
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2015 

On the Theory of Zeta-functions and L-functions On the Theory of Zeta-functions and L-functions 

Almuatazbellah Awan 
University of Central Florida 

 Part of the Mathematics Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for 

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Awan, Almuatazbellah, "On the Theory of Zeta-functions and L-functions" (2015). Electronic Theses and 
Dissertations, 2004-2019. 53. 
https://stars.library.ucf.edu/etd/53 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/174?utm_source=stars.library.ucf.edu%2Fetd%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/53?utm_source=stars.library.ucf.edu%2Fetd%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


ON THE THEORY OF ZETA-FUNCTIONS AND L-FUNCTIONS

by

ALMUATAZBELLAH AWAN
B.S. University of Central Florida, 2012

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science
in the Department of Mathematics

in the College of Sciences
at the University of Central Florida

Orlando, Florida

Spring Term
2015

Major Professor: Ram Mohapatra



c© 2015 Almuatazbellah Awan

ii



ABSTRACT

In this thesis we provide a body of knowledge that concerns Riemann zeta-function and its gener-

alizations in a cohesive manner. In particular, we have studied and mentioned some recent results

regarding Hurwitz and Lerch functions, as well as Dirichlet’s L-function. We have also investi-

gated some fundamental concepts related to these functions and their universality properties. In

addition, we also discuss different formulations and approaches to the proof of the Prime Num-

ber Theorem and the Riemann Hypothesis. These two topics constitute the main theme of this

thesis. For the Prime Number Theorem, we provide a thorough discussion that compares and con-

trasts Norbert Wiener’s proof with that of Newman’s short proof. We have also related them to

Hadamard’s and de la Vallee Poussin’s original proofs written in 1896. As far as the Riemann

Hypothesis is concerned, we discuss some recent results related to equivalent formulations of the

Riemann Hypothesis as well as the Generalized Riemann Hypothesis.

keywords: Riemann zeta function, Hurwtiz zeta function, L-functions, Dedekind zeta function,

Universality, Prime Number Theorem, Riemann Hypothesis, Generalized Riemann Hypothesis,

Analytic Number Theory, Special Functions.
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NOTATION AND CONVENTIONS

<(s) Real part of a complex number s = σ + it, here σ = <(s) unless stated otherwise.

=(s) Imaginary part of a complex number s = σ + it here t = =(s) unless stated otherwise.

Res(f, c) The residue of the function f at c.∑
The infinite summation

∞∑
n=0

, otherwise the limits will be specified.∏
The infinite product

∞∏
n=0

, otherwise the limits will be specified.

Γ(z) The gamma function.

χ(n) Dirichlet character.

L(s, χ) Dirichlet L-function.

Lis(z) The Polylogarithm function.

ζ(s) Riemann zeta-function.

ζ(s, a) Hurwitz zeta-function.

ζK(s) Dedekind zeta-function.

Φ(z, s, a) Lerch Transcendent.

φ(z, s, a) Lerch zeta-function.

χ(n) Dirichlet character.

π(x) The prime counting function.

µ(n) Möbius function.

Λ(n) von Mangoldt function.

ϑ(n) Chebychev’s ϑ-function.

ψ(n) Chebychev’s ψ-function.

φ(n) Euler’s totient function.

ω(n) Number of distinct prime factors of n.

Ω(n) Total number of prime factors of n.

σx(n) Sum of the xth powers of the positive divisors of n.
xi



d(n) Number of divisors of n, and is related to the sum of divisor function by d(n) = σ0(n).

σ(n) Sum of divisors of n, commonly written without subscript σ(n) = σ1(n).

ϑ(τ, y) Jacobi Theta Function.

τ(n) Ramanujan tau function.

f ∼ g f , g are asymptotically equal or lim
x→∞

f(x)
g(x)

= 1.

f(x) = O(g(x)) Big O notation.

N(T ) Number of zeros of the ζ(s) function in the region 0 ≤ σ ≤ 1, 0 < t ≤ T .
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CHAPTER 1: INTRODUCTION

1.1 Historical Background

Number Theory is one of the oldest branches of mathematics. Gauss, one of the greatest math-

ematicians of all times, referred to it as the queen of mathematics. In the past decade, many

mathematicians have realized the power of complex analysis and its applications to number theory,

the two fields united into what is now known as Analytic Number Theory, which among other

things, is the study of the distribution of prime numbers.

Prime numbers are exotic in nature, and had battled the brightest mathematicians for a very long

time. One of whom is Riemann, who studied the distribution of primes using his zeta function of

a complex variable. Recently, important results have been developed from analytic and geometric

points of view. These advances brought new breakthroughs, solve longstanding problems, and

raised new questions in number theory.

With the recent solution of the Fermat’s Last Theorem, which involved collaborations from differ-

ent branches of mathematics,many mathematicians appreciated the fascinating mathematics that

have been developed in the process. Yet today, there are still many unsolved problems in number

theory. One of which is the Riemann Hypothesis. Mathematicians have speculated that the math-

ematics and the tools which are needed to rigorously prove it has not been developed yet. In what

follows, we examine some results related to the zeta functions and its generalizations in order to

understand the theory better.

Although the connection between complex analysis and number theory at first may not appear very

obvious, the full force of the machinery and tools provided became evident specifically in the past

two decades. Thanks the work of Riemann, who bridged the gap by first looking at the Euler’s
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formula and considering complex arguments. He then forced the function to be holomorphic by

defining it as a contour integral then deforming this contour to allow the function to attain further

complex values using the process known as analytic continuation. After showing that ζ can be

defined over all C except for a simple pole at s = 1, many results can be derived from the for-

mula; For instance, one can see that different constructions of ratios and multiples of Riemann

zeta-function constitute the formal generating functions for most Arithmetic Functions [21] (Pg.

171). This can be seen from the following famous identities:

1

ζ(s)
=
∞∑
n=1

µ(n)

ns
, <(s) > 1 (1.1.1)

ζ ′(s)

ζ(s)
= −

∞∑
n=1

Λ(n)

ns
, <(s) > 1 (1.1.2)

ζ(s)

ζ(2s)
=
∞∑
n=1

|µ(n)|
ns

, <(s) > 1 (1.1.3)

ζ(2s)

ζ(s)
=
∞∑
n=1

λ(n)

ns
, <(s) > 1 (1.1.4)

ζ2(s) =
∞∑
n=1

d(n)

ns
, <(s) > 1 (1.1.5)

ζk(s) =
∞∑
n=1

dk(n)

ns
, <(s) > 1(k ≥ 2) (1.1.6)

ζ2(s)

ζ(2s)
=
∞∑
n=1

2ω(n)

ns
, <(s) > 1 (1.1.7)
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ζ3(s)

ζ(2s)
=
∞∑
n=1

d(n2)

ns
, <(s) > 1 (1.1.8)

ζ4(s)

ζ(2s)
=
∞∑
n=1

d2(n)

ns
, <(s) > 1 (1.1.9)

ζ(s)ζ(s− a)ζ(s− b)ζ(s− a− b)
ζ(2s− a− b)

=
∞∑
n=1

σa(n)σb(n)

ns
,

<(s) > max{1,<(a) + 1,<(b) + 1,<(a+ b) + 1}

(1.1.10)

ζ(s− 1)

ζ(s)
=
∞∑
n=1

ϕ(n)

ns
, <(s) > 2 (1.1.11)

ζ(s)ζ(s− k) =
∞∑
n=1

σk(n)

ns
, <(s) > max{1,<(k) + 1} (1.1.12)

1− 21−s

1− 2−s
ζ(s− 1) =

∞∑
n=1

a(n)

ns
, <(s) > 2 (1.1.13)

It is worth mentioning that identities (1.1.9) and (1.1.10) are discovered by Ramanujan. For the

proofs and derivations, please refer to Hardy and Wright [27] (Pg. 318-341). Now we shall begin

studying some preliminary results regarding the theory of Riemann zeta-function and its general-

izations.
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1.2 Generalizations of the Riemann Zeta-Function

1.2.1 Hurwitz Zeta-Function

The Zeta function purposed by Riemann was studied intensively in Number Theory. For the avid

reader who is interested in a through study of the Riemann zeta-function we refer to Titchmarsh’s

The Theory of the Riemann zeta-Function [53] and Apostol’s Introduction to Analytic Number

Theory [3]. Here we give a brief introduction discussing the Hurwitz zeta-function, named after

the German mathematician Adolf Hurwitz (1859 - 1919), who studied it intensively. It is defined

by:

ζ(s, a) =
∞∑
n=0

1

(n+ a)s
(<(s) > 1,<(a) > 0) (1.2.1)

One reason to study this shifted form is that it simplifies studying L-functions as we shall see later.

Fortunately, an analytic continuation exists for ζ(s, a) and takes the following form [53]

ζ(s, a) =
e−iπsΓ(1− s)

2πi

∫
C

zs−1e−az

1− e−z
dz (1.2.2)

this analytic continuation is valid for C \ {1} where s = 1 is a simple pole and residue 1. This fact

is reflected in the following Laurent expansion [15]:

ζ(s, a) =
1

s− 1
+
∞∑
n=0

(−1)n

n!
γn(a)(s− 1)n (1.2.3)

Where γk(a) are Stieltjes constants and γ0(a) = −ψ(a) where ψ(z) = Γ′(z)/Γ(z). The proof of

the analytic continuation property follows the same steps as in the proof of analytic continuation of

the Riemann zeta-function and can be found in Titchmarsh [53] (Pg. 37). The conclusion that the

Hurwitz zeta-function is analytic in the whole complex s-plane with the exception of a simple pole

4



at s = 1 provides an important step in studying its properties and gives rise to many derivations,

which include the following Hermite integral representation as a direct application of Abel-Plana

formula [1]:

ζ(s, a) =
a−s

2
+

a1−s

s− 1
+ 2

∫ ∞
0

sin(s arctan(z/a))

(z2 + a2)s/2(e2πz − 1)
dz, s 6= 1, <(a) > 0 (1.2.4)

This can be used for numerical evaluations of the function. Moreover, from the original definition

and Dirichlet series one can find:

ζ(s, a) =
Γ(1− s)i
(2π)1−s

(
e−πis/2Lis−1(e2πia)− eπis/2Lis−1(e−2πia)

)
(1.2.5)

Recall that the polylogarithm function is defined by:

Lis(z) =
∞∑
n=0

zn

ns
(1.2.6)

Assuming a rational argument a = p/q and rearranging terms, one can show that the polylogarithm

can be decomposed into a linear combination of Hurwitz zeta-functions as follows:

Lis−1(e2πip/q) = q−s
q∑

n=1

e2πinp/qζ(s, n/q) (1.2.7)

And therefore a multiplication formula analogous to that of Riemann zeta-function can be obtained:

ζ(1− s, p/q) =
2Γ(s)

(2πq)s

q∑
k=1

cos

(
πs

2
− 2πkp

q

)
ζ(s, p/q), (1 ≤ p ≤ q, s 6= 0) (1.2.8)

5



Using this, V.S. Adamchik [1] (2006) was able to derive some special values of the form ζ(2n +

1, p/q) which he used to give formulas for Glaisher’s numbers (which are analogous to Eulerian

numbers for counting the number of permutations). For more properties and identities refer to

Cohen [16].

1.2.2 Lerch Zeta-Function

First we discuss the Lerch transcendent function, which is named after the Czech mathematician

Mathias Lerch (1860 - 1922). This function is a generalization of both the Hurwitz zeta function

and the polylogarithm function Lis(z). The Lerch transcendent is defined by:

Φ(z, s, a) =
∞∑
n=0

zn

(n+ a)s
(|z| < 1,<(s) > 1 and <(a) > 0) (1.2.9)

The Lerch transcendent function reduces to the Hurwitz zeta function when z = 1 and the poly-

logarithm functions which can be demonstrated in the following relations:

Φ(1, s, a) = ζ(s, a)

zΦ(z, s, 1) = Lis(z)

Φ(1, s, 1) = ζ(s, 1) = ζ(s)

(1.2.10)

The Lerch transcendent function appears occasionally in particle physics and thermodynamics to

represent certain distributions such as the Bose-Einstein Distribution. It satisfies the following

icentity [20] (Pg. 27):

Φ(z, s, a) = znΦ(z, s, a+ n) +
n−1∑
k=0

zk

(k + a)s
(1.2.11)
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Figure 1.1: (a) Initial contour at angle ϕ = 0. Hankel’s contour: (b) The case when ϕ ∈ {α ∈
(−π/2, π/2), |Arg(a) + α| < π/2}

An analytic continuation for z is given by [20] (Pg. 27) :

Φ(z, s, a) =
1

Γ(s)

∫ ∞

0

ts−1e−at

1− ze−t
dt (<(a) > 0 for |z| ≤ 1,<(s) > 0, z /∈ [0,∞)) (1.2.12)

This can be extended to an analytic continuation in both s and a;

Let

Ωa =


C \ [1,∞) if <(a) > 0

{z ∈ C, |z| < 1} if <(a) ≤ 0

7



And let z ∈ Ωa, a ∈ C \ R− and s ∈ C hence

Φ(z, s, a) = G(s)

∫
Cϕ

ts−1e−at

1− ze−t
dt (1.2.13)

where:

(i). G(s) :=


1

Γ(s)
if <(s) > 0

iΓ(1−s)eiπ(1−s)
2π

if s /∈ N

(ii). Cϕ :=


[0,∞eiϕ) if <(s) > 0

Lϕ if s /∈ N

(iii).


ϕ = 0 if <(a) > 0

ϕ ∈ {α ∈ (−π/2, π/2), |Arg(a) + α| < π/2} if <(a) ≤ 0

where Lϕ is the Hankel contour defined in Figure 1.1. The proof is similar to Hurwitz zeta-

function’s analytic continuation which deploys Hankel contour, See [24] (2002) for details.

