisfy the boundary conditions.
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Figure 3.6: Plot of f̂ ′′(0) versus γ, using fw = −1, α = −1, λ = 0.2, A = 1.4257 and c0 = −3.

Note that when q = 0 in the homotopies (3.30) and (3.31), they become L1[f ] = 0 and L2[θ] = 0;

but when q = 1, the original nonlinear differential equations N1[f, θ] = 0 and N2[f, θ] = 0 are

recovered. Likewise, when q = 1 in the expansions (3.32) and (3.33), the solutions f and θ are

a sum of the components f1, f2, . . . and θ1, θ2, . . .. We get these expansions (3.32) and (3.33) into

the first homotopy (3.30), and the deformation equations are

L1[f0(η)] = 0, f0(0) = fw, f ′
0 → 0 as η → ∞, (3.34)

and for k ≥ 1 we have

L1[fk(η)] = χkL1[fk−1(η)] + c0δ
1
k−1(η), fk(0) = 0, f ′

k → 0 as η → ∞, (3.35)
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Figure 3.7: Plot of θ̂′(0) versus γ, using fw = −1, α = −1, λ = 0.2, A = 1.4257 and c0 = −3.

where

χk =





0, k ≤ 1,

1, k ≥ 1.

(3.36)

Here δξk, for ξ = 1, 2, is the homotopy derivative defined to be

δξk−1(η) =
1

(k − 1)!

(
∂k−1

∂qk−1
Nξ

[
∞∑

j=0

fj(η)q
j,

∞∑

j=0

θj(η)q
j

]) ∣∣∣
q=0

. (3.37)

On the other hand, if the expansions (3.32) and (3.33) are plugged into the second homotopy (5.29),

then the other set of deformation equations is obtained:

L2[θ0(η)] = 0, θ0(0) = 1, θ0 → 0 as η → ∞, (3.38)
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and for k ≥ 1

L2[θk(η)] = χkL2[θk−1(η)] + c1δ
2
k−1(η), θk(0) = 0, θk → 0 as η → ∞. (3.39)

The benefit of the Homotopy Analysis Method is that the linear operators L1 and L2 can be chosen

so that the corresponding type of equations (3.35) and (3.39) are determined. Then, the number of

terms desired of fk ∈ V and θk ∈ V can be computed iteratively. That is, f0 and θ0 are used to

find f1 and θ1, and so on.

There has been great success in refining the method. The choice of auxiliary linear operator and

convergence control parameters has been studied in [43] - [45]. Progress is made in the search for

a linear operator that works well with partial differential equations in [46], [47], [50]. Control of

residual error and stability of the choice of linear operator that leads to the so-called optimal HAM

is studied in [37], [48], [49], [51]. The latest innovation by Liao [3] is to directly define the inverse

mapping in the linear deformation equations. This is done because even with a few terms the HAM

can lead to overwhelming computations, even with the simplest linear operator.

Using Liao’s Method of Directly Defined Inverses, the deformation equations (3.35) and (3.39) are

fk(η) = χkfk−1(η) + c0J
[
δ1k−1(η)

]
+ ak,1e

−η + ak,0, (3.40)

θk(η) = χkθk−1(η) + c1J
[
δ2k−1(η)

]
+ bk,1e

−η + bk,0. (3.41)

In our work the inversely defined mapping, J , is the same for both equations. But different

directly defined inverses could be chosen if a different structure for the solutions f and θ is required.
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Define J : U → V by

J
[
e−kη

]
=

e−kη

Ak3 + k
, (3.42)

where the Ak3 + k is used to weight terms with larger values of k less than terms with smaller

values of k, and A is a parameter.

It is possible to associate this inverse linear operator with the linear operator L[u] = −(u′′′ + u′).

However, note that L[c1 + c2 sin η + c3 cos η] = 0. Since sin η and cos η are periodic functions,

they do not tend to zero as η → ∞ and therefore do not satisfy the boundary conditions. So in the

normal HAM, this linear operator does not work. However, it will work in the frame of MDDiM.

This is an advantage of the MDDiM.

The choice of exponential base functions is due to the fact that the boundary value problem (3.8)-

(3.11) admits an exact solution when α = λ = 0 and λ = 1. From [41] the exact solution is

f(η) = ζ − (ζ − fw)e
−ζη, (3.43)

θ(η) = ζ(ζ − fw)e
−ζη, (3.44)

where

ζ =
fw +

√
(fw)2 + 4

2
. (3.45)

Note that each function fk can be split into

fk(η) = f̂k(η) + f ∗
k (η), (3.46)

where each f̂k ∈ V̂ and each f ∗
k ∈ V ∗, so that fk ∈ V . The f̂k comes from the inverse linear

operator, and the f ∗
k has coefficients used to satisfy the boundary conditions of the kth deformation
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equation. Similarly for θk.

3.3 Results and Error Analysis

In this section the functions found as approximation to the solutions of the differential equations

are discussed. Moreover, error analysis is used to develop a notion of how good the approximations

are.

To get an idea of error in the approximations, define f̂ and θ̂ to be the sum of the first three solutions

to the deformation equations. If the approximations f̂ and θ̂ are plugged into the coupled system

(3.8)-(3.9) and 0 is obtained, the solutions are exact. If they are not exact, thenN1

[
f̂(η), θ̂(η)

]
and

N2

[
f̂(η), θ̂(η)

]
become residual error functions that can be evaluated at any point η in the domain

of the problem. To get a sense of how good these residual errors are, we find the square of their

L2-norm. Taking the convergence control parameters to be c0 = c1, these squared residual error

functions are

Eξ(fw, α, λ, γ, c0, A) =

∫ ∞

0

(
Nξ

[
f̂(η), θ̂(η)

])2
dη, (3.47)

for ξ = 1, 2.

Since we have two error functions, we will take an affine combination of them (see [52] for details):

E(c0, A) = E1(fw, α, λ, γ, c0, A) + E2(fw, α, λ, γ, c0, A). (3.48)

With the parameters fw, α, λ, γ, and A, we can check the residual error is small by choosing a

suitable c0. Then the approximate solutions are f̂(η) and θ̂(η) using the parameter values chosen.

Sometimes, integration over an infinite domain can be difficult, and leads to aggregate error for a

domain that is not always useful. In this case, we can evaluate the squared residual error at several
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points. This is a weighted sum that has the form

Êξ(fw, α, λ, γ, c0, c1) =
1

M

M∑

j=0

(
Nξ

[
f̂(j), θ̂(j)

])2
. (3.49)

If the squaring is too complex for a computer algebra system like Maple to handle, sometimes an

absolute value of the residual error will also work.

With this in mind, we start with initial guesses f0(η) and θ0(η) that satisfy the boundary conditions

(3.10) and (3.11), respectively. We choose

f0(η) = fwe
−η, (3.50)

and

θ0(η) = e−η. (3.51)

Now, using the equations (3.40) and (3.41) to find f1(η) and θ1(η), they are

f1(η) =
c0γ

8A+ 2

(
e−2η − e−η

)
, (3.52)

and

θ1(η) = e−2η

( 1
2
c0λfw − 1

2
c0fw

8A+ 2

)
+ e−η

( 1
2
c0fw − 1

2
c0λfw

8A+ 2

)
. (3.53)

The third term in each approximation f2(η) and θ2(η) can be computed similarly. Using only three

terms, let f̂(η) = f0(η) + f1(η) + f2(η) and θ̂(η) = θ0(η) + θ1(η) + θ2(η). The sum of squared

residual error functions is given by

E(c0, A) =
1

500

499∑

j=0

{(
N1

[
f̂(j), θ̂(j)

])2
+
(
N2

[
f̂(j), θ̂(j)

])2}
(3.54)
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Note that E(c0, A) is a function of c0 and A with parameters fw (from the initial condition), γ, λ,

and α in it.

Using three different sets of values for the parameters fw, γ, α, λ, we have found the sum of

squared residual error E(c0, A) in the given table.

Table 3.1: Minimum of the squared residual error E(c0, A) for four different sets of parameters.

fw γ α λ A c0 E(c0, A)

−1 −0.5 −1 −0.2 0.2869 −1.3279 6.6049×

10−7

−1 0 −1 0.2 1.4257 −3 1.2539×

10−6

−1 −0.5 −1 0 1.5851 −3 2.7322×

10−5

The plot of the error functions E(c0, A) for their respective parameter values is given in Figures

3.1-3.3.

The plot of the approximate solution f̂(η) using these parameter values and their corresponding

convergence control parameters is given in Figure 3.4, and similarly for θ̂(η) in Figure 3.5.

The skin friction as a function of γ is graphed in Figure 3.6. This is the plot of f̂ ′′(0) versus γ

using fw = −1, α = −1, λ = 0.2, A = 1.4257 and c0 = −3. Note that α < 0 signifying a heat

sink, so the skin friction decreases as the nonlinear density temperature γ increases.

Consider the Nusselt number, as presented in Figure 3.7. This is the plot of θ̂′(0) versus γ us-

ing fw = −1, α = −1, λ = 0.2, A = 1.4257 and c0 = −3. Note that the wall temperature

slightly decreases as γ increases. The effect of skin friction is significantly higher compared to
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wall temperature, due to the steeper slope of the skin friction graph.

Both of the graphs of skin friction and Nusselt number compare very well with the graphs given in

the literature (see [41]).

3.4 Discussion

In this paper, we extended the Method of Directly Defining the inverse mapping from a single

equation to a system of two equations governing the free convection flow and heat transfer at a

vertical flat plate embedded in a saturated porous medium. This is novel in the sense that it has

not been done before, but also shows that the method can be applied to a system of two or more

nonlinear differential equations.

Since the inverse linear operator is directly defined, calculating terms in the approximation can be

done quickly. It is also interesting to note that using only three terms (which was an initial guess

and two iterates) of the approximate solution, we get the sum of squared residual error on the order

of 10−7 and 10−6 (see Figures 3.1 and 3.2). This shows that Liao’s Method of Directly Defining

the Inverse Mapping is not only easy to use, but accurate. Also, for better accuracy one can use as

many terms as needed, still keeping the calculations simple.

Extension of this idea can still be applied to other nonlinear systems. This idea is still relatively

new, and for the first time (as far as the authors are aware) applied to a system of nonlinear differ-

ential equations. In [3], Liao mentions that several inverse linear operators could work for a single

problem. This means many other classes of inverse linear operators can be defined and different

parameter values used to find differing results. The search for a general inverse linear operator (or

operators) for a specific type of problem would be worth investigating.
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CHAPTER 4: A METHOD OF DIRECTLY DEFINING THE INVERSE

MAPPING FOR SOLUTIONS OF NON-LINEAR COUPLED SYSTEMS

ARISING IN CONVECTION HEAT TRANSFER IN A SECOND GRADE

FLUID

In this chapter, we extend Liao’s newly invented Directly Defining Inverse Mapping Method (MD-

DiM) to obtain solutions to fourth order nonlinear systems arising in combined free and forced

convection flow of a second-grade fluid, over a stretching sheet. These results were considered in

Dewasurendra et al. [53].

