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ABSTRACT

Chip-firing games and divisor theory on finite, connected, undirected and unweighted graphs have

been studied as analogs of divisor theory on Riemann Surfaces. As part of this theory, a version

of the one-dimensional Riemann-Roch theorem was introduced for graphs by Matt Baker in 2007.

Properties of algebraic curves that have been studied can be applied to study graphs by means of

the divisor theory of graphs. In this research, we investigate the property of a vertex of a graph

having the Weierstrass property in analogy to the theory of Weierstrass points on algebraic curves.

The weight of the Weierstrass vertices is then calculated in a manner analogous to the algebraic

curve case. Although there are many graphs for which all vertices are Weierstrass vertices, there

are bounds on the total weight of the Weierstrass vertices as a function of the arithmetic genus. For

complete graphs, all of the vertices are Weierstrass when the number of vertices (n) is greater than

or equals to 4 and no vertex is Weierstrass for n strictly less than 4. We study the complete graphs

on 4, 5 and 6 vertices and reveal a pattern in the gap sequence for higher cases of n. Furthermore,

we introduce a formula to calculate the Weierstrass weight of a vertex of the complete graph on n

vertices. Additionally, we prove that Weierstrass semigroup of complete graphs is 2 - generated.

Moreover, we show that there are no graphs of genus 2 and 6 vertices with all the vertices being

normal Weierstrass vertices and generalize this result to any graph with genus g.

Keywords: Divisor of a graph, Dhar’s burning algorithm, gap sequence, Weierstrass semigroup,

Weierstrass vertex, Weierstrass weight.
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CHAPTER 1: THE CHIP FIRING GAME

From this point, we will be examining concepts from the graph - theoretic viewpoint. This chapter

reviews the chip firing game and its variations, focusing on Matt Baker’s version. This is one of

the main concepts in this thesis. We are defining the rank of a divisor and linear equivalence of two

or more divisors based on the chip firing game. Also we interpret the Weierstrass vertices which

we will build upon in the subsequent chapters.

1.1 Evolution of Chip Firing Game

Chip firing game was first introduced by Spencer in 1986 when he was studying the concept of

a “balancing game”, [21]. From there onwards different versions of chip firing games were in-

troduced. Here mainly concentrated on the chip firing game defined by M.Baker. [2], Sections

1.5,5.5.

Spencer’s original paper from 1986 addresses the following 3 questions;

Let ||.|| be the max norm and k be a large positive constant;

1. Let v1,v2, ...,vn ∈ Rn, ||vi|| ≤ 1. Do there exist e1,e2, ...,en ∈ {+1,−1} so that

||e1v1 + e2v2 + ...+ envn|| ≤ kn
1
2 ?

2. Let v1,v2, ...,vn ∈ Rn, ||vi|| ≤ 1. Do there exist e1,e2, ...,en ∈ {+1,−1} so that

||e1v1 + e2v2 + ...+ envt || ≤ kn
1
2 for all t,1≤ t ≤ n?

In seeking a solution to these problems a third question is present itself in the form of a

strategic game which also can be called as a balancing game.

3. Consider the following n - round perfect information game between two players; Pusher and
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Chooser. A vector w ∈ Rn, called the position vector, is set at the start of the game to 0. In

the ith round Pusher selects a vector v = vi ∈ Rn with ||v|| ≤ 1. We call v the move. Chooser

then resets the position w to either w+v or w−v. With perfect play can Chooser assure that

at the end of the nth round, ||w|| ≤ kn
1
2 ?

Inspired by this result, in 1991, Björner, generalized this result to graphs and that game is known

to be the chip-firing game, see [6].

Björner’s version defined as follows; let G = (V,E) be a finite, undirected, unweighted and con-

nected graph. Initially N(∈ N) is the number of chips distributed among the vertices of G such

that, ci chips are at vertex vi for i ∈ [n]. That is ∑
n
i=1 ci = N. Then a vertex vi with degree di

is randomly choosed when ci ≥ di and di chips were distributed along its incidence edges to its

neighboring vertices one per each neighbor and remaining ci− di will stay at vi. This process is

known as firing. Firing the vertices of G is continued until there is no such possibility.

Example 1.1: Firing the House - X graph with a [3,2,3,1,0] initial configuration.

Figure 1.1: Firing sequence of the House - X graph with firing vertices marked in red.

This game can be finite or infinite because one specific vertex can be fired infinitely many times as

long as it satisfies the firing requirement. But the finiteness of the game can be measured.

2



Theorem 1.2 [6, Theorem 2.3]

(1) If N > 2|E(G)|− |V (G)|, then game is infinite whatever the initial configuration is.

(2) If N < |E(G)|, then game is finite whatever the initial configuration is.

(3) If |E(G)| ≤ N ≤ 2|E(G)| − |V (G)|, then there exist an initial configuration which can be

terminated finitely and also another initial configuration which can’t be terminated finitely.

1.1.1 Chip firing game: Matt Baker’s Version

In this game there are two legal moves called chip firing and reverse chip firing. Firing has the

same meaning as in Björner’s game. Reverse chip firing relates to receiving a chip from each

adjacent vertex via it’s incidence edges. The chip configuration of a graph can be identified as a

particular divisor corresponding to that position. So the degree of the divisor is the total number of

chips distributed in the graph, and this value can be a negative integer too. There are no restrictions

in this game, a vertex can have a negative number of chips, however divisor degree will stay the

same. Here the objective is to find a configuration where no vertex has a negative number of chips.

In the language of divisors, this is equivalent to getting an effective divisor.

This game can be thought of as a kind of dollar game too. Chips can be thought of as dollars and a

vertex assigned with a negative number of chips said to be in debt. So a vertex which is in debt can

borrow dollars from its adjacent vertices. Then the number of dollars in that vertex will increase

by its vertex degree and the number of dollars of its adjacent vertices will decrease by 1, because

they have lent a dollar to the vertex in debt. To end the game all vertices must be out of debt.

Regardless of how many firing or reverse firing moves have been made, total number of dollars or

chips will remain unchanged.

3



Example 1.3: Firing and reverse firing of the House - X graph with [−2,2,1,−1,3] initial

configuration.

Figure 1.2: Firing and reverse firing sequence of the House - X graph with firing vertices marked
in red and reverse firing vertices marked in green.

Theorem 1.4 [2, Theorem 1.9]

Let G = (V,E) be a graph satisfying the conditions mentioned in section 1.2 and N be the total

number of chips/dollars present at any stage. Let g be the arithmetic genus of G.

(1) If N ≥ g, then there is always a winning strategy.

(2) If N ≤ g− 1, then there is always an initial configuration for which no winning strategy

exists.

1.1.2 Linear Equivalence of Divisors

Definition 1.5

Let {v1,v2, . . . ,vn} be the vertex set of G. Then a divisor D on G is an integer linear combination

of vertices of G.

D = ∑
vi∈V (G)

D(vi)vi (1.1)

4



Where D(vi) ∈ Z.

Remark 1.6: The set of all divisors on G, Div(G) forms a free abelian group over V (G) with the

basis {v1,v2, . . . ,vn} under the additive operator.

Definition 1.7

A divisor D is said to be effective if and only if all D(vi)≥ 0, (D≥ 0). The set of effective divisors

on G denoted by Div+(G). D is said to be the zero divisor when D(vi) = 0, for all i = 1,2, . . . ,n.

The zero divisor acts as the zero element of the free abelian group.

Definition 1.8

The degree of a divisor D on G is the finite sum of D(vi),∀i = 1,2, . . . ,n.

deg(D) = ∑
vi∈V (G)

D(vi) (1.2)

Remark 1.9: For each k ∈ Z, Divk
+(G) = {D ∈ Div(G)|deg(D) = k,D≥ 0}.

Definition 1.10

The canonical divisor KG of G is defined as follows.

KG = ∑
v∈V (G)

(dG(v)−2)(v) (1.3)

Proposition 1.11 [13, page 6]

Let G be a graph with arithmetical genus g on G. The degree of the Canonical divisor of G is

2g−2.

5



Definition 1.12 (Principal divisor)

The set of Principal divisors of G, Prin(G) is defined as Prin(G) = {div( f ) | f : V (G)→ Z}.

div( f ) = ∑
vi∈V (G)

∑
e=viv j

( f (vi)− f (v j))(vi) (1.4)

where i 6= j.

Proposition 1.13

The degree of a Principal divisor on G equals to zero.

Proof.

Deg(div( f )) = ∑
vi∈V (G)

∑
e=viv j

( f (vi)− f (v j))

This counts each f (vi) twice as + and − for each vertex vi ∈ V (G), implies summation equals to

zero.

The equivalence relation can be defined on the divisor group Div(G). Two divisors D and D′ on

G are said to be linearly equivalent (D ≡ D′) whenever D−D′ or D′−D ∈ Prin(G). Since the

degree of a principal divisor is zero, if two divisors are equivalent, their degrees must be the same.

In terms of chip firing D and D′ on G are linearly equivalent if and only if one can get from the

other by finite sequence of firings and reverse firings, as described in Baker’s chip firing game.