A series involving the Lerch transcendent is given by:

∞∑
n=2

(s)k
k!

Φ(z, s+ k, a)tk = Φ(z, s, a− t) (|t| < |a|, s 6= 1) (1.2.14)

Where (s)k is the Pochhammer symbol. Choi and Sirvastava [14] (2005) published the following

8



identity as a generalization:

∞∑
n=2

Φ(z, k, a)
tn+k

(k)n+1

=
(−1)n

n!

[
Φ′(z,−n, a− t)− Φ′(z,−n, a)

]
+

n∑
k=1

(−1)n+k

n!

(
n

k

)[
(Hn −Hn−k)Φ(z, k − n, a)− Φ′(z, k − n, a)

]
tk

+
[
HnV1(z, a)− V2(z, a)

] tn+1

(n+ 1)!
(|t| < |a|, |z| < 1)

(1.2.15)

Where Hn is the harmonic number and V1(z, a) and V2(z, a) are defined by:

V1(z, a) := lim
s→−n

(s+ n)Φ(z, s+ n+ 1, a)

and

V2(z, a) := lim
s→−n

[
Φ(z, s+ n+ 1, a) + (s+ n)Φ′(z, s+ n+ 1, a)

]

Now let z 7→ e2nπiz then define:

φ(z, s, a) =
∞∑
n=0

e2nπiz

(n+ a)s
(|z| < 1,<(s) > 1 and <(a) > 0) (1.2.16)

This function is the Lerch zeta-Function which was studied by Lipschitz and Lerch [20]. Not to

be confused with the previous form. Sometimes referred to in the literature as the Hurwitz-Lerch

zeta-function. One thing to note here is that it is periodic. Lerch gave the following functional

equation based on one of Riemann’s proofs of his zeta functional equation:

φ(z, 1− s, a) =
Γ(s)

(2π)s

[
eπi(s/2−2az)φ(z, s,−a) + eπi(−s/2+2a(1−z))φ(1− z, s, a)

]
(1.2.17)

For a ∈ (0, 1) and z ∈ (0, 1). The derivation is technical. However, an elegant proof of the

9



functional equation was given later by Apostol in his paper using Jacobi Theta functions [2] [13].

Namely:

ϑ3(y, τ) =
∞∑

n=−∞

eπin
2τ+2iny (1.2.18)

Which satisfies the functional equation:

ϑ3(y, τ) = (−iτ)−1/2ey
2/πiτϑ3(y/τ,−1/τ) (1.2.19)

He exploited an identity from another Riemann’s proof of his zeta functional equation [53] (Pg. 21

Third Method):

(π)−s/2Γ(
s

2
)
∞∑
n=1

anf
−s/2
n =

∫ ∞
0

zs/2−1

∞∑
n=1

ane
−πzfndz (1.2.20)

Along with the differential-difference equations

∂φ(z, s, a)

∂a
= −sφ(z, s+ 1, a) (1.2.21)

and
∂φ(z, s, a)

∂z
+ 2πiaφ(z, s, a) = 2πiφ(z, s− 1, a) (1.2.22)

In order to arrive at (1.2.17).
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1.2.3 Dirichlet L-Functions

First we start with a two definitions:

Definition 1.2.1. In the theory of Multiplicative Functions, we say that complex-valued arithmetic

function f defined on the positive integers is Multiplicative iff

f(nm) = f(n)f(m) whenever gcd(n,m) = 1 (1.2.23)

In the case where (1.2.23) is true for all n and m we say that f is Completely Multiplicative.

Definition 1.2.2. Let k be an integer, then the Dirichlet character modulo k is a complex-valued

function on the integers χ : Z \ nZ→ C which possess the following properties:

(i). χ(mn) = χ(m)χ(n), for all m,n ∈ Z (completely multiplicative).

(ii). χ(n+ k) = χ(n) for all n ∈ Z (periodic with period k).

(iii). χ(n) = 0 if gcd(n, k) > 1.

Thus we can define the Dirichlet L-function by:

L(s, χ) =
∞∑
n=0

χ(n)

ns
(<(s) > 1) (1.2.24)

The first property implies that Dirichlet characters are Completely Multiplicative by nature, a prop-

erty which plays an important role later in the Euler Product section. L-functions play an important

role in analytic number theory since they were utilized by Dirichlet to prove his famous theorem

regarding Primes in Arithmetic Progression in 1837, one of the main breakthroughs in Number

Theory. Moreover, there exists ϕ(k) Dirichlet characters modulo k because χ(n)ϕ(k) = 1 when-

ever gcd(n, k) = 1 hence χ(n) is a root of unity, where ϕ is Euler’s totient function. Consequently,

this also implies that there exists ϕ(k) corresponding L-functions for each character. Finally, if χ
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is a Dirchlet character, then so does the complex conjugate χ.

Next, we analyze the following less obvious relation between Dirichlet L-functions and Hurtwitz

zeta-function. Suppose that χ is a character of modulo k, we can rearrange the terms in L(s, χ)

based of their residue class mod k. Hence we can write: n = qk+ r. Where 1 ≤ r ≤ k and q ∈ N.

As follows [3] (Pg. 249):

L(s, χ) =
∞∑
n=0

χ(n)

ns

=
k∑
r=1

∞∑
q=0

χ(qk + r)

(qk + r)s

= k−s
k∑
r=1

χ(r)
∞∑
q=0

(q +
r

k
)−s

= k−s
k∑
r=1

χ(r)ζ(s,
r

k
)

(1.2.25)

This shows that any L-function can be written as a finite sum of Hurwtiz zeta-functions, which

can be very useful in studying L-function since we already have established results for the Hurwitz

zeta-function. This result is also referred to as ”universality property” which will be discussed in

chapter two. Moreover, the inversion formula is given by:

ζ(s,
r

k
) =

ks

ϕ(r)

∑
χ

χ(r)L(s, χ)
r

k
6= 1,

1

2
(1.2.26)

Where χ runs over all Dirichlet characters modulo k and ϕ is Euler’s totient function. The func-

tional equation is given in the next theorem:

Theorem 1.2.1. For a Dirichlet character χ modulo k we have the following functional equation:
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L(1− s, χ) =
ks−1Γ(s)τ(χ)

(2π)s

{
e−πis/2 + χ(−1)eπis/2

}
L(s, χ) (1.2.27)

Where τ(χ) =
∑

k mod n

χ(k)e2iπk/n is Gauss Sum.

This relation can be derived directly from (1.2.25). Alternatively, it can be derived the same way

as in Apostol’s derivation of Lerch zeta-function by applying Poisson summation formula to the

theta function.

As for the analytic continuation, the matter is far more delicate and requires deeper results that we

will not cover here. For full exposition, please refer to Cohen [16] (Pg. 163-165).

1.2.4 Dedekind Zeta Function

The Dedekind zeta-function is defined as follows:

ζK(s) =
∑
a⊂ZK

1

N (a)s
(1.2.28)

Where a runs through all integral ideals of ZK . N denotes the absolute norm. Suppose K is a

general number field and let ZK be its ring of integers, then the existence and uniqueness of prime

decomposition hold for ideals, which is the case for Dedekind domains. Therefore, this gives an

Euler product expansion:

ζK(s) =
∏
p

1

1−N (p)−s
(1.2.29)

Where p runs through all prime ideals of ZK . The product formula holds if and only if there exists

a unique prime ideal decomposition. A functional equation for Dedekind zeta-function is known;

before we discuss the main result. We shall go over some preliminary definitions:
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Definition 1.2.3. (Index of a Subgroup [∗ : ∗]) For a subgroup H of a group G. The index of H ,

[G : H] is the cardinal number of the left cosets of H in G.

Definition 1.2.4. (Fundamental Discriminant d(K)) An integer d(K) is the discriminant of the

extension K \Q.

Definition 1.2.5. (Class Number h(K)) For any ideal I in a Dedekind ring K, there is an ideal Ii

such that IIi = z where z is a principle ideal (ideal of rank 1). In the case of a finite ideal class

group, there is a finite list of ideals Ii such that the equation IIi = z is satisfied for some I . The

size of this list is the class number.

Definition 1.2.6. (Regulator R(K)) Let ε1, ε2, . . . , εn be generators of a free abelian subgroup.

The regulator is given by | detAi| where Ai is a sub-matrix of A with entries of the form log ‖εj‖.

Definition 1.2.7. A number z is a root of unity if it satisfies zn = 1 for n ∈ N. w(K) is the number

of roots of unity in K.

The following theorem provides us with some beautiful results [16]:

Theorem 1.2.2. Let K be a number field of degree n = [K : Q] and signature (r1, r2). Denote by

d(K), h(K), R(K), w(K) the discriminant, class number, regulator, and number of roots of unity

in K [16]. Then:

(1) The function ζK(s) has an analytic continuation to a meromorphic function with a simple pole

at s = 1.

(2) We have the functional equation ΛK(1− s) = ΛK(s), where:

ΛK(s) = |d(k)|s/2γ(s)r1+r2γ(s+ 1)r2ζK(s) (1.2.30)

(3) If we set r = r1 + r2 − 1, which is the rank of the unit group of K, then ζK(s) has a zero at

s = 0 of order r thus:
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lim
s→0

s−rζK(s) = −h(K)R(K)

w(K)
(1.2.31)

(4) We apply (2) in (3), we get the Class Number Formula:

lim
s→1

(s− 1)ζK(s) = 2r1(2π)r2
h(K)R(K)

w(K)|d(k)|1/2
(1.2.32)

The Class Number Formula relates all these important invariants, which were defined earlier, of a

number field to a special value of its Dedekind zeta function. Thus, it can provide us with valuable

information about the field. It is also trivial case to see that when K = Q we have ζQ(s) = ζ(s).

We omit the proof of the theorem. the first proof was given by Hecke [29]), who proved this result

using Theta functions of n variables and generalized Possion summation formula. A more recent

proof is due to J.T. Tate’s thesis [52].

1.2.5 Euler’s Product

One way to realize the connection between the Riemann zeta-function and number theory is to

consider the following expansion expressing the function as an infinite product over the primes:

ζ(s) =
∏
p

(1− 1

ps
)−1 (<(s) > 1) (1.2.33)

Where p is a prime. Euler used this identity to give a direct proof of the infinitude of primes. This

follows immediately from the Fundamental Theorem of Arithmetic. A rigorous proof of this result

can be found in Titchmarsh [53] (Pg.1-2). And [61] (Pg.1). One natural question to ask is if all

zeta-functions or even L-functions possess this nice property, and the short answer is no. Next we
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ask, under what suitable assumptions we have an Euler Product expansion. Which is the statement

of the following theorem.

Theorem 1.2.3. : Let f be a multiplicative arithmetical function such that the series
∞∑
n=1

f(n)

is absolutely convergent. Thus, this series can be expressed as an absolutely convergent infinite

product:
∞∑
n=1

f(n) =
∏
p

[1 + f(p) + f(p2) + . . .] (1.2.34)

And in the case f is completely multiplicative, we have the following:

∞∑
n=1

f(n) =
∏
p

(1− 1

f(p)
)−1 (1.2.35)

Proof. The proof is due to Apostol [3], and we include it for the sake of completeness. Define the

finite product:

P (x) =
∏
p≤x

[1 + f(p) + f(p2) + . . .] (1.2.36)

Since this is by definition finite hence convergent, we can multiply or rearrange the product in

any way we desire. From the Fundamental Theorem of Arithmetics we have the unique prime

factorization as n = pa11 p
a2
2 p

a3
3 . . . parr . Since f is multiplicative we have:

f(pa11 p
a2
2 p

a3
3 . . . parr ) = f(pa11 )f(pa22 )f(pa33 ) . . . f(parr ) (1.2.37)

And hence we have:

P (x) =
∑
n∈A

f(n) (1.2.38)
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Where A is the set consisting of all the integers having a prime factor ≤ x. Therefore:

∞∑
n=1

f(n)− P (x) =
∑
n∈B

f(n) (1.2.39)

Where B is the set consisting of all the integers having at least one prime factor > x. Thus:

∣∣∣∣∣
∞∑
n=1

f(n)− P (x)

∣∣∣∣∣ ≤∑
n∈B

|f(n)| ≤
∑
n>x

|f(n)| (1.2.40)

By assumption the last sum tends to 0 as x→∞ since
∑
|f(n)| is absolutely convergent. There-

fore:

P (x)→
∑
|f(n)| as x→∞ (1.2.41)

To show absolute convergence of the infinite product we note that
∏

(1 + an) converges absolutely

iff
∑
an converges absolutely thus we have:

∑
p≤x

|f(p) + f(p2) + . . . | ≤
∑
p≤x

(
|f(p)|+ |f(p2)|+ . . .

