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ABSTRACT 

A qualitative multiple case study was conducted to reveal the sense-making processes 

third-grade students who struggle in mathematics used to build an understanding of fraction 

concepts. Purposive sampling identified three participants who were struggling in a local 

school’s third grade mathematics classes. This research describes how these participants made 

sense of fraction concepts through their strengths and struggles while engaged in 15 small-group 

intervention sessions. Vygotsky’s (1934/1986/2012) theory that children’s optimal learning is 

supported by teacher-student interactions was used as an interpretive framework. Tasks were 

developed over the course of the intervention sessions with consideration of a model developed 

by Lesh, Post, and Behr (1987) for connecting mathematical representations and the Common 

Core State Standards for Mathematics (National Governors Association Center for Best Practices 

& Council of Chief State School Officers, 2010). Data, including transcripts, tapes, and artifacts, 

were analyzed using two frameworks. These were Geary’s (2003) classification of three subtypes 

of learning disabilities in mathematics and Anghileri’s (2006) descriptions of social-

constructivist scaffolding techniques. The first analysis resulted in a description of each 

participant’s strengths and struggles, including alignment with Geary’s subtypes, and how these 

strengths and struggles interacted with participant’s construction of knowledge about fractions. 

The second analysis described episodes of learning that were supported by social-constructivist 

scaffolding techniques and revealed how participants made sense of fractions through their 

interactions with each other, the researcher, and intervention tasks. The researcher found that 

each participant’s learning process, including struggles, was unique, with each interacting in 

different ways with tasks, manipulatives, pictorial representations, and questioning. For each 
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participant, however, scaffolding techniques oriented around prompting and probing questions, 

participant verbalizations, and interactions with connected fraction representations were critical 

in their learning process. 
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CHAPTER 1: INTRODUCTION 

The differences that people are born with are eclipsed by the learning opportunities they 

encounter throughout life, that, combined with the right messages, can propel children to the 

highest levels. 

Jo Boaler, The Elephant in the Classroom, 2015 

Research in mathematics education has long emphasized the need to teach mathematics 

from a conceptually-oriented methodology, particularly elementary school mathematics 

(Carpenter, Franke, Jacobs, Fennema, & Empson 1998; Cobb, Wood, Yackel, Nicholls, 

Wheatley, Trigatti, & Perlwitz, 1991; Cramer, Post, & del Mas 2002; Empson, 1999). Recently 

the widespread implementation of the Common Core State Standards for Mathematics (National 

Governors Association Center for Best Practices & Council of Chief State School Officers, 

2010) has also encouraged some movement toward conceptual learning in public schools 

(Larson, 2012). Larson (2012) asserted that to be successfully implemented this movement must 

become widespread.  

As conceptual learning becomes more common, teachers, mathematics coaches, and 

administrators have begun to consider whether this approach is effective for students who 

struggle. For this study, conceptual learning is defined as learning that occurs when a student 

applies mathematical thinking that builds on his or her current mathematical knowledge, 

understands the methods he or she uses to solve problems, including problem types new to the 

student, and creates connections between different mathematical representations. Conceptual 

learning builds conceptual knowledge which Kilpatrick, Swafford, and Findell (2001) refer to as 

“knowledge that has been learned with understanding” (p. 119). Conceptual learning is supported 
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by instruction that emphasizes students’ thinking strategies, cognitively challenging tasks, and 

multiple mathematical representations (Kilpatrick et al., 2001). 

For this study, the researcher used Geary’s (2003) definition of a student who struggles as 

one who performs in the lowest 25th percentile on nationally normed achievement tests. Many 

researchers (Fuchs & Fuchs, 2003; Fuchs, Schumacher, Long, Nankung, Hamlett, Jordan, 

Gersten, Cirino, Siegler, & Changas, 2013; Hecht & Vagi, 2010; Jitendra, Dupuis, & Zaslofsky, 

2014; Lewis, 2010; Mazzocco & Devlin, 2008) have used  strategies similar to Geary’s to define 

students who struggle as those who perform below a certain percentile on achievement tests. In 

studies about students who struggle in mathematics, the students may or may not be identified as 

having a learning disability. While some studies (Fuchs & Fuchs, 2003; Geary, 2003; Lewis, 

2010) have used these criteria to assert that these students have a mathematical learning 

disability, others (Hecht & Vagi, 2010; Jitendra, Dupuis, & Zaslofsky, 2014) do not comment on 

learning disability status, instead focusing on the students’ status as struggling or experiencing 

difficulties in mathematics. Mazzocco and Devlin (2008) distinguished between performance on 

the Woodcock-Johnson-Revised Calculation Subtest (Houghton Mifflin Harcourt, 1989) score at 

or below the 10th percentile, which they stated indicates a mathematical learning disability, and 

performance above the 10th but at or below 25th percentile, which they stated indicates that a 

student is struggling in mathematics. This study did not seek to determine whether participants 

had a mathematics learning disability, but instead included participants whose performance on 

state achievement tests and progress monitoring assessments indicated that they were struggling 

in mathematics. This is in line with other researchers (Fuchs et al., 2013; Hecht & Vagi, 2010; 

Jitendra, Dupuis, & Zaslofsky, 2014). 
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Some studies have focused on the types of scaffolding techniques that may support 

students who struggle in the process of learning (Anghileri, 2006; Broza & Kolikant, 2015; Dale 

& Scherrer, 2015; Moschkovich, 2015; Pfister, Moser Opitz, & Pauli, 2015; Putambekar & 

Hubscher, 2005; Van de Pole, Volman, & Beishuizen, 2010). For this study, descriptions of 

scaffolding techniques provided by Anghileri (2006) based on her own previous work 

(Anghileri, 1995; Anghileri & Baron, 1998; Coltman, Anghileri, & Petyaeva, 2002) and the work 

of other scholars (Tharpe & Gallimore, 1988; Wood, 1994; Wood, Bruner, & Ross, 1976) were 

used to identify a prevalent set of scaffolding techniques that were used in intervention sessions. 

These techniques are further described in Chapter 2 and include a) prompting and probing; b) 

looking, touching, and verbalizing; c) interpreting student work or talk; d) simplifying a 

problem; e) explaining and justifying; and f) negotiated meaning. Central to each of these 

scaffolding techniques is the intention that the student and teacher work to together to co-

construct knowledge in a social setting (Anghileri, 2006). The use of these scaffolding 

techniques was originally intended to allow the researcher to gain a more thorough 

understanding of the participants’ thinking, including their struggles and strengths. As study 

analysis progressed, it became clear that episodes using scaffolding techniques could be 

classified according to these descriptions, and that participants’ processes of making sense of 

fraction concepts could be analyzed within these episodes. 

The majority of research concerning students who struggle learning mathematics has 

focused on intervention and teaching methods based on procedural instruction that is explicit and 

direct (Flores & Kaylor, 2007; Fuchs et al., 2013; Gersten, Chard, Jayanthi, Baker, Morphy, & 

Flojo, 2009; Jitendra, Griffin, McGoey, Gardill, Bhat, & Riley, 1998; Joseph & Hunter, 2001; 
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Kroesbergen & Van Luit, 2003). Flores and Kaylor (2007) conducted a study with 30 at–risk 

middle school participants in which fraction concepts were taught using direct instruction 

methods that used scripted lessons, demonstration and modeling of tasks by the teacher followed 

by guided practice, and verbal responses in unison to teacher cues. Fuchs and colleagues (2013) 

studied the performance of 129 at-risk fourth-grade students participating in fraction lessons 

oriented around a measurement interpretation of fractions compared to a control group of 130 at-

risk fourth-grade students whose lessons focused on a part-whole interpretation of fractions. 

Although the intervention focused on developing fraction understanding, the lessons were 

constructed to begin with teacher or tutor demonstration of skills, followed by teacher guided 

group work, and ending with independent student work. Joseph and Hunter (2001) conducted a 

qualitative study with three eighth-grade students receiving special education services in which a 

cue card strategy was employed to help the participants successfully complete fraction addition 

and subtraction problems. Cue cards contained examples of fraction addition and subtraction 

problems showing detailed steps in the solution process. Teachers initially instructed students 

how to solve fraction operations problems while showing students how to use the cue cards. 

Students were then expected to choose the appropriate cue card to assist in solving problems. 

The procedural instruction strategies used in these studies stands in contrast to the intent of this 

study, which was to provide an intervention environment focused on conceptual learning in the 

form of student-led construction of solution strategies. 

Furthermore, few qualitative studies have been conducted that focus on how learners who 

struggle come to make sense of mathematics such as fraction concepts (Hunt & Empson, 2015; 

Joseph & Hunter, 2001; Lewis, 2010, 2014). Studies concerning learners who struggle have 
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tended to employ assessment methods that focus on standardized test performance or curriculum-

based test results (Flores & Kaylor, 2007; Fuchs & Fuchs, 2003; Fuchs et al., 2013; Gersten, 

Chard et al., 2009; Jitendra et al., 1998; Kroesbergen & Van Luit, 2003). Ginsburg (1997) 

suggested that measures of quantitative performance lack the ability to qualitatively shed light on 

the sense-making process that students who struggle in mathematics employ to construct 

conceptions of fractions. He further proposed that the complexity of mathematical thinking 

indicates that there is likely to be multiple cognitive processes that contribute to a student’s 

difficulties in mathematics. Also, Ginsburg asserted that researchers need to use investigative 

techniques that involve close observation and participation in students’ problem solving 

processes. Research methods that rely on standardized test results lack the ability to reveal 

student thinking (Ginsburg, 1997). As such, this study was designed to employ a set of 15 

intervention sessions that provided opportunities for the researcher to understand how participant 

made sense of fraction concepts in an environment that supported participant co-construction of 

knowledge with the other participants and the researcher. 

Without this type of research base to establish how students who struggle make sense of 

mathematical concepts during instruction, decisions may be made about instruction and learning 

environments based on assumptions that do not hold for these students. Additionally, fractions 

are considered to be a bridge between whole number mathematics and higher mathematics such 

as algebra, geometry, and calculus (Cramer et al., 2002; Mazzocco, Myers, Lewis, Hanich, & 

Murphy, 2013). A longitudinal study that analyzed data sets from the United States (n = 599) and 

the United Kingdom (n = 3677) was conducted that examined which types of mathematical 

knowledge best predicted later mathematical achievement (Siegler, Duncan, Davis-Kean, 
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Duckworth, Claessens, Engel, Susperreguy, & Chen, 2012). Their analysis found that elementary 

school students’ knowledge of fractions, along with the related concept of division, predicted 

their knowledge of algebra and their performance in mathematics in high school.  The 

researchers proposed that a poor understanding of fractions might cause students to become 

reliant on poorly understood procedures and rote memorization, and that understanding of 

fractions are needed to build solution strategies for algebraic problems. Because of the 

implications of this link, it is of particular importance to address the needs of students who 

struggle to understand early fraction concepts in elementary school. This study was developed to 

answer questions about how three students who struggle in mathematics make sense of early 

fraction concepts during small group intervention sessions.  

Statement of the Problem 

Although many researchers in mathematics education have studied the conceptual 

thinking and reasoning of elementary mathematics students and the need for conceptually-based 

learning prior to instruction in procedures (Carpenter et al., 1998; Cobb et al., 1991; Cramer et 

al., 2002; Empson, 1999), few of these studies have specifically addressed the thinking or 

instructional needs of students who struggle in mathematics. At the same time, research about 

students who struggle in mathematics has tended to focus on procedural interventions and 

quantitative results of standardized tests or curriculum-based measures (Flores & Kaylor, 2007; 

Fuchs & Fuchs, 2003; Fuchs et al., 2013; Gersten, Chard et al., 2009; Jitendra et al., 1998; 

Kroesbergen & Van Luit, 2003).  
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Some researchers have sought to understand the sense-making process of students who 

struggle in mathematics (Broza & Kolikant, 2015; Hunt & Empson, 2015; Joseph & Hunter, 

2001; Lewis, 2010, 2014). Broza and Kolikant (2015) examined the connections between 

meaningful thinking about mathematics and mathematics classroom activities, including 

scaffolded teaching and interactive computer work, for 11 fifth-grade students in an afterschool 

program focused on subtracting of decimal numbers. Lewis conducted a study (2010) focused on 

an eighth-grade student’s conceptual understandings of simplifying fraction during weekly 

tutoring sessions conducted over the course of the academic year and another study (2014) 

focused on two college students’ conceptual understanding of fractional magnitude and the 

relationship between numerator and denominator over a six-week one-to-one tutoring 

intervention. Joseph and Hunter (2001) examined how instruction on a self-regulating strategy, 

the use of cue cards, affected students’ understanding of how to solve fraction addition and 

subtraction problems. 

Few studies have attempted to qualitatively document how struggling third-grade 

students make sense of beginning fraction concepts such as equipartitioning and unit fractions, 

iteration of unit fractions, comparison, and equivalence. One study by Hunt and Empson (2015) 

used clinical interviews to examine how 10 third- through fifth-grade students applied strategies 

to solve equal-sharing problems. The study proceeded to qualitatively compare these students’ 

strategies to strategies for solving equal-sharing problems used by typically-performing students. 

Although this current study was qualitative, it was not a replication of the work of Hunt and 

Empson (2015). Instead, the researcher conducted an exploratory examination of the struggles 
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and strengths of three students, and how they made sense of mathematics with the support of 

social-constructivist scaffolding, while engaged with fraction concepts in intervention sessions. 

Purpose of the Study 

Students who struggle often do not have opportunities to engage in complex 

mathematical thinking throughout elementary and secondary school, and often do not attain 

mathematical proficiencies needed for college success (Boaler, 2015; Gamoran & Hannigan, 

2000). In an economy increasingly dependent on knowledgeable workers (Carnevale & 

Desrochers, 2003), high school mathematics courses beyond the second algebra course are often 

viewed as gatekeepers to college (ACT, 2004; Carnevale & Desrochers, 2003). In fact, in 2004 a 

higher percentage of students (74%) who took higher-level mathematics courses in high school, 

such as trigonometry and calculus, met benchmarks indicating readiness for college algebra than 

students (13%) who completed the second algebra course as their final high school mathematics 

course (ACT, 2004). Students who struggle in mathematics in elementary school often do not 

enter the first algebra course before ninth grade, a circumstance which makes it difficult to take 

classes beyond the second algebra course before graduating high school (Gamoran & Hannigan, 

2000). While success in algebra has been identified as a critical gateway to higher-level 

mathematics courses and college success (Gamoran & Hannigan, 2000), Mazzocco and 

colleagues (2013) identify success with fraction concepts as the most critical gateway along this 

path. Early fraction concepts first substantially appear in the third grade curriculum (NGACBP & 

CCSSO, 2010) indicating that the most critical point in mathematics education leading to the 

potential for college success may be earlier than once thought. Given that students who struggle 
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in mathematics often have learning opportunities that are less conceptual and more focused on 

the rote use of procedures, opportunities to excel in challenging mathematics courses may not 

truly exist for these students (Boaler, 2015; Gamoran & Hannigan, 2000). Boaler (2015) explains 

that while students who struggle are denied opportunities to participate in challenging 

mathematics, it is precisely these opportunities to work on “complex mathematics that enables 

brain connections to develop” (p. xviii) and for the student to experience success in mathematics 

comparable to his or her peers.  

Research on children’s thinking (Carpenter et al., 1998; Cobb et al., 1991; Cramer et al., 

2002; Empson, 1999) over the last several decades has established the abilities of elementary 

aged students to make sense of complex mathematics topics conceptually in learning 

environments where teachers are focused on children’s thinking. Research that is specifically 

focused on how struggling mathematics students make sense of mathematics concepts has been 

less common. However this study attempted to contribute to the growing body of research (Hunt 

& Empson, 2015; Joseph & Hunter, 2001; Lewis, 2010, 2014) that has sought to qualitatively 

understand and describe how learners who struggle make sense of fraction concepts. This 

researcher did not find in her review of the literature a qualitative study that described the 

struggles and strengths of third-grade students who struggle in mathematics or that explored how 

these students interacted with social-constructivist scaffolding as they made sense of fraction 

concepts. The proposed qualitative multiple case study was intended to address this gap in the 

literature. Attention to this gap is important because a body of research, involving both 

qualitative and quantitative methods, concerning how learners who struggle make sense of early 
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fraction concepts is needed to shed light on their needs as they are engaged in conceptually 

complex mathematics. 

Research Questions 

Two research questions for this study were designed to elicit a description of the 

participants’ individual struggles and strengths, and to describe how the participants made sense 

of third-grade fraction concepts in intervention sessions using social-constructivist scaffolding 

techniques. Geary’s (2003) classification of learning disabilities in mathematics was used as a 

lens to assist in description of struggles and strengths. Anghileri’s (2006) descriptions of social-

constructivist scaffolding techniques were used to identify and analyze participant interactions 

during episodes of scaffolding. According to the Common Core State Standards for Mathematics 

(NGACBP & CCSSO, 2010), fraction concepts covered in third grade include equipartitioning 

and unit fractions (3.G.2, 3.NF.2.a), iteration of unit fractions (3.NF.1, 3.NF.2.b), fraction 

equivalence (3.NF.3.a, 3.NF.3.b, 3.NF.3.c), and fraction comparison (3.NF.3.d). Both research 

questions for this study addresses these fraction concepts presented in the CCSSM standards 

covered in third grade. The research questions for this study are as follows: 

1. What struggles and strengths of third-grade students are revealed in a small group 

intervention supported by social-constructivist scaffolding while focused on fraction 

concepts? 

2. How do third-grade students who struggle in mathematics interact with social-

constructivist scaffolding techniques as they make sense of fraction concepts? 
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Research Study Organization 

This research study is presented in five chapters. This first chapter provides a rationale 

for the proposed study, a statement of the problem, the purpose of the proposed study, and the 

first presentation of the research questions. Chapter 2 presents a review of literature pertinent to 

this study, beginning with the establishment of an interpretive framework to guide the study 

based on Vygotsky’s theories that children’s optimal learning is supported by teacher-student 

interactions. Vygotsky (1934/1986/2012) put forth that a child can learn concepts that would 

otherwise be beyond his or her abilities if a teacher works in conjunction with the student to 

make sense of the concepts. Although Vygotsky (1930-1934/1978) viewed overly directed 

teaching as interfering with the child’s ability to make sense of concepts, he believed the role of 

the teacher or tutor in supporting the student’s development of conceptual understanding is 

crucial. Vygotsky (1930-1934/1978) proposed that the teacher or tutor should seek to co-

construct knowledge with the child by asking probing and redirecting questions, and that only 

through this process is it possible to understand what the child is capable of learning and how the 

child develops an understanding of the concepts being considered (Vygotsky, 1930-1934/1978). 

 Chapter 3 reviews the research questions, explains the use of a case study research 

design, and details the procedures used for data collection and analysis including those intended 

to contribute to the trustworthiness of the study. Case study research design is well suited to 

answer research questions that seek to uncover how a process occurs, such as those posed in this 

study asking how students make sense of early fraction concepts. Furthermore, Butler (2006) 

suggests that the use of a case study research design can uncover links between an intervention 
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and a student’s learning while also acknowledging that case study research is often conducted 

under circumstances partially beyond the researcher’s control.  

Chapter 4 begins with a bracketing statement by the researcher concerning her personal 

experiences with students and family members who have had learning struggles and her attempt 

to set these experiences aside for the current study. Descriptions of participants and the 

intervention sessions are provided. Two frameworks for analysis are described and applied. 

Subtypes for classifying learning disabilities in mathematics, developed by Geary (2003), were 

used for the first framework to analyze the misconceptions and errors that influenced each 

participant’s process of making sense of fraction concepts. A pattern of strengths for each 

participant also emerged and is presented as well. An analysis of how participants interacted with 

scaffolding techniques, as described by Anghileri (2006) and implemented during intervention 

sessions by the researcher, is presented as the second framework. 

Chapter 5 begins with the presentation of findings for the study. First, findings associated 

with the first analysis framework, subtypes of mathematical difficulties, are presented followed 

by presentation of findings for the second analysis framework, scaffolding techniques. The 

implications of the findings are discussed next. Finally, recommendations for future research and 

a concluding statement for the manuscript are presented. 
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CHAPTER 2: LITERATURE REVIEW 

This review of the literature begins with an overview of the interpretive framework used 

to guide the research study including Vygotsky’s theories on children’s optimal learning and 

teacher-student interactions that support this learning, continues with a discussion of the 

literature on instruction that supports children’s learning of mathematics and children’s learning 

about fraction concepts including a representational model (Lesh, Post, & Behr, 1987) and a 

learning progression based on the Common Core State Standards for Mathematics (NGACBP & 

CCSSO, 2010) which may support this learning. It concludes by addressing issues related to 

students who struggle, their identification, their thinking and learning, and interventions designed 

to improve their performance and understanding. 

Interpretive Framework 

With the work of Piaget in the 1960s, theories about how children learn moved from a 

cognitivist perspective to a more constructivist perspective. Constructivist theories were widened 

to include a social dimension when the research of Vygotsky, originally conducted in Russia in 

the 1920s and 1930s, became popular in the United States in the 1960s (Fosnot, 1996).  Social-

constructivist theories of learning posit that children actively construct information in their own 

minds while interacting with teachers, other students, and their environment, rather than receive 

information passively from adults (Fosnot, 1996). Vygotsky (1934/1986/2012) defined Piaget’s 

ideas on the development of children’s thinking as falling into two categories: informal, 

everyday learning and formal, school learning. According to Vygotsky (1934/1986/2012), 

Piaget’s conceptions of children’s learning require informal learning to be in conflict with formal 
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learning, and true academic learning to only occur when formal learning gains primacy over 

informal learning.  

Further, Vygotsky (1934/1986/2012) stated that Piaget created a separation between 

learning that involved creation of knowledge within the child’s mind and learning that involved 

internalization of information obtained from the environment. Although Vygotsky used many of 

Piaget’s early ideas on children’s thinking and learning in developing his theories, he departed 

from Piaget in important ways. Vygotsky (1934/1986/2012) proposed that the separation 

between informal and formal learning is an artificial construct, that children process formal 

information in much the same way they process informal information, and that children bring to 

the class environment informal understandings of concepts that need to be integrated into formal 

understandings established by society. To accomplish this purpose a child must, in conjunction 

with the learning community including the teacher and classmates, construct meanings from 

classroom activities. Although Vygotsky (1934/1986/2012) admitted that there had been little 

focus on how children come to understand formal information until that time, he proposed that 

his observations of children learning suggested that a child will resist direct suggestions of 

teachers, and will only change in their ability to understand a concept gradually over time, with 

more experience working with a concept. Vygotsky (1934/1986/2012) posited that what appears 

to be learning of formal concepts on the part of the child is often no more than the child parroting 

the teacher, and that the child cannot reason about the concept unless there is a deeper exposure 

to the concept supported by the teacher’s methods. Essentially, Vygotsky (1934/1986/2012) 

believed Piaget was shortsighted in denying a connection between a child’s development of 

concepts and teacher instruction, and further stated that Piaget’s view is one of conflict and 
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antagonism between the formal and informal, rather than a productive connection between the 

two.  

In extending Piaget’s ideas on constructing knowledge, Vygotsky (1934/1986/2012) put 

forward that children’s formal learning is dependent on their informal constructions of 

knowledge, and that it is possible to determine the level of formal learning a child is prepared to 

understand. Furthermore, a child can learn concepts that would otherwise be beyond his or her 

abilities if the teacher works in conjunction with the student to make sense of concepts. Although 

Vygotsky (1930-1934/1978) viewed overly-directed teaching as interfering with the child’s 

ability to make sense of concepts, he believed the role of the teacher in supporting concept 

development was crucial. Vygotsky (1930-1934/1978) posited that it is not possible to ascertain 

what the child has learned or how it is learned by focusing only on the child’s answers to 

problems. Instead, the adult should work with the child by asking probing and redirecting 

questions in an attempt to understand how the child develops an understanding of the concepts at 

hand (Vygotsky, 1930-1934/1978). In fact, Vygotsky proposed that academic testing or school 

tasks performed by children in isolation could reveal very little about a child’s knowledge or 

capabilities. According to Fosnot (1996), Vygotsky argued “that the progress in concept 

formation achieved by the child in cooperation with an adult was a much more viable way to 

look at the capabilities of learners” (p. 19).  

Optimal learning occurs, according to Vygotsky (1930-1934/1978), when a child works 

near the limits of his or her capabilities with the support of the teacher in developing concept 

knowledge. Vygotsky (1930-1934/1978) referred to such an event as a child working within his 

or her zone of proximal development. Although an untimely death prevented Vygotsky from 
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extending his theories about this idea, using it in teaching became a focus of many educational 

researchers and theorists in western culture as translations of Vygotsky’s work became available 

in English (Fosnot, 1996).  Extending from Vygotsky’s theories on expert-novice interactions 

within the zone of proximal development, scholars developed the metaphor of scaffolding 

(Fosnot, 1996). 

The term scaffolding is attributed to Jerome Bruner and his colleagues (Bruner & Ratner, 

1978; Ninio & Bruner, 1978; Wood, Bruner, & Ross, 1976) but was also further developed as a 

concept by others including Cazdan (1983), Cambourne (1988), and Graves (1983). Although 

scaffolding has become a term commonly used in mathematics education, early researchers 

(Bruner & Ratner, 1978; Cambourne, 1988; Cazdan, 1983; Graves, 1983; Ninio & Bruner, 1978; 

Wood, Bruner, & Ross, 1976) who developed descriptions and processes of scaffolding did so 

within the realms of literacy education and parenting. While some proponents (Cazdan, 1983) 

held to a description of scaffolding as a process using direct instruction and modeling at 

developmentally crucial moments, others (Cambourne, 1988; Graves, 1983) viewed scaffolding 

as the teacher’s use of knowledge about the child’s thinking to propose questions or suggest 

possibilities that the child is well poised to investigate.  

According to Stone (1998a), some scholars have debated the usefulness of considering 

instruction with scaffolding as different from effective teaching, asserting that the elements of 

scaffolding merely match those of effective teaching. Other scholars (Broza & Kolikant, 2015; 

Moschkovich, 2015; Putambeker & Hubscher, 2003) point to issues that may be unique to 

learners who struggle, including tendencies to regress in understanding, unpredictability in 

constructing knowledge, and difficulties in assuming responsibility for learning, which 
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necessitate a metaphor such as scaffolding to highlight the unique instructional needs of this 

group. Stone (1998a, 1998b) argued for continued use of the scaffolding metaphor and expressed 

concern that the roots of scaffolding might be poorly understood among practitioners, leading to 

scaffolding methods that abandoned the original social-constructivist intent of scholars. Stone 

(1998b) contended that the roots of scaffolding rest squarely in the work of Vygotsky and his 

theories on expert-novice interactions. As such, scaffolding should be understood as part of a 

social constructive process involving co-construction of meaning between the teacher and the 

student (Stone, 1998b). Although Bruner is credited with introducing the term in 1976, Cazdan 

was the first to explicitly link the term to Vygotsky’s theories in her studies of language 

development and parent-child interactions (Stone, 1998b). However, Bruner later acknowledged 

the explicit connections between his metaphor of scaffolding and the theories of Vygotsky 

(Bruner, 1986; Stone, 1998b). Instruction that supports students’ conceptual learning of 

mathematics aligns with Vygotsky’s theories on social-constructivist learning. Specifically, 

instruction grounded in discourse in which students discuss, support, and compare their solution 

strategies for cognitively challenging tasks with teacher scaffolding encourages student learning. 

For this study, the researcher attempted to apply these ideas about children’s learning of 

mathematics in the preparation for and conduction of the intervention sessions with the three 

participants. 

Scaffolding 

Although within mathematics education there is no generally agreed upon definition of 

scaffolding (Broza & Kolikant, 2015; Putambekar & Hubscher, 2005; Van de Pole et al., 2010), 
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scholars point to some common elements of scaffolding (Anghileri, 2006; Broza & Kolikant, 

2015; Dale & Scherrer, 2015; Moschkovich, 2015; Pfister et al., 2015; Putambekar & Hubscher, 

2005; Van de Pole et al., 2010) including features such as: a) continual diagnosis during teaching 

and student work; b) intervention through questioning techniques; c) removal of scaffolding 

when possible; d) maintenance of student responsibility for thinking and learning; and e) student 

explication of mathematical thinking. In addition, Anghileri (2006) proposed that scaffolding 

should include concrete manipulatives and student-generated representations. Of particular 

importance to effective scaffolding are questioning techniques centered on the use of probing 

questions intended to push forward students’ mathematical understandings and to remediate 

misunderstandings (Anghileri, 2006; Dale & Scherrer, 2015; Moschkovich, 2015). In a quasi-

experimental video-observation study of 36 third-grade teachers’ scaffolding practices in 

classrooms that included learners who struggle, Pfister and colleagues (2015) found that 

although a slight majority (54%) of teachers in the study were skilled at choosing tasks and using 

manipulatives, few (25%) were able to effectively use questioning techniques or conduct on-

going evaluation to provide scaffolding. Wood (1994) proposed that interactions that teachers 

enact with students fall into two patterns, funneling and focusing. Funneling interaction 

techniques use questions that attempt to lead students through set of predetermined steps or 

procedures. Wood proposed that this pattern lead to superficial rather than meaningful 

mathematical understandings, while a focusing pattern would leave responsibility for 

mathematical thinking with the students. A focusing pattern uses questions that ask students to 

develop strategies to solve problems and to make sense of underlying concepts (Wood, 1994). 
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Anghileri further developed the ideas of scholars (Tharpe & Gallimore, 1988; Wood, 

1994; Wood, Bruner, & Ross, 1976) who examined scaffolding and questioning techniques; she 

used these ideas in a series of observation and interview studies (Anghileri, 1995; Anghileri & 

Baron, 1998; Coltman, Anghileri, & Petyaeva, 2002) to develop a hierarchy of scaffolding 

activities including descriptions of scaffolding techniques. Tharpe and Gallimore (1988) used the 

term assisted learning to classify interactions between teachers and learners into six strategies as 

follows: a) modeling a process for imitation; b) rewarding or punishing based on desired 

behavior; c) giving feedback; d) instructing in specific actions; e) questioning that guides the 

student; and f) attending to cognition of student. Wood and colleagues (1976) also proposed a set 

of six scaffolding strategies as follows: a) enlisting student interest and engagement; b) 

simplifying a task; c) keeping the student focused on an objective; d) challenging and confirming 

student thinking; e) responding to the student’s frustration level; and f) modeling solution 

strategies. Anghileri noted the common features of both sets of scaffolding techniques that focus 

on student cognition such as questioning that guides the student (Tharpe & Gallimore, 1988) and 

challenging and confirming student thinking (Wood et al., 1976).  

In a set of case studies examining the interactions between nine to 13 year old students 

and their teachers about division problems, Anghileri (1995) found that students often connected 

language and strategies to mathematical contexts in ways that were not accurate. Observations of 

these cases showed that teachers who were able to bring listen carefully to students’ reasoning 

then bring attention to the context of tasks encouraged students to interpret problems more 

accurately and find reasonable strategies to solve these problems (Anghileri, 1995). In a 

subsequent study, Anghileri and Baron (1998) observed 40 kindergarten students and 28 first-
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grade students in three schools who engaged with shape blocks during free-play time over eight 

weeks. They tested students before and after the intervention for success in five skills using the 

shape blocks including: a) matching two-dimensional shapes to three-dimensional shapes; b) 

measuring a tower of blocks; c) matching shapes using touch only; d) sorting blocks by shape; 

and e) reproducing a sequence of given blocks. Although students improved on some tasks after 

the intervention, the researchers found that kindergarteners had lower performance on matching 

shapes using touch and sorting blocks, while first-graders had lower performing on sorting 

blocks and reproducing a sequence. Anghileri and Baron asserted that free play was not adequate 

to help students in building an understanding of tasks involving classification of the blocks. 

Without opportunities to “describe and discuss their constructions with a teacher or peer whose 

mathematical understanding enables discussion,” students were unable to progress in their 

understandings (Anghileri & Baron, 1998, p.63). 

By examining the work of other scholars and her own research findings, Anghileri (2006) 

was able to develop an explanation of scaffolding on three levels with associated descriptions of 

specific scaffolding techniques within the three levels. The first level, which Anghileri identified 

as the environment, includes choices the teacher makes before instruction about grouping 

students, selecting tasks, and making manipulatives available. Also included in this level are 

statements made by the teacher during instruction to gain attention, encourage students, and 

validate student work. The second level is referred to as explaining, reviewing, and 

restructuring, and relates to the interactions between teachers and students that are specifically 

about mathematics. Within this level, Anghileri (2006) describes the following techniques: a) 

prompting and probing; b) looking, touching, and verbalizing; c) interpreting student work or 



 
 

21 

talk; d) simplifying a problem; e) explaining and justifying; and f) negotiated meaning. Table 1 

presents a summary of these scaffolding techniques as described by Anghileri. 

Table 1 

Level Two Scaffolding Techniques as Described by Anghileri (2006) 

Technique Description 

Prompting and Probing  Using questions to guide the student to a mathematical idea or 
solution 

 Using questions to guide the student to think more deeply 
 

Looking, Touching, and 
Verbalizing 

 Objects are manipulated or pictorials created by students 

 Students analyze and discuss what they see 

 Students talk about their mathematical ideas to others 
 

Interpreting Student 
Work or Talk 
 

 Clarifying student work 

 Clarifying student talk 

Simplifying a Problem  Creation of an intermediate task to shed light on concepts and 
strategies related to the original tasks 

 Cognitive complexity of the original task should be maintained 
 

Explaining and 
Justifying 

 Opportunities embedded within instruction for students to 
support or prove their work verbally 

 Opportunities embedded within instruction for students to 
support or prove their work in written format 

 
Negotiated Meaning  Development of mathematical ideas that are agreed upon by 

students 

 Supported by teacher guidance 

 Errors and misconceptions are addressed 

 Mathematical knowledge is created and shared within the group 
 

 

The third level is identified as developing conceptual thinking and includes discussions 

generated and guided by teachers that generalize mathematical ideas and develop connections 

between these ideas. While aspects of each of the three levels of scaffolding as proposed by 
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Anghileri (2006) occurred during this study, the researcher found that scaffolding techniques 

described within the second level were most prevalent and, as such, were chosen as a framework 

for analysis for this study. 

Instruction That Supports Children’s Learning of Mathematics 

According to Cobb, Yackel, and Wood (1992), the process of learning can be seen as 

unfolding simultaneously in the mind of the learner and in a social context. In their qualitative 

case study, Cobb and colleagues (1991) described learning opportunities that occurred in a 

second-grade year-long teaching experiment that used cooperative learning and discourse in 

ways not typical in traditional classrooms at that time. The teacher and 20 second-grade students 

participated in the study in which the researchers developed instructional activities, observed 

classroom activities, and video-taped class sessions for further analysis. Cobb and colleagues 

(1991) identified themes that emerged from the research, such as greater learning opportunities 

for the students generated by cooperative work, teacher-guided discourse used as a tool to 

construct meaning, and more focus on cognitively-challenging problem solving throughout the 

year. To expand on the themes generated in the work of Cobb and colleagues (1991), scholarly 

work concerning discourse in learning environments, the use of cognitively-challenging tasks, 

and the maintenance of cognitive challenge during implementation of tasks will be examined in 

greater detail in this discussion of the literature. For this study, this literature was used to inform 

the researcher’s selection and implementation of intervention tasks, and attempts to guide 

discourse with the participants. It was the researcher’s intention to ground the tasks and 
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discourse of the intervention sessions in practices shown to support students in building 

understanding of mathematical ideas. 

