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ABSTRACT

This dissertation is composed of two parts. In Part I a technique based on extended Lax Pairs is

first considered to derive variable-coefficient generalizations of various Lax-integrable NLPDE hi-

erarchies recently introduced in the literature. It is demonstrated that the technique yields Lax- or

S-integrable nonlinear partial differential equations (nlpdes) with both time-and space-dependent

coefficients which are thus more general than almost all cases considered earlier via other methods

such as the Painlevé Test, Bell Polynomials, and various similarity methods. However, this tech-

nique, although operationally effective, has the significant disadvantage that, for any integrable

system with spatiotemporally varying coefficients, one must ’guess’ a generalization of the struc-

ture of the known Lax Pair for the corresponding system with constant coefficients. Motivated

by the somewhat arbitrary nature of the above procedure, we present a generalization to the well-

known Estabrook-Wahlquist prolongation technique which provides a systematic procedure for

the derivation of the Lax representation. In order to obtaina nontrivial Lax representation we

must impose differential constraints on the variable coefficients present in the nlpde. The resulting

constraints determine a class of equations which representgeneralizations to a previously known

integrable constant coefficient nlpde. We demonstate the effectiveness of this technique by de-

riving variable-coefficient generalizations to the nonlinear Schrodinger (NLS) equation, derivative

NLS equation, PT-symmetric NLS, fifth-order KdV, and three equations in the MKdV hierarchy. In

Part II of this dissertation, we introduce three types of singular manifold methods which have been

successfully used in the literature to derive exact solutions to many nonlinear PDEs extending over

a wide range of applications. The singular manifold methodsconsidered are: truncated Painlevé

analysis, Invariant Painlevé analysis, and a generalized Hirota expansion method. We then con-

sider the KdV and KP-II equations as instructive examples before using each method to derive

nontrivial solutions to a microstructure PDE and two generalized Pochhammer-Chree equations.
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PART I: VARIABLE COEFFICIENT LAX-INTEGRABLE SYSTEMS
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CHAPTER 1: INTRODUCTION

For a nonlinear partial differential equation (nlpde) the phase space is infinite dimensional and

thus extension of integrability of a Hamiltonian system in the Liouville-Arnold sense becomes

troublesome. As such, a universally accepted definition of integrability within the context of nlpdes

does not exist in the literature [1]- [5]. For the purposes ofthis dissertation, we will consider a nlpde

to be completely integrable if it can be expressed as the compatibility condition of a nontrivial Lax

pair. Here we take a trivial Lax pair to be one for which dependence on the spectral parameter

can be removed through a Gauge transformation. Indeed, if a nlpde is shown to possess a Lax pair

then from it one may derive a variety of remarkable properties, including the existence of infinitely

many conserved quantities. More specifically, consider a nlpde in1 + 1

F

(

u,
∂m+nu

∂xm∂tn

)

= 0 (1.1)

whereF : A → B is a continuous function from a function spaceA to another function space

B. We say that (1.1) possesses a Lax representation if there exist matricesU,V ∈ M n×n(C),

whereM n×n(C) is the set ofn × n matrices with entries inC, such that compatibility of the set

of equations

Φx = UΦ, Φt = VΦ (1.2)

is achieved upon satisfaction of (1.1). We say that a Lax pair{U,V} is nontrivial if it depends

(nontrivially) on a spectral parameter. The matricesU andV are known as the space and time

evolution matrices for the scattering problem (1.2), respectively. Compatability of (1.2) requires
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the cross-derivative conditionΦxt = Φtx be satisfied. That is,

0̇ = ΦxtΦtx = UtΦ + UΦt − VxΦ− VΦx

= UtΦ + UVΦ− VΦ− VUΦ

= (Ut − Vx + UV − VU) Φ, (1.3)

where0̇ is equivalent to the zero matrix upon satisfaction of (1.1).Introducing the commutator

operation[A,B] = AB − BA the previous equation impliesU andV satisfy

Ut − Vx + UV − VU = 0̇. (1.4)

This equation is known as thezero-curvature conditionand will form the basis of our investigation

in Part I.

Variable-coefficient nonlinear partial differential equations have a long history dating from their

derivations in a variety of physical contexts [6]- [18]. However, almost all studies, including

those which derived exact solutions by a variety of techniques, as well as those which considered

integrable sub-cases and various integrability properties by methods such as Painlevé analysis,

Hirota’s method, and Bell Polynomials, treat variable-coefficient nlpdes with coefficients which

are functions of the time only. Due to their computational complexity and lack of an efficient

method for deriving the conditions for Lax integrability, the question of integrability for equations

with time and space dependent coefficients has largely been ignored.

In chapter 2 we introduce a method recently presented in the literature [19, 20] for deriving a Lax
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pair for space and time dependent coefficient nlpdes. We thenillstrate the method by deriving

the Lax pair and integrability conditions for the nonlinearSchrodinger (NLS) equation, derivative

NLS equation, PT-symmetric NLS, fifth-order KdV, and three equations in the MKdV hierarchy.

This technique, although operationally effective, has thesignificant disadvantage that, for any inte-

grable system with spatiotemporally varying coefficients,one must ’guess’ a generalization of the

structure of the known Lax Pair for the corresponding systemwith constant coefficients. This in-

volves replacing constants in the Lax Pair for the constant coefficient integrable system, including

powers of the spectral parameter, by functions. Provided that one has guessed correctly and gener-

alized the constant coefficient system’s Lax Pair sufficiently, and this is of course hard to be sure

of ’a priori’, one may then proceed to systematically deducethe Lax Pair for the corresponding

variable-coefficient integrable system [21].

Motivated by the somewhat arbitrary nature of the above procedure, we embark in this dissertation

on an attempt to systematize the derivation of Lax-integrable sytems with variable coefficients. Of

the many techniques which have been employed for constant coefficient integrable systems, the

Estabrook-Wahlquist (EW) prolongation technique [26]- [29] is among the most self-contained.

The method directly proceeds to attempt construction of theLax Pair or linear spectral problem,

whose compatibility condition is the integrable system under discussion. While not at all guar-

anteed to work, any successful implementation of the technique means that Lax-integrability has

already been verified during the procedure, and in addition the Lax Pair is algorithmically obtained.

We note that failure of the technique does not necessarily imply non-integrability of the equation

contained in the compatibility condition of the assumed LaxPair for other definitions of integra-

bility. It does however mean that the nlpde is not consideredLax-integrable. Due to the imprecise

nature of the definition of integrability, a nlpde may be considered integrable in one sense but not
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another. Indeed, consider the viscous Burgers’ equation

ut + uux = νuxx, (1.5)

whereν > 0 is the (constant) viscosity. By making use of the Cole-Hopf transformationu(x, t) =

−2ν φx

φ
Burgers’ equation becomes, after a little manipulation, theheat equationvt = νφxx. Since

any linear partial differential equation is integrable we say that Burgers’ equation is integrable in

the sense that it can be linearized. Now consider the (focusing) NLS equation

iψt = −1

2
ψxx − k|ψ|2ψ (1.6)

wherek > 0 is a dimensionless constant. There is no transformation which takes this equation to

a linear equation, as was the case for Burgers’ equation. However, this equation has been shown to

be integrable in many other ways. For example, there exists anontrivial Lax pair for the NLS and

thus it is Lax-integrable. While transformations like the Cole-Hopf transformation are examples

of explicit linearizations a Lax pair can be thought of as animplicit linearization of a nlpde.

In applications, the coefficients of a nlpde may include spatial dependence, in addition to the tem-

poral variations that have been extensively considered using a variety of techniques. Both for this

reason, as well as for their general mathematical interest,extending integrable hierarchies of nlpdes

to includebothspatial and temporal dependence of the coefficients is worthwhile. Hence, we at-

tempt to apply the Estabrook-Wahlquist (EW) technique to generate a variety of such integrable

systems with such spatiotemporally varying coefficients. However, this immediately requires that

the technique be significantly generalized or broadened in several different ways which we outline

in chapter 3. We then illustrate the effectiveness of this new and extended method by deriving the
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Lax pair and integrability condition for the nonlinear Schrodinger (NLS) equation, derivative NLS

equation, PT-symmetric NLS, fifth-order KdV, and the first equation in the MKdV hierarchy. As an

instructive example of when the extended Estabrook-Wahlquist method correctly breaks down we

then consider a generalization to the nonintegrable cubic-quintic nonlinear Schr̈odinger equation.
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CHAPTER 2: KHAWAJA’S LAX PAIR METHOD

In this chapter we review Khawaja’s Lax pair method for deriving the differential constraints nec-

essary for compatibility of the Lax pair associated with a variable-coefficient nlpde. We then

illustrate this method by deriving variable-coefficient generalizations to the nonlinear Schrodinger

(NLS) equation, derivative NLS equation, PT-symmetric NLS, fifth-order KdV, and three equations

in the MKdV hierarchy.

Outline of Khawaja’s Method

In Khawaja’s Lax pair method [19,20], one seeks to representa variable-coefficient generalization

to a constant-coefficient nonlinear pde as the compatibility condition of a Lax pair. The method

is based on the assumption that the Lax pair for the constant-coefficient nlpde is known. A Lax

pair for an nlpde can be derived in various ways. Common methods include the Ablowitz-Kaup-

Newell-Segur (AKNS) scheme, the Wadati-Konno-Ichikawa (WKI) scheme, and the Estabrook-

Wahlquist method. Once a Lax pair is obtained, it may be decomposed into an expansion about

powers of the unknown function and its derivatives where thecoefficients are constant coefficient

matrices. For example, we may write a Lax pair{U,V} for the KdV equation

ut + uux + 6uxxx = 0 (2.1)

7



as

U =







−ik 1

0 ik






+







0 0

−1
6

0






u, (2.2a)

V =







−4ik3 4k2

0 4ik3






+







1
3
ik −1

3

−2
3
k2 −1

3
ik






u+







0 0

1
18

0






u2 +







1
6

0

1
3
ik −1

6






ux +







0 0

1
6

0






uxx,

(2.2b)

where herek is the spectral parameter associated with the linear eigenvalue problem (i.e. the Lax

pair). In this method one replaces the elements in the constant-coefficient matrices present in the

Lax pair expansion with undetermined functions of space andtime. Compatibility of this new Lax

pair is then enforced, allowing for the determination of thefunctions in the Lax Pair and derivation

of the variable-coefficient constraints. Unfortunately, it is often the case that merely altering the

existing form of the constant-coefficient Lax pair is not sufficient. Intuition and a little trial-and-

error may be required to determine additional terms which may need to be added to the expansion

in order to ensure nontrivial compatibility. In fact, in oneof his papers [20] Khawaja alludes to the

difficulty in this step of the procedure and further remarks that it took several attempts to find the

correct form for the Lax pair he derived.