)
≤

∞∑
n=2

|f(n)| (1.2.42)

Note that partial sums are bounded hence
∑
p≤x
|f(p) + f(p2) + . . . | is convergent therefore absolute

convergence of the product in (1.2.34) is implied. To prove the formula (1.2.35), we note first that

if f is multiplicative, then we have: f(pn) = f(p)n hence each term of the infinite product of

(1.2.34) is a geometric series of the form: 1
1−f(p)

therefore (1.2.34) is absolutely convergent. �

Theorem 1.2.4. Assume
∞∑
n=1

f(n)n−s is absolutely convergent for <(s) > σ0, then

∞∑
n=1

f(n)n−s =
∏
p

1

1− f(p)p−s
<(s) > σ0 (1.2.43)

Where σ0 is some positive number.
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Proof. A direct application of Theorem 1.2.3. �

Now since the Dirichlet character χ is completely multiplicative by definition, we obtain:

L(s, χ) =
∞∑
n=1

χ(n)

ns
=
∏
p

1

1− χ(p)p−s
(1.2.44)

Which is an Euler product representation of the Dirichlet L-Function. Moreover, we can have the

following representations for identities (1.1.1), (1.1.3) and (1.1.4)

1

ζ(s)
=
∞∑
n=1

µ(n)

ns
=
∏
p

(1− p−s), <(s) > 1 (1.2.45)

ζ(s)

ζ(2s)
=
∞∑
n=1

|µ(n)|
ns

=
∏
p

(1 + p−s), <(s) > 1 (1.2.46)

ζ(2s)

ζ(s)
=
∞∑
n=1

λ(n)

ns
=
∏
p

1

1 + p−s
, <(s) > 1 (1.2.47)

Since these products are absolutely and uniformly convergent for <(s) > 1, we can multiply

them or take ratios to obtain new Euler product representations, for example, we may obtain the

following identity:

ζ(s) · ζ(s)

ζ(2s)
=
∏
p

1 + p−s

1− p−s
, <(s) > 1 (1.2.48)

Comparing this with (1.1.7), we see that:

∞∑
n=1

2ω(n)

ns
=
∏
p

1 + p−s

1− p−s
, <(s) > 1 (1.2.49)
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Remark. In the case of Hurwitz zeta-function, the Euler product expansion is valid if and only

if a = 1
2

and a = 1 since they trivially correspond to the special values ζ(s, 1) = ζ(s) and

ζ(s, 1/2) = (2s − 1)ζ(s), respectively. See Titchmarsh ([53] pg. 36). As for the existence of a

general Euler Product of an abstract field, we have already demonstrated the case for Dedekind

domain where the uniqueness of prime factorization of the ideals is the necessary condition.

A more general form of the L-functions is that of Artin’s L-function: Let K \ Q be a Galois ex-

tension and ρ : Gal(K \ Q) → GLn(C) be a nontrivial, irreducible continuous representation of

its Galois group. Artin and R. Brauer had investigated the existence of an analytic continuation

in the case of L-functions defined with Galois representations ρ instead of Dirichlet characters

[4] [5]. Namely L(s, ρ). Brauer proved that ρ can be continued to a meromorphic representation

[11]. Artin then conjectured that it can be continued to an entire function and satisfy a functional

equation. The Artin’s Conjecture asserts that L(s, ρ) is in fact, entire, with the exception of a

simple pole at s = 1 hence dealing with the location of poles. On the other hand, the Generalized

Riemann Hypothesis, deals with the locations of the zeros of certain L-series. Making the conjec-

ture one of the important unsolved problems in Number Theory. For an excellent treatment of this

topic, please refer to Bernstein [8].
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CHAPTER 2: THE UNIVERSALITY PROPERTY

2.1 Introduction

Universality is the ability of Riemann zeta-function and its other generalizations to approximate

arbitrary non-vanishing holomorphic functions well. The chapter discusses the universality of

generalizations of the zeta function where some exhibit a Joint Universality allowing a collection

of analytic functions to be approximated by pairing each function with different zeta or L-functions

at the same value. We shall first discuss the universality of Riemann zeta-function and then proceed

with its generalizations.

2.2 Universality Theorem for the Riemann Zeta-Function

The first denseness result regarding the Riemann zeta-function ζ(σ + it) was discovered by H.

Bohr’s and Courant in 1914 [10]. He proved the following theorem:

Theorem 2.2.1. For a fixed σ in 1/2 < σ < 1, the set:

{ζ(σ + it) :∈ tR} (2.2.1)

is dense in C.

S. M. Voronin’s generalized this result in 1972. The following three theorems are due to him:

Theorem 2.2.2. Let s0, . . . , sn be a set of distinct complex numbers inside the strip 1/2 < σ < 1,
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then the sequence:

{(ζ(s0 + imt), ζ(s1 + imt)), . . . , ζ(sn + imt))} (m ∈ N, t > 0) (2.2.2)

is dense in Cn.

Theorem 2.2.3. Let s0 be fixed point inside the strip 1/2 < σ < 1, then the set:

{(ζ(s0 + imt), ζ ′(s0 + imt)), . . . , ζ(n−1)(s0 + imt))} (m ∈ N, t > 0) (2.2.3)

is dense in Cn.

Since the two previous results are valid for finite dimensional spaces, Voronin considered infinite

dimensional spaces, that is, function spaces, and derived the stronger form of his theorem, which

is stated in the following result:

Theorem 2.2.4. Given a compact setK ⊂ D = {s ∈ C : 1
2
< σ < 1} with connected complement

and let the continuous function f(s) defined on K be analytic in Int(K). Then: for all ε > 0:

lim inf
T→∞

1

T
meas {τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− f(s)| < ε} > 0 (2.2.4)

where meas is Lebesgue measure of a measurable set.

For a proofs of the aforementioned results please refer to [58], [32] and [57] .

2.3 Universality Theorem for the Hurwitz Zeta-Function and Lerch Zeta-Function

For the case of Hurwitz zeta-function and Lerch zeta-functions, a joint universality result had

been published in (2012) [39]. In the case of Hurwtiz zeta-function, the shifts of ζ(s + iτ), s ∈
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C, τ ∈ R approximate uniformly a wide class of analytic functions. This is also the case for Lerch

zeta-function, which follows closely the same lines of proof of the universality of Hurwtiz zeta-

function (the proof is of a probabilistic nature). We shall omit the proof here and give a references

to Laurincikas’s publications [38], [39] and [40]

Theorem 2.3.1. (Joint Universality of Hurwitz Zeta-Function) Suppose that α rational or tran-

scendental, not equal to 1 or 1/2. Given a compact set K ⊂ D = {s ∈ C : 1
2
< <(s) < 1} with

connected complement and let f(s) be a continuous function on K and analytic in Int(K) then

for all ε > 0,

lim inf
T→∞

1

T
meas {τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ, α)− f(s)| < ε} > 0 (2.3.1)

Where meas is Lebesgue measure of a measurable set. [39]

Theorem 2.3.2. (Joint Universality of Lerch Zeta-Function) Suppose that α is rational or tran-

scendental, not equal to 1 or 1/2. Given a compact set K ⊂ D = {s ∈ C : 1
2
< <(s) < 1} with

connected complement and let f(s) be a continuous function on K and analytic in Int(K) then

for all ε > 0,

lim inf
T→∞

1

T
meas {τ ∈ [0, T ] : sup

s∈K
|Φ(z, s+ iτ, a)− f(s)| < ε} > 0 (2.3.2)

Where meas is Lebesgue measure of a measurable set. [38]

2.4 Universality Theorem for L-Functions

Since this is the most general case, we shall discuss the proof here, this is due to the fact that

most zeta-functions can be represented one way or another by L-functions. The proof is due to
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Bjaskar Bagchi [6]. Before we discuss the proof, we shall provide some preliminary lemmas and

definitions which are needed for the proof.

Definition 2.4.1. Let A be a subset of the topological space X and denote by IA the indicator

function of A. That is IA : X → {0, 1} defined by

IA =


1 if x ∈ A

0 otherwise
(2.4.1)

For Borel subsets of A of the real line, denote by d(A), d(A) and d(A) respectively the lower

density, the upper density and the density. That is:

d(A) = lim inf
T→∞

1

2T

∫ T

−T
IA(t)dt (2.4.2)

d(A) = lim sup
T→∞

1

2T

∫ T

−T
IA(t)dt (2.4.3)

d(A) = lim
T→∞

1

2T

∫ T

−T
IA(t)dt (2.4.4)

Before we prove the Main Theorem we need the following lemma

Lemma 2.4.1. Let k ≥ 1, and let χ1, χ2, . . . , χn be distinct Dirichlet characters modulo k. For

j = 1, . . . , n. Define K to be simply connected compact subsets of the sub-critical strip Ω =

{z ∈ C : 1/2 < <(z) < 1}. H(Ω) is the the set of analytic functions defined on the strip

Ω, equipped with the topology of uniform convergence. Let f = (f1, f2, . . . , fn) ∈ Sn where
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S = {f ∈ H(Ω) : f ≡ 0 or 1
f
∈ H(Ω)}. Then the set of all t ∈ R for which:

sup
1≤j≤n

sup
z∈K

∣∣∣L(z + it, χj)− fj(z)
∣∣∣ < ε (2.4.5)

Has a positive lower density for every ε > 0.

Proof. Define γ = {z ∈ C : |z| = 1} to be the unit circle in the complex plane. Let F ∈ Hn(Ω)

be a sequence defined by F = (F1, F2, . . . , Fn) where Fj = L(∗, χj) for each j = 1, 2, . . . , n. it

suffices to show that for all t ∈ R we have:

sup
z∈K

∣∣∣F (z + it)− f(z)
∣∣∣ < ε (2.4.6)

has positive lower density for every ε > 0. For positive integersm, and α = (α1, α2, . . . , αm) ∈ γm

define the following two finite products:

Fj,m(z) =
m∏
i=1

(1− χj(pi)p−zi )−1, z ∈ Ω, 1 ≤ j ≤ n (2.4.7)

Fj,m(z, α) =
m∏
i=1

(1− αiχj(pi)p−zi )−1, z ∈ Ω, 1 ≤ j ≤ n (2.4.8)

Let E be a compact subset of Ω such that K is contained in the interior of E. Let g ∈ Hn(Ω) and∫
E
|g(z)|2dz < δ for δ > 0. It follows that sup

z∈K
|g(z)| < ε/2. There exists an α = (α1, α2, . . . , αl) ∈

γm such that:

sup
z∈E

∣∣∣Fm(z, α)− f(z)
∣∣∣ < ε/2 (2.4.9)

Since (z, α) 7→ |Fm(z, α) − f(z)| is uniformly continuous, there exists an open set U ⊆ γm such

that (2.4.9) is true for all α ∈ U . Choose U to such that it has the property µ(∂U) = 0 where µ is

Haar Measure on γm. Since log p1, log p2, . . . , log pm are linearly independent over Q. By Weyl’s
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Criterion [35], the set {p−it1 , p−it2 , . . . , p−itm : t ∈ R} is uniformly distributed over γm. Let V be

the set of all t ∈ R such that αt = (p−it1 , p−it2 , . . . , p−itm ) is in U which implies that V has positive

density µ(V ) = µ(U) > 0 also known as µ-continuous. Thus:

sup
z∈E

∣∣∣Fm(z, αt)− f(z)
∣∣∣ < ε/2, t ∈ V, αt ∈ U =⇒ sup

z∈E

∣∣∣Fm(z + it)− f(z)
∣∣∣ < ε/2 t ∈ V

(2.4.10)

Let W ≡ {t ∈ V :
∫
E
|F (z + it)− Fm(z + it)|2dz < δ}. Hence we have:

sup
z∈K

∣∣∣F (z + it)− Fm(z + it)
∣∣∣ < δ/2 t ∈ W (2.4.11)

Combining (2.4.10) and (2.4.11) means that (2.4.6) holds for t ∈ W . Hence it suffices to show that

d(W ) > 0. For the sake of contradiction, assume that this is not the case. Then we have:

I = lim inf
T→∞

1

2T

∫ T

−T
Iv(t)(1− Iw(t))

∫
E

|F (z + it)− Fm(z + it)|2dzdt ≥ δd(V ) (2.4.12)

Which implies that I ≥ δµ(U). On the other hand:

I ≤ c0 sup
z∈E

lim inf
T→∞

1

2T

∫ T

−T
Iv(t)|F (z + it)− Fm(z + it)|2dt (2.4.13)

Where c0 is the Lebesgue measure ofE, so that 0 < c0 <∞. If we choose c1 = (ε/2+sup
z∈E
|f(z)|)2

then from (2.4.10) we have

sup
z∈E

∣∣∣Fm(z + it)− f(z)
∣∣∣2 ≤ c1 <∞ t ∈ V (2.4.14)

Hence

I ≤ c0 c1 sup
z∈E

lim sup
T→∞

1

2T

∫ T

−T
Iv(t)

∣∣∣∣∣1− F (z + it)

Fm(z + it)

∣∣∣∣∣
2

dt (2.4.15)

Let m be large so that all the prime divisors of k occur amongst the primes p1, p2, . . . , pm. Since
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U is µ-continuous and that αt is uniformly distributed on γm. Following the same lines of proof in

Titchmarsh [54] (Pg. 304-306) one can show:

lim sup
T→∞

1

2T

∫ T

−T
Iv(t)

∣∣∣∣∣1− F (z + it)

Fm(z + it)

∣∣∣∣∣
2

dt = µ(U)n
∑

(p,q)=1,q>1

|q−z|2 (2.4.16)

Which converges uniformly for z ∈ E. Choose x0 = min
z∈E
{<(z)} such that x0 > 1/2. Then we

obtain:

I ≤ c0 c1 µ(U)
∞∑

q=m+1

n−2x0 (2.4.17)

Combine (2.4.12) and (2.4.17) we get

0 < δµ(U) ≤ c0 c1 µ(U)
∞∑

q=m+1

n−2x0 (2.4.18)

Let c = δ
nc0c1

which is independent of m and note that 0 < µ(U) ≤ 1 Thus we have:

∞∑
q=m+1

n−2x0 ≥ c > 0 (2.4.19)

if we let m→∞ then 2.4.19 is false. Hence we must have d(W ) > 0. �

Theorem 2.4.1. (Joint Universality of Dirichlet L-function) Let k ≥ 1, and let χ1, χ2, . . . , χn

be distinct Dirichlet characters modulo k. For j = 1, . . . , n. Define Kj to be simply connected

compact subsets of the sub-critical strip Ω = {z ∈ C : 1/2 < <(z) < 1}. Let fj(s) be a non-

vanishing continuous function on Kj which is analytic in the interior of each Kj . Then the set of

all t ∈ R for which:

sup
1≤j≤n

sup
z∈Kj

∣∣∣L(z + it, χj)− fj(z)
∣∣∣ < ε (2.4.20)

Has a positive lower density for every ε > 0.
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Proof. From Mergelyan’s theorem [48] there is a sequence of polynomials {Pm,j} such that Pm,j(z)→

fj)(z) uniformly for z ∈ Kj . Let gj = Pm,j , then gj 6= 0 for z ∈ Kj and

sup
z∈Kj

∣∣∣fj(z)− gj(z)
∣∣∣ < ε/4 1 ≤ j ≤ n (2.4.21)

gj has only finitely many zeros, we choose simply connected regions Ej containing Kj such that

gj 6= 0 for z ∈ Ej . Hence we can define the logarithms log gj in Ej which are holomorphic in the

interior of each Kj . There is a sequence Qm,j(z)→ log gj uniformly on Kj . Define: hj = eQm,j(z)

Then

sup
z∈Kj

∣∣∣gj(z)− hj(z)
∣∣∣ < ε/4 1 ≤ j ≤ n (2.4.22)

Combining (2.4.21) and (2.4.22) yields:

sup
1≤j≤n

sup
z∈Kj

∣∣∣fj(z)− hj(z)
∣∣∣ < ε/2 (2.4.23)

where h = (h1, h2, . . . , hn) ∈ Sn From Lemma (2.4.1) we have for all t ∈ R:

sup
1≤j≤n

sup
z∈K

∣∣∣L(z + it, χj)− hj(z)
∣∣∣ < ε/2 (2.4.24)

which has a positive lower density for every ε > 0. Combining (2.4.23) and (2.4.24) yields the

desired result. �

The next two important corollaries are also due Bagchi [6]:
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Corollary 2.4.1. Let k ≥ 1, and let χ1, χ2, . . . , χn be distinct Dirichlet characters modulo k. Let

K be a simply connected compact subset of the sub-critical strip Ω = {z ∈ C : 1/2 < <(z) < 1}.