4.1 Background

Consider the flow of a second-grade fluid obeying the gradually fading memory(i.e., the notion

that deformations which occurred in the distant past should have less effect on the present value of

the stress than deformation occurred in the resent past, see [54]-[55]) adjacent to a vertical sheet

coinciding with the plane y = 0, the flow being confined to y > 0. Here the gradually fading

memory equation is given by

T = −PI + µA1 + α1A2 + α2A
2
1 (4.1)

where T is the stress tensor, P is the pressure, µ is the dynamic viscosity, α1, α2 are first and

second normal stress coefficients to the material modulus and for the present second grade fluid
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with α1 < 0. The kinematics tensors A1 and A2 are defined as

A1 = ∇v + (∇v)T , (4.2)

A2 =
d

dt
A1 + A1 · ∇v + (∇v)T · A1, (4.3)

where v is the velocity vector and d
dt

is the material time derivative. To keep the wall stretched

and the origin fixed, two equal and opposite forces were applied along the positive x-axis. The

basic boundary layer equations for the steady flow and heat transfer with internal heat generation

or absorption in usual notation for the title problem are (for details see [56]-[59])

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− λ1

[
∂

∂x

(
u
∂2u

∂y2

)
+
∂u

∂y

∂2v

∂y2
+ v

∂3u

∂y3

]
+ gβ(T − T∞), (4.4)

∂u

∂v
+
∂v

∂y
= 0, (4.5)

ρCp

(
u
∂T

∂x
+ v

∂T

∂y

)
= k

∂2T

∂y2
+Q(T − T∞), (4.6)

where ν = µ
ρ
= −α1

ρ
, is the buoyancy force-term [with the well-known Boussinesq approximation

ρ− ρ∞ = −ρβ(T − T∞)].

The boundary conditions for the problem are

u = Bx, v = 0, T = Tw(= T∞ + A(x/l)) at y = 0, (4.7)

u→ 0,
∂u

∂y
→ 0, T → T∞ as y → ∞, (4.8)

where A is defined in such a way that A(x/l) has the dimension of temperaturer, l is the character-

istic length and B > 0 is the linear stretching rate constant.
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Defining the similarity variables

u = Bxf ′(η), v = −(Bν)
1

2f(η), η = (B/ν)
1

2y, (4.9)

θ = (T − T∞)/(Tw − T∞), (4.10)

and substituting in (3.4)-(3.8), we obtain

(f ′)2 − ff ′′ = f ′′′ − λ[2f ′f ′′′ − (f ′′)2 − ff iv] +Gθ, (4.11)

θ′′ + σfθ′ − σ(f ′ − α)θ = 0, (4.12)

f(0) = 0, f ′(0) = 1, f ′ → 0 as η → ∞, f ′′ → 0 as η → ∞, (4.13)

θ(0) = 1, θ → 0 as η → ∞, (4.14)

where λ = λ1B
ν

is the viscoelastic parameter, G = gA
B2l

the free convection parameter, σ = µCp

k
the

Prandtl number and α = Q
BρCp

the heat source/sink parameter, and a prime denotes differentiation

with respect to η.

Vajravelu and Soewono[56] showed that the system (4.11)-(4.14) has unique solution of the form

f(η) = a0 + a1e
−δη (4.15)

and

θ(η) = b1e
−δη (4.16)

for
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(i) G = 0, δ = 1√
1−λ

, λ < 1 and σ(1− α)(1− λ) = 1

(ii) G 6= 0, δ =
√
σ − σα , α = 2

3
, 4σλ(1− α)− 2σ(1− α)− 2σ(1− α) + 1 6= 0

and σ(1− α)(λ− 1)− 1 6= 0.

Also, Vajravelu and Soewono [56] proved existence of convergent series solution of the form

f(η) =
∞∑

n=0

ane
−nδη (4.17)

θ(η) =
∞∑

n=2

bne
−nδη (4.18)

when λa0δ
2 − δ + a0 = 0, 4δ2 − 2σa0δ + σα = 0 have common positive solution to δ, |a1| =

B, |b2| ≤ CB2

22
, CB < 1 and

C1 = sup

{
|σδ|

|δ2 − σ0δ
n

+ σα
n2 |

, n > 2

}
(4.19)

C2 = sup

{
1

|λa0δ2 − δ
n
+ a0

n2 |
, n ≥ 2

}
(4.20)

C = sup{C1, C2}. (4.21)

In the present paper, we study the coupled system through the Homotopy Analysis Method by

directly defining an inverse mapping J , i.e without calculating any inverse operator. This method

was introduced by Liao in [3] for a single differential equation and named as the method of di-

rectly defining inverse mapping (MDDiM). Here we extend MDDiM to a coupled system using

a common inverse linear mapping and approximating f(η) and θ(η) by two different sets of base

functions.
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4.2 HAM and MDDIM

The Directly Defining Inverse Mapping Method is based on the Homotopy analysis method (HAM)

[[1],[2], [43]-[44]] which is an analytical approximation method for highly nonlinear differential

equations. The results are functions, rather than numerical data. In this section, first we discuss the

space that the solution and base functions come from and then we derive the deformation equations

for the nonlinear system. Finally, we apply the Method of Directly Defined inverse to solve these

deformation equation by introducing an appropriate inverse linear mapping J .

Define two nonlinear operators

N1[f(η), θ(η)] = f ′′′ + ff ′′ − (f ′)2 − λ[2f ′f ′′′ − (f ′′)2 − ff iv] +Gθ, (4.22)

N2[f(η), θ(η)] = θ′′ + σfθ′ − σ(f ′ − α)θ, (4.23)

so that N1[f(η), θ(η)] = 0 and N2[f(η), θ(η)] = 0 give the original coupled equations (4.11) and

(4.12), respectively. After complete study of the convergent series solution (4.17)-(4.21) and the

nonlinear system (4.11)-(4.14), take the linearly independent set of functions

S∞ =
{
1, e−δη, e−2δη, . . .

}
, (4.24)

and define

V 1 =

{
∞∑

k=0

ake
−kδη

∣∣ak ∈ R

}
, V 2 =

{
∞∑

k=2

ake
−kδη

∣∣ak ∈ R

}
. (4.25)

Here V 1 and V 2 are solution and base spaces for f(η) and θ(η) respectively. Next, introduce a

base set for an initial guess as S1∗ =
{
1, e−δη

}
by considering the first two members of S∞, and

50



define the space for the initial guess for f(η) as

V 1∗ =
{
a0 + a1e

−δη|a0, a1 ∈ R
}
. (4.26)

We took two members for the set S1∗ because there are two boundary conditions at zero. This leads

to the initial guess, and boundary conditions at infinity are automatically satisfied if we consider

the initial guess as a linear combination of elements of the set S1∗. Also, introduce the base set for

initial guess as S2∗ =
{
e−2δη

}
by considering only the third member of S∞ and define space for

the initial guess for θ(η) as

V 2∗ =
{
b2e

−2δη|b2 ∈ R
}
. (4.27)

We take only one member for the set S2∗ because, only one boundary condition at zero leads to the

initial guess for θ(η), and boundary conditions at infinity are automatically satisfied if we consider

the initial guess as a linear combination of the set S2∗.

Then the primary solutions, or our initial guesses, µ1(η) ∈ V 1∗, and µ2(η) ∈ V 2∗, have the form

µ1(η) =
1∑

j=0

aje
−δη, µ2(η) = b2e

−2δη. (4.28)

Next, define Ŝ1 and Ŝ2 as follows:

Ŝ1 =
{
e−2δη, e−3δη, . . .

}
, Ŝ2 =

{
e−3δη, e−4δη, . . .

}
(4.29)

and define V̂ 1, V̂ 2 so that V 1 = V̂ 1 ∪ V 1∗, V 2 = V̂ 2 ∪ V 2∗. Hence,

V̂ 1 =

{
∞∑

k=2

bke
−kδη

∣∣bk ∈ R

}
, V̂ 2 =

{
∞∑

k=3

bke
−kδη

∣∣bk ∈ R

}
. (4.30)
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Define a linearly independent set of functions

SR = {ψ1(η), ψ2(η), . . .} , (4.31)

so that SR is a basis for expressions in the codomain of the operators N1 and N2. Then let U be

the set of all linear combinations of functions from SR:

U =

{
∞∑

k=1

ckψk(η)
∣∣ck ∈ R

}
. (4.32)

Assuming that N1[f(η), θ(η)], N2[f(η), θ(η)] ∈ U , then N1 : V
1 → U and N2 : V

2 → U .

Now let us look into the implementation of the Homotopy Analysis Method. Define two homo-

topies of operators

0 ≡ H1(f, θ, q) = (1− q)L1[f ]− c0qN1[f, θ], (4.33)

0 ≡ H2(f, θ, q) = (1− q)L2[θ]− c1qN2[f, θ]. (4.34)

Here H1 and H2 are the homotopies of operators between linear operators L1, L2 and nonlinear

operators N1, N2. The homotopy parameter q ∈ [0, 1] and the convergence control parameters are

c0 and c1. The convergence control parameters will be used to optimize the function approxima-

tions in the next section. Now assume expansions of f and θ in terms of the homotopy parameter:

f(η) = f0(η) +
∞∑

k=1

fk(η)q
k, (4.35)

θ(η) = θ0(η) +
∞∑

k=1

θk(η)q
k. (4.36)

Here f0(η) ∈ V 1∗ and θ0(η) ∈ V 2∗ are initial guesses that satisfy the boundary conditions.
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Note that when q = 0 in the homotopies (4.33) and (4.34), they become L1[f ] = 0 and L2[θ] = 0;

but when q = 1, the original nonlinear differential equations N1[f, θ] = 0 and N2[f, θ] = 0 are

recovered. Likewise, when q = 1 in the expansions (4.35) and (4.36), the solutions f and θ are a

sum of the components f1, f2, . . . and θ1, θ2, . . .. Substituting these expansions (4.35) and (4.36)

into the first homotopy (4.33), we get the deformation equations

L1[f0(η)] = 0, (4.37)

f0(0) = 0, f ′
0(0) = 1, f ′

0 → 0 as η → ∞, f ′′
0 → 0 as η → ∞ (4.38)

and for k ≥ 1 we have

L1[fk(η)] = χkL1[fk−1(η)] + c0δ
1
k−1(η), (4.39)

fk(0) = 0, f ′
k(0) = 0, f ′

k → 0 as η → ∞, f ′′
k → 0 as η → ∞ (4.40)

where

χk =





0, k ≤ 1,

1, k > 1.

(4.41)

Here δξk, for ξ = 1, 2, is the homotopy derivative defined to be

δξk−1(η) =
1

(k − 1)!