PT-Symmetric and Standard Nonlinear Schrödinger Equations

We begin with the derivation of the Lax pair and differentialconstraints for the standard NLS

equation. To keep things somewhat general we will consider the system

8



iqt(x, t) = −f(x, t)qxx(x, t)− g(x, t)q2(x, t)r(x, t)− v(x, t)q(x, t)− iγ(x, t)q(x, t),(2.3)

irt(x, t) = f(x, t)rxx(x, t) + g(x, t)r2(x, t)q(x, t) + v(x, t)r(x, t)− iγ(x, t)r(x, t). (2.4)

For the choicer(x, t) = q∗(x, t), where∗ denotes the complex conjugate, this system is equivalent

to a variable-coefficient NLS equation. However, with the choicesv(x, t) = γ(x, t) = 0 and

r(x, t) = q∗(−x, t) this system is equivalent to the PT-symmetric NLS. Therefore, we may obtain

the results for both the standard cubic NLS and the PT-symmetric NLS simultaneously by studying

system (2.3). Following Khawaja’s method we expand theU andV matrices in powers ofq, r, and

their partial derivatives. We therefore seek a Lax pair of the form

U =







f1 + f2q f3 + f4q

f5 + f6r f7 + f8r






(2.5a)

and V =







g1 + g2q + g3qx + g4qr g5 + g6q + g7qx + g8qr

g9 + g10r + g11rx + g12qr g13 + g14r + g15rx + g16qr






(2.5b)

wheref1−8 andg1−16 are unknown functions ofx andt. Compatibility ofU andV requires

Ut − Vx + [U,V] = 0̇ =







0 p1(x, t)F1[q, r]

p2(x, t)F2[q, r] 0






(2.6)

whereFi[q, r] represents theith equation in (2.3), andp1,2 are arbitrary real-valued functions. It

should be clear that this off-diagonal compatibility condition requires that the coefficients of theq

and ther on the off-diagonal ofU be zero. Indeed upon pluggingU andV into the compatibility

9



condition we immediately find that compatibility requires

f2 = f3 = f5 = f8 = g2 = g3 = g5 = g8 = g9 = g12 = g14 = g15 = 0, f4 = ip1, f6 = −ip2,

g7 = −fp1, g11 = −fp2, g4 = −g16 = −ifp1p2.

The remaining constraints are given by

f1t − g1x = 0 (2.7)

f7t − g13x = 0 (2.8)

2fp1p2 + g = 0 (2.9)

fxp1 − fp1(f1 − f7) + fp1x − g6 = 0 (2.10)

fxp2 + fp2(f1 − f7) + fp2x − g10 = 0 (2.11)

g6(f1 − f7)− ip1(g1 − g13 − iv + γ)− g6x + ip1t = 0 (2.12)

g10(f1 − f7) + ip2(g1 − g13 − iv − γ) + g10x + ip2t = 0 (2.13)

(fp1p2)x + g10p1 + g6p2 = 0. (2.14)

We will now review the reduction of the system (2.7)-(2.14) to the differential constraints which

may be found in [20]. Solving eq. (2.9) forfp1p2 and substituting the result into (2.14) we obtain

−1

2
gx + g10p1 + g6p2 = 0. (2.15)

10



Upon multiplying equation (2.10) byp2 and equation (2.11) byp1 and adding, we obtain

(fp1p2)x + p1p2fx − g6p2 − g10p1 = 0. (2.16)

Now utilizing equations (2.9), (2.15), and (2.16) we find

fx
f

= −2
gx
g

⇒ f(x, t) =
c(t)

g(x, t)2
. (2.17)

wherec(t) is arbitrary. Now multiplying equation (2.10) byp2 and equation (2.11) byp1 and

subtracting, we get

f1 − f7 = − g6
fp1

+
1

2

[

log
p1
g

]

x

+
fp1p2x
g

. (2.18)

Multiplying equation (2.12) byp2 and equation (2.13) byp1 and adding, we get

(g6p2 + g10p1)(f1 − f7)− 2ip1p2γ − g6xp2 + g10xp1 + ip1tp2 + ip2tp1 = 0. (2.19)

Substituting forf1, g10, p2, andf using equations (2.18), (2.15), (2.9), and (2.17), respectively, we

obtain

g2

c

(

gg6
p1

)

x

− g2x
g

+
gxx
2

+ i

(

g3γ

c
+
ċg3

2c2
− 3g2gt

2c

)

= 0. (2.20)

11



Solving forg6 we find

g6 =
p1
g

[

k1r + ik1i −
cgx
2g2

+
i

2

∫ (

3gt −
(2cγ + ċ)g

c

)

dx

]

. (2.21)

wherek1r andk1i are arbitrary real functions oft obtained through integration. On the other hand,

multiplying equation (2.12) byp2 and equation (2.13) byp1 and subtracting, we get

(g6p2 − g10p1)(f1 − f7)− 2ip1p2(g1 − g13 − iv)− g6xp2 − g10xp1 + ip1tp2 − ip2tp1 = 0. (2.22)

Once again, substituting forf1, g10, p2, andf using eqs. (2.18), (2.15), (2.9), and (2.17), respec-

tively, we now obtain

i
cg2x
g4

− i
cgxx
g3

+ i
g6gx
gp1

+ i
g26g

2

cp21
− (g1 − g13 − iv)− 3gt

2g
+
p1t
p1

+
ċ

2c
= 0. (2.23)

Solving forg1 − g13 we get

g1 − g13 = iv + i
g2g26
cp21

+
ċ

2c
+

2gp1t − 3p1gt + 2ig6gx
2gp1

− ic(ggxx − 2g2x)

2g4
. (2.24)

Now subtracting equation (2.8) from equation (2.7) and substituting for f1 − f7 andg1 − g13 using

(2.18) and (2.24), respectively, we obtain

12



vx =
2k1igt
c

− g

c
(2k1iγ + k̇1i) +

gt − gγ

c

∫

(

3gt −
g

c
(2cγ + ċ)

)

dx

+
g

2c3

∫

(

c(gt(2cγ + ċ)− 3cgtt) + g(c(2cγt + c̈)− ċ2)
)

dx− c

2g

(

1

g

)

x

+ i

(

g

c
(2k1rγ + k̇1r)−

2

c
k1rgt

)

. (2.25)

Sincev is assumed to be real the imaginary part of (2.25) must vanish. That is, we require

g(2k1rγ + k̇1r)− 2k1rgt = 0 (2.26)

from which we obtain

γ(x, t) =
gt(x, t)

g(x, t)
− 1

2

k̇1r(t)

k1r(t)
. (2.27)

Now substitutingc(t) = f(x, t)g(x, t)2 into (2.25), combining integrals, and differentiating with

respect tox we obtain the final condition

fg3(ft(gt − 2gγ)− fttg) + f 2
t g

4 + 2f 3g3(gvxx − gxvx)− 2f 2g4(γt + 2γ2)− 2f 2g2g2t

+ f 2g3(4gtγ + gtt) + f 4(36g4x − 48gg2xgxx + 10g2gxgxxx + g2(6g2xx − ggxxxx)) = 0. (2.28)

As the PT-symmetric NLS is a special case of the system (2.3) with f = −a1, g = −a2, v = γ = 0,

andr(x, t) = q∗(−x, t) we can exploit the Lax pair constraints derived above for standard NLS to
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obtain the constraints for the PT-symmetric NLS. We therefore find, utilizing the sameU andU

that were given earlier in the section, that compatibility under the requirement thatr andq satisfy

the PT-symmetric NLS requires

f2 = f3 = f5 = f8 = g2 = g3 = g5 = g8 = g9 = g12 = g14 = g15 = 0, f4 = ip1, f6 = −ip2,

g7 = a1p1, g11 = a1p2, g4 = −g16 = ia1p1p2.

and the remaining constaints are given by

f1t − g1x = 0, (2.29)

f7t − g13x = 0, (2.30)

2a1p1p2 + a2 = 0, (2.31)

−a1xp1 + a1p1(f1 − f7)− a1p1x − g6 = 0, (2.32)

−a1xp2 − a1p2(f1 − f7)− a1p2x − g10 = 0, (2.33)

g6(f1 − f7)− ip1(g1 − g13)− g6x + ip1t = 0, (2.34)

g10(f1 − f7) + ip2(g1 − g13) + g10x + ip2t = 0, (2.35)

−(a1p1p2)x + g10p1 + g6p2 = 0. (2.36)

From equations (2.17) and (2.27) we get

a2(x, t) = f(t)g(x), (2.37)
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and

a1(x, t) =
c(t)

a2(x, t)2
=

c(t)

f(t)2g(x)2
. (2.38)

Plugging these results into (2.28) we obtain

c4
(

36(g′)4 − 48g(g′)2g′′ + 10g2g′g′′′ + 6g2(g′′)2 − g3g′′′′
)

+ g8
(

cf 3ċḟ − 6c2f 2ḟ 2 − cf 4c̈+ 3c2f 3f̈ + f 4ċ2
)

= 0. (2.39)

Equation (2.39) may be further reduced to the system

36(g′)4 − 48g(g′)2g′′ + 10g2g′g′′′ + 6g2(g′′)2 − g3g′′′′ = 0, (2.40)

cf 3ċḟ − 6c2f 2ḟ 2 − cf 4c̈+ 3c2f 3f̈ + f 4ċ2 = 0. (2.41)

This final set of equations represents the conditions on the variable coefficients in (2.3) required

for Lax-integrability.

Derivative Nonlinear Schrodinger Equation

In this section we derive the Lax pair and differential constraints for the derivative nonlinear

Schr̈odinger equation. We consider the equivalent system
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iqt(x, t) + a1(x, t)qxx(x, t) + ia2(x, t)(q
2(x, t)r(x, t))x = 0, (2.42)

−irt(x, t) + a1(x, t)rxx(x, t)− ia2(x, t)(r
2(x, t)q(x, t))x = 0, (2.43)

wherer(x, t) = q∗(x, t) and again∗ denotes the complex conjugate. The Lax pairU andV are

expanded in powers ofq andr and their partial derivatives as follows

U =







f1 + f2q f3 + f4q

f5 + f6r f7 + f8r






, (2.44)

V =







g1 + g2q + g3qx + g4qr g5 + g6q + g7qr + g8qx + g9q
2r

g10 + g11r + g12qr + g13rx + g14r
2q g15 + g16r + g17rx + g18qr






, (2.45)

wheref1−8 andg1−20 are unknown functions ofx andt. Note that the compatibility condition

Ut − Vx + [U,V] = 0̇ =







0 p1(x, t)F [q, r]

0 0






(2.46)

we enforce, whereF [q, r] represents (2.42) andp1(x, t) is unknown, is chosen out of necessity.

Upon considering a more standard compatibility condition as that considered by Khawaja,

Ut − Vx + [U, V ] = 0̇ =







0 p1(x, t)F1[q, r]

p2(x, t)F2[q, r] 0






(2.47)
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we find that the only solution requiresp1 or p2 be zero. We chose to letp2 = 0 but it is important

to note that the conditions would not change if we had setp1 equal to zero instead. Given this

modification to the zero-curvature condition compatibility of U andV immediately requires

f2 = f5 = f6 = f8 = g2 = g3 = g4 = g7 = g11 = g12 = g14 = g16 = g17 = g18 = 0,

g8 = −p1a1, f4 = ip1, g9 = ip1a2.