For example consider all the divisors obtained in the process of firing and reverse firing in figure

1.2. According to this concept, those divisors are linearly equivalent to each other.

That is [−2,2,1,−1,3]≡ [0,1,0,−1,3]≡ [0,0,−1,2,2]≡ [0,1,0,3,−1]. And the degree is fixed,

which is equal to 3.

6



Remark 1.14: To indicate the linear equivalence, “≡” have been used throughout this thesis.

1.2 Rank of a Divisor

Definition 1.15 (Linear System of a divisor - D)

The set of all effective divisors equivalent to D is said to be the linear system of D and denoted by

|D|; |D|= {E ∈ Div(G)|E ≥ 0,E ≡ D}.

Definition 1.16 (Rank of a divisor - r)

Rank of a divisor D is the maximum number of chips that can be subtracted from that divisor while

maintaining it’s linear equivalence to an effective divisor.

r(D) =−1 if |D|= /0

otherwise, r(D) = max{k ∈ Z+
0 such that |D−E| 6= /0, for all E ∈ Divk

+(G)}

From the point of view of either the Dollar game or the Chip firing game, r(D) ≥ 0 implies that

each vertex can be brought out of debt, obtaining a debt free graph.
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Proposition 1.17

Let D be a divisor of G.

(1) If deg(D)< 0, then r(D) =−1.

(2) If deg(D) = 0, then r(D) = 0 whenever D≡ 0 and r(D) = -1 otherwise.

Proof.

(1) If deg(D)< 0 then D can’t be equivalent to an effective divisor. Hence |D|= /0. Therefore,

r(D) =−1 by the definition.

(2) If deg(D) = 0, maximum possibility is D can be linearly equivalent to zero divisor and hence

r(D) = 0. If D 6≡ [0], then again |D|= /0 and therefore r(D) = -1.

We now look at the most important theorem in this subject, the Riemann - Roch theorem for graphs

which was proved by Baker and Norine [2].

Theorem 1.18 (Riemann-Roch for graphs)

Let D be a divisor of G, KG be the canonical divisor of G and g be the genus.

Then,

r(D)− r(KG−D) = deg(D)−g+1 (1.5)

We now are able to introduce the objects of interest in this study.
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Definition 1.19 (Weierstrass vertices on a graph)

By the analogy with algebraic curves, a Weierstrass vertex on a graph can be defined as follows.

v ∈V (G) is said to be a Weierstrass vertex when r(g(v))≥ 1.

Lemma 1.20

The following are equivalent.

(1) v is a Weierstrass vertex

(2) r(g(v))≥ 1

(3) r(KG−g(v))≥ 0

Proof.

(1) if and only if (2): Directly follows from the definition of Weierstrass vertex.

(2) if and only if (3): Let D = g(v), deg(D) = deg(g(v)) = g. Then by Riemann - Roch theorem

we have,

1− r(KG−g(v))≤ g−g+1 which implies r(KG−g(v))≥ 0.
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CHAPTER 2: DHAR’S BURNING ALGORITHM AND Q-REDUCED

DIVISORS

In this chapter we introduce the q-reduced divisors which is a special class of divisors, and then

we explore the relationship between q-reduced divisors and calculating the rank when applying the

Dhar’s burning algorithm. Furthermore, we are discussing Some examples thoroughly to gain an

understanding of the algorithm and how it is applied.

2.1 Dhar’s Burning Algorithm

This algorithm was first introduced in 1989 by Deepak Dhar, who was a physicist, when he was

studying Sandpile Automaton Models [8]. The algorithm was named after him. Over time, Dhar’s

burning algorithm has been modified and some improvements were introduced to the divisor theory

on graphs.

So the current version is as follows;

The premise of the algorithm is a fire started from a vertex which is in debt, D(v) < 0 and spread

eventually along its incident edges. If adjacent vertices are burned then they spread the fire. This

process stops when the entire graph is burned or the vertex which is in debt, becomes out of debt.

Even though the divisor is changing, the divisor degree is fixed throughout the whole process.

When you look more closely, there are specific restrictions or conditions needed to be satisfied

before applying the algorithm.

1. The divisor D corresponding to G must be effective away from the vertex which starts the

fire (say fixed vertex).
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2. A vertex v, other than the fixed vertex is burned when the number of chips at v,

D(v) < number of incident edges to v which carries fire at a specific move.

If the fire stops at a certain vertex \ vertices, then all the unburned vertices can be fired simultane-

ously. If we take all the burned vertices as the set S and the set of unburned vertices as complement

of S (S′), then we are only interested of the edges going from S to S′. This process can be continued

until the whole graph is burned.

Example 2.1: Let G be the House graph with divisor D = [q,1,1,1,1] where q is the fixed vertex.

Figure 2.1: Dhar’s burning algorithm applied to G with D = [q,1,1,1,1].
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2.2 q-Reduced Divisors

Reduced divisors play an important role in proving Riemann Roch Theorem for graphs. Matt

Baker has used this special class of divisors to prove the Riemann Roch theorem for graphs. Such

a proof can be found in [2, Section 3.2] .

Definition 2.2

A Divisor D on G is said to be q− reduced if the following conditions are satisfied.

1. D(v)≥ 0 for all v 6= q , v ∈V (G). That is D is effective away from q.

2. For every non-empty set; S ⊂ V (G)−{q}, when all the vertices of S fired simultaneously,

some vertex will go into debt.That is for some v ∈ S, D(v)< 0.

q - reduced Divisors can be obtained by Dhar’s burning algorithm and the procedure is given below.

Step 1: Fix a vertex q of G for which the divisor D needs to be of q - reduced.

Step 2: D must be effective away from q. If it is not effective away from q initially, then convert

D to D′ which is effective away from q, by firing the q as of the need. Note that there are no

limitations for negativity of D(q), it can be a large negative number as well. At this point, G is

ready to be burned.

Step 3: Start a fire from q and spread it along the incidence edges of q in G. If it is possible to burn

the whole graph (every vertex in V (G)−{q}) at the end, D′(≡ D) is q− reduced.

Example 2.3: Consider the example 2.1 again, Fix v0 = q with D = [q,1,1,1,1].

D is already effective away from q, therefore follow the procedure as described above. Then,

D′ = [q+4,0,0,0] is the q-reduced divisor equivalent to D.
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Proposition 2.4 [2]

For any given Divisor D of G, there exists a unique q - reduced Divisor D′ with D≡ D′ when q is

fixed.

2.3 Calculating the rank of a given divisor

Usually calculating the rank of a divisor is a polynomial time problem and is difficult if one uses

the definitions of rank directly. It can be calculated easily by Dhar’s burning algorithm.

Steps to calculate the rank of a divisor D of G:

Step 1: If deg(D)< 0, then r(D) =−1.

Step 2: If deg(D) ≥ 2g−1, then r(D) = deg(D)−g.

We can easily observe this by Riemann - Roch,

when deg(D) ≥ 2g− 1, deg(KG−D) < 0 hence r(KG−D) = −1. Substituting to the Riemann -

Roch formula gives r(D)− (−1) = deg(D)−g+1 implies r(D) = deg(D)−g.

Step 3: If g≤ deg(D)≤ 2g−2, then first compute rank of (KG−D) which is equivalent to a divisor

of degree 0, ...,g−1. Then using the Riemann - Roch formula we can find r(D).

Since the degree of the canonical divisor is 2g−2, then the degree of KG−D

when g≤ deg(D)≤ 2g−2 is between 2g−2−g = g−2 and 2g−2− (2g−2) = 0.

Step 4: If 0≤ deg(D)≤ g−1, then compute the rank using Dhar’s burning algorithm.

13



2.3.1 Applying Dhar’s burning algorithm to compute the rank of a divisor of degree between 0

and g-1

In [14], Manjunath has given some other geometric computations to find the rank. However, in this

thesis we are only using Dhar’s burning algorithm and properties of the rank for the calculations.

Example 2.5: Applying Dhar’s burning algorithm to calculate the rank of the following divisor

D = [2,2,1,−1,−1] of the House - X graph (G).

Calculating the genus of the House - X graph G: g= |E(G)|−|V (G)|+1 implies g= 8−5+1= 4.

Degree of the divisor D = 2+2+1+(−1)+(−1) = 3. Therefore, the degree of D equals to g−1

and we can find the rank using Dhar’s burning algorithm directly.

Step 1: Checking r(D)≥ 0.

Figure 2.2: Firing v3 to get D′ = [2,3,2,−4,0].

Now D ≡ D′ = [2,3,2,−4,0] is effective away from v3 and Dhar’s burning algorithm is ready to

be applied.

Remark 2.6: v4 also can be chosen for firing instead of v3.
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Then after applying Dhar’s burning algorithm to D′, (D′ ≡)D′′ = [0,1,0,1,1] can be obtained.

Therefore, since D′′ is effective and equivalent to D, clearly r(D)≥ 0.

Figure 2.3: After applying Dhar’s burning algorithm we obtain the effective divisor D′′.

Next we need to check whether r(D) is at least 1.
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Step 2: Checking r(D)≥ 1.

We need to consider all the non-equivalent degree one effective divisors of G and according to this

example we have 5 of those.