(
∂k−1

∂qk−1
Nξ

[
∞∑

j=0

fj(η)q
j,

∞∑

j=0

θj(η)q
j

]) ∣∣∣
q=0

. (4.42)

On the other hand, if the expansions (4.35) and (4.36) are plugged into the second homotopy (4.34),
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then the other set of deformation equations is obtained:

L2[θ0(η)] = 0, (4.43)

θ0(0) = 1, θ0 → 0 as η → ∞, (4.44)

and for k ≥ 1

L2[θk(η)] = χkL2[θk−1(η)] + c1δ
2
k−1(η), (4.45)

θk(0) = 0, θk → 0 as η → ∞. (4.46)

Using Liao’s Method of Directly Defined Inverses, the deformation equations (4.39) and (4.45) are

fk(η) = χkfk−1(η) + c0J
[
δ1k−1(η)

]
+ ak,1e

−δη + ak,0, (4.47)

θk(η) = χkθk−1(η) + c1J
[
δ2k−1(η)

]
+ bk,1e

−2δη. (4.48)

The benefit of the Homotopy Analysis Method is that one has great freedom to choose the auxillary

linear operators L1, L2 and initial guesses f0(η), θ0(η). After auxillary linear operators and initial

guesses are properly choosen we are free to determine how many terms fk ∈ V 1 and θk ∈ V 2

we want and can do it iteratively. There has been great success in solving systems of nonlinear

differential equations using HAM( see [2], [4], [37], [43]-[52]).

The only drawback of this homotopy analysis method is spending a lot of CPU time. First we

choose auxiliary linear operators, and then solving the linear higher deformation equation only to
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find out the inverse operators and applying them to quickly-growing expressions. However, in the

latest innovation of Liao we have the freedom to directly define the inverse operator by completely

neglecting the linear operator (for details see [3], [40]). In this way, one can solve higher order

deformation equations quickly and it is unnecessary to calculate inverse linear operators.

In our work the inversely defined mapping, J , is the same for both equations.

Define J : U1,2 → V 1,2 by

J
[
e−kδη

]
=

e−kδη

k3 + k
, (4.49)

where the k3 + k is used to weight terms with lager values of k less than terms with smaller values

of k.

Note that each function fk can be split into

fk(η) = f̂k(η) + f ∗
k (η), (4.50)

where each f̂k ∈ V̂ 1 and each f ∗
k ∈ V 1∗, so that fk ∈ V 1. The f̂k comes from the inverse linear

operator, and the f ∗
k has coefficients used to satisfy the boundary conditions of the kth deformation

equation.

Similarly, θk can be split into

θk(η) = f̂k(η) + θ∗k(η), (4.51)

where each θ̂k ∈ V̂ 2 and each θ̂∗k ∈ V 2∗, so that θk ∈ V 2. Further, θ̂k comes from the inverse linear

operator, and the θ∗k has coefficients used to satisfy the boundary conditions of the kth deformation

equation.
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4.3 Results and Error Analysis

In this section the functions found as approximations to the solutions of the differential equations

are discussed. Moreover, error analysis is used to develop a notion of how good the approximations

are.

To get an idea of error in the approximations, define f̂ and θ̂ to be the sum of the first few solutions

to the deformation equations. If the approximations f̂ and θ̂ are plugged into the coupled system

(4.11)-(4.12) and 0 is obtained, the solutions are exact. If they are not exact, then N1

[
f̂(η), θ̂(η)

]

and N2

[
f̂(η), θ̂(η)

]
become residual error functions that can be evaluated at any point η in the

domain of the problem. To get a sense of how good these residual errors are, we find the square

of their L2-norm. Taking the convergence control parameters to be c0 = c1, these squared residual

error functions are

Eξ(G, λ, σ, α, c0, δ) =

∫ ∞

0

(
Nξ

[
f̂(η), θ̂(η)

])2
dη, (4.52)

for ξ = 1, 2.

Since we have two error functions, we will take an affine combination of them:

E(c0, δ) = E1(G, λ, σ, α, c0, δ) + E2(G, λ, σ, α, c0, δ). (4.53)

Varying the parameters G, λ, σ, and α, we can make sure the residual errors are small by choosing

a suitable δ and c0. Then the approximate solutions are f̂(η) and θ̂(η) .

Sometimes, integration over an infinite domain can be difficult, and leads to aggregate error for a

domain that is not always useful. In this case, we can evaluate the squared residual error at several
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Figure 4.1: Plot of f̂(η), where Curve 1 has σ = 0.71, λ = 0.01, α = −3.75, G = 0, Curve 2

has σ = 0.71, λ = 0.01, α = 0.4, G = 0.5, Curve 3 has σ = 7, λ = 0.9, α = 0.9, G = 1.1 and

Curve 4 has σ = 3.855, λ = 0.01, α = 0.83, G = 0.0001 using their respective error-minimizing

convergence control parameter.

points. This is a weighted sum that has the form

Êξ(G, λ, σ, α, c0, δ) =
1

M

M∑

j=0

(
Nξ

[
f̂(j), θ̂(j)

])2
. (4.54)

If the squaring is too complex for a computer algebra system like Maple to handle, sometimes an

absolute value of the residual error will also work.

With this in mind, we start with initial guesses f0(η) and θ0(η) that satisfy the boundary conditions

(4.13) and (4.14), respectively. We choose

f0(η) =
1

δ
(1− e−δη), (4.55)
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Figure 4.2: Plot of f̂ ′(η), where Curve 1 has σ = 0.71, λ = 0.01, α = −3.75, G = 0, Curve 2

has σ = 0.71, λ = 0.01, α = 0.4, G = 0.5, Curve 3 has σ = 7, λ = 0.9, α = 0.9, G = 1.1 and

Curve 4 has σ = 3.855, λ = 0.01, α = 0.83, G = 0.0001 using their respective error-minimizing

convergence control parameter.

and

θ0(η) = e−2δη. (4.56)

Now, using the equations (4.47) and (4.48) to find f1(η) and θ1(η); they are

f1(η) =
c0G

10

(
e−2δη + 1− 2e−δη

)
, (4.57)

and

θ1(η) = − 1

30
c0σ(−e−3δη + e−2δη). (4.58)

The third term in each approximation f2(η) and θ2(η) can be computed similarly.
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Figure 4.3: Plot of θ̂(η), where Curve 1 has σ = 0.71, λ = 0.01, α = −3.75, G = 0, Curve 2

has σ = 0.71, λ = 0.01, α = 0.4, G = 0.5, Curve 3 has σ = 7, λ = 0.9, α = 0.9, G = 1.1 and

Curve 4 has σ = 3.855, λ = 0.01, α = 0.83, G = 0.0001 using their respective error-minimizing

convergence control parameter.

f2(η) = − 2

25
c02Gδ3 +

1

10
c0G− 1

900
c02Gσ +

1

30
c02Gδ +

19

150
c02Gλδ3

+ (− 7

100
c02Gδ − 27

100
c02Gλδ3 − 1

5
c0G+

4

25
c02Gδ3 +

1

300
c02Gσ)e−δη

+ (
1

25
c02Gδ +

1

10
c0G+

4

25
c02Gλδ3 − 2

25
c02Gδ3 − 1

300
c02Gσ)e−2δη

+ (− 1

60
c02Gλδ3 − 1

300
c02Gδ +

1

900
c02Gσ)e−3δη.

(4.59)

θ2(η) = (− 1

30
c0σ +

1

30
c02σ(−3

5
Gδ − 1

10
σα− 2

5
δ2 +

1

5
σ) +

1

15300
c02σ(−49σ + 34σα

+ 204Gδ + 51δ2))e−2δη + (
1

30
c0σ +

1

30
c02σ(− 2

15
σ +

3

10
δ2 +

1

30
σα +

1

5
Gδ))e−3δη

+
1

1020
c02σ2e−4δη

(4.60)
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Figure 4.4: Comparison of f(η), f ′(η) and θ(η) obtained by the MDDiM and HAM with σ =
0.71, λ = 0.01, α = −3.75 and G = 0, where Curve1 is HAM results of f(η), Curve 2 is

MDDiM results of f(η), Curve 3 is HAM results of f ′(η), Curve 4 is MDDiM results of f ′(η),
Curve 5 is HAM results of θ(η), Curve 6 is MDDiM results θ(η).

Using only four terms, let f̂(η) = f0(η) + f1(η) + f2(η) + f3(η) and θ̂(η) = θ0(η) + θ1(η) +

θ2(η) + θ3(η), the sum of squared residual error functions is given by

E(c0, δ) =
1

100

99∑

j=0

{(
N1

[
f̂(j), θ̂(j)

])2
+
(
N2

[
f̂(j), θ̂(j)

])2}
. (4.61)

Note that E(c0, δ) is a function of c0 and δ with parameters G , λ, σ, and α in it.

Using different sets of values for the parameters G, λ, σ, α, we have found the sum of squared

residual error E(c0, δ) and are presented in the table below.

The plot of the approximate solution f̂(η) using these parameter values and their corresponding
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convergence control parameters is presented in Figure 4.1, and similarly for f̂ ′(η), θ̂(η) in Figures

4.2-4.3. HAM has been used (for details see [2], [4], [37], [43]-[52]) and a very good validation of

the present analytical results has been achieved as shown in Figures 4.4-4.5.

Table 4.1: Minimum of the squared residual error E(c0, δ) for four different sets of parameters.

σ λ α G c0 δ E(c0, δ)

0.71 0.01 −3.75 0 −2.4764 1.0051 2.33×10−9

0.71 0.01 0.4 0.5 −7.0304 0.4280 7.84×10−5

7 0.9 0.9 1.1 −0.9912 0.9004 9.27×10−5

3.855 0.01 0.83 0.0001 −2.139 0.9911 5.83×10−5

The skin friction at the surface as a function of the free convection parameter G is presented in

Figure 4.6 for heat source/sink parameter values α = −3.75 and α = 0.4. Note that α = −3.75 <

0 signifying a heat sink and α = 0.4 > 0 signifying heat source. It is found that the skin friction

decreases with an increase in G but increases for increasing α . Figure 4.7 illustrated Nusselt

number as a function of G for a heat sink and a source. It can be seen that the Nusselt number

decreases with increasing G but increases with increasing α. Also, it is noticeable that the skin

friction is significantly affected compared to the Nusselt number because of the steeper slope of

the skin friction graph.

4.4 Discussion

Liao’s Directly Defining inverse Mapping method has been extended to a fourth-order nonlinear

coupled system arising in combined free and forced convection flow of a second-grade fluid over
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Figure 4.5: Comparison of f(η), f ′(η) and θ(η) obtained by the MDDiM and HAM with σ =
3.855, λ = 0.01, α = 0.83 and G = 0.0001, where Curve1 is HAM results of f(η), Curve 2 is

MDDiM results of f(η), Curve 3 is HAM results of f ′(η), Curve 4 is MDDiM results of f ′(η),
Curve 5 is HAM results of θ(η), Curve 6 is MDDiM results θ(η).

a stretching sheet. Approximate series solutions for velocity and temperature profiles were found.

Also, illustrated velocity and temperature profiles for four sets of parameters (see Figures 4.2 and

4.3). Further, present results are compared with the HAM results (see Figures 4.4-4.5). This is

useful because only the existence of solutions has been studied previously.