Let f be a non-vanishing continuous function on K which is analytic in the interior of each K.

Then the set of all t ∈ R:

sup
z∈K

∣∣∣L(z + it, χ)− f(z)
∣∣∣ < ε (2.4.25)

Has a positive lower density for every ε > 0.

Corollary 2.4.2. Let k ≥ 1, and let χ1, χ2, . . . , χn be distinct Dirichlet characters modulo k. Then

the set:

{L(∗, χ1), L(∗, χ2), . . . , L(∗, χn)} (2.4.26)

does not satisfy any nontrivial algebraic-differential equation.

2.5 Discussion

It is important to note here that the universality of Hurwitz and Lerch zeta-functions hold only for

the case when α is rational and transcendental [39]. The question of whether this statement holds

for irrational α still remains open. Another thing to note here is that Bagchi avoided probabilis-

tic methods as much as possible, and only borrowed some concepts needed in establishing Haar

measure. On the other hand, Laurincikas’s and Bohr’s proofs rely on many concepts from proba-

bility theory and the conclusion is formulated in terms of positive lower density. The reader who

is interested in further probabilistic approaches may refer to Laurincikas [37] and Harald Bohr [9]

publications. Finally, there are some results related to the universality of Dedekind zeta-function,

the reader may refer to Reich’s publication [45].

28



CHAPTER 3: THE PRIME NUMBER THEOREM

3.1 Historical Background

It is no secret that primes have had fascinated mathematicians since antiquity. As much as they

were obsessed with patterns, they were anxious to find patterns involving prime numbers so that

one can anticipate the next prime. Alternatively one could look at the primes less than or equal to

a given magnitude x. Call such function π(x). Around the eighteenth century, mathematicians had

struggled to find an explicit formula for π(x) or at least an asymptotic relation. Fortunately, today

we have the following asymptotic law: The Prime Number Theorem asserts that:

π(x) ∼ x

log x
as x→∞

Around 1798, the first published statement regarding the prime number theorem was due to Adrien-

Marie Legendre [25], the statement is that π(x) is of the form x
A lnx+B

where A and B are some

constants; He later refined his conjecture to giveA = 1 andB = 1.08366. But it turned out that the

estimated value for B was false. Later on, Peter Dirichlet found a better numerical approximation

to π(x) using the logarithmic integral li(x) =
∫ x

0
dt
ln t

and communicated his idea to Carl Friedrich

Gauss. In fact, Gauss suspected long before, just by studying tables of the primes, that the prob-

ability for which a prime occurs within a neighborhood of a number n has the density function

1/ lnn, which is exactly the aforementioned logarithmic integral if we considered any prime in the

interval [a, b). However, Gauss never published his findings and considered the subject more of

a hobby of his. Eventually, analysis of both Legendre and Dirichlet’s formulas led to the asymp-

totic relation π(x) ∼ x/ ln(x). Many mathematicians attempted to prove this result and it became

known historically as the prime number theorem.
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In 1848, a Russian mathematician named Chebyshev attacked the problem but was only able to

succeed in proving a weaker form of the theorem; that if the limit of ratio π(x)/(x lnx) exists at

all, then that limit has to be 1, he provided upper and lower bounds for this ratio. Even though he

did not prove the prime number theorem, the estimates on the bounds were good enough to make

him solve the Bertrand’s postulate; That there is a prime number between n and 2n for any given

n ≥ 2.

In 1859, Bernhard Riemann published his famous memoir On the Number of Primes Less Than a

Given Magnitude which is also his only paper written on the subject. In this paper, he introduced

an explicit formula for π(x) and explained how π(x) is related to the zeros of the analytically

continued version of the zeta function ζ(s). Moreover, he suggested that all such zeros must lie on

the critical line <(s) = 1/2, which later became his famous millennium problem: The Riemann

Hypothesis.

Not until 1896, Hadamard and de la Vallée Poussin were able to prove the prime number theorem

independently [26] [18]. Their proofs exploited nontrivial properties of the Riemann zeta Function

ζ(s). Moreover, in 1980, D. J. Newman published his paper Simple Proof of the Prime Number

Theorem [61] in the American Mathematical Monthly and provided an ”elementary” proof that was

shorter and simplified through the use of Tauberian theorems. For further historical background

the reader may refer to [25] and [7]. Before we discuss the proofs, we start with a useful lemma.

Lemma 3.1.1. For any arithmetic function a(n) let: A(x) =
∑
n≤x

a(n) where A(x) = 0 if x < 1.

Assume f ∈ C1[y, x], where 0 < y < x then the following relation (also known as Abel’s Identity)

holds: ∑
y<n≤x

a(n)f(n) = A(x)f(x)− A(y)f(y)−
∫ x

y

A(t)f ′(t)dt (3.1.1)

Proof. Since A(x) is a step function with jump a(n) at each integer n; the sum can be expressed
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as a Riemann-Stieltjes integral [48]:
∑

y<n≤x
a(n)f(n) =

∫ x
y
f(t) dA(t). The result follows from

applying integration by parts. �

3.2 Equivalent Formulations of the Prime Number Theorem

The following three theorems are in fact equivalent [3] (Pg. 78-80).

Theorem 3.2.1.

π(x) ∼ x

log x
(3.2.1)

As x→∞ where π(x) is the prime counting function defined by π(x) =
∑
p≤x

1.

Theorem 3.2.2.

ϑ(x) ∼ x (3.2.2)

As x→∞

where ϑ(x) is Chebyshev’s ϑ-function defined by ϑ(x) =
∑
p≤x

log p.

Theorem 3.2.3.

ψ(x) ∼ x (3.2.3)

As x→∞ where ψ(x) is Chebyshev’s ψ-function defined by ψ(x) =
∑
n≤x

Λ(n). And:

Λ(n) =


log p if n = pm for some m

0 otherwise

Theorem 3.2.4. All forms of the Prime Number Theorem are equivalent.

Proof. (3.2.1)⇒ (3.2.2)
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Define the arithmetic function:

a(n) =


1 if n is a prime

0 otherwise
(3.2.4)

Therefore we can rewrite: π(x) =
∑

1<n≤x
a(n) and ϑ(x) =

∑
1<n≤x

a(n) log n. Applying Abel’s

identity (3.1.1) with f(x) = log x, y = 1 yields:

ϑ(x) =
∑
y<n≤x

a(n)f(n) = π(x) log x− π(1) log 1−
∫ x

1

π(t)

t
dt

= π(x) log x−
∫ x

2

π(t)

t
dt

(3.2.5)

since π(t) = 0 for t < 2.

On the other hand, let b(n) = a(n) log n hence we have:

π(x) =
∑

1<n≤x

b(n)
1

log n
ϑ(x) =

∑
1<n≤x

b(n)

Applying Abel’s identity (3.1.1) with f(x) = 1
log x

, y = 3/2 we get:

π(x) =
ϑ(x)

log x
− ϑ(3/2)

log 3/2
+

∫ x

1

ϑ(t)

t log2 t
dt

π(x) =
ϑ(x)

log x
+

∫ x

2

ϑ(t)

t log2 t
dt

(3.2.6)

since ϑ(t) = 0 for t < 2. Dividing (3.2.5) by x and (3.2.6) by x
log x

yields :

ϑ(x)

x
=
π(x) log x

x
− 1

x

∫ x

2

π(t)

t
dt (3.2.7)
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π(x) log x

x
=
ϑ(x)

x
+

log x

x

∫ x

2

ϑ(t)

t log2 t
dt (3.2.8)

For formula (3.2.7) It suffices to show: lim
x→∞

1
x

∫ x
2
π(t)
t
dt = 0. Indeed; by assumption π(x) ∼

x/ log x Hence

π(t)

t
= O(

1

log t
) =⇒ 1

x

∫ x

2

π(t)

t
dt = O(

1

x

∫ x

2

1

log t
dt) (3.2.9)

Moreover ∫ x

2

1

log t
dt =

∫ √x
2

1

log t
dt+

∫ x

√
x

1

log t
dt ≤

√
x

log 2
+
x−
√
x

log
√
x

(3.2.10)

Therefore

lim
x→∞

1

x

∫ x

2

1

log t
dt = 0 =⇒ ϑ(x) ∼ x (3.2.11)

(3.2.2)⇒ (3.2.1)

For formula (3.2.8) It suffices to show: lim
x→∞

log x
x

∫ x
2

ϑ(t)

t log2 t
dt = 0. Indeed; by assumption ϑ(x) ∼ x

and we have
log x

x

∫ x

2

ϑ(t)

t log2 t
dt = O(

log x

x

∫ x

2

1

log2 t
dt) (3.2.12)

Moreover ∫ x

2

1

log2 t
dt =

∫ √x
2

1

log2 t
dt+

∫ x

√
x

1

log2 t
dt ≤

√
x

log2 2
+
x−
√
x

log2√x
(3.2.13)

Therefore

lim
x→∞

log x

x

∫ x

2

1

log2 t
dt = 0 =⇒ π(x) ∼ x/ log x (3.2.14)

(3.2.2)⇐⇒ (3.2.3)

33



First we observe that

ψ(x) =
∑

n≤log2 x

ϑ(x1/n) =⇒ 0 ≤ ψ(x)− ϑ(x) =
∑

2≤n≤log2 x

ϑ(x1/n) (3.2.15)

Moreover we have,

ϑ(x) ≤
∑
p≤x

log x ≤ x log x (3.2.16)

Combining the last two relations yield:

0 ≤ ψ(x)− ϑ(x) ≤
∑

2≤n≤log2 x

x1/n log x1/n ≤ (log2 x)
√
x log

√
x =

√
x(log x)2

2 log 2
(3.2.17)

Divide by x (since x > 0) we get the inequality:

0 ≤ ψ(x)

x
− ϑ(x)

x
≤ log2 x

2
√
x log 2

=⇒ lim
x→∞

(
ψ(x)

x
− ϑ(x)

x
) = 0 =⇒ ψ(x)

x
(3.2.18)

Therefore ϑ(x)
x

must tend to the same limit.

�

3.3 An Analytic Proof of the Prime Number Theorem

The following is Hadamard and De La Vallée Poussin’s proof of the prime number theorem that

uses some techniques from complex analysis. Our main objective is to prove the equivalent

statement of the Prime Number Theorem (3.2.3). Since ψ(x) is a step function; it is conve-

nient to consider the integral Φ(x) =
∫ x

1
ψ(t)dt which is a continuous piecewise function. It
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would be nice if we can find a result showing that formal differentiation of the asymptotic relation

Φ(x) ∼ 1
2
x2 =⇒ ψ(x) ∼ x as x→∞; Which is goal of the next lemmas.

3.3.1 Preliminary Results

Lemma 3.3.1. Suppose a(n) ≥ 0 ∀n, let A(x) =
∑
n≤x

a(n) and let B(x) =
∫ x

1
A(t)dt then:

B(x) ∼ Lxc as x→∞ =⇒ A(x) ∼ cLxc−1 as x→∞ (3.3.1)

for some c > 0 and L > 0.

Proof. A(x) is increasing function since a(n) ≥ 0 ∀n. Choose ε > 1 and note that:

B(εx)−B(x) =

∫ εx

x

A(t)dt ≥
∫ εx

x

A(x)dt = x(ε− 1)A(x) (3.3.2)

Hence: xA(x) ≤ 1
ε−1

(B(εx)−B(x)) dividing by xc (since xc > 0)

A(x)

xc−1
≤ 1

ε− 1

(
B(εx)

(εx)c
εc − B(x)

xc

)
(3.3.3)

Taking the limit x→∞ while keeping ε fixed we get:

lim sup
x→∞

A(x)

xc−1
≤ 1

ε− 1
(Lεc − L) =

εc − 1

ε− 1
(3.3.4)

Now we have:

lim sup
x→∞

A(x)

xc−1
≤ L lim

ε→1+

εc − 1c

ε− 1
= L(cxc−1)|x=1 = cL (3.3.5)
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A similar argument with B(x)−B(δx) and 0 < δ < 1 yields:

lim inf
x→∞

A(x)

xc−1
≥ L lim

δ→1−

1c − δc

1− δ
= L(cxc−1)|x=1 = cL (3.3.6)

The last two inequalities prove the result. �

Lemma 3.3.2. Let a(n) be an arithmetical function andA(x) =
∑
n≤x

a(n) whereA(x) = 0 if x < 1

then: ∑
n≤x

(x− n)a(n) =

∫ x

1

A(t)dt (3.3.7)

Proof. Applying Abel’s Identity (3.1.1) with f(x) = x which has a continuous derivative on [1, x]

and noting: ∑
n≤x

a(n)f(n) =
∑
n≤x

na(n) (3.3.8)

A(x)f(x) = x
∑
n≤x

a(n) (3.3.9)

we have:

x
∑
n≤x

a(n)−
∑
n≤x

na(n) =

∫ x

1

A(t) · 1 dt (3.3.10)

Which is exactly what we want. �

Theorem 3.3.1.