After substituting these into the compatibility conditions the remaining contraints are then given

by

f1t − g1x = 0, (2.48)

f7t − g15x = 0, (2.49)

(p1a2)x + p1a2(f7 − f1) = 0, (2.50)

(p1a1)x + p1a1(f7 − f1)− g6 = 0, (2.51)

−g5x − g5(f7 − f1) = 0, (2.52)

ip1t − g6x + ip1(g15 − g1)− g6(f7 − f1) = 0. (2.53)

Deriving a relation betweena1 anda2

As it turns out, equations (2.48) and (2.50)-(2.53) may be solved exactly forf1, f7, g6, g5 andg15,

respectively. Upon solving equations (2.48) and (2.50)-(2.53) forf1, f7, g6, g5 andg15 we obtain
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f1 =

∫

g1xdt+ F (x), (2.54)

f7 = −(p1a2)x
p1a2

+ f1, (2.55)

g5 = H(t)e
∫
(f1−f7)dx, (2.56)

g6 =
(p1a1)xa2 − (p1a2)xa1

a2
, (2.57)

g15 = − i

p1
(g6x − ip1t − g6(f1 − f7)) + g1. (2.58)

Plugging these results into the remaining equation, (2.49), we obtain the constraint

2p1a
2
2a1xp1xx − 2p21xa

2
2a1x − 2p1a2a1xp1xa2x + p21a

2
2a1xxx + 2p1xa

2
2p1a1xx − p21a2a1xa2xx

+2p21xa2a1a2x + 2p1a1a
2
2xp1x − 2p1xa2a1p1a2xx + p21a1a2xa2xx − 2p1a1a2xp1xxa2

−p21a2a1a2xxx + ip21(a2a2xt − a2ta2x) = 0. (2.59)

In order to have meaningful results we must require that theai are real-valued functions. Thus we

can decouple the last constraint into the following equations

2p1a
2
2a1xp1xx − 2p21xa

2
2a1x − 2p1a2a1xp1xa2x + p21a

2
2a1xxx + 2p1xa

2
2p1a1xx − p21a2a1xa2xx

+2p21xa2a1a2x + 2p1a1a
2
2xp1x − 2p1xa2a1p1a2xx + p21a1a2xa2xx − 2p1a1a2xp1xxa2

−p21a2a1a2xxx = 0, (2.60)

a2a2xt − a2ta2x = 0. (2.61)
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Takingp1 = a2 we obtain the final constraints

a2ta2x − a2xta2 = 0, (2.62)

a32a1xxx − 3a22a2xxa1x − 4a32xa1 + 5a1a2a2xa2xx + 4a22xa2a1x

−a22a1a2xxx − 2a2xa
2
2a1xx = 0. (2.63)

With the aid of MAPLE we find that the previous system is exactly solvable fora1 anda2 with

solution given by

a1(x, t) = F4(t)F2(x)(c1 + c2x)− c1F4(t)F2(x)

∫

x dx

F2(x)
+ c1xF4(t)F2(x)

∫

dx

F2(x)
,(2.64)

a2(x, t) = F2(x)F3(t). (2.65)

This final set of expressions represents the forms for the variable coefficients in the variable-

coefficient DNLS required for Lax-integrability.
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Fifth-Order Korteweg-de-Vries Equation

In this section we derive the Lax pair and differential constraints for a generalized variable-

coefficient fifth-order KdV equation (vcKdV) given by

ut + a1uuxxx + a2uxuxx + a3u
2ux + a4uux + a5uxxx + a6uxxxxx + a7u+ a8ux = 0. (2.66)

Following Khawaja’s method the Lax pair for the generalizedvcKdV equation is expanded in

powers ofu and its derivatives as follows:

U =







f1 + f2u f3 + f4u

f5 + f6u f7 + f8u






, (2.67)

V =







V1 V2

V3 V4






, (2.68)

whereVi = gk + gk+1u+ gk+2u
2+ gk+3u

3+ gk+4ux+ gk+5u
2
x+ gk+6uxx+ gk+7uuxx+ gk+8uxxx+

gk+9uuxxx + gk+10uxxxx, k = 11(i− 1) + 1 andf1−8(x, t) andg1−44(x, t) are unknown functions.

The compatibility condition

Ut − Vx + [U,V] = 0̇ =







0 p1(x, t)F [u]

p2(x, t)F [u] 0






(2.69)
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whereF [u] represents equation (2.66) andp1−2(x, t) are unknown functions requires immediately

that some of the unknown functions be zero, indicative of a slightly incorrect initial guess. That is,

we find thatg21 = g32 = f2 = g4 = g10 = g11 = f8 = g37 = g43 = g44 = 0. It is instructive to

include this incorrect guess rather than remove them beforehand and include only the final, correct

form. This indeed motivates the need for a new method, which we introduce in the next chap-

ter, which would remove as much human error as possible whilestill remaining computationally

tractable. We find that compatibility under the zero curvature condition requires that the remaining

unknown functions satisfy a large coupled system of algebraic and partial differential equations

f4 = p1, g15 = −1

3
p1a3, g21 = −p1a6, f6 = p2, g26 = −1

3
p2a6, g33 = −p2a6,
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2g41 − g8 = 0, g39 − g6 = 0,

p2g17 − p1g28 = 0, p2g19 − p1g30 = 0,

g19 + 2g17 = −p1a2, g30 + 2g28 = −p2a2,

g41 + 2g39 = 0, g8 + 2g6 = 0,

g39x + f3g28 − f5g17 = 0, g6x + f5g17 − f3g28 = 0,

2g25 + p2(g38 − g5) = −p2a4, g19 + p1(g9 − g42) = −p1a1,

g8 + p2g20 − p1g31 = 0, g41 + p1g31 − p2g20 = 0,

g30 + p2(g42 − g9) = −p2a1, g9 + a6(p2f3 − p1f5) = 0,

g42 + a6(p1f5 − p2f3) = 0, 2g14 + p1(g5 − g38) = −p1a4,

2g3 + p2g16 − p1g27 = 0, 2g36 + p1g27 − p2g16 = 0,

g2 + g5x + f5g16 − f3g27 = 0, g35 + g38x + f3g27 − f5g16 = 0,

g7 + g9x + f5g20 − f3g31 = 0, p1

(

g25 +
1

3
f5a3

)

− p2

(

g14 +
1

3
f3a3

)

= 0,

f1t − g1x + f3g23 − f5g12 = 0, f7t − g34x + f5g12 − f3g23 = 0,

g5 + g7x + f5g18 − f3g29 = 0, g38 + g40x + f3g29 − f5g18 = 0,

g40 + g42x + f3g31 − f5g20 = 0, (p2a6)x − g31 + p2a6(f1 − f7) = 0,

g35x + p1g23 + f3g24 − p2g12 − f5g13 = 0, g36x + p1g24 + f3g25 − p2g13 − f5g14 = 0,

g2x + p2g12 + f5g13 − p1g23 − f3g24 = 0, g3x + p2g13 + f5g14 − p1g24 − f3g25 = 0,

g8x + p2g18 + f5g19 − p1g29 − f3g30 = 0, g41x + p1g29 + f3g30 − p2g18 − f5g19 = 0,

g28x + g28(f1 − f7) + f5(g39 − g6) = 0, g17x + g17(f7 − f1) + f3(g6 − g39) = 0,
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2g20 − (p1a6)x + p1a6(f1 − f7) = 0,
1

3
(p2a3)x +

1

3
p2a3(f1 − f7) + p2(g3 − g36) = 0,

f5t − g23x + g23(f7 − f1) + f5(g1 − g34) = 0, g24 + g27x + g27(f1 − f7) + f5(g38 − g5) = −p2a8,

f3t − g12x + g12(f1 − f7) + f3(g34 − g1) = 0, g29 + g31x + g31(f1 − f7) + f5(g42 − g9) = −p2a5,
1

3
(p1a3)x +

1

3
p1a3(f7 − f1) + p1(g36 − g3) = 0, g18 + g20x + g20(f7 − f1) + f3(g9 − g42) = −p1a5,

g27 + g29x + g29(f1 − f7) + f5(g40 − g7) = 0, g16 + g18x + g18(f7 − f1) + f3(g7 − g40) = 0,

g13 + g16x + g16(f7 − f1) + f3(g5 − g38) = −p1a8,

g19x + g19(f7 − f1) + p1(g7 − g40) + f3(g8 − g41) = 0,

g30x + g30(f1 − f7) + p2(g40 − g7) + f5(g41 − g8) = 0,

g14x + g14(f7 − f1) + p1(g2 − g35) + f3(g3 − g36) = 0,

g25x + g25(f1 − f7) + p2(g35 − g2) + f5(g36 − g3) = 0,

p1t − g13x + g13(f1 − f7) + p1(g34 − g1) + f3(g35 − g2) = p1a7,

p2t − g24x + g24(f7 − f1) + p2(g1 − g34) + f5(g2 − g35) = p2a7.

Deriving a relation between theai

In this section we reduce the previous system down to equations which depend solely on theai’s.

We find thatgk = 0 for k = 2, 3, 5− 9, 35, 36, 38− 42 and

f7 = f1, f5 = f3, g23 = g12, g34 = g1, g30 = −g19 = p1a1, g25 = g14 = −1
2
p1a4, g31 = −g20 =
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−(p1a6)x, g16 = −g27 = −g18x, p2 = p1,

g18 = −g29 = −p1a5 − (p1a6)xx,

g28 = −g17 = −1

2
(H2(t)−H1(t)),

g24 = −g13 = −(p1a5)xx − (p1a6)xxxx − p1a8,

p1 =
H1(t)

a1
,

a2−4 = H2−4(t)a1,

which leads to the PDE

(

H1

a1

)

t

+

(

H1a5
a1

)

xxx

+

(

H1a6
a1

)

xxxxx

+

(

H1a8
a1

)

x

=
H1a7
a1

. (2.72)

One clear solution to the equation above (forH1 6= 0) is

a7 =
a1
H1

((

H1

a1

)

t

+

(

H1a5
a1

)

xxx

+

(

H1a6
a1

)

xxxxx

+

(

H1a8
a1

)

x

)

, (2.73)

wherea1, a5, a6, a8 andH1−4 are arbitrary functions in their respective variables.
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Modified Korteweg-de-Vries Hierarchy

In this section we derive the Lax pairs and differential constraints for three equations in a variable-

coefficient modified KdV hierarchy

vt + a1vxxx + a2v
2vx = 0, (2.74)

vt + b1vxxxxx + b2v
2vxxx + b3vvxvxx + b4v

3
x + b5v

4vx = 0, (2.75)

and

vt + c1vxxxxxxx + c2v
2vxxxxx + c4vvxxvxxx + c5v

2
xvxxx

+c6vxv
2
xx + c7v

4vxxx + c8v
3vxvxx + c9v

2v3x + c10v
6vx = 0. (2.76)

Once again following Khawaja’s method the Lax pairs are expanded in powers ofu and its deriva-

tives as follows:

U =







f1 + f2v f3 + f4v

f5 + f6v f7 + f8v






, (2.77)

V i =







V i
1 V i

2

V i
3 V i

4






, (i = 1, 2, 3) (2.78)
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where