Discourse 

Discourse in the learning environment is crucial to the development of students’ 

understanding of mathematics concepts; however, the techniques a teacher uses to implement 

discourse can undermine, rather than support, student learning as a focus on low level discourse 

patterns has been shown to inhibit students from engaging in higher level thinking (Imm & 

Stylianou, 2012). Students engaged in discussion about a mathematics task with the teacher, 

other students, or the teacher and other students in conjunction, are participating in mathematical 

discourse (Hiebert & Wearne, 1993; Imm & Stylianou, 2012; Mehan, 1979; Nathan & Knuth, 

2003; Stein, Engle, Smith, & Hughes, 2008). The following is a discussion of two patterns of 

discourse discussed in the literature:  initiation, response, evaluation (IRE), and initiation, 

demonstration, evaluation and elaboration (IDE). 

Initiation, response, evaluation (IRE). Mehan (1979) described a typical pattern of 

mathematical discourse that involved a teacher posing questions with one solution and that do 

not require a high level of thought. Mehan (1979) presented and analyzed three excerpts from 

first grade lessons on reading. After the teacher asked an initial question, students would attempt 

to provide short answers in succession until a correct answer was provided. The teacher would 

verify that the final answer given was correct and then would progress to another problem with 

little or no discussion of the meaning of the answer. If a correct answer was not obtained, the 

teacher would repeat questions or reduce the complexity of the questions until a correct answer 
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was provided by a student. Mehan (1979) noted that this pattern of simplistic questions and short 

answers without elaboration would be repeated many times in a mathematics lesson and he 

labeled this pattern of discourse initiation, response, evaluation (IRE). He posited that instruction 

oriented around IRE discourse patterns limited teachers’ ability to evaluate students’ learning 

and students’ opportunities to work with more challenging tasks. Several researchers have 

identified this IRE discourse pattern in learning environments in the United States (Hiebert & 

Wearne, 1993; Imm & Stylianou, 2012; Nathan & Knuth, 2003). Hiebert and Wearne (1993) 

proposed that “the kind of talk in which the teacher and students engage must have some effect 

on learning” (p. 396). They conducted a 12 week observation study of six second-grade 

classrooms in one school while instruction focused on multi-digit addition and subtraction. Two 

classrooms implemented instruction that emphasized an understanding of place value and gave 

students opportunities to connect different representations and solution strategies, while four 

classrooms continued with traditional instruction strategies that emphasized teacher-led 

development of procedures. The researchers found that in three of the four traditional 

classrooms, teachers asked fewer questions and these questions were predominantly about recall 

of facts and procedures. Extended descriptions and explanations were not called for by the 

teacher nor provided by students. Hiebert and Wearne (1993) found this was in contrast to 

discourse in the two treatment classrooms that emphasized an understanding of concepts where 

they observed questioning that called for students to describe their own and others’ strategies, 

provide extended explanations, and pose new problems to the class. Within these classrooms, an 

understanding of concepts was described by the researchers as including student-generated 
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strategies and application of these strategies and understandings to new tasks without a 

prescribed or teacher-guided procedure. 

Initiation, demonstration, evaluation and elaboration (IDE). Nathan, Eilam, and Kim 

(2007) described an alternative discourse pattern based on their observation of a sixth-grade 

mathematics classroom, which they labeled initiation, demonstration, evaluation and elaboration 

(IDE). In the classroom, 20 sixth-grade students worked on one high level task for over an hour, 

cutting a pie into six equal-sized pieces with only three cuts, progressing from individual work to 

small group work and then to class discourse. The task, developed from a question proposed by a 

classmate, comprised the majority of the mathematics lesson and included students developing 

their own solution strategies independently and in conjunction with their small group before 

explaining their strategies to the class. Student-generated questions were the major vehicle used 

to make sense of one another’s thinking during the explanatory portion of class discourse. 

Although Nathan and colleagues (2007) found that most discourse segments during the whole 

class portion of the lesson were initiated by the teacher, students provided the majority of the 

explanations and questions during discourse and were able to generate new mathematical 

questions that deepened thinking about the topic. 

Researchers (Imm & Stylianou, 2012; Nathan & Knuth, 2003) have described learning 

environments that utilize IDE discourse patterns as including direct student-to-student talk, 

student questioning, and judgment of solutions by the class, rather than the teacher. Students are 

responsible for explaining their own mathematical reasoning as well as making sense of the 

mathematical reasoning of their classmates (Imm & Stylianou, 2012; Nathan & Knuth, 2003). 

The teacher’s role becomes that of facilitator, as he or she guides students through 
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mathematically rich discussion, rather than that of a conferring authority of mathematical 

knowledge (Kilpatrick et al., 2001; Stein et al., 2008). Five teacher practices that support 

implementation of high level mathematical discourse were proposed by Stein and colleagues 

(2008): a) anticipating common student answers to high-level tasks; b) observing student 

responses during individual and small-group work; c) carefully selecting student work to present 

for discussion; d) attending to the order of presentation of student work; and e) facilitating 

discussion so that students make mathematical connections between different students’ solution 

strategies and between student solution strategies and mathematical ideas. For this study, 

anticipating the participants’ answers and observing participants’ responses were particularly 

relevant to the researcher, although it often proved difficult to anticipate answers. 

Cognitively Challenging Tasks 

Meaningful mathematical discourse occurs when students are presented with cognitively 

challenging mathematical tasks (Hiebert & Wearne, 1993; Imm & Stylianou, 2012). 

Mathematical tasks that elicit high-level discourse patterns require cognitively-deep student 

thinking, can be solved with multiple methods, and may result in more than one solution 

(Chapin, O’Connor, & Anderson, 2003; Nathan et al., 2007; Stein et al., 2008). According to 

Stigler and Hiebert (2004), the selection and implementation of cognitively-challenging tasks 

was the single factor found in common among countries with high achievement on the Trends in 

International Mathematics and Science Studies (TIMSS) of 1995 and 1999. Japan, the only high 

achieving country in both TIMSS studies, was found to have students spend an average of 15 

minutes on each problem as compared to lower-performing countries, including the United 
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States, in which students averaged five minutes spent on each problem. Although lessons in 

Japan were found to consist almost entirely of challenging tasks in which students were often 

required to develop their own solution strategies, lessons in other high-performing countries, 

such as Hong Kong, were found to devote a large portion of class time to teacher-led instruction 

in procedures while maintaining a smaller portion of class time for solving cognitively-complex 

tasks. However, regardless of the amount of time in the lesson devoted to challenging tasks, 

Stigler and Hiebert (2004) observed that teachers in high-performing countries consistently 

approached cognitively-complex tasks as conceptual exercises for the students to perform rather 

than the more commonly observed technique in low-performing countries in which teachers 

converted problems into procedures for the students to imitate. Essentially, Stigler and Hiebert 

(2004) asserted that it was the implementation of cognitively-challenging tasks that separated 

high-performing countries from low-performing countries. 

Implementation 

Several researchers (for example, Boston, 2012; Hiebert & Wearne, 1993; Stein, Grover, 

& Henningsen, 1996; Stein, Remillard, & Smith, 2007; Wilhelm, 2014) have pointed to the 

importance of task selection that supports high-level cognitive reasoning while at the same time 

emphasizing the importance of the teacher’s ability to maintain the task at a high cognitive level 

during implementation. Stein and colleagues (2007) noted that although curriculum materials 

that emphasized cognitively-complex tasks were critical in supporting teachers’ enactment of 

students’ high-level mathematical thinking, no curriculum is self-enacting. To support high-level 

cognitive reasoning, tasks need to be set up to encourage multiple solution strategies, to lend 
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themselves to multiple representations, to require explanation and justification of students’ 

solutions and strategies, and to involve group work as well as independent work. During 

implementation, multiple solution strategies and representations need to be used with 

explanations and justifications provided (Stein et al., 1996). Research on teaching (Boston, 2012; 

Boston & Smith, 2009; Stigler & Hiebert, 2004) has shown that teachers in the United States 

often lower the cognitive demand of tasks during implementation. During their observation study 

of twelve classrooms observed multiple times over a period of three years, Henningsen and Stein 

(1997) found that five factors dominated in supporting high-level implementation of cognitively-

challenging tasks: a) building on students’ prior knowledge; b) scaffolding that does not simplify 

the task; c) using the right amount of time for a task (not too little or too much); d) sustaining 

pressure for explanation and justification; and e) modeling of high-level performance by the 

teacher and students.  

Wilhelm (2014) built on these factors by explaining that teachers should make sure 

students are familiar with contexts being used in tasks, use tasks with multiple entry points, and 

describe students’ contributions as important. In a four year longitudinal study of 213 middle 

school teachers that sought to find correlations between various teacher factors and teachers’ 

maintenance of cognitively challenging tasks, she found several significantly correlated factors. 

These were teachers’ content knowledge for teaching mathematics (B = 1.08; p < .05), inquiry-

oriented views of instruction (B = 1.28; p < .05), and productive views about instruction for 

students who were struggling (B = 1.07; p < .05). Wilhelm (2014) defined productive views 

about instruction for students who struggle as teacher beliefs which held that all students can be 

supported to successfully work with cognitively complex mathematics. Notably, Wilhelm (2014) 
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found that a significant subset of teachers recognized the need for students to work on 

cognitively-challenging tasks, but indicated that they believed students who struggle needed 

more exposure to drill and procedure-oriented tasks before working at a higher level. These 

teachers often lowered the cognitive demand of the assigned tasks by eliminating the need for 

students to construct their own solution strategies. Instead, the teachers provided explicit 

instruction in a solution strategy through examples and removed prompts to explain and justify 

student thinking (Wilhelm, 2014). Contrary to this practice, Carpenter and colleagues (1998) 

found that students who solved and explained cognitively-complex problems with their own 

solution strategies before, or instead of, instruction in procedures demonstrated a deeper 

understanding of mathematics concepts. In keeping with Cambourne’s (1988) interpretation of 

Vygotsky’s ideas, Carpenter, Fennema, Peterson, Chiang, and Loef (1999) asserted the need for 

teachers to use their knowledge of children’s mathematical thinking to guide instruction based on 

questioning and sense-making. 

 Carpenter and colleagues (1998) conducted a longitudinal study covering three years that 

involved 78 students who worked a variety of computation and problem-solving tasks in 

interview format during first grade, and then again in second and third grades. The researchers 

sought to investigate whether students who used strategies invented without or before explicit 

instruction in procedures (n = 60) performed differently than students who used standard 

algorithms (n = 18). Carpenter and colleagues (1998) found that the invented-strategies group 

had a significantly higher (p < .05) percentage of students who demonstrated base-ten knowledge 

(81%) than the standard-algorithm group (22%) at the beginning of second grade. Further 

interviews at the end of third grade revealed that students in the invented-strategy group 
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performed significantly better (p < .05) on word problems that required transfer of known 

information to unique situations (M = 1.37) than students in the standard-algorithm group (M = 

.44). Carpenter and colleagues (1998) concluded that students who used invented strategies were 

better able to make sense of base-ten reasoning and were more successful at transferring their 

learning to new and unique problems. Further, the researchers proposed that early introduction of 

explicitly taught standard algorithm procedures may interfere with children’s success in making 

sense of base ten reasoning. 

Children’s Learning about Fraction Concepts 

The underpinnings of instruction that supports conceptual learning, high-level discourse 

and selection and enactment of cognitively challenging tasks are evident in the literature about 

fraction learning as well. However, ideas about how children come to make sense of fraction 

concepts differ. On the one hand, some who have studied children’s thinking propose that 

understanding of fractions is best developed through tasks in contexts that are focused on equal-

sharing and reasoning about fractional units relative to whole units (Empson & Levi, 2011). 

Other scholars contend that although these types of problems are one important aspect of 

building understanding of fraction concepts, manipulative models and representational drawings 

both in abstract tasks and tasks grounded in real-world contexts, play an equally important role 

(Cramer, Behr, Post, & Lesh, 2009; Cramer et al., 2002). Cramer and colleagues (2002) 

proposed that manipulatives in the form of fraction circles are the most important tool for 

helping students develop mental images of fractions while other researchers (Empson, 1999; 

Empson & Levi, 2011; Hunt & Empson, 2015) asserted that reasoning strategies about equal 
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sharing are at the root of helping students to understand representations and to develop mental 

images of fractions. Still others (Mazzocco & Devlin, 2008) contend that tools, such as a number 

line, that emphasize models of a fraction as a unique number, rather than two numbers 

representing part and whole, are useful in connecting fraction learning to prior learning about 

whole numbers. Central to each of these approaches is the importance placed on student 

reasoning and student-generated solution strategies rather than emphasis on teacher-led 

procedural instruction (Cramer et al., 2009; Cramer et al., 2002; Empson, 1999; Empson & Levi, 

2011; Hunt & Empson, 2015; Mazzocco & Devlin, 2008).   

Teaching Strategies 

Empson (1999) explored how first-grade students’ thinking about fractions developed in 

a classroom where the teacher used the students’ informal prior understandings of sharing to 

guide instruction in a discourse-rich environment. She conducted a case study of an instructional 

unit focused on fractions for four weeks in a first-grade class with 19 students. Using data 

obtained during clinical interviews prior to instruction, Empson (1999) and the classroom teacher 

planned instructional activities that incorporated students’ knowledge. All class sessions in the 

instructional unit were observed, recorded, and transcribed by the researcher. Clinical interviews 

were also conducted with the students at the conclusion of the unit. Based on the pre- and post-

instruction interviews, she was able to identify several results. She found that more students were 

able to use a valid partitioning strategy to solve an equal-sharing word problem after instruction 

(n = 14) than before instruction (n = 4). Prior to instruction, five students were able to correctly 

solve a proportional reasoning problem, whereas after instruction 10 students were able to 
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correctly solve a similar problem. She also found that prior to instruction no students were able 

to identify a fraction correctly using part-whole conceptions of equal-sized pieces, referring 

instead to parts of a whole without regard to size. At the conclusion of the study, 13 students 

were able to use correct part-whole reasoning to identify fractions (Empson, 1999). 

In a comparison study, Cramer and colleagues (2002) found that students taught using a 

conceptually-oriented initial fraction curriculum that emphasized the use of different 

representations of fractions and connections between those representations, outperformed 

students taught using traditional fraction curricula. Sixty-six fourth- and fifth-grade classes were 

randomly assigned to a treatment or control group. Nineteen fourth-grade classes with 470 

students were assigned to the treatment group and 19 fourth-grade classes with 483 students were 

assigned to the control group. For fifth grade, 14 classes with 369 students were assigned to the 

treatment group and 14 classes with 344 students were assigned to the control group (Cramer et 

al., 2002). Treatment classes used materials from the Rational Number Project (RNP) developed 

by the researchers. Teachers in the treatment classes attended professional development, 

conducted by the researchers prior to the study, focused on conceptual learning and the use of the 

RNP materials. Classes in the control group used two commercially available traditional 

curricula from publishers Addison-Wesley and Harcourt Brace (Cramer et al., 2002). The 

researchers used a post-test, retention test experimental design with tests focused on evaluating 

student achievement in the following domains: a) fraction concepts; b) fraction equivalence; c) 

fraction order; d) operations; e) estimation; and f) transfer of concepts to unique situations. 

Multivariate analysis of variance was conducted with the class set as the experimental unit 

(Cramer et al., 2002). The research design also employed a qualitative component with 10 
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students each from treatment and control randomly selected to be interviewed three or four times 

over the course of the study (Cramer et al., 2002).  

Cramer and colleagues (2002) found that students in the treatment group (n = 839) scored 

significantly higher than students in the control group (n = 827) for four of the six domains 

including fraction concepts (F = 24.6; p < .0083), fraction order (F = 13.8; p < .0083), estimation 

(F = 10.3; p < .0083), and transfer (F = 18.9; p < .0083). When all domains were combined for 

total test scores, a statistically significant difference (F = 15.5; p < .0083) was also found 

favoring performance of the treatment group over the control group (Cramer et al., 2002). 

Because no significant differences were found between grade levels within group, fourth- and 

fifth-grade results were combined by group. Large effect sizes were found for the total test (η2 = 

.205) and four of the domains, fraction concepts (η2 = .284), fraction order (η2 = .955), estimation 

(η2 = .182), and transfer (η2 = .240), indicating that the differences between the treatment and 

control groups were of practical significance (Cramer et al., 2002). Results of interviews 

indicated students in the RNP treatment group used conceptual approaches to solve fraction 

problems 71% of the time while students in the traditional curriculum control group used 

conceptual approaches 15% of the time (Cramer et al., 2002). Additionally, students in the 

treatment interview group obtained correct answers 76% of the time while students in the control 

interview group obtained correct answers 47% of the time. They concluded that conceptually-

oriented fraction learning using multiple and connected representations led to students who had 

higher performance on tests of fraction domains and more conceptually grounded understandings 

of fractions. 
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A Model for Connecting Representations 

Students’ work understanding and connecting multiple representations of fractions plays 

a vital role in developing their abilities to reason and generate solution strategies (Cramer et al., 

2009). The Principles and Standards for School Mathematics (NCTM, 2000) proposed a link 

between mathematical representations of many types and students’ abilities to make sense of 

mathematical concepts: 

Representations should be treated as essential elements in supporting students' 

understanding of mathematical concepts and relationships; in communicating 

mathematical approaches, arguments, and understandings to one's self and to others; in 

recognizing connections among related mathematical concepts; and in applying 

mathematics to realistic problem situations through modeling. (p. 67) 

A model was proposed by Lesh and colleagues (1987) that reflects the use of 

representations to build student understanding by defining and connecting five different ways of 

representing mathematical ideas. An adaptation of that model is presented in Figure 1. 
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Figure 1: Adaptation of Model of Mathematical Representations and Connections  

Lesh and colleagues (1987) described representations included in the model as follows. 

Manipulatives refer to concrete objects which students may touch, move, or otherwise physically 

control. For fractions, these may include fraction circles, rectangular fraction area models, 

fraction strips, paper strips for folding, and sets of objects. Pictures include those presented to 

students as part of instruction, such as a number line for representing the location of fraction 

values or a graphic showing several ways to depict a fraction, and pictures generated by students 

to interpret a context. Lesh and colleagues use the phrase verbal symbols to refer to the spoken 

language students or teachers use to interpret a problem context, explain reasoning and solution 

strategies, and communicate about connections between mathematical concepts and students’ 

thinking. In this adaptation of the model the term verbalization is used in place of verbal 

symbols. Written symbols include both mathematical symbols and written words used in 

mathematical problems. Real-life situations refer to problems posed in contexts that are 

interesting, engaging, and relevant to students. Lesh and colleagues (1987) contended that 

Real Life 
Situations 

Manipulatives 

Written 
Symbols 

Verbalization 

Pictorials 
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representations, and translations among representations, play an important role in building 

understanding of fractions by connecting the multiple ways in which students’ may think about 

fractions. Lesh’s model was used as a guiding principle in choosing and developing tasks used in 

intervention sessions for this study. The researcher attempted to create opportunities for the 

participants to connect fraction representations in each of the ways presented above. Any of 

these representations could be presented as part of a problem or could be generated as part of a 

student’s solution process and problems intended to offer opportunities to move from one type of 

representation to another were used (Lesh et al., 1987). For example, a problem was given in a 

real life context; then the student created pictures to solve the problem, and expressed an answer 

in written symbols. In this problem, the student connected a real life representation to pictorial 

and written symbol representations. 

Fraction Learning Progression 

In addition to providing multiple opportunities for students to make connections between 

the five representations of fractions, instruction in the Rational Number Project was sequenced to 

follow a logical order (Cramer et al., 2002). Meaning of symbols was first developed, followed 

by study of relationships between parts of fractions and relationships between different 

representations of fractions. Concepts of order and equivalence were introduced at that point, 

with estimation and computation strategies following (Cramer et al., 2002). While the Rational 

Number Project looked to the Principles and Standards for School Mathematics (NCTM, 2000) 

to inform the learning progression (Cramer et al., 2002), more recently the Common Core State 

Standards for  Mathematics (CCSSM) has provided a similar learning progression for fraction 
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learning (NGACBP & CCSSO, 2010). Prior to third grade, CCSSM introduces concepts of equal 

partitioning of shapes in the geometry strand. Starting in third grade, CCSSM calls for students 

to understand a unit fraction as one part of a whole partitioned into a number of equal-sized parts 

that can be iterated to produce non-unit fractions and to understand a fraction as a number that 

can be represented on a number line. Students are also expected to make sense of fraction 

equivalence and comparison (NGACBP & CCSSO, 2010). Moving into fourth grade, CCSSM 

calls for students to build fractions from unit fractions using addition and multiplication by 

incorporating prior knowledge about whole number operations, to use multiplication and division 

as a way of creating equivalent fractions, and to use more complex comparison strategies. In fifth 

grade, CCSSM has students focus on extending knowledge of fraction comparison and 

equivalence and incorporating this knowledge into operations with fractions. The CCSSM third-

grade standards pertaining to fractions are presented in Table 2. 

Tasks used during this study in the intervention sessions with the participants were 

developed to address the CCSSM third-grade fraction standards presented in Table 2. In keeping 

with the goals presented for fraction standards in the CCSSM and the researcher’s goal to 

emphasize connections between fraction representations, tasks used during intervention sessions 

were classified according to these criteria. This information is presented in Chapter 3 in an 

abbreviated format and in detail in Appendices B and C. 
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Table 2 

CCSSM Third Grade Fraction Standards 

CCSSM Standard 
Focus of 
Standard CCSSM Description of Standard 

3.G.2 Equipartitioning Partition shapes into parts with equal areas. Express 
the area of each part as a unit fraction of the whole. 
 

3.NF.1 Equipartitioning Understand a fraction 1/b as the quantity formed by 1 
part when a whole is partitioned into b equal parts; 
understand a fraction a/b as the quantity formed by a 
parts of size 1/b. 
 

3.NF.2.a Unit Fractions Represent a fraction 1/b on a number line diagram by 
defining the interval from 0 to 1 as the whole and 
partitioning it into b equal parts. Recognize that each 
part has size 1/b and that the endpoint of the part based 
at 0 locates the number 1/b on the number line. 
 

3.NF.2.b Unit Fractions Represent a fraction a/b on a number line diagram by 
marking off a lengths of 1/b from 0. Recognize that the 
resulting interval has size a/b and that its endpoint 
locates the number a/b on the number line. 
 

3.NF.3.a Equivalence & 
Comparison 

Understand two fractions as equivalent (equal) if they 
are the same size or the same point on a number line. 
 

3.NF.3.b Equivalence & 
Comparison 

Recognize and generate simple equivalent fractions, 
(e.g., 1/2 = 2/4, 4/6 = 2/3). Explain why the fractions are 
equivalent (e.g., by using a visual fraction model). 
 

3.NF.3.c Equivalence & 
Comparison 

Express whole numbers as fractions, and recognize 
fractions that are equivalent to whole numbers. 
 

3.NF.3.d Equivalence & 
Comparison 

Compare two fractions with the same numerator or the 
same denominator by reasoning about their size. 
Recognize that comparisons are valid only when the 
two fractions refer to the same whole. Record the 
results of comparisons with the symbols <, =, or >, and 
justify the conclusions, e.g., by using a visual fraction 
model. 
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Mathematics Students Who Struggle in the Literature 

Prior to this section, literature reviewed has been primarily concerned with the learning of 

typically-achieving students. This section of the literature review presents studies focused on the 

learning of students who struggle. First, issues with the terminology, and associated working 

definitions, used to describe students who struggle are presented. Then studies that examine the 

mathematical thinking of students who struggle and studies that focus on mathematics 

interventions for these students are discussed. 

Terminology 

One challenge apparent in a review of studies focused on students who struggle in 

mathematics education is the inconsistent terminology used to denote students who have 

difficulty learning mathematics (Fletcher, Lyon, Fuchs, & Barnes, 2007). This appears to stem, 

in part, from difficulties identifying a population of students who can be considered to have 

mathematics learning disabilities. No generally agreed upon criteria or testing instrument exists 

to identify learning disabilities in mathematics and, unlike learning disabilities related to reading, 

there is yet to be a determination of the facets of learning disabilities related to mathematics 

(Fletcher et al., 2007; Geary, 2003). Whereas a learning disability in reading may be examined as 

specific weaknesses in fluency, comprehension, word recognition, or phonological processing 

(Fletcher et al., 2007), a learning disability in mathematics has typically been limited to 

difficulties with memorization and/or retrieval of number facts and difficulties with whole 

number operations (Fletcher et al., 2007; Fuchs & Fuchs, 2003; Geary, 2003). Some researchers 

(Fletcher et al., 2007; Geary, 2003) have suggested that learning disabilities in mathematics 
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could be viewed in terms of difficulties with arithmetic, reasoning about rational numbers, 

algebraic thinking, geometric thinking, visualization, or interpretation of various types of 

mathematics representations including words and mathematics symbols. With no agreed upon 

criteria to identify learning disabilities in mathematics based on brain functioning or specific 

weaknesses, most researchers have relied upon various types of achievement data to identify 

students (Fuchs & Fuchs, 2003; Geary, 2003; Hecht & Vagi, 2010; Lewis, 2010; Mazzocco & 

Devlin, 2008) or previous identification by schools of students in need of remediation or 

classified as exceptional education students (Butler, Miller, Crehan, Babbitt, & Pierce, 2003; 

Gersten, Chard, et al., 2009; Hunt & Empson, 2015; Witzel, 2005; Zhang & Xin, 2012). 

Although Geary (2003) established a criterion of performance below the 25th percentile on 

nationally normed tests of mathematics achievement, it is not unusual to find other criteria 

prevalently used in the literature.  

Arising from the issues of inconsistent identification are related issues of inconsistent 

terms. In some scholarly writings students are identified as having a learning disability in 

mathematics or a mathematics learning disability (Fuchs & Fuchs, 2003; Hunt & Empson, 2015; 

Lewis, 2010), while in others phrases such as ‘mathematics difficulties’ (Hecht & Vagi, 2010), 

‘struggling in mathematics’ (Gersten, Chard, et al., 2009), or ‘at-risk’ (Fuchs et al., 2013) are 

employed. Table 3 presents the terms and operational definitions used in a selection of studies 

conducted over the past 12 years concerning mathematics and students who struggle. The 

researcher made a decision to limit the search for this information to the past 12 years to focus on 

the most recent developments in the use of these terms and operational definitions.   



 
 

Table 3 

Terms and Operational Definitions for Students Struggling in Mathematics 

Author(s) Year Source & Topic 
Type of 

Publication Term Operational Definition 

Butler, Miller, Crehan, 
Babbitt, & Pierce 

2003 Learning Disabilities 
Research & Practice 
Fraction instruction using 
CRA 
Grades: 6-8 

Quantitative 
Research 

Students with 
mathematics 
disabilities 

Label of specific learning 
disability in mathematics 

Fuchs & Fuchs 2003 Handbook of Learning 
Disabilities 
Whole number problem 
solving 
Grades: 2-6 

Quantitative 
Research 

Students with 
mathematics 
disabilities 

Lowest performing 6-7% of 
student population 

Geary 2003 Handbook of Learning 
Disabilities 
Whole number addition 
strategy choice 
Grades: 2, 4, 6 

Quantitative 
Descriptive 
Research 

Students with 
learning disabilities 
in arithmetic 

Achievement test scores lower 
than the 25th percentile and low-
average or higher IQ score 

Butler, Buckingham, & 
Novak 

2005 Learning Disabilities 
Research & Practice 
Use of Strategic Learning 
Strategies 
Grade: 8 

Qualitative 
Research 

Students struggling in 
mathematics 

Learning disabilities in reading 
and mathematics or identified 
as underachieving  

Witzel 2005 Learning Disabilities: A 
Contemporary Journal 
Using CRA to teach 
algebra 
Grades: 7, 8 

Quantitative 
Research 

Students with math 
difficulties 

Label of specific learning 
disability in mathematics 
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Author(s) Year Source & Topic 
Type of 

Publication Term Operational Definition 

Louie, Brodesky, Brett, 
Yang, & Tan 

2008 IES Report presenting case 
studies of in-depth 
practices at six elementary 
schools 

Qualitative 
Review 

Students with 
disabilities and other 
learners who struggle 

IEP that lists a learning 
disability or poor performance 

Mazzocco & Devlin 2008 Developmental Science 
Rational number reasoning 
Grades: 6-8 

Quantitative 
Research 

Children with 
mathematical 
learning disabilities 
versus children 
without who are 
struggling 

MLD: Woodcock-Johnson 
Calculation subtest score at or 
below the 10th percentile on the; 
Struggling: between the 11th 
and 25th percentiles  

Gersten, Beckman, 
Clarke, Foegen, Marsh, 
Star, & Witzel 

2009 IES Report 
Practice guide to 
implement Response to 
Intervention in elementary 
and middle schools 

Practice 
Guide 

Students struggling 
with mathematics 

Labeled learning disability or 
low performance 

Gersten, Chard, Jayanthi, 
Morphy, & Flojo 

2009 Review of Educational 
Research 
42 intervention studies 
across mathematics topics 

Meta-
analysis 

Students with 
learning disabilities 
or difficulty learning 
mathematics 

IEP goals in mathematics and 
learning disability label 

Hecht & Vagi 2010 Journal of Educational 
Psychology 
Emerging fraction skills 
Grades: 4, 5 

Quantitative 
Research 

Students having 
mathematical 
difficulties 

Woodcock-Johnson III 
Calculation composite Score at 
or below the 25th percentile 

Lewis 2010 Learning Disabilities: A 
Contemporary Journal 
Fraction equivalence 
Grade: 8 

Qualitative 
Research 

Mathematical 
learning disability 

Test scores at or lower than the 
25th percentile, no confounding 
factors, and 
lack of response to intervention 
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Author(s) Year Source & Topic 
Type of 

Publication Term Operational Definition 

Zhang & Xin 2012 The Journal of Educational 
Research 
39 studies about word 
problem solving 
interventions 

Meta-
analysis 

Students with 
mathematics 
difficulties 

Learning disability label, or at 
risk for failure, or low 
achieving in mathematics 

Fuchs, Schumacher, 
Long, Nankung, Hamlett, 
Jordan, Gersten, Cirino, 
Siegler, & Changas 

2013 Journal of Educational 
Psychology 
Understanding of fraction 
concepts 
Grade: 4 

Quantitative 
Research 

At–risk learners Scores below the 35th percentile 
on the Wide Range 
Achievement Test 4 Broad 
Based Calculation Assessment 

Powell, Fuchs, & Fuchs 2013 Learning Disabilities 
Research & Practice 
Common Core Standards 
Grades: k-12 

Literature 
Review for 
Practitioners 

Students with 
mathematics 
difficulties 

Estimates 3-6% of students 
have a mathematics learning 
disability and many more 
struggle with low performance 

Hughes, Witzel, 
Riccomini, Fries, & 
Kanyongo 

2014 The Journal of the 
International Association 
of Special Education 
12 intervention studies 
about algebra 

Meta-
analysis 

Learners with 
disabilities and 
learners who struggle 

Labeled learning disabilities or 
at risk for having learning 
disabilities 

Jitendra, Dupuis, & 
Zaslofsky 

2014 Learning Disability 
Quarterly 
Arithmetic word problem 
solving 
Grade: 3 

Quantitative 
Research 

Students at risk for 
mathematics 
difficulties 

Scores at or lower than the 40th 
percentile on the Measures of 
Academic Progress (MAP) 
mathematics subtest  

Hunt & Empson 2015 Learning Disability 
Quarterly 
Equal-sharing strategies 
Grades: 3-5 

Qualitative 
Research 

Students with 
learning disabilities 

Learning disabilities label and 
an IEP with mathematics goals 
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A review of Table 3 indicates that achievement test performance criteria, special 

education status, and low performance in classroom settings, are the primary criteria in 

identifying students for inclusion in studies. Some researchers (Lewis, 2010, 2014; Mazzocco & 

Devlin, 2008; Mazzocco, Myers, Lewis, Hanich, & Murphy, 2013) distinguish between those 

students known to have a learning disability and those students who exhibit poor performance for 

unknown reasons, while other researchers (Gersten, Chard et al., 2009; Hughes et al., 2014; 

Louie et al., 2008) regard students with or without a label as essentially a similar population on a 

continuum. Attending to the label used in a particular study is often inadequate to inform the 

reader of the author’s intended population. The reader must also consider the inclusion criteria 

used to select participants for the study and the author’s description of the participants.  

For this study, the researcher made a decision to use the terminology ‘students who 

struggle’ to make it clear that it was unknown if the participants had learning disabilities. This is 

consistent with the work of some researchers (Butler et al., 2005; Hecht & Vagi, 2010; Jintendra 

et al., 2014; Louis et al., 2008; Zhang & Xin, 2012) who have referred to students as struggling 

or experiencing difficulties in mathematics. However, it should be noted that little consistency 

exists in terminology referring to these groups of students, as evidenced by the information on 

Table 3. 

The Mathematical Thinking of Students Who Struggle 

Although many studies (Carpenter et al., 1998; Cobb et al., 1991; Cramer et al., 2002; 

Empson, 1999) have addressed the thinking of students in the process of learning mathematics 

concepts, few studies have addressed the thinking of students who struggle while engaged in this 
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process. Studies that have examined how children learn mathematics and the learning 

progressions they employ to learn have tended to focus on typically-achieving student 

populations with no delineation of those students who might be classified as struggling within 

the sample (Carpenter et al., 1998; Clements & Sarama, 2004; Cobb et al., 1991; Confrey et al., 

2014; Cramer et al., 2002; Empson, 1999). A small number of studies have sought to examine 

how students who struggle think while making sense of arithmetic (Geary, 2003) or while 

making sense of fraction concepts (Hunt & Empson, 2015; Lewis, 2010, 2014; Mazzocco & 

Devlin, 2008; Mazzocco et al., 2013). 