Since the inverse operator is directly defined, the series solutions were obtained with less CPU

time. The freedom of picking the inverse linear operator leads to obtaining less complicated terms

for the approximate solution. Further, the selected inverse operator leads to series solutions with

square residual error between 10−5 and 10−9 (see Table 4.1). Hence we can conclude that MDDiM

is not only easy to use, but accurate. Theoretically, even if smaller error was desired, it would just

amount to computing more terms in the series by solving higher-order deformation equations.
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Figure 4.6: Plot of f̂ ′′(0) versus G, where Curve 1 has σ = 0.71, λ = 0.01, α = 0.4, δ = 0.4280
and c0 = −7.0304 and curve 2 has σ = 0.71, λ = 0.01, α = −3.75, δ = 1.5500 and c0 = −2.4735.

The idea is novel and this is the first time MDDiM has been used for a fourth-order coupled sys-

tem. So, this idea is not limited to a single equation, but can also be used for coupled equations.

The same idea could be applied to systems of several equations, etc. Also, it is important to note

that finding an inverse linear operator that works well (gives low error, or leads to easily generated

solution terms, or both) for a specific type of problem would be worth investigating.

63



Figure 4.7: Plot of θ̂′(0) versus G, where Curve 1 has σ = 0.71, λ = 0.01, α = 0.4, δ = 0.4280
and c0 = −7.0304 and curve 2 has σ = 0.71, λ = 0.01, α = −3.75, δ = 1.5500 and c0 = −2.4735.
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CHAPTER 5: ON THE METHOD OF INVERSE MAPPING FOR

SOLUTIONS OF COUPLED SYSTEMS OF NONLINEAR

DIFFERENTIAL EQUATIONS ARISING IN NANOFLUID FLOW, HEAT

AND MASS TRANSFER

In this chapter, we extend the Directly Defining Inverse Mapping Method (MDDiM) to obtain solu-

tions to nonlinear-coupled systems of three differential equations arising in steady, incompressible,

laminar, two-dimensional boundary layer flow of a nanofluid at a vertical wall. These results were

considered in Dewasurendra et al. [60].

5.1 Background

Consider a steady, incompressible, laminar, two-dimensional boundary layer flow of a nanofluid

at a vertical wall coincide with the plane y = 0, the flow being confined to y > 0 (see Figure

5.1). Two equal and opposite forces are introduced along the x-axis so that the wall is stretched

while keeping the origin fixed. The sheet is then stretched with a velocity uw = axn where a

is a constant, n is a nonlinear stretching parameter and x is the coordinate measured along the

stretching surface. We make following assumptions:

(i) the pressure gradient and external forces are neglected

(ii) the stretching surface is maintained at a constant temperature and concentration, Tw and Cw,

respectively,

(iii) Tw and Cw values are greater than the ambient temperature and concentration, T∞ and C∞

respectively.
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Figure 5.1: Flow configuration.

Under these assumptions, the basic equations for the conservation of mass, momentum, thermal

energy and nanoparticles of the nanofluid can be written in Cartesian coordinates x and y as ( for

details see Rana and Bhargava [61])

∂u

∂x
+
∂v

∂y
= 0, (5.1)

u
∂u

∂x
+ v

∂u

∂y
= v

∂2u

∂y2
, (5.2)

u
∂T

∂x
+ v

∂T

∂y
= αm∇2T + τ

[
DB

∂C

∂y

∂T

∂y
+
DT

T∞
(
∂T

∂y
)2
]
, (5.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+ (

DT

T∞
)
∂2T

∂y2
, (5.4)

66



where

αm =
km
(ρc)f

, τ =
(ρc)p
(ρc)f

. (5.5)

The boundary conditions for the problem are

v = 0, uw = axn, T = Tw, C = Cw at y = 0, (5.6)

u = v = 0, T = T∞, C = C∞ as y → ∞. (5.7)

Here u and v are the velocity in the x and y directions, ρf is the density of the base fluid, αm is

the thermal diffusivity, ν is the kinematic viscosity, a is a positive constant, DB is the Brownian

coefficient, DT is the thermophoretic diffusion coefficient, τ is the ratio between the effective heat

capacity of the nanoparticle material and heat capacity of the fluid, c is the volumetric volume

expansion coefficient and ρp is the density of the nanoparticles.

Defining the new variables

η = y

√
a(n+ 1)

2v
x

n−1

2 , u = axnf ′(η), v = −
√
av(n+ 1)

2
x

n−1

2 (f + (
n− 1

n+ 1
)ηf ′), (5.8)

θ(η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞

Cw − C∞
, (5.9)

and substituting in (5.1)-(5.4), we obtained

f ′′′ + ff ′′ −
(

2n

n+ 1

)
f ′2 = 0, (5.10)
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1

Pr
θ′′ + fθ′ +Nbθ′φ′ +Nt(θ′)2 = 0, (5.11)

φ′′ +
1

2
Lefφ′ +

Nt

Nb
θ′′ = 0, (5.12)

with boundary conditions,

at η = 0, f = 0, f ′ = 1, θ = 1, φ = 1, (5.13)

as η → ∞, f ′ = 0, θ = 0, φ = 0. (5.14)

The key thermophysical parameters are defined by:

Pr =
v

α
, Le =

v

DB

, Nb =
(ρc)pDB(Cw − C∞)

(ρc)fv
, Nt =

(ρc)pDT (Tw − T∞)

(ρc)fvT∞
. (5.15)

Here Pr, Le,Nb, and Nt denote the Prandtl number, the lewis number, the Brownian motion pa-

rameter and the thermophoresis parameter respectively.

In the present paper, we study the nonliner system analyticaly through the Optimam Homotopy

Analysis Method by directly defining an inverse mapping J , i.e. without calculating any inverse

operator. This method was intoduced by Liao [3] for a single differentiall equation. Vajravelu et

al. [40] extended it to solve coupled systems. Here, we extend the method to a system of three

nonlinear diferential equations using a common inverse linear mapping and approximated f(η),

θ(η) and φ(η).
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5.2 HAM and MDDIM

In this section, we discuss the set up of the problem using the details of OHAM ( see [1]-[2] for

more details) and MDDiM for the nonlinear system. First, we discuss the space that solution and

base functions come from and then we derive deformation equations that we are trying to solve

(nonlinear system). Finally, we use MDDiM to solve these deformation equations by introducing

an appropriate inverse linear map J .

Define three nonlinear operators

N1[f(η), θ(η), φ(η)] = f ′′′ + ff ′′ −
(

2n

n+ 1

)
f ′2, (5.16)

N2[f(η), θ(η), φ(η)] =
1

Pr
θ′′ + fθ′ +Nbθ′φ′ +Nt(θ′)2, (5.17)

N3[f(η), θ(η), φ(η)] = φ′′ +
1

2
Lefφ′ +

Nt

Nb
θ′′ = 0, (5.18)

so that N1[f(η), θ(η), φ(η)] = 0, N2[f(η), θ(η), φ(η)] = 0 and N3[f(η), θ(η), φ(η)] = 0 give the

original system (5.10)-(5.12). Take complete set of an infinite number of base functions that are

linearly independent

S∞ =
{
1, e−δη, e−2δη, . . .

}
, (5.19)

and define the space of functions that is their linear combinations to be

V =

{
∞∑

k=0

ake
−kδη

∣∣ak ∈ R

}
. (5.20)

That is, V is the solution and base space for f(η), θ(η) and φ(η).
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Let

S∗ =
{
1, e−δη

}
. (5.21)

denote a set, consists of first 2 members of S∞. Next, form the space of functions taking their

linear combinations

V ∗ =
{
a0 + a1e

−δη|a0, a1 ∈ R
}
. (5.22)

Then the primary solutions, or our initial guesses, µ(η) ∈ V ∗ have the form

µ(η) =
1∑

j=0

aje
−δη. (5.23)

Write

Ŝ =
{
e−2δη, e−3δη, . . .

}
, (5.24)

and define

V̂ =

{
∞∑

k=2

ake
−kδη

∣∣ak ∈ R

}
. (5.25)

Obviously, V = V̂ ∪ V ∗.

Next, define

SR = {ψ1(η), ψ2(η), . . .} , (5.26)

which is an infinite set of base functions that are linearly independent, and set of linear combina-

tions of functions from SR

U =

{
∞∑

k=1

ckψk(η)
∣∣ck ∈ R

}
. (5.27)

Assuming thatN1[f(η), θ(η), φ(η)], N2[f(η), θ(η), φ(η)], N3[f(η), θ(η), φ(η)] ∈ U , thenN1, N2, N3 :

V → U .
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Optimal Homotopy Analysis Method allows us to obtain approximate series solutions to wide

variety of nonlinear systems. Define three homotopies of operators H1,H2 and H3

0 ≡ H1(f, θ, φ, q) = (1− q)L1[f ]− c0qN1[f, θ, φ], (5.28)

0 ≡ H2(f, θ, φ, q) = (1− q)L2[θ]− c1qN2[f, θ, φ], (5.29)

0 ≡ H3(f, θ, φ, q) = (1− q)L3[φ]− c2qN3[f, θ, φ], (5.30)

through the homotopy embedding parameter q ∈ [0, 1], between nonlinear operators N1, N2, N3

and an auxiliary linear operators L1, L2, L3. Here, c0, c1, c2 6= 0 are the converge control parame-

ters which will be used to optimize the function approximations in the next section. In the frame

of OHAM, the series solution of f, θ and φ is given by

f(η) = f0(η) +
∞∑

k=1

fk(η)q
k, (5.31)

θ(η) = θ0(η) +
∞∑

k=1

θk(η)q
k, (5.32)

φ(η) = φ0(η) +
∞∑

k=1

φk(η)q
k, (5.33)

where f0(η), θ0(η) and φ0(η) are initial guesses that satisfy boundary conditions (5.13)-(5.14) and

belong to the set V .

It is clear that when q = 0 in the homotopies (5.28)-(5.30), they become L1[f ] = 0, L2[θ] = 0 and

L3[φ] = 0; but for q = 1, the original nonlinear differential equationsN1[f, θ, φ] = 0, N2[f, θ, φ] =
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0 and N3[f, θ, φ] = 0 are recovered. In addition, when q = 1 in the expansions (5.31)-(5.33), the

solutions f, θ and φ are a sum of the components f0, f1, f2, . . . , θ0, θ1, θ2, . . . and φ0, φ1, φ2, . . ..

Substituting (5.31)-(5.33) in to the first homotopy (5.28), we get the deformation equations

L1[f0(η)] = 0, f0(0) = 0, f ′
0(0) = 1 f ′

0 → 0 as η → ∞, (5.34)

and for k ≥ 1 we have

L1[fk(η)] = χkL1[fk−1(η)]+c0D
1
k−1(η), fk(0) = 0, f ′

k(0) = 0, f ′
k → 0 as η → ∞, (5.35)

where

χk =





0, k ≤ 1,

1, k ≥ 1.

(5.36)

Here D ξ
k , for ξ = 1, 2, 3, is the homotopy derivative defined to be

D ξ
k−1(η) =

1

(k − 1)!