V 1
1 = g1 + g2v + g3v

2,

V 1
2 = g4 + g5v + g6v

2 + g7v
3 + g8vx + g9vxx,

V 1
3 = g10 + g11v + g12v

2 + g13v
3 + g14vx + g15vxx,

V 1
4 = g16 + g17v + g18v

2,

V 2
1 = g1v

2
x + g2v

4 + g3vvxx + g4v
2 + g5 + g6vxxxx + g7vv

2
x + g8v

2vxx + g9v
5 + g10vxxx

+g11v
2vx + g12vxx + g13v

3 + g14vx + g15v,

V 2
2 = g16v

2
x + g17v

4 + g18vvxx + g19v
2 + g20 + g21vxxxx + g22vv

2
x + g23v

2vxx + g24v
5

+g25vxxx + g26v
2vx + g27vxx + g28v

3 + g29vx + g30v,

V 2
3 = g31v

2
x + g32v

4 + g33vvxx + g34v
2 + g35 + g36vxxxx + g37vv

2
x + g38v

2vxx + g39v
5

+g40vxxx + g41v
2vx + g42vxx + g43v

3 + g44vx + g45v,

V 2
4 = g46v

2
x + g47v

4 + g48vvxx + g49v
2 + g50 + g51vxxxx + g52vv

2
x + g53v

2vxx + g54v
5

+g55vxxx + g56v
2vx + g57vxx + g58v

3 + g59vx + g60v,
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V 3
1 = g1 + g2v

2 + g3vvxx + g4vxvxxx + g5v
2v2x + g6v

3vxx + g7v
2
xx + g8vvxxxx + g9v

2
x + g10v

4,

+g11v
6

V 3
2 = g12v

2vxxx + g13vv
2
x + g14v

2vxx + g15v
2vx + g16v

4vx + g17v
2
xvxx + g18vv

2
xx

+g19v
2vxxxx + g20v

3v2x + g21v
4vxx + g22vvxvxx + g23vvxvxxx + g24v + g25vx + g26vxx

+g27vxxx + g28vxxxx + g29vxxxxx + g30vxxxxxx + g31v
3
x + g32v

3 + g33v
5 + g34v

7 + g35,

V 3
3 = g36v

2vxxx + g37vv
2
x + g38v

2vxx + g39v
2vx + g40v

4vx + g41v
2
xvxx

+g42vv
2
xx + g43v

2vxxxx + g44v
3v2x + g45v

4vxx + g46vvxvxx + g47vvxvxxx + g48v + g49vx

+g50vxx + g51vxxx + g52vxxxx + g53vxxxxx + g54vxxxxxx + g55v
3
x + g56v

3 + g57v
5 + g58v

7 + g59,

V 3
4 = g60 + g61v

2 + g62vvxx + g63vxvxxx + g64v
2v2x + g65v

3vxx + g66v
2
xx + g67vvxxxx + g68v

2
x + g69v

4

+g70v
6.

It is immediately clear from the latter twoV matrices that finding the correct form of the time

evolution matrix in the Lax pair via Khawaja’s method can be very difficult. Through various

insufficient guesses we arrived at the previous forms, for which we will now give the results. The

compatibility condition gives

Ut − Vx + [U, V ] = 0̇ =







0 pi(x, t)Fi[v]

qi(x, t)Fi[v] 0






(2.79)

, whereFi[v] represents theith equation in the MKDV hierarchy (i = 1− 3).
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Determining Equations for the First Equation

Requiring the compatibility condition yield a multiple ofF1[v] in the off-diagonal as given above

yields the following large coupled system of algebraic and partial differential equations

f4 = p1, f6 = q1, g7 = −1
3
p1a2, g9 = −p1a1, g13 = −1

3
q1a2, g15 = −q1a1, f2 = f8 = g12 = g6 =

0,

f3q1 − f5p1 = 0, g18x + p1g11 − q1g5 = 0,

g3x + q1g5 − p1g11 = 0, g17 + f3g14 − f5g8 = 0,

2g18 + p1g14 − q1g8 = 0, g2 + f5g8 − f3g14 = 0,

2g3 + q1g8 − p1g14 = 0, f5(g18 − g3) + q1(g17 − g2) = 0,

f3(g18 − g3) + p1(g17 − g2) = 0, f1t − g1x + f3g10 − f5g4 = 0,

f7t − g16x − f3g10 + f5g4 = 0, g11 + g14x − g14(f7 − f1) = 0,

g5 + g8x + g8(f7 − f1) = 0, g8 − (p1a1)x − p1a1(f7 − f1) = 0,

g14 − (q1a1)x + q1a1(f7 − f1) = 0, g17x + f3g11 − f5g5 + p1g10 − q1g4 = 0,

g2x − f3g11 + f5g5 − p1g10 + q1g4 = 0,
1

3
(p1a2)x +

1

3
p1a2(f7 − f1) + p1(g18 − g3) = 0,

1

3
(q1a2)x −

1

3
q1a2(f7 − f1)− q1(g18 − g3) = 0, f3t − g4x − g4(f7 − f1)− f3(g1 − g16) = 0,
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f5t − g10x + g10(f7 − f1) + f5(g1 − g16) = 0,

p1t − g5x − g5(f7 − f1)− p1(g1 − g16)− f3(g2 − g17) = 0,

p2t − g11x + g11(f7 − f1) + q1(g1 − g16) + f5(g2 − g17) = 0.

Deriving a relation between theai

In this section we reduce the previous system down to equations which depend solely on theai’s.

In doing so we find that

g16 = g1 = f7 = f1 = g10 = g4 = g17 = g2 = f5 = f3 = 0, q1 = −p1 = −C(t)
a2
,

g18 = −g3 = −C(t)g8
a2

,

g11 = −g5 = g8x,

g14 = −g8 = −C(t)(a1
a2

)x,

which leads to the condition

6a1a
3
2x − 6a1a2a2xa2xx + a1a

2
2a2xxx −

Kt

K
a32 + a22a2t − a32a1xxx

+3a1xxa
2
2a2x − 6a1xa2a

2
2x + 3a1xa

2
2a2xx = 0, (2.81)

whereK(t) andC(t) are arbitrary functions oft.
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Determining Equations for the Second Equation

Requiring the compatability condition yield a multiple ofF2[v] in the off-diagonal yields the fol-

lowing large coupled system of algebraic and partial differential equations

q1 = p1, g51 = g6 = g52 = g7 = g53 = g8 = g54 = g9 = 0, g18 = −2g16, g33 = −2g31, g48 =

−2g46, g36 = g21 = −p1b1, g37 = g22 = −p1b4, g38 = g23 = −p1b2, g39 = g24 = −1
5
p1b5,

b3 = 2b2 + 2b4, g1x + f3g16 − f2g31 = 0,

g55 + p1b1(f3 − f2) = 0, g46x + f2g31 − f3g16 = 0,

2g1 − g25 + g40 = 0, g10 + p1b1(f2 − f3) = 0,

g11 + 4g17 − g56 = 0, g11 − 4g32 − g56 = 0,

g14 − 2g34 − g59 = 0, g14 + 2g19 − g59 = 0,

g26 − 4g47 − g41 = 0, g44 − 2g4 − g29 = 0,

g40 − 2g46 − g25 = 0, g41 − 4g2 − g26 = 0,

g44 + 2g49 − g29 = 0, g55 − 2g31 − g10 = 0,

g55 + 2g16 − g10 = 0, f4t − g50x + f3g20 − f2g35 = 0,

f1t − g5x + f2g35 − f3g20 = 0, g59 + g57x + f2g42 − f3g27 = 0,

g60 + g59x + f2g44 − f3g29 = 0, g14 + g12x + f3g27 − f2g42 = 0,

g15 + g14x + f3g29 − f2g44 = 0, 3g58 + g56x + f2g41 − f3g26 = 0,

g12 + g10x + f3g25 − f2g40 = 0, 3g13 + g11x + f3g26 − f2g41 = 0,

g32 − g17 +
1

5
p1b5(f3 − f2) = 0, g57 + g55x + f2g40 − f3g25 = 0,
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g27 − g42 + 2g46x + 2f2g31 − 2f3g16 = 0, g50 + g45x − g5 − g45(f4 − f1)− f3(g15 − g60) = 0,

g19 − g34 − g58x + f3g28 − f2g43 = 0, g58 − g17x − g13 − g17(f4 − f1)− f2(g2 − g47) = 0,

g42 + 2g1x − g27 + 2f3g16 − 2f2g31 = 0, g58 + g32x − g13 − g32(f4 − f1)− f3(g47 − g2) = 0,

g45 + g49x − g30 + f2g34 − f3g19 = 0, g34 − g13x − g19 + f2g43 − f3g28 = 0,

g31x + g31(f4 − f1) + f3(g46 − g1) = 0, g25 − (p1b1)x − p1b1(f4 − f1) = 0,

g40 − (p1b1)x + p1b1(f4 − f1) = 0, g11 − 2g16 + 2g31 + p1b2(f2 − f3) = 0,

2g11 + g16 − g31 + p1b4(f2 − f3) = 0, g20 − g60x − g35 + f3g30 − f2g45 = 0,

g28 − g47x − g43 + f3g27 − f2g32 = 0, g31 + 2g56 − g16 − p1b4(f2 − f3) = 0,

2g31 − g56 − 2g16 + p1b2(f2 − f3) = 0, g35 − g15x − g20 + f2g45 − f3g30 = 0,

g44 + g42x − g42(f4 − f1) + f3(g57 − g12) = 0, g42 + g40x − g40(f4 − f1)− f3(g10 − g55) = 0,

g27 + g25x + g25(f4 − f1) + f2(g10 − g55) = 0, g30 + g29x + g29(f4 − f1) + f2(g14 − g59) = 0,

f2t − g20x − g20(f4 − f1)− f2(g5 − g50) = 0, f3t − g35x + g35(f4 − f1) + f3(g5 − g50) = 0,

3g43 + g41x − g41(f4 − f1)− f3(g11 − g56) = 0, g45 + g44x − g44(f4 − f1)− f3(g14 − g59) = 0,

3g28 + g26x + g26(f4 − f1) + f2(g11 − g56) = 0, g29 + g27x + g27(f4 − f1) + f2(g12 − g57) = 0,

g26 + 2g46 − 2g1 − (p1b2)x − p1b2(f4 − f1) = 0, g47 − g2 +
1

5
(p1b5)x +

1

5
p1b5(f4 − f1) = 0,

g49 − g28x − g4 − g28(f4 − f1)− f2(g13 − g58) = 0, g43 − g28 − g2x + f2g32 − f3g17 = 0,

g50 − g30x − g5 − g30(f4 − f1)− f2(g15 − g60) = 0, g16x + g16(f4 − f1) + f2(g1 − g46) = 0,

g60 + g34x − g15 − g34(f4 − f1)− f3(g4 − g49) = 0, g46 − 2g26 − g1 + (p1b4)x + p1b4(f4 − f1) = 0,

g46 + 2g41 − g1 − (p1b4)x + p1b4(f4 − f1) = 0, 2g46 − g41 − 2g1 + (p1b2)x − p1b2(f4 − f1) = 0,

g2 − g47 +
1

5
(p1b5)x −

1

5
p1b5(f4 − f1) = 0, g60 − g19x − g15 − g19(f4 − f1)− f2(g49 − g4) = 0,

g49 + g43x − g4 − g43(f4 − f1)− f3(g13 − g58) = 0,g45 − g4x − g30 + f2g34 − f3g19 = 0,
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g57 + 2g16x − g12 + 2g16(f4 − f1)− 2f2(g46 − g1) = 0,

g12 + 2g31x − g57 − 2g31(f4 − f1)− 2f3(g1 − g46) = 0.