Geary (2003) emphasized that although performance on standardized achievement tests 

was commonly used to identify children with mathematics learning disabilities, these measures 

could not reveal anything about the cognitive strengths and weaknesses of these children. To 

address this gap, Geary proposed a model for understanding the thinking of students with 

mathematics learning disabilities by comparison with the thinking of typically-performing 

children. Because research providing insight into the thinking of children performing whole-

number arithmetic was most developed, Geary (1990) had previously focused his research on the 

strategy choices and solution times of children identified as having learning disabilities in 

mathematics as they performed whole-number addition computations. Geary (1990) conducted a 

study with 52 first- and second-grade participants in which the participants were screened into 

the three groups. Participants were initially classified as normal (n = 23) or having a learning 

disability in mathematics (n = 29) based on whether or not they were receiving intervention 

services at school. With the learning disability group, a further distinction was made based on 

achievement test score improvement from the beginning to the end of the school year. 
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Participants (n = 13) receiving intervention services who improved to within the normal range of 

performance from the beginning to the end of the school year were classified as learning 

disabled-improved, while participants receiving intervention services who showed no 

improvement over the course of the year were classified as learning disabled-no change. As a 

result, Geary analyzed three groups for differences in strategy choice and solution times using 40 

addition problem presented on a computer using time measurements. His findings indicated that 

there were no differences in strategy choice or solution times between the normal group and the 

learning disabled-improved group. Geary posited that the learning disabled-improved group was 

merely delayed in mathematical understanding rather than different when compared to the 

normal group. So although this group began the school year behind, with intervention they were 

able to improve to the level of their normal peers. The learning disabled-no change group were 

significantly different (p < .05) than the other two groups both in terms of strategy choice and 

solution times. According to Geary, differences in this group appeared to be related to issues 

with working memory, counting errors, retrieval errors, and longer or unpredictable retrieval 

times.  

Based on his research, Geary (1990) concluded that while traditional measures allowed 

identification of students experiencing difficulty, they did not provide information about “factors 

underlying the academic deficit” (p. 364). Later, Geary (2003) proposed that learning disabilities 

in mathematics could be subcategorized as a procedural subtype and a semantic (working 

memory) subtype. Within the procedural subtype, Geary included issues related to poor 

conceptual understanding including inefficient and immature use of strategies and use of 

procedures without understanding associated concepts. Although combinations of the two 
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subtypes were common, children who maintained use of less efficient solution strategies than 

their peers were classified as having the procedural subtype while students who primarily 

exhibited long reaction times for fact retrieval or calculation were classified as having the 

semantic memory subtype. A third subtype proposed by Geary was visuospatial deficits. Geary 

observed that disabilities associated with the procedural subtype tended to become less 

troublesome over time and may represent a developmental delay rather than a cognitive 

difference while those associated with working memory may be more entrenched and may 

indicate a true cognitive difference. 

Within the mathematics education community, the terms procedural and conceptual are 

used to indicate different facets of mathematical understanding (Kilpatrick et al., 2001). 

Additionally, the word procedural is sometimes used to indicate a reliance on memorized 

procedures without conceptual understanding (Stein & Lane, 1996). In fact, Stein and Lane 

(1996) referred to two levels of procedure use, a lower level using procedures without 

connections to concepts and a higher level using procedures with connections to concepts. 

However, they also designated the highest level of mathematical thinking as “doing 

mathematics” (p. 58), a level in which deeply understood concepts guide student work with non-

algorithmic thinking. On the other hand, Geary (2003) used the word procedural to define a 

subtype of learning disability in mathematics connected to lack of conceptual understanding. 

Because of these differences in word usage between Geary and the mathematics education 

community, this researcher will use conceptual subtype in place of procedural subtype from this 

point on in this manuscript. 
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Building on Geary’s assertion that the thinking of students with difficulties learning 

mathematics is not well understood and the research of Mazzocco and colleagues (2013) that 

suggests students with learning disabilities in mathematics often begin to exhibit difficulties in 

mathematics when fractions enter the curriculum, Lewis (2014) sought to describe the 

mathematical understandings regarding fraction concepts of two adult college students, Lisa and 

Emily, believed to have mathematics learning disabilities. Lewis (2014) asserts that students who 

have a mathematics learning disability struggle with mathematics in different ways than their 

non-disabled peers and may not respond to instruction or intervention that is successful with their 

non-disabled peers who struggle in mathematics. Lewis (2014) collected pretest, posttest, and 

videotaped interview data during weekly tutoring sessions with the two adult college students 

over six weeks. After transcribing all videotaped sessions and scanning all documents, Lewis 

analyzed each session multiple times to find conceptual misunderstandings that persistently 

occurred multiple times across several tutoring sessions. These particular misunderstandings 

were identified as contributors to the students’ mathematics difficulties. 

For each of the two study subjects, Lewis (2014) identified six key perceptions that 

contributed to the students’ mathematical misunderstandings. Persistent incorrect understandings 

about fractions were demonstrated by Lisa when she: a) viewed shaded regions of a picture of a 

fraction as deleted; b) viewed the line separating fractional parts as a representation of the 

fraction; c) ignored the different-sized parts of fractions represented pictorially when adding 

fractions without common denominators; d) compared only denominators when determining 

relative sizes of fractions; e) could not partition a fraction into an odd number of parts when 

drawing representations; and f) changed fractions to create easier manipulations without regard 
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to maintaining the equivalence of the fractions. Emily demonstrated a different set of persistent 

incorrect understandings. She a) often arbitrarily chose the smaller of the shaded or non-shaded 

region to represent the numerator; b) could only view fractions such as ½ as an area partitioned 

into two parts; c) sometimes viewed numerators as the shaded part of the model and 

denominators as the unshaded part of the model; d) believed a fraction with more parts was 

larger than a fraction with less parts; e) believed parts that were visually close to ¼ were ¼; and 

f) understood her pictorial representations as answers with multiple possible interpretations 

rather than representations of a specific quantity. 

In an earlier study, Lewis (2010) described the errors made by an eighth-grade student 

considered to have a mathematics learning disability based on her achievement test scores. As 

she solved problems involving simplifying fractions, the student had a 30% error rate. A detailed 

analysis of tutoring sessions revealed that the student used a multiples-list strategy for the 

numerator and the denominator to generate a simplified fraction. For example, if Emily was 

asked to simplify the fraction 8/12, she would first consider the lists of all multiples for all single 

digit whole numbers containing 8 and 12. She would mentally locate the list holding 8 and 12 

adjacent to one another, in this case the list of multiples of 4. Upon recognizing that 8 is placed 

second and 12 is placed third on that list, she would use these ordinal placements to construct a 

new, simplified fraction, 2/3. However, this strategy used to compensate for a lack of memorized 

fact knowledge, required her to manipulate multiple multiplication sequences and created a 

heavy cognitive load for the student. An intervention designed to reduce the cognitive load 

associated with multiplication facts helped the student to reduce her error rate from 30% to 7% 

when simplifying fractions.  
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Lewis’s (2010, 2014) studies provide a structure for understanding students with 

mathematics learning disabilities by focusing on their thinking and understanding of 

mathematics concepts rather than computational performance. For example, Lewis (2014) was 

able to detail how Lisa’s understanding of the representation of a fraction, once drawn and 

shaded, led her to believe the shaded region of the fraction is taken away. Lisa’s 

misunderstanding recurred on multiple occasions and did not resolve with explicit tutoring on the 

issue. Lewis (2014) suggested that instruction in fraction concepts using representational models 

may be ineffective for some students with mathematics learning disabilities, partly explaining 

why some students who struggle in mathematics do not respond to traditional tutoring 

interventions. Lewis (2010) was also able to highlight the connections between difficulties 

students may experience with whole number facts that create challenges when students are 

confronted with more complex mathematics, such as fraction concepts. In such cases, students 

may be able to understand the more complicated concepts underlying the new mathematics topic, 

but may be hindered by computational strategies that are inefficient or result in errors (Lewis, 

2010). 

Hunt and Empson (2015) assert that “little to no information exists explaining the nature 

of conceptual gaps in understanding fractions for students with learning disabilities” (p. 208). 

Without information of this type, it is difficult to develop effective interventions for learners who 

struggle (Hunt & Empson, 2015). The researchers conducted clinical interviews with 10 third-, 

fourth-, and fifth-graders as they solved equal-sharing problems. Equal-sharing problems which 

include scenarios in which the number of objects to be shared is greater than the number of 

people sharing, resulting in each person receiving a fractional amount greater than one, are 
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particularly useful in developing students’ thinking about fractions, according to Hunt and 

Empson (2015), because these problems link fractions with students’ prior knowledge about 

division. For this reason, participants were presented with equal-sharing problems resulting in a 

solution greater than one and then were presented with equal-sharing problems resulting in a 

solution less than one. They used a framework that described how typically-achieving children 

approached solving equal-sharing problems. In this framework, students are classified as using 

one of four strategies: a) a no-coordination strategy in which shares are unequal or objects are 

not fully shared; b) a non-anticipatory strategy in which a trial and error approach to partitioning 

is used; c) an emergent-anticipatory strategy in which partitioning is anticipated based on the 

number of objects and people sharing; and d) an anticipatory strategy in which the relationship 

between a fraction’s value and division of the numerator by the denominator is understood. 

Study results indicated that participants used the first three strategies but not the fourth, with 

76% of all solution strategies falling into the non-anticipatory category. This finding suggests 

that students with learning disabilities may use similar strategies to their typically-performing 

peers; however, these students may retain use of less sophisticated strategies at an older age 

(Hunt & Empson, 2015), a result that aligns with the findings of Geary’s (2003) study about 

addition strategies used by students with the conceptual subtype of mathematics learning 

disabilities. Additionally, Hunt and Empson (2015) reported that study participants often 

attempted to use poorly understood rote procedures in place of problem-solving strategies and 

asked for explicit teacher direction to solve problems. The researchers concluded that 

conceptually-based learning focused on students’ current level of conceptual understanding, 

which may be at a different level than that of typically-achieving peers, is vitally important to 
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their success in mathematics. A quantitative two-year longitudinal study with 55 fourth-graders 

experiencing mathematics difficulties and 126 typically-performing fourth-graders by Hecht and 

Vagi (2010) found that differences on fraction problem performance between the two groups 

could be attributed to deficits in conceptual knowledge about fractions rather than arithmetic 

fluency and working memory. This result supports the contention of Hunt and Empson (2015) 

that students who struggle need instruction focused on their current conceptual knowledge. 

Researchers who have investigated the thinking of children who struggle in mathematics 

have reached different, sometimes conflicting and sometimes overlapping, conclusions. One 

school of thought holds that the thinking of children who may have mathematics learning 

disabilities is different from that of children, struggling or not struggling, who do not have 

mathematics learning disabilities in ways that may impact their ability to understand 

mathematics concepts in typical ways (Lewis, 2010, 2014; Mazzocco & Devlin, 2008; Mazzocco 

et al., 2013). An alternative viewpoint holds that children who struggle in mathematics, whether 

identified with a mathematics learning disability or not, think about mathematics concepts in 

similar ways and engage solution strategies that parallel those of students who do not struggle; 

however, students who struggle are delayed in developing more sophisticated strategies and 

conceptual thinking about mathematics when compared to their more typical peers (Hecht & 

Vagi, 2010; Hunt & Empson, 2015). Geary’s (2003) model of learning disability in mathematics 

offers a partial framework that may be employed to shed light on different interpretations of the 

causes of mathematics disabilities or difficulties in learning mathematics. Geary (2003) 

hypothesized that mathematics difficulties could be categorized as a) issues related to delayed 

use of efficient procedures including poor conceptual understanding; b) issues with semantic 
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memory including long retrieval times and high error rates; and c) visuospatial deficits that result 

in difficulties connecting numerical information to spatial information. It may be that a student 

experiences one type of mathematical difficulty or a combination of two or three.  

Commonly agreed upon by researchers (Fletcher et al., 2007; Fuchs & Fuchs, 2003; 

Geary, 2003; Lewis, 2010, 2014; Mazzocco & Devlin, 2008; Mazzocco et al., 2013) who study 

children who struggle in mathematics is the perspective that learning disabilities in mathematics 

are not well understood and may present in a variety of ways requiring differing treatments, and 

that the delineation between those who have mathematics learning disabilities and those who 

struggle in mathematics without a learning disability is not clear. Although this study did not 

seek to clarify the delineation between those who struggle and those who have a learning 

disability, it did seek to describe how the participants’ struggles might relate to Geary’s (2003) 

hypothesis. Of particular interest to this researcher were data that would support conflicting 

positions that children who struggle think about mathematics in similar, but immature, ways 

when compared to their typically-achieving peers or that these children think about mathematics 

in intrinsically different ways.  

Mathematics Interventions for Students Who Struggle 

Rather than focusing on student thinking, studies about learners who struggle in 

mathematics have tended to focus on intervention techniques and programs, with most of these 

studies using student performance outcomes via correct answers on assessments to evaluate the 

efficacy of interventions (Butler et al., 2003; Flores & Kaylor, 2007; Fuchs & Fuchs, 2003; 

Fuchs et al., 2013; Gersten, Chard et al., 2009; Jitendra et al., 1998; Kroesbergen, & Van Luit, 
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2003). In addition, these studies have often examined interventions and methods that emphasized 

explicit instruction in procedures. This is in contrast to studies that did not delineate between 

typical students and students who struggle, which have emphasized the need for conceptually-

based learning prior to instruction in specific procedures (Carpenter et al., 1998; Cobb et al., 

1991; Cramer et al., 2002; Empson, 1999). 

Kroesbergen and van Luit (2003) conducted a meta-analysis of 58 studies of 

interventions for elementary mathematics students who were struggling. Studies were classified 

by intervention method as direct instruction (n = 35), self-instruction (n = 16), and mediation (n 

= 16). Direct instruction and self-instruction were largely procedural interventions whereas 

mediated intervention relied on teaching strategies designed to build conceptual understandings 

(Kroesbergen & van Luit, 2003). Kroesbergen and van Luit (2003) found that, across studies, 

direct instruction (d = .91) and self-instruction (d = 1.45) were more effective than mediation 

techniques (d = .34).  

According to Gersten, Chard, and colleagues (2009), their meta-analysis of 42 studies on 

mathematics interventions for students with learning disabilities employed more stringent 

selection criteria than the meta-analysis conducted by Kroesbergen and van Luit (2003). Gersten 

and colleagues contended that because Kroesbergen and van Luit combined the analysis of 

single-subject and group designs, inflated effect sizes were produced for single-subject designs 

calling into question the results of the study. Gersten and colleagues limited studies selected for 

their meta-analysis to group design studies using randomized selection or quasi-experimental 

designs. In a result contrasting those found by Kroesbergen and van Luit (2003), Gersten, Chard, 

and colleagues (2009) found that the most effective method of instruction for students with 
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learning disabilities across studies was conceptually-based learning that exposed students to 

multiple ways to solve problems, emphasized student-generated solution strategies, and included 

emphasis on discourse (d = 1.56). Explicit instruction, which included direct instruction 

methods, was found to be nearly as effective (d = 1.22). Other methods, which focused on visual 

aids, feedback, and peer tutoring, were found less effective with effect sizes ranging from .14 to 

1.04. A summary of the effect sizes for studies grouped by instructional component found by 

Gersten, Chard, and colleagues is presented in Table 4. 

 

Table 4 

Effect Size Results Grouped by Instructional Component from Gersten, Chard, and Colleagues’ 

Meta-Analysis 

Instructional Component Random Effect Sizes (d) Significance 

Conceptual Learning Focus 
 

1.56 p < .001 

Direct Instruction 
 

1.22 p < .001 

Student Verbalization of 
Mathematical Reasoning 
 

1.04 p < .001 

Sequencing of Examples 
 

.82 p < .001 

Visuals Used by Teachers 
and Students 
 

.47 p < .001 

Teacher to Student Feedback 
 

.23 p < .01 

Student to Student Feedback 
 

.21 p < .05 

Cross-age Tutoring 
 

1.02 p < .001 

Peer-assisted Learning 
Within a Class 

.14 n.s. 
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Gersten, Chard, and colleagues (2009) concluded that although many studies and theories 

of learning within the exceptional education community point to the difficulty for students who 

struggle with learning disabilities to effectively learn in environments focused on conceptually-

based learning, the results of their meta-analysis appeared “to be at odds with the notion that 

students with LD [learning disabilities] have difficulty with cognitively demanding routines” (p. 

1232). 

Butler and colleagues (2003) investigated the effects of using a concrete-representational-

abstract (CRA) instructional method versus a representational-abstract (RA) instructional method 

to teach fraction equivalence to middle school students with mathematics learning disabilities.  

Students were separated into two treatment groups for 10 lessons.  Both treatment groups (n = 

50) were taught with pictorial and abstract methods, while one treatment group (n = 26) was 

taught using concrete manipulatives for the first three days of instruction (Butler et al., 2003).  A 

control group (n = 65) consisting of middle school students without mathematics learning 

disabilities received instruction using only abstract methods (Butler et al., 2003).  All groups 

were administered pre- and post-tests consisting of five subtests: area fractions, quantity 

fractions, abstract fractions, improper fractions, and word problems.  Results showed that both 

treatment groups outperformed the control group in two out of five subtests: improper fractions 

(p < .0005) and word problems (p <.01) (Butler et al., 2003).  Both the CRA and RA treatment 

groups showed significant improvements (p < .05) from pretest to post-test on all subtests. No 

significant differences were found between the CRA treatment group and the RA treatment 

group. Butler and colleagues (2003) concluded that instruction on fraction equivalency was more 

effective for students with mathematics learning disabilities when either concrete manipulatives 
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and representational drawings or representational drawings alone were used rather than 

instruction focused on abstract methods.  

Fuchs and colleagues (2013) conducted a twelve-week intervention study with fourth-

graders considered to be at risk for mathematics learning disabilities. The study participants were 

assigned to a treatment group (n = 129) that included a focus on the measurement interpretation 

of fractions or a control group (n = 130) focused on learning fractions in more traditional ways 

using procedures and the part-whole interpretation of fractions. Additionally, Fuchs and 

colleagues (2013) reported that the intervention group did not receive instruction in procedures 

until approximately two-thirds of the way through the intervention while the control group 

received instruction in procedures throughout the study.  According to Fuchs and colleagues 

(2013), part-whole interpretations of fractions are commonly found in mathematics classes in the 

United States and are supported by problems about equal sharing and the use of area models. 

Less common in mathematics classes across the United States are techniques that focus on the 

measurement interpretation of fractions such as representation on a number line and comparison 

strategies that occur when the numerators of two fractions are the same number (Fuchs et al., 

2013). The researchers found that effect sizes, ranging from .29 to 2.50, were better for at-risk 

fourth grade students who participated in a fraction intervention that included a measurement 

interpretation of fractions than at-risk fourth graders who learned about fractions based on part-

whole concepts with a procedural focus. It should be noted that although the intervention was 

organized around fraction concepts, learning activities were structured using techniques designed 

to reduce the challenges associated with working memory deficits, listening comprehension, 

attention, and low processing speed (Fuchs et al., 2013). 
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Conclusion 

In this chapter, research and scholarly writing on methods that facilitate children’s 

learning about mathematics in general and fractions specifically were considered along with 

learning progressions that support learning fraction concepts. Then, research concerning learners 

who were struggling in mathematics was reviewed, specifically a lack of a universally accepted 

label or labeling method for learners who struggle in mathematics, the thinking of children who 

struggle and how it might or might not differentiate from children who do not struggle, and 

current research on interventions for children who struggle in mathematics. Although there is a 

robust body of research concerning interventions, the body of research that seeks to describe the 

thinking of children who struggle in mathematics is much less prevalent. This study will seek to 

describe the thinking of three participants in a small-group intervention that focused on 

conceptual learning supported by socio-constructivist scaffolding rather than teacher-led 

instruction in procedures using guided examples. 
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CHAPTER 3: RESEARCH DESIGN AND METHODOLOGY 

This chapter reviews the research questions for this study, presents a rationale for the use 

of case study research design, and describes the participants and setting, including the sampling 

selection criteria. Data collection and data analysis procedures are discussed, including the use of 

two analytical frameworks based on Geary’s (2003) identifications of subtypes of mathematical 

learning disabilities and Anghileri’s (2006) descriptions of socio-constructivist scaffolding 

techniques. Procedures to ensure the trustworthiness of the study are described. Finally, the 

potential strengths and limitations of the research design and the potential contributions of the 

study are discussed. 

Research Questions 

Two research questions for this study were designed to elicit a description of the 

participants’ individual struggles and strengths, and to describe how the participants made sense 

of third-grade fraction concepts in intervention sessions using social-constructivist scaffolding 

techniques. Geary’s (2003) classification of learning disabilities in mathematics was used as a 

lens to assist in description of struggles and strengths. Anghileri’s (2006) descriptions of social-

constructivist scaffolding techniques were used to identify and analyze participant interactions 

during episodes of scaffolding. According to the Common Core State Standards for Mathematics 

(NGACBP & CCSSO, 2010), fraction concepts covered in third grade include equipartitioning 

and unit fractions (3.G.2, 3.NF.2.a), iteration of unit fractions (3.NF.1, 3.NF.2.b), fraction 

equivalence (3.NF.3.a, 3.NF.3.b, 3.NF.3.c), and fraction comparison (3.NF.3.d). Both research 
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questions for this study addresses these fraction concepts presented in the CCSSM standards 

covered in third grade. The research questions for this study are as follows: 

1. What struggles and strengths of third-grade students are revealed in a small group 

intervention supported by social-constructivist scaffolding while focused on fraction 

concepts? 

2. How do third-grade students who struggle in mathematics interact with social-

constructivist scaffolding techniques as they make sense of fraction concepts? 

Case Study Research Design 

The research questions for this study, focused on the process of sense-making with 

questions of “what” and “how,” were well situated to be addressed by qualitative research, and 

case study research in particular (Brantlinger, Jimenez, Klingner, Pugach, & Richardson, 2005). 

According to Butler (2006), qualitative studies tend to have one of six categories of focus, with 

process being one of these. Furthermore, studies of process align most closely with research 

questions seeking to understand how students reason, make sense of, or come to understand 

concepts or information (Butler, 2006). Brantlinger and colleagues (2005) define qualitative 

research as “a systematic approach to understanding qualities, or the essential nature, of a 

phenomenon within a particular context” (p. 195). According to Merriam (2009), qualitative case 

study research is an in-depth analysis of a bounded system in which the case is studied to 

“achieve as full an understanding of the phenomenon as possible” (p. 42). Case study has 

advantages as a research design when it is difficult to separate a phenomenon from the context in 

which it occurs and research questions are oriented toward how or why (Brantlinger et al., 2005; 
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Butler, 2006; Merriam, 2009; Yin, 2003). Case study research designs tend to employ the widest 

range of data collection approaches available, including interviews, observations, participants’ 

verbal explanations of their strategies, and artifacts documenting student work or thinking, to 

facilitate triangulation of data in an attempt to generate a trustworthy result (Butler, 2006). Butler 

(2006) proposed that the case study research design is capable of revealing links between an 

intervention and student learning and that, while case study research cannot be conducted in a 

way that all conditions are controlled, it can “reveal complex embedded relationships that may 

be obscured within an experimental inquiry frame” (p. 921). 

This particular study was focused on how students who struggle in mathematics make 

sense of fraction concepts covered in third grade; however, the researcher was not able to 

separate the sense-making process of the students from the context in which it occurred, 

including the intervention tasks and the researcher’s scaffolding techniques. Case study research 

is not a system of hypothesis testing, but rather a process designed to provide qualitative insight, 

including rich description and development of themes (Creswell, 2007; Merriam, 2009; Yin, 

2003). Case study research is generally characterized by the following features: a) a search for 

meaning and understanding; b) the researcher as the primary instrument for data collection and 

analysis; c) extensive data collection; d) an inductive investigation strategy; and e) a richly 

descriptive end product (Brantlinger et al., 2005; Creswell, 2007; Merriam, 2009).  

Some researchers propose that case study is less a method of qualitative research than a 

choice of the phenomenon to be studied within a bounded system (Creswell, 2007; Merriam, 

2009; Miles & Huberman, 1994). As such, the most important aspect of case study research is 

defining the case (Merriam, 2009). The case, however, exists within a bounded system which 
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must also be defined in advance and in relation to some function which may provide 

enlightenment about the phenomenon (Merriam, 2009). Because three students participated in 

small group intervention sessions with the researcher, this was a multiple case study in which 

participants engaged in the function of making sense of fraction concepts. The third-grade 

participants were identified as struggling based on second-grade achievement test results, third-

grade progress monitoring assessments, and teacher and principal input. The phenomenon of 

interest in this study was the sense-making processes employed by the third-grade students 

identified as struggling in mathematics while working on third-grade fraction concepts in a small 

group intervention setting. Table 5 shows the elements that were part of the bounded system for 

this study. 

Table 5 

Elements of the Bounded System for the Research Study 

Elements of the Bounded System for the Research Study 

 Each of three students in third grade who were identified as struggling in mathematics (the 
three cases) 

 The researcher as instructor, data collection and data analysis instrument 

 The half-hour intervention sessions conducted thrice-weekly over five weeks in a local 
school’s afterschool program 

 The intervention task items based on Lesh and colleagues’ (1987) framework of five 
different ways of representing and connecting a mathematical concept 

 Dialogue between the students and instructor including expert/novice interactions as 
described by Vygotsky (1934/1986/2012, 1930-1934/1978) including scaffolding 
techniques as suggested by Cambourne (1988) and Graves (1983) and elaborated by 
Anghileri (2006). 

 The students’ work artifacts 

 The afterschool program location  
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Participants and Setting 

Purposive, criterion-based sampling was employed to identify three third-grade students 

based on past scores on second-grade IOWA mathematics achievement tests and third-grade i-

Ready progress monitoring assessments, and input from teachers and principal. The literature on 

case study research (Creswell, 2007; Merriam 2009) does not specify a number of participants 

for a multiple case study, stating instead that the number of cases studied should be adequate to 

answer the research questions. Yin (2003) suggests that a multiple case design, even a study of 

two cases, is stronger than a single case design in almost all cases, allowing the researcher to 

locate commonalities and differences between cases. The choice to study three cases in this study 

is based on limitations of time and resources, and the researcher acknowledges that although a 

larger number of cases might answer the research questions more adequately, three cases meets 

Yin’s criteria to strengthen the current study. However, it is the intention of the researcher to 

establish a qualitative research design that could be replicated to build multiple data sets about 

elementary students who struggle in mathematics and how they make sense of mathematical 

concepts. 

Purposive sampling was appropriate for this study because the research questions require 

participants that meet certain criteria (Brantlinger et al., 2005; Creswell, 2007). For the purposes 

of this study, participants were referred to as students who struggle in mathematics. However, in 

the literature, similar students have been referred to as students with difficulty in mathematics, 

students at risk for low performance in mathematics, or students with learning disabilities in 

mathematics  (Fuchs et al., 2013; Gersten, Chard et al., 2009; Louie et al., 2008; Witzel, 2005). 

The lack of a consistent nomenclature and the lack of delineation between students with a 
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learning disability in mathematics, either diagnosed or undiagnosed, and students with low 

performance in mathematics without a learning disability are complications that any researcher 

selecting participants for a study concerning struggling mathematics students will confront. The 

initial decision to seek participants who performed in the lowest 25% on second-grade 

achievement tests with future performance in the lowest 25% predicted by third-grade progress 

monitoring assessments was based on criteria set out by Geary (2003) to identify children who 

may have learning disabilities in mathematics. Researchers have cited Geary’s identification 

techniques (Hecht & Vagi, 2010; Lewis, 2010) or used similar schemes to identify subsets of 

students (Fuchs & Fuchs, 2003; Fuchs et al., 2013; Jitendra et al., 2014; Lewis, 2010; Mazzocco 

& Devlin, 2008) that they considered to either have learning disabilities in mathematics or 

struggles in mathematics that may or may not have been related to learning disabilities. 

For this study, locating participants who fit Geary’s suggested criteria proved 

challenging. The researcher decided to widen the identification criteria to include students who 

scored in the lowest 40th percentile on the second-grade achievement tests while still identified 

by progress monitoring assessments as at risk for performance in the lowest 25th percentile for 

upcoming third-grade achievement tests.  Using a higher percentile higher than the 25th is an 

identification strategy that has been employed by other researchers such as Fuchs and colleagues 

(2013) and Jitendra and colleagues (2014). The principal contacted the eight third-grade teachers 

in the school by email with details about this intervention study to ask them to identify students 

meeting the original selection criteria. Of the eight teachers, two responded to the principal with 

names of five potential participants. The principal then contacted parents of these five students to 

provide information about the study and request permission for their children to participate. 



 

65 

Parents of two of the students gave permission for their children to participate, while parents of 

three of the students did not respond. At that point, the researcher made a decision to expand the 

selection criteria and one more student was identified by a teacher as meeting the criteria. The 

parents of this students agreed to his participation after being contacted by the principal. 

None of the three participants in this study had an individual learning plan (IEP), and it is 

not known if any of the participants had specific learning disabilities in mathematics, reading, or 

both mathematics and reading. As part of this study, the researcher made no judgment about 

whether or not a participant had learning disabilities, regardless of IEP status, but sought to 

establish that the participant had current and past performance that indicated struggles to perform 

at an adequate level in mathematics. The criteria established for participant selection for this 

study included performance in the lowest 40% on second grade IOWA Mathematics test results 

and results on the third-grade i-Ready progress monitoring assessments that indicate a risk for 

low performance on end of third grade mathematics assessments. The principal, in conjunction 

with third-grade teachers, located six students who met the criteria for participation. Parents of 

these six students were given information about the study and a request for participation. Parents 

of three students returned the forms and agreed to allow their child to participate in the study. 

Because these three students met the selection criteria, no attempt was made to locate additional 

participants. Although intervention sessions were conducted after school, students were not 

required to be part of the afterschool program to participate in this study. Prior to the first 

intervention session, the researcher obtained verbal assent for study participation from each 

participant. In keeping with the need to protect the identity of participants, the names used in this 

study to represent the three students are pseudonyms. 
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These participants were drawn from a high performing, high socio-economic elementary 

school in central Florida. Results obtained from the Florida Department of Education (FLDOE) 

website (Florida Department of Education, n.d.a) indicate that the school has performed in the 

top 5% of all elementary schools in the state for third-grade reading and mathematics on the 

Florida Standards Assessments (FSA) for the last two years, while performing in the top 10% of 

all elementary schools in the state for fourth- and fifth-grade reading and mathematics on the 

FSA during the same time period. Statistics provided on the FLDOE website (FLDOE, n.d.b) 

indicate a free and reduced rate of 30.7% for the school as compared to rates of 66.4% and 

53.3% for the county and state respectively. This researcher made a decision to locate students 

who were struggling in mathematics in a school where most students are not struggling. This 

decision was not based on any assumption about whether or not students who struggle in a high-

performing schools are different from students who struggle in low-performing schools on the 

part of the researcher. Rather, this was a decision based on the researcher’s assertion that 

students who struggle should be studied across the spectrum of schools, including high-

performing and high socio-economic schools such as the one in this study. The researcher 

acknowledges that students who struggle may or may not have different experiences in a high-

performing versus a low-performing school, or a high socio-economic versus low socio-

economic school; however, this research study does not address these aspects. 

Data Collection Procedures 

This study received approval by the Institutional Review Board (IRB) of the University 

of Central Florida in an expedited research review. IRB approval was provided before the 
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commencement of data collection. As part of the IRB process, parents of participants were 

provided with an informed consent and consent signatures were obtained from parents who 

chose to allow their child to participate. Children gave verbal assent for participation in the 

study. The IRB approval letter, informed consent document, and verbal assent protocol are 

included in Appendix A. 

Intervention Sessions 

The selected students participated in half-hour small group intervention sessions that 

occurred over five weeks, thrice-weekly, about fraction concepts. The intervention tasks 

consisted of problems and activities based on items available from the Rational Number Project 

(Cramer et al., 2009), Making Sense of Mathematics for Teaching Grades 3-5 (Dixon, Nolan, 

Adams, Tobias, & Barmoha, 2016), and Dimensions (Ortiz, 2014), or developed based on 

guidance from commercially available books by Empson and Levi (2011), and Lamon (2010) 

designed to help teachers develop fraction tasks. Items used during the intervention sessions 

were developed to elaborate fraction concepts included in third grade according to the Common 

Core State Standards for Mathematics (NGACBP & CCSSO, 2010). Thirty-six activities that 

were used during the 15 intervention sessions are presented in Appendix B. These activities were 

classified according to the following criteria: a) the applicable Common Core State Standards for 

Mathematics (NGACBP & CCSSO, 2010); b) Lesh and colleagues’ (1987) representational 

model; and c) type of fraction model or models used in the problem. Decisions on which items to 

use or new items to develop were made according to occurrences within the intervention 

sessions. Table 6 presents a representative sample of the material available in Appendix B. The 



 

68 

intervention protocol, as enacted, is contained in Appendix C. Lesh and colleague’s (1987) 

postulated that the learner has the greatest opportunity to make sense of mathematical concepts 

when a concept is worked by using multiple representations and that translating between 

different types of representations offers the most valuable learning experiences. For this study, 

these representations are labeled as real life contexts (RL), manipulatives (M), pictures (P), 

written symbols (W), and verbalization (V). Any of these representations may be presented as 

part of a problem or may be generated as part of a student’s solution process and problems are 

intended to offer opportunities to move from one type of representation to another (Lesh et al., 

1987). For example, a problem may be given in a real life context; then the student may create 

pictures to solve the problem and express an answer in written symbols. In Table 6 this sequence 

is shown as RL to P/W. Also important to note is that written symbol representation refers to 

both written language and written mathematical symbols while verbalization refers to all spoken 

language used by teacher and student while interpreting, solving, and answering a problem (Lesh 

et al., 1987). 
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Table 6 

Classification of Intervention Activities 

Activity Number and Example CCSSM Focus 

Representational 
Translation (Lesh et 

al., 1987) 
Type of 
model(s) 

 
Activity 3 
 

What do you see? 

 

 

Equipartitioning 
3.G.2 
3.NF.1 

P to W/V Area Model 

Activity 4  
Jackie and Lianna have 13 cookies. 
If they share the cookies equally, 
how many cookies would each 
person get? 

Equal sharing/Equal 
Partitioning 
3.G.2 
3.NF.1 
 

RL to P/V Set Model 

Activity 6 
Four children want to share 10 
Publix sub sandwiches so that 
everyone gets the same. How much 
can each child have? 

Unit Fractions 
3.G.2 
3.NF.1 
3.NF.2.a 
3.NF.2.b 
 

RL/W to P/V Set Model 

Activity 13 
Health First granola bars are square 
shaped, Lucius ate one piece of the 
granola bar and now it looks like 
this: 
 

 
 
The piece that Janis ate is __ of a 
whole candy bar. 

Equipartitioning and  
Unit Fractions 
3.G.2 
3.NF.1 
3.NF.2.a 
3.NF.2.b 

RL/P/W to P/W/V Area Models 

Activity 18 
Jordan said that 1 red piece is one-
third. Andres said that 1 red piece is 
one-fourth.Who is correct? 

Unit Fractions and 
Equivalence 
3.G.2 
3.NF.1 
3.NF.3.c 
 

M/RL/W to V/M Area Model 
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Activity Number and Example CCSSM Focus 

Representational 
Translation (Lesh et 

al., 1987) 
Type of 
model(s) 

Activity 25 
Dani wants to feed each of the 
children she babysits a half 
sandwich for lunch. If she babysits 8 
children, how many sandwiches 
should she make? 

Unit Fractions 
3.G.2 
3.NF.1 
3.NF.2.a 
3.NF.2.b 
 

RL/W to P/V Area and 
Linear 
Models 

Activity 26 
The cards for 0, ½, and 1 are placed 
on a table with space in between. 
Students place cards under the 
fraction cards in the correct location 
between 0, ½, and 1. 