(
∂k−1

∂qk−1
Nξ

[
∞∑

j=0

fj(η)q
j,

∞∑

j=0

θj(η)q
j

]) ∣∣∣
q=0

. (5.37)

Similarly, substituting (5.31)-(5.33) into (5.29) and (5.30) obtained:

L2[θ0(η)] = 0, θ0(0) = 1, θ0 → 0 as η → ∞, (5.38)

L3[φ0(η)] = 0, φ0(0) = 1, φ0 → 0 as η → ∞, (5.39)

and for k ≥ 1

L2[θk(η)] = χkL2[θk−1(η)] + c1D
2
k−1(η), θk(0) = 0, θk → 0 as η → ∞. (5.40)
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L3[φk(η)] = χkL3[φk−1(η)] + c1D
3
k−1(η), φk(0) = 0, φk → 0 as η → ∞. (5.41)

Using Liao’s Method of Directly Defined Inverses, the deformation equations (5.35) and (5.40)-

(5.41) are

fk(η) = χkfk−1(η) + c0J
[
D1
k−1(η)

]
+ ak,1e

−δη + ak,0, (5.42)

θk(η) = χkθk−1(η) + c1J
[
D2
k−1(η)

]
+ bk,1e

−δη + bk,0, (5.43)

φk(η) = χkφk−1(η) + c1J
[
D3
k−1(η)

]
+ ck,1e

−δη + ck,0. (5.44)

The benifit of the Optimal Homotopy Analysis Mehod is that it has a great freedom to choose

the auxillary linear operators L1, L2 and L3 and initial guesses f0(η), θ0(η), φ0(η). After auxillary

linear operator and initial guesses are properly choosen we are free to determine how many terms

fk, θk, φk ∈ V we want and can do iteratively. There has been great success in solving systems of

nonlinear differential equations using OHAM (see [1], [2], [37], [43]-[52]).

The only drawback of this homotopy analysis method is spending a lot of CPU time. First we

choose auxiliary linear operators, and then solving the linear higher order deformation equation

only to find out the inverse operators and applying them to quickly-growing expressions. How-

ever, in the latest innovation of Liao we have the freedom to directly define inverse operator by

completely neglecting the linear operator. So, using this novel method can solve higher order de-

formation equations quickly and it’s unnecessary to calculate inverse linear operators.
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In our work the inversely defined mapping, J , is the same for all three equations. But different

directly defined inverses could be chosen if a different structure for the solutions f, θ and φ is

required.

Define J : U → V by

J
[
e−kδη

]
=

e−kδη

Ak3 + k
, (5.45)

where A, δ are parameters which will be used to optimize the square residual error functions.

5.3 Results and Error Analysis

The appropriate solutions for the system (5.10)-(5.12) with boundary conditions (5.13)-(5.14) are

obtained using MDDiM. Further used error analysis to get a general idea of how good the approx-

imations are.

Define three term approximation f̂ , θ̂ and φ̂ which is sum of the first three solutions to the defor-

mation equations. If they are exact, then they solve system (5.10)-(5.12), i.e., if N1

[
f̂ , θ̂, φ̂

]
= 0,

N2

[
f̂ , θ̂, φ̂

]
= 0 and N3

[
f̂ , θ̂, φ̂

]
= 0, then the three term approximations are exact solutions. If

not N1

[
f̂ , θ̂, φ̂

]
, N2

[
f̂ , θ̂, φ̂

]
and N3

[
f̂ , θ̂, φ̂

]
become residual error functions that can be evalu-

ated at any point η in the domain of the problem. Taking square of the L2-norm of error functions

and setting converge control parameters to be c0 = c2 = c3 define square residual error functions

Eξ(Le,Nb, Pr,Nt, n, A, c0, δ) =

∫ ∞

0

(
Nξ

[
f̂(η), θ̂(η), φ̂(η)

])2
dη, (5.46)

for ξ = 1, 2, 3. Since we have three error functions we will take affine combination of them as

E(Le,Nb, Pr,Nt, n, A, c0, δ) =
3∑

ξ=1

Eξ(Le,Nb, Pr,Nt, n, A, c0, δ). (5.47)
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But in practice the evaluation ofEξ(Le,Nb, Pr,Nt, n, A, c0, δ) is much time consuming so instead

of exact residual error we use average residual error defined as

Êξ(Le,Nb, Pr,Nt, n, A, c0, δ) =
1

M + 1

M∑

j=0

(
Nξ

[
f̂(j), θ̂(j), φ̂(j)

])2
. (5.48)

Now, we minimize error functions with respect to A, c0, δ and obtained optimal values of A, c0, δ.

Substituting those values in to f̂ , θ̂ and φ̂ we get three term approximation solution to the system

(5.10)-(5.12) which satisfies the conditions (5.13)-(5.14).

We start with initial guesses f0(η), θ0(η) and φ0(η) that satisfy the boundary conditions (5.13)-

(5.14), respectively. We choose

f0(η) =
1

δ
− 1

δ
e−δη, (5.49)

θ0(η) = e−δη, (5.50)

and

φ0(η) = e−δη. (5.51)

Now, using the deformation equations (5.42)-(5.44) to find f1(η), θ1(η) and φ1(η), they are

f1(η) = −1

2

c0(n− 1)

(n+ 1)(4A+ 1)
+

c0(n− 1)

(n+ 1)(4A+ 1)
e−δη − 1

2

c0(n− 1)

(n+ 1)(4A+ 1)
e−2δη, (5.52)

θ1(η)−
1

2

(1 +Nt · δ2 +Nb · δ2)c0 · δ2
4A+ 1

e−δη +
1

2

(1 +Nt · δ2 +Nb · δ2)c0 · δ2
4A+ 1

e−2δη, (5.53)
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and

φ1(η) = −1

4
· Le · c0
4A+ 1

e−δη +
1

4
· Le · c0
4A+ 1

e−2δη. (5.54)

Using only three terms, let f̂(η) = f0(η) + f1(η) + f2(η), θ̂(η) = θ0(η) + θ1(η) + θ2(η) and

φ̂(η) = φ0(η) + φ1(η) + φ2(η), the sum of the square residual error function is given by

E(A, c0, δ) =
1

500

499∑

j=0

(
3∑

ξ=1

(
Nξ

[
f̂(j), θ̂(j), φ̂(j)

]))2

. (5.55)

and it is a function of A, c0 and δ with parameters Le,Nb, Pr,Nt and n in it.

Using three different sets of values for the parameters Le,Nb, Pr,Nt and n we found the sum of

the square residual error E(A, c0, δ) and are presented below.

Table 5.1: Minimum of the squared residual error E(A, c0, δ) for three different sets of parameters.

Le Nb Pr Nt n A c0 δ E(c0, δ, A)

2 2 1 1 0.5 0.1314 −0.6195 0.673 9.71 ×

10−5

3 1 5 0 1 7.8902 −9.3020 1.0394 9.71 ×

10−5

2 2 7 0.5 0.8 0.2476 −0.6906 0.8463 8.28 ×

10−5

The plot of the error functions E(A, c0, δ) is given in Figures 5.2-5.4 for three schemes at their

optimum A values.

The plots of f̂(η) and f̂ ′(η) are presented in Figures 5.5-5.6, for parametric values in Table 5.1 for

E1(A, c0, δ). In Figures 5.7-5.8 the plots of θ̂(η) and φ̂(η) are presented for parametric values in
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Figure 5.2: Plot of E(c0, δ), the squared residual error over η ∈ [0, 499] as a function of c0 and

δ using parameter values Le = 2, Nb = 2,Pr = 1, Nt = 1, n = 0.5, A = 0.1314. The error

function has minimum E(c0, δ, A) = 9.71× 10−5 where c0 = −0.6195 and δ = 0.8462963.

Table 5.1 for E(A, c0, δ).

A very good validation of the present analytical results has been achieved with the numerical re-

sults as shown in Figure 5.9. Also, it is found that the squared residual error decreases as a function

of the number of terms in the approximation series, as shown in Figure 5.10.

The skin friction at the surface |− f̂ ′′(0)| as a function of the stretching parameter n is presented in
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Figure 5.3: Plot of E(c0, δ), the squared residual error over η ∈ [0, 499] as a function of c0 and δ
using parameter values Le = 3, Nb = 1,Pr = 5, Nt = 0, n = 1, A = 7.8902. The error function

has minimum E(c0, δ, A) = 9.41× 10−5 where c0 = −9.30195 and δ = 1.03944.

Figure 5.11. It is found that skin friction decreases with an increase in stretching parameter. Figure

5.12 illustrated Nusselt number |− θ̂′(0)| as a function of Lewis number (Le) and Brownian motion

parameter (Nb). It is found that Nusselt number decreases with increase Nt and Nb. Figure 5.13

illustrated Sherwood number | − φ̂′(0)| as a function of Nt, Nb and it is found that Sherwood

number increases with increase Nt and but decreases with increasing Nb.
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Figure 5.4: Plot of E(c0, δ), the squared residual error over η ∈ [0, 499] as a function of c0 and δ
using parameter values Le = 2, Nb = 2,Pr = 7, Nt = 0.5, n = 0.8, A = 0.24764. The error

function has minimum E(c0, δ, A) = 8.28× 10−5 where c0 = −0.690605 and δ = 0.8462963.

5.4 Discussion

Liao’s Directly Defining inverse Mapping method is extended to a system of three nonlinear

diferential equations. Approximate series solutions for f(η), θ(η), and φ(η) are obtained. Also,

illustrated dimensionless velocity (f(η)), dimentionless temperature (θ(η)) and dimensionless con-

centration (φ(η)) profiles for three set of parameters (see Figures 5.5-5.8) are presented. Further,

analytical results are compared with the numerical results (see Figure 5.9) and studied convergence

of analytical results (see Figure 5.10).
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Figure 5.5: Plot of f̂(η), where Curve 1 has Le = 2, Nb = 2, Pr = 1, Nt = 1, n = 0.5, Curve

2 has Le = 3, Nb = 1, Pr = 5, Nt = 0, n = 1, and Curve 3 has Le = 2, Nb = 2, Pr = 7,

Nt = 0.5, n = 0.8 using their respective error-minimizing convergence control parameter.

Since the inverse operator is directly defined, the series solutions are obtained with less CPU time.

The freedom of choosing the inverse operator leads to obtaining less complicated terms for the

approximation solution. Futher, the selected inverse linear operator leads to three term solution

which is accurate up to five decimal places by optimizing square residual function with respect

to A, δ, and c0. Hence, we can conlude that MDDiM is not only easy to use, but also accurate.

Theoretically, even if a smaller error was desired, it would just amount to computing more terms

in the series by solving deformation equations.Furthermore, one can write an algorithm to iteration

approach and truncate the approximate series solution at a given accuracy.