Deriving a relation between thebi

In this section we reduce the previous system down to equations which depend solely on thebi’s.

In doing so we find thatgk = 0 for k = 1, 2, 4, 5, 10− 17, 29, 31, 32, 44, 46, 47, 49, 50, 55− 58,

f4 = f1 = 0, f3 = f2, p2 = H(t)
b5
, g34 = −g19, g42 = g27, g59 = 2g19, g40 = g25, g41 = g26, g60 =

g19x,

g45 = g30 + 2g19f2, g19 =
1

2
f2(g43 − g28),

g35 = g20 − 2f 2
2 g19, g25 = H(t)

(

b1
b5

)

x

,

g26 = H(t)

(

b2
b5

)

x

, g27 = −H(t)

(

b2
b5

)

xx

,

g43 = −1

3
H(t)

(

b2
b5

)

xx

,g30 = −
(

b1
b5

)

xxxx

,

and

g28 =
4

3
H(t)

(

b2
b5

)

x

− 1

3
H(t)

(

b2
b5

)

xx

.
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This leads to the following conditions on thebi,

b3 = 2b2 + 2b4, (2.85)

b5 = C(t)(2b2 − b4), (2.86)

12b2xb2xxb
2
4 + 12b22b2xxb4x − 3b2xxb4xb

2
4 + 4b22b2xxxb4 − 4b2b2xxxb

2
4 − 24b2b

2
2xb4x + 24b2b2xb

2
4x

+12b22b2xb4xx − 12b22b4xb4xx + 4b22b4b4xxx − b2b
2
4b4xxx − 24b22xb4b4x + 6b2xb4b

2
4x − 3b2xb

2
4b4xx

+b2xxxb
3
4 − 6b2b

3
4x − 4b32b4xxx + 24a32xb4 − 24b2b2xb2xxb4 + 6b2b4b4xb4xx = 0, (2.87)

and

−9600b1b
4
2xb4x + 9600b1b

3
2xb

2
4x − 4800b1b

2
2xb

3
4x + 1200b1b2xb

4
4x − 3840b1xb2b

4
2x − 240b1xb2b

4
4x +

1920b1xb
4
2xb4 + 120b1xb4b

4
4x + 3840b1b

5
2x − 120b1b

5
4x + 7680b1xb2b

3
2xb4x − 5760b1xb2b

2
2xb

2
4x +

1920b1xb2b2xb
3
4x − 3840b1xb

3
2xb4b4x + 2880b1xb

2
2xb4b

2
4x − 960b1xb2xb4b

3
4x − 32b1xxxxxb

5
2 +

b1xxxxxb
5
4 + 10b1xxxxb2xb

4
4 − 80b1xxxxb

4
2b4x − 5b1xxxxb

4
4b4x + 80b1xxxxxb

4
2b4 − 80b1xxxxxb

3
2b

2
4 +

40b1xxxxxb
2
2b

3
4 − 10b1xxxxxb2b

4
4 + 32b1b

4
2b2xxxxx + 2b1b2xxxxxb

4
4 − 16b1b

4
2b4xxxxx − b1b

4
4b4xxxxx −

960b1xb
3
2b

2
2xx − 240b1xb

3
2b

2
4xx + 30b1xb

3
4b

2
4xx + 160b1xb

4
2b2xxxx − 80b1xb

4
2b4xxxx + 10b1xb

4
4b2xxxx −

5b1xb
4
4b4xxxx + 1920b1xxb

2
2b

3
2x − 240b1xxb

2
2b

3
4x + 480b1xxb

3
2xb

2
4 − 60b1xxb

2
4b

3
4x + 320b1xxb

4
2b2xxx −

160b1xxb
4
2b4xxx + 20b1xxb2xxxb

4
4 − 10b1xxb

4
4b4xxx − 640b1xxxb

3
2b

2
2x − 160b1xxxb

3
2b

2
4x +

80b1xxxb
2
2xb

3
4 + 20b1xxxb

3
4b

2
4x + 320b1xxxb

4
2b2xx − 160b1xxxb

4
2b4xx + 20b1xxxb2xxb

4
4 −

10b1xxxb
4
4b4xx + 960b1b

2
2b2xxb2xxxb4 − 480b1b2b2xxb4xxxb

2
4 − 480b1b

2
2b4xxb2xxxb4 + 240b1b2b2xxb

2
4 +
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240b1b
2
2b4b4xxb4xxx − 120b1b2b

2
4b4xxb4xxx + 480b1b

2
2b2xb2xxxxb4 − 240b1b2b2xb2xxxxb

2
4 −

240b1b
2
2b2xb4b4xxxx + 120b1b2b2xb

2
4b4xxxx − 240b1b

2
2b2xxxxb4b4x + 120b1b2b2xxxxb

2
4b4x +

120b1b
2
2b4b4xb4xxxx − 60b1b2b

2
4b4xb4xxxx − 5760b1xb

2
2b2xb2xxb4x + 2880b1xb

2
2b2xb4xb4xx −

5760b1xb2b
2
2xb2xxb4 + 2880b1xb2b

2
2xb4b4xx − 1440b1xb2b2xxb4b

2
4x + 720b1xb2b4b

2
4xb4xx −

1440b1xb2xb2xxb
2
4b4x + 720b1xb2b4b

2
4xb4xx − 1440b1xb2xb2xxb

2
4b4x + 720b1xb2xb

2
4b4xb4xx +

1920b1xb
2
2b2xb2xxxb4 − 960b1xb

2
2b2xb4b4xxx − 960b1xb

2
2b2xxxb4b4x + 480b1xb

2
2b4b4xb4xxx −

960b1xb2b2xb2xxxb
2
4 + 480b1xb2b2xb

2
4b4xxx + 480b1xb2b2xxxb

2
4b4x − 240b1xb2b

2
4b4xb4xxx +

2880b1xxb
2
2b2xb2xxb4 − 1440b1xxb

2
2b2xb4b4xx − 1440b1xxb

2
2b2xxb4b4x + 720b1xxb

2
2b4b4xb4xx −

1440b1xxb2b2xb2xxb
2
4 + 720b1xxb2b2xb

2
4b4xx + 720b1xxb2b2xxb

2
4b4x − 360b1xxb2b

2
4b4xb4xx +

11520b1b2b
2
2xb2xxb4x − 5760b1b

2
2xb2xxb4b4x − 5760b1b2b

2
2xb4xb4xx + 2880b1b

2
2xb4b4xb4xx −

5760b1b2b2xb2xxb
2
4x + 2880b1b2xb2xxb4b

2
4x + 2880b1b2b2xb

2
4xb4xx − 1440b1b2xb4b

2
4xb4xx −

2880b1b2b2xb
2
2xxb4 − 2880b1b

2
2b2xb2xxb4xx − 720b1b2xb2xxb

2
4b4xx − 720b1b2b2xb4b

2
4xx +

1440b1b2b
2
2xxb4b4x + 1440b1b

2
2b2xxb4xb4xx + 360b1b2xxb

2
4b4xb4xx + 360b1b2b4b4xb

2
4xx −

1920b1b2b
3
2xb2xxxb4 + 960b1b2b

3
2xb4b4xxx − 1920b1b

2
2b2xb2xxxb4x − 480b1b2xb2xxxb

2
4b4x +

960b1b
2
2b2xb4xb4xxx + 240b1b2xb

2
4b4xb4xxx − 480b1b2b2xxxb4b

2
4x + 240b1b2b4b

2
4xb4xxx −

1440b1xb
2
2b2xxb4b4xx + 720b1xb2b2xxb

2
4b4xx + 2880b1xxb2b

2
2xb4b4x − 1440b1xxb2b2xb4b

2
4x −

960b1xxxb
2
2b2xb4b4x + 480b1xxxb2b2xb

2
4b4x + 5760b1xb2b2xb2xxb4b4x − 2880b1xb2b2xb4b4xb4xx −

1440b1b2b2xxb4b4xb4xx + 1920b1b2b2xb2xxxb4b4x − 960b1b2b2xb4b4xb4xxx − 640b1b
3
2b2xxb2xxx +

80b1b2xxb2xxxb
3
4 + 320b1b

3
2b2xxb4xxx − 40b1b2xxb

3
4b4xxx + 320b1b

3
2b2xxxb4xx − 40b1b2xxxb

3
4b4xx −

160b1b
3
2b4xxb4xxx + 20b1b

3
4b4xxb4xxx − 320b1b

3
2b2xb2xxxx + 40b1b2xb2xxxxb

3
4 + 160b1b

3
2b2xb4xxxx −

20b1b2xb
3
4b4xxxx + 160b1b

3
2b2xxxxb4x − 20b1b2xxxxb

3
4b4x − 80b1b

3
2b4xb4xxxx + 10b1b

3
4b4xb4xxxx +

5760b1xb
2
2b

2
2xb2xx − 2880b1xb

2
2b

2
2xb4xx + 1440b1xb

2
2b2xxb

2
4x − 720b1xb

2
2b

2
4xb4xx + 1440b1xb

2
2xb2xxb

2
4 −

720b1xb
2
2xb

2
4b4xx + 360b1xb2xxb

2
4b

2
4x − 180b1xb

2
4b

2
4xb4xx − 1280b1xb

3
2b2xb2xxx + 640b1xb

3
2b2xb4xxx +

640b1xb
3
2b2xxxb4x − 320b1xb

3
2b4xb4xxx + 160b1xb2xb2xxxb

3
4 − 80b1xb2xb

3
4b4xxx − 80b1xb2xxxb

3
4b4x +

40b1xb
3
4b4xb4xxx − 1920b1xxb

3
2b2xb2xx + 960b1xxb

3
2b2xb4xx + 960b1xxb

3
2b2xxb4x − 480b1xxb

3
2b4xb4xx +

240b1xxb2xb2xxb
3
4 − 120b1xxb2xb

3
4b4xx − 120b1xxb2xxb

3
4b4x + 60b1xxb

3
4b4xb4xx − 320b1xxxxb

3
2b2xb4 +
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240b1xxxxb
2
2b2xb