Comparison 
3.NF.3.b 
3.NF.3.a 
3.NF.3.d 
4.NF.2 
 

M/W to M/V Linear Model 

Activity 29 
Which set of circles has more 
shaded? 

 
 

Equivalence 
3.G.2 
3.NF.1 
3.NF.3.b 
 
 
 
 
 

P to V Area Model 

Activity 32 
A group of 3 children are sharing 2 
burritos so that each gets the same 
amount. How many burritos should 
6 children share so that each child 
gets as much burrito as a child in the 
first group? 
 

Equivalence 
3.G.2 
3.NF.1 
3.NF.3.b 
 
 

RL/W to P/V Set Model 

Activity 34 
Look at this picture, then let’s 
answer some questions about it: 

 
Can you see thirds? How many suns 
are in 2/3 of the set? 
 

Unit Fractions 
3.G.2 
3.NF.1 

 

P/V to W/V Set Model 

Activity 36 
Which fraction is larger? 

3/4  or 2/6 

Comparison 
3.NF.3.d 
4.NF.2 

W/M to P(mental)/V Used area 
model 
manipulatives 

Note. RL=Real Life; M=Manipulatives; P=Pictures; W=Written Symbols; V=Verbalization. 
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All intervention sessions were audio- and video-taped and then transcribed shortly after 

the end of intervention sessions. In addition to maintaining observational notes during 

intervention sessions, the researcher reviewed audio- and video-tapes and transcriptions to create 

supplementary observational notes. Artifacts created by students while working with 

mathematics problems in the intervention sessions were collected and initial observational notes 

about these documents were generated. Most data collection activities occurred on-site during 

the intervention sessions with some activities, such as transcription of audio and visual files, 

along with additional observational notes, occurring off-site after intervention sessions.  

Description of a Typical Intervention Session 

For a typical intervention session, the researcher met the participants in the school’s front 

office at the end of the school day. Then the group would move to the media center, which 

typically was lightly used at that time of day, to work at a table together. The participants might 

talk about the school day, or something like a video game, while the researcher talked with them 

and set up recorders and materials. Intervention typically started with the researcher saying, “I 

have something I want you guys to look at,” or “I have something I want you guys to do,” and 

then posing a question to the participants, or asking the participants to solve a problem. Although 

the researcher had at least one learning goal for each session, she did not talk about learning 

goals with the participants to start a session. Because the researcher wanted to create an 

environment where the participants would take the lead while supported by scaffolding in 

building mathematical ideas, she did not want to tell the students about the mathematical ideas 

they would be building.  
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In one session, the researcher’s goal was to have the participants develop flexible 

thinking about defining one whole, particularly when using manipulatives. Participants’ work in 

past sessions had indicated that they believed a whole circle was the only appropriate 

manipulative in a set of fraction circles to represent the whole. To begin the session, the 

researcher had sets of fraction circles available, but pulled out only one red piece, which is one-

twelfth when a circle manipulative piece is defined as the whole. The researcher said, “I knew 

these two kids, Jordan and Andres. Jordan told me one red piece is one-third but Andres said one 

red piece is one-fourth. What do you guys think about what they said?” The discussion that 

followed lasted approximately 12 minutes and began with two participants, Clay and Daniel, 

asserting that both children were wrong. Marcos listened to the discussion for several minutes 

before saying he believed that Jordan and Andres could be right. As the discussion proceeded, 

the participants pulled out the fraction circle manipulatives and placed red pieces on other pieces 

until they discovered that three red pieces could fit on one tan piece and four red pieces could fit 

on one blue piece. After much discussion, Clay decided that four red pieces could be defined as 

the whole, while Marcos said that would be the same as saying the blue is the whole instead of 

the circle is the whole. The participants concluded that there was no rule saying a circle was the 

only piece in the manipulative set that could be a whole.  

For the second part of the session, lasting approximately 20 minutes, the participants 

worked with written problems. When working from written problems, the researcher would 

typically ask for a volunteer to read the directions or the problem for the group. Often, Clay 

would volunteer to read, but Daniel also read for the group many times. Marcos did not volunteer 

to read for the group, but followed along with reading. In many cases, the researcher would 
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reread directions or problems to the group or individual participants when asked, or when it 

became clear the participant did not remember or understand the reading. During this part of the 

session, the participants solved problems presented on a worksheet that defined different pieces 

of the manipulative set as the whole, then found the fraction name for given pieces. For example, 

in one problem the directions instructed the participants to define the whole as the yellow piece, 

a half circle, and then identify the fraction represented by one blue piece. One blue piece was 

one-fourth of a circle, but in this problem it was one-half of the defined whole. Like most 

activities involving written work, the participants worked on their own for about five minutes, 

then began talking about their ideas and the work of other participants. For this activity, after 

completing the second problem of six, the participants began talking with each other about their 

work. The researcher asked the participants to explain how they were using the manipulatives to 

find solutions. The remaining four problems were worked collaboratively. Then the participants, 

based on a suggestion by Marcos, began creating their own definitions of a whole and asking 

other participants to name given pieces. At this point, the time allotted for the session was 

ending. The researcher discussed with the participants the essential idea that fractions are 

meaningful in the context of a defined whole, and that the whole can be defined flexibly.  

As the researcher stopped recording devices and collected participants’ work, the 

participants picked up manipulatives and talked more about their interests. As with all sessions, 

the researcher walked the three participants to the front office where two were instructed to 

return to the afterschool program and one was instructed to wait for parent pickup. The 

researcher returned to the media center to write notes about the session and further plan for the 

next session. The next session was planned to include real-world problems in which the whole 
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would be defined differently in each problem. For these problems, participants would construct 

pictorials to represent wholes and identify both unit and non-unit fractions. 

Interviews 

One goal of case study research is to produce a rich, thick description of the case within 

the bounded system (Creswell, 2007; Merriam, 2009). A semi-structured interview with each 

participant was conducted prior to the first intervention session to assist the researcher in 

building this type of description. Although these interviews were not expected to contribute 

directly to answering the research questions, they allowed the researcher to build a relationship 

with the participants, in addition to contributing to the descriptions of participants. For this 

interview, the researcher used a questioning frame suggested by Moustakas (1994) for 

phenomenological research (see Appendix C, Session 1) during which the researcher attempted 

to elicit information from the participant about his or her interests in general and feelings toward 

school, mathematics class, and mathematics.  These questions were also designed to create a 

level of familiarity and comfort between each participant and the researcher. The discussion 

between each participant and the researcher lasted approximately 20 minutes each. 

Data Collection during Intervention Sessions 

The majority of data collection occurred during intervention sessions. These data were 

primarily analyzed to answer the research questions. The intervention sessions included aspects 

of clinical interviews intended to ascertain how the participants were building understanding 

about fraction concepts as they worked with items during the intervention sessions. Although 

interview techniques based on those suggested by Ginsburg (2009) were used, the researcher 
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adjusted these techniques to draw upon Vygotsky’s conceptions of the interaction between expert 

and novice through the use of scaffolding techniques. Specifically, the research focused on the 

use of probing questions and guiding statements that arose from interaction with the participants 

and attention to the participants’ solution processes. This type of questioning technique, drawn 

from the literature on both clinical interviews and scaffolding, enabled the researcher to build an 

understanding of the participants’ cognitive processes of making sense and the participants’ 

learning potential (Ginsburg, 2009; Vygotsky, 1930-1934/1978). Ginsburg (2009) notes that 

clinical interviews originated from Piaget’s attempts to combine the benefits of evaluating a 

student’s task performance with those of observation techniques, and proceeds to state that 

Vygotsky’s ideas on interviewing, although based on Piaget’s clinical interview technique, 

included his belief that a student’s construction of meaning may be created in conjunction with 

an expert tutor or teacher. Unlike Piaget’s clinical interview technique, which would strictly 

prohibit conceptual input from a teacher, Vygotsky (1934/1986/2012) believed the clinical 

interview should be extended into the realm of a teaching tool by using questions designed to 

assist the student. In fact, Vygotsky (1934/1986/2012) believed that assessment of a student’s 

true understanding and potential for understanding is not possible without techniques that allow 

for co-construction of knowledge between the novice and the expert.  

When participants were presented with fraction items to work during intervention 

sessions, the researcher frequently asked participants to explain their work or justify their 

solution. A scaffolding orientation as proposed by Cambourne (1988) and Graves (1983) that 

involves careful observations of the student’s work and vocalizations followed by questions 

intended to guide the student when needed was used by the researcher during intervention 
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sessions. Cambourne (1988) proposed that scaffolding should not be viewed as an instructional 

process with predetermined steps, but rather a practice of formulating questions to redirect or 

deepen the student’s conceptual thinking.  Following Cambourne’s (1988) conception of 

scaffolding, if the student appeared to be confused or asked for help, the researcher asked 

questions designed to assist the student in finding meaning in the underlying mathematical 

concepts. After the student solved the problem, if the student had errors or could not explain his 

reasoning, the researcher asked questions designed to elicit deeper thinking about the 

mathematical concepts. The researcher used questions that would support certain scaffolding 

techniques as described by Anghileri (2006), including prompting and probing, explaining and 

justifying, and negotiated meaning. Prompting and probing questions were intended to guide 

participants to think more deeply about fraction concepts and tasks while other questions were 

posed as requests for explanation and justification or negotiated meaning. 

It was the intention of the researcher to avoid directly instructing the student in either 

procedures or concepts. In line with Broza and Kolikant’s (2015) description of how scaffolding 

using questioning strategies interacted with meaningful learning of mathematics for students 

with low achievement in mathematics, the researcher attempted to use questions to encourage 

students to make explicit their mathematical thinking. For example, if the participant attended to 

the numbers in a word problem without considering the context, the researcher might ask the 

student, “What does the problem as you to do?” If the participant generated an answer to a 

problem but did not write or verbalize to explain or justify the answer, the researcher might ask 

the student, “Can you prove it?” or “How does your strategy prove it?” Participants were also 

questioned about their understanding of other participants’ strategies and solutions including 
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connections between different strategies. Table 7 presents examples of question stems the 

researcher frequently used to achieve this purpose along with the associated scaffolding 

technique. 

  



 

78 

Table 7 

Question Stems Used in Scaffolding 

Question Stems 
Associated Scaffolding 

Technique 

What does the problem ask you to do? Prompting and Probing 
Does your answer make sense? Prompting and Probing 
How do you know? Prompting and Probing 
Why did you decide to do this? Prompting and Probing 
Why does this matter? Prompting and Probing 
How did you get your answer? Explaining and Justifying 
Can you prove it? Explaining and Justifying 
Does your strategy prove it? Explaining and Justifying 
Can you tell me why? Explaining and Justifying 
Can you write something to show your solution strategy? Explaining and Justifying 
Do you agree with him? Negotiated Meaning 
Why do you agree or disagree? Negotiated Meaning 
Who do you think is right? Negotiated Meaning 
What do you think he did? Negotiated Meaning 
How is his strategy/drawing similar or different to yours? Negotiated Meaning 

 

To summarize, the researcher used questioning techniques based on student 

verbalizations and demonstrated work to help the participants extend their conceptual 

understanding of fraction concepts, to gage the participants’ current and potential understandings 

of the concepts, and to uncover strengths and misunderstandings or errors that might have been 

preventing participants from successfully developing depth of understanding. In addition to 

information about the participants’ thinking, using aspects of the clinical interview within the 

intervention sessions allowed the researcher to take note of affect, attention, and motivation, 

factors that may not be apparent in another data collection setting and were relevant to emerging 

codes and themes (Ginsburg, 2009). 
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Data Analysis Procedures 

Procedures for data analysis outlined by Merriam (2009) and Creswell (2007) were the 

guides used for data analysis in this study. Additionally, qualitative coding relied on procedures 

outlined by Saldana (2013). Audio- and video-files of each intervention session were transcribed 

within several days of the last intervention session and observational notes were reviewed as 

supplementary notes were created. Transcripts, documents, and notes were analyzed to look for 

emerging codes and themes. The researcher generated a memo to herself at the conclusion of 

each intervention session to capture insights as close to real time as possible. Insights included 

strategies for upcoming intervention sessions, reflections, tentative themes, ideas, issues to 

pursue, and even hunches or instinct. These insights were used to inform and guide future data 

collection efforts. Decisions that resulted from these insights were recorded on a decision log 

that indicated how future sessions would be impacted. The decision log is contained in Appendix 

D. The data analysis was an ongoing process, which began with data collection and concluded 

only when a set of themes and answers to research questions could be formulated. 

Coding of data began with recording of the participant’s pseudonym, number of the 

intervention session, and classification of the tasks presented to students during the intervention 

sessions. Table 8 presents the codes used to classify tasks used during the intervention sessions. 
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Table 8 

Codes for Classification of Tasks 

Codes for Classification of Tasks 

Type of fraction problem 

 Equipartitioning/Unit Fraction 

 Iteration of Unit Fractions 

 Equivalence 

 Comparison 
Lesh and colleagues’ (1987) framework of five different ways of representing and 
connecting a mathematical concept 

 Real life situations 

 Manipulatives 

 Pictures 

 Written symbols 

 Verbalization 
Type of fraction model 

 Area model 

 Linear model – including the number line 

 Set model 
Material used to represent fractions 

 Fraction circle manipulatives 

 Paper strips, paper circles, paper squares intended for folding or cutting 

 Linear fraction manipulatives 

 Pre-drawn pictorial presentations 

 Student generated pictorial presentations 
 

During data collection, the researcher broke down data into units of information. Merriam 

(2009) describes a unit of information as the smallest piece of data – whether one work or 

several pages of text – that can be interpreted with only a broad understanding of the goals of the 

research. For this study, the researcher found that the smallest units of data were episodes of 

conversation during work on tasks or during discussion of tasks subsequent to work. The 

researcher then compared these units of information to locate commonalities. The commonalities 

were used to generate first cycle codes to which future units of information were assigned. 

Emerging from first cycle coding were themes related to the nature of each participants’ 
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struggles. A pattern of misconceptions and errors emerged from the data collected from 

participants, which could be related to Geary’s (2003) proposal that three subtypes of 

mathematical disability exist. At this point, Geary’s subtypes of mathematical disabilities was 

chosen as an analytical framework for this study, with each misconception or error classified for 

each participant as fitting into one of the subtypes. Resulting from his work with elementary 

students who struggled with whole number operations, Geary proposed labeling three subtypes 

of mathematical disabilities as the conceptual subtype, the semantic memory subtype, and the 

visuospatial subtype. Characteristics of each subtype are listed in Table 9.  

Table 9 

Geary’s Subtypes of Learning Disabilities in Mathematics 

Subtype Characteristics 

Conceptual  Use of inefficient or immature strategies 

 Mistakes made with use of procedures 

 Weak conceptual understanding 

 Difficulty executing multi-step strategies 

 Delay in development that often improves with time 
Semantic Memory  Struggle to retrieve mathematical facts 

 High error rate with fact retrieval 

 Time to retrieve facts is often longer than expected 

 Incorrect answers frequently related to numbers in the problem (for 
example, 3+4 might result in an answer of 5) 

 Cognitive difference rather than delay in development 

 Appears to be often associated with reading disabilities 
Visuospatial  Challenges in creating visual representations of mathematical 

information 

 Difficulties interpreting spatial information 

 Does not appear to be associated with reading disabilities 

 

Implicit in this process is the commitment to recognizing new units of data which do not 

fit into any existing code and, thus, the necessity to generate new codes during analysis 
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(Merriam, 2009). During first cycle coding, a pattern of strengths began to emerge for each 

participant. Codes were created to describe these strengths. First cycle codes were combined or 

broken down into additional codes as second cycle coding focused on axial reorganization of 

first cycle codes. During axial reorganization of codes, a second line of themes emerged from the 

data concerning the interaction between participants’ making sense of fraction concepts and 

scaffolding techniques employed. Although scaffolding techniques as described by Anghileri 

(2006) were always intended to be an integral part of the intervention sessions, it was not until 

the emergence of themes from second cycle coding that it became apparent that these scaffolding 

techniques should also be used as an analytical framework. Many researchers (Anghileri, 2006; 

Broza & Kolikant, 2015; Cambourne, 1988; Cazdan, 1983; Moschkovich, 2015; Putambeker & 

Hubscher, 2003) propose that scaffolding techniques are critical to success in mathematics for 

students who struggle. As such, episodes during intervention sessions were coded according to 

scaffolding techniques described by Anghileri (2006) and scaffolding episodes were analyzed for 

perceived success, partial success, or failure. The intent of this analysis was to describe instances 

in which the use of scaffolding was able to reveal participants’ strengths or struggles and 

instances in which the techniques used enabled participants to make sense of fraction concepts. 

Although the researcher planned to use scaffolding techniques oriented around questioning 

strategies to support prompting and probing, specific decisions about appropriate questions were 

made in the moment during intervention sessions. The researcher determined which tasks would 

use manipulatives and pictorials in advance of intervention sessions; however, decisions were 

made to adjust use of these representations during intervention sessions as participants’ needs 

became apparent. This approach to analyzing the instances of use and outcomes of scaffolding is 
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in line with Vygotsky’s (1934/1986/2012) assertion that assessment of a student’s true 

understanding and potential for understanding is not possible without techniques that allow for 

co-construction of knowledge between the novice and the expert. The scaffolding techniques 

analyzed for this study are listed and described in Table 10. 

 

Table 10 

Scaffolding Techniques as Described by Anghileri (2006) 

Technique Description 

Prompting and Probing  Using questions to guide the student to a mathematical idea or 
solution 

 Using questions to guide the student to think more deeply 
 

Looking, Touching, and 
Verbalizing 

 Objects are manipulated or pictorials created by students 

 Students analyze and discuss what they see 

 Students talk about their mathematical ideas to others 
 

Interpreting Student 
Work or Talk 
 

 Clarifying student work 

 Clarifying student talk 

Simplifying a Problem  Creation of an intermediate task to shed light on concepts and 
strategies related to the original tasks 

 Cognitive complexity of the original task should be maintained 
 

Explaining and 
Justifying 

 Opportunities embedded within instruction for students to 
support or prove their work verbally 

 Opportunities embedded within instruction for students to 
support or prove their work in written format 

 
Negotiated Meaning  Development of mathematical ideas that are agreed upon by 

students 

 Supported by teacher guidance 

 Errors and misconceptions are addressed 

 Mathematical knowledge is created and shared within the group 
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While first and second cycle coding was proceeding, units of information were analyzed 

to determine relevancy to the research questions and purpose of this study. Units of information 

that did not shed light on these were sidelined for this study but may open a line of questioning 

valuable for future analysis or research. Merriam (2009) labels this type of qualitative data 

analysis as the constant-comparative method and posits that it is particularly suited to qualitative 

studies because it is inductive. The goal of the constant-comparative method is to make sense out 

of data by “consolidating, reducing, and interpreting” what the participants do and say, and what 

the researcher sees and hears (p. 175). For this study, coding and theme generation began during 

data collection, and continued after the conclusion of data collection leading to the eventual 

selection of the two data analysis frameworks and the results of the analysis. 

Trustworthiness 

Merriam (2009) posits that qualitative research can be judged to be trustworthy if the 

knowledge gained from the study is valid and reliable, and is obtained in an ethical manner, and 

further asserts that results are “trustworthy to the extent that there has been some rigor in 

carrying out the study” (p. 209). However, Merriam clarifies that the “standards for rigor in 

qualitative research necessarily differ from those of quantitative research” (p. 209). Throughout 

the course of this study, techniques proposed by many researchers as contributing to validity and 

reliability in qualitative studies will be used (Brantlinger et al., 2015; Butler, 2006; Creswell, 

2007; Merriam, 2009; Moustakas, 1994; Saldana, 2013). 

To assist in achieving trustworthiness in this research study, the researcher enacted the 

following strategies: a) bracketed her assumptions and positions; b) engaged in adequate data 
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collection; c) employed triangulation of data; d) maintained records of collected data, analysis, 

and interpretation including the links between these; and e) created a thick, rich description of 

the results. The processes of bracketing and creating a thick, rich description of the results are 

intended to contribute to the validity of the study, while the other previously stated processes are 

expected to contribute to the reliability as well as the validity of the study. 

Bracketing is described as a process qualitative researchers attempt to “set aside their 

experiences, as much as possible, to take a fresh perspective toward the phenomenon under 

examination” (Creswell, 2007, p. 59). Often researchers make a statement about their own 

experiences with the phenomenon in question including an explanation of their views 

(Brantlinger et al., 2005; Creswell, 2007; Moustakas, 1994). This researcher has included a 

bracketing statement as part of the data analysis that outlines the researcher’s past experiences 

with students who struggle in mathematics, experiences teaching mathematics both from 

procedural and conceptual orientations, and experiences with family members who have reading 

and writing learning disabilities. 

A thick, rich description is provided in the following chapter, which includes detailed 

portrayals of the participants, settings, and analytical findings with supporting evidence provided 

in the forms of transcript excerpts and student-created artifacts (Merriam, 2009). This type of 

description was intended to provide adequate detailed contexts of the study that readers may use 

to judge the transferability of the findings to their own circumstances (Merriam, 2009). For 

example, a reader may recognize similarities between the description of a participant’s strengths 

and struggles and those of a student with whom he or she is working, or may seek to understand 

if a student in his or her class might build a deeper understanding of a given mathematics 
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concept with scaffolding techniques similar to those detailed in episodes presented in the 

analysis.  

The data collection process lasted for five weeks and occurred three times per week with 

each session lasting approximately one half hour. The length of researcher engagement with the 

participants should have allowed for adequate data collection in terms of opportunities to observe 

student work, to engage in questioning during student work, and to collect documents. The 

researcher made extensive adjustments to the tasks used in intervention sessions over the length 

of the study, thus changing the data analysis place to accommodate adjustments made to the data 

collected. Specifically, the original data collection plan was intended to include a variety of items 

addressing the concept of fraction comparison. Events during early sessions necessitated more 

focus on equipartitioning and unit fractions, thus limiting time available to focus on fraction 

comparison. With the exception of limited time devoted to fraction comparison, there was 

adequate data collection across topics though to make triangulation of data possible. The 

researcher was able to triangulate between real-time observational notes, documents produced by 

the participants, audio- and video-tapes of sessions, and transcripts of sessions. The researcher 

maintained and analyzed an audit trail of all data collected, memos generated, coding and 

analysis of data, and theme generation. Although a qualitative study of this type is not entirely 

reproducible, it was the intention of the researcher to provide an explanation to the reader that 

clarifies how the researcher arrived at the analytical findings of the study. The researcher also 

employed procedures suggested by Saldana (2013) specifically related to coding of data to 

contribute to the trustworthiness of a study. These procedures included line by line coding which 

reduced the likelihood of researcher bias, transcript creation as close to audio-recording as 
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possible, initial coding occurred simultaneously with transcription, and analytic memos were 

used to track the evolution of the researcher’s coding and thinking. 

Brantlinger and colleagues (2005) posit that in addition to credibility measures, as 

previously described, the researcher should also attend to certain quality indicators that 

contribute to the trustworthiness of a study. As part of this study, the researcher has attempted to 

attend to quality indicators such as: a) appropriate participant selection criteria; b) sufficient time 

spent in sessions with participants; c) adequate recording, field notations, and timely 

transcriptions; d) meaningful artifact collection; e) systematic and meaningful coding; and f) 

conclusions substantiated by collected data. 

Strengths and Limitations of the Research Design 

For this study, the research questions, oriented around questions of what and how, led to 

the choice of case study research design. The research design, sampling procedure, and sampling 

size may limit generalization of study results beyond the participants studied (Creswell, 2007). In 

fact, Brantlinger and colleagues state that it is contrary to the “philosophies that ground 

qualitative scholarship to make authoritative pronouncements about what works for every person 

with disabilities in every social context” (p. 202). However, qualitative studies similar to this one 

have the potential to communicate valuable findings about the thinking of students who are 

struggling in school to readers (Brantlinger et al., 2005). It is the hope of this researcher that 

reading about how these learners make sense of early fraction concepts may help another 

researcher frame his or her research, or may help a practitioner view a learner who struggles in a 

different way leading to different teaching practices. The length of the study should also be 
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considered. Although intervention sessions held thrice weekly over five weeks should have 

allowed enough time to strengthen data collection and analysis, a longer intervention period 

could further strengthen the researcher’s ability to form a fuller picture of the participants’ sense-

making processes. In particular, the researcher’s decision to focus more time within the study on 

equipartitioning and unit fraction concepts at the expense of fraction comparison is a limitation 

of the study. Also, the study focus on a narrow set of early fraction concepts, limits the potential 

to shed light on how struggling mathematics students might make sense of other mathematical 

concepts. Another limitation of the study is that the researcher served as the primary instrument 

of data collection and analysis. Attention to which data should be recorded and how that data 

should be analyzed depended upon the abilities, skills, and knowledge of the researcher. Themes 

that emerged from the data were only uncovered through the lens of the researcher, meaning that 

researcher bias was unlikely to be completely mitigated even with efforts to increase the 

trustworthiness of the study. 

The identification of students to participate in this study was a potential limitation. The 

use of second-grade mathematics achievement tests and third-grade progress monitoring 

assessments to identify students who struggle with mathematics did not allow the researcher to 

know with any certainty why a participant may be struggling prior to the study. As such, it was 

not possible for the researcher to know in advance whether a student’s struggles may relate to 

learning disabilities, which could be specific to reading or mathematics, or to other 

circumstances. However, this is a limitation common in both quantitative and qualitative 

research concerning students who struggle and studies about mathematics interventions for 

students who struggle. According to Ginsburg (1997) the research literature in mathematics 
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education often fails to distinguish between the wider category of students who struggle and the 

subcategory within those who struggle who have learning disabilities. Often the identification of 

learning disabilities is based on an issue with reading performance or low performance across 

school subjects. Furthermore, scholars (Fletcher, 2007; Geary, 2003; Ginsburg, 1997) assert that 

current identification methods are inadequate to determine if the root cause for a student’s 

struggles are learning disabilities in general, mathematics learning disabilities specifically, 

another cause, or a combination of causes. Geary (2003) posits that little has been learned about 

the root causes of children’s difficulties in mathematics even when mathematics learning 

disabilities are assumed based on performance. A review of the literature reveals that studies that 

identified students as having a mathematical learning disability often used low performance or 

being at risk for failure as the only defining characteristic (Gersten, Chard et al., 2009; Jitendra et 

al., 1998). Other studies only identified students as struggling or having difficulty with 

mathematics (Flores & Kaylor, 2007; Fuchs & Fuchs, 2003; Fuchs et al., 2013; Kroesbergen, & 

Van Luit, 2003). These research studies make no attempt to define what would distinguish a 

student with a learning disability from a student who struggles. This is a limitation of this current 

study as well as, according to Ginsburg (1997), one common in the literature. Although Ginsburg 

made this statement in 1997, a review of more current research reveals this to still be the case 

(Butler et al, 2005; Fuchs et al, 2013; Gersten, Chard et al, 2009; Jitendra et al., 2014; Zhang & 

Xin, 2012). Future qualitative research that delineates between students who struggle, students 

who have general or reading learning disabilities, and students who have mathematics learning 

disabilities is needed. Investigations into the different needs and strengths of the three groups 

would be valuable in mathematics education practice. Before these types of studies can be 
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conducted though, there is a need to establish common working definitions of terms through 

research and reflection on common practices. 
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CHAPTER 4: ANALYSIS 

The presentation of the analysis begins with a statement by this researcher intended to 

describe the life experiences that the researcher has attempted to bracket out of the research 

process to reduce bias in the study. A description of the study participants and the intervention 

sessions as enacted follows. The analysis of the data is presented in two parts. The first part 

addresses the first analysis framework selected for this study, Geary’s (2003) subtypes of 

learning difficulties. A description of Geary’s subtypes is followed by an analysis of each 

participant’s thinking and work related to fractions during the intervention sessions using the 

first framework. In the second part of the analysis presentation, the second analysis framework, 

the use of scaffolding techniques, is presented. Many researchers and educators (Bruner & 

Ratner, 1978; Cambourne, 1988; Cazdan, 1983; Ninio & Bruner, 1978; Wood, Bruner, & Ross, 

1976) have proposed scaffolding techniques. However the analysis in the study is based on the 

use of scaffolding techniques proposed by Anghileri (2006) for use in the mathematics 

instruction learning process. 

Bracketing Statement 

Following Moustakas’ (1994) phenomenological process, I have attempted to state and 

then bracket out my own experiences with students and family members who have experienced 

struggles in learning as I investigated the experiences of the participants in this study.  As part of 

this attempt, I have included this statement regarding my personal experiences. It was my intent 

to reduce the influence of my past experiences while conducting this research, and to be 

transparent with the reader about these past experiences. I have had many experiences with 
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children and adults who have learning difficulties, both as a teacher and a family member. As a 

middle school algebra teacher, I was struck by how often students who struggled to achieve an 

acceptable grade seemed to know more about algebra than their grades reflected. Some students 

could explain mathematical concepts at a high level but would struggle to complete work 

accurately or within typical time frames. These students frequently struggled with simple 

computation that made algebra difficult for them even though their conceptual understandings 

might be strong.  Some students could explain or demonstrate procedures, but could not connect 

procedures to the deeper concepts. Often, these students would tell me that they used to be “good 

at math” but were not anymore and that they no longer liked mathematics, or believed they could 

learn it well. Within my own family, disabilities related to reading and writing are common. I 

have experienced first-hand how complications with reading can contribute to difficulties with 

mathematics task performance. My experiences have shown me that some people with reading 

disabilities struggle to work with tasks in a limited time frame or to express their mathematical 

ideas in words.  

Description of Participants 

Three students in third grade participated in the after-school intervention sessions. 

Pseudonyms for the students, used to protect the identities of the participants in this study, are 

Clay, Daniel, and Marcos. The researcher served as their mathematical guide during these 

sessions. Each of the students were identified by the principal using results from the second 

grade IOWA Mathematics Test from the previous year, fall and winter i-Ready progress 

monitoring assessments, and teacher input to the principal. Parent consent and student assent for 
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participation and recording were obtained using IRB protocols prior to the first intervention 

session. Initially, the researcher had requested that each participant be identified as performing 

within the lowest 25% on a national normed measure. The IOWA Mathematics Test, 

administered to each participant in the spring of second grade, was used as this measure. Clay 

and Daniel fell within this guideline, performing at 20th and 25th percentiles respectively. In 

addition, i-Ready progress monitoring predicted that both Clay and Daniel were at risk of 

performing below grade level on the upcoming spring annual assessment. Marcos performed at 

the 40th percentile but was included in the study as well because his i-Ready progress monitoring 

predicted that he was at risk for below grade level performance on the upcoming spring annual 

assessment. Selection criteria to identify students struggling in mathematics have been extended 

beyond the 25th percentile in some studies. Using nationally normed tests of mathematics 

achievement, Fuchs and colleagues (2013) set selection criteria below the 35th percentile for 

fourth-graders and Jitendra and colleagues (2014) set selection criteria at or below the 40th 

percentile. Based on these past studies and Marcos’ performance on third grade i-Ready 

assessments, a decision was made to include Marcos in the study. Marcos and Clay had the same 

classroom teacher, whereas Daniel was from another class in the same school. Marcos’ teacher 

reported to the principal that Marcos was struggling to complete mathematics work in class and 

often performed poorly on class mathematics tests and quizzes. His teacher also noted that 

Marcos was prone to be quiet, but distracted, in class and he often did not finish his classwork. 

Although Clay’s standardized test performance and progress monitoring fell below Marcos’, his 

teacher reported that his classroom mathematics performance was sometimes good but uneven, 

with more struggle becoming apparent as fraction concepts were introduced. In class, Clay could 
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be talkative and tended to finish his work quickly. Daniel’s teacher reported that, although he 

sometimes worked slowly, he was a diligent and persistent worker in all of his classwork. 

Description of Intervention Sessions 

Fifteen intervention sessions were conducted in the school’s media center during the after 

school program in which the researcher worked in a social environment simultaneously with the 

three participants. The duration of the sessions averaged 32 minutes per session, with the shortest 

session lasting 28 minutes and the longest 41 minutes.  Intervention sessions were initially 

intended to focus on fraction topics of equipartitioning and unit fractions, iteration of unit 

fractions, fraction equivalence, and fraction comparison in relatively equal measures. As sessions 

progressed, data collected from each session influenced decisions about topics to cover in 

subsequent sessions. As a result, more time was devoted to developing understanding of 

equipartitioning and unit fractions, and iteration of unit fractions. Although the focus on fraction 

equivalence was reduced, tasks involving concepts of fraction equivalence were used in eight of 

15 sessions. Tasks focused on fraction comparison occurred in two sessions. Topics covered 

during each session are shown on Table 11. A decision log, presented in Appendix D, was used 

to record decisions about topic focus, tasks, and materials made for subsequent sessions and, in 

three cases, during sessions. 
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Table 11 

Fraction Topics Covered by Session 

Session 

Duration 
of Session 
in Minutes 

Equipartitioning 
and Unit 
Fractions 

Iteration of 
Unit Fractions 

Fraction 
Equivalence 

Fraction 
Comparison 

1 36     
2 30     
3 32     
4 32     
5 36     
6 41     
7 31     
8 28     
9 29     
10 30     

11 29     
12 34     
13 28     
14 28     
15 31     

 

Analysis Framework 1: Geary’s Subtypes of Learning Disabilities in Mathematics 

As a result of his work with elementary students who exhibited difficulties in 

mathematics, specifically with whole number operations, Geary (2003) concluded that it may be 

possible to identify three subtypes of mathematical disability and labeled these as the conceptual 

subtype, the semantic memory subtype, and the visuospatial subtype. The conceptual subtype is 

characterized by a “poor understanding of the concepts underlying procedural use” (Geary, 2003, 

p. 205). The semantic memory subtype is associated with difficulties in retrieving mathematical 

information accurately and rapidly. The visuospatial subtype indicates difficulties in 
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coordinating spatial information with abstract information. The defining characteristics of each 

subtype are outlines in Table 12. 

Table 12 

Geary’s Subtypes of Learning Disabilities in Mathematics 

Subtype Characteristics 

Conceptual  Use of inefficient or immature strategies 

 Mistakes made with use of procedures 

 Weak conceptual understanding 

 Difficulty executing multi-step strategies 

 Delay in development that often improves with time 
Semantic Memory  Struggle to retrieve mathematical facts 

 High error rate with fact retrieval 

 Time to retrieve facts is often longer than expected 

 Incorrect answers frequently related to numbers in the problem (for 
example, 3+4 might result in an answer of 5) 

 Cognitive difference rather than delay in development 

 Appears to be often associated with reading disabilities 
Visuospatial  Challenges in creating visual representations of mathematical 

information 

 Difficulties interpreting spatial information 

 Does not appear to be associated with reading disabilities 

 

Although Geary (2003) labeled these three subtypes as pertaining to mathematical 

disabilities, he is clear in advising that no measures exist that can specifically diagnose a learning 

disability in mathematics. As such, Geary used a criterion of performance in the lowest 25% on a 

mathematics achievement test in two consecutive years. Other researchers (Fuchs et al., 2013; 

Gersten, Chard et al., 2009; Hecht & Vagi, 2010; Jitendra et al., 2014; Zhang & Xin, 2012) have 

used similar criteria to identify students that they describe as struggling in mathematics, having 

mathematics difficulties, or at-risk for low performance in mathematics. For this study, the 

researcher has chosen to use similar performance criterion, along with performance on third-
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grade progress monitoring assessments, to identify students who are struggling in mathematics. 