[1,0,0,0,0]

[0,1,0,0,0]

[0,0,1,0,0]

[0,0,0,1,0]

[0,0,0,0,1]

Then subtract each of these divisors from D′′ and check whether the resulting divisor is effective

or not. If it is not effective, by applying Dhar’s burning algorithm we can deduce its equivalence

to an effective divisor. Even after applying Dhar’s burning algorithm, if we can’t get an effective

divisor (at least for one case), we can say that r(D) < 1. If we can get effective divisors for all

the cases we move to the next level which is r(D) ≥ 2, and this process continues until we get a

contradiction.

Figure 2.4: D′′− [1,0,0,0,0] 6≡ effective divisor.
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Figure 2.4 shows that D′′− [1,0,0,0,0] is not equivalent to an effective divisor. Hence r(D) < 1

implies r(D) = 0.

Remark 2.7: Once we obtain the q-reduced divisor for the chosen vertex, if it is not effective the

process terminates, and if it is effective the process continues.

Remark 2.8: If you use the chip firing moves together with Dhar’s burning algorithm to determine

the rank of a given divisor, Dhar’s burning algorithm is useful to determine the vertex set or the

vertex that needs to be fired simultaneously to get an effective divisor, or to confirm that there is

no possibility of firing or reverse firing in order to obtain an effective divisor. Otherwise, we can

solely use Dhar’s burning algorithm to calculate the rank, but it is inefficient.

Remark 2.9: In this thesis we have used Dhar’s burning algorithm together with the chip firing

moves to find the rank.
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CHAPTER 3: GAP SEQUENCE

In this chapter we are introducing gap sequence, types of Weierstrass points according to their

weights, and applying these concepts to the House - X graph and complete graphs of orders 4, 5

and 6. The House - X graph shows the properties parallel to Riemann surface case while complete

graphs show a different pattern. Also in this chapter we determine the semigroups and the gap

sequences for the House - X graph and for K4,K5,K6 and predict the behavior for K7 and so on.

We are also introducing a conjecture regarding Weierstrass weights of complete graphs in this

chapter.

For the complete graphs we only need to consider one vertex because of the symmetry, otherwise

we need to consider all the vertices excluding symmetries if any. Then we are calculating r(D) =

r(n(p)) for n = 0,1,2, ...2g−2,2g−1,2g, ... for D = n(p) = [n,0,0, ...,0] assuming P is the first

vertex of the vertex ordering of the graph. When n ≥ 2g− 1, r(n(p)) = deg(D)− g = n− g,

therefore we are not interested in calculating the ranks for n≥ 2g−1. From this we can determine

whether the vertex is Weierstrass or not by looking at r(gP), when n = g. Then for the Weierstrass

vertices, we are determining the gap sequence, weight and the corresponding semigroup.

All the ranks are calculated according to the properties of rank and applying Dhar’s burning algo-

rithm together with chip firing moves as described in section 2.3.

Definition 3.1 (Weierstrass Gap)

For a Weierstrass vertex p ∈V (G) the gap sequence Gp defined as all n ∈ Z+ such that

r(np) = r((n−1)p). The cardinality of Gp is g.

Note that Gp is finite as we only examine finite graphs.
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Definition 3.2 (Weierstrass Semigroup)

Weierstrass Semigroup Hp of a Weierstrass vertex p ∈ V (G) defined as the set N−Gp with the

additive operator.

Definition 3.3

Weierstrass weight of p ∈V (G) is,

w(p) = ∑
n∈Gp

n− g(g+1)
2

(3.1)

A Weierstrass vertex is said to be a normal Weierstrass vertex if its gap sequence is

{1, 2, ... g-1, g+1}.

Proposition 3.4 [1, E-4 page 42]

The following are equivalent:

(1) p is a Weierstrass vertex,

(2) w(p) 6= 0 ,

(3) r(g(p)) 6= 0.

Proposition 3.5 [1, E-4 page 42]

Let p be a normal Weierstrass vertex if and only if w(p) = 1.

Proposition 3.6 [1, E-4 page 43]

If g≥ 4 and w(p) = 2, then either Hp = {g−1,g+2,g+3,g+4, ...} or Hp = {g,g+1,g+3, ...}.
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3.1 House - X Graph

There exist three types of vertices in the House - X graph and the symmetries marked as Q′ and R′.

The genus of this graph equals to 4. We need to calculate r(nP),r(nQ) and r(nR) up to 2g−2 = 6

of n values. Suppose the general divisor is D = [P,Q,Q′,R,R′].

Figure 3.1: The House - X Graph with vertices marked.

3.1.1 Vertex P

1. D = 0P = [0,0,0,0,0]: Clearly r(0P) = 0.

2. D = 1P = [1,0,0,0,0]: Clearly r(1P)≥ 0. To check r(1P)≥ 1,

consider [1,0,0,0,0]− [0,1,0,0,0] = [1,−1,0,0,0]. Then sending fire from Q will burn the

whole graph, but the divisor is not effective. Hence r(1P) = 0.

3. D = 2P = [2,0,0,0,0]: Checking r(2P)≥ 1;

Consider [2,0,0,0,0]− [0,0,0,1,0] = [2,0,0,−1,0]. The divisor is not effective,

hence r(2P) = 0.
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Figure 3.2: Sending fire from R will leave only P unburned and therefore we fire P. Again sending
fire from R will burn the whole graph. But the divisor is not effective.

4. D = 3P = [3,0,0,0,0]: Checking r(3P)≥ 1; First we consider,

[3,0,0,0,0]− [0,0,0,1,0] = [3,0,0,−1,0]. Then again following the same process as in 3

implies r(3P) = 0.

5. D = 4P = [4,0,0,0,0]: Since obviously r(4P) ≥ 0, we need to check r(4P) ≥ 1 . For that

we need to subtract all the effective divisors of degree 1 from D and check the effectiveness.

Clearly [4,0,0,0,0]− [1,0,0,0,0] = [3,0,0,0,0] is effective.

Next [4,0,0,0,0]− [0,1,0,0,0] = [4,−1,0,0,0] is also effective after firing R once.We need

to consider, [4,0,0,0,0]− [0,0,0,1,0] = [4,0,0,−1,0] which is equivalent to [0, 0, 0, 1, 2]

implies r(4P)≥ 1 .

Figure 3.3: Sending fire from R will leave P unburned, therefore we fire P twice. Next, again
sending fire from R will leave P,Q,Q′ unburned. Finally, firing unburned vertices simultaneously
lead to an effective divisor.
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Since r(4P)≥ 1, we need to check whether r(4P)≥ 2; for that we consider,

[4,0,0,0,0]− [0,1,0,1,0] = [4,−1,0,−1,0] which is not equivalent to an effective divisor.

Hence r(4P) = 1.

6. D = 5P = [5,0,0,0,0]: Clearly r(5P) ≥ 1, therefore checking r(5P) ≥ 2. At this point we

are using Riemann-Roch formula to calculate the rank.

Consider, KG− 5P = [0,2,2,1,1]− [5,0,0,0,0] = [−5,2,2,1,1], which is not equivalent to

an effective divisor. Hence r(KG−5P) =−1. Therefore, by Riemann - Roch we have,

r(5P) = deg(5P)−g+1+ r(KG−5P) = 5−4+1−1 = 1.

Figure 3.4: Reverse fire P twice and then sending fire from P will burn whole graph. But the
divisor is not effective.

7. D = 6P = [6,0,0,0,0]: Similarly as above we use Riemann - Roch formula to calculate the

rank of D. Clearly, r(KG−6P) = r([−6,2,2,1,1]) =−1,

hence r(6P) = deg(6P)−g+1+ r(KG−6P) = 6−4+1−1 = 2.

Remark: The ranks for all the divisors of the form D = nP for n ≥ 7 can be calculated using,

deg(D)−g as mentioned in section 2.3. But we are interested in finding the rank for first

2g−2 = 6, n values.
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3.1.2 Vertex Q

1. D = 0Q = [0,0,0,0,0]: Clearly r(0Q) = 0.

2. D = 1Q = [0,1,0,0,0]: We have r(1Q)≥ 0. To check r(1Q)≥ 1,

consider [0,1,0,0,0]− [1,0,0,0,0] = [−1,1,0,0,0]. Then sending fire from P will burn the

whole graph, but divisor is not effective. Hence r(1Q) = 0.

3. D = 2Q = [0,2,0,0,0]: Checking r(2Q)≥ 1;

Consider [0,2,0,0,0]− [1,0,0,0,0] = [−1,2,0,0,0], which is not equivalent to an effective

divisor. Thus r(2Q) = 0.

4. D= 3Q= [0,3,0,0,0]: We need to check whether r(3Q)≥ 1. For that consider [0,3,0,0,0]−

[1,0,0,0,0] = [−1,3,0,0,0]. Then when you send fire from P, the whole graph burns as

degree of Q vertex is 4 but its coefficient is 3. Therefore the divisor is not equivalent to an

effective divisor. Hence r(3Q) = 0.

5. D = 4Q = [0,4,0,0,0]: Clearly r(4Q)≥ 0. Checking r(4Q)≥ 1;

Figure 3.5: (1): [0,4,0,0,0]− [1,0,0,0,0], (2): [0,4,0,0,0]− [0,1,0,0,0], (3): [0,4,0,0,0]−
[0,0,1,0,0], (4): [0,4,0,0,0]− [0,0,0,1,0], (5): [0,4,0,0,0]− [0,0,0,0,1].