The idea is novel and is useful. This idea is not limited to a single nonlinear differential equation,

but can be used for system of several equations. Also, it is important to note that finding an inverse

operator that works well for the equation and it leads to an easily generated solution series. Hence,
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Figure 5.6: Plot of f̂ ′(η), where Curve 1 has Le = 2, Nb = 2, Pr = 1, Nt = 1, n = 0.5, Curve

2 has Le = 3, Nb = 1, Pr = 5, Nt = 0, n = 1, and Curve 3 has Le = 2, Nb = 2, Pr = 7,

Nt = 0.5, n = 0.8 using their respective error-minimizing convergence control parameter.

it is worth-while to investigate this inverse linear operator.
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Figure 5.7: Plot of θ̂(η), where Curve 1 has Le = 2, Nb = 2, Pr = 1, Nt = 1, n = 0.5, Curve

2 has Le = 3, Nb = 1, Pr = 5, Nt = 0, n = 1, and Curve 3 has Le = 2, Nb = 2, Pr = 7,

Nt = 0.5, n = 0.8 using their respective error-minimizing convergence control parameter.
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Figure 5.8: Plot of φ̂(η), where Curve 1 has Le = 2, Nb = 2, Pr = 1, Nt = 1, n = 0.5, Curve

2 has Le = 3, Nb = 1, Pr = 5, Nt = 0, n = 1, and Curve 3 has Le = 2, Nb = 2, Pr = 7,

Nt = 0.5, n = 0.8 using their respective error-minimizing convergence control parameter.
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Figure 5.9: Comparison of f(η), θ(η) and φ(η) obtained by the MDDiM 3-term approximation

and shooting method solutions with Le = 2, Nb = 2, Pr = 1, Nt = 1, n = 0.5, where Curve 1 is

shooting method results of f(η), Curve 2 is MDDiM results of f(η), Curve 3 is shooting method

results of θ(η), Curve 4 is MDDiM results of θ(η), Curve 5 is shooting method results of φ(η),
Curve 6 is MDDiM results of φ(η).

Figure 5.10: Plot of Residual Error function verses Terms of approximation , where Curve 1 has

Le = 2, Nb = 2, Pr = 1, Nt = 1, n = 0.5, Curve 2 has Le = 3, Nb = 1, Pr = 5, Nt = 0,

n = 1, and Curve 3 has Le = 2, Nb = 2, Pr = 7, Nt = 0.5, n = 0.8 using their respective

error-minimizing convergence control parameter.
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Figure 5.11: Plot of | − f̂ ′′(0)| versus n, using Le = 3, Nb = 1, Pr = 5 and Nt = 0.

Figure 5.12: Plot of | − θ̂′(0)|, where Curve 1 is | − θ̂′(0)| versus Nt using Le = 3, Nb = 1,

Pr = 5, n = 1, Curve 2 is | − θ̂′(0)| versus Nb using Le = 3, Pr = 5, Nt = 0, n = 1.
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Figure 5.13: Plot of | − φ̂′(0)|, where Curve 1 is | − φ̂′(0)| versus Nt using Le = 2, Nb = 2,

Pr = 1, n = 0.5, Curve 2 is | − φ̂′(0)| versus Nb using Le = 2, Pr = 1, Nt = 1, n = 0.5.
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CHAPTER 6: A METHOD OF DIRECTLY DEFINING THE INVERSE

MAPPING (MDDIM) FOR SOLUTIONS OF NON-LINEAR COUPLED

SYSTEMS ARISING IN SIR AND SIS EPIDEMIC MODELS

In this chapter, we extend Liao’s newly invented MDDiM for a differential equation to a coupled

system of nonlinear differential equations arising in SIR and SIS epidemic models. The method is

novel, extended and is applied to the epidemiology models for the first time. This analytic approach

is more general and can be used to analyze complicated models arising in mathematical biology,

physics and engineering. These results were considered in Dewasurendra et al. [62]

6.1 Background

Epidemiology is the branch of biology that deals with the mathematical modeling of the spread of

diseases. Since the time of Kermack and McKendrick [63], the study of mathematical epidemiol-

ogy has grown repidly and multiple academic research papers discuss the SIR and SIS models (see

[64]-[69]).

We consider the SIR model first, a model that is deterministic. The variables (S, I , andR) represent

the number of people in each compartment at a particular time. The S stands for the susceptible,

which can catch the disease. The I stands for the infective, which are infected and can transmit

the disease to the susceptible. The R stands for the removed classes, who had the disease and

recovered, died, developed immunity, or have been removed from contact with the other classes.
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Some infectives, for example those from the common cold and influenza, do not result in long-

lasting immunity for the previously affected. Here, the infectives can return to the susceptible

class after being healed, and therefore we use the SIS model. The SIS modes are more effective for

diseases caused by bacteria or helminthes agents, as well as for most sexually transmitted diseases.

Kermack and McKendrick [63] provided the mathematical models for SIR and SIS. We use the

MDDiM to get approximate series solutions. This is a creative and effective technique, which has

been proven to work for strongly nonlinear differential equations [3], [40]. In Sections 2 and 3 of

this paper, we develop MDDiM solutions for SIR and SIS models, respectively. Our results are in

very good agreement with Khan et al. [64], Singh [69], and also with the numerical results.

6.2 MDDIM for SIR Model

Consider the clasical SIR model [63] described by

s′(t) = −rs(t)i(t), (6.1)

i′(t) = rs(t)i(t)− αi(t), (6.2)

with boundary conditions

s(0) = S0, i(0) = I0, i′(0) = I0(rS0 − α), s′(0) = −rS0I0, s(∞) = S∞, i(∞) = I∞,

(6.3)
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where s(t), i(t), r > 0 and α > 0 denote susceptibles, infectives, infectivity coefficient of the

typical Lotka-Volterra interaction term, and recovery coefficient, respectively. Additional initial

conditions i′(0) = I0(rS0−α), s′(0) = −rS0I0 were obtained from (6.1) and (6.2). From previous

studies, i(t) decreases monotonically from I0 to 0 when rS0

α
< 1, but increases to a maximum value

and then decreases to zero when rS0

α
> 1. Hence, it always holds that I∞ = 0. Further, it is known

that

S∞ + I∞ − α

r
lnS∞ = S0 + I0 −

α

r
lnS0 (6.4)

and S∞, I∞ can be obtained for known values of S0, I0. Here, I0 > 0, S0 > 0 are given constants

and I∞, S∞ defined to be as follows

I∞ = i(∞), S∞ = s(∞). (6.5)

6.2.1 MDDIM Deformation Equations

The MDDiM is an extension to Optimal Homotopy Analysis Method (OHAM) ( see [1]-[2]) which

is an analitical method that used to solve nonlinear differential equations. Here, we first discuss the

space that the solution come from and obtain the deformation equations for the coupled system.

Then, apply the MDDiM to solve the deformation equations by introducing a suitable inverse

mapping J .

Define two nonlinear operators

N1[s(t), i(t)] = s′(t) + rs(t)i(t), (6.6)

N2[s(t), i(t)] = i′(t)− rs(t)i(t) + αi(t) (6.7)

89



so that N1[s(t), i(t)] = 0 and N2[s(t), i(t)] = 0 give the original coupled equations (6.1)-(6.2)

respectively. After a thorough study of nonlinear sytem (6.1)-(6.2) with the boundary conditions

(6.3), we define linearly independent set of functions

S∞ = {1, e−βt, e−2βt, ...}, (6.8)

with solution space for s(t) and i(t) as

V =

{
∞∑

k=0

ake
−kβt

∣∣ak ∈ R

}
. (6.9)

Next, define the base set for the initial guess as S∗ =
{
1, e−βt, e−2βt

}
by taking the first three terms

of the set S∞, and define spaces for initial guesses for s(t) and i(t) as

V ∗ =
{
a0 + a1e

−βt + a2e
−2βt

∣∣a0, a1, a2 ∈ R
}
. (6.10)

Then the primary solutions, or the initial guesses, µ1(t), µ2(t) ∈ V ∗, have the following forms

µ1(t) =
2∑

k=0

ake
−kβt, µ2(t) =

2∑

k=0

ake
−kβt. (6.11)

Next, define Ŝ as

Ŝ =
{
e−3βt, e−4βt, ...

}
(6.12)

and then define V̂ so that V = V ∗ ∪ V̂ . Hence,

V̂ =

{
∞∑

k=3

ake
−kβt

∣∣ak ∈ R

}
. (6.13)

Now, define

SR = {ψ1(t), ψ2(t), ...} (6.14)
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so that SR is the basis for terms in the codomain of the nonlinear operators N1 and N2. Further, all

the functions expressed by SR form a set of functions, denoted by

U =

{
∞∑

k=1

ckψk(t)
∣∣ck ∈ R

}
. (6.15)

Assuming that N1[s(t), i(t)], N2[s(t), i(t)] ∈ U , say, nonlinear differential operators where N1,N2

are mappings from V to U , i.e. N1, N2 : V → U . Let us construct two homotopies of operators

in order to apply OHAM as follows

0 ≡ H1(s, i, q) = (1− q)L1[s]− c0qN1[s, i], (6.16)

0 ≡ H2(s, i, q) = (1− q)L2[i]− c1qN2[s, i]. (6.17)

Here, H1 and H2 are the homotopies between linear operators L1,L2 and nonlinear operators

N1,N2. Further, q ∈ [0, 1] is the homotopy parameter and c0, c1 are non-zero auxiliary parameters,

called the convergence control parameters. In the frame of MDDiM, let us assume series solutions

for s(t) and i(t) in terms of the homotopy parameter as

s(t) = s0(t) +
∞∑

k=1

sk(t)q
k (6.18)

i(t) = i0(t) +
∞∑

k=1

ik(t)q
k (6.19)

where s0(t) and i0(t) are the initial guesses that satisfy the boundary conditions (6.3) and belong

to V ∗. It is straightforward to choose the initial guesses

s0(t) = S∞ + (2(S0 − S∞)− rS0I0
β

)e−βt + (−(S0 − S∞) +
rS0I0
β

)e−2βt, (6.20)
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i0(t) = (2I0 +
I0(rS0 − α)

β
)e−βt + (−I0 −

I0(rS0 − α)

β
)e−2βt. (6.21)

Obviously, when q = 0 the homotopies (6.16)-(6.17) become L[s] = 0 and L2[i] = 0. Since, c0 and

c1 are non-zero parameters, when q = 1, homotopies (6.16)-(6.17) are equivalent to the original

nonlinear coupled system (6.1) and (6.2). Hence, when q = 1, the series solutions (6.18)-(6.19)

are the solutions to the nonlinear coupled system (6.1)-(6.2). Substituting these series solutions

(6.18)-(6.19) into (6.16), we obtain the so-called deformation equations for k ≥ 1 as

L1[sk(t)] = χkL1[sk−1(t)] + c0δ
1
k−1(t), (6.22)

sk(0) = 0, s′k(0) = 0, sk(∞) = 0, (6.23)

where

χk =





0, k ≤ 1,

1, k > 1.

(6.24)

Here δξk, for ξ = 1, 2, are homotopy derivatives and are defined to be

δξk−1(t) =
1

(k − 1)!

(
∂k−1

∂qk−1
Nξ

[
∞∑

j=0

sj(t)q
j,

∞∑

j=0

ij(t)q
j

])∣∣∣∣∣
q=0

. (6.25)

Similarly, substituting (6.18)-(6.19) into the homotopy defined in (6.17),the other set of deforma-

tion equations is obtained as

L2[ik(t)] = χkL2[ik−1(t)] + c1δ
2
k−1(t), (6.26)
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ik(0) = 0, i′k(0) = 0, ik(∞) = 0, (6.27)

for k ≥ 1 . In the frame of OHAM, equations (6.22)-(6.27) can be used to obtain approximate se-

ries solutions to the coupled nonlinear systems (see [2], [43] - [51]). The only drawback of OHAM

is, it takes lot of CPU time. This happens because, first we choose auxiliary linear operators, and

then solving the linear higher order deformation equation only to find out the inverse operator.