The researcher will make no attempt to comment on the possibility that the students who 

participated in this study either do or do not have a learning disability in mathematics. However, 

what is clear is that the study participants can be considered to be struggling in mathematics 

according to their performance. Furthermore, work with these students across multiple sessions 

does seem to indicate that Geary’s subtypes of mathematical disabilities is also a useful 

framework for analyzing the specific types of struggles these students confronted in their work 

with fractions. As such, in this study, the researcher referred to subtypes of mathematical 

difficulties rather than subtypes of mathematical disabilities. Table 13 presents the categorization 

of errors and misconceptions by subtype identified for each participant over the course of the 15 

small group intervention sessions. 

Table 13 

Errors and Misconceptions by Subtype 

Participant Conceptual Semantic Memory Visuospatial Total 

Clay 25 8 9 42 
Daniel 28 8 18 54 
Marcos 9 19 5 33 
Total 62 35 32 129 

 
Each student exhibited errors and misconceptions that fit into each of the three subtypes. 

However, some patterns can be seen in the summary of the data. Clay clearly had more 

occurrences within the conceptual subtype than he had in the semantic memory or visuospatial 

subtypes, indicating that his conceptual understanding of fractions may be weak or immature. 

Marcos has few occurrences in either the conceptual or visuospatial subtypes, but relatively more 

in the sematic memory subtype. Marcos’ struggles with accuracy and extended time to retrieve 
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information were evident throughout the sessions. Although Daniel struggled most within the 

conceptual subtype, a comparison of his occurrences by subtype to those of the other two 

participants shows he was experiencing a struggle within the visuospatial subtype. Additionally, 

any analysis of difficulties for a particular student is incomplete without a corresponding analysis 

of strengths. An analysis of strengths and weakness, supported by transcript excerpts and student 

artifacts, for each participant follows. For Clay and Marcos, difficulties within the conceptual 

and semantic memory subtypes were respectively highlighted. For Daniel, the decision was made 

to focus on occurrences within the visuospatial subtype. The strengths discovered for each 

participant in this study do not always align with Geary’s subtypes, but where alignment exists, 

the researcher described this alignment later in this manuscript. 

Clay 

Clay’s struggles appeared to be generated by conceptual misunderstandings about the 

nature of fractions indicating struggles within the conceptual subtype. In this discussion, four 

issues that appeared to be related to Clay’s weak conceptual understanding of fractions are 

covered: a) Clay’s assertion that fractions do not have to have equal-sized pieces; b) Clay’s 

practice of counting pieces to give a whole number answer to a problem that has a fractional 

answer; c) Clay’s naming of unit fractions without attending to the defined whole; and d) Clay’s 

use of whole number reasoning to compare fractions. In addition, episodes occurred which 

uncovered strengths related to Clay’s reasoning abilities when he understood a concept and his 

ability to think flexibly about mathematics. 
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One clue as to the conceptual basis for Clay’s struggles may be his correct interpretation 

of the need for equal-sized pieces in a set of pictorial representations of fractions while failing to 

attend to this requirement when problems were presented in contexts such as real world word 

problems. Figure 2 shows Clay’s work with identification of two-fourths while attending to 

equal-sized pieces, which occurred during the first session. The directions for the problem set 

indicated that Clay should place an “x” beside each picture showing two-fourths shaded. Clay 

correctly identified pictorial representations of two-fourths using visual confirmation of equal-

sized pieces.  

 

Figure 2: Clay's Identification of Two-Fourths While Attending to Equal-Sized Pieces 

Later in the same session, Clay was presented with the following real-world context word 

problem and responded with the following answer in group discussion: 
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Jackie and Lianna have 13 cookies. If they share the cookies equally, how many 

cookies would each person get? 

Clay: Hm! I think I’ve got it! 
[about a minute later] 
Clay: They both get seven. 
 
Researcher: Ok, so tell me this. Let’s look at yours, Daniel and Clay. You are telling me each 
person gets seven cookies? How many cookies is that? 
 
Daniel: 14 
 
Clay: You have to…. You cut the last thirteenth cookie in half and you get 14. 
 
Researcher: Is that the same as having 14 cookies? If it’s a different size? 
 
Marcos: No! 
 
Clay: Yes 
 
Researcher: They’re each getting six cookies and then there’s one cookie left….and they have to 
share it somehow….are they each getting a whole cookie? 
 
Clay: Yes! 
 
Daniel: Um…. Split it in half. 
 
Researcher: Ok, split the last cookie in half. Is that the same as getting whole cookie? 
 
Daniel: No. 
 
Clay: Yes. 

During the fourth session, Clay communicated his misunderstanding about equal-sized 

pieces undergirding the concept of fractions. 

Researcher: Are fractions always fair shares? 
 
Clay: Well not all of the time. Some people get more. 
 
Researcher: But to be a fraction, something we might call fourths or sixths…does it have to be a 
fair share? 
 
Daniel: Yes. 
 
Marcos: Yes. 
 
Clay: Well those are fair…but a fraction might not be fair…or it could be… 
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Clay showed that he did not believe equal-sized pieces are a requirement of defining a 

fraction, although he attended to equal-sized pieces at times when he felt he might be expected to 

do so. Looking at Clay’s work in Figure 2, one might assume that he has a grounded and 

accurate understanding of the relationship between fractions and equal-sized pieces. His 

discussions with the group during the intervention sessions, however, revealed a different 

picture. Clay was aware that fractions are sometimes presented in equal-sized pieces but his 

misconception led him to believe that this is not an essential part of establishing the meaning of 

fractions. 

Clay consistently answered questions with a whole number answer derived by counting 

fractional pieces. In the third session, a problem about sharing peaches was presented and Clay 

engaged in the following discussion with the researcher: 

4 children want to share 3 peaches so that everyone gets the same amount. How 

much peach can each child have? 

Clay: So they each get three! 
 
Researcher: Three what? 
 
Clay: Three peaches. 
 
Researcher: What would you name each piece? As a fraction? 
 
Clay: Four fourths, a whole. 
 
Researcher: Okay, so what is the name of one piece? Just this one here? 
 
Clay: Fourths. 
 
Researcher: So your pieces are named fourths. How much did each child get? 
 
Clay: Three 
 
Researcher: Three what? 
 
Clay: Pieces of the peach. 
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Researcher: And what are those pieces named? 
 
Clay: Fourths. 
 
Researcher: So they got three …… 
 
Clay: Pieces of the peach. 
 
Researcher: Should we say they got three fourths of the peach? 
 
Clay: Sure, you could. 

During the fifth session, Clay demonstrated the misunderstanding again during a game 

with pieces that have fractional names and with a real world word problem. 

Researcher (to Clay): What do you need to win? 
 
Clay: Three more. 
 
Researcher: Three more what? 
 
Clay: Three more fractions. 
 
Researcher: I see that, but three more of what kind of fraction? 
 
[Clay is off-task, talking about something unrelated] 
 
Daniel: Sixteenths! [Answering for Clay] 
 
Researcher: Clay do you agree with him? He says you need three more sixteenths. 
 
Clay: Yeah. 

Later in this session, Clay has a reaction to the following word problem: 

Healthfirst granola bars are shaped like a square. Lucius ate one piece of a 

granola bar and now it looks like this:  

 

 

Lucius ate how much of the granola bar? 

Clay: It tells you the answer! 
 
Researcher: What? What answer? 
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Clay: It tells you in the problem. One piece. Lucius at one piece. 

Clay attended to whole numbers within the fractional answers to a problem. This may be 

related to another misconception Clay demonstrated when working with fractions. Clay would 

name a unit fraction by counting the number of pieces available to him. Clay did not understand 

that he needed to attend to the definition of the whole pertaining to a particular problem. In the 

following exchange, the whole was defined as a circle manipulative. Clay had eight fourth-sized 

pieces. 

Clay: 1, 2, 3, 4, 5, 6, 7, 8 
 
Researcher: What are your pieces called Clay? 
 
Clay: Eighths. 
 
Researcher: Why are they eighths? 
 
Clay: There are eight, so each one is an eighth….so eighths. 
 
Researcher: Hmmm….do they fit on the whole? 
 
Clay: [places four pieces on the whole] Oh, four of them do. 
 
Researcher: There are eight of them. Are they eighths because there are eight of them? 
 
Clay: Um….no… 
 
Researcher: Not necessarily…what are they though? 
 
Clay: They’re fourths! Fourth! 

Clay’s challenge of using whole number knowledge to reason about fractions was 

apparent in later sessions as well when dealing with fraction equivalence and fraction 

comparison. When presented with the following graphic, shown in Figure 3, during session 11, 

the students were asked to state if the top set of circles or the bottom set of circles had more 

shaded. Clay’s response follows in this transcript excerpt. 

Marcos: They’re both the same. 
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Researcher: What do you think Clay? You had something you really wanted to say. Tell us what 
you want to say. 
 
Clay: Well, that’s actually incorrect….. 
 
Clay: Because this one…is not… This one is not shaded and this one is [referring to the bottom 
row]. And these two are shaded. 
 
Researcher: So do you think one row has more shaded? 
 
Clay: [points at the top row] 
 
Clay: But they are the same…. 
 
Researcher: The top row is more, but they are the same? 
 
Clay: So when these…when these two add to each other [pointing at the top row], then they 
become this one [pointing at the bottom row]. But…this one is bigger [pointing at the top row] 
because it has…both of them have one part shaded, and this one [pointing at the bottom row] has 
one part shaded. 

 

 

Figure 3: Which Set of Circles has More Shaded? 

Clay demonstrated a visual sense that the same amount of area was covered in both sets 

of circles; however, he was entrenched in whole number reasoning that indicated to him that two 

pieces is still more than one piece. When working with fraction circle manipulatives in a 

subsequent session, Clay was able to successfully compare fractions.  Later still in the 
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intervention sessions, Clay worked with abstract fraction comparison tasks and reverted to whole 

number reasoning to explain his comparison of three-fourths and three-tenths. He also invoked a 

procedure for comparing fractions with the same denominator to support his answer in the 

discussion that follows. It was not until later in this session with the use of circle fraction 

manipulatives that Clay was able to correctly compare three-fourths to three-tenths.  

Researcher: See these two in the first row? These two fractions, three-fourths and three-tenths. 
Which one do you think is greater? 
 
Clay: Larger? 

Researcher: Yes, larger. 

Clay: This one [indicating three-tenths]. 

Researcher: Why is this one larger? 

Clay: Because it has 10…10 groups and three shaded. That one just has four groups and three 
shaded. 
 
Researcher: Daniel said three-fourths was larger though… 
 
Clay: No… 
 
Researcher: Why not? 
 
Clay: Because if…the numerators are the same…the numerators are the same. But the 
denominators are not the same….so…you have to look at the denominators and see which one’s 
bigger! 

 
Clay’s struggles with the conceptual underpinnings of fractions might lead one to assume 

that his mathematical reasoning skills are weak or his ability to work with complex mathematics 

is limited. However, Clay often demonstrated an ability to understand a mathematical situation 

quickly and accurately as demonstrated in the discussion excerpts below from sessions nine and 

12. 

Researcher: Here is our question. Dani wants to feed each of the children she babysits a half 
sandwich for lunch. If she babysits eight children, how many sandwiches should she make? 
 
Clay: Okay! I think it’s four! 
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It should be noted that although Clay had provided the correct answer immediately 

following the researcher’s positing of the question, the group of three, including Clay, continued 

to work on this problem in mathematical depth for 20 minutes to prove that the answer of four 

was correct. During session 12 the following exchange occurred after working extensively with 

fraction circle manipulatives to discover fractions equivalent to one-half. 

Researcher: What did you come up with Clay? You had one more to do. 

Clay: Five-tenths! 

Researcher: Five-tenths? Write that one down! That’s a great one! Can you show me where you 
made it with the circles? 
 
Clay: Oh…I didn’t… I didn’t make it. I didn’t need to… 

Researcher: How’d you know it would work then? 

Clay: Well…five is half of ten…so… 

Clay was also able to easily attend to flexible definitions of the whole, something both 

Daniel and Marco struggled with at first. This might have been related to Clay’s disconnection of 

fractional pieces from a defined whole. However, when Clay was encouraged to coordinate 

naming unit fractions with a defined whole, his reasoning was remarkable flexible. In the 

following discussion, Daniel was struggling to understand that the circular manipulative piece is 

not the only potential definition for a whole in the set. The half circle or the quarter circle could 

be defined as the whole, resulting in the renaming of other pieces. In the case covered below, 12 

red pieces are needed to cover a whole circle. 

Researcher: My question for you: I knew these two kids, Jordan and Andres. Jordan told me one 
red piece is one-third but Andres said one red piece is one-fourth. I want to know what you guys 
think about what they said. 
 
Daniel: All of them are wrong. No, they’re both wrong. 

Researcher: Why are they both wrong? 

Daniel: It’s not a third or a fourth. 
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Marcos: No, they are wrong because a whole then would just be three pieces, then it would be a 
third. 
 
Clay: What? I give up! 

Researcher: Clay what do you think about what they said? 

Clay: Um….uh… 

Researcher: What do you think about what they said? Could a red piece be one-third or one-

fourth? 

Clay: because….I mean yes it can. 

Researcher: It could? 

Clay: Yes. 

Researcher: Why? How could it be one-fourth? 

Clay: Because it could be four with one. Four could be the whole thing…then one is a fourth. 

Clay’s strong mathematical insight combined with his lack of conceptual understanding 

of fractions suggests that he is a fit in the conceptual subtype. Clay appeared to be capable of 

making sense of fraction given time to experience work with cognitively challenging tasks that 

address these concepts. However, Clay seemed to be prone to relying on procedures without 

understanding. This may be because Clay has not had enough time to engage with the concepts 

and he is searching for shortcuts to perform well in mathematics given the time constraints with 

which he is presented. 

Daniel 

Although occurrences of errors and misconceptions for Daniel indicated that he might fit 

into the conceptual subtype (25 occurrences) of mathematical difficulties as well as the 

visuospatial subtype (18 occurrences), he had more occurrences that were associated with the 

visuospatial subtype than Clay (9) or Marcos (5). In some cases, it seemed that his conceptual 



 

108 

misunderstandings might be rooted in issues with visuospatial understanding. In particular, a 

review of Daniel’s strengths show that these strengths tended to be connected to sound 

conceptual thinking about cognitively challenging problems. In this discussion, two issues that 

appeared to be related to Daniel’s struggles within the visuospatial subtype are covered: a) 

difficulties discriminating between visual depictions of equal and non-equal areas; and b) 

difficulties constructing pictorials that showed equal piece sizes. Daniel’s strengths related to 

sound conceptual thinking and his ability to challenge other participants to think critically about 

the validity of their answers are discussed as well. 

One visuospatial issue that recurred throughout the intervention sessions related to 

Daniel’s ability to correctly understand the need for equal-sized pieces, but not to construct or 

see equal sized pieces. The artifacts below were created during sessions one, four, and 10. The 

first artifact shown in Figure 4 shows Daniel’s struggle to identify equal-sized pieces as a critical 

element in identifying pictorials showing two-fourths. The directions for the problem set 

indicated that Daniel should place an “x” beside each picture showing two-fourths shaded. It can 

be seen in the image of Daniel’s work that he had initially places x’s on two of the figures to 

show he believed these two represented two-fourths, and then he later erased the x marks when 

he heard the reasoning of his fellow student, Marcos.  

Researcher: Okay, so how about this one? [referring to rectangle shown on the right] Is that two-
fourths? 
 
Clay: Nope. 

Marcos: No. 

Daniel: [after Clay and Marcos] Yes it is! 

Researcher: Why do you think so Daniel? Why is it two-fourths? 
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Daniel: Because this is supposed to be, like, one part of the shape and this is the other. And these 
two are…are…this is the rectangle, the rectangle, this shape…and they are both shaded. 
 
Researcher: They are both shaded. So how many parts are there? 

Daniel: Four. 

Researcher: And how many parts are shaded? 

Daniel: Two. 

Researcher: Why would that not work? Marcos, you said that’s not two-fourths? Why did you say 
that? 
 
Marcos: Because it’s not equal….the lines are not equal. 

Researcher: What do you think Daniel? Does that make sense? 

Daniel: Well…no…. Well, maybe. 

                    

Figure 4: Daniel's Identification of Two-Fourths while Attending to Equal-Sized Pieces 

Subsequent work in session three showed that Daniel continued to struggle with 

visualization of equal-sized pieces. In the artifact shown in Figure 5 and the discussion 

following, Daniel successfully found the solution to this problem.  

4 children want to share 3 peaches so that everyone gets the same amount. How 

much peach can each child have? 

Daniel’s pictorial representation of the shared peaches showed circles divided in a way 

that was unlikely to generate equal-sized pieces. However, he talked about the need for fair 

shares among the four children and related the fractional value of the peach correctly. 

Daniel: Okay…it’s four so we split the peaches in four pieces. 

Researcher: Okay. 
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Daniel: For example, this person gets this part of the peach. [He shades one part of the first peach 
as he explains] 
 
Researcher: okay, all right. 

Daniel: And this part of the peach. [As he shades one part of the second peach] 

Daniel: And this part of the peach. [As he shades one part of the third peach] 

Researcher: So how much of a whole peach does he have? 

Daniel: Three-fourths! 

Researcher: Awesome! How much will the other kids get? 

Daniel: They’ll get three-fourths too. They all have to get the same amount. 

 

Figure 5: Daniel's Pictorial Showing Three Peaches Shared Among Four Children 

Daniel’s issues with visualizing equal-sized pieces are further complicated by the 

mathematical reality that equal-area pieces could be constructed with vertical lines if the widths 

of the slices were coordinated to produce equal areas. Helping Daniel to see when he had equal-

sized pieces and when he did not was no trivial matter. Later in session 10, Daniel was still using 

his strategy to create equal-sized pieces. The problem is shown below along with Daniel’s work 
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in Figure 6. The artifact also shows a figure drawn by Marcos. Marcos had become concerned 

with Daniel’s pictorial so he had attempted to show Daniel a way to divide the circle so that 

equal-sized pieces could be assured.  

 

Figure 6: Daniel's Pictorial Showing Mari’s Patio in Three Equal-Sized Parts 

Although Marcos’ drawing was far from an accurate depiction of equal-sized pieces, an 

issue covered subsequently in the section focused on Marcos, Daniel’s work on the next 

problem, shown in Figure 7 and also during session 10, showed that Marcos’ help influenced 

him. It can be seen that Daniel used his inaccurate dividing strategy on the half circle initially. 

However, with no prompting from this researcher or the other students, Daniel saw a problem 

with his drawing, erased the vertical lines, and constructed lines that divided the half circle into 

pie shaped regions. 
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Figure 7: Daniel's Pictorial Showing Juan’s Patio in Three Equal-Sized Parts 

Perhaps because seeing or creating equal-sized pieces were challenges, Daniel would 

often regress to counting pieces rather than attending to fraction size when determining fraction 

equivalence or comparing fractions. When comparing the sets of circles shown in Figure 8 

during session 11, Daniel interpreted the pictorial as presented in the transcript below. 

Researcher: I want to know what Daniel thinks. What do you think? 

Daniel: Well this one….well these are two [pointing at the top row] and this is one [pointing at the 
bottom row] 
 
Researcher: Is it the same amount of shading? 
 
Daniel: No…maybe…two is more than one. 
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Figure 8: Which Set of Circles has More Shaded? 

Then later in the same session, Daniel completed some work that provided insight as to 

how he saw areas when the directions instructed him to compare the figures on each row to 

determine if the shaded areas were equal. Daniel’s work is shown in Figure 9. For this task, an x 
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indicated that the two were not equal in area and a check indicated that the two were equal in 

area. 

Figure 9: Are the Shaded Areas Equal? 

In the first two comparisons, Daniel did not see the areas as equal. Particularly in the first 

pair, one might expect a student to be able to see the equality of the areas fairly easily, but this 

was not apparent to Daniel. In the second two pairs, Daniel was successful in determining the 

equivalency of area in the two figures, when it would seem visualization is more difficult. 

However, a close examination of the second two pairs reveals that each pair has an equal number 

of parts and an equal number of shaded parts. Pencil marks on the drawing indicate that Daniel 

counted pieces. For the first pair, Daniel counted one part shaded out of six for both figures. For 
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the second pair, Daniel counted one part shaded out of five for both figures. It appears that, 

because Daniel struggled to visualize equality of area, he attended to counting parts, a strategy 

that can succeed at times even though conceptually inaccurate. 

Inaccurate answers such as those shown in Daniel’s work above may seem to indicate 

that Daniel struggles with understanding mathematics conceptually as well as visually. However, 

Daniel exhibited sound conceptual thinking throughout the sessions at times. In addition to 

applying rich conceptual thinking to make sense of problems, Daniel also exhibited strength with 

his ability to challenge other students to think critically about the validity of their reasoning and 

solutions. Examples of these strengths are provided below. On a real-world problem intended to 

connect reasoning about fraction equivalence to reasoning used in fair sharing problems, shown 

in Figure 10, Daniel invented a conceptually rich solution strategy, which was scribed. 

Daniel: Um…nine, it’s nine dollars. 
 
Researcher: It’s nine dollars? 
 
Daniel: Yes. 

Researcher: How did you get nine dollars? 

Daniel: Because two plus two equals four, and three plus…two plus four equals six and three plus 

three equals six…and three plus three [he means three plus six here] equals nine. 

 

Figure 10: Daniel’s Work with Equivalence 
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It should be noted that Daniel’s insightful strategy only occurred after he had generated 

several incorrect solutions and I had used extended questioning to scaffold his persistence in 

finding a valid solution strategy. This episode is covered later under the second analysis 

framework, scaffolding techniques. However, the use of scaffolding does not negate the strong 

conceptual reasoning that Daniel was able to use and explain. In the following transcript excerpt 

from session eight Daniel demonstrated his ability to challenge other students to think critically. 

Seen another way, Daniel was capable of providing scaffolding to his fellow students. Before the 

start of this excerpt, we have defined a half circle as our whole. 

Clay: Why don’t you agree with me? [To Daniel and Marcos] It’s a seventh. There’s seven of 
these! Oh no! Wait, eight of these. Eighths. So they’re eighths! 
 
Daniel: He’s probably confused that this is the whole. [Talking to me and holding a circle] 
 
Researcher: He thinks what is the whole? 
 
Daniel: The circle. He thinks the circle is the whole. 
 
Researcher: Oh… 
 
Clay: Look! I’m going to prove it! I’m going to prove it! 
 
Daniel: Okay, prove it. 
 
Clay: 1, 2, 3, 4, 5, 6, 7, 8 [Clay is counting pieces but not coordinating them with the half circle 
chosen to represent a whole] 
 
Daniel: [places four pieces on the half circle] Look Clay! How about this? Is this eighths? 
 
Clay: What? 
 
Daniel: But Clay, this was the whole. This is supposed to be the whole! 
 
Clay: Oh… 

Daniel may very well have struggles related to conceptual misunderstandings in addition 

to struggles with visuospatial reasoning. However, Daniel exhibited strong conceptual reasoning 

strategies and understanding in certain circumstances. Although it seemed issues with 
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visualization could complicate Daniel’s thinking process, it was also evident that working in an 

environment where prompting for deeper thinking and expectations of high level work were the 

norm, Daniel often excelled.  

Marcos 

Marcos had relatively fewer occurrences in the conceptual or visuospatial subtypes than 

he had in the semantic memory subtype. Additionally, Marcos had fewer occurrences in these 

two subtypes than Clay or Daniel while having more occurrences in the semantic memory 

subtype than the other two participants. Marcos consistently struggled with accuracy in answers 

and strategies, often miscounting objects or misstating answers. Another issue for Marcos related 

to his struggle to create drawings that match his visualizations and, at times, Marcos struggled to 

record anything on paper that would represent his thinking and strategies. However, Marcos was 

generally able to provide strong verbal explanations of his strategies and thinking. This particular 

struggle with written expression was not one which I was able to categorize according to Geary’s 

subtypes. On the other hand, Marcos’ ability to understand concepts was one of his strengths 

along with his ability to interpret the mathematical thinking of others including misconceptions. 

Excerpts of transcripts and artifacts showing Marcos’ work are used below to illuminate Marcos’ 

struggles and strengths. 

Struggles within the semantic memory subtype seem to be disconnected from abilities to 

think about mathematics in conceptually deep ways, at least for Marcos. Although Marcos was 

often working through a cloud of answers that were not what he meant to say, explanations that 

did not match his thought processes, and issues with counting and drawing, he engaged deeply 
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with mathematics and generally appeared to enjoy doing so. I found that Marcos’ struggles 

within the semantic memory subtype could be thought of as falling into four subcategories: a) 

drawing an unintended number of objects; b) misstating an answer or a strategy; c) incorrectly 

counting a number of objects; and d) retreating to a previously discarded incorrect strategy or 

solution.  

Drawing an unintended number of objects impacted Marcos’ ability to correctly work 

problem even when he had a strong understanding of how to work the problem. When asked to 

solve the problem below, Marcos produced the drawing shown in Figure 11. Although Marcos’ 

work was logical, he drew 12 sandwiches rather than 10 initially causing him to find an incorrect 

solution. However, Marcos was able to understand how to approach and solve this problem much 

more quickly than the other participants. Marcos’ needed help to see the discrepancy between the 

problem statement and his drawing. He then crossed out the two unneeded sandwiches and 

corrected his work. 

4 children want to share 10 Publix sub sandwiches so that everyone gets the same 

amount. How much can each child have? 
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Figure 11: Marcos’ Drawing of an Incorrect Number of Objects 

In the next example of an occurrence within the semantic memory subtype, Marcos 

explained how he determined that his manipulative pieces are sixteenths. He covered half of the 

manipulative piece defined as the whole with eight of the sixteenth-sized pieces. Marcos 

understood how to mathematically prove that he knew the pieces were sixteenths but, as shown 

in the transcript excerpt below, he struggled to make his words match the mathematics in his 

mind. 

Researcher: What are those? 

Marcos: They’re sixteenths. 

Researcher: Can you prove it? 

[Marcos lays out eight one-sixteenth size pieces on one-half of the rectangular game space] 

Researcher: I like the way you are doing that Marcos. I can really see…How many? 

Marcos: Eight times eight is two. Just imagine this is eight and this is eight. 

Researcher: Oh okay. Leave it the way it is… I’m not sure I understand what you meant by eight 
times eight is two… 
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Marcos: No, eight and eight is two eights, so sixteen…See sixteenths! 

Researcher: Okay, I see now. 

Miscounting of objects was also a consistent struggle for Marcos. Generally, Marcos 

understood that something had gone wrong with his counting and he corrected the error. This 

could be a time consuming process for Marcos but his frustration level with the effort required 

was generally low. Marcos did understand strategies to help with counting, such as moving 

objects as he counted them and being careful to attend to one-to-one counting. However, he still 

was more likely than the other participants to miscount a group of objects. This transcript excerpt 

contains an episode where Marcos needed to count his objects four times to be correct after 

knowing how many objects he had because another participant had counted them previously. 

Researcher: Where’s all the cookies? I thought there were 13 cookies? [Referring to the 13 
counters that represent the 13 cookies in the problem statement] 
 
Marcos: Uh…I had them….1, 2, 3, 4, 5, 6, 7, 8…Wait a minute [Marcos thinks he has miscounted 
so he starts over] 
Marcos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 [He has counted one too many] 
 
Researcher: How many? 
 
Marcos: I’m counting them…. I got to count them again… 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12…. 
Marcos: 1, 2, 3, 4, 5, 6 , 7, 8, 9, 10, 11, 12, 13. Yes there are 13. There were always 13, I just kept 
counting them wrong. 
 

Although occurring less often than other semantic memory issues, Marcos’ occurrences 

of retreating to a formerly discarded answer or strategy impacted his ability to communicate his 

mathematical thinking. In the occurrence contained in the transcript below, Marcos struggles to 

match his verbal answer with the answer in his mind. 

Researcher: What fraction of a peach is everyone going to get? 
 
Marcos: Three fourths! 
 
[Several minutes later when we are wrapping up the problem] 
Researcher: What did you say they each got Marcos? 
 



 

121 

Marcos: Everybody gets thirds of the… 
 
Researcher: They get some fourths? How many fourths do they get? 
 
Marcos: Thirds! 
 
Researcher: They get…. 
 
Marcos: Thirds! 
 
Researcher: How many pieces do they each get? 
 
Marcos: Three. 
 
Researcher: And how many pieces are there in your peaches? 
 
Marcos: Four 
 
Researchers: So they get three… 
 
Marcos: Thirds! 
 
Clay: I decided to name the pieces fourths. 
 
Researcher: Why did you name them that? [To Clay] 
 
Marcos: Because there’s four pieces. Because it was cut in four pieces. 
 
Researcher: I thought you said it was thirds. 
 
Marcos: No, I said fourths. 

 

It seems clear that Marcos knew that he meant the answer to be fourths the entire time. 

But he substituted saying thirds when he meant fourths for a while, possibly because he was 

looking at three pieces for one person and the three crowded out thoughts of fourths for a while. 

Later when Clay said fourths, Marcos did not realize he had ever said anything different. 

Marcos struggled in ways that could not easily be classified as belonging to any of 

Geary’s (2003) subtypes. Although Marcos had strong conceptual thinking, he would struggled 

to record this thinking on paper. In the drawing presented in Figure 12 below, Marcos tried to 

draw a circle divided into three equal-sized pieces. Although, at the surface, this might appear to 
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fit into the visuospatial subtype, Marcos’ discussion about his drawings, presented in the 

transcript excerpt below, seemed to indicate that he had a clear visualization of how his drawing 

should look.  

Researcher: What do you think Marcos? Can this one be fixed so that they are all the same size? 
 
Marcos: It could be fixed like this. [He says this as he draws another one] …And I’m not good at 
drawing…It’s upside down….So I apologize…That’s not… [He continues trying to draw one that 
will work] 
 
Researcher: That wouldn’t work out would it? 
 
Marcos: No. I’m bad at drawing. 
 
Researcher: No, you’re not. You could fix it. Make it look right… 
 
Marcos: Equal! These are equal! They’re supposed to look equal but they don’t when I draw them. 

 

 

Figure 12: Marcos’ Struggle to Draw Thirds as He Saw It in His Mind 

In addition, writing seemed to be a struggle for Marcos. In Figure 13 below, work is 

presented that Marcos was able to competently accomplish, but only after writing his answers 

was no longer part of the task. 
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Figure 13: Marcos’ Recorded and Scribed Work 

Indeed there were times when Marcos was able to solve a problem with a thoughtful 

strategy while he talked, but was unable to record anything at all on paper. Figure 14 is included 

because it shows a problem that Marcos solved mentally and it includes my note that indicated 

no written work was completed even with prompting. The transcript excerpt contains Marcos’ 

solution process for the problem. 

Researcher: There’s two burritos for three children… but you want to get more burritos so six 
children can have the same amount as the first three children…How many burritos do you need to 
get? 
 
Marcos: [Quickly replies] Four burritos. 
 
Researcher: Four burritos? Why? 
 
Marcos: Because three plus three equals six so that means you doubled the burritos…. 
 
Researcher: Show me, Marcos. Show me…Can you write something or draw something on your 
paper that would show what you just told me? 
 
Marcos: Okay… [He does not write anything on his paper but seems to think about it for a while] 
 
 



 

124 

 

Figure 14: A Problem Marcos Worked Mentally and Explained Verbally 

 

Marcos brought a useful strength to the group. He was consistently able to think about 

challenging problems in a conceptually rich way. In a variety of problem structures with a 

variety of representations, Marcos was able to connect mathematical ideas and stretch his own 

reasoning beyond his current experiences. During session five, Marcos played a game with Clay 

and Daniel using a rectangular area model. This model used one red piece of construction paper 

as the ‘whole’ and different colors of construction paper cut in pieces to represent halves, 

fourths, eighths, and sixteenths. A die, labeled with fractions on each side, was rolled to indicate 

the participant’s next ‘move’. The object of the game was to be the first player to cover the 

whole. Later, this game was also played with the objective to replace smaller pieces with larger 

pieces whenever possible; however, Marcos discovered this replacement possibility without 

instruction to do so. For a complete explanation of the game, along with explanations of other 

related games, see Making Sense of Mathematics for Teaching Grades 3-5 (Dixon et al., 2016). 

In Figure 15 and the transcript excerpt, Marcos made a replacement move on his game board that 

required him to think flexibly about fraction equality. 

Researcher: So you rolled one-sixteenth but what kind of piece are you placing instead? 
 
Marcos: An eighth. 
 
Researcher: How could you do that? Why is that okay? 
 
Marcos: I took away this sixteenth so I could put an eighth instead. 
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Figure 15: Marcos’ Move on the Game Board 

 

In the transcript excerpt below, Marcos explained to the group why two different 

representations mean the same thing mathematically. The two representations are shown in 

Figure 16. 

Clay: Daniel made it like a square. And I made it like a rectangle. Like candy are shaped! 
 
Marcos: I did mine like Clay. 
 
Researcher: [To Clay] Okay, tell me this. Does yours mean the same thing as Daniel’s? 
 
Clay: His is not right. 
 
Researcher: Why? 
 
Marcos: Well, look…No matter what it is you’ll get the same thing. It’s still four pieces no matter 
which way you make it. 
 

 

 

 

 

 

 

 

Figure 16: Comparing Two Ways to Draw a Candy Bar 
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In a set of tasks where students were expected to attend to unit fractions when I was 

changing the definition of the whole between tasks, Marcos was quick to understand not only the 

concept that the whole could be defined differently, but that he could define the whole for the 

group. Marcos was able to do this with no prompting as shown in the transcript below. This may 

indicate that Marcos understood that he did not need the researcher to continue to define the 

whole. Marcos might have realized that he could create the task as well as the solution. 

 
Researcher: Is it okay to decide the whole is something other than the circle Clay? 
 
Clay: Um…Yeah? 
 
Marcos: What if I made this grey one the whole? 
 
Daniel: No… 
 
Researcher: Why not? 
[Both Clay and Daniel are struggling to see that a manipulative other than the circle can be the 
whole] 
 
Marcos: Can’t I make this one the whole? 
 
Researcher: You could make the grey one a whole…Give it a try. See what you find out. 
 

Marcos was quick to connect representations of mathematical information. When playing 

a game with fraction cards designed to be similar to a number line, see Figure 17, Marcos made 

the connection between the layout of the cards and a ruler, if the ruler is showing eighths. His 

explanation of his connection is shown in the transcript excerpt below. 

Marcos: Um… I think the one-eighth should be here… 
 
Clay: Yeah… 
 
Researcher: Okay Marcos, and Clay agrees. Why do you think that Marcos? 
 