Φ(x) ∼ x2

2
=⇒ ψ(x) ∼ x as x→∞ (3.3.11)

With

Φ(x) =
∑
n≤x

(x− n)Λ(n) (3.3.12)

Proof. Set a(n) = Λ(n), Λ(n) ≥ 0, A(x) = ψ(x) and B(x) = Φ(x) and apply lemmas (3.3.1)

and (3.3.2) . �
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3.3.2 Contour Integral Representation of Φ(x)/x2

We shall next represent Φ(x) in terms of a contour integral.

Lemma 3.3.3. if c > 0 and u > 0, then for every integer n ≥ 0 we have:

1

2πi

∫ c+∞i

c−∞i

u−z

z(z + 1) . . . (z + n)
dz =


(1−u)n

n!
if 0 < u ≤ 1

0 if u > 1

(3.3.13)

Proof. Note that the gamma function is a meromorphic function that has poles at the negative

integers, namely z = 0,−1, . . . ,−n. Repeated application of the functional equation Γ(z + 1) =

zΓ(z) yields

1

2πi

∫ c+∞i

c−∞i

u−zdz

z(z + 1) . . . (z + n)
=

1

2πi

∮
C(R)

u−z

Γ(z + n+ 1)
dz (3.3.14)

Where the contour C(R) is the circle shown in (a) and (b) having a radius greater than 2n + c so

that all poles of the gamma function lie within the contour, and then show that the integral vanishes

along these circular paths. As demonstrated in figure 3.1:

Let |z| = R and note that:

∣∣∣∣∣ u−z

z(z + 1) . . . (z + n)

∣∣∣∣∣ =
u−<z

|z||z + 1| . . . |z + n|
≤ u−c

R|z + 1| . . . |z + n|
(3.3.15)

The inequality follows from the fact that u−<z is an increasing function if 0 < u ≤ 1 and a

decreasing function if u > 1

Now if 1 ≤ k ≤ n we have: |z + k| ≥ |z| − k = R− k ≥ R− n ≥ R/2 but R > 2n therefore the

integral along each circular arc is dominated by: 2πRu−c

R( 1
2
R)n

= O(R−n) and this tends to 0 as R→∞

37



Figure 3.1: Contour Integral

since n ≥ 1. If u > 1 the integrand is analytic inside C(R) and hence by Cauchy’s Theorem is

zero. Letting R→∞ we prove the lemma for this case.

For the case where 0 < u ≤ 1 we apply Cauchy’s Residue Theorem since the integrand has poles

at the negative integers:

1

2πi

∮
C(R)

u−z

Γ(z + n+ 1)
dz =

n∑
k=0

Res(
u−z

Γ(z + n+ 1)
; z = −k)

=
n∑
k=0

uk

Γ(n+ 1− k)
Res(Γ(z); z = −k)

=
n∑
k=0

uk(−1)k

(n− k)!k!
=

1

n!

n∑
k=0

(
n

k

)
(−u)k =

(1− u)n

n!

Letting R→∞ we get the lemma. �
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Theorem 3.3.2. if c > 1 and x ≥ 1 we have:

Φ(x)

x2
=

1

2πi

∫ c+∞i

c−∞i

xs−1

s(s+ 1)

(
− ζ ′(s)

ζ(s)

)
ds (3.3.16)

Proof. Using equation (3.3.12) we get Φ(x)
x

=
∑
n≤x

(1 − n
x
)Λ(n). Now we applying lemma (3.3.3)

with n = 1 and u = k/x. If n ≤ x yields:

1− n

x
=

1

2πi

∫ c+∞i

c−∞i

(x/n)s

s(s+ 1)
ds (3.3.17)

Multiplying the relation by Λ(n) and summing over n ≤ x yields:

Φ(x)

x
=
∑
n≤x

(1− n

x
)Λ(n) =

∞∑
n=1

1

2πi

∫ c+∞i

c−∞i

Λ(n)(x/n)s

s(s+ 1)
ds (3.3.18)

Since the integral vanishes if n > x. Moreover the partial sums possess the inequality:

N∑
n=1

∫ c+∞i

c−∞i

Λ(n)(x/n)c

|s||s+ 1|
ds =

N∑
n=1

Λ(n)

nc

∫ c+∞i

c−∞i

xc

|s||s+ 1|
ds ≤M

∞∑
n=1

Λ(n)

nc
(3.3.19)

where M is a constant; Which imply that the integrand is convergent and we can integrate (3.3.18)

term by term to obtain:

Φ(x)

x
=

1

2πi

∫ c+∞i

c−∞i

xs

s(s+ 1)

(
∞∑
n=1

Λ(n)

ns

)
ds =

1

2πi

∫ c+∞i

c−∞i

xs

s(s+ 1)

(
− ζ ′(s)

ζ(s)

)
ds (3.3.20)

Now we divide by x to obtain the result. �

Theorem 3.3.3. if c > 1 and x ≥ 1 we have:

Φ(x)

x2
− 1

2
(1− 1

x
)2 =

1

2πi

∫ c+∞i

c−∞i
xs−1h(s)ds (3.3.21)
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Where:

h(s) =
1

s(s+ 1)

(
− ζ ′(s)

ζ(s)
− 1

s− 1

)
(3.3.22)

Proof. Applying lemma (3.3.3) with n = 2 yields:

1

2
(1− 1

x
)2 =

1

2πi

∫ c+∞i

c−∞i

xs

s(s+ 1)(s+ 2)
ds where c > 0 (3.3.23)

Now substitute s− 1 for s and subtract the result from (3.3.16) to prove the theorem. �

Remark. Note that the path of integration of the integral (3.3.21) can be parametrized if we write

s = c+ it and observe that xs−1 = xc−1eit log x. Thus the integral can be rewritten as:

Φ(x)

x2
− 1

2
(1− 1

x
)2 =

xc−1

2π

∫ +∞

−∞
h(c+ it)eit log xdt (3.3.24)

The reason why we want it in this form is because we want to deploy the Riemann-Lebesgue

lemma which is a major result in Fourier Analysis to conclude that:

lim
x→∞

∫ +∞

−∞
h(c+ it)eit log xdt = 0 (3.3.25)

Which is the case here since
∫ +∞
−∞ |h(c+ it)|dt converges if c > 1, however, the term xs−1 tends to

∞ as c > 1 and we arrive at the indeterminate form∞·0. If we could only allow the value c = 1 the

term that is causing the trouble shall disappear. Therefore, what we really need to do is study the

behavior of h(1+ it) which involves studying ζ ′(s)/ζ(s) on the neighborhood of the line <(s) = 1.
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3.3.3 Bounds on |ζ(s)| and |ζ ′(s)| near <(s) = 1

We shall now use a representation of ζ(s) where s = σ+ it valid for σ > 0 (which can be obtained

by Euler’s summation formula) see [3]:

ζ(s) =
N∑
n=1

1

ns
− s

∫ ∞
N

x− [x]

xs+1
dx+

N1−s

s− 1
(3.3.26)

Differentiating this expression yields:

ζ ′(s) = −
N∑
n=1

log n

ns
−s
∫ ∞
N

(x− [x]) log x

xs+1
dx−

∫ ∞
N

(x− [x]) log x

xs+1
dx−N

1−s logN

s− 1
+

N1−s

(s− 1)2

(3.3.27)

Theorem 3.3.4. For all ε > 0 there exists M(ε) such that:|ζ(s)| ≤M log t and |ζ ′(s)| ≤M log2 t

∀s with σ ≥ 1/2 satisfying:
ε

log t
> 1− σ and t ≥ e (3.3.28)

Proof. If σ ≥ 2 we have: |ζ(s)| ≤ ζ(2) and |ζ ′(s)| ≤ ζ ′(2) and the inequalities are satisfied. Now

suppose that: σ < 2 then: |s| ≤ σ+ t ≤ 2 + t < 2t and t ≥ |s− 1| =⇒ 1
|s−1| ≤

1
t

Using equation

(3.3.26) to estimate |ζ(s)| we get:

|ζ(s)| ≤
N∑
n=1

1

nσ
+ 2t

∫ ∞
N

1

xσ+1
dx+

N1−σ

t
=

N∑
n=1

n−σ +
2t

σNσ
+
N1−σ

t
(3.3.29)

Let N depend on t by choosing N = [t]; Then N ≤ t < N + 1 and log n ≤ log t if n ≤ N . Now

we apply assumption (3.3.28) and note that the exponential function is monotonically increasing,

hence we have:

n−σ =
n1−σ

n
=
e(1−σ) logn

n
<
eε(

logn
log t

)

n
≤ eε

n
= O(

1

n
) (3.3.30)

Moreover since n−σ ≥ N−σ we have 2t
σNσ = O(N+1

N
) = O(1) and N1−σ

t
= N

tNσ = O( 1
n
) = O(1);
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Therefore we conclude that |ζ(s)| = O(
N∑
n=1

1
n
) +O(1) = O(logN) +O(1) = O(log t)

We apply the same type of argument to (3.3.27) the only difference is that an extra factor of logN

will appear on the right but since logN = O(log t) so we have: |ζ ′(s)| = O(log2 t)

�

3.3.4 Non-vanishing of ζ(s) on the Line <(s) = 1

This is the key ingredient, which was proved independently by de la Vallée Poussin’s and Hadamard

in 1896. The elegant proof which is detailed below is due to de la Vallée Poussin [31] [53] (Pg.

41). For Hadamard’s alternative proof, please refer to [26]. The proof of this nontrivial property of

the Riemann zeta-function allowed both de la Vallée Poussin and Hadamard to deduce the Prime

Number Theorem. De la Vallée Poussin’s proof involves exploiting a simple trigonometric identity

as we shall see.

Theorem 3.3.5. If suppose s = σ + it and σ > 1 we have:

ζ(σ)3|ζ(σ + it)|4|ζ(σ + 2it)| ≥ 1 (3.3.31)

Proof. First, we will need to deploy the following identity (Proof can be found in Apostol - Chapter

11.9 [3]):

ζ(s) = eG(s) where G(s) =
∞∑
n=2

Λ(n)

log n
n−s =

∑
p

∞∑
m=1

1

mpms
(σ > 1) (3.3.32)

Which can be written as:

ζ(s) = exp{
∑
p

∞∑
m=1

e−imt log p

mpmσ
} =⇒ |ζ(s)| = exp{

∑
p

∞∑
m=1

cosmt log p

mpmσ
} (3.3.33)
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Second, we may apply this for the cases s = σ, s = σ + it and s = σ + 2it, to obtain:

ζ(σ)3|ζ(σ + it)|4|ζ(σ + 2it)| = exp{
∑
p

∞∑
m=1

3 + 4 cosmt log p+ cos 2mt log p

mpmσ
} (3.3.34)

But from trigonometry we have 3+4 cos θ+cos 2θ = 3+4 cos θ+2 cos2 θ−1 = 2(1+cos θ)2 ≥ 0.

The series is nonnegative and we get the result.

�

Theorem 3.3.6. ζ(1 + it) 6= 0 ∀t ∈ R.

Proof. Let s = σ + it, it suffices to look at the case t 6= 0; We rewrite the inequality (3.3.31) to

get:

{(σ − 1)ζ(σ)}3

∣∣∣∣ ζ(σ+it)
σ−1

∣∣∣∣4 |ζ(σ + 2it)| ≥ 1

σ − 1
(3.3.35)

Now observe that lim
σ→1+

(σ − 1)ζ(σ) = 1 since ζ(s) has a residue 1 at pole s = 1.

Moreover: lim
σ→1+

|ζ(σ + 2it)| = |ζ(1 + 2it)|.

Next, assume to the contrary that ζ(1 + it) = 0; We can then write the quotient:

lim
σ→1+

∣∣∣∣∣ζ(σ + it)− ζ(1 + it)

σ − 1

∣∣∣∣∣
4

= |ζ ′(σ + it)|4 (3.3.36)

So the left side of the inequality tends to |ζ ′(σ + it)|4|ζ(1 + 2it)| as σ → 1+ while the right side

tends to∞ as σ → 1+. A contradiction.