However, in the frame of MDDiM we have freedom to define directly the inverse linear operator

(see [3], [40]) leading to solve higher order deformation equations lot more faster than in OHAM.

Now, following Liao’s MDDiM, the deformation equations are

sk(t) = χksk−1(t) + c0J
[
δ1k−1(t)

]
+ ak,2e

−2βt + ak,1e
−βt + ak,0, (6.28)

ik(t) = χkik−1(t) + c1J
[
δ2k−1(t)

]
+ bk,2e

−2βt + bk,1e
−2βt + bk,0, (6.29)

with boundary conditions

sk(0) = 0, s′k(0) = 0, sk(∞) = 0, ik(0) = 0, i′k(0) = 0, ik(∞) = 0. (6.30)

Since we know initial guesses, can find rest of the terms of series solutions by solving deformation

equations (6.28)-(6.30) In the present study we used the same inverse linear operator J for both

equations. But some one could use different inverse linear operators to get different structures for

solutions if required.

We defined J : U → V , by

J [e−kt] =
e−kβt

Ak3 + k
. (6.31)
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Figure 6.1: Plot of E(h,A) over t ∈ [1, 499] for parameter values S0 = 80, I0 = 50, S∞ = 29.19,

I∞ = 0, α = 10, r = 0.1, β = 7.081. Minimum of E(h,A) = 3.42 × 10−8 at A = −0.0038 and

h = 0.1282.

where A, β are parameters which will be use to optimize the square residual error functions.

6.2.2 Results and Error Analysis

The approximate series solution for the coupled nonlinear system (6.1)-(6.2) with boundary con-

ditions (6.3) are obtained using MDDiM. Further, error analysis is used to get a general idea about

how accurate our approximate solutions are.

First, define a three term approximations for ŝ and î which are sum of the first three solutions
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Figure 6.2: Plot of E(h,A) over t ∈ [1, 499] for parameter values S0 = 13, I0 = 10, S∞ = 3.556,

I∞ = 0, α = 1.5, r = 0.1, β = 1.144. Minimum of E(h,A) = 7.32× 10−7 at A = −0.0045 and

h = 0.8659.

to the MDDiM deformation equations. Then, define residual error functions N1[ŝ(t), î(t)] and

N2[ŝ(t), î(t)] in order to obtain square residual error functions. Now, taking square of the L2-norm

of residual error functions and setting converge control parameters to be c0 = c1 = h we define

square residual error functions

Eξ[h,A, β] =

∫ ∞

0

(
Nξ

[
ŝ(t), î(t)

])2
dt for ξ = 1, 2. (6.32)

But in practice the evaluation of Eξ[h,A, β] is much time consuming so instead of exact residual

error we use average residual error defined as

Eξ[h,A, β] =
1

M + 1

M∑

j=0

(
Nξ

[
ŝ(t), î(t)

])2
for ξ = 1, 2, (6.33)
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Figure 6.3: Plot of E(h,A) over t ∈ [1, 499] for parameter values S0 = 120, I0 = 50, S∞ =
29.421, I∞ = 0, α = 10, r = 0.1, β = 7.058. Minimum of E(h,A) = 1.01 × 10−11 at

A = −0.0269 and h = 0.0868.

and define a total error function by taking affine combination of two square residual functions

E[h,A, β] =
2∑

ξ=1

Eξ[h,A, β]. (6.34)

Next, we optimize the total error function with respect to h,A and β and obtain optimal values for

h,A and β. Substituting optimal values of h,A and β we obtain three term approximation solution

to the nonlinear coupled system (6.1)-(6.2) which satisfies the conditions (6.3).

Taking three sets of parametric values for S0, I0, α and r we obtained total error E[h,A, β] and

presented in the table below. The plots of the total error functions E[h,A, β] for three sets of

respective parametric values are presented in Figs. 6.1, 6.2 and 6.3. The plots of the approximate

series solutions ŝ(t) and î(t) were obtained for parametric values in the Table 5.1 and presened in
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Figure 6.4: Comparison of s(t) obtained by MDDiM 3-term approximation and Runge-Kutta

method solutions with S0 = 80, I0 = 50, S∞ = 29.19, I∞ = 0, α = 10, r = 0.1, where

Curve 1 is Runge-Kutta method results of s(t), Curve 2 is MDDiM results of s(t), Curve 3 is

Runge-Kutta method results of i(t), Curve 4 is MDDiM results of i(t).

Table 6.1: Minimum of the total error E[h,A, β] for three different sets of parameters.

S0 I0 S∞ I∞ α r h A β E[h,A, β]
80 50 29.19 0 10 0.1 0.1282 −0.0038 7.081 3.42× 10−8

13 10 3.556 0 1.5 0.1 0.8659 −0.0045 1.144 7.32× 10−7

120 50 29.421 0 10 0.1 0.0868 −0.0269 7.058 1.01× 10−11

Figs. 6.4-6.6 with numerical results. It is investigated that the present analytical results are in very

good agreement with the numerical results (Runge-Kutta method). Also, we investigated that for

S0r
α

> 1, I initially increases to some maximum number, but eventually decreases and aproches

zero (see Fig. 6.6), and this indicates epidemic spreading behavior. But I tends to zero for S0r
α
< 1

(see Figs. 6.4 and 6.5) and this indicates no epidemic behaviour. Hence, our results agrees with

97



Figure 6.5: Comparison of s(t) obtained by MDDiM 3-term approximation and Runge-Kutta

method solutions with S0 = 13, I0 = 10, S∞ = 3.556, I∞ = 0, α = 1.5, r = 0.1, where

Curve 1 is Runge-Kutta method results of s(t), Curve 2 is MDDiM results of s(t), Curve 3 is

Runge-Kutta method results of i(t), Curve 4 is MDDiM results of i(t).

qualitative analysis of Singh’s [69]. Moreover, our analytical result agree well with the OHAM

solution of Khan et al.[64].

6.3 MDDIM for SIS Model

Consider the basic SIS model [63] described by

s′(t) = −rs(t)i(t) + γi(t), (6.35)

i′(t) = rs(t)i(t)− γi(t), (6.36)
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Figure 6.6: Comparison of s(t) obtained by MDDiM 3-term approximation and Runge-Kutta

method solutions with S0 = 120, I0 = 50, S∞ = 29.421, I∞ = 0, α = 10, r = 0.1, where

Curve 1 is Runge-Kutta method results of s(t), Curve 2 is MDDiM results of s(t), Curve 3 is

Runge-Kutta method results of i(t), Curve 4 is MDDiM results of i(t).

with boundary conditions

s(0) = S0, i(0) = I0, s′(0) = −rS0I0+γI0, i′(0) = rS0I0−γI0, s(∞) = S∞, i(∞) = S∞,

(6.37)

where r > 0, I0 > 0 and S0 > 0. From, (6.35) and (6.36) we obtained additional initial conditions

s′(0) = −rS0I0 + γI0, i
′(0) = rS0I0 − γI0. Also, from (6.35) and (6.36), it is easy to see that,

s+ i = k, where k is a constant. Further, there are two different cases for t approaching to ∞

(i) if γk
r
≤ 1 for any I0, then

i(∞) = 0, s(∞) = k; (6.38)
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(ii) if γk
r
> 1 for any I0, then

i(∞) = k − γ

r
, s(∞) =

γ

r
. (6.39)

In the SIS model, recovered members return to the class of susceptible at the rate of γi. Here, γ is

the recovery coefficient.

6.3.1 MDDIM Deformation Equations

SIS model equations can be solved using a similar approach. From (6.35) and (6.36) we define

N1[s(t), i(t)] = s′(t) + rs(t)i(t) + γi(t), (6.40)

N2[s(t), i(t)] = i′(t)− rs(t)i(t) + γi(t). (6.41)

In the frame of MDDiM, we have the solution series for both s(t) and i(t)

s(t) = s0(t) +
∞∑

k=0

fk(t), (6.42)

i(t) = i0(t) +
∞∑

k=0

ik(t). (6.43)

where s0(t) and i0(t) satisfies all the boundary conditions, and sk(t) and ik(t) is given by

sk(t) = χksk−1(t) + c0J
[
δ1k−1(t)

]
+ ak,2e

−2βt + ak,1e
−βt + ak,0, (6.44)

ik(t) = χkik−1(t) + c1J
[
δ2k−1(t)

]
+ bk,2e

−2βt + bk,1e
−2βt + bk,0. (6.45)
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with boundary conditions

sk(0) = 0, s′k(0) = 0, sk(∞) = 0, ik(0) = 0, i′k(0) = 0, ik(∞) = 0, (6.46)

where c0 and c1 are convergence-control parameters, J is directly defined inverse mapping, and

δξk−1(t) =
1

(k − 1)!

(
∂k−1

∂qk−1
Nξ

[
∞∑

j=0

sj(t)q
j,

∞∑

j=0

ıj(t)q
j

])∣∣∣∣∣
q=0

for ξ = 1, 2. (6.47)

According to (6.46), s′k(t) and i′k(t) tends to infinity. So, we define the spaces

V =

{
∞∑

k=0

ake
−kβt

∣∣ak ∈ R

}
= U. (6.48)

V ∗ =
{
a0 + a1e

−βt + a2e
−2βt

∣∣a0, a1, a2 ∈ R
}
. (6.49)

V̂ =

{
∞∑

k=3

ake
−kβt

∣∣ak ∈ R

}
. (6.50)

such that V = V̂ ∪ V ∗. It is obvious that s(t), i(t) ∈ V and δk(t) ∈ V̂ . Then, the initial guesses s0

and i0 satisfying conditions (6.37) are

s0(t) = S∞ + (2(S0 − S∞) +
I0(γ − rS0)

β
)e−βt + (S∞ − S0 +

I0(rS0 − γ)

β
)e−2βt (6.51)

i0(t) = I∞ + (2(I0 − I∞) +
I0(rS0 − γ)

β
)e−βt + (I∞ − I0 +

I0(γ − rS0)

β
)e−2βt (6.52)

from the space V ∗. Now we can obtain other terms of the series solutions using deformation

equations (6.44), (6.45) and conditions (6.46). Further, we use the same inverse linear mapping
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Figure 6.7: Plot of E(h,A) over t ∈ [1, 499] for parameter values S0 = 25, I0 = 10, S∞ = 15,

I∞ = 20, γ = 1.5, r = 0.1, β = 2. Minimum of E(h,A) = 2.61 × 10−12 at A = −0.0110 and

h = 1.1233.

J defined in (6.31) to obtain series solutions.