As shown in the figure, for (1), (3), (4) and (5), if we fire Q once, we will get an effective

divisor and (2) is already effective. Therefore, r(4Q) ≥ 1. Moreover, we need to check
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whether its rank is greater than or equals to 2. But [0,4,0,0,0]− [0,1,0,1,0] = [0,3,0,−1,0]

is not equivalent to an effective divisor, hence r(4Q) = 1.

We are using Riemann - Roch formula to calculate the rank for the following two cases.

6. D = 5Q = [0,5,0,0,0]: KG−5Q = [0,2,2,1,1]− [0,5,0,0,0] = [0,−3,2,1,1]≡ [1,0,0,0,0]

implies r(KG−5Q) = 0. Then r(5Q) = deg(5Q)−g+ r(KG−5Q)+1 = 5−4+0+1 = 2.

Figure 3.6: Sending fire from Q will only burn P, then reverse firing all the unburned vertices
simultaneously will give an effective divisor [1,0,0,0,0].

7. D= 6Q= [0,6,0,0,0]: KG−6Q= [0,2,2,1,1]−[0,6,0,0,0] = [0,−4,2,1,1]≡ [1,−1,0,0,0]

implies r(KG−5Q) =−1. Therefore by Riemann - Roch we have r(6Q) = 2.

Because of symmetry, Q′ has the same rank as Q.

24



3.1.3 Vertex R

1. D = 0R = [0,0,0,0,0]: Clearly r(0R) = 0.

2. D = 1R = [0,0,0,1,0]: As in the above two cases, we have r(1R) = 0 because degree of

vertex R is equal to 3.

3. D = 2R = [0,0,0,2,0]: Similarly we can show that r(2R) = 0.

4. D = 3R = [0,0,0,3,0]: Since r(3R) ≥ 0, we need to check whether r(3R) ≥ 1. For that we

list all the divisors of degree 1 and subtract from D as below and verify its equivalence to an

effective divisor.

Figure 3.7: (1): [0,0,0,3,0]− [1,0,0,0,0], (2): [0,0,0,3,0]− [0,1,0,0,0], (3): [0,0,0,3,0]−
[0,0,1,0,0], (4): [0,0,0,3,0]− [0,0,0,1,0], (5): [0,0,0,3,0]− [0,0,0,0,1].

According to the figure, for cases (2),(3) and (5), firing R once will give an effective divisor.

Note that (4) is already effective. Then for case (1), firing R once and then reverse firing

P once will lead to an effective divisor. But r(3R) is not greater than or equals to 2, hence

r(3R) = 1.

5. D = 4R = [0,0,0,4,0]: At this point we have r(4R) ≥ 1, we need to determine whether

r(4R) ≥ 2. Consider [0,0,0,4,0]− [1,0,1,0,0] = [−1,0,−1,4,0] ≡ [−1,1,0,0,1] which is

not an equivalent divisor. Thus r(4R) = 1.
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Figure 3.8: We first fire R once, then [−1,0,−1,4,0] ≡ [−1,1,0,0,1]. Next sending fire from P
causes the burning of the whole graph. But the divisor is not effective.

6. D= 5R= [0,0,0,5,0]: KG−5R= [0,2,2,1,1]−[0,0,0,5,0] = [0,2,2,−4,1]≡ [0,1,1,−1,0]

implies r(KG−5R) =−1. Therefore by Riemann - Roch we have,

r(5R) = deg(5R)−g+ r(KG−5R)+1 = 5−4−1+1 = 1.

Figure 3.9: First reverse fire R once, then [−1,0,−1,4,0]≡ [0,1,1,−1,0]. Next sending fire from
R causes the burning of the whole graph. But the divisor is not effective. The process terminates.

7. D = 6R = [0,0,0,6,0]: Similarly we use Riemann - Roch to calculate the rank.

Then KG−6R = [0,2,2,1,1]− [0,0,0,6,0] = [0,2,2,−5,1]≡ [0,1,1,−2,0] implies r(KG−

5R) =−1. Then by Riemann - Roch formula we have r(6R) = 2.

Because of symmetry, R′ also has the same rank as R.
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All the calculations for vertices P, Q, Q′, R and R′ are summarized in the following table.

Table 3.1: Calculations for the House - X Graph ( g = 4, 2g−2 = 6)

n 0 1 2 3 4 5 6 7 8 · · ·
r(nP) 0 0 0 0 1 1 2 3 4 · · ·

r(nQ),r(nQ′) 0 0 0 0 1 2 2 3 4 · · ·
r(nR),r(nR′) 0 0 0 1 1 1 2 3 4 · · ·

Following the definition of a Weierstrass vertex, we can see for all the vertices of House - X

graph r(4P),r(4Q),r(4Q′),r(4R),r(4R′) ≥ 1, hence these vertices are Weierstrass. As described

in definition 3.1, we now calculate the gap sequence for each vertex. Gap sequences for vertices

P = {1,2,3,5}, Q,Q′ = {1,2,3,6} and R,R′ = {1,2,4,5}.

Table 3.2: Gap Sequence, Semigroup, Weights for the House - X Graph

Vertex Gap Sequence Semigroup Weight
P {1,2,3,5} {4,6,7,8, ...}=< 4,6,7,9 > 1+2+3+5− 4∗5

2 = 1
Q,Q′ {1,2,3,6} {4,5,7,8, ...}=< 4,5,7 > 1+2+3+6− 4∗5

2 = 2
R,R′ {1,2,4,5} {3,6,7,8, ...}=< 3,7,8 > 1+2+4+5− 4∗5

2 = 2

Therefore, we can conclude that only the vertex P is a normal Weierstrass vertex, but all the vertices

are Weierstrass. Total weight of the House - X graph equals to 2∗4+1 = 9. Furthermore, vertices

Q,Q′,R and R′ are examples for proposition 3.6.
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3.2 Complete Graphs

In a complete graph of n vertices all the vertices are Weierstrass and behave in a similar manner

when we are calculating the rank of a divisor preserving the symmetry. Thus for the calculations

it is enough to consider only one vertex. In this work we are only presenting the calculations for

K4, K5 and K6. Furthermore, after closely observing these results, we predict the calculations for

K7 and so on. Normally in an algebraic curve, gaps occur before or including n = 2g−2 when we

are calculating r(nP), where P is a point on the curve. The house - X graph obeys that pattern, but

complete graphs are slightly deviated maintaining their own structure.

Proposition 3.7

For the complete graphs on n≥ 2 vertices, r(k(v)) = 0 for 0≤ k ≤ n−2, where v is any vertex of

Kn.

Proof.

Let v and w be vertices of Kn and consider the divisor D = k(v) for 0≤ k≤ n−2. Then the divisor

D− 1(w) = k(v)− 1(w) is not effective by Dhar’s burning algorithm as dKn(v) = n− 1 > k. So

r(D)< 1, but, D is effective, hence r(D) = 0

3.2.1 K4

We are first considering the complete graph of 4 vertices. All the vertices are symmetric to each

other. We define the general divisor on K4 such that D = [V1,V2,V3,V4]. For the calculations, we

are only considering V1 because the results are the same for other vertices too. The genus of K4

equals to 3, therefore, we are calculating r(n(V1)) for n = 0,1, ...2g−2 = 4.
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Figure 3.10: K4 with vertices marked.

1. D = 0V1 = [0,0,0,0]: Clearly r(0V1) = 0.

2. D = 1V1 = [1,0,0,0]: We have r(1V1) ≥ 0. Next, we need to check whether r(1V1) ≥ 1.

For that we have to subtract all the effective divisors of degree 1 from D and check the

effectiveness. Consider [1,0,0,0]− [0,1,0,0] = [1,−1,0,0]. Then, sending fire from V2 will

cause the burning of the whole graph but the divisor is not effective. Hence r(1V1) = 0.

3. D = 2V1 = [2,0,0,0]: To check whether r(2V1)≥ 1, consider [2,0,0,0]− [0,1,0,0] =

[2,−1,0,0]. Sending fire from V2 will imply that [2,−1,0,0] is not effective and, hence

r(2V1) = 0

4. D = 3V1 = [3,0,0,0]: Obviously r(3V1) ≥ 0. Next, we need to check whether r(3V1) ≥ 1.

Firing V1 once in the following cases will produce effective divisors such that,

[3,0,0,0]− [1,0,0,0] = [2,0,0,0],

[3,0,0,0]− [0,1,0,0] = [3,−1,0,0]≡ [0,0,1,1],

[3,0,0,0]− [0,0,1,0] = [3,0,−1,0]≡ [0,1,0,1],

[3,0,0,0]− [0,0,0,1] = [3,0,0,−1]≡ [0,1,1,0].

Therefore, r(3V1)≥ 1. Next, we need to check whether r(3V1)≥ 2.

29



Figure 3.11: We first fire V1 and then send fire from V2. This causes the burning of the whole
graph but the divisor, [0,−1,1,1] is not effective. Thus we have r(3V1) = 1.

For the next calculations, we are using the Riemann - Roch formula.