�

Theorem 3.3.7. For all ε > 0 there exists M(ε) such that | 1
ζ(s)
| ≤ M log7 t and | ζ

′(s)
ζ(s)
| ≤ M log9 t

∀s with σ ≥ 1 and t ≥ e
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Proof. The inequality hold for the case σ ≥ 2 since:

∣∣∣∣∣ 1

ζ(s)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
n=1

µ(n)

ns

∣∣∣∣∣ ≤
∞∑
n=1

1

n2
≤ ζ(2) (3.3.37)

Moreover: ∣∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣∣ ≤
∞∑
n=1

Λ(n)

n2
(3.3.38)

Now suppose that 1 ≤ σ ≤ 2 and rewrite the inequality (3.3.31) as follows:

ζ(σ)3/4|ζ(σ + 2it)|1/4 ≥ 1

|ζ(σ + it)|
(3.3.39)

Now the quantity (σ − 1)ζ(σ) is bounded in the interval say by some constant M ; Hence: ζ(σ) ≤
M
σ−1

if 1 < σ ≤ 2 Also ζ(σ + 2it) = O(log t) by (3.3.4); Substituting the bounds derived into the

inequality yields:
1

|ζ(σ + it)|
≤ M3/4(log t)1/4

(σ − 1)3/4
=
A(log t)1/4

(σ − 1)3/4
(3.3.40)

Where A is an absolute constant. Hence for some constant B > 0 we have:

1

|ζ(σ + it)|
>
B(σ − 1)3/4

(log t)1/4
if 1 < σ ≤ 2 and t ≥ e (3.3.41)

Which holds for σ = 1. Now let α be any number satisfying 1 < α < 2, then 1 ≤ σ ≤ α, t ≥ e.

Using (3.3.4) we get

|ζ(σ + it)− ζ(α + it)| ≤
∫ α

σ

|ζ ′(u+ it)|du

≤ (α− σ)M log2 t

≤ (α− 1)M log2 t

(3.3.42)
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Applying the triangle inequality yields

|ζ(σ + it)| ≥ |ζ(α + it)| − |ζ(σ + it)− ζ(α + it)|

≥ |ζ(α + it)| − (α− 1)M log2 t

≥ B(α− 1)3/4

(log t)1/4
− (α− 1)M log2 t

(3.3.43)

Which holds for any α satisfying 1 < α < 2

Choose α = 1 + ( B
2M

)4 1
(log t)9

, then we get:

|ζ(σ + it)| ≥ (α− 1)M log2 t =
C

(log t)7
(3.3.44)

This proves that |ζ(s)| ≥ C log−7 t where σ ≥ 1 and t ≥ e giving us a corresponding upper bound

for
∣∣∣ 1
ζ(s)

∣∣∣. To estimate the bound for
∣∣∣ ζ′(s)ζ(s)

∣∣∣ we apply (3.3.4) and follow the same steps to get an

extra factor of log2 t

�

3.3.5 Finalizing the Proof

Lemma 3.3.4. If f(s) has a pole of order k at s = α then the quotient f ′(s)
f(s)

has a first order pole

at s = α with residue −k.

Proof. Let g(s) = f(s)(s− α)k where g is analytic at α and g(α) 6= 0; Then we have:

f ′(s) =
g′(s)

(s− α)k
− kg(s)

(s− α)k+1
=

g(s)

(s− α)k

{
−k
s− α

+
g′(s)

g(s)

}

=⇒ f ′(s)

f(s)
=
−k
s− α

+
g′(s)

g(s)

45



�

Theorem 3.3.8. The following statement holds:

h(s) = −ζ
′(s)

ζ(s)
− 1

s− 1
is analytic at s = 1 (3.3.45)

Proof. It is known that ζ(s) has a pole of order 1 at s = 1; Applying lemma 3.3.4 we conclude

that − ζ′(s)
ζ(s)

has a first order pole at s = 1, it is also clear that 1
s−1

has a pole at s = 1 of order 1,

hence their difference is analytic at s = 1.

�

Theorem 3.3.9. For x ≥ 1 we have:

Φ(x)

x2
− 1

2
(1− 1

x
)2 =

1

2π

∫ +∞

−∞
h(1 + it)eit log xdt (3.3.46)

Where ∫ +∞

−∞
|h(1 + it)| <∞

Hence by Riemann-Lebesgue lemma: Φ(x) ∼ x2/2 as x→∞.

Proof. Following the result of theorem 3.3.3. First we are going to need shift the path of integration

to the line <(s) = 1 to fix c at 1. Fortunately, this can be achieved by showing that contour integral

taken counter clockwise around the loop is independent of the path, as shown in figure 3.2. Indeed

this is the case here since the integrand xs−1h(s) is analytic inside and on R by the previous

theorem 3.3.8. Next, we show that the integral along horizontal line segments tend to 0 as T →∞,

since the integrand has the same absolute value at conjugate points, without loss of generality, it

suffices to consider the upper segment, namely t = T . On this line segment, we have the following

estimates
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Figure 3.2: Contour Integral for R

∣∣∣∣∣ 1

s(s+ 1)

∣∣∣∣∣ ≤ 1

T 2
and

∣∣∣∣∣ 1

s(s+ 1)(s+ 2)

∣∣∣∣∣ ≤ 1

T 3
≤ 1

T 2
(3.3.47)

Moreover, by theorem 3.3.7 there is a constant M such that
∣∣∣ ζ′(s)ζ(s)

∣∣∣ ≤ M log9 t if σ ≥ 1 and t ≥ e

hence if T ≥ e. Applying these we can estimate an upper bound for |h(s)|

|h(s)| ≤ M log9 T

T 2
(3.3.48)

Therefore the integral along the upper line segment can be estimated as follows

∣∣∣∣∣
∫ c+iT

1+iT

xs−1h(s)ds|

∣∣∣∣∣ ≤
∫ c

1

xc−1M log9 T

T 2
dσ = Mxc−1 log9 T

T 2
(c− 1) (3.3.49)
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Which tends 0 as T →∞ and thus we have:

∫ c+∞i

c−∞i
xs−1h(s)ds =

∫ 1+∞i

1−∞i
xs−1h(s)ds (3.3.50)

And on the line <(s) = 1 we obtain:

1

2πi

∫ 1+∞i

1−∞i
xs−1h(s)ds =

1

2π

∫ +∞

−∞
h(1 + it)eit log xdt (3.3.51)

This proves the theorem. Now observe that

∫ +∞

−∞
|h(1 + it)|dt =

∫ e

−e
|h(1 + it)|dt+

∫ ∞
e

|h(1 + it)|dt+

∫ e

−∞
|h(1 + it)|dt (3.3.52)

On the integral from e to∞ we have:

|h(1 + it)| ≤ M log9 t

t2
(3.3.53)

Therefore
∫∞
e
|h(1+it)|dtConverges, similarly

∫ −e
−∞ |h(1+it)|dt converges; Therefore

∫ +∞
−∞ |h(1+

it)|dt converges. By the Riemann-Lebesgue lemma we conclude that:

lim
x→∞

∫ +∞

−∞
h(1 + it)eit log xdt = 0 (3.3.54)

Hence the right side (3.3.46) of vanishes as x→∞ while the left side gives us Φ(x) ∼ x2/2. And

we deduce that ψ(x) ∼ x as x → ∞ by theorem 3.3.1. This concludes the analytic proof of the

prime number theorem.
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3.4 Tauberian Proofs of the Prime Number Theorem

3.4.1 Introduction

It is a well-known that if we have a summation of the form:

∞∑
n=0

an = S (3.4.1)

Then we can say that the following holds:

lim
x→0−

1

1− x

∞∑
n=0

anx
n = S (3.4.2)

This result is due to Abel, and these theorems are grouped in what is known as ”Abelian Theo-

rems”. The converse of this result is not always true. One has to impose certain conditions in order

for it to hold. In 1897, A. Tauber [59] [44] established that the result holds if an = o(1/n) . Hardy

was first to coin the term ”Tauberian Theorems”. Hardy and Littlewood tackled this problem and

derived the refined condition: nan > −K for some constant K. One special series of this type is

the following Lambert series:

∞∑
n=0

an
xn

1− xn
(3.4.3)

Which is closely related to the distribution of primes. Many earlier attempts at attacking the Prime

Number Theorem using Lambert Series had failed. It wasn’t until Hardy and Littlewood finally

have showed that the Prime Number Theorem is equivalent to a Tauberian theorem concerning

Lambert series that mathematicians were able to successfully give a rigorous proof. There are
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many proofs of the Prime Number Theorem. In what follows, we shall demonstrate two proofs

concerning Tauberian approaches to the Prime Number Theorem:

3.4.2 Wiener’s Proof of the Prime Number Theorem

In his paper Tauberian Theorems [59], Norbert Wiener proved many results that provide necessary

and sufficient conditions for when a function in L1 or L2 can be approximated by translations of

a given function. Equivalently, the set of linear combinations of translations of f are dense if and

only if the zero set of the Fourier transform of f has Lebesgue measure equal to zero. He then

reformulated his result as a Tauberian theorem concerning a Lambert Series and showed that the

Prime Number Theorem follows as a result. In fact, Wiener refined the proof of Landu of the Prime

Number Theorem which deployed the following Lemma.

Theorem 3.4.1. (Landu’s Lemma) Let f(z) =
∞∑
n=1

ann
z be a convergent Dirichlet series with

an ≥ 0. Moreover, suppose that

F (z) = f(z)− A

z − 1
(<(z) > 1) (3.4.4)

Is an analytic continuation of f(z) at <(z) = 1 except for a pole at z = 1 of order one and has a

principle part A
z−1

where A is some constant. And suppose that:

F (z) = O(|z|α) (3.4.5)

Then

lim
n→∞

1

n

n∑
k=1

ak = A (3.4.6)

It was Landu [34] who deployed this lemma for the proof of the Prime Number Theorem using
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an = Λ(n), F (z) = − ζ′(z)
ζ(z)

, and the condition that ζ ′(s)/ζ(s) is of order O(|z|α). Hardy and

Littlewood relaxed this condition to O(eα|z|). Later, Wiener showed with his student Ikehara, that

this requirement is not necessary, as we shall see in the following theorem. Before we do that we

shall state the following theorem (Proof can be found in Wiener [59] Page 30).

Theorem 3.4.2. Assuming the following set of hypotheses:

(I). ϕ(λ) is a function of bounded total variation over any interval (ε, 1/ε) where ε ∈ (0, 1) and

ϕ(0) = 0.

(II). ∫ 2u

u

1

λ
|dϕ(λ)| −

∫ 2u

u

1

λ
dϕ(λ) ≤ N (0 < u <∞) (3.4.7)

(III). Σ is a class of continuous functions M(λ) where
∞∑

k=−∞
max

2k≤λ≤2k+1
λ|M(λ)|converges. Let

N1, N2 ∈ Σ.

(IV).

lim
λ→0+

1

λ

∫ ∞
0

N1

(µ
λ

)
dϕ(µ) = A

∫ ∞
0

N1(µ) dµ (3.4.8)

(V). ∫ ∞
0

N1(λ)λiu dλ 6= 0 (∀u ∈ R) (3.4.9)

(VI).

M(λ) ≥ 0,
∣∣∣1
λ

∫ ∞
0

M
(µ
λ

)
dϕ(µ)

∣∣∣ ≤ const (0 ≤ λ <∞,where M(λ) ∈ Σ) (3.4.10)

Then

lim
λ→0+

1

λ

∫ ∞
0

N2

(µ
λ

)
dϕ(µ) = A

∫ ∞
0

N2(µ) dµ (3.4.11)
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Theorem 3.4.3. (Wiener-Ikehara’s Tauberian Theorem) Let α(x) be a monotone increasing func-

tion, and let:

f(u) =

∫ ∞
0+

x−udα(x) (<(u) > 1) (3.4.12)

Let

g(u) = f(u)− A

u− 1
(3.4.13)

converges to a finite limit as <(u)→ 1 over any finite interval of the line <(u) = 1 Then:

lim
n→∞

α(n)

n
= A (3.4.14)

Where the integral is Riemann-Stieltjes integral.

Proof. Let β(ξ) = α(eξ)e−ξ +
∫ ξ

0
e−ξα(eξ)dξ − At hence implies dβ(ξ) = e−ξdα(eξ)− A dξ

Assume that

β(x) = β(0+) (−∞ ≤ x ≤ 0) (3.4.15)

then (3.4.13) becomes:

g(u) =

∫ ∞
−∞

e(1−u)ξ dβ(ξ) (Re(u) > 1) (3.4.16)

We need to show that

lim
η→∞

∫ η

−∞
e(ξ−η)ξ dβ(ξ) = 0 (3.4.17)

Wiener showed that this is equivalent to (3.4.14) [59]. If ε > 0 and η, and taking into account that
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the double integral is absolutely convergent we have:

∫ B

−B

(
1− |u|

B

)
g(iu+ ε+ 1)eiuη du = −

∫ B

−B

(
1− |u|

B

)
du

∫ ∞
−∞

eiu(η−ξ)e−εξdβ(ξ)

= −
∫ ∞
−∞

e−εξdβ(ξ)

∫ B

−B

(
1− |u|

B

)
eiu(η−ξ)du

= −
∫ ∞
−∞

2(cos(B(η − ξ))− 1)

B(η − ξ)2
e−εξdβ(ξ)

(3.4.18)

Taking limits as ε→ 0, we have by a theorem due to Bray [12] related to Stieltjes integrals:

∫ B

−B

(
1− |u|

B

)
g(iu+ 1)eiuη dη = −

∫ ∞
−∞

2(cos(B(η − ξ))− 1)

B(η − ξ)2
dβ(ξ) (3.4.19)

Taking limits as η → ∞, and noting that
(

1 − |u|
B

)
g(iu + 1)eiuη is summable over (−B,B) we

have:

0 = lim
η→∞

∫ B

−B

(
1− |u|

B

)
g(iu+ 1)eiuη du = − lim

η→∞

∫ ∞
−∞

2(cos(B(η − ξ))− 1)

B(η − ξ)2
dβ(ξ) (3.4.20)

Due to this and (3.4.15) we find that
∫∞
−∞

2(cos(B(η−ξ))−1)
B(η−ξ)2 dβ(ξ) is bounded. Moreover, we have

n+1∫
n

dβ(ξ) > −A. Finally, we show that condition (V) of Theorem 3.4.1 is satisfied since:

∫ ∞
−∞

2(cos(B(η))− 1)

B(η)2
eiuηdη =

1

2π

(
1− |u|

B

)
(|u| < B) (3.4.21)