Marcos: Because it’s a ruler and a ruler…But, but the ruler is like one-eighth, two-eighths, three-
eighths, four-eighths… 
 
Researcher: Oh, I see! 
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Figure 17: Fraction Cards Set Up Like a Number Line 

When working with the task shown in Figure 18, Clay and Daniel created groups of three 

objects when asked to make thirds with a group of 18 objects. However, Marcos quickly 

identified how to create thirds and explained his reasoning to the group, as shown in the 

transcript below. It should be noted that the researcher did not instruct the participants to make 

groups. Marcos was the first person to associate creating thirds with making groups at all, and he 

correctly identified the number of groups needed as three. 

Marcos: Wait I know how to make it into thirds. I know how to make it into three groups. 
 
Researcher: What did you just say? 
 
Marcos: You want me to make it into three groups and I know how to make it into three groups. 
 
Researcher: Why would you want to make it into three groups? 
 
Marcos: Because you said you wanted it to be in thirds not sixths. 
 
Researcher: What is it right now? 
 
Marcos: Sixths. 
 
Researcher: Oh. What do you think Clay? If you have six groups is it sixths? 
 
Clay: Yes. 
 

Look at this picture, and then let’s answer some questions about it. 
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Figure 18: Working with Fractions in a Set Model 

In addition to demonstrating his own strong conceptual understanding of fractions, 

Marcos was often able to understand the mathematical thinking of others. In the task discussed in 

the transcript excerpt below and in Figure 19, Marcos identified Clay’s misconception about the 

problem and provided a correct interpretation intended to help Clay correct his misconception.  

Researcher [to Clay]: How did you decide he ate one-third? 
 
Clay: I shaded one and there’s three…So he ate one-third of a granola bar. 
 
Marcos: Wait, did the granola bar look like that before he ate it? 
 
Researcher: Clay says Lucius ate one-third of it…What’s your question Marcos? 
 
Marcos [reading out loud to himself]: Of the Health First granola bar…Health First granola 
bar...Now it looks like this… 
 
Researcher: What does that mean to you? 
 
Marcos: It means it used to look like this. [Marcos draws in the missing fourth-sized piece] 
 
Researcher: Why did you have to change the shape Marcos? 
 
Marcos: I didn’t change it. I did it like it was, put that part in. 
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Figure 19: Marcos’ Interpretation of Clay’s Misconception 

Marcos also saw that Daniel’s drawing of a circle would not result in three equal-sized 

pieces. As shown in Figure 20, Marcos attempted to provide Daniel with a guide as to how the 

circle could be divided into three equal-sized pieces. As discussed before, Marcos struggled to 

create a picture of a circle divided in three equal-sized pieces as he visualized it in his mind. 

Researcher: What do you think Marcos? Does Daniel’s drawing work? 
 
Marcos: No… Because this one’s the same as this one…But this one’s different. 
 
Researcher: How could he fix it? 
 
Marcos: He could draw it like this… 
 

 
Figure 20: Marcos’ Attempt to Help Daniel Construct a Circle with Three Equal-Sized Pieces 
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When Daniel used whole number reasoning to compare unit fractions, Marcos observed 

carefully what Daniel was trying to accomplish. Marcos disagreed with Daniel’s answer but 

searched for a way to understand Daniel’s reasoning. Marcos correctly arrived at the conclusion 

that Daniel was using whole number reasoning even though he did not have the language to fully 

express his interpretation of Daniel’s thinking. The next transcript excerpt contains this part of 

the discussion. 

Researcher: This is in four pieces and this is in eight pieces…What are these? 
 
Daniel: These are fourths and these are eighths. 
 
Researcher: Okay, what’s bigger fourths or eighths? 
 
Daniel: Eighths? 
 
Researcher: How are eighths bigger than fourths? 
 
Daniel: Um… 
 
Marcos: It’s bigger in math! 
 
Researcher: Bigger in math? Do you mean bigger in whole numbers if you count how many? 
 
Marcos: Yes…That’s what he means…But one-fourth is bigger than one-eighth. 
 

Marcos proved to be a capable student of mathematics, although this result is not in line 

with his class performance, annual test results, or progress monitoring. In fact, Marcos was a 

student who had been often placed in remediation for help with mathematics. However, Marcos 

brought understandings of whole number concepts and fraction concepts to the intervention 

sessions. Despite often demonstrating conceptual understanding of fractions, his ability to 

communicate about mathematics was often compromised, with issues of written expression. 

Also, as shown by occurrences in the semantic memory subgroup (19), Marcos often knew the 

correct solution in his mind but would verbally communicate a different answer. It is possible 
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that Marcos’ mathematical thinking abilities were often obscured by his struggles with memory 

and writing. 

Analysis Framework 2: Scaffolding Techniques 

The intervention sessions in this study were built on the use of socio-constructivist 

scaffolding techniques as outlined by Anghileri (2006). The use of scaffolding allowed a lens 

into the thinking of students that might have been missing in another approach. The researcher 

was able to gain a deeper revelation of the participants’ understandings including the individual 

strengths and misconceptions each brought to the intervention sessions. The analysis of these 

insights has been presented and now the impact of specific scaffolding techniques is also 

discussed.  Scaffolding may be particularly important for students who are struggling as a way to 

ascertain their current depth of knowledge, to reveal patterns of strengths and weaknesses, and to 

support their potential for mathematical thinking (Anghileri, 2006; Broza & Kolikant, 2015; 

Cambourne, 1988; Cazdan, 1983; Moschkovich, 2015; Putambeker & Hubscher, 2003). 

The researcher makes no claims that the scaffolding techniques employed in this study 

rose to a high level consistently. At times, scaffolding techniques were not well implemented and 

did not result in the desired result. However, there were many instances during the intervention 

sessions that demonstrated the power of social-constructivist scaffolding techniques as originally 

described by Bruner and his colleagues (Bruner & Ratner, 1978; Ninio & Bruner, 1978; Wood, 

Bruner, & Ross, 1976) and further developed by others (Anghileri, 2006; Cambourne, 1988; 

Cazdan, 1983) to diagnose students’ struggles, locate students’ strengths, and guide students to 

making sense of fraction concepts. This occurred even in scaffolding episodes that might be 
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judged partially successful. Within this section is a review of the major scaffolding techniques 

that the researcher attempted to implement as well as a discussion of the outcomes of these 

techniques supported by transcript excerpts and student artifacts. 

Anghileri (2006) proposed a three level hierarchy of scaffolding strategies that support 

learning. Within the second level, Anghileri (2006) describes the following techniques: a) 

prompting and probing; b) looking, touching, and verbalizing; c) interpreting student work or 

talk; d) simplifying a problem; e) explaining and justifying; and f) negotiated meaning. After 

working with the participants in the intervention sessions, the researcher analyzed the episodes of 

scaffolding that occurred during the sessions to categorize into these six techniques. This is not 

an inclusive list of scaffolding techniques described by Anghileri, but instead a subset of those 

described that were the most prevalent during this study. For each technique described below, an 

episode or episodes from the intervention sessions and an analysis of the relative success or 

failure of the technique in that instance is supported by transcript excerpts and student artifacts. 

Prompting and Probing 

Prompting and probing involves using questions to guide the student to a solution or 

mathematical idea and questioning that asks the student to think more deeply about the work he 

or she is doing (Anghileri, 2006). This scaffolding technique is supported by an understanding of 

Nathan and colleagues (2007) discourse pattern of initiation, demonstration, and evaluation and 

elaboration (IDE) as well as the second practice, observation of student responses, described by 

Stein and colleagues (2008) as one of their five practices that support implementation of high 

level discourse. This was the scaffolding technique most extensively used throughout the 
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intervention sessions. The next example, which occurred during session 13, contained in the 

transcript excerpt, relates Daniel’s use of a conceptually sound strategy to solve the problem 

below. The transcript indicates that this was not likely a strategy Daniel would have arrived at 

without extended prompting and probing. However, the thinking was clearly Daniel’s original 

ideas. 

Sticker books are on sale. You can buy 2 sticker books for $3. You want to buy 6 

sticker books. How much money do you need? 

Daniel: Twelve. 
 
Researcher: You need twelve dollars? 
 
Daniel: Yeah, twelve. 
 
Researcher: Why do you need twelve dollars? 
 
Daniel: Because it costs two. So six times two equals twelve. 
  
Researcher: Does it say each sticker book costs two dollars? 
 
Daniel: It says you can buy….two sticker books for three dollars… Oh… 
 
Researcher: It’s okay, just keep thinking about it. 
Daniel: Let me change it. Eighteen? Eighteen… 
 
Researcher: How is it eighteen dollars? 
 
Daniel: Because three times six is eighteen. So you need….oh wait never mind…. I got confused! 
I keep getting confused!! 
 
Researcher: It’s okay to be confused. 
 
Marcos: If you’re going to buy six sticker books, how much money do you need? 
 
Researcher: That’s what I want to know. How much money do you need? 
 
Daniel: Okay I’m done… 
 
Researcher: So you say you need two dollars? 
 
Daniel: Yes. 
 
Researcher: Okay…So before you needed three dollars to buy two sticker books, now you need 
two dollars to buy six sticker books? It’s even less? 
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Daniel: Ummmm…..Ahhh….. Yes…Wait! 
 
Researcher: Keep thinking about that. 
 
[After a few minutes] 
 
Daniel: Ok ,ok, three. 
 
Researcher: Well before you bought two sticker books for three dollars so you are saying you want 
to buy six sticker books and it’s still three dollars? 
 
Daniel: Ehhhhh….. 
 
Researcher: You are saying you’ll buy six books so you are buying more books right? 
 
Daniel: Uhhh…Um…Nine, it’s nine dollars. 
 
Researcher: It’s nine dollars? 
 
Daniel: Yes! 
 
Researcher: How did you get nine dollars? 
 
Ed – because 2 + 2 equals 4, and 3 plus…… 2 + 4 equals 6 and 3 + 3 equals 6, and 3 + 3 [he 
means 3 + 6 here] equals 9 

 

Looking, Touching, and Verbalizing 

The scaffolding strategy of looking, touching, and verbalizing is enacted when students 

use manipulatives or create pictorials, analyze what they see, and talk about their mathematical 

ideas to others (Anghileri, 2006). There is a relationship between this scaffolding technique and 

Lesh and colleagues’ (1987) model of connection representations including manipulatives, 

pictorials, written symbols, verbalization, and real world problems. Although it is difficult to 

connect all of the six models in one task, throughout a series of tasks over weeks or months as 

many connections should be made as possible. During session 10, the participants attempted to 

place unit fraction cards correctly between cards showing zero, one-half, and one. Cards for zero, 

one-half, and one were placed with equal spacing on the table. The participants were then given a 
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card with one-fourth on it and asked to place it, followed by a request to place a card with one-

eighth on it. As shown in Figure 21, the participants initially placed one-fourth between one-half 

and one, then one-eighth between one-fourth and one. This activity was intended to connect 

abstract representation of fractions to a linear model similar to a number line with the cards 

acting as manipulatives. As the participants placed the cards and talked about their reasoning, it 

became apparent that they were not attending to the size of unit fractions but rather the size of 

the whole numbers in the denominator of the fractions.  

 

 

 

 

 

Figure 21: Fraction Card Initial Placement by Participants 

Because the researcher believed the participants were struggling to compare the sizes of 

the unit fractions, she moved the participants to a different manipulative that used a linear model 

structure. The participants cut halves, fourths, and eighths from fraction strips, as shown in 

Figure 22, then compared the sizes of the unit fractions. 

Figure 22: Fraction Strip Cuttings 
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After much surprise and discussion about the relative sizes of the fraction strips, the 

participants realized that a whole cut into more pieces would generate a smaller unit fraction than 

a whole cut into fewer pieces. At this point, the participants were able to move back to the 

fraction card game and place the unit fractions according to size, as shown in Figure 23.  

 

 

 

 

 

 

 

 

 

 

Figure 23: Fraction Card Successful Placement by Participants 

The researcher would not classify this as a wholly successful attempt at scaffolding, 

however, because in later sessions in work with fraction comparison it was apparent that the 

participants were still struggling with concepts of fraction comparison related to the relative sizes 

of unit fractions. 
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Interpreting Student Work or Talk 

Interpreting student work or talk occurs when the teacher explains the work or rephrases 

the verbalizations of students to make mathematical ideas clear and accurate for the benefit of 

the student and others in that class (Anghileri, 2006). Especially for students struggling in 

mathematics, this is a valuable scaffolding technique; however, it is a technique that should be 

used only when it is truly needed (Dale & Scherrer, 2015; Moschkovich, 2015; Pfister et al., 

2015). A student may well be able to interpret his or her own work, or make his or her 

verbalizations more clear, with the use of other scaffolding techniques, such as prompting and 

probing (Dale & Scherrer, 2015; Moschkovich, 2015; Pfister et al., 2015). In the intervention 

sessions, there were times when it was clear that a participant had a mathematically accurate and 

conceptually rich thought that he was struggling to verbalize. In the following exchange, Daniel 

was trying to find a way to explain his correct answer. The researcher rephrased his verbalization 

to fit his work. 

Daniel: So we are splitting them in half…The seven one…half goes to Liana and the other half 
goes to Jackie. 
 
Researcher: Okay Daniel. I like the way you labeled it. So they each have six cookies and then that 
last cookie goes half to Liana and half to Jackie? 
 
Daniel: Yes. 
 

In the following exchange, the researcher prompted Clay to correct his inaccurate use of 

vocabulary. 

Researcher: You’re going to give five pieces to each person? Will you use each of your ten subs 
like that? 
 
Clay: To make them even…Make them even. 
 
Researcher: To make them equal? To make them the same size? 
 
Clay: Yes, the same size. 
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Researcher: Okay, that would be equal, not even. What’s even? 
 
Clay: Oh!... 2, 4, 6, 8, 10 
 

For students who are struggling, it may be especially important for a teacher to interpret 

the student’s work or verbalizations. In Daniel’s case, he clearly understood the answer but 

needed help constructing a verbalization that was mathematically accurate. In Clay’s case, the 

inaccurate use of mathematics vocabulary could further deepen conceptual struggles for Clay in 

the future if not addressed with appropriate learning experiences. 

Simplifying a Problem 

The goal of simplifying a problem is not to reduce the cognitive complexity of the task, 

but to create an intermediate task that will help the student build an understanding of what is 

required to complete the original task (Anghileri, 2006). In practice, simplifying a problem 

without reducing the cognitive complexity is challenging. When teachers are too quick to 

simplify a task or do so in a way that the complexity is lost, that teacher may narrow students’ 

opportunities to learn (Henningsen & Stein, 1997). Because the researcher attempted to avoid 

simplifying a task until it seemed to be necessary, occurrences of the use of this scaffolding 

technique were uncommon in the intervention sessions conducted for this study. When all 

participants seemed unable to move forward with a task in a logical way, the researcher 

presented a simplified version of the problem that maintained the cognitive challenge of the task. 

During session nine, the participants were presented with the following problem: 

Dani wants to feed each of the children she babysits a half sandwich for lunch. If 

she babysits 8 children, how many sandwiches should she make? 
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After several minutes working with the problem, all three students were pursuing 

unproductive strategies. Daniel believed he needed to give each child one whole sandwich. 

Meanwhile, although Clay had initially solved the problem correctly, as he worked he became 

convinced that he should divide one sandwich among the eight children. Marcos had decided to 

draw a set of sandwiches each divided into four equal-sized pieces and see how many 

sandwiches he would need to give each child a fourth of a sandwich, a strategy that would have 

worked had Marcos divided the sandwiches into halves. Because Daniel and Clay were not 

focused on how to iterate the share of a sandwich and Marcos was iterating an incorrect share of 

the sandwich, the researcher decided to take another approach. She asked the participants to 

make two halves from a paper strip. The discussion that followed is contained in the next 

transcript excerpt. 

Researcher: So I want you guys to work something out. Let’s put Dani aside for a minute. Okay, 
Clay help me out. Let’s say this is one sandwich. [I give him a paper strip] How many children 
can you give this sandwich to if we say every child has to get half of a sandwich? 
 
Clay: 1, 1, 1, 1, 1, 1, 1, 1 [He is counting out portions for eight children] 
 
Researcher: Are you giving each a half of a sandwich? 
 
Clay: Um…No… 
 
Researcher: [To Daniel, who is holding a paper strip] How many half sandwiches are you holding 
there Daniel? 
 
Daniel: Two 
 
Researcher: So how many people can get half sandwiches from the sandwich you’re holding 
Daniel? 
 
Daniel: Two. 
 
Clay: Oh! Two! 
 
Researcher: Do you need more sandwiches to feed all eight kids half sandwiches? 
 
Marcos: Yes!  
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Researcher: How many sandwiches would you need Marcos? 
 
Marcos: Um…. Three more! 
 
Researcher: What do you say Clay? 
 
Clay: I have eight sandwiches. 
 
Researcher: There’s eight kids…Do you need eight sandwiches to give eight kids a half of a 
sandwich? 
 
Clay: Yes. 
 
Researcher: So how many kids could share this one sandwich here? [Referring to a paper strip that 
he has folded in half] 
 
Clay: Two. 
 
Researcher: And how many kids could share this sandwich? {Pointing at another paper strip] 
Clay: Two….Oh…. 
 
Researcher: How many kids have you given half sandwiches to? 
 
Clay: Four…I see, I see… Dani needs four sandwiches [Clay shows us with his paper strips]. 
 

The participants were able to successfully solve the problem, but it was clear that 

strategizing about a problem that reversed the equal-sharing process was challenging for them, 

particularly when the problem resulted in more than one object being shared. 

Explaining and Justifying 

Although participants struggled at times with talking about their mathematical thinking 

and work, each participant successfully explained and justified his solution strategy several times 

throughout the sessions. Opportunities to provide verbal explanations and justifications seemed 

to assist the participants in grounding their emerging conceptual understanding of fractions. For 

the participants, providing written explanations and justifications was very challenging although 

Clay and Daniel often produced pictorials or used manipulatives to support verbal justifications, 

while Marcos relied on his ability to verbalize. In the transcript below, Daniel explained as he 
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worked with manipulatives how he had identified a fractional piece. At first, it was not clear that 

Daniel understood because he agreed with an answer already given. However, his explanation 

and justification made it clear that he did understand the concept. 

Researcher: What is the name of that piece? 
 
Clay: It’s a fourth. 
 
Researcher: Marcos do you agree that these are fourths in this game? What do you think Daniel? 
 
Marcos: Yes! 
 
Daniel: Um…Yes. 
 
Researcher: How do you know that Daniel? 
 
Daniel: Because like…Because like if you put it here…You need two to complete this side…So 
on the other side there’s two…So there’s four. 
 

Marcos was generally the participant who used verbalization the most. Often Marcos 

seemed to work through his mathematical thinking by talking. In the next transcript excerpt, 

Marcos explained his method, justified his assertion that he had identified ninths, and then went 

on to justify his solution in two more ways. 

 
Researcher: Where are your ninths? 
 
Clay: No I don’t see ninths… 
 
Marcos: Do you want me to help you? 
 
[Meanwhile, Daniel circles suns in sets of two to make nine groups] 
Researcher: What did you just do Daniel? What did you figure out? 
 
Daniel: By circling two, two of the suns…I don’t know how to say it! 
 
[Marcos starts talking. He is very excited about how he solved the problem] 
Researcher: Marcos do you want to explain it? 
 
Marcos: I made two, four, six, eight…There’s two in each. 
 
Researcher: Why are there two in each? 
 
Marcos: Because I know that two times nine equals 18 and there’s 18 in all. One, two...Three, 
four…Five, six…Seven, eight…Nine, ten…Eleven, twelve…Thirteen, fourteen…Fifteen, 
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sixteen…Seventeen, eighteen. So I put like…One, two…One, two…One, two… Show one group 
equals two, two groups equals four [he tracks the number of groups on his fingers, ending with 
nine fingers] six, eight, ten, twelve, fourteen, sixteen, eighteen…See! Nine groups. It’s ninths! 
 

For the task shown in Figure 24, Clay was partially successful in providing the 

explanation and justification for his work, as shown in the transcript excerpt below. He 

connected the words in the problem statement to the drawing he made but was not able to 

verbalize that his pictorial represented the condition of the lemon bar before the party. At the end 

of the transcript it was clear that this is a process that was very challenging for him. Clay did not 

give a complete explanation and justification but he was able to link his pictorial to the problem 

as given. 

Researcher: Okay, let’s look at Clays drawing. Can you tell us how you decided to draw what you 
drew? 
 
Clay: Well…Umm… I just did that because it was a lemon bar. So I…so this…so this is what it 
looked like before. 
 
Researcher: How did you know what it looked like before? 
 
Clay: Because somebody ate half of it. 
 
Researcher: How did you know that? 
 
Clay: Because the problem…the problem… 
 
Researcher: What does it say? 
 
Clay: It says this was after the party…after…this picture it shows. 
 
Researcher: Okay then you decided to add on a piece. Why’d you add on that piece? 
 
Clay: Because…Because, because…Because… 
 
Researcher: Do you want me to come back to you in a minute? [He nods yes] Because you did 
something very cool here. 
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;  

 

 

 

 

 

Figure 24: Clay’s Work on the Lemon Bar Problem 

All of the participants were able to generate explanations and justifications for their work 

when asked to do so by the researcher. Clay and Daniel were also successful in producing 

pictorials with written work that demonstrated their reasoning and supported their verbal 

explanations and justifications. For Marcos, verbalization with manipulative demonstration was 

his primary method of explanation and justification. 

Negotiated Meaning 

Students need opportunities to discuss their mathematical ideas, and this includes those 

ideas that are incorrect or not logical. When students develop mathematical ideas together with a 

teacher seeking to guide the group to mathematically logical conclusions, they develop an 

ownership of these ideas as a group (Anghileri, 2006). Once a mathematical idea becomes 

accepted and understood by the group, it can be used to advance further learning. The 

negotiation and acceptance of a mathematical truth by a group is referred to as knowledge that is 

taken-as-shared by Cobb, Yackel, and Wood (1992). Discussing mathematical ideas that include 

errors and misconceptions can feel like a risky endeavor, particularly if students are struggling to 
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understand the concepts. What might happen if a misconception becomes accepted by the group? 

In practice, discussion of errors and misconceptions has the power to improve learning and 

understanding (Anghileri, 2006). 

In an example of negotiated meaning that included misconceptions, the participants 

discussed the meaning of a fraction during session one, based on the representation shown in 

Figure 25. The discussion contained in the transcript excerpt that follows highlights a 

conversation that seemed risky because Daniel’s misconception was entrenched and it seemed he 

might be able to convince the other two participants to conceive of it in his way. In the end, 

Marcos agreed with Clay about the nature of the fraction but Daniel was still somewhat unsure. 

The group had partially negotiated equal-sized parts for fractions, but this was a concept that 

reemerged many times over the course of the intervention sessions and in the end this negotiated 

meaning was only a partial success. 

Researcher: All right. Here’s my question for you guys. What do you see? 

Daniel: One three…One three 

Clay: One-fourth! 

Researcher: Well, when I was teaching kids last year, Janelle said she saw one-third and Lui said 
he saw one-fourth…Who do you think was right? 
 
Marcos and Clay: Lui! 

Researcher: Who do you think was right Daniel? 

Daniel: The person who said one-third… 

Researcher: Okay. Do you guys understand how he is getting one-third? 

[Clay and Marcos nod yes] 

Researcher: How is he getting one-third Clay? 

Clay: Um… It’s because they’re …uh…It’s one-third…But I think it’s one-fourth because when 
you do this [he draws a line to continue the vertical line in the middle of the square] it becomes 
one-fourth. 
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Marcos: And they’re not equal! 

Researcher: What’s not equal? 

Marcos: The parts. 

Researcher: So...What do you think Daniel? Marcos says they’re not equal in the original form… 

Daniel: It’s because this one’s the big chunk and these two are the small ones. 

Researcher: Okay. 

Daniel: That would be thirds and originally they didn’t have that line so I thought it was thirds. 

Researcher: Okay, what are you thinking now? 

Daniel: It’s still one-third. 

Researcher: It’s still one-third? Could it be one-third and one-fourth at the same time if the square 
is the whole? 
 
Daniel: Maybe… 

Researcher: What do you guys think? 

Clay: Well…No. 

Marcos: No…But I say yes. 

Researcher: So it could be one-third and one-fourth? How could it be one-third? 

Marcos: Because if they…Because if they explain the thirds…And it could also be fourths…Just 
imagine this line here [referring to the one Clay drew in]. But it’s thirds. 
 
Researcher: Oh…Okay. Is it okay for it to be like this? One big piece and two small pieces? 

Clay: It’s not equal! 

Researcher: Is it ever okay if our pieces are not the same size in fractions? 

Clay: No, it’s not…that’s not. 

Marcos: I think I agree with Clay. 

Clay: It’s not really…fair…for other people…because a person gets the bigger piece and another 
person gets a small piece. 
 
Researcher: Oh, okay. 

Marcos: Um…Yeah, I agree with Clay. 

Researcher: What do you think Daniel? 
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Daniel: Well I think a fraction could be like different shapes…because it could be like a circle 
having bigger chunks and small chunks of the circle. 
 
Researcher: Would that be a fair share though? 

Daniel: No. If it has to be a fair share then it has to be the same size… 

 

 

 

 

 

Figure 25: Representation of One-Fourth Shaded 

Meanings can become negotiated in an incorrect way unintentionally. Clay’s work with 

fractions up until this point, possibly within class and within this intervention, had left him with 

an understanding that a shaded region in a pictorial was necessary to allow identification of a 

fraction. This misconception was uncovered during an exchange about the problem below. The 

following transcript excerpt contains the participants’ attempt to determine if Clay’s idea about 

shading and fractions was correct or incorrect. This might not be a fully accepted concept for 

Clay until he has had reasons to confront his misunderstanding several times in the future. 

However, this discussion provided a beginning to Clay’s new understanding and represented an 

incidence of negotiated meaning among the participants. 

Lucy’s garden is a square. Draw a picture of Lucy’s garden that shows it is 3 

equal-sized parts. How much is each part? 

Marcos: I did it! It’s one-third! 

Researcher: Marcos how can you prove that one part is one-third? 

Marcos: Because this is three parts…Because this is three thirds in the whole. 
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Researcher: What do you think Daniel? Does his explanation tell why it’s one-third? 

Daniel: Um hum. [Yes] 

Researcher: How would you explain it? 

Daniel: By shading in one of the rectangles in the square. 

Researcher: Does that prove it’s one-third? Clay he’s shading one part in the square. How would 
you explain that to someone? 
 
Clay: Because when you shade one part, you know it’s one something. 

Researcher: Well let me ask you a question then. If you don’t shade in one part can you still prove 
it’s one-third? 
 
Marcos: Yes. 

Researcher: How would you prove one part is one-third without shading it? 

Marcos: Because it’s…[He draws a circle then divides in three. Marcos struggles to draw this 
correctly but it is clear he intends to make equal-sized pieces] 
 
Researcher: Can you tell me in words? 

Marcos: No. 

Researcher: Could you tell me in words Daniel? 

Daniel: Well… 

Researcher: What about you Clay? Could you tell me in words why this is one-third [pointing at 
Marcos’ drawing] 
 
Clay: Okay. It’s one-third because one-third… 

Researcher: Because? 

Clay: One-third is a shaded part of a third… 

Researcher: Does it have to be shaded to be one-third? 

Clay: Um…Yes! 

Marcos: No it doesn’t! 

Researcher: Why not? 

Marcos: Because if you don’t shade it…Because each of those is one of them. 

Researcher: One of how many? 

Marcos: Three! 



 

148 

Researcher: Okay. What do you think Daniel? Do you agree with Marcos? That it can show one-
third if it’s shaded but that one part is still one-third if it’s not shaded. 
 
Daniel: Um…Yeah. 

Researcher: Why do you agree Daniel? 

Daniel: Because…Ah…Well, every one of them…Every one of them is a third…one-third. No 
matter if it’s shaded or not shaded… 
 
Researcher: Clay what do you think? Do you agree with Daniel? 

Clay: Uh… 

Researcher: What did Daniel say? Tell me in your own words. 

Clay: Well…He said…that…it is one-third…because…because…because… 

Researcher: Clay do you want to ask Daniel to say it again so you can hear him? 

Daniel: Because…Um…It’s like every one…It’s still one-third if it’s…like…not shaded. 

Researcher: Why? 

Daniel: Because every one is a third. 

Researcher: Clay what did he say? 

Clay: He said that it’s one-third but it doesn’t have to be shaded because…uh…because shapes 
don’t have to be shaded to be a fraction. 
 
Researcher: Does that make sense? 

Clay: Yes…Yeah…Because…because it’s still one part and there’s still three parts. You can shade 
it to show it but it’s still one-third if it’s not. 
 

Although the students were not always able to arrive at a negotiated meaning that was 

agreed upon by all three members of the group, when they did find agreement they were 

successful in building correct understandings of the fraction concepts being considered. Ideas 

arrived at through negotiation could have been used to support reasoning about subsequent 

fraction concepts. However, this did not happen during this intervention study. Instead the 

participants tended to renegotiate concepts each time they arose. This may have indicated that 

understandings of these fraction concepts were still in the process of development. 
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Conclusion 

This chapter began with a bracketing statement followed by descriptions of the study 

participants and the intervention sessions as enacted. The analysis of data was organized in two 

parts to address the two research questions of the study. The first part of the analysis used 

Geary’s (2003) proposed subtypes of learning disabilities in mathematics as a framework to 

develop descriptions of each participants’ struggles and strengths with evidence provided in the 

forms of transcript excerpts and artifacts. Analysis of the three participants indicates that 

illustrated different patterns of struggles and strengths, with one participant’s struggles placing 

him in the conceptual subtype and another’s placing him in the semantic memory subtype. The 

third participant presented struggles that were largely balanced between two subtypes but he was 

the only participant to have struggles associated with the visuospatial subtype. The second part 

of the analysis used scaffolding techniques described by Anghileri (2006) as a lens to describe 

how the participants made sense of fraction concepts in an intervention setting intended to 

support socio-constructivist learning. Episodes highlighting the scaffolding techniques of 

prompting and probing and looking, touching, and verbalizing supported and revealed 

participants’ processes of sense-making. Episodes highlighting the scaffolding technique of 

explanation and justification demonstrated participants’ abilities to verbally support and defend 

their solutions and strategies with their own mathematical reasoning, while episodes highlighting 

the scaffolding technique of negotiated meaning showed the difficulty these participants had in 

reaching meanings that were agreed upon. 
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CHAPTER 5: CONCLUSION 

This study was intended to address a gap in the literature by using a qualitative research 

approach to understand and describe how third-grade students who struggle in mathematics make 

sense of fraction concepts. Vygotsky’s (1934/1986/2012) proposal that an understanding of how 

a student makes sense of a concept can be best ascertained by a teacher working in conjunction 

with that student to make sense of that concept was used as an interpretive framework to guide 

this research. As such, a set of intervention sessions were conducted in which the researcher and 

the participants worked together to make sense of fraction concepts. In keeping with Vygotsky’s 

(1930-1934/1978) social-constructivist view on expert-novice interactions, scaffolding 

techniques were employed to support participants’ reasoning about fractions. Ultimately, these 

scaffolding techniques allowed the researcher to build a description of each participant’s 

strengths and struggles, and became a lens through which to view the participants’ processes of 

making sense of fraction concepts. 

Two analysis frameworks were selected to answer the research questions for this study. 

For the first framework a classification system for subtypes of learning disabilities in 

mathematics developed by Geary (2003) was chosen. Using Geary’s descriptions of three 

subtypes, conceptual, semantic memory, and visuospatial, the participants occurrences of errors 

and misconceptions were classified. For presentation in this study, each subtype was illustrated 

for one participant. For Clay and Marcos, numbers of occurrences within the conceptual and 

semantic memory subtypes respectively were dominant. Analysis for Clay focused on describing 

struggles within the conceptual subtype while analysis for Marcos focused on defining struggles 

within the semantic memory subtype and with written expression. Daniel’s occurrences were 



 

151 

greatest in the conceptual subtype, but his occurrences in the visuospatial subtype exceeded those 

of either Clay or Marcos. For this reason, and because Daniel often exhibited strength with 

conceptual thinking, the researcher decided to focus analysis of Daniel’s struggles within the 

visuospatial subtype. The second analysis framework utilized Anghileri’s (2006) descriptions of 

socio-constructivist scaffolding techniques to identify episodes within the intervention sessions 

where these techniques revealed how the participants made sense of fraction concepts with each 

other and the researcher. These scaffolding techniques included: a) prompting and probing; b) 

looking, touching, and verbalizing; c) interpreting student work or talk; d) simplifying a 

problem; e) explaining and justifying; and f) negotiated meaning. 

The participants’ strengths and struggles are essential to how they make sense of fraction 

concepts and a set of scaffolding techniques grounded in social-constructivist learning theory is 

essential to revealing their sense making processes, including their misconceptions and how 

these contribute to their understandings. Additionally, the use of scaffolding techniques provides 

a way to address each student’s struggle, both within the conceptual, semantic memory, and 

visuospatial subtypes as described by Geary (2003) and learning issues that extend beyond 

Geary’s framework. In an environment that allows extended exploration using multiple 

connected representations, supported by a teacher’s skilled questioning and opportunities for 

student verbalization, strengths can be used to address struggles. Geary (2003) suggests that 

students who struggle within the conceptual and visuospatial subgroups are likely to see these 

struggles decrease over time while students who struggle within the semantic memory subtype 

may continue to struggle. Marcos’ struggles were primarily in the semantic memory subtype. 

However, he proved to be conceptually sound in his thinking and eloquent in expressing his 
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ideas. Although Marcos may continue to struggle with fact recall, accurate counting, and written 

expression, future opportunities to demonstrate his conceptual strengths in mathematics may be 

crucial to his own understanding of himself as a strong student in mathematics. Clay and Daniel 

also need opportunities to reason about mathematics in environments that emphasize conceptual 

focus and make use of connections between representations. It is this type of environment that 

helps them to uncover their own misunderstandings and to use both their own strengths and the 

strengths of other students to build mathematical understandings.  

This concluding chapter presents a discussion of the findings of the study, in the form of 

a description of each participant’s strengths and struggles followed by a discussion of the 

participants’ sense making process as revealed by scaffolding techniques. A discussion of the 

implications of the findings for research and practice follows. Lastly, recommendations for 

future research are outlined. 

Findings 

During the intervention sessions, the use of scaffolding techniques with participants 

revealed a pattern of struggles and strengths that were unique for, although at times overlapping 

among, the three participants. Additionally, it became clear that the scaffolding techniques 

implemented for their value to allow co-construction of knowledge within the group, provided a 

second lens through which the participants’ processes of making sense of fraction concepts could 

be considered.  
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Analysis Framework 1: Geary’s Subtypes of Learning Disabilities in Mathematics 

The first analysis framework was used to answer the first research question: What 

struggles and strengths of third-grade students are revealed in a small group intervention 

supported by social-constructivist scaffolding while focused on fraction concepts? 