5. D = 4V1 = [4,0,0,0]: Clearly r(4V1)≥ 1. Next, consider (KG−4V1) = [−3,1,1,1], reverse

firing V1 produces [0,0,0,0]. Then, applying Riemann - Roch formula implies r(4V1)−0 =

4−3+1 = 2, that is r(4V1) = 2.

All the calculations for vertices V1, V2, V3 and V4 are summarized in the following table. By

symmetry all the results are the same. Therefore, we are taking a general vertex v∈K4 to represent

these vertices.

Table 3.3: Calculations for the K4 Graph ( g = 3, 2g−2 = 4)

n 0 1 2 3 4 5 6 · · ·
r(n(v)) 0 0 0 1 2 2 3 · · ·

Table 3.4: Gap Sequence, Semigroup, Weights for the K4 Graph

Vertex Gap Sequence Semigroup Weight
v {1,2,5} {3,4,6,7, ...}=< 3,4 > 1+2+5− 3∗4

2 = 2
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3.2.2 K5

In K5 all the vertices are symmetric to each other. We define the general divisor on K5 such that

D = [V1,V2,V3,V4,V5]. For the calculations, we are only considering V1 because the results are the

same for the other vertices too. The genus of K5 equals to 6, therefore, we are calculating r(n(V1))

for n = 0,1, ...2g−2 = 10.

Figure 3.12: K5 with vertices marked.

1. By proposition 3.7, we have r(0V1) = r(1V1) = r(2V1) = r(3V1) = 0.

2. D = 4V1 = [4,0,0,0,0]: Clearly r(4V1)≥ 1. We need to check whether r(4V1)≥ 2.

Figure 3.13: Consider the divisor [4,−2,0,0,0]. First, we fire V1 and this produces [0,−1,1,1,1],
which is not effective. Hence r(4V1) = 1
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3. D = 5V1 = [5,0,0,0,0]: We have r(5V1)≥ 1. Next, consider all the effective divisors of de-

gree 2. Clearly, [5−1,−1,0,0,0], [5−1,0,−1,0,0], [5−1,0,0,−1,0] and [5−1,0,0,0,−1]

are the same as in the previous case. Therefore, these divisors are equivalent to the effective

divisors.

Fire V1 once



[5,−1,−1,0,0]≡ [1,0,0,1,1]

[5,−1,0,−1,0]≡ [1,0,1,0,1]

[5,−1,0,0,−1]≡ [1,0,1,1,0]

[5,0,−1,−1,0]≡ [1,1,0,0,1]

[5,0,−1,0,−1]≡ [1,1,0,1,0]

[5,0,0,−1,−1]≡ [1,1,1,0,0]

Figure 3.14: For [5,−2,0,0,0], firing V1 once and then reverse firing V2 will produce the effective
divisor [0,3,0,0,0]. Similarly [5,0,−2,0,0], [5,0,0,−2,0] and [5,0,0,0,−2] are also equivalent
to the effective divisors respectively.

Thus r(5V1)≥ 2. However, [5,0,0,0,0]− [0,2,1,0,0] = [5,−2,−1,0,0] is not equivalent to

an effective divisor. Therefore, r(5V1) = 2.

For the next calculations, we are using the Riemann - Roch formula.

4. D = 6V1 = [6,0,0,0,0]: Consider (KG− 6V1) = [2,2,2,2,2]− [6,0,0,0,0] = [−4,2,2,2,2]

which is equivalent to [0,1,1,1,1] when reverse firing V1 once. Therefore, trivially
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r(KG− 6V1) ≥ 1. However, [0,1,1,1,1]− [1,1,0,0,0] = [−1,0,1,1,1] is not equivalent to

an effective divisor. Hence r(KG− 6V1) = 1. Then applying Riemann - Roch formula, we

have r(6V1)−1 = 6−6+1 implies r(6V1) = 2.

5. D = 7V1 = [7,0,0,0,0]: Consider (KG− 7V1) = [2,2,2,2,2]− [7,0,0,0,0] = [−5,2,2,2,2]

which is equivalent to [3,0,0,0,0] when reverse firing V1 twice. This implies r(KG−7V1) =

0. Therefore, by Riemann - Roch formula we have, r(7V1)−0= 7−6+1 implies r(7V1)= 2.

6. D = 8V1 = [8,0,0,0,0]: Consider (KG− 8V1) = [2,2,2,2,2]− [8,0,0,0,0] = [−6,2,2,2,2]

which is equivalent to [2,0,0,0,0] when reverse firing V1 twice. Clearly, r(KG− 8V1) = 0.

Therefore, by Riemann - Roch formula we have, r(8V1)−0 = 8−6+1 implies r(8V1) = 3.

7. D = 9V1 = [9,0,0,0,0]: Consider (KG− 9V1) = [2,2,2,2,2]− [9,0,0,0,0] = [−7,2,2,2,2]

which is equivalent to [1,0,0,0,0] when reverse firing V1 twice. Clearly, r(KG− 9V1) = 0.

Therefore, by Riemann - Roch formula we have, r(9V1)−0 = 9−6+1 implies r(9V1) = 4.

8. D = 10V1 = [10,0,0,0,0]: Consider (KG−10V1) = [2,2,2,2,2]− [10,0,0,0,0] =

[−8,2,2,2,2] which is equivalent to [0,0,0,0,0] when reverse firing V1 twice. Clearly,

r(KG−10V1) = 0. Therefore, by Riemann - Roch formula we have, r(10V1)−0 = 10−6+1

implies r(10V1) = 5.

All the calculations for vertices V1, V2, V3, V4 and V5 are summarized in the following table. By

symmetry all the results are the same. Therefore, we are taking a general vertex v∈K5 to represent

these vertices.

Table 3.5: Calculations for the K5 Graph ( g = 6, 2g−2 = 10)

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 · · ·
r(n(v)) 0 0 0 0 1 2 2 2 3 4 5 5 6 7 · · ·
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Table 3.6: Gap Sequence, Semigroup, Weights for the K5 Graph

Vertex Gap Sequence Semigroup Weight
v {1,2,3,6,7,11} {4,5,8,9,10,12...}=< 4,5 > 1+2+3+6+7+11− 6∗7

2 = 9

3.2.3 K6

Similarly in K6 all the vertices are symmetric to each other. We define the general divisor on K6 to

be D = [V1,V2,V3,V4,V5,V6]. For the calculations we are only considering V1 because the results

are the same for the other vertices too. The genus of K6 equals to 10. Therefore, we are calculating

r(n(V1)) for n = 0,1, ...2g−2 = 18.

Figure 3.15: K6 with vertices marked.

1. By proposition 3.7, we have r(0V1) = r(1V1) = r(2V1) = r(3V1) = r(4V1) = 0.

2. D = 5V1 = [5,0,0,0,0,0] : Trivially r(5V1) = 1.

3. D = 6V1 = [6,0,0,0,0,0] : Clearly r(6V1)≥ 1. Next, we need to check the effectiveness of

D - degree 2 effective divisors. Clearly, [6−1,−1,0,0,0,0], [6−1,0,−1,0,0,0],

[6−1,0,0,−1,0,0], [6−1,0,0,0,−1,0] and [6−1,0,0,0,0,−1] are the same as in the pre-

vious case. Therefore, these divisors are equivalent to the effective divisors.
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Fire V1 once



[6,−1,−1,0,0,0]≡ [1,0,0,1,1,1]

[6,−1,0,−1,0,0]≡ [1,0,1,0,1,1]

[6,−1,0,0,−1,0]≡ [1,0,1,1,0,1]

[6,−1,0,0,0,−1]≡ [1,0,1,1,1,0]

[6,0,−1,−1,0,0]≡ [1,1,0,0,1,1]

[6,0,−1,0,−1,0]≡ [1,1,0,1,0,1]

[6,0,−1,0,0,−1]≡ [1,1,0,1,1,0]

[6,0,0,−1,−1,0]≡ [1,1,1,0,0,1]

[6,0,0,−1,0,−1]≡ [1,1,1,0,1,0]

[6,0,0,0,−1,−1]≡ [1,1,1,1,0,0]

Figure 3.16: Next consider, [6,−2,0,0,0,0] and fire V1 once. This will produce the divisor
[1,−1,1,1,1,1]. Then reverse firing V2 produces [0,4,0,0,0,0], which is effective. Similarly,
[6,0,−2,0,0,0], [6,0,0,−2,0,0], [6,0,0,0,−2,0] and [6,0,0,0,0,−2] are also equivalent to the
effective divisors.

Hence r(6V1)≥ 2. However, [6,0,0,0,0,0]− [0,2,1,0,0,0] = [6,−2,−1,0,0,0] is not equiv-

alent to an effective divisor. Therefore, r(6V1) = 2.

4. D = 7V1 = [7,0,0,0,0,0] : Clearly, r(7V1)≥ 2. But,

[7,0,0,0,0,0]− [0,2,1,0,0,0] = [7,−2,−1,0,0,0] is not equivalent to an effective divisor.

Hence r(7V1) = 2.
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5. D = 8V1 = [8,0,0,0,0,0]: We have r(8V1) ≥ 2. However, [8,0,0,0,0,0]− [0,2,1,0,0,0] =

[8,−2,−1,0,0,0] is not equivalent to an effective divisor. Therefore, r(8V1) = 2.