2
4 − 80b1xxxxb2b2xb

3
4 + 160b1xxxxb

3
2b4b4x − 120b1xxxxb

2
2b

2
4b4x + 40b1xxxxb2b

3
4b4x −

7680b1b2b
3
2xb2xx + 3840b1b

3
2xb2xxb4 + 3840b1b2b

3
2xb4xx − 1920b1b

3
2xb4b4xx + 960b1b2b2xxb

3
4x −

480b1b2xxb4b
3
4x − 480b1b2b

3
4xb4xx + 240b1b4b

3
4xb4xx + 2880b1b

2
2b2xb

2
2xx + 720b1b2xb

2
2xxb

2
4 +

720b1b
2
2b2xb

2
4xx + 180b1b2xb

2
4b

2
4xx − 1440b1b

2
2b

2
2xxb4x − 360b1b

2
2xxb

2
4b4x − 360b1b

2
2b4xb

2
4xx −

90b1b
2
4b4xb

2
4xx + 1920b1b

2
2b

2
2xb2xxx + 480b1b

2
2xb2xxxb

2
4 − 960b1b

2
2b

2
2xb4xxx − 240b1b

2
2xb

2
4b4xxx +

480b1b
2
2b2xxxb

2
4x + 120b1b2xxxb

2
4b

2
4x − 240b1b

2
2b

2
4xb4xxx − 60b1b

2
4b

2
4xb4xxx − 64b1b

3
2b2xxxxxb4 +

48b1b
2
2b2xxxxxb

2
4 − 16b1b2b2xxxxxb

3
4 + 32b1b

3
2b4b4xxxxx − 24b1b

2
2b

2
4b4xxxxx + 8b1b2b

3
4b4xxxxx +

960b1xb
3
2b2xxb4xx + 1440b1xb

2
2b

2
2xxb4 + 360b1xb

2
2b4b

2
4xx − 720b1xb2b

2
2xxb

2
4 − 180b1xb2b

2
4b

2
4xx −

120b1xb2xxb
3
4b4xx − 320b1xb

3
2b2xxxxb4 + 160b1xb

3
2b4b4xxxx + 240b1xb

2
2b

2
4b2xxxx − 120b1xb

2
2b

2
4b4xxxx −

80b1xb2b2xxxxb
3
4 + 40b1xb2b

3
4b4xxxx − 2880b1xxb

2
2b

2
2xb4x + 1440b1xxb

2
2b2xb

2
4x − 1920b1xxb2b

3
2xb4 +

240b1xxb2b4b
3
4x − 720b1xxb

2
2xb

2
4b4x + 360b1xxb2xb

2
4b

2
4x − 640b1xxb

3
2b2xxxb4 + 320b1xxb

3
2b4b4xxx +

480b1xxb
2
2b2xxxb

2
4 − 240b1xxb

2
2b

2
4b4xxx − 160b1xxb2b2xxxb

3
4 + 80b1xxb2b

3
4b4xxx + 640b1xxxb

3
2b2xb4x +

960b1xxxb
2
2b

2
2xb4 + 240b1xxxb

2
2b4b

2
4x − 480b1xxxb2b

2
2xb

2
4 − 120b1xxxb2b

2
4b

2
4x − 80b1xxxb2xb

3
4b4x −

640b1xxxb
3
2b2xxb4 + 320b1xxxb

3
2b4b4xx + 480b1xxxb

2
2b2xxb

2
4 − 240b1xxxb

2
2b

2
4b4xx − 160b1xxxb2b2xxb

3
4 +

80b1xxxb2b
3
4b4xx + 160b1xxxxb

4
2b2x + 120b1xb

2
2xxb

3
4 + 2880b1b2b2xb2xxb4b4xx = 0,

whereH(t) andC(t) are arbitrary functions oft.

Determining Equations for the Third Equation

Requiring the compatability condition yield a multiple ofF3[v] in the off-diagonal yields the fol-

lowing large coupled system of algebraic and partial differential equations

f2 = f8 = 0, g34 = −1
7
p1a10, g20 = −1

3
p3a9, f4 = p3, g30 = −p3a1, g21 = −p3a7, g19 =

−p3a2, g54 = q3a1, g58 = 1
7
q3a10, g44 = 1

3
q3a9, g45 = q3a7, g43 = q3a2, f6 = −q3, g63 = −g67 =

−g8 = g4 = G4(t), g66 = g7 = G7(t), g68 = −1
2
g3 = g9 = G9(t), f5 = f3, f7 = f1, q3 = −p3,
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f3(gi+24 − gi) = 0, (i = 12− 18, 22, 23, 25− 29, 31− 33)

f3(gi+59 − gi) = 0, (i = 2, 3, 5, 6, 8, 10, 11)

±1

7
(p3c10)x + p3(g70 − g11) = 0,

gi + gi+1,x = 0, (i = 24− 29, 48− 52)
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2

3
p3c9 + 4p3a7 = p3c8, g47 − p3(2c2 − c3) = 0, g18 + 2g17 = −p3c6,

g23 − p3(2c2 − c3) = 0, G7 = −1

2
G4, g42 + 2g41 = −p3c6,

G66 = −1

2
G63, G68 = −1

2
G62, g3 − p3(g51 − g27) = 0,

g23 + g17 = −p3c5, g23 + 2g18 = −p3c4, g2 −
1

2
p3(g49 − g25) = 0,

g47 + g41 = −p3c5, g47 + 2g42 = −p3c4, g5 −
1

2
p3(g55 − g31) = 0,

g6 − p3(g36 − g16) = 0, g8 − p3(g53 − g29) = 0, g10 −
1

4
p3(g39 − g15) = 0,

g11 −
1

6
p3(g40 − g16) = 0, g61 +

1

2
p3(g49 − g25) = 0, g62 + p3(g51 − g27) = 0,

g65 + p3(g36 − g12) = 0, g64 +
1

2
p3(g55 − g31) = 0, g67 + p3(g53 − g29) = 0,

g69 +
1

4
p3(g39 − g15) = 0, g70 +

1

6
p3(g40 − g16) = 0, g2x − p3(g48 − g24) = 0,

g5x − p3(g37 − g13) = 0, g3x − p3(g50 − g26) = 0, g6x − p3(g38 − g14) = 0,

g8x − p3(g52 − g28) = 0, g10x − p3(g56 − g32) = 0, g11x − p3(g57 − g33) = 0,

g62x + p3(g50 − g26) = 0, g61x + p3(g48 − g24) = 0, g64x + p3(g37 − g13) = 0,

g65x + p3(g38 − g14) = 0, g67x + p3(g52 − g28) = 0, g69x + p3(g56 − g32) = 0,

g12 − (p3c2)x − p3(g67 − g8) = 0, 2g12 + g23x + g22 = 0, g70x + p3(g57 − g33) = 0,

37



g13 + g31x = 0, g14 + g12x = 0, g15 + g14x + p3(g3 − g62) = 0,

g16 − (p3c7)x − p3(g65 − g6) = 0, 2g15 + g13x = 0, 4g16 −
1

3
(p3c9)x − p3(g64 − g5) = 0,

4g40 −
1

3
(p3c9)x + p3(g64 − g5) = 0, g22 + g18x = 0, 3g32 + g15x = 0,

g37 + g55x = 0, g38 + g36x = 0, g39 + g38x − p3(g3 − g62) = 0,

g40 − (p3c7)x + p3(g65 − g6) = 0, g46 + g42x = 0, g46 + g47x + 2g36 = 0,

3g56 + g39x = 0, 5g57 + g40x = 0, p3(g59 − g35) + f3(g48 − g24) = 0,

g16 + g16x + 5g33 = 0, 2g13 + g22x + 2g14 = 0, g22 + g17x + 3g31 = 0,

2g37 + g46x + 2g38 = 0, g46 + g41x + 3g55 = 0, 2g5 + 3g6 − p3(g46 − g22) = 0,

f1t − g1x − f3(g35 + g59) = 0, 2g64 + 3g65 + p3(g46 − g22) = 0, f1t − g60x + f3(g35 − g59) = 0,

f3t − g35x + f3(g60 − g1) = 0, f3t − g59x − f3(g60 − g1) = 0, g56x − p3(g2 − g61) = 0,

g32x + p3(g2 − g61) = 0, g33x + p3(g10 − g69) = 0, g57x − p3(g10 − g69) = 0,

g29 − (p3c1)x = 0, g36 − (p3c2)x + p3(g67 − g8) = 0, p1t − g24x − p3(g1 − g60) = 0,

g53 − (p3c1)x = 0, 2g39 + g37x = 0, p1t − g48x + p3(g1 − g60) = 0.

Deriving a relation between theci

In this section we reduce the previous system down to equations which depend solely on theci’s.

In doing so we find that

g64 = g5 = g65 = g6 = g61 = g2 = g10 = g69 = g70 = g11 = G4(t) = G9(t) = 0, g59 = g35, g60 =

g1, g42 = g18, g40 = g16, g52 = g28, g53 = g29, g55 = g31, g36 = g12, g39 = g15, g56 = g32, g41 =

g17, g57 = g33, g37 = g13, g47 = g23, p3 = H(t)
c10

, g29 = (p3c1)x, g12 = (p3c2)x, g15 = −1
2
g13x, g32 =
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−1
3
g15x, g28 = −(p3c1)xx, g33 = G33(t), gi = −gix, (i = 24− 27, 48− 51)

g23 = −p3c5 − g17, g13 =
1

3
(p3(2c3 − c5 − 6c2))xx,

g18 = −p3c6 − 2g17, g22 = g17x − 2g12 + (p3c5)x,

g16 = (p3c7)x, g46 = g17x − 2g12 + (p3c5)x,

g14 = g12x −
1

2
g17xx − g13 −

1

2
(p3c5)xx, g31 =

1

3
(2g12 − 2g17x − (p3c5)x),

g38 = −g13 + g12x −
1

2
g17xx −

1

2
(p3c5)xx, g17 = p3(c3 − 2c2 − c5),

which leads to the following conditions on theci,

c4 = −10c2 + 5c3 + 2c6 − 4c5, (2.91)

c8 = 4c7 +
2

3
c9, (2.92)

c10xc6 − c6c10x − 2c5c10x + 2c5xc10 + c10xc3 − c3xc10 = 0, (2.93)

−12c10xc7 + 12c7xc10 + c10xc9 − c9xc10 = 0, (2.94)

5Gc310 − 2Hc10xc7xc10 +Hc210c7xx + 2Hc210xc7 −Hc7c10c10xx = 0, (2.95)
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14c3c
2
10x − 7c3c10c10xx − 60c2c

2
10x + 30c2c10c10xx + 60c2xc10c10x − 30c2xxc

2
10 + 4c5xc10c10x

−14c3xc10c10x + 7c3xxc
2
10 − 4c5c

2
10x + 2c5c10c10xx − 2c5xxc

2
10 = 0, (2.96)

18c3c
2
10x − 18c3c10c10xc10xx + 3a3c

3
10c10xxx − 18c3xc10c

2
10x + 9c3xc

2
10c10xx − 60c2c

3
10x

+60c2c10c10xc10xx − 10c2c
2
10c10xxx + 60c2xc10c

2
10x − 30c2xc

2
10c10xx − 30c2xxc

2
10c10x

+10c2xxxc
3
10 + 6c5xc10c

2
10x − 3c5xc

2
10c10xx − 3c5xxc

2
10c10x + 9c3xxc

2
10c10x − 3c3xxxc

3
10

−6c5c
3
10x + c5c10c10xc10xx − c5c

2
10c10xxx + c5xxxc

3
10 = 0, (2.97)

c1xxxxxxxc
7
10 + 5040c1xc10c

6
10x − 7c1xxxxxxc

6
10c10x − c1c

6
10c10xxxxxxx − 5040c1c

7
10x

−7c1xc
6
10c10xxxxxx − 2520c1xxc

2
10c

5
10x +

Ht

H
c710 + 210c1xxxc

5
10c

2
10xx − c610c10t

−35c1xxxc
6
10c10xxxx − 210c1xxxxc

4
10c

3
10x − 21c1xxxxxc

6
10c10xx + 140c1xc

5
10c

2
10xxx

−630c1c
4
10c10xc10xxc10xxxx − 630c1xc

4
10c

3
10xx + 5040c1c

3
10c

2
10xc10xxc10xxx

−630c1c
4
10c

2
10xxc10xxx − 126c1c

4
10c

2
10xc10xxxxx + 70c1c

5
10c10xxxc10xxxx

+14c1c
5
10c10xc10xxxxxx − 12600c1c

2
10c

3
10xc

2
10xx + 2520c1c

3
10c10xc

3
10xx

−12600c1xc
2
10c

4
10xc10xx + 7560c1xc

3
10c

2
10xc

2
10xx + 3360c1xc

3
10c

3
10xc10xxx

+210c1xc
5
10c10xxc10xxxx + 84c1xc

5
10c10xc10xxxxx + 5040c1xxc

3
10c

3
10xc10xx

−1260c1xxc
4
10c

2
10xc10xxx + 420c1xxc

5
10c10xxc10xxx + 210c1xxc

5
10c10xc10xxxx

−2520c1xc
4
10c10xc10xxc10xxx + 840c1c

3
10c

3
10xc10xxxx − 1260c1xxxc

4
10c

2
10xc10xx

+42c1c
5
10c10xxc10xxxxx − 420c1c

4
10c10xc

2
10xxx − 630c1xc

4
10c

2
10xc10xxxx

−1890c1xxc
4
10c10xc

2
10xx + 840c1xxxc

3
10c

4
10x − 4200c1c

2
10c

4
10xc10xxx

+42c1xxxxxc
5
10c

2
10x + 280c1xxxc

5
10c10xc10xxx + 210c1xxxxc

5
10c10xc10xx

−21c1xxc
6
10c10xxxxx − 35c1xxxxc

6
10c10xxx + 15210c1c10c

5
10xc10xx = 0, (2.98)
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and

−240c3c
5
10x + 720c2c

5
10x + 120c5c

5
10x + 40c3xxxc

3
10c

2
10x − 20c3xxxc

4
10c10xx

−180c2xc
3
10c

2
10xx + 30c2xc

4
10c10xxxx + 360c2xxc

2
10c

3
10x + 60c2xxc

4
10c10xxx

+60c2xxxc
4
10c10xx − 30c5xc

3
10c

2
10xx + 5c5xc

4
10c10xxxx + 60c5xxc

2
10c

3
10x

+10c5xxxc
4
10c10xx + c5c

4
10c10xxxxx − 120c3xxc

2
10c

3
10x − 20c3xxc

4
10c10xxx

−10c3xc
4
10c10xxxx + 30c2xxxxc

4
10c10x + 5c5xxxxc

4
10c10x − 10c3xxxxc

4
10c10x

−c5xxxxxc510 − 720c2xc10c
4
10x − 120c5xc10c

4
10x + 240c3xc10c

4
10x

−120c3c
2
10c

2
10xc10xxx + 40c3c

3
10c10xxc10xxx + 20c3c

3
10c10xc10xxxx

+120c3xxc
3
10c10xc10xx − 1440c2c10c

3
10xc10xx + 540c2c

2
10c10xc

2
10xx

−60c2c
3
10c10xc10xxxx + 1080c2xc

2
10c

2
10xc10xx − 240c2xc

3
10c10xc10xxx

−40c5xc
3
10c10xc10xxx − 60c5xxc

3
10c10xc10xx − 240c5c10c

3
10xc10xx

−20c5xxxc
3
10c

2
10x + 60c3xc

3
10c

2
10xx + 2c3xxxxxc

5
10 − 180c3c

2
10c10xc

2
10xx

+180c5xc
2
10c

2
10xc10xx − 120c2c

3
10c10xxc10xxx + 80c3xc

3
10c10xc10xxx

+10c5xxc
4
10c10xxx − 2c3c

4
10c10xxxxx − 6c2xxxxxc

5
10 − 360c3xc

2
10c

2
10xc10xx

−20c5c
3
10c10xxc10xxx − 10c5c

3
10c10xc10xxxx + 60c5c

2
10c

2
10xc10xxx + 6c2c

4
10c10xxxxx

+480c3c10c
3
10xc10xx + 360c2c

2
10c

2
10xc10xxx − 360c2xxc

3
10c10xc10xx

+90c5c
2
10c10xc

2
10xx − 120c2xxxc

3
10c

2
10x = 0, (2.99)

whereG(t) andH(t) are arbitrary functions oft.
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CHAPTER 3: THE EXTENDED ESTABROOK-WAHLQUIST METHOD

In this chapter we present the extended Estabrook-Wahlquist method for deriving the differential

constraints necessary for compatibility of the Lax pair associated with a variable-coefficient nlpde.

We then illustrate the effectiveness of this method by deriving variable-coefficient generalizations

to the nonlinear Schrödinger (NLS) equation, derivative NLS equation, PT-symmetric NLS, fifth-

order KdV, and the first equation in the MKdV hierarchy. As a final example, we consider a

variable-coefficient extension to the nonintegrable cubic-quintic NLS and show that the extended

Estabrook-Wahlquist method correctly breaks down upon attempting to satisfy the consistency

conditions.

Outline of the Extended Estabrook-Wahlquist Method

In the standard Estabrook-Wahlquist method one begins witha constant-coefficient nlpde and as-

sumes an implicit dependence on the unknown function(s) andits (their) partial derivatives for the

spatial and time evolution matrices (F,G) involved in the linear scattering problem

ψx = Fψ, ψt = Gψ

The evolution matricesF andG are connected via a zero-curvature condition (independence of

path in spatial and time evolution) derived by requiringψxt = ψtx. That is, it requires

Ft −Gx + [F,G] = 0 (3.1)
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upon satisfaction of the nlpde.

For simplicity in outlining the details of the method we willconsider a system with only one

unknown function, namelyu(x, t). Generalization of the procedure to follow to systems with

n ≥ 2 unknown functions is straightforward. Let

F = F(u, ux, ut, . . . , umx,nt), G = G(u, ux, ut, . . . , ukx,jt)

represent the space and time evolution matrices of a Lax pair, respectively, whereupx,qt = ∂p+qu
∂xp∂tq

.

Plugging these into (3.1) we obtain the equivalent condition

∑

m,n

Fumx,ntumx,(n+1)t −
∑

j,k

Gujx,kt
u(j+1)x,kt + [F,G] = 0

As we are now lettingF andG have explicit dependence onx andt and for notational clarity, it

will be more convenient to consider the following version ofthe zero-curvature condition

DtF− DxG+ [F,G] = 0 (3.2)

where Dt and Dx are the total derivative operators on time and space, respectively. Recall the

definition of the total derivative

Dxf(x, t, u1(x, t), u2(x, t), . . . , un(x, t)) =
∂f

∂x
+
∂f

∂u1

∂u1
∂x

+
∂f

∂u2

∂u2
∂x

+ · · ·+ ∂f

∂un

∂un
∂x
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Thus we can write the compatibility condition as

Ft +
∑

m,n

Fumx,ntumx,(n+1)t −Gx −
∑

j,k

Gujx,kt
u(j+1)x,kt + [F,G] = 0

It is important to note that the subscriptedx andt denotes the partial derivative with respect to only

thex andt elements, respectively. That is, althoughu and it’s derivatives depend onx andt this

will not invoke use of the chain rule as they are treated as independent variables. This will become

more clear in the examples of the next section.

From here there is often a systematic approach [26]- [29] to determining the explicit dependence

of F andG on u and its derivatives which is outlined in [28] and will be utilized in the examples

to follow.

Typically one takesF to depend on all terms in the nlpde for which there is a partialtime deriva-

tive present. Similarly one may takeG to depend on all terms for which there is a partial space

derivative present. For example, given the Camassa-Holm equation,

ut + 2kux − uxxt + 3uux − 2uxuxx − uuxxx = 0,

one would considerF = F(u, uxx) andG = G(u, ux, uxx). Imposing compatibility allows one to

determine the explicit form ofF andG in a very algorithmic way. Additionally the compatibility

condition induces a set of constraints on the coefficient matrices inF andG. These coefficient

matrices subject to the constraints generate a finite dimensional matrix Lie algebra.

In the extended Estabrook-Wahlquist method we once again take F andG to be functions ofu

and its partial derivatives but now additionally allow dependence onx andt. Although the details
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change, the general procedure will remain essentially the same. This typically entails equating

the coefficient of the highest partial derivative in space ofthe unknown function(s) to zero and

working our way down until we have eliminated all partial derivatives of the unknown function(s).

This is simply because the spatial derivative of the time evolution matrixG will introduce a term

which contains a spatial derivative of the unknown functionof degree one greater than that which

G depends on. For example, in the case of the Camassa-Holm equation with G as it was given

above one would have

DxG = Gx +Guux +Guxuxx +Guxxuxxx.

The final term in the above expression involvesuxxx (i.e. a spatial derivative ofu one degree higher

thanG depends on.) This result, coupled with the terms resulting from the elimination of theut

using the evolution equation, yield auxxx term whose coefficient must necessarily vanish asF and

G do not depend onuxxx. Before considering some examples we make the following observations.

This extended method usually results in a large partial differential equation (in the standard

Estabrook-Wahlquist method, this is an algebraic equation) which can be solved by equating the

coefficients of the different powers of the unknown function(s) to zero. This final step induces a

set of constraints on the coefficient matrices inF andG. Another big difference which we will

see in the examples comes in the final and, arguably, the hardest step. In the standard Estabrook-

Wahlquist method the final step involves finding explicit forms for the set of coefficient matrices

such that they satisfy the contraints derived in the procedure and depend on a spectral parame-

ter. Note these constraints are nothing more than a system of algebraic matrix equations. In the

extended Estabrook-Wahlquist method these constraints will be in the form of matrix partial dif-

ferential equations which can be used to derive an integrability condition on the coefficients in the

nlpde.
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Note that compatibility of the time and space evolution matrices will yield a set of constraints

which contain the constant coefficient constraints as a subset. In fact, taking the variable coef-

ficients to be the appropriate constants will yield exactly the Estabrook-Wahlquist results for the

constant coefficient version of the nlpde. That is, the constraints given by the Estabrook-Wahlquist

method for a constant coefficient nlpde are always a proper subset of the constraints given by a

variable-coefficient version of the nlpde. This can easily be shown. LettingF andG not depend

explicitly on x andt and taking the coefficients in the NLPDE to be constant the zero-curvature

condition as it is written above becomes

∑

m,n

Fumx,ntumx,(n+1)t −
∑

j,k

Gujx,kt
u(j+1)x,kt + [F,G] = 0,

which is exactly the standard Estabrook-Wahlquist method.

The conditions derived via mandating (3.2) be satisfied uponsolutions of the variable-coefficient

nlpde may be used to determine conditions on the coefficient matrices and variable coefficients

(present in the NLPDE). Successful closure of these conditions is equivalent to the system being

S-integrable. A major advantage to using the Estabrook-Wahlquist method that carries forward

with the extension is the fact that it requires little guesswork and yields quite general results.

PT-Symmetric and Standard Nonlinear Schrödinger Equation

We begin with the derivation of the Lax pair and differentialconstraints for the variable-coefficient

standard NLS equation. Following with the procedure outlined above we choose

F = F(x, t, q, r), and G = G(x, t, r, q, rx, qx).
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Compatibility requires these matrices satisfy the zero-curvature conditions given by (3.2). Plug-

gingF andG into (3.2) we have

Ft + Frrt + Fqqt −Gx −Grrx −Gqqx −Grxrxx −Gqxqxx + [F,G] = 0. (3.3)

Now requiring this be satisfied upon solutions of (2.3) we follow the standard technique of elimi-

natingrt andut via (2.3) from which we obtain

Ft − iFr(frxx + gr2q + (υ − iγ)r) + iFq(fqxx + gq2r + (υ + iγ)q)

−Gx −Grrx −Gqqx −Grxrxx −Gqxqxx + [F,G] = 0. (3.4)

SinceF andG do not depend onqxx or rxx we collect the coefficients ofqxx andrxx and equate

them to zero. This requires

−ifFr −Grx = 0, and ifFq −Gqx = 0. (3.5)

Solving this linear system yields

G = if(Fqqx − Frrx) +K
0(x, t, q, r). (3.6)

Plugging this expression forG into equation (3.4) gives us the updated requirement
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Ft − iFr(gr
2q + (υ − iγ)r) + iFq(gq

2r + (υ + iγ)q)− ifx(Fqqx − Frrx)

−K
0
qqx −K

0
rrx − if(Fqxqx − Frxrx)− if(Fqqq

2
x − Frrr

2
x)−K

0
x + ifqx [F,Fq]

−ifrx [F,Fr] +
[

F,K0
]

= 0. (3.7)

Now sinceF andK0 do not depend onqx andrx we collect the coefficients of theq2x andr2x and

equate them to zero. This now requires

ifFrr = 0 = −ifFqq.

From this, it follows via simple integration thatF depends onq andr explicitly as follows,

F = X1(x, t) + X2(x, t)q + X3(x, t)r + X4(x, t)rq,

where theXi in this expression are arbitrary matrices whose elements are functions ofx andt but

do not depend onq, r, or their partial derivatives. Plugging this expression for F into equation (3.7)

we obtain
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X1,t + X2,tq + X3,tr + X4,trq − i(X3 + X4q)(gr
2q + (υ − iγ)r) + i(X2 + X4r)(gq

2r + (υ + iγ)q)

−ifx((X2 + X4r)qx − (X3 + X4q)rx)−K
0
qqx −K

0
rrx − if((X2,x + X4,xr)qx − (X3,x + X4,xq)rx)

−K
0
x + if [X1,X2]qx + if [X3,X2]rqx + if [X4,X2]rqqx + if [X1,X4]rqx + if [X2,X4]rqqx

+if [X3,X4]r
2qx − if [X1,X3]rx − if [X2,X3]qrx − if [X4,X3]qrrx − if [X1,X4]qrx

−if [X2,X4]q
2rx − if [X3,X4]qrrx + [X1,K

0] + [X2,K
0]q + [X3,K

0]r + [X4,K
0]qr = 0. (3.8)

Noting the antisymmetry of the commutator, that is[A,B] = −[B,A] (which is required if theXi

are elements of a Lie algebra), we can further simplify the previous expression to obtain

X1,t + X2,tq + X3,tr + X4,trq − i(X3 + X4q)(gr
2q + (υ − iγ)r) + i(X2 + X4r)(gq

2r + (υ + iγ)q)

−ifx((X2 + X4r)qx − (X3 + X4q)rx)−K
0
qqx −K

0
rrx − if((X2,x + X4,xr)qx − (X3,x + X4,xq)rx)

−K
0
x + if [X1,X2]qx + if [X3,X2]rqx + if [X1,X4]rqx + if [X3,X4]r

2qx − if [X1,X3]rx

−if [X2,X3]qrx − if [X1,X4]qrx − if [X2,X4]q
2rx = 0. (3.9)

As before, since theXi andK0 do not depend onrx or qx we equate the coefficients of theqx and

rx terms to zero. We therefore require the following equationsare satisfied,
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−ifx(X2 + X4r)−K
0
q − if(X2,x + X4,xr) + if [X1,X2] + ifr[X1,X4]

−ifr[X2,X3] + ifr2[X3,X4] = 0, (3.10)

ifx(X3 + X4q)−K
0
r + if(X3,x + X4,xq)− if [X1,X3]− ifq[X1,X4]

−ifq[X2,X3]− ifq2[X2,X4] = 0. (3.11)

Upon trying to integrate this system one finds that the systemis in its current state inconsistent

unless a consistency condition is satisfied. Recall that given a system of PDEs

Ψq = ξ(q, r) andΨr = η(q, r),

if we are to recoverΨ we must satisfy a consistency condition. That is, we must have ξr = Ψqr =

Ψrq = ηq. In terms of equations (3.10) and (3.11) we have

ξ(q, r) = −ifx(X2 + X4r)− if(X2,x + X4,xr) + if [X1,X2] + ifr[X1,X4]

−ifr[X2,X3] + ifr2[X3,X4] = 0 (3.12)

η(q, r) = ifx(X3 + X4q) + if(X3,x + X4,xq)− if [X1,X3]− ifq[X1,X4]

−ifq[X2,X3]− ifq2[X2,X4] = 0 (3.13)

Thus the consistency condition (ξr = ηq) requires that
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−ifxX4 − ifX4,x + if [X1,X4]− if [X2,X3] + 2if [X3,X4]r = ifxX4 + ifX4,x − if [X1,X4]

−if [X2,X3]− 2if [X2,X4]q

hold. But this means we must have

2ifxX4 + 2ifX4,x − 2if [X1,X4]− 2if [X3,X4](r + q) = 0. (3.14)

One easy choice to make the system consistent, and for the purpose of demonstrating how this

method can reproduce results previously obtained in the literature, is to setX4 = 0. Thus the

system becomes

K
0
q = −ifxX2 − ifX2,x + if [X1,X2]− ifr[X2,X3], (3.15)

K
0
r = ifxX3 + ifX3,x − if [X1,X3]− ifq[X2,X3]. (3.16)

Integrating the first equation with respect toq we obtain

K
0 = −ifxX2q − ifX2,xq + if [X1,X2]q − if [X2,X3]rq +K

∗(x, t, r).

Now differentiating this and requiring that it equal our previous expression forK0
r we find thatK∗

must satisfy
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K
∗
r = ifxX3 + ifX3,x − if [X1,X3].

Integrating this expression with respect tor we easily find that

K
∗ = ifxX3r + ifX3,xr − if [X1,X3]r + X0(x, t),

whereX0 is an arbitrary matrix whose elements are functions ofx andt and does not depend onq,

r, or their partial derivatives. Finally, plugging this expression forK∗ into our previous expression

for K0 we have

K
0 = ifx(X3r−X2q)+if(X3,xr−X2,xq)+if [X1,X2]q−if [X1,X3]r−if [X2,X3]qr+X0. (3.17)

Plugging this into equation (3.9) we obtain
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X1,t + X2,tq + X3,tr − iX3(gr
2q + (υ − iγ)r) + iX2(gq

2r + (υ + iγ)q)− ifxx(X3r − X2q)

−2ifx(X3,xr − X2,xq)− if(X3,xxr − X2,xxq)− i(f [X1,X2])xq + i(f [X1,X3])xr

−X0,x + ifx([X1,X3]r − [X1,X2]q) + if([X1,X3,x]r − [X1,X2,x]q) + if [X1, [X1,X2]]q

−if [X1, [X1,X3]]r − if [X1, [X2,X3]]qr + [X1,X0] + ifx[X2,X3]qr + i(f [X2,X3])xqr

+if [X2, [X1,X2]]q
2 − if [X2, [X1,X3]]qr − if [X2, [X2,X3]]q

2r + [X2,X0]q − ifx[X3,X2]rq

+if([X3,X3,x]r
2 − [X3,X2,x]rq) + if [X3, [X1,X2]]rq − if [X3, [X1,X3]]r

2 − if [X3, [X2,X3]]qr
2

+if([X2,X3,x]qr − [X2,X2,x]q
2) + [X3,X0]r = 0. (3.18)

Since theXi are independent ofr andq we equate the coefficients of the different powers ofr and

q to zero and thus obtain the following constraints at each order in r andq:
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O(1) : X1,t − X0,x + [X1,X0] = 0, (3.19)

O(q) : X2,t + iX2(υ + iγ) + i(fX2)xx − i(f [X1,X2])x − ifx[X1,X2]− if [X1,X2,x]

+if [X1, [X1,X2]] + [X2,X0] = 0, (3.20)

O(r) : X3,t − iX3(υ − iγ)− i(fX3)xx + i(f [X1,X3])x + ifx[X1,X3] + if [X1,X3,x]

−if [X1, [X1,X3]] + [X3,X0] = 0, (3.21)

O(qr) : 2i(f [X2,X3])x − if [X1, [X2,X3]] + ifx[X2,X3]− if [X2, [X1,X3]]

+if [X3, [X1,X2]] = 0, (3.22)

O(q2) : if [X2,X2,x]− if [X2, [X1,X2]] = 0, (3.23)

O(r2) : if [X3,X3,x]− if [X3, [X1,X3]] = 0, (3.24)

O(q2r) : igX2 − if [X2, [X2,X3]] = 0, (3.25)

O(r2q) : igX3 + if [X3, [X2,X3]] = 0. (3.26)

These equations collectively determine the conditions forthe Lax-integrability of the system (2.3).

Note that in general, as with the standard Estabrook-Wahlquist method, the solution to the above

system is not unique. Moreover, as we will show, one finds thatresolution of the system of equa-

tions derived in the process of requiring compatibility under the zero-curvature equation (such as

the system above) cannot be done in general. Rather it will require additional compatibility condi-

tions be satisfied between the coefficients in system (2.3). This result is not unique to this system

but in fact typical of most systems (if not all). Provided we can find representations for theXi,

and in doing so derive the necessary compatibility conditions between the coefficient functions in

(2.3), we will obtain our Lax pairF andG. We will now show how to reproduce the results given
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in Khawaja’s paper. Let us consider Khawaja’s choices for theXi matrices. That is, we take

X0 =







g1 0

0 g13






, X1 =







f1 0

0 f7






, X2 =







0 ip1

0 0






, X3 =







0 0

−ip2 0






. (3.27)

Plugging these into our integrability conditions yields

O(1) : f1t − g1x = 0, (3.28)

O(1) : f7t − g13x = 0, (3.29)

O(q) : ip1t − ip1(g1 − g13 − iυ + γ)− (fp1)xx + 2(f1 − f7)(p1f)x

−fp1(f1 − f7)
2 + fp1(f1 − f7)x = 0, (3.30)

O(r) : ip2t + ip2(g1 − g13 − iυ − γ) + (fp2)xx + 2(f1 − f7)(fp2)x

+(f1 − f7)
2fp2 + fp2(f1 − f7)x = 0, (3.31)

O(qr) : fxp1p2 + 2(fp1