Since all conditions of Theorem 3.4.1 are satisfied, the result holds. �
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Corollary 3.4.1. Let α(x) be a monotone increasing function, and let:

f(u) =

∫ ∞
0+

x−udα(x) (<(u) > 1) (3.4.22)

Let

g(u) = ef(u)(u− 1)A (0 < A < 4/3) (3.4.23)

when continued analytically and is regular for <(u) = 1, and does not vanish at u = 1 Then:

lim
n→∞

1

n

∫ n

0+
log x dα(x) = A (3.4.24)

Where the integral is Riemann-Stieltjes integral. (proof is given by Wiener [59] page 47)

Before applying this corollary, we note first that we have the well known relation:

Π(x) = π(x) +
1

2
π(x1/2) +

1

3
π(x1/3) + . . . (3.4.25)

Then

|Π(x)− π(x)| =

∣∣∣∣∣12π(x1/2) + . . .+
π
(
x

1
(log2 x+1)

)
log2 x+ 1

∣∣∣∣∣ ≤ x1/2(log2 x+ 1) = O(x1/2 log x) (3.4.26)

Hence

lim
x→∞

Π(x)

x
= 0 =⇒ lim

n→∞

1

n

∫ n

0

Π(x)

x
dx = 0 (3.4.27)

Now we apply the corollary with α(x) = Π(x) and ef(u) = ζ(u), which satisfy the hypotheses and
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therefore we get:

lim
n→∞

1

n

∫ n

0+
log x dΠ(x) = 1 (3.4.28)

Integrating this expression by parts yields:

lim
n→∞

[
Π(n) log n

n
− 1

n

∫ n

0

Π(x)

x
dx

]
= 1 (3.4.29)

From (3.4.27) we see that lim
n→∞

Π(n) logn
n

= 1 =⇒ Π(n) ∼ n
logn

. Therefore, from the inequality

(3.4.26) we get:

π(n) ∼ n

log n
(3.4.30)

Remark. We note that relation (3.4.28) in the last proof was the missing piece of the puzzle that

was needed to imply the Prime Number Theorem. The theory of Tauberian theorems developed

by Wiener and Ikehara gave a shortcut to the proof. Alternatively, the same conclusion can be

achieved if we consider the following limit of averages of von Mangoldt function:

lim
n→∞

1

n

n∑
k=1

Λ(k) = 1 (3.4.31)

Which was originally considered by Hadamard and de la Vallée Poussin’s. However, this later

relation was derived by looking at nontrivial properties of the Lambert series
∞∑
n=1

Λ(n) xn

1−xn .

3.4.3 Newman’s Proof of the Prime Number Theorem

Newman published his paper ”Short Proof of the Prime Number Theorem” [43] [61] [42] which is

much shorter than its analytical counterpart by deploying a particular form of a Tauberian theorem.

Since the proof shares some elements with the analytical case, we will just refer to the results here.
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Figure 3.3: Newman’s Contour Integral

Newman technically deduced that Chebyshev’s ϑ(x) ∼ x from his Tauberian theorem (which was

as we showed earlier to be equivalent to the main PNT I (refer to (3.2.2) and (3.2.4) ). Before we

proceed with the proof we shall prove his Tauberian theorem:

Theorem 3.4.4. (Newman’s Tauberian Theorem) Let f(t) (t ≥ 0) be bounded and locally inte-

grable function and suppose that the function g(z) =
∫∞

0
f(t)e−ztdt (<(z) > 0) extends holomor-

phically to <(z) ≥ 0. Then
∫∞

0
f(t)dt converges (and is equal to g(0)).

Proof. For T > 0 let gT (z) =
∫ T

0
f(t)e−ztdt and notice that this is an entire function. Next we

need to show that lim
T→∞

gT (0) = g(0). Let R be a radius and {z ∈ C : |z| ≤ R,<(z) ≥ −δ} be

a region where C (figure 3.3) is be the boundary where δR > 0 is small enough for g(z) to be

holomorphic in and on the region. Then by Cauchy’s Theorem:
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g(0)− gT (0) =
1

2πi

∫
C

(
g(z)− gT (z)

)
ezT (1 +

z2

R2
)
dz

z
(3.4.32)

Note that on the semicircle C+ = C ∩ {<(z) > 0} we have:

|g(z)− gT (z)| =
∣∣∣ ∫ ∞

T

f(t)e−ztdt
∣∣∣ ≤ max

t≥0
|f(t)| ·

∫ ∞
T

|e−zt|dt ≤ M e−<(z)T

<(z)
(<(z) > 0)

(3.4.33)

Where M = max
t≥0
|f(t)| and note that since z = Reiθ hence

z2

R2
=
z2

zz
=
(

1 +
z

z

)
=
(z + z

z

)
· 1

z
=

2<(z)

R2
(3.4.34)

Therefore ∣∣∣ezT(1 +
z2

R2

)1

z

∣∣∣ = e<(z)T · 2<(z)

R2
(3.4.35)

Combining these estimates we get that the integrand in (3.4.32) is bounded by 2 M
R2 . since:

|g(z)− gT (z)| ·
∣∣∣ezT(1 +

z2

R2

)1

z

∣∣∣ ≤ M e−<(z)T · e<(z)T

<(z)
· 2<(z)

R2
(3.4.36)

Thus we have:

|g(0)−gT (0)| =
∣∣∣ 1

2πi

∫
C

(g(z)−gT (z))ezT
(

1+
z2

R2

)dz
z

∣∣∣ ≤ 1

2π

∫ π
2

−π
2

2 MπR

R2
dθ =

M

R
(3.4.37)

57



For the integral over C− = C ∩ {<(z) < 0} we look at g(z) and gT (z) separately. Since gT is

an entire function, the path of integration involving the term gT can be replaced by the semicircle

C ′− = {z ∈ C, |z| = R,<(z) < 0} and the contribution to g(0) − gT (0) of the integral along this

semicircle becomes bounded since:

|gT (z)| =
∣∣∣ ∫ T

0

f(t)e−zθdtθ
∣∣∣ ≤M

∫ T

−∞
|e−zT |dθ =

Me−<(z)T

|<(z)|
(<(z) < 0) (3.4.38)

The integral over C ′′− = {z ∈ C, |z| = R,<(z) > 0} tends to 0 as T → ∞ since the integrand

consists of g(z)(1+z2/R2)/z, which is independent of T and the function ezT goes to 0 uniformly.

Hence lim sup
T→∞

|g(0)− gT (0)| ≤ 2 B
R

, since R is arbitrary, we are done. �

Now we proceed with an outline of the proof:

(I). Newman introduced the following function: Φ(s) =
∑

p prime

log p
ps

= s
∫∞

0
e−stϑ(et)dt (not to be

confused with Φ(s) used in the analytic proof). Which is easily seen to be absolutely and locally

uniformly convergent for σ > 1 (II). Establishing Euler’s product which follows directly from

(1.2.44) with the Trivial Dirichlet character χ(n) = 1:

ζ(s) = L(s, 1) =
∞∑
n=1

1

ns
=
∏
p

1

1− p−s
<(s) > 1 (3.4.39)

(III). Showing that ϑ(x) = O(x).

Proof. This follows from the identity:

4n = (1 + 1)2n ≥
(

2n

n

)
≥

∏
n<p≤2n

p = eϑ(2n)−ϑ(n) (3.4.40)

hence ϑ(x) changes by O(log x) if x changes by O(1), ϑ(x)−ϑ(x/2) ≤ Cx for any C > log 2 for
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all x ≥ x0 = x0(C). Summing over x, x/2, . . . , x/2r we obtain ϑ(x) ≤ 2Cx+O(1). �

(IV). Establishing holomorphicity of Φ(s) − 1
s−1

for <(s) > 1 which follows from (3.3.8) using

the relation:

h(s) = −ζ
′(s)

ζ(s)
− 1

s− 1
=

(
Φ(s)− 1

s− 1

)
+
∑
p prime

log p

ps(ps − 1)
(3.4.41)

by applying Lemma (3.3.4) and noting that the final sum
∑

p prime

log p
ps(ps−1)

converges for σ > 1/2 (V).

ζ(1 + iy) 6= 0. Proved in Theorem 3.3.6. (VI).
∫∞

1
ϑ(x)−x
x2

dx converges.

Proof. Since Φ(z+1)
(z+1)

=
∫∞

0
e−(z+1)tϑ(et)dt and 1

z
=
∫∞

0
e−ztdt, a direct application of Theorem

(3.4.4) with the functions:

f(t) = ϑ(et)e−t − 1 g(z) =
Φ(z + 1)

(z + 1)
− 1

z
(3.4.42)

which are satisfied by (III) (3.4.3) and (IV) (3.4.3) yields the result. �

(VII). Establishing the asymptotic relation ϑ(x) ∼ x by showing that (VI) converge to zero. Con-

sequently, proving the Prime Number Theorem. For great remarks regarding the proof we refer the

reader to J. Korevaar’s article [33].

3.5 Discussion

We note that the proofs discussed thus far have a mixture of both analytical and elementary ele-

ments [19]. Some authors refer to a proof as being elementary if most of the methods used are

derived from elementary techniques. It is important not to confuse elementary here as being easy.
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For an excellent exposition of a proof of this type, we refer to Erdös’s paper ”On a New Method in

Elementary Number Theory Which Leads to An Elementary Proof of the Prime Number Theorem”

[22]. On the other hand, authors refer to a proof as being analytic if most of the methods deployed

come from complex analysis. Analytic methods organize arithmetic data through use of complex

analytic functions such as Riemann zeta-function. It is worth mentioning that the central theme of

all these proofs that we showcased thus far required the nontrivial property: that ζ(x+ iy) 6= 0 on

the real line x = 1, which turned out to be the necessary condition to prove the Prime Number The-

orem. The power in Weiner’s proof came from simplifying Hadamard and de la Valle-Poussin’s

complicated proof by means of Tauberian theorems and illuminating the fact that the converse of

the PNT is in fact true, that is given that the PNT holds, we can deduce that ζ(x + iy) 6= 0 on the

real line x = 1. Finally, we demonstrate two important implications of the Prime Number Theorem

(which are in fact, equivalent) in the following beautiful asymptotic relations:

lim
x→∞

π(x) log π(x)

x
= 1 (3.5.1)

lim
x→∞

pn
n log n

= 1 where p is a prime number (3.5.2)

Therefore one can see that the asymptotic relation pn ∼ n log n tells us that the sequence of primes

behave like n log n . The proof of these implications can be found in [3] (Pg. 80-82).

60



CHAPTER 4: THE RIEMANN HYPOTHESIS

4.1 Introduction

We have explored in the previous chapter how to get a handle on the behavior of prime num-

bers using complex analysis, by calculating the number of primes less than or equal to a certain

magnitude. In 1859, Bernhard Riemann introduced his zeta function and extensively studied its

properties. He used the functional equation he derived along with some basic properties of the

Gamma function to conclude that ζ(s) vanishes exactly whenever s = −2n where n ∈ N. He

called these the trivial zeros. Although, he could not prove it, he noticed that all the other non-

trivial zeros lie along the critical line <z = 1
2
. This became his famous conjecture; The Riemann

Hypothesis [46].

Today, this problem is still unsettled. It is the Hilbert’s eighth problem in David Hilbert’s list of 23

unsolved problems as well as one of the Clay Mathematics Institute’s Millennium Prize Problems.

There has been many breakthroughs in the field of analytical number theory to support the truth of

this claim. We will discuss in this chapter some of the main results, study equivalent formulations

to the Riemann Hypothesis, and examine some of its consequences.

One consequence of proving the RH (Riemann Hypothesis) can be demonstrated in the following

example. In the previous chapter we proved the following relation in the analytical approach to the

Prime Number Theorem, which relates Riemann zeta function to Chebychev’s ψ-function:
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−ζ
′(s)

ζ(s)
= s

∫ ∞
0

ψ(x)x−(s+1)dx =⇒ ψ(x) =
1

2πi

∫ c+i∞

c−i∞

(
− ζ ′(s)

ζ(s)

)
xs
ds

s
(4.1.1)

Here the later formula is simply obtained by taking the inverse Mellin transform. With clever

analysis of this relation using Perron’s formula, von Mangoldt was able to derive the following

relation:

ψ(x) = x−
∑
ρ

xρ

ρ
− log(2π)− 1

2
log(1− x−2) (4.1.2)

Where ρ denotes the zeros of the of Riemann zeta-function. In fact, one can deduce the Prime

Number Theorem by showing:

lim
x→∞

∑
ρ

xρ−1

ρ
= 0 (4.1.3)

which follows from the result of non vanishing of ζ(s) on <(s) = 1. On the other hand, define the

following function

J(x) = π(x) +
1

2
π(x2) +

1

3
π(x3) + . . . (4.1.4)

From the Möbius inversion formula we get

π(x) =
∑ µ(n)

n
J(x1/n) (4.1.5)

Riemann used this to derive the following relation (also known as Riemann’s Explicit Formula)

[46] [31]:

J(x) = Li(x)−
∑
ρ

Li(xρ)− log 2 +

∫ ∞
x

dt

t(t2 − 1) log t
x > 1 (4.1.6)

Where

J(x) = − 1

2πi log x

∫ c+i∞

c−i∞

d

ds

( log ζ

s

)
xsds (4.1.7)
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The inverse Mellin transform is used here again. We can see that the Prime Number Theorem can

be obtained from Riemann’s explicit formula by assuming the asymptotic laws π(x) ∼ J(x) and

x/ log x ∼ Li(x) and showing:

lim
x→∞

∑
ρ

Li(xρ)

(x log x)
= 0 (4.1.8)

Which is much more difficult to prove. Hence if we assume the RH, we get the stronger form of

the prime number theorem:

π(x) = Li(x) +O(
√
x log x) (4.1.9)

The proof of this implication is found in Helege von Koch, Sur La Distribution Des Nombres

Premiers [56]. By examining (4.1.5) and Riemann’s Explicit Formula (4.1.6) one can see how the

distribution of the nontrivial zeros ρ of ζ(s) could fully determine the distribution of the primes.