6. D = 9V1 = [9,0,0,0,0,0]: Clearly, r(9V1)≥ 2. But,

[9,0,0,0,0,0]− [0,2,1,0,0,0] = [9,−2,−1,0,0,0] is not equivalent to an effective divisor.

Thus r(9V1) = 2.

For the rest of calculations, we are using the Riemann - Roch formula.

7. D = 10V1 = [10,0,0,0,0,0]: Consider (KG − 10v1) = [3,3,3,3,3,3]− [10,0,0,0,0,0] =

[−7,3,3,3,3,3]. Reverse firing V1 thrice will give [8,0,0,0,0,0]. By part 5, r(KG−10v1) =

2. Then applying Riemann - Roch formula will give, r(10V1)− 2 = 10− 10+ 1 which im-

plies, r(10V1) = 3.

8. D = 11V1 = [11,0,0,0,0,0]: Consider (KG − 11v1) = [3,3,3,3,3,3]− [11,0,0,0,0,0] =

[−8,3,3,3,3,3]. Reverse firing V1 thrice will give [7,0,0,0,0,0]. By part 4, r(KG−11v1) =

2. Then applying Riemann - Roch formula will give, r(11V1)− 2 = 11− 10+ 1 which im-

plies, r(11V1) = 4.

9. D = 12V1 = [12,0,0,0,0,0]: Consider (KG − 12v1) = [3,3,3,3,3,3]− [12,0,0,0,0,0] =

[−9,3,3,3,3,3]. Reverse firing V1 thrice will give [6,0,0,0,0,0]. By part 3, r(KG−12v1) =

2. Then applying Riemann - Roch formula will give, r(12V1)− 2 = 12− 10+ 1 which im-

plies, r(12V1) = 5.

10. D = 13V1 = [13,0,0,0,0,0]: Consider (KG − 13v1) = [3,3,3,3,3,3]− [13,0,0,0,0,0] =

[−10,3,3,3,3,3]. Reverse firing V1 thrice will give [5,0,0,0,0,0]. By part 2, r(KG−13v1) =

1. Then applying Riemann - Roch formula will give, r(13V1)− 1 = 13− 10+ 1 which im-

plies, r(13V1) = 5.

11. D = 14V1 = [14,0,0,0,0,0]: Consider (KG − 14v1) = [3,3,3,3,3,3]− [14,0,0,0,0,0] =
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[−11,3,3,3,3,3]. Reverse firing V1 thrice will give [4,0,0,0,0,0]. By part 1, r(KG−14v1) =

0. Then applying Riemann - Roch formula will give, r(14V1)− 0 = 14− 10+ 1 which im-

plies, r(14V1) = 5.

12. D = 15V1 = [15,0,0,0,0,0]: Consider (KG − 15v1) = [3,3,3,3,3,3]− [15,0,0,0,0,0] =

[−12,3,3,3,3,3]. Reverse firing V1 thrice will give [3,0,0,0,0,0]. By part 1, r(KG−15v1) =

0. Then applying Riemann - Roch formula will give, r(15V1)− 0 = 15− 10+ 1 which im-

plies, r(15V1) = 6.

13. D = 16V1 = [16,0,0,0,0,0]: Consider (KG − 16v1) = [3,3,3,3,3,3]− [16,0,0,0,0,0] =

[−13,3,3,3,3,3]. Reverse firing V1 thrice will give [2,0,0,0,0,0]. By part 1, r(KG−16v1) =

0. Then applying Riemann - Roch formula will give, r(16V1)− 0 = 16− 10+ 1 which im-

plies, r(16V1) = 7.

14. D = 17V1 = [17,0,0,0,0,0]: Consider (KG − 17v1) = [3,3,3,3,3,3]− [17,0,0,0,0,0] =

[−14,3,3,3,3,3]. Reverse firing V1 thrice will give [1,0,0,0,0,0]. By part 1, r(KG−17v1) =

0. Then applying Riemann - Roch formula will give, r(17V1)− 0 = 17− 10+ 1 which im-

plies, r(17V1) = 8.

15. D = 18V1 = [18,0,0,0,0,0]: Consider (KG − 18v1) = [3,3,3,3,3,3]− [18,0,0,0,0,0] =

[−15,3,3,3,3,3]. Reverse firing V1 thrice will give [0,0,0,0,0,0]. By part 1, r(KG−18v1) =

0. Then applying Riemann - Roch formula will give, r(18V1)− 0 = 18− 10+ 1 which im-

plies, r(18V1) = 9.

Next, we have r(nV1) = n−g = n−10 for all n≥ 19, from section 3.3, step 2.

All the calculations for vertices V1, V2, V3, V4, V5 and V6 are summarized in the following table. By

symmetry all the results are the same. Therefore, we are taking a general vertex v∈K6 to represent

these vertices.
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Table 3.7: Calculations for the K6 Graph ( g = 10, 2g−2 = 18)

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
r(n(v)) 0 0 0 0 0 1 2 2 2 2 3 4 5 5 5 6 7 8 9 9

n 20 21 22 · · ·
r(n(v)) 10 11 12 · · ·

Table 3.8: Gap Sequence, Semigroup, Weights for the K6 Graph

Gap Sequence {1,2,3,4,7,8,9,13,14,19}
Semigroup {5,6,10,11,12,15,16, ...}=< 5,6 >

Weight (1+2+3+4+7+8+9+13+14+19)− 10∗11
2 = 25

3.2.4 Predictions and conjecture

After closely observing these calculations we can see a pattern in the r(n(v)) values of a complete

graph. Moreover, we can observe that always the gap sequence of a complete graph contains

n = 2g− 1, as the last gap value deviates from the gap sequence structure of an algebraic curve.

Furthermore, we can see gaps occurring when r(n(v)) = 0,2(= g−1) for K4, r(n(v)) = 0,2,5(=

g−1) for K5 and r(n(v)) = 0,2,5,9(= g−1) for K6.

Therefore, we can predict the gap occurrence for K7. Gaps must occur when r(n(v))= 0,2,5,9,14(=

g− 1), where the genus of K7 is 15. Similarly, we can predict for Kn such that gaps must occur

when r(n(v)) = 0,2,5,9,14, ...,g−1 where g is the genus of Kn. Furthermore, we can predict how

many n values are occurring at each of these r(n(v))′s. And also, from the proposition 3.7, we can

determine the occurrence of zeros.

Next, without doing any direct calculations, we are going to predict the gap sequence, semigroup

and weights for K7.
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The genus of K7 equals to 15. Therefore, we are interested in predicting the r(n(v)) values for

n = 0,1,2, ....,2g−2 = 28.

Table 3.9: Calculations for the K7 Graph ( g = 15, 2g−2 = 28)

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
r(n(v)) 0 0 0 0 0 0 1 2 2 2 2 2 3 4 5 5 5 5 6 7

n 20 21 22 23 24 25 26 27 28 29 30 · · ·
r(n(v)) 8 9 9 9 10 11 12 13 14 14 15 · · ·

Table 3.10: Gap Sequence, Semigroup, Weights for the K7 Graph

Gap Sequence {1,2,3,4,5,8,9,10,11,15,16,17,22,23,29}
Semigroup {6,7,12,13,14,18,19,20,21,24,25,26,27,28,30...}=< 6,7 >

Weight (1+2+3+4+5+8+9+10+11+15+16+17+ ...+29)− 15∗16
2 = 55

Likewise, we can determine the weights for higher cases of complete graphs. Next, we are propos-

ing following two lemmas and a proposition before presenting our main result.

Lemma 3.8

For any vertex v of Kn for n≥ 4, r((n−1)v) = 1.

Proof.

Clearly, r((n−1)v)≥ 0 as D = (n−1)v is effective. Next, we need to check whether

r((n−1)v)≥ 1. Since, dKn(v) = n−1, for any w(6= v) ∈V (Kn) , D′ = D−1(w) is equivalent to an

effective divisor if we fire v once. But, D−2(w) is not equivalent to an effective divisor by Dhar’s

burning algorithm. Therefore, r((n−1)v) = 1.
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Lemma 3.9

For any vertex v of Kn for n≥ 4, r(n(v)) = 2.

Proof.

Clearly by lemma 3.8 we have r(n(v)) ≥ 1. Next, we need to check whether r(n(v)) ≥ 2. Let

D = n(v) and we need to subtract all the degree 2 effective divisors from D need to check the

effectiveness of resulting divisor. We have 3 possibilities;

Case I: n(v)− (1(v)+1(w)) for any w(6= v) ∈V (Kn) is same as the previous case and hence, it is

effective.

Case II: n(v)− (1(w) + 1(x)) is equivalent to an effective divisor when we fire v once. Where

w,x(6= v) ∈V (Kn)

Case III: n(v)− 2(v) is clearly effective and n(v)− 2(w) for any w(6= v) ∈ V (Kn) is equivalent to

an effective divisor when we first fire v and then reverse fire w.

Hence, r(n(v)) ≥ 2. But for n(v)− (1(v)+ 2(w)) is not equivalent to an effective divisor by the

proof of lemma 3.8. Therefore, r(n(v)) = 2.