Although Geary (2003) labeled his subtypes as pertaining to learning disabilities in 

mathematics, the decision was made for this study to use these subtypes as a way of examining 

the thinking of students who struggle in mathematics. Supporting this decision is Geary’s (2003) 

assertion that no process exists which can definitively distinguish between a student with a 

learning disability in mathematics and a student who struggles in mathematics. The participants 

in this study were known to struggle in mathematics, but it is unknown if any have a learning 

disability that is affecting their challenges in mathematics learning. The following discussion 

includes a description of each participant’s struggles related to one of Geary’s subtypes 

(conceptual, semantic memory, and visuospatial), a description of strengths revealed during 

intervention for each participant, and a discussion of their strengths and struggles considered 

together. Analyses for Clay, Daniel, and Marcos were focused on occurrences in the conceptual, 

visuospatial, and semantic memory subtypes respectively.  

Clay’s struggles were primarily grounded in the conceptual subtype with 25 occurrences 

versus eight and nine respectively in the semantic memory and visuospatial subtypes as 

described by Geary (2003). In the earliest intervention sessions, Clay attended to the need for 

equal-sized pieces in pictorial representations of fractions. However, Clay struggled with 

translating this reasoning to work with real-world context problems. In considering the work of 

Lesh and colleagues (1987), which proposed that student’s need to make connections between 
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different representation of fractions to build understanding of fraction concepts, it is possible that 

Clay’s conceptual understandings of fractions were weak because he had not had opportunities to 

make these connections. Clay may have worked with different representations of fractions in the 

past, but he needed opportunities to work with tasks in situations where immediate connections 

were made, and he needed prompting and probing scaffolding techniques that helped him 

confront his misconceptions and generate more logical connections. This was evidenced when 

paper strip cuttings were used to make connections to abstract reasoning of the comparative sizes 

of unit fractions and also when reasoning about a real-world context problem was connected to 

manipulatives when it was clear Clay was struggling to generate correct pictorials. Clay worked 

with fractions using whole number reasoning when he stated solutions in number of pieces 

without reference to a denominator, identified unit fractions without attending to the whole, and 

compared fractions by choosing as the greatest fraction the one with the largest denominator. 

Clay’s struggles indicated that he often did not understand the concepts that were underlying the 

fraction tasks used in the intervention sessions. Despite his conceptual struggles, Clay 

demonstrated that at times he could insightfully give a solution to a complex problem before 

working with the problem. When asked to state how many sandwiches would be needed if each 

person was to receive a half sandwich, Clay immediately knew the answer would be four. Clay 

struggled to provide a solution strategy that would support his insightful answer, but this does 

not diminish the strength of his insight. Clay was able to demonstrate this strength on several 

occasions. It is possible that Clay had information mathematical knowledge which he has been 

unable to connect to his formal learning in school. Additionally, when Clay was encouraged to 

consider the whole when working on fraction tasks, he showed that he could be flexible in his 
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thinking about defining that whole. Like the participants Hunt and Empson (2015) studied, 

Clay’s work with fraction concepts was delayed, rather than different, when compared to that of 

typically achieving third-graders. 

Daniel’s struggles occurred most often within the conceptual (28) and visuospatial (18) 

subtypes. Because Daniel was the only participant of the three to demonstrate a great number of 

struggles within the visuospatial subtype, the researcher made a decision to examine his struggles 

in this area in-depth. Daniel’s interactions with the group indicated that he understood the need 

for equal-sized pieces, but often misinterpreted the size of pieces presented in pictorial 

representations of fractions. Potentially related to Daniel’s difficulties with being able to judge 

the relative size of pieces, he also divided his own pictorial representations in ways that were 

unlikely to result in equal-sized pieces. Daniel’s thought process about visual representations had 

some parallels with the thinking of participants described by Lewis (2010, 2014) in her studies 

with students who struggled to understand fractions. Specifically, in line with Lewis’ (2014) 

findings, Daniel struggled to see whether or not a pictorial presented equal-sized pieces, to create 

pictorial’s showing equal-sized pieces, and ignored different-sized parts of fractions when 

comparing fractions. Lewis posited that this type of struggle represents an intrinsically different 

way of thinking, rather than an immature but typical way of thinking about mathematics. 

Although Geary (2003) states that the conceptual subtype represents immature, but typical, 

reasoning, while the semantic memory subtype is indicative of cognitive differences, he states 

that it is unclear if the visuospatial subtype is associated with immature or atypical reasoning. 

Although struggles within the conceptual subtype were evident, there were also many 

occurrences when Daniel demonstrated his ability to use reasoning to create strategies, solve 
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problems, and support his solutions. Daniel was often able to use his knowledge of whole 

numbers to create solution strategies for equal sharing and fraction equivalence problems that he 

could explain and support. Daniel’s strengths were most evident when he was working with real-

world context problems. Occasionally Daniel needed scaffolding support to connect various 

models of representation as described by Lesh and colleagues (1987), especially when pictorials 

were involved. However, Daniel was able to make connections between manipulatives and 

abstract representations of fractions with minimal scaffolding. Daniel’s own reasoning often led 

him to engage with other participants in productive discussions when he did not understand or 

agree with their solution strategies, particularly when those students worked with manipulatives 

in ways Daniel did not agree with. 

Occurrences within the semantic memory subtype (19) were greater for Marcos than 

occurrences within the conceptual (9) or visuospatial (5) subtypes. These occurrences generally 

included errors of miscounting objects and misstating answers. Marcos also consistently 

demonstrated a struggle to express his thinking in written format. This may be a struggle related 

to issues in the semantic memory subtype or it may represent a different subtype not defined by 

Geary (2003). It became clear over the course of the intervention sessions that Marcos was often 

unable to accurately communicate his sound reasoning about fraction concepts in a written 

format and that Marcos also struggled to accurately report numbers in his mind when he was 

verbalizing his strategies. However, Marcos verbalizations about his strategies were conceptually 

sound and thorough. Marcos was the most successful of the three participants in connecting 

different representations of fractions as proposed by Lesh and colleagues (1987). In fact, Marcos 

often used a manipulative model or another participant’s drawing to support his verbalizations of 



 

157 

his solution strategies indicating that he able to successfully connect visual models to his 

reasoning even when writing or drawing to support his solution strategy was difficult. Marcos’ 

strength was his ability to apply sound reasoning to mathematical situations as well as his ability 

to understand how the other participants thought about fraction concepts and Marcos’ struggles 

with written format and accurate attention to numbers did not negate these strengths. Geary 

(2003) states that the semantic memory subtype represents a cognitive difference in the way a 

student’s mind works from the majority of his or her peers, not in terms of conceptual 

competence but rather in terms of memory access. This statement holds relevance for Marcos. 

Because his mind makes sense of fractions in ways that are actually typical and accurate, he 

should be a candidate for high performance. However, because his mind does not allow him to 

remember facts quickly or easily coordinate mental processes with physical processes, he 

struggles to perform to his potential in school. Interacting with teachers who can see to it that 

Marcos has opportunities to apply his sound conceptual thinking while supporting his struggles 

will be critical to Marcos’ future success in mathematics. 

Taken together, the pattern of misconceptions and errors for Clay, Daniel, and Marcos 

demonstrates that identifying a student as struggling in mathematics, in and of itself, is not 

adequate. Referring to Clay as a student who is struggling in mathematics means something 

different than referring to Marcos or Daniel as a student who is struggling in mathematics. Clay 

demonstrated a struggle to make sense of fraction concepts, whereas Marcos demonstrated a 

struggle to express his thinking about fraction concepts. Daniel’s struggle to make sense of 

fraction concepts was complicated by his issues connecting visual representations with 

mathematical ideas. Only with a deeper analysis of each participant’s struggles does it become 
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clear that each struggle is unique. The three participants in this study support Geary’s (1990, 

2003) position that students who struggle in mathematics may have different cognitive sources 

that underlie their struggles. 

Clay’s struggles within the conceptual subtype were intrinsically different from Marcos’ 

struggles within the semantic memory subtype. As Hunt and Empson (2015) suggested of their 

study participants, Clay may need instruction focused on concepts that meet him at his current 

level of understanding. For Clay, additional time spent on equipartitioning, unit fractions, and 

iteration during the intervention sessions was required to build his understanding of fraction 

meaning. Additionally, Clay’s interactions with fraction concepts during the intervention 

sessions suggests that he needed extended opportunities to make connections between 

manipulatives, pictorial representations, and real-world problems. On the other hand, Marcos 

generally exhibited sound abilities to understand fraction concepts, a result not in line with his 

performance on assessments in class. Marcos’ struggles to accurately count, to remember facts, 

to accurately report his own solutions, and to express himself in a written format made it 

challenging for him to demonstrate his reasoning. However, because the intervention 

environment was oriented around verbalization, and prompting and probing from the researcher, 

he was able to do so. Opportunities for Marcos’ to talk about his thinking with the other 

participants and the researcher supported Clay and Daniel in their endeavors to make sense of 

fraction concepts as well. 

Daniel, like Clay, demonstrated struggles within the conceptual subtype. However, unlike 

either Clay or Marcos, Daniel also struggled within the visuospatial subtype. Daniel’s struggles 

were more complicated to address, as he demonstrated sound conceptual reasoning at times and 
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misconceptions at others. Because Daniel struggled to interpret and create visual information 

related to fractions, it is possible that some of his occurrences within the conceptual subtype 

were related to occurrences in the visuospatial subtype. For Daniel, opportunities to work in 

conjunction with the other participants revealed to him other ways of interpreting or creating a 

pictorial. In the earliest intervention sessions, Daniel did not seem to see differences in sizes of 

pieces. Therefore, the need for equal-sized pieces was not something to which Daniel attended. 

Daniel struggled throughout the first half of the intervention sessions with the necessity of 

creating equal-sized pieces to represent a fraction. However, with repeated interactions with the 

other participants, which included looking at their work and being guided in his creations by 

them, Daniel did eventually attend to the need to create equal-sized pieces in his drawings. Like 

Clay, Daniel may also need instruction geared to his current demonstration of knowledge about 

fraction concepts. It may also be that Daniel needs instruction focused on connecting abstract 

mathematical information to pictorial representations of that information.    

Analysis Framework 2: Scaffolding Techniques 

The second analysis framework was used to answer the second research question: How 

do third-grade students who struggle in mathematics interact with social-constructivist 

scaffolding techniques as they make sense of fraction concepts? 

Scaffolding was initially intended to be used in this study as a way to support and reveal 

the participants’ reasoning about fraction concepts. During analysis of the participants’ struggles 

and strengths, it became clear that specific scaffolding techniques could be used as a framework 

to analyze how the participants made sense of fraction concepts through interaction with each 
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other and the researcher. To enact this analysis, Anghileri’s (2006) description of scaffolding 

techniques was used to identify and classify episodes of scaffolding. The six scaffolding 

techniques used for analysis in this study were a) prompting and probing; b) looking, touching, 

and verbalizing; c) simplifying a problem; d) explaining and justifying; and e) negotiated 

meaning. The following discussion presents insights about student reasoning found during 

scaffolding episodes. 

Prompting and probing was the scaffolding technique used most often over the course of 

the intervention sessions. This is in part due to the fact that prompting and probing was used to 

support every other scaffolding technique employed as well as used on its own. Through use of 

this technique, the researcher found that Daniel and Clay were prone to initially taking a shallow 

view of some tasks. Rather than making sense of a problem statement, Daniel at times resorted to 

using numbers in the problem to generate a quick answer. Extended probing about the 

reasonableness of Daniel’s solution and the strategy used caused Daniel to look for new ways to 

use the information in the problem statement to reason about an answer. Daniel made sense of 

fraction concepts by discussing his strategies with others, participants and researcher, who were 

prepared to challenge his assumptions, and then revising his strategy and his work. Daniel often 

repeated this process several times with a problem eventually constructing a workable solution 

strategy supported by his written work and verbal explanations. Clay was more entrenched in his 

thinking than Daniel. Clay continued throughout the intervention sessions to conceive of 

fractions as numbers of pieces where the amount of pieces in the whole was irrelevant. For this 

reason, Clay struggled to construct workable strategies to identify the name of a unit fraction, to 

iterate a unit fraction, and to determine equality or relative size of fractions. Marcos made sense 
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of fraction concepts in more successful ways, but prompting and probing were especially central 

to his reasoning. Marcos appeared to use prompting and probing from the researcher, along with 

his own verbalization and those of other participants, as his primary vehicle to reason. It was also 

often the only way Marcos’ demonstrated his reasoning. Nathan and colleagues (2007) found 

that sixth-grade students could make sense of mathematical tasks by developing their own 

solution strategies and participating in discourse oriented around extended questioning and 

explanation. This study extends the findings of Nathan and colleagues by demonstrating that 

students who struggle were also successful working with their own solution strategies in a 

discourse-rich environment focused on extended questioning, by both the researcher and the 

participants, with explanations of strategies. 

Looking, touching, and verbalizing is a scaffolding technique that takes into account the 

use of manipulatives, interpretation and creation of pictorials, and student verbalizations about 

their reasoning using manipulatives and pictorials. Clay and Daniel in particular struggled to 

relate the number of pieces in a whole to the size of that unit fraction. When working with 

abstract fractions, such as in the fraction card activity or comparing fractions directly, Clay and 

Daniel needed to work with a manipulative to make sense of the relative sizes of unit fractions. 

Although pictorials were helpful to Clay, Daniel needed to place fraction strip cuttings next to 

each other or stack fraction circle pieces to be able to verbalize his understanding about the links 

between number of pieces in a whole and fraction size. As they worked with manipulatives in 

tasks, the researcher expected that Clay and Daniel would learn to reason about fractions without 

manipulatives or pictorials. In reality, Daniel needed to use manipulatives to make sense of most 

fraction concepts throughout the intervention sessions and Clay needed manipulatives to reason 
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about fraction comparison. Although Marcos could reason verbally about fraction concepts 

without manipulatives, he often used manipulatives to demonstrate his reasoning to the other 

participants and the researcher. Other researchers (Butler et al., 2003; Cramer et al., 2002) have 

found that students improve their understandings of fraction concepts with the use of 

manipulatives and pictorials. Specifically, Cramer and colleagues (2002) found that connecting 

fraction tasks using manipulative or pictorial representations to real-world or abstract contexts 

assisted students in building understandings of the concepts underlying work with fractions. 

Butler and colleagues (2003) focused on the needs of students who struggled in mathematics and 

found that use of manipulatives and pictorials significantly improved these students’ 

performance on fraction tasks when compared to instruction that focused on instruction in 

fractions that did not use these tools. This study extends the findings of those studies by 

describing specific conditions which supported the participants’ in developing their reasoning 

about fraction concepts with the integration of manipulatives and pictorials. This researcher 

found that, although manipulatives and pictorials could be powerful tools in building 

understandings, they were most useful when embedded within a context problem and used to 

address a specific misconception arising in work with that problem. 

Two scaffolding techniques, interpreting student work or talk and simplifying a problem, 

were rarely used during the course of the intervention sessions. The researcher sought to scaffold 

participants in their attempts to make sense of fraction concepts primarily by prompting and 

probing, and the use of activities which encouraged looking, touching, and verbalizing. Although 

at times necessary and useful, interpreting student work or talk might have circumvented 

participants’ opportunities to reason about a problem and simplifying a problem might have 
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reduced the cognitive complexity of tasks. In this study, the participants sometimes made sense 

of a concept in a logical way but struggled to verbalize their meaning accurately or correctly. 

Marcos was prone to giving a correct solution and then using a different number as he talked 

about his solution process. The researcher would repeat Marcos’ original answer back to him 

and, in most cases, he would realize his error and continue with his correct original answer. In 

the episode highlighted as one of Marcos’ struggles in Chapter 4, Marcos struggled to understand 

that he had changed his answer. A critical part of Marcos’ sense-making process in this 

intervention involved similar redirections when needed. Clay and Daniel occasionally struggled 

to verbalize a strategy accurately or use vocabulary accurately. In these cases, the researcher 

interpreted the participant’s meaning to clarify both for the group and the individual.  

Simplifying the problem was a scaffolding technique employed only when attempts to 

use the two primary scaffolding strategies, prompting and probing and looking, touching, and 

verbalizing, resulted in no mathematically relevant reasoning about the problem. In the episode 

highlighted in Chapter 4 for this technique, Clay and Daniel were not able to conceive of a 

logical way to iterate half sandwiches to give to eight children. Instead, they were approaching 

the problem as one of sharing a sandwich with eight children. This is a strategy that can be 

successful with this particular problem, but after several minutes with other scaffolding 

techniques, Clay and Daniel were making no progress. Once presented with one sandwich to 

share, and knowing that children would be given half sandwiches, both were able to reason that 

one sandwich could feed two children. This simplified problem gave them a way to link their 

knowledge of sharing problems to a situation that required iteration. They were able to iterate the 

half sandwiches in pairs to arrive at the conclusion that four sandwiches would feed the children.  
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Explaining and justifying and negotiated meaning are two scaffolding techniques that are 

only fully enacted when students can support their reasoning verbally and in written format and 

when students can build reasoning about a mathematical concept that becomes accepted by the 

group. Although Daniel and Marcos demonstrated an ability to verbalize support for their 

reasoning about fraction concepts on many occasions, Clay often struggled to explain his 

reasoning. Daniel was able to generate pictorials that supported his reasoning on a regular basis, 

as was Clay at times. Marcos succeeded in providing sound verbal explanations and 

justifications, often supported by using manipulatives to demonstrate his thinking, but struggled 

to write explanations and justifications. Findings related to Marcos supported Broza and 

Kolikant’s (2015) assertion that some students need verbal opportunities to demonstrate 

understandings that they cannot demonstrate in written format. Questioning by the researcher 

that asked a participant why a solution strategy worked or how he used his strategy to arrive at a 

solution often elicited responses from Daniel or Marcos that caused them to think more deeply 

about supporting their solutions and strategies. Clay struggled more than Daniel or Marcos to 

explain and justify his work even when he generated correct solutions, possibly because Clay 

often made sense of fraction tasks in conceptually inaccurate ways. Clay’s struggles suggested 

that he needed more opportunities to make sense of fraction concepts before he would be able to 

support his reasoning. 

In general, the participants did not reach a point where a mathematical truth was taken-

as-shared (Cobb et al., 1992) by the group and used as to support an argument about a 

subsequent concept.  The participants in this study often struggled to reach a negotiated meaning, 

with many incorrect mathematical ideas discussed and supported throughout the intervention 
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sessions. However, instances of negotiated meaning did not result in misconceptions being 

spread through the group. In each case of negotiated meaning, correct mathematical 

understandings eventually prevailed. As Anghileri (2006) proposed discussion of these incorrect 

mathematical ideas, including misconceptions and errors, created a powerful learning 

environment and improved the understandings of the participants. 

Implications 

Over the course of this study, implications from the findings about student learning with 

teacher support have emerged. The findings of this study supported Geary’s (2003) proposal that 

learning difficulties in mathematics differ among students and may be classified based on the 

types of misconceptions and errors a student demonstrates. Implied by this finding is a need for 

teachers of students who struggle to become familiar these subtypes so that they can tailor 

instruction to the needs of the individual learner. Also apparent in the findings is that students 

who struggle bring strengths to their work with mathematics as well. A learning environment can 

be designed to uncover and develop these strengths, or it can be designed in ways that overlook 

the mathematical strengths of students who struggle. For students who struggle, a supportive 

environment is critical because missed learning opportunities and unrecognized abilities may 

limit future opportunities to engage deeply with mathematics (Boaler, 2015). Vygotsky 

(1934/1986/2012) believed that a teacher can only understand the thinking of the student when 

they engage together in the construction of knowledge in an expert-novice relationship. This 

researcher attempted to use scaffolding techniques in line with Vygotsky’s theories to support 

student learning in a small group intervention.  
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The findings indicate that the value of knowledge co-construction is two-fold.  First, it 

provides the avenue through which teachers can more thoroughly understand the mathematical 

thinking of their students, including struggles and strengths each student experiences as he or she 

makes sense of mathematical concepts. Second, a co-constructivist environment has the power to 

support the deep mathematical learning of students, particularly those who struggle. Students 

who struggle need support from their teachers, but the form this support takes is crucial. Often, 

support proposed for students who struggle in mathematics is direct instruction and instruction 

that makes mathematical ideas explicit for the student (Flores & Kaylor, 2007; Fuchs et al., 

2013; Jitendra et al., 1998; Joseph & Hunter, 2001. However, researchers (Carpenter et al., 1998; 

Cobb et al., 1991; Cramer et al., 2002; Empson, 1999) have found that students need 

opportunities to explicate mathematical ideas in their own minds to build understanding of 

concepts. The findings of this study are in line with these researchers in the field of mathematics 

education and also align with the findings of Gersten and colleagues’ (2009) meta-analysis 

indicating that students who struggle learn most effectively in conceptually oriented learning 

environments. A small group intervention oriented around social-constructivist learning and 

support can provide these opportunities. Some students may think about mathematics in 

conceptually deep ways, but may be unable to demonstrate their understandings on worksheets 

or written assessments (Anghileri, 2006; Broza & Kolikant, 2015). Indeed Broza and Kolikant 

(2015) proposed that some students who struggle are best able to demonstrate “mathematical 

reasoning orally when placed in intimate and supportive learning environments, such as small 

groups tutoring” (p. 1095). Experiences in this study also support the assertion that some 

students who struggle need opportunities to verbalize their thinking so that they can demonstrate 
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and further develop their understandings of mathematics. Other students need a teacher as expert 

to work with them to uncover current levels of conceptual understanding, and then to design 

instruction and provide scaffolding that extends current levels of conceptual understanding, an 

implication in line with the research findings of Hunt and Empson (2015) and Wilhelm (2014). 

In a social-constructivist learning environment, these needs can be met as students have 

opportunities to build understandings together and with the teacher.  

By engaging in social-constructivist oriented scaffolding, teachers can use cognitively 

challenging tasks to support student learning while maintaining a focus on students’ thinking. 

Among scaffolding techniques found to be most useful in activating student thinking about 

mathematics were two named and described by Anghileri (2006): a) prompting and probing; and 

b) looking, touching, and verbalizing. Prompting and probing as a scaffolding technique has the 

ability to replace overly-directed teaching practices thus encouraging students to develop their 

own mathematical ideas and connections. This study found that students who struggle had a 

tendency to turn to poorly understood procedures, to use strategies that only partially addressed a 

problem, and to attend to surface features of a problem. For example, one participant invoked a 

procedure for comparing fractions with the same denominator when comparing fractions with the 

same numerator. Also, when working with real-world context problems, participants often began 

by working arithmetic equations without attending to the problem context. Prompting and 

probing from the researcher helped these participants to move past their initial ways of thinking 

about problems. The findings showed that questioning asking students to reconsider problem 

contexts, to think about missing parts of solution strategies, and to explain thinking and 
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strategies, can assist students who struggle in making sense of the conceptual underpinnings of 

mathematics. 

The scaffolding technique of looking, touching, and verbalizing encompasses the use of 

both manipulatives and pictorials. This study was able to extend findings of research studies 

(Butler et al., 2003; Cramer et al., 2002) about the use of manipulatives and pictorials to help 

students build understanding of fraction concepts. Experiences in this study indicated that when 

manipulatives were used to explore a fraction concept, such as comparing sizes of unit fractions, 

participants further built understandings of these concepts by verbalizing their thinking during 

explorations. However, these understandings were not easily transferred to problems set in either 

real-world or abstract contexts. More valuable than attempts to make connections between 

representations presented in different tasks, was the use of manipulatives as the need became 

apparent during real-world or abstract tasks. The findings of this study with regard to 

manipulative use suggest teachers need to attend carefully to student thinking during tasks. 

Teachers may expect that previous work with manipulatives may support student thinking in 

subsequent tasks performed without manipulatives. While this may be the case for some 

students, others may not be successful in making these connections. By working with a student 

who is struggling to build mathematical meaning, a teacher can diagnose the need to work with 

manipulatives at the moment it has the most potential to help the student make sense of concepts. 

For example, within a class some students may be successfully reasoning about fraction sizes 

while others need to work with fraction circles or paper strip cuttings to understand the 

mathematical idea. Pictorials present a similar dilemma. Students working with pictorials given 

in a task may not transfer concepts about fractions to problems that call for student-generated 
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pictorials. By providing opportunities for students to create pictorials and verbalize their thinking 

about the process of creation, students can strengthen their understandings of given pictorials as 

well.  

This study suggests that teachers need a deep understanding of how students use 

manipulatives and pictorials to make sense of mathematics. Specifically, teachers need to realize 

that work with manipulatives may not transfer to work with real-world or abstract problems, 

unless the teacher provides opportunities for students to integrate manipulative work into these 

contexts. Also, teachers need to understand that students may make sense of pictorials given in a 

problem differently from pictorials they generate. Finally, during this study manipulatives and 

pictorials were more productive in when students discussed their thinking about these 

representations with each other and the teacher. Furthermore, this study holds important 

implications for students who struggle in mathematics and the teachers who work with them. 

Teachers need to co-construct knowledge with students to better understand the students’ 

struggles, strengths, current level of understanding, and potential for mathematical learning. 

Students who struggle in mathematics need opportunities to co-construct knowledge with 

teachers and other students to demonstrate their abilities, to better use their current level of 

understanding, and to work in environments that require deep mathematical thinking. Without 

these opportunities, mathematics instruction for students who struggle may not support students 

in reaching their potential and may limit their lifetime opportunities. 
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Recommendations for Future Research 

The current study may suggest directions for future research. First, more qualitative 

studies need to be conducted to build a better understanding of how students may fit into Geary’s 

(2003) subtypes of learning disabilities in mathematics and these studies need to be extended into 

other mathematical topics, such as algebra and geometry. Additionally, studies that address the 

potential need for differing interventions based on subtype would be a further step in this 

research agenda. Lesh and colleagues (1987) have suggested that connecting representations is 

critical to students’ abilities to make sense of fraction concepts. Given that the findings in this 

study suggested that students who struggled within the conceptual and visuospatial subtypes had 

difficulty connecting work with manipulatives to real-world context problems, future studies that 

investigated this potential issue more deeply could be beneficial. Future research could also be 

focused on examination of which scaffolding techniques hold the most promise for students who 

struggle. Investigations into professional development that help teachers learn how to enact 

socio-constructivist scaffolding techniques would benefit learners who struggle as well. To 

further address the needs of students who struggle in all facets of mathematics, ethnographies 

that seek to understand the learning communities these students and their teachers participate in 

and create could also be valuable. 

Conclusion 

This chapter discussed findings from the study, implications, and recommendations for 

future research. The findings of this study suggest that these participants who struggled in 

mathematics made sense of fraction concepts involving equipartitioning, identification and 
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iteration of unit fractions, fraction equivalence, and to a lesser degree fraction comparison, 

through responding to prompting and probing questions from the researcher and through 

interactions with manipulatives, interpreting and creating pictorials, and verbalizing their 

reasoning with each other and the researcher. Further, opportunities to connect different 

representations of fractions, such as connecting abstract reasoning about unit fraction size to 

paper strip manipulatives, played a crucial role in the participants’ processes of making sense. At 

the same time, the study revealed that each participant’s struggle was unique and not always 

grounded in conceptual misunderstandings. For each participant, regardless of the subtype of 

learning difficulty identified by the researcher, prompting and probing as a primary scaffolding 

technique created an environment where the participants could co-construct understandings of 

fraction concepts in conjunction with each other and the researcher. As Siegler and colleagues 

(2012) found, mastery of fraction concepts may be crucial to students’ understandings of later 

mathematical concepts, such as those found in algebra. For students who struggle in 

mathematics, it may be crucial that their teachers can understand and address their 

misconceptions about fraction concepts in elementary school, uncover their strengths, and 

provide scaffolding in line with their needs to ensure that sound conceptual understandings are 

built. This study was intended to as an initial foray into understanding the struggles and strengths 

of these students and how they interacted with socio-constructivist scaffolding as they learned 

about fraction concepts during a set of intervention sessions.  
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IRB Approval Letter, Informed Consent, and Verbal Assent Protocol 
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A multiple case study: How do third grade students who struggle in 

mathematics make sense of fraction concepts involving representation, 

comparison, and equivalence? 

 

Informed Consent 
 

 
Principal Investigator:   Rebecca Gault, Doctoral Candidate 
 
Faculty Advisor:  Enrique Ortiz, Ed.D. 
 
Investigational Site(s):  An elementary school in central Florida 
 
 
     

How to Return this Consent Form:  
You are provided with two copies of this consent form. If you give consent for your child to 
participate in the research, please sign one copy and return it to the front desk at your child’s 
school, sealed in the envelope provided, and keep the other copy for your records. As an 
alternative, if you would like to meet with me to discuss the study you could return this form to 
me in person if you decide to have your child participate. 
 
Introduction:   
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Researchers at the University of Central Florida (UCF) study many topics.  To do this we need 
the help of people who agree to take part in a research study.  You are being asked to allow your 
child to take part in a research study which will include about four people at your child’s school. 
Your child is being invited to take part in this research study because he or she is a third grade 
student and may benefit from additional instruction in fractions. 
 
The person doing this research is Rebecca Gault of the University of Central Florida. Because the 
researcher is a doctoral student, she is being guided by Dr. Enrique Ortiz, a UCF faculty advisor 
in Mathematics Education. 

 

What you should know about a research study: 

 Someone will explain this research study to you.  

 A research study is something you volunteer for.  

 Whether or not you take part is up to you. 

 You should allow your child to take part in this study only because you want to.   

 You can choose not to take part in the research study.  

 You can agree to take part now and later change your mind.  

 Whatever you decide it will not be held against you or your child. 

 Feel free to ask all the questions you want before you decide. 
 
Purpose of the research study:   

The purpose of the tutoring intervention and research study is to help third graders 
struggling in mathematics better understand fraction concepts and to understand how students 
who are struggling best make sense of mathematics concepts such as fractions. 
 

What your child will be asked to do in the study:   
Your child will attend tutoring on Tuesdays, Wednesdays, and Thursdays, from February 16 to 
March 24 after school from 3:15 to 4:00 at your child’s elementary school. This tutoring will be 
about fraction concepts covered in third grade mathematics. During the first and last tutoring 
sessions, the researcher will also ask your child to solve a few fraction problems to better 
understand how your child is thinking about fractions. During the first and last sessions, the 
researcher may also ask your child questions about how he or she feels about mathematics and 
doing work with mathematics. Your child does not have to answer every question or complete 
every task. You or your child will not lose any benefits if your child skips questions or tasks. 
 

Location:   
Tutoring sessions will occur at your child’s elementary school. 
 

Time required:   

We expect that your child will be in this research study for five weeks, three afternoons each week. 
 

Audio or video taping:   
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 Your child will be audio taped during this study.  If you do not want your child to be 
audio taped, your child will not be able to be in the study.  Please discuss this with the researcher 
if you have any concerns.  If your child is audio taped, the tape will be kept in a locked, safe 
place. The tape will be erased or destroyed when the study is completed. Transcriptions will be 
kept for research purposes but will not include your child’s name or any identifying markers. 
  
If you give your permission, your child will be video-taped during this study.  If you do not want 
your child to be video-taped, your child can still be in the study.  If you do not want your child 
videotaped, only audio recording will occur. Please discuss this with the researcher if you have 
any concerns.  If your child is video-taped, the tape will be kept in a locked, safe place. The tape 
will be erased or destroyed when the study is completed. 
 

Risks:  
Your child may feel some anxiety or frustration from working with challenging 

mathematical tasks or being video-taped while working on tasks. Every effort will be made by 
the researcher to ensure that any anxiety or frustration will be minimal. If your child becomes 
anxious because of videotaping, the videotape will be turned off. If your child becomes anxious 
because of mathematical tasks, the researcher will help the child with the task or move on to 
another task. 
 
Benefits:   

We cannot promise any benefits to you, your child, or others from your child taking part in this 
research. However, possible benefits include that your child may develop a deeper understanding 
of fraction concepts and a foundation for future learning in mathematics. Also, your child may 
experience a lowered feeling of anxiety about mathematics and a greater sense of confidence in 
his or her ability to learn about mathematics. 
 

 

Compensation or payment:   
There is no monetary compensation or other payment to you or your child for your child’s part in 
this study. Your child will receive a set of fraction manipulatives and a fraction game set.  
 

Confidentiality:   
We will limit personal data collected in this study to people who have a need to review 

this information. We cannot promise complete secrecy. 
 

Study contact for questions about the study or to report a problem:   
If you have questions, concerns, or complaints, or think the research has hurt your child 

talk to Rebecca Gault, doctoral candidate, University of Central Florida at (321) 202-5087 or 
rebecca.gault@knights.ucf.edu, or Dr. Enrique Ortiz, Faculty Supervisor, University of Central 
Florida at enrique.ortiz@ucf.edu. 
 
IRB contact about you and your child’s rights in the study or to report a complaint:    
Research at the University of Central Florida involving human participants is carried out under the 
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oversight of the Institutional Review Board (UCF IRB).  This research has been reviewed and 
approved by the IRB. For information about the rights of people who take part in research, please 
contact: Institutional Review Board, University of Central Florida, Office of Research & 
Commercialization, 12201 Research Parkway, Suite 501, Orlando, FL 32826-3246 or by telephone 
at (407) 823-2901. You may also talk to them for any of the following:  

 Your questions, concerns, or complaints are not being answered by the research team. 

 You cannot reach the research team. 

 You want to talk to someone besides the research team. 

 You want to get information or provide input about this research.  
 

Withdrawing from the study: 

You may decide not to have your child continue in the research study at any time without 
it being held against you or your child. If you decide to have your child leave the research, 
contact the researcher so that the researcher can remove your information from the study. You 
can email or call using the information above, or speak to her before or after a tutoring session.  
 

Your signature below indicates your permission for the child named below to take part in 

this research.  

 

DO NOT SIGN THIS FORM AFTER THE IRB EXPIRATION DATE 

BELOW 

 

 

Name of participant 

  

Signature of  parent or guardian  Date 

  Parent 
 Guardian (See note below) 

Printed name of parent or guardian  
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Note on permission by guardians: An individual may provide permission for a child only if that individual 

can provide a written document indicating that he or she is legally authorized to consent to the child’s general medical 

care. Attach the documentation to the signed document. 
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Protocol for Verbal Student Assent 

At the beginning of the first meeting with student/participant: 

Hi, my name Ms. Rebecca and I am from UCF. I’d like to talk with you today about math 

and I’d especially like to talk with you about fractions. I am very interested in your ideas about 

math and fractions and you can help me understand how kids think about these things.  Would 

you be willing to talk with me about math and fractions? 

Sometimes I forget things when I talk to people. Would it be okay if I record our 

conversation [indicate the audio/video recorder] so I can listen to it later? No one besides me will 

hear or see it, but it you don’t want me to, that’s okay, and I won’t record our conversation. If 

you change your mind about being recorded at any time, just let me know and I’ll turn it off. 

[Turn on audio/video recorder only if student assents.] 

Also, if you change your mind at any time about talking to me about math and fractions, 

just let me know and we’ll stop. Okay? [Proceed with initial interview if student assents.] 

At the beginning of each subsequent meeting with student/participant: 

Hi ________. It’s very nice to see you today. Can we work some fraction math problems 

together today? 