6.3.2 Results and Error Analysis

As in SIS model we defined total error

E[h,A, β] =
2∑

ξ=1

Eξ[h,A, β], (6.53)

where

Eξ[h,A, β] =
1

M + 1

M∑

j=0

(
Nξ

[
ŝ(j), î(j)

])2
for ξ = 1, 2. (6.54)
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Figure 6.8: Plot of E(h,A) over t ∈ [1, 499] for parameter values S0 = 10, I0 = 25, S∞ = 1.5,

I∞ = 33.5, γ = 0.1, r = 1
15

, β = 1. Minimum of E(h,A) = 3.06 × 10−5 at A = 0.0432 and

h = 1.6906.

Here, ŝ and î are the three-term MDDiM solutions and set c0 = c1 = h. Next, we optimize total

error function with respect to h,A and β. Then, obtained three term approximation solution to

the nonlinear coupled system (6.35)-(6.36) which satisfies the conditions (6.37) by substituting

optimal values of h,A and β. Taking three schemes of parametric values for parameters S0, I0, α

Table 6.2: Minimum of total error E[h,A, β] for three different sets of parameters.

S0 I0 S∞ I∞ γ r h A β E(h,A, β)
25 10 15 20 1.5 0.1 1.1233 −0.0110 2 2.61× 10−12

10 25 1.5 33.5 0.1 1
15

1.6906 0.0432 1 3.06× 10−5

15 5 20 0 2 0.05 0.6054 −0.0313 1 2.89× 10−17

and r we obtained a total error E[h,A, β] and presented in the Table 5.2. The plots of total error

functions E[h,A, β] for the three schemes were presented in Figs. 6.7, 6.8 and 6.9.
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Figure 6.9: Plot of E(h,A) over t ∈ [1, 499] for parameter values S0 = 15, I0 = 5, S∞ = 20,

I∞ = 0, γ = 2, r = 0.05, β = 1. Minimum of E(h,A) = 2.89 × 10−17 × 10−5 at A = −0.0313
and h = 0.6054.

The plots of approximate series solutions ŝ(t) and î(t) were obtained for parametric values in the

Table 5.2 and presented with numerical results in Figs. 6.10-6.12. Our results, agree very well

with the numerical results. Further, we investigated that for rk
γ
> 1, the infection continues, this

indicates the epidemic case. For rk
γ
< 1, indicating the infection vanish. Hence, our results agree

with Singh’s [69] qualitative analysis. Moreover, our analytical results agree well with the OHAM

solution of Khan et al. [64].
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Figure 6.10: Comparison of s(t) obtained by MDDiM 3-term approximation and Runge-Kutta

method solutions with S0 = 25, I0 = 10, S∞ = 15, I∞ = 20, γ = 1.5, r = 0.1, where Curve 1

is Runge-Kutta method results of s(t), Curve 2 is MDDiM results of s(t), Curve 3 is Runge-Kutta

method results of i(t), Curve 4 is MDDiM results of i(t).

6.4 Discussion

In the present study, MDDiM has been developed and used to solve the SIR and the SIS models

in biology. Approximate analytical solutions for the susceptibles and the infectives were found.

Further, our analytical solutions are in good agreement with Khan et al. [64] and Singh [69], and

also with the numerical results.

The freedom of directly defining the inverse linear mapping leads to three term solutions with less

complicated terms for the approximate series solutions and thus reduce the CPU time. Further,

selected inverse linear mapping leads to three term solution with total error between 10−5 to 10−17

(see Table 5.1 and Table 5.2). Hence, we can conclude that MDDiM is not only efficient, but also
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Figure 6.11: Comparison of s(t) obtained by MDDiM 3-term approximation and Runge-Kutta

method solutions with S0 = 10, I0 = 25, S∞ = 1.5, I∞ = 33.5, γ = 0.1, r = 1
15

, where Curve 1

is Runge-Kutta method results of s(t), Curve 2 is MDDiM results of s(t), Curve 3 is Runge-Kutta

method results of i(t), Curve 4 is MDDiM results of i(t).

accurate. Further, it is worth investigating how to find an inverse linear operator which gives high

accuracy, or leads to easily generated solution terms, or both.

To our best knowledge, this is the first time MDDiM is used to solve mathematical models related

to epidemiology. Further, this novel method is more general and can be used to analyze more

complicated mathematical biology and other models in science and engineering.
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Figure 6.12: Comparison of s(t) obtained by MDDiM 3-term approximation and Runge-Kutta

method solutions with S0 = 15, I0 = 5, S∞ = 20, I∞ = 0, γ = 2, r = 0.05, where Curve 1 is

Runge-Kutta method results of s(t), Curve 2 is MDDiM results of s(t), Curve 3 is Runge-Kutta

method results of i(t), Curve 4 is MDDiM results of i(t).
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CHAPTER 7: CONCLUSION AND FUTURE WORK

Method of Directly Defining the inverse mapping was extended and successfully used to solve

systems of coupled nonlinear differential equations. Approximate solutions were compared with

numerical solutions and OHAM solutions, and found a great match.

It is found that MDDiM solutions can be obtained with less CPU time compare to OHAM solu-

tions. In our study, a single inverse linear map was used to solve deformation equations, and this

was lead to a solution with less complicated terms. Further, it was found that the rate of change

of the series solutions depend on inverse linear map. So, it is worth investigating further how the

inverse map effects the convergence of the series solution.

MDDiM has been extended to solve systems of ordinary differential equations. However, it is

still an open problem to apply this novel method to solve partial differential equations. Hence, I

am focusing my attention to solve partial differential equations arising in science and engineering

applications with MDDiM.
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Kármán equations governing deflections of a thin flat plate, International Journal of Non-

linear Mechanics 47 (2012) 1-6.

[53] M. Dewasurendra, M. Baxter, K. Vajravelu, “A Method of Directly Defining the InverseMap-

ping for Fourth Order Non-Linear Systems Arising in Combined Free and ForcedConvection

in a Second Grade Fluid,” Applied Mathematics and Computation 339 (2018)758-767.

[54] B.D. Coleman, H. Markovitz, Normal Stress Effect in Second-Order Fluids, Journal of Ap-

plied Physics 35 (1964) 1-9.

[55] B. D. Coleman, W. Noll, An approximation theorem for functions with applications in con-

tinuum mechanics, Arch. Rational Mech. Anal. 6 (1960) 355-370.

[56] K. Vajravelu, E. Soewono. Fourth order non-linear systems arising in combined free and

forced convection flow of a second order fluid, International journal of non-linear mechanics

29 (1994) 861-869.

116



[57] W.C. Troy, E.A. Overman II, G.B. Ermentrout, Uniqueness of flow of a second-order fluid

past a stretching sheet, Quarterly of Applied Mathematics 4 (1987) 753-755.

[58] K. Vajravelu, D. Rollins,Heat Transfer in a Viscoelastic Fluid over a Stretching Sheet, Journal

of Mathematical Analysis and Applications 158 (1991) 241-255.

[59] K. Hsiao, Heat and mass mixed convection for MHD visco-elastic fluid past a stretching sheet

with ohmic dissipation, Commun Nonlinear Sci Numer Simulat 15 (2010) 1803-1812.

[60] M. Dewasurendra, K. Vajravelu, On the Method of Inverse Mapping for Solutions of Cou-

pled Systems of Nonlinear Differential Equations Arising in Nanofluid Flow, Heat and Mass

Transfer, Applied Mathematics and Nonlinear Sciences 3 (2018) 1-4.

[61] P. Rana, R. Bhargava, 1. (2012),Flow and heat transfer of a nanofluid over a nonlinear stretch-

ing sheet: A numerical study, Communication in Nonlinear Science and Numerical Simula-

tion 17, 212-226.

[62] M. Dewasurendra, Y. Zhang, K. Vajravelu, “A Method of Directly Defining the inverse Map-

ping (MDDiM) for solutions of non-linear coupled systems arising in SIR and SIS epidemic

models,” Communications in Numerical Analysis (2018).

[63] W.O. Kermack, A.G. MCKendrick, Contribution to the mathematical theory of epidemics,

Procc. Soc. A115 (1927) 700-721.

[64] H. Khan, R.N. Mohapattra, K. Vajravelu, S.J. Liao,The explicit series solution of SIR and

SIS epidemic models, Applied Mathematics and Computation, 215 (2009): 653-669.

[65] O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz, On the definition and computation of the basic

reproductive ratio in models for infectious diseases in heterogeneous population, J. Math.

Biol. 28 (1990) 365-382.

117



[66] H.W. Hethcote, The mathematics of infectious diseases, SIAM Rev. 42 (2000) 599-653.

[67] R.W. West, J.R. Thompson, Models for the simple epidemic, Math. Biosci. 141 (1997) 29-39.

[68] G.C. Pietro, How mathematical models have helped to improve understanding the epidemi-

ology of infection, Early Hum. Dev. 83 (2007) 141-148.

[69] N. Singh, Epidemiological models for mutating pathogen with temporary immunity, Ph.D.

Dissertation (in English), University of Central Florida,Orlando, FL, 2006.

118


	Semi-Analytical Solutions of Non-linear Differential Equations Arising in Science and Engineering
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: MIXED CONVECTIVE BOUNDARY LAYER MHD FLOW ALONG A VERTICAL ELASTIC SHEET
	2.1 Background
	2.2 Mathematical Formulation
	2.3 Homotopy Analysis Method
	2.4 Error Analysis
	2.5 Results and Error Analysis
	2.6 Discussion

	CHAPTER 3: A METHOD OF DIRECTLY DEFINING THE INVERSE MAPPING FOR SOLUTIONS OF COUPLED SYSTEMS OF NONLINEAR DIFFERENTIAL EQUATIONS
	3.1 Background
	3.2 HAM and MDDIM
	3.3 Results and Error Analysis
	3.4 Discussion

	CHAPTER 4: A METHOD OF DIRECTLY DEFINING THE INVERSE MAPPING FOR SOLUTIONS OF NON-LINEAR COUPLED SYSTEMS ARISING IN CONVECTION HEAT TRANSFER IN A SECOND GRADE FLUID
	4.1 Background
	4.2 HAM and MDDIM
	4.3 Results and Error Analysis
	4.4 Discussion

	CHAPTER 5: ON THE METHOD OF INVERSE MAPPING FOR SOLUTIONS OF COUPLED SYSTEMS OF NONLINEAR DIFFERENTIAL EQUATIONS ARISING IN NANOFLUID FLOW, HEAT AND MASS TRANSFER 
	5.1 Background
	5.2 HAM and MDDIM
	5.3 Results and Error Analysis
	5.4 Discussion

	CHAPTER 6: A METHOD OF DIRECTLY DEFINING THE INVERSE MAPPING (MDDIM) FOR SOLUTIONS OF NON-LINEAR COUPLED SYSTEMS ARISING IN SIR AND SIS EPIDEMIC MODELS
	6.1 Background
	6.2 MDDIM for SIR Model
	6.2.1 MDDIM Deformation Equations
	6.2.2 Results and Error Analysis

	6.3 MDDIM for SIS Model
	6.3.1 MDDIM Deformation Equations
	6.3.2 Results and Error Analysis

	6.4 Discussion

	CHAPTER 7: CONCLUSION AND FUTURE WORK
	APPENDIX  : PAPERS PUBLISHED
	LIST OF REFERENCES