Proposition 3.10

Weierstrass Semigroup for complete graph on n vertices for n ≥ 4 is 2 - generated and given by

< n−1,n >.

Proof.

We are going to prove this by contradiction. Assume semigroup of Kn forn ≥ 4 is 3 - generated.

Then by the proposition 3.7, third generating element can’t be less than or equal to n− 2. Then

it sould be between n+ 1 and 2n− 2 since, the last gap value occurs at 2n− 1. But, this violates
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cardinality of gap sequence. Hence, this is a contradiction.

Next, considering these results and combining the weight sequence for complete graphs with an

integer sequence [20], we present the following theorem.

Theorem 3.11

The Weierstrass weight of a vertex of Kn is given by the formula, (n−1)(n−2)(n−3)(n+4)
24 .

Since for K1,K2 and K3 no vertex is Weierstrass, from this formula we get the weight for a non-

Weierstrass vertex is equals to 0.
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CHAPTER 4: BOUND ON WEIERSTRASS WEIGHT

On a Riemann surface, the Weierstrass weight is exactly g3− g. But for graphs this is only an

upper bound on the weight of g3−g. Here we introduce the conjecture that no graph with g3−g

vertices with genus g has exactly g3−g normal Weierstrass vertices. For the algebraic curve case,

when g≥ 2 Weierstrass points always exist, however, for graphs it is not the same. There are some

graph families which do not contain Weierstrass vertices even though g ≥ 2, and in some other

cases such as complete graphs with |V (G)| ≥ 4, all the vertices are Weierstrass. Refer to example

4.4 in [4].

In this study we prove this fact for the genus 2 case taking into consideration all the non-isomorphic

graphs with 6 vertices and 7 edges, when g = 2, g3−g = 6. According to the Atlas of Graphs [18],

there are 24 non-isomorphic graphs of genus 2 having 6 vertices and 7 edges. After eliminating

disconnected graphs, 19 graphs are left for the calculations. Graph numbering was done according

to [18], refer to page 10. We have used the properties of the rank, symmetry properties of the graph

and Dhar’s burning algorithm to determine whether a vertex is Weierstrass or not, according to the

definition given in Chapter 2.

A vertex v has the Weierstrass property when r(g(v)) ≥ 1 or r(KG− g(v)) ≥ 0 where, KG is the

canonical divisor. The vertices which satisfy the symmetry with a vertex (say x) are denoted by x′,

x′′, etc. throughout this chapter.

Theorem 4.1

There is no finite, connected, undirected and unweighted multi graph without loop edges with 6

vertices and genus 2 with all vertices being normal Weierstrass vertices.

The proof of this theorem will be by direct examination of cases.
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4.1 Calculations for the family of graphs of genus 2 with 6 vertices & 7 edges

4.1.1 Cycle of length 4 with handles and a chord (G111, G112, G113, G114, G115, G120, G123)

In this section we consider all the graphs with 6 vertices having a length 4 cycle with a chord and

two handles or one subdivided handle. All of them share some kind of a common structure. The

graphs in this category with their canonical divisors are shown below.

Figure 4.1: Cycle of length 4 with handles and a chord and their canonical divisor.

Corresponding to these 7 graphs there are 7 canonical divisors which can be transformed to become

effective divisors by reverse firing moves as described in chip firing game (Baker’s version). For

the process of G123 and G120 it is not as straightforward. You must consider either G120 or G123

and first reverse fire x, next reverse fire y and finally reverse fire x again and do the same for the
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other graph. Next we need to check the Weierstrass property for all these graphs.

1. G111: KG = [x,x′,y,z,z′,w]≡ [−1,−1,3,0,0,1]≡ [0,0,1,0,0,1].

To verify the Weierstrass property of each vertex, we can easily use the second definition;

r(KG−2(v))≥ 0.

(KG−2(x))≡ [−2,0,1,0,0,1], reverse firing x gives [−1,0,0,0,0,1]. At this point sending

fire from x will cause the burning of the entire graph but the divisor is not effective. Hence x

and x′ are not Weierstrass.

(KG−2(y))≡ [0,0,−1,0,0,1], then sending fire from y causes the whole graph to burn and

the divisor is not effective. Therefore, y is not Weierstrass and because of the same structure

w is also not Weierstrass.

(KG−2(z))≡ [0,0,1,−2,0,1], reverse firing z gives [0, 0, 0, 0, 0, 0] which is effective and

hence r(KG−2(z))≥ 0. Thus z and z′ are Weierstrass.

2. G112: KG = [x,y,z,z′,y′,x′] ≡ [−1,2,0,0,2,−1] ≡ [0,1,0,0,1,0]. Because the format is

same as G111, it implies only z and z′ are the Weierstrass vertices of G112.

3. G120: KG = [x,y,z,w,w′,s]≡ [−1,0,2,0,0,1]≡ [0,0,1,0,0,1]. Similarly only w and w′ are

the Weierstrass vertices.

4. G113: KG = [x,y,z,w, t,s]≡ [−1,−1,1,2,0,1]≡ [0,0,0,1,0,1]. Using the definition r(KG−

g(v))≥ 0, it’s obvious that s and w are not Weierstrass. Consider (KG−2(z))≡ [0,0,−2,1,0,1].

Sending fire from z will burn only x then firing all the other vertices simultaneously produces

[0,0,0,0,0,0] implying that z is Weierstrass. Similarly, t is Weierstrass. Next consider

(KG−2(x))≡ [−2,0,0,1,0,1]. First fire y,w,s, t simultaneously to produce [−2,0,2,0,0,0].

Then reverse firing x will give the zero divisor, hence x is Weierstrass. For (KG− 2(y)) ≡

[0,−2,0,1,0,1] first reverse firing y and then sending fire from y will cause the burning of

the whole graph but the divisor is not effective. Therefore y is not Weierstrass.
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5. G114: Canonical divisor KG is given by,

KG = [x,x′,y,z,z′,w]≡ [−1,−1,2,1,1,0]≡ [0,0,0,1,1,0]. After observing the pattern from

previous calculations it clearly implies that w is a Weierstrass vertex. And also y is Weier-

strass by the same argument and that forces x and x′ to be Weierstrass. But z and z′ are

not Weierstrass, because (KG−2(z))≡ [0,0,0,−1,1,0] can’t be transformed to an effective

divisor and this is verified by Dhar’s burning algorithm.

6. G115: KG = [x,y,z,z′,y′,x′]≡ [−1,1,1,1,1,−1]≡ [0,0,1,1,0,0], almost same as G112 with

zz′ edge instead of yy′ edge. Following the same pattern first y and y′ are therefore Weierstrass

and that implies x and x′ are Weierstrass. Applying the same argument as in G114, z and z′

are not Weierstrass.

7. G123: Except w and w′, the rest are Weierstrass vertices which is the exact opposite of G120.

Figure 4.2: G111, G112, G113, G114, G115, G120, G123 with Weierstrass vertices marked in red.
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4.1.2 Cycle of length 4 with a subdivided chord and a handle (G121, G125)

Figure 4.3: Cycle of length 4 with a subdivided chord and a handle and their canonical divisor.

1. G121: The canonical divisor of G121 KG = [x,y,w,z,w′,s] ≡ [−1,2,0,0,0,1] can be trans-

formed to an effective divisor by reverse firing x one time; KG = [0,1,0,0,0,1]. Next we

need to check the Weierstrass property of each vertex.

Consider (KG − 2(x)) ≡ [−2,1,0,0,0,1], when you send fire from x it will stop at y as

divisor value is 1 at y. Then, fire all the other vertices except x simultaneously gives

(KG− 2(x)) ≡ [−1,0,0,0,0,1]. Firing x again will cause the burning of the whole graph

but the divisor is not effective. Hence x is not Weierstrass.

Following the pattern in section 4.1.1 implies y and s are also not Weierstrass.

Next consider (KG−2(w))≡ [0,1,−2,0,0,1], firing x,y,z,s,w′ simultaneously will give the

zero divisor implying r(KG− 2(w)) ≥ 0. Therefore w and w′ are Weierstrass. By a similar

argument we can show that z is also Weierstrass.

2. G125: KG = [x,y,w,z,w′,s] ≡ [−1,1,1,0,1,0] ≡ [0,0,1,0,1,0]. Clearly w and w′ are not

Weierstrass. Consider (KG− 2(y)) ≡ [0,−2,1,0,0,1]. Then sending fire from y will leave
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w,w′,z,s unburned. Firing these vertices simultaneously will give the zero divisor which is

effective hence y is Weierstrass, and this implies x is also Weierstrass. Similarly z and s are

also Weierstrass.

Figure 4.4: G121, G125 with Weierstrass vertices marked in red.
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4.1.3 Cycle of length 5 with a handle and chord (G118, G122, G124)

In this subsection we consider all the non-isomorphic graphs having 6 vertices and 7 edges with

cycle of length 5 and a chord and handle.

Figure 4.5: Cycle of length 5 with a handle and chord and their canonical divisor.

These canonical divisors are not effective, but easily can be converted to effective divisors by

reverse firing x once.