Would it be okay if I record our work together today? No one besides me will hear or see 

it, but if you don’t want me to, that’s okay, and I won’t record our work. If you change your 

mind about being recorded at any time, just let me know and I’ll turn it off. [Turn on audio/video 

recorder only if student assents.] 

Also, if you change your mind at any time about working fraction math problems with 

me, just let me know and we’ll stop. Okay? [Proceed with tutoring session if student assents.] 



 

180 

APPENDIX B: 

CLASSIFICATION OF INTERVENTION ACTIVITIES 
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Table 14 

Classification of Intervention Activities 

Activity Number and Example CCSSM Focus 

Representational 
Translation (Lesh et al., 

1987) Type of model(s) Activity Source 

Activity 1 
Identify and iterate the unit fraction. 

 
 
 
 

Unit Fractions 
3.G.2 
3.NF.1 
3.NF.2.a 
3.NF.2.b 

P to V Linear Model  

Activity 2 
Place an “X” beside each picture 
that shows 2-fourths shaded in.  

 
 

Equipartitioning 
3.G.2 
3.NF.1 

P to W/V Area Model Cramer et al., 2009, 
Rational Number 
Project Lesson 4 
Student Page G 

Activity 3 
What do you see? 

 

 

Equipartitioning 
3.G.2 
3.NF.1 

P to W/V Area Model  

Activity 4  
Jackie and Lianna have 13 cookies. 
If they share the cookies equally, 
how many cookies would each 
person get? 

 

Equal sharing/Equal 
Partitioning 
3.G.2 
3.NF.1 

RL to P/V Set Model Empson & Levi, 
2011 p. 29-31 
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Activity Number and Example CCSSM Focus 

Representational 
Translation (Lesh et al., 

1987) Type of model(s) Activity Source 
Activity 5 
Use area fraction kits to play “Race 
to a Whole” game. 

Unit Fractions and 
Equivalence 
3.G.2 
3.NF.1 
3.NF.3.c 
3.NF.3.b 

 

M to M/V Area Model Dixon et al., 2016, p. 
80-83 

Activity 6 
Four children want to share 10 
Publix sub sandwiches so that 
everyone gets the same. How much 
can each child have? 

Unit Fractions 
3.G.2 
3.NF.1 
3.NF.2.a 
3.NF.2.b 

RL/W to P/V Area and Linear 
Models 

Empson & Levi, 
2011, p. 65 

Activity 7 
Four children want to share 3 
peaches so that everyone gets the 
same. How much peach can each 
child have? 

Unit Fractions 
3.G.2 
3.NF.1 
3.NF.2.a 
3.NF.2.b 
 

RL/W to P/V Area and Linear 
Models 

Empson & Levi, 
2011, p. 65 

Activity 8 
Draw lines then cut the paper circle 
to make equal-sized pieces. 

 

Unit Fractions 
3.G.2 
 

M/P to M/V Area Model  

Activity 9 
Draw lines then cut the paper square 
to make equal-sized pieces. 

Unit Fractions 
3.G.2 
 

M/P to M/V Area Model  
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Activity Number and Example CCSSM Focus 

Representational 
Translation (Lesh et al., 

1987) Type of model(s) Activity Source 
Activity 10 
This is a candy bar. Draw to show it 
divided into 5 equal-sized pieces. 
 

 
 
 

 
 

Equipartitioning and  
Unit Fractions 
3.G.2 
3.NF.1 
3.NF.2.a 
3.NF.2.b  
 

RL/P/W to P/W/V Area and Linear 
Models 

Cramer et al., 2009, 
Rational Number 
Project Lesson 4 
Student Pages A and 
B 

Activity 11 
This is a picture of a pan of 
brownies: 
 

 
 
The pan is cut into how many equal-
sized brownies? 
Each brownie piece is __ of the 
whole pan. 

 

Equipartitioning and  
Unit Fractions 
3.G.2 
3.NF.1 
 

RL/P/W to P/W/V Area Model Cramer et al., 2009, 
Rational Number 
Project Lesson 4 
Student Pages A and 
B 

Activity 12 
 
Use area fraction kits to play “Race 
to a Whole” game. 

Unit Fractions and 
Equivalence 
3.G.2 
3.NF.1 
3.NF.3.c 
3.NF.3.b 

 

M to M/V Area Model  
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Activity Number and Example CCSSM Focus 

Representational 
Translation (Lesh et al., 

1987) Type of model(s) Activity Source 
Activity 13 
Health First granola bars are square 
shaped, Lucius ate one piece of the 
granola bar and now it looks like 
this: 

 
The piece that Janis ate is __ of a 
whole candy bar. 

Equipartitioning and  
Unit Fractions 
3.G.2 
3.NF.1 
3.NF.2.a 
3.NF.2.b 

RL/P/W to P/W/V Area and Linear 
Models 

Cramer et al., 2009, 
Rational Number 
Project Lesson 4 
Student Pages A and 
B 

Activity 14 
One-half of a lemon bar was left 
after a party. This is what it looked 
like: 

 
 
 
Draw a picture of the whole cake. 

 

Equipartitioning and  
Unit Fractions 
3.G.2 
3.NF.1 
3.NF.2.a 
3.NF.2.b 

RL/P/W to P/W/V Area and Linear 
Models 

Cramer et al., 2009, 
Rational Number 
Project Lesson 4 
Student Pages A and 
B 

Activity 15 
Four kids shared a candy bar 
equally. Joy’s share looked like this: 
 

 
 
Draw a picture of the whole candy 
bar. 

 

Equipartitioning and  
Unit Fractions 
3.G.2 
3.NF.1 
3.NF.2.a 
3.NF.2.b 

RL/P/W to P/W/V Area and Linear 
Models 

Cramer et al., 2009, 
Rational Number 
Project Lesson 4 
Student Pages A and 
B 
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Activity Number and Example CCSSM Focus 

Representational 
Translation (Lesh et al., 

1987) Type of model(s) Activity Source 
Activity 16 
Oscar had a garden shaped like a 
rectangle. Draw a picture of Oscar’s 
garden and show that the garden is 
in 9 equal-sized parts 
 

 
 

Equipartitioning and  
Unit Fractions 
3.G.2 
3.NF.1 
 

RL//W to P/W/V Area Models Cramer et al., 2009, 
Rational Number 
Project Lesson 4 
Student Pages A and 
B 

Activity 17 
Lucy has a garden shaped like a 
square. Draw a picture of Lucy’s 
garden and show that the garden is 
in 3 equal-sized parts 
 

 
 

Equipartitioning and  
Unit Fractions 
3.G.2 
3.NF.1 
 

RL//W to P/W/V Area Models Cramer et al., 2009, 
Rational Number 
Project Lesson 4 
Student Pages A and 
B 

Activity 18 
Jordan said that 1 red piece is one-
third. Andres said that 1 red piece is 
one-fourth.Who is correct? 

 
 

Unit Fractions 
3.G.2 
3.NF.1 

 

M/RL/W to V/M Area Model Cramer et al., 2009, 
Rational Number 
Project Lesson 2 
Wrap-Up Question 

Activity 19 
Change the unit to 1 blue? What 
fraction name can you give these 
pieces? 
1 grey? 1 red? 

 

Unit Fractions 
3.G.2 

 

M/W to V/W Area Model Cramer et al., 2009, 
Rational Number 
Project Lesson 3 
Student Page A 
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Activity Number and Example CCSSM Focus 

Representational 
Translation (Lesh et al., 

1987) Type of model(s) Activity Source 
Activity 20 
The yellow piece is the unit. How 
many blues cover the yellow piece? 
1 blue is __ of the yellow. 

Unit Fractions and 
Equivalence 
3.G.2 
3.NF.3.c 

V to M Area Model Cramer et al., 2009, 
Rational Number 
Project Lesson 2 
Large Group 
Instruction 

Activity 21 
Fully cover the shape on the left 

with any combination of shapes on 
the right that will work. 
 

 

Equivalence 
3.NF.3.c 
3.NF.3.b 

 

P to M/V Area Model Cramer et al., 2009, 
Rational Number 
Project Lesson 1 
Transparency 1 

Activity 22 
Draw a picture of a pizza. Show on 
your drawing the pizza cut in 2 fair 
shares. 
 
Each fair share is __ of a whole 
pizza. 
 

Equipartitioning and  
Unit Fractions 
3.G.2 
3.NF.1 
 

RW/V to P/V/W Area Model Cramer RNP Lesson 
2 Student Pages A & 
B 

Activity 23 
Mari’s patio is a whole circle. Draw 
a picture of Mari’s patio. Show on 
your drawing that the patio is in 3 
equal-sized parts. 
Each part is __ of Mari’s patio. 

Equipartitioning and  
Unit Fractions 
3.G.2 
3.NF.1 
 

RW/V to P/V/W Area Model Cramer RNP Lesson 
2 Student Pages A & 
B 
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Activity Number and Example CCSSM Focus 

Representational 
Translation (Lesh et al., 

1987) Type of model(s) Activity Source 
Activity 24 
Juan has a patio that looks like this. 
Draw on Juan’s patio to show it 
divided into 3 equal sized parts. 
Each part is ____of Juan’s patio. 

 
 

 

Equipartitioning and  
Unit Fractions 
3.G.2 
3.NF.1 

 

RL/P/W to P/W/V Area Model Cramer et al., 2009, 
Rational Number 
Project Lesson 2 
Student Pages A and 
B 

Activity 25 
Dani wants to feed each of the 
children she babysits a half 
sandwich for lunch. If she babysits 8 
children, how many sandwiches 
should she make? 

Unit Fractions 
3.G.2 
3.NF.1 
3.NF.2.a 
3.NF.2.b 

RL/W to P/V Area and Linear 
Models 

Empson & Levi, 
2011, p. 65 

Activity 26 
The cards for 0, ½, and 1 are placed 

on a table with space in between. 

Students place cards under the 

fraction cards in the correct location 

between 0, ½, and 1. 

Comparison 
3.NF.3.b 
3.NF.3.a 
3.NF.3.d 
4.NF.2 

M to M/V Linear Model  

Activity 27 
Students fold paper strips to explore 
2, 4, 8 equal parts. 

Unit Fractions and 
Equivalence 
3.G.2 
3.NF.1 
3.NF.2.a 
3.NF.2.b 
3.NF.3.c 
3.NF.3.b 
3.NF.3.a 

M/V to M/V Linear Model Cramer et al., 2009, 
Rational Number 
Project Lesson 4 
Large Group 
Instruction 
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Activity Number and Example CCSSM Focus 

Representational 
Translation (Lesh et al., 

1987) Type of model(s) Activity Source 
Activity 28 
Use linear fraction tile kits to play 
“Race to a Whole” game. 

Unit Fractions and 
Equivalence 
3.G.2 
3.NF.1 
3.NF.2.a 
3.NF.2.b 
3.NF.3.c 

M to V Linear Model Ortiz, 2014, 
Dimensions 

Activity 29 
Which set of circles has more 
shaded? 

 
 

Equivalence 
3.G.2 
3.NF.1 
3.NF.3.b 

P to V Area Model  

Activity 30 
Are the shaded areas equal? 
 

 
 

Equivalence 
3.G.2 
3.NF.1 
3.NF.3.b 

P/W to V Area Model Lamon, 2010, p. 96 

Activity 31 
How many different ways can you 
cover a half circle manipulative? 

 

Equivalence 
3.NF.3.c 
3.NF.3.b 

 

M/V to M/W Area Model Cramer et al., 2009, 
Rational Number 
Lesson 8 Large 
Group Instruction 
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Activity Number and Example CCSSM Focus 

Representational 
Translation (Lesh et al., 

1987) Type of model(s) Activity Source 
Activity 32 
 
A group of 3 children are sharing 2 
burritos so that each gets the same 
amount. How many burritos should 
6 children share so that each child 
gets as much burrito as a child in the 
first group? 

 

Equivalence 
3.G.2 
3.NF.1 
3.NF.3.b 

 

RL/W to P/V Set Model Empson & Levi, 
2011, p. 140 

Activity 33 
 
Sticker books are on sale. You can 
buy 2 sticker books for $3. You 
want to buy 6 sticker books. How 
much money do you need? 

 

Equivalence 
3.G.2 
3.NF.1 
3.NF.3.b 

 

RL/W to P/V Set Model Empson & Levi, 
2011, p. 140 

Activity 34 
 
Look at this picture, then let’s 
answer some questions about it: 

 
Can you see thirds? How many suns 
are in 2/3 of the set? 
 

Unit Fractions 
3.G.2 
3.NF.1 

 

P/V to W/V Set Model Lamon, 2010, p. 135 
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Activity Number and Example CCSSM Focus 

Representational 
Translation (Lesh et al., 

1987) Type of model(s) Activity Source 
Activity 35 
Fraction circles are used to complete 
a table about piece sizes. 
 

 
 

Equivalence 
3.G.2 
3.NF.1 
3.NF.3.c 
3.NF.3.d 

 

M/W to M/V/W Area Model Cramer et al., 2009, 
Rational Number 
Lesson 6 Student 
Pages A and B 

Activity 36 
Which fraction is larger? 

3/4  or 2/6 

Comparison 
3.NF.3.d 
4.NF.2 

 

W to P(mental)/V Model will exist in 
the mind of the child 
and is likely to be an 
area model 

Cramer et al., 2009, 
Rational Number 
Lesson 7 Warm-Up 

Note. RL=Real Life; M=Manipulatives; P=Pictures; W=Written Symbols; V=Verbalization. 
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APPENDIX C: 

ENACTED INTERVENTION PROTOCOL 
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Enacted Intervention Protocol 
 

Prior to Session 1 

Goals:  

 Establish a rapport with the student 

 Gain an understanding of student’s attitudes, motivation, and experiences with 
mathematics and mathematics class. 

 
Materials/Source: 

 Unstructured interview protocol including questions developed based on Moustakas’ 
(1994) interview technique for phenomenological research. 

 
Unstructured Interview: 

 Unstructured interview – the researcher will ask the participants the questions verbally 
and will use prompts as needed. 
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Table 15 

Unstructured Interview 

Data/Rationale Question Prompts 

Icebreaker; 
background 

Would you tell me a 
little about yourself and 
your school? 

What has third grade been like so far? 
What was second grade like? 
What is your favorite thing about school and why? 
What has been your favorite subject and why? 

To gain a 
description of 
the student’s 
experiences in 
mathematics 
class. 

Can you tell me what 
math class is like for 
you? [What have you 
experienced in math 
class? – Creswell, 2007, 
p61 citing Moustakas, 
1994, my adaption for 
third-graders] 

What kinds of things have you learned in math class so far this year? 
What do you do in math class when something doesn’t make sense to you? 
(If further prompting is needed: What helps you the most when you don’t 
understand something in math class?) 
What is it like when you work with a partner (another student) in math class? 
What does your teacher do when she’s teaching math? (avoid phrasing like “to 
help you learn math” because it is leading) 

To find out 
what kinds of 
beliefs the 
student has 
about 
mathematics 
class. 

What kinds of things 
can happen in math 
class that make you like 
it?  Or not like it? [What 
contexts or situations 
have typically 
influenced or affected 
your experiences of 
math class? – Creswell, 
2007, p. 61 citing 
Moustakas, 1994, my 
adaption for third 
graders] 

 

Do you think math is easy, hard, or sometimes both? (this one-word-answer is 
intended to set up the next question) 
What do you think makes it easy (hard) for you? 
What do you think about if you get to do math work with a partner (another 
student)? 
(if further prompting is needed continue with these potential questions: 
Does it make math easier or harder to understand? 
Are some partners super helpful, or not so helpful? 
How do you help your partner?) 
What do you think can make math class fun? 
What do you think can make math class not fun? 
What do you think about when it’s time to pay attention to the teacher? 
If you could tell your teacher to do one thing differently what would you tell 
her? 
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Session 1 

Focus: Equipartitioning, identification of unit fraction, fraction equivalence 

Materials: 

 Cramer RNP Lesson 4 Student Page G 

 5 drawn same-size rectangle “brownie pans” each showing a different unit fraction 
“eaten” (shaded) for ½, 1/3, ¼, 1/6, 1/8 

 Rectangular drawing showing a ½ and two 1/4s, with a ¼ shaded, with 3 hypothetical 
student interpretations of above rectangular 

 Equal-sharing word problem 
 

Activities: 

 Activity 1 - Use “brownie pan” rectangles to review naming conventions for unit 
fractions. 

 Activity 2 - Present students with 12 different pictorial models (circles and rectangles) 
with partitions and shaded parts. Ask students which models show 2-fourths shaded. 
Source: Cramer RNP Lesson 4 Student Page G 

 Activity 3 - Have students consider other students’ interpretations of rectangular drawing 
with shading. Ask students if they can come up with any other alternative interpretations 
of the rectangle and its shaded area. Students should come to the conclusion that, 
depending on what is considered to be the whole, several interpretations can be correct. 
However, part of the discussion will include establishing the convention that shaded parts 
of a whole usually indicate the part to be considered. 

 Activity 4 - Word problem about an equipartitioning (equal sharing) situation that which 
students may be familiar.  
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Activity 1     
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Activity 2 

Look at each picture carefully. Place an “X” beside each picture that shows 2-

fourths shaded in. You may need to draw in lines to determine if 2-fourths are 

shaded. 
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Activity 3 

What do you see?                   
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Janelle said that she sees one-third. 

 

 

 

Lui said that he sees one-fourth. 

 

 

 

Emily said that she sees one and a half. Could she be right? 
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Activity 4 

 

 

Jackie and Lianna have 13 cookies. If they share the cookies equally, 

how many cookies would each person get? 
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Session 2 

Focus: Equipartitioning, identification of unit fraction, iteration of unit fraction, fraction 

equivalence 

Materials: 

 Equal-sharing word problem 

 Area Fraction Kit 
 

Activities: 

 Activity 4 (continued) - Word problem about an equipartitioning (equal sharing) situation 
that which students may be familiar.  

 Activity 5 - Have students work with Rectangular Fraction Area Model Kits to play the 
game “Race to a Whole”. Students play in pairs or threes. Each student rolls the die then 
covers part of the “whole” area with the fraction piece indicated by the die. Students take 
turns rolling their die until someone completes the whole.. The game was played three 
times. 
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Session 3 

Focus: Equipartitioning, identification of unit fraction, iteration of unit fraction 

Materials: 

 Equal-sharing word problems 
 

Activities: 

 Activity 6 - Word problem about an equipartitioning (equal sharing) situation that which 
students may be familiar.  

 Activity 7 - Word problem about an equipartitioning (equal sharing) situation that which 
students may be familiar. 
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Activity 6 

 

4 children want to share 10 Publix subs sandwiches so that everyone 

gets the same amount. How much can each child have? 
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Activity 7 

 

 

4 children want to share 3 peaches so that everyone gets the same 

amount. How much peach can each child have? 
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Session 4 

Focus: Equipartitioning 

Materials: 

 Paper circles and squares 

 Problems from RNP Lesson 4 Student Pages A & B 
 

Activities: 

 Activity 8 – Students used paper circles to draw lines and cut along these lines to find 
strategies that created equal-sized pieces  

 Activity 9 – Students used paper squares to draw lines and cut along these lines to find 
strategies that created equal-sized pieces 

 Activity 10 – Students divided a rectangle representing a candy bar into five equal-sized 
pieces. Source: Cramer RNP Lesson 4 Student Pages A & B 

 Activity 11 – Students work with a rectangle showing 12 equal-sized pieces to identify 
the unit fraction. Source: Cramer RNP Lesson 4 Student Pages A & B 
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Activity 10 

 

This is a candy bar. Draw to show it divided into 5 equal-sized pieces. 
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Activity 11 

 

This is a picture of a pan of brownies: 

 

 

 

 

The pan is cut into how many equal-sized brownies? 

 

Each brownie piece is ______ of the whole pan. 
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Session 5 

Focus: Equipartitioning, identification of unit fraction, iteration of unit fraction, fraction 

equivalence 

Materials: 

 Area Fraction Kit 

 Problems from RNP Lesson 4 Student Pages A & B 
 

 

Activities: 

 Activity 12 - Activity 5 - Have students work with Rectangular Fraction Area Model Kits 
to play the game “Race to a Whole”. Students play in pairs or threes. Each student rolls 
the die then covers part of the “whole” area with the fraction piece indicated by the die. 
Students take turns rolling their die until someone completes the whole. The game was 
played once with the rule that after each turn pieces needed to be converted to the 
smallest piece possible. Then the game was played a second time with the rule that after 
each turn pieces needed to be converted to the largest piece possible. 

 Activity 13 - Students work with a graphic showing three-fourths of a rectangle given in 
a word problem. Source: Cramer RNP Lesson 4 Student Pages A & B   
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Activity 13 

 

 

Health First granola bars are square shaped. Lucius at one piece of a 

Health First granola bar and now it looks like this: 

 

 

The piece that Lucius at is _______ of the whole granola bar. 
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Session 6 

Focus: Equipartitioning, teration of unit fraction 

Materials: 

 Problems from RNP Lesson 4 Student Pages A & B 
 

Activities: 

 Activity 14 – Have students work with a word problem including graphic showing one-
half of an object. 

 Activity 15 - Have students work with a word problem including graphic showing one-
fourth of an object. 

 Activity 16 – Word problem asking students to generate a pictorial showing a rectangle in 
nine equal-sized pieces. 

 Activity 17 – Word problem asking students to generate a pictorial showing a square in 
three equal-sized pieces 
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Activity 14 

One-half of a lemon bar was left after a party. This is what is looked 

like: 

 

 

 

Draw a picture of the whole cake. Explain to the group how you solved 

the problem. 
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Activity 15 

Four kids shared a candy bar equally. Joy’s share looked like this: 

 

 

 

 

 

 

 

 

 

Draw a picture of the whole candy bar. Explain to the group how you 

solved the problem. 
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Activity 16 

 

 

Oscar has a garden shaped like a rectangle. Draw a picture of Oscar’s 

garden and show that the garden is in 9 equal-sized parts. 
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Activity 17 

 

 

Lucy has a garden shaped like a square. Draw a picture of Lucy’s garden 

and show that the garden is in 3 equal-sized parts. 
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Session 7 

Focus: Equipartitioning, fraction equivalence 

Materials: 

 Cramer RNP Lesson 3 Student Pages A 

 Fraction circles 
 

Activities:  

 Activity 18 – Ask students: “Jordan said 1 red is one-third, Andres said 1 red is one-
fourth. Who is correct?” Both are correct: 1 red is one-third of blue and 1 red is one-
fourth of brown. If students struggle to understand how both could be right, ask students 
“You have called these pieces (while showing yellow, blue, pink, & red) 1/2, yet they are 
all different sizes. How is this possible?” 

 Activity 19 – Develop naming of fractions in a context that emphasizes the flexibility of 
the unit. Source: Cramer RNP Lesson 3 Student Page A 
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Activity 18 

 

Jordan said that 1 red piece is one-third.  

 

Andres said that 1 red piece is one-fourth. 

 

Who is correct? 

 

 

 

 

 

 

 

 

 

 

 

 



 

216 

 

Activity 19 
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Session 8 

Focus: Equipartitioning, identification of unit fraction, iteration of unit fraction, fraction 

equivalence  

Materials: 

 Cramer RNP Lesson 3 Student Pages A 

 Fraction circles 

 Cramer RNP Lesson 2 Large Group Instruction 

 Cramer RNP Lesson 1 Transparency 1 
 

Activities: 

 Activity 19 (continued) – Develop naming of fractions in a context that emphasizes the 
flexibility of the unit. Source: Cramer RNP Lesson 3 Student Page A 

 Activity 20 - Use fraction circles to have students work flexibly with differently defined 
units. 

 Activity 21 - Introduce fraction circle manipulatives by exploring and comparing pieces 
and their sizes. The student will fully cover the shape on the left with any combination of 
shapes on the right that will work. Source: Cramer RNP Lesson 1 Transparency 1 
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Activity 20 

The yellow piece is the unit. 

How many blues cover the yellow piece? 

1 blue is _________ of the yellow. 

 

 

The blue piece is the unit. 

How many reds cover the blue piece? 

1 red is _________ of the blue. 

 

 

The brown piece is the unit. 

How many reds cover the brown piece? 

1 red is _________ of the brown. 

 

 

What color is 1-half of the blue? 

 

 

What color is 1-third of the yellow? 
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Activity 21 
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Session 9 

Focus: Equipartitioning, unit fractions, iteration of unit fractions 

Materials: 

 Cramer RNP Lesson 2 Student Pages A & B 

 Iteration of one-half word problem 

Activities:  

 Activity 22 - Students will work flexibly with differently defined units. The focus is on 
developing the idea that the definition of the unit is flexible (ie the circle may be the 
whole, or the half-circle may be the whole, or any piece or combination of pieces may be 
the whole). Students draw a pizza cut into two fair shares. Source: Cramer RNP Lesson 2 
Student Pages A & B. 

 Activity 23 - Students will work flexibly with differently defined units. The focus is on 
developing the idea that the definition of the unit is flexible (ie the circle may be the 
whole, or the half-circle may be the whole, or any piece or combination of pieces may be 
the whole). Students draw a circular patio cut into three equal parts. Source: Cramer RNP 
Lesson 2 Student Pages A & B. 

 Activity 24 - Students will work flexibly with differently defined units. The focus is on 
developing the idea that the definition of the unit is flexible (ie the circle may be the 
whole, or the half-circle may be the whole, or any piece or combination of pieces may be 
the whole). Students draw a half-circular patio cut into three equal parts. Source: Cramer 
RNP Lesson 2 Student Pages A & B. 

 Activity 25 - Have students solve a problem required iteration of one-half. 
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 Activity 22 
 

Draw a picture of a pizza. Show on your drawing the pizza cut into 2 fair 

shares. 

 

 

 

Each fair share is _______ of the whole pizza. 
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Activity 23 

Mari’s patio is a whole circle. Draw a picture of Mari’s patio. Show on 

your drawing that the patio is in 3 equal sized parts.  

 

 

 

 

 

Each part is ______ of Mari’s patio. 
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Activity 24 

Juan has a patio that looks like this: 

 

 

 

 

 

 

Draw on Juan’s patio to show it divided into 3 equal sized parts. Each 

part is ________ of Juan’s patio. 
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Activity 25 

Dani wants to feed each of the children she babysits a half 

sandwich for lunch. If she babysits 8 children, how many sandwiches 

should she make? 
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Session 10 

Focus: Equipartitioning, fraction comparison 

Materials: 

 Cards with fractions written on the front 

 Paper fraction strips 

 Linear Fraction Kits  
 

Activities:  

 Activity 26 - Have students place cards with fractions written on them in the correct 
location between the cards for 0, ½, and 1, placed on a table with space in between.  

o Students place the cards for one-fourth, one-eighth, and one-fifth 

 Activity 27 – Based on lack of success with card placement, students were instructed to 
use paper strips to fold then cut pieces to represent one-half, one-fourth, and one-eighth. 
These paper strip cuttings were compared to support reasoning about the relative sizes of 
the unit fractions. 

 Activity 28 - Have students work with Linear Fraction Kits. Start in the fully covered 
configuration and have students remove pieces to discover which sets of removed pieces 
reveal a unit fraction and/or an equivalent fraction. Have students work with these 
manipulatives to play the game “Race to a Whole”. Each student rolls the die then covers 
part of the “whole” strip with the fraction piece indicated by the die. Students take turns 
rolling their die until someone completes the whole. Source: Ortiz, Dimensions 34(2) 
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Session 11 

Focus: Fraction equivalence 

Materials: 

 Linear Fraction Kits  

 2 sets of double circle drawings where the first set shows each circle partitioned into 
quarters with lines and each circle has one part shaded, the second set shows each circle 
partitioned into halves with lines and the first circle has one part shaded 

 Pairs of rectangles with shading 
 

Activities:  

 Activity 28 (continued) - Have students work with Linear Fraction Kits. Start in the fully 
covered configuration and have students remove pieces to discover which sets of 
removed pieces reveal a unit fraction and/or an equivalent fraction. Have students work 
with these manipulatives to play the game “Race to a Whole”. Each student rolls the die 
then covers part of the “whole” strip with the fraction piece indicated by the die. Students 
take turns rolling their die until someone completes the whole. Source: Ortiz, Dimensions 
34(2) 

 Activity 29 - Ask students to consider the 2 sets of double circles. How are they alike? 
How are they different? How are the shaded portions of each alike and different? Ask 
students to think about the circles as cookies which are cut in pieces where the shading 
represents the portion you may have. Which set would you choose to get your portion of 
cookie from and why? 

 Activity 30 – Students compared pairs of rectangular figures with shading to determine if 
the pairs had equal areas shaded. 
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Activity 29 

Which set of circles has more shaded? 
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Activity 30 

Are the shaded areas equal? Justify your answer. 
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Are the shaded areas equal? Justify your answer. 
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Session 12 

Focus: Fraction equivalence 

Materials: 

 Fraction circles 

 Informal record sheet to record work with fraction circles 
 

Activities:  

 Activity 31 –  
o Cover 1 whole circle with a ½ circle and ask students to find ways to cover the 

remaining ½ of the circle. Record the students’ answers by color. Source: Cramer 
RNP Lesson 9 large group instruction 

o Repeat the activity with the specification that the remaining ½ circle has to be 
covered with the same color. Record answers like this: 1 yellow is the same as 2 
blues, 1 yellow is the same as 3 pinks. Ask students what each arrangement has in 
common. Look for responses along the lines of “they are all the same.” Source: 
Cramer RNP Lesson 9 large group instruction 
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Activity 31 

Let’s find different ways to cover half of a circle: 
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Session 13 

Focus: Equipartitioning, unit fractions, fraction equivalence 

Materials: 

 Equivalent share word problems 
 

Activities:  

 Activity 32 - Have students solve an equivalency word problem where the equal share is 
less than one 

 Activity 33 - Have students solve an equivalency word problem where the equal share is 
greater than one 
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Activity 32 

 

A group of 3 children are sharing 2 burritos so that each child gets the 

same amount. How many burritos should 6 children share so that each 

child gets as much burrito as a child in the first group? 
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Activity 33 

 

 

Sticker books are on sale. You can buy 2 sticker books for $3. You want 

to buy 6 sticker books. How much money do you need? 
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Session 14 

Focus: Equipartitioning, unit fractions, fraction equivalence 

Materials: 

 Pictorial of 18 objects 
 

Activities:  

 Activity 34 - Have students examine a set of 18 objects and ask students what they see. 
Move on to asking specific fraction questions about the set models such as “Can you see 
thirds? (If needed, “can you break this set of objects into 3 groups?”) How many objects 
are in 2 groups of thirds, how many objects are 2/3 of the whole set? Focus on thirds, 
sixths, ninths, twelfths, and eighteenths. 
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Activity 34 

 

Look at this picture, then let’s answer some questions about it: 
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Session 15 

Focus: Equipartitioning, unit fractions, iteration of unit fractions, fraction equivalence, fraction 

comparison 

Materials: 

 Cramer RNP Lesson 6 Student Page A 

 Pairs of fractions for fraction comparison activity 

 Fraction circles 
 

Activities:  

 Activity 35 - Have students compare 2 different fraction circle pieces to decide how 
many each requires to cover a whole circle, which color takes more pieces to cover the 
circle, and which color has smaller pieces. Source: Cramer RNP Lesson 6 Student Page A 

 Activity 36 - Have students compare pairs of fractions to identify the larger fraction. 
Students should try to use reasoning to justify their selections. Reasoning proved 
challenging so fraction circles were used to provide a manipulative connection students 
could use to support their reasoning.  
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Activity 35
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Activity 36 

Which is fraction is larger?  

 

  3      or               3 . 
          4                        10 
 

       5      or               3  
        7                           7 
 

       7      or               4  
        8                           5 
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APPENDIX D: 

DECISION LOG 

 

  



 

241 

Table 16 

Decision Log 

Sessions Notes and Decisions 

1-2 Redo Lianna and Jackie sharing problem; Use counters and have students cut a 
counter to share the last cookie. 

2-3 More work is needed on equipartioning. 
3-4 Students need to work on creating equal sized pieces. Some see need for equal sized 

pieces in pictorials and some do not. It’s not clear if they will attend to equal sizes in 
drawing. 

4-5 Need to move into iteration. Area fraction game can help with this while also bringing 
fraction equivalence into it.  

5-6 Clay has problem connecting given pictorials to given context (Healthfirst problem). 
A simplified version of this problem might help (try the lemon bar problem). 

6-7 Issues with seeing the whole inflexibly. Students need to understand that the whole 
can be defined differently and they need to look for that in every new task. Naming 
a unit fraction in conjunction with a defined whole is also an issue, especially for 
Clay. 

7-8 Continue with activities coordinating the naming of the unit fraction to the definition 
of the whole. Fraction equivalence will also be addressed. 

8-9 Work still needed on defining the whole. Also need to see if they will address equal 
sized pieces in their own drawings. Further develop iteration of unit fractions in real 
world context problems. 

9 During session 9, Daniel did not use the vertical line cuts on the paper circles. During 
the session I decided to present the vertical lines on a circle so that the group could 
cut and discuss whether this generates equal size pieces. 

9-10 Daniel still sees vertical lines as a way to create equal sized pieces in a circle. I think 
he knows he needs equal sized pieces but he doesn’t see that this is not creating them. 
We need to cut paper circles and possibly squares too. 

10 During session 10, using the card game that works like a number line was intriguing 
to the students but it was clear they were not thinking about sizes of unit fractions to 
compare fractions for placement on the line. So I decided to take a break with the 
card number line activity to work with cutting paper strips into unit fraction sizes so 
the students could see how more pieces cut from a whole made smaller pieces. 

10-11 Unit fraction knowledge and piece size knowledge is at a point where we can move 
the focus to fraction equivalence although these concepts will continue to come up 
with tasks and be addressed. 

11-12 Reasoning and discussion about equivalent fractions occurred in session 11. We will 
move to using manipulatives to further develop this concept in the next session. We 
will try to connect work with manipulatives to abstract concepts involving fraction 
names as well. We also worked with a linear model that can relate to number lines. 
This was very challenging work for the students and I need to find more ways to have 
them think about comparison of fractions. 



 

242 

Sessions Notes and Decisions 
12-13 Attempt to move on to real world contexts making use of fraction equivalence. 
13-14 The students used primarily whole number knowledge to work context problems. 

Strategies were good but it might be that these tasks should have been used earlier. 
Attempt to extend fraction equivalence with work on set model tasks. 

14-15 Work with set models was very successful. Defining the unit fraction in the set and 
iteration became a major focus of the task, so fraction equivalence was emphasized 
less than originally intended. We will not be able to continue to develop fraction 
equivalence with sets as we are nearing the end of our sessions. Also fraction 
comparison has been barely addressed. Will use the last session to work on fraction 
comparison with manipulatives and abstract problems. 

15 The last task was designed to focus on abstract reasoning about fraction comparison 
by using the connection between the number of pieces in a whole and the size of the 
pieces. The students were struggling to construct this type of reasoning with the 
abstract tasks. So I decided manipulatives were needed as a visual aid to help students 
construct this reasoning.  
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