Therefore it is important to study the behavior of the zeros of the Riemann zeta-function.

Definition 4.1.1. Define N(T ) to be the number of zeros of the ζ(s) function in the region 0 ≤

σ ≤ 1, 0 < t ≤ T .

Riemann conjectured that N(T ) of the non-trivial zeros ρ = β + iγ with 0 < γ ≤ T satisfies the

following asymptotic formula [46]:

N(T ) ∼ T

2π
log

T

2πe
(4.1.10)

Which later proved by Von Mangoldt, who rectified it to:

N(T ) =
T

2π
log

T

2πe
+O(log T ) (4.1.11)
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Which is a direct application of the Argument Principle.

4.2 Equivalent Formulations of the Riemann Hypothesis

The beauty of mathematics lie in the fact that one can transform a difficult problem to another

problem which can be easier to tackle. Consequently, it is natural to ask whether there exists some

alternative formulations of the RH. We shall showcase some of these results here.

4.2.1 Formulation in Terms of the Divisor Function

In 1984, Robin [47] derived an inequality which he proved is equivalent to the Riemann hypothesis,

namely:

σ(n) < eγn log log n (n ≥ 5041) (4.2.1)

Where γ is the Euler-Mascheroni constant. Another equivalent formulation is due to Lagarias [36].

Which takes the form:

σ(n) ≤ Hn + eHn log(Hn) (n ≥ 1) (4.2.2)

Where Hn is the Harmonic Number. In a recent publication [23], Eum et al (2015) improved upon

Robin’s bound on the divisor function σ(n). Their statement satisfies the same inequality but with

the added restriction n ≡ 0 mod 6 and gcd(6, n/6) 6= 1.

4.2.2 Derivative of the Riemann Zeta-Function

Can we relate the behavior of zeros of ζ ′(s) to that of ζ(s)? The affirmation is the statement of

Speiser’s Theorem[51]. In 1934 he showed that the RH is equivalent to the statement that there are
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no zeros of ζ ′(s) in the strip 0 < <(s) < 1/2. Thus, the statement that ζ(s) only has nontrivial

zeros on the critical line is equivalent to the statement that ζ ′(s) does not have any zeros on the

critical line.

4.2.3 An Integral Equation Related to the Riemann Hypothesis

In 1953, Salem showed that the RH is equivalent to the following theorem:

Theorem 4.2.1. Suppose that f is a bounded measurable function on R, then the RH is equivalent

to the statement that the integral equation:

∫ ∞
−∞

e−σf(y)

eex−y + 1
dy = 0 (4.2.3)

has no bounded solution other than the trivial case f(y) ≡ 0 for 1
2
< σ < 1.

The proof can be found in [49]. Recently, Semyon Yakubovich published an equivalent formulation

of the Riemann Hypothesis based on Salem’s work [60] (2013). The following is the statement of

their result:

Theorem 4.2.2. Suppose that for a bounded measurable function f on R we can define the Meijer

transformation:

(Knf)(x) =

∫ +∞

−∞
e−δuK0(2

√
ne(x−u)/2)f(u)du 1/2 < δ < 1 (4.2.4)

Where K0(z) is the modified Bessel function of the second kind, then the Riemann Hypothesis is
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equivalent to the assertion that the following equation:

∞∑
n=1

d(n)[(Knf)(x)− 4(K2nf)(x) + 4(K4nf)(x)] = 0 (4.2.5)

Has no non-trivial solutions.

Proof. Using properties of Mellin Transform and its convolution [55] on the zeta function series

representation:

(1− 21−s)ζ(s) =
∞∑
n=1

(−1)n−1

ns
(<(s) > 0) (4.2.6)

yields:

[
(1− 21−s)ζ(s)Γ(s)

]2

=

∫ ∞
0

ts−1

∫ ∞
0

du

u(et/u + 1)(eu + 1)
(<(s) > 0)

=

∫ ∞
0

ts−1 1

2πi

∫ µ+i∞

µ−i∞
[(1− 21−s)ζ(s)Γ(s)]2x−sdsdt

=

∫ ∞
0

∫ ∞
0

tsdu dt

u(et/u + 1)(eu + 1)
> 0

(4.2.7)

Applying the identity ζ2(s) =
∞∑
n=1

d(n)
ns

and using the integral representations of the modified Bessel

Function:

Kv(2
√
x) =

1

4πi

∫ a+i∞

a−i∞
Γ(s+

v

2
)Γ(s− v

2
)x−sds, a > |<(v)|

Kv(x) =

∫ ∞
0

e−x coshu cosh vu du

(4.2.8)

yields:

∫ ∞
0

∫ ∞
0

tsdu dt

u(et/u + 1)(eu + 1)
= 2

∫ ∞
0

ts−1

(
∞∑
n=1

d(n)
[
K0(2

√
nx)−4K0(2

√
2nx)+4K0(4

√
nx)
])
dt

(4.2.9)
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Integrating term by term here is allowed since the series is absolutely and uniformly convergent

since d(n) = O(nε) where ε > 0 as n→∞. The LHS expression can be transformed into salem’s

integral type by simple change of variables. �

4.3 Equivalent Formulations of the Generalized Riemann Hypothesis

The classical generalization of the RH is in terms of Dirichlet L-Functions which states that all

nontrivial zeros of L(χ, s) lie on the critical line <(s) = 1/2. It is easy to see that GRH implies

RH. We shall note next another version of the GRH namely the one in terms of Dedekind Zeta

Function, sometimes referred to in the Literature as the Extended Riemann Hypothesis (ERH),

which states that all nontrivial zeros of ζK(s) lie on the critical line <(s) = 1/2.

The importance of the Dedekind zeta-function comes from the fact that it can be factored into

L-functions having a simpler functional equation, as in the case for quadratic fields of the form

K = Q(
√
D), namely:

ζK(s) = ζ(s)L(χD, s) (4.3.1)

Where χD(n) =
(
D
n

)
is the Legendre-Kronecker character. We have discussed properties of the

Dedekind Zeta Function in the first chapter. Let K be a number field of degree n = r1 + 2r2. Then

the functional equation of ζK(s) satisfies:

ζK(1− s) = A(s)ζK(s) (4.3.2)

Where

A(s) = |DK\Q|s−
1
2 (cos

πs

2
)r1+r2(sin

πs

2
)r22(1−s)nπ−snΓn(s) (4.3.3)
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In 2012, Hu and Ye found an equivalent formulation of the GRH:

Theorem 4.3.1. Let ζK(s) = αk(s− 1
2
)µ + βk(s− 1

2
)µ+1 + . . . be the Taylor expansion at s = 1/2

where αk 6= 0 and βk are real numbers and µ is a non-negative even integer, then the GRH is

equivalent to:

log |DK\Q| = −8 + n(γ + log(8π)) +
π

2
r1 −

2

π

∫ ∞
0

t−2 log
|ζK(1

2
+ it)|2

|αk|2t2µ
dt (4.3.4)

Where γ is Euler’s constant.

For the proof and other related results, the reader can consult [30].

4.4 Discussion

There are many results in favor of the Riemann Hypothesis. One of which is Hardy’s Theorem;

It asserts that there are infinitely many zeros of ζ(s) = σ + it on the critical line σ = 1/2. The

proof of Hardy’s Theorem can be found in [28]. His theorem establishes a necessary condition for

the truth of the Riemann Hypothesis. Mathematicians have continued to attack the problem from

this point of view by showing that the RH holds for proportions of the critical line. The first result

is due to Selberg, who showed that a positive proportion of the zeros of ζ(s) lie on the critical

line [50]. Next it was improved by Levinson to 1
3

[41]. The best and most recent result is due to

Conrey who proved that 2
5

of the zeros lie on the critical line [17]. It is worth noting that there are

other generalizations of the RH which are not discussed here, namely the Generalized Riemann

Hypothesis of automorphic forms and L-functions based on Hecke characters.
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CHAPTER 5: Future Work

With the recent proof of Fermat’s Last Theorem, it is no secret that the theory of zeta and L-

functions had sparked particular interest amongst number theorists. The main merits of the results

discussed thus far illuminate important aspects of other types of zeta-functions may not be well-

known amongst mathematicians, or rather have not been investigated in full details. For instance,

we have seen how the introduction of a perturbed version of the Riemann zeta-function, had major

consequences in shedding light on its Universality Property. Namely, how L-functions can be

represented in terms of a finite sums of shifted zeta-functions.

The other aspect of the theory is Euler Product’s representation. This indispensable tool is very

useful since it constructs the bridge between these types of functions and arithmetic functions,

in other words, Dirichlet series are exactly the generating functions of the arithmetic functions.

We noted that this is not always possible and can be guaranteed only when a character in ques-

tion is completely multiplicative. The study of the properties attached to zeta-functions defined

on abstract fields as well as questions about convergence had been developed into a full theory,

namely Multiplicative Number Theory with the aid of fundamental results from Fourier Analysis

and Algebraic Number Theory.

We also discussed other non-analytic approaches to the PNT utilizing Tauberian Theorems. One

of the crowning achievements of Number Theory. Finally, we have discussed new formulations of

the Riemann Hypothesis and witnessed how these equivalent formulations are presented in unusual

settings, for instance, in terms of Integral Equations. These new-found results may spark curios-

ity amongst those who are interested in undertaking research and tackling open questions. This

hopefully will constitute the driving force of a rigorous proof (or a counterexample) the Riemann

Hypothesis.
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The author wishes to pursue further research in the area of analytic number theory. Particularly in

the study of L-functions defined over Elliptic Curves. As well as Artin’s L-functions and the Artin

Conjecture, which are very active and attractive areas of research.
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Paris, 236:1127–1128, 1953.

[50] Atle Selberg. On the zeros of Riemann’s zeta-function. Dybwad in Komm., 1943.

[51] Andreas Speiser. Geometrisches zur riemannschen zetafunktion. Mathematische Annalen,

110(1):514–521, 1935.

75



[52] J. T. Tate. Fourier analysis in number fields, and Hecke’s zeta-functions. In Algebraic Number

Theory (Proc. Instructional Conf., Brighton, 1965), pages 305–347. Thompson, Washington,

D.C., 1967.

[53] E. C. Titchmarsh. The theory of the Riemann zeta-function. Oxford, Clarendon Press, 1951.,

1951.

[54] E.C. Titchmarsh. The Theory of Functions. Oxford science publications. Oxford University

Press, 1939.

[55] Edward Charles Titchmarsh et al. Introduction to the theory of Fourier integrals, volume 498.

Clarendon Press Oxford, 1948.

[56] Helge von Koch. Sur la distribution des nombres premiers. Acta Mathematica, 24(1):159–

182, 1901.

[57] S. M. (Sergei Mikhailovich) Voronin and Anatolii Alekseevich Karatsuba. The Riemann

zeta-function. Walter de Gruyter, 1992.

[58] Sergei M Voronin. Theorem on the “universality” of the riemann zeta-function. Izvestiya:

Mathematics, 9(3):443–453, 1975.

[59] Norbert Wiener. Tauberian theorems. Annals of Mathematics, 33(1):pp. 1–100, 1932.

[60] Semyon Yakubovich. Integral and series transformations via Ramanujan’s identities and

Salem’s type equivalences to the Riemann hypothesis. Integral Transforms Spec. Funct.,

25(4):255–271, 2014.

[61] D. Zagier. Newman’s short proof of the prime number theorem. Amer. Math. Monthly,

104(8):705–708, 1997.

76


	On the Theory of Zeta-functions and L-functions
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	NOTATION AND CONVENTIONS
	CHAPTER 1: INTRODUCTION
	1.1 Historical Background
	1.2 Generalizations of the Riemann Zeta-Function
	1.2.1 Hurwitz Zeta-Function
	1.2.2 Lerch Zeta-Function
	1.2.3 Dirichlet L-Functions
	1.2.4 Dedekind Zeta Function
	1.2.5 Euler's Product


	CHAPTER 2: THE UNIVERSALITY PROPERTY
	2.1 Introduction
	2.2 Universality Theorem for the Riemann Zeta-Function
	2.3 Universality Theorem for the Hurwitz Zeta-Function and Lerch Zeta-Function
	2.4 Universality Theorem for L-Functions
	2.5 Discussion

	CHAPTER 3: THE PRIME NUMBER THEOREM
	3.1 Historical Background
	3.2 Equivalent Formulations of the Prime Number Theorem
	3.3 An Analytic Proof of the Prime Number Theorem
	3.3.1 Preliminary Results
	3.3.2 Contour Integral Representation of (x) / x2
	3.3.3 Bounds on |(s)| and |'(s)| near (s) = 1
	3.3.4 Non-vanishing of (s) on the Line (s) = 1
	3.3.5 Finalizing the Proof

	3.4 Tauberian Proofs of the Prime Number Theorem
	3.4.1 Introduction
	3.4.2 Wiener's Proof of the Prime Number Theorem
	3.4.3 Newman's Proof of the Prime Number Theorem

	3.5 Discussion

	CHAPTER 4: THE RIEMANN HYPOTHESIS
	4.1 Introduction
	4.2 Equivalent Formulations of the Riemann Hypothesis
	4.2.1 Formulation in Terms of the Divisor Function
	4.2.2 Derivative of the Riemann Zeta-Function
	4.2.3 An Integral Equation Related to the Riemann Hypothesis

	4.3 Equivalent Formulations of the Generalized Riemann Hypothesis
	4.4 Discussion

	CHAPTER 5: Future Work
	LIST OF REFERENCES