1. G118: KG = [x,y,z,w, t,s]≡ [−1,2,0,0,1,0]≡ [0,1,0,0,1,0]. First consider (KG−2(x))≡

[−2,1,0,0,1,0] , reverse fire x and then sending fire from x will cause the burning of the

entire graph. But the divisor is not effective, hence x is not Weierstrass. Next, (KG−2(y))≡

[0,−1,0,0,1,0] implies burning the whole graph when sending fire from y. Therefore y is

also not Weierstrass. Next consider z and s, both are not Weierstrass which can be eas-

ily verified by Dhar’s burning algorithm. Same as y, t is also not Weierstrass. We have

(KG−2(w)) ≡ [0,1,0,−2,1,0], reverse firing w is equivalent to the zero divisor hence w is

Weierstrass.
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2. G124: Follows the same pattern as G118. Therefore y is a Weierstrass vertex and this implies

x is also Weierstrass. The rest is not.

3. G122: Similarly s is the only Weierstrass vertex of G122.

Figure 4.6: G118, G122, G124 with Weierstrass vertices marked in red.
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4.1.4 Cycle of length 6 with a chord (G127, G128)

Here we have cycles of length 6. Since |E(G)|= 7, one edge becomes a chord. Canonical divisors

are effective. Therefore we only need to check whether r(KG−2(v))≥ 0 for all v ∈V (G).

Figure 4.7: Cycle of length 6 with a chord and their canonical divisor.

1. G127: Here KG = [x,y,y′,w,w′,z]≡ [0,1,1,0,0,0]. First consider (KG−2(x))= [−2,1,1,0,0,0],

reverse firing x will give the zero divisor. This implies r(KG− 2(x)) ≥ 0 and hence x is

Weierstrass. Obviously y and y′ are not Weierstrass because if you send fire from y or y′

accordingly, the whole graph will burn, but the divisor is not effective.

Next consider (KG − 2(w)) = [0,1,1,−2,0,0], sending fire from w will leave y,y′,x un-

burned. Then firing y,y′,x simultaneously gives (KG− 2(w)) = [0,0,0,−1,1,0] which is

not equivalent to an effective divisor. Therefore, w and w′ are not Weierstrass. By the same

argument as for vertex x, we can show that z is also Weierstrass.

2. G128: From G127 it follows that G128 can’t have any Weierstrass vertices.
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Figure 4.8: G127, G128 with Weierstrass vertices marked in red.

4.1.5 Bow-tie with a handle (G117, G119)

In this subsection we consider the following two graphs in a shape of a bow-tie with one vertex

having degree 1.

Figure 4.9: Bow-tie with a handle and their canonical divisor.

These canonical divisors are not effective, but reverse firing x will give effective divisors

[x,y,z,z′,z′′,z′′′]≡ [0,2,0,0,0,0] and [x,y,z,w,s, t]≡ [0,0,0,0,2,0], respectively.
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1. G117: Since (KG− 2(y)) = [0,0,0,0,0,0], y is Weierstrass and hence x is also Weierstrass

because we only need to reverse fire x twice.

Next consider (KG − 2(z)) = [0,2,−2,0,0,0]. Sending fire from z will leave x,y,z′,z′′′

unburned. Then firing x,y,z′,z′′′ simultaneously gives (KG − 2(z)) = [0,2,−2,0,0,0] ≡

[0,0,−1,0,1,0], and again sending fire from z will cause the burning of the whole graph

and the divisor is not effective, hence z is Weierstrass. Because of symmetry z′,z′′,z′′′ are

also not Weierstrass.

2. G119: From the same argument as in G117, it follows that only s is Weierstrass.

Figure 4.10: G117, G119 with Weierstrass vertices indicated in red.
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4.1.6 Remaining Graphs (G126, G129, G130)

Here we have 3 graphs with minimum degree = 2. Therefore canonical divisors are effective. We

only need to check the Weierstrass property of each vertex.

Figure 4.11: Remaining Graphs and their canonical divisors.

1. G126: KG = [x,y,y′,z,w,w′] ≡ [0,0,0,2,0,0]. Clearly z is Weierstrass as (KG− 2(z)) =

[0,0,0,0,0,0].

Consider (KG−2(w)) = [0,0,0,2,−2,0], sending fire from w will leave z,y,y′,x unburned.

Firing these vertices simultaneously will lead to [0,0,0,0,−1,1]. Then again sending fire

from w will burn the whole graph, but the divisor is not effective. Hence w is not Weierstrass.

Because of the symmetry w′ is also not Weierstrass. By a similar argument we can show that

y and y′ are also not Weierstrass.

Take (KG−2(x)) = [−2,0,0,2,0,0]; sending fire from x will leave z,w,w′ unburned. Firing

z,w,w′ simultaneously and reverse firing x will lead to an effective divisor. Therefore x is

Weierstrass.

2. G129: Similarly x and x′ are Weierstrass but y and y′ are not.
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Consider (KG−2(w))= [x,y,y′,x,w,w′]≡ [0,1,1,0,−2,0] sending fire from w will only burn

w′. Then firing x,x′,y,y′ simultaneously will give [0,0,0,0,−1,1] which can’t be converted

to an effective divisor. Thus w and also w′ are not Weierstrass vertices.

3. G130: KG = [x,x′,y,y′,x′′,x′′′] ≡ [0,0,1,1,0,0]. Consider (KG− 2(x)) = [−2,0,1,1,0,0].

Sending fire from x will burn only x′ and y. Then we need to fire the unburned vertices

simultaneously which will lead to [−2,0,2,0,0,0]. Now again firing x′′,x′′′,y,y′ simulta-

neously implies [−1,1,0,0,0,0]. But this divisor is not equivalent to an effective divisor.

Therefore x is not Weierstrass. x′,x′′,x′′′ are also not Weierstrass as they are symmetric with

respect to x.

Next consider (KG−2(y)) = [0,0,−1,1,0,0] ≡ [0,0,0,0,0,0], which can be easily verified

using Dhar’s burning algorithm. Therefore y and y′ are Weierstrass.

Figure 4.12: G126, G129, G130 with Weierstrass vertices marked in red.
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4.2 Conjecture

Here we have considered graphs with genus 2 having exactly g3− g = 23− 2 = 6 vertices. Af-

ter carefully observing these results we can detect some interesting properties or behaviors of

graphs. According to our calculations, the maximum number of Weierstrass vertices in this family

of graphs equals to 4. Therefore if all the vertices are normal Weierstrass vertices that are having

weight 1, maximum weight also must be equal to 4 which is strictly less than 23−2.

Even though for algebraic curves when g≥ 2 there is always a finite number of Weierstrass verit-

ices, but for graphs it is different. G128 works as a counter example. For curves there are at least

2g+2 number of Weierstrass vertices. However, we have proved that for graphs this is not always

true by considering all the non-isomorphic graphs of genus 2 and 6 vertices.

After considering all these observations we present the following conjecture.

Conjecture

There doesn’t exist a finite, connected, undirected and unweighted multi graph G = (V,E) without

loop edges of genus g with |V (G)|= g3−g all of whose vertices are normal Weierstrass vertices.

We have proved this conjecture for g = 2. Other cases remain open.
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK

In this thesis our main goal was to study the occurrence, density and the weights of Weierstrass

vertices in certain families of graphs analogous to the algebraic curve case. We have studied com-

plete graphs and genus 2 graphs having 6 vertices. In addition, we have calculated gap sequence

for the House - X graph which is a direct application of proposition 3.6.

The family of complete graphs share many interesting properties. In [13, page 26], William D.

Lindsay Jr. presents a corollary to say that all the verices of Kn for n ≥ 4 are Weierstrass. Since

there is a symmetry in complete graphs, we have taken a general vertex in Kn to represent all the

vertices of it. Therefore, we can define a gap sequence and a Semigroup for Kn which is unique

for itself for n = 4,5,6, .... Additionally, we have provided a proposition together with a proof

(proposition 3.7), to determine the occurrence of zeros in the gap sequence of Kn for n ≥ 3. We

have performed direct calculations for K4,K5 and K6 with help of Dhar’s burning algorithm and

we have predicted the gap sequence, weights and Semigroup for K7 and higher cases. Considering

all these facts about complete graphs we have presented a theorem and two propositions with their

proofs on the weight of a vertex in Kn and the Semigroup of Kn in the section 3.2.4.

Moreover, in the chapter 4 we have elaborated the results on family of genus 2 graphs having 6

vertices, performing direct calculations for total of 19 graphs. Therefore, we have proved that there

is no finite, connected, undirected and unweighted multi graph without loop edges with 6 vertices

and genus 2 with all vertices being normal Weierstrass vertices. Furthermore, we conjecture that

there doesn’t exist a finite, connected, undirected and unweighted multi graph G = (V,E) without

loop edges of genus g with |V (G)|= g3−g all of whose vertices are normal Weierstrass vertices.

This conjecture remains open for g≥ 3.

As an extension of this work, we can look on family of cycles with chords having for Weierstrass
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property. Moreover, we can study the two generated Semigroups obtained from the complete

graphs for more interesting observations. Furthermore, we can study complete bipartite graphs.

In this thesis we have presented a conjectures, therefore, we can try to come up with a reasonable

proofs for this conjecture.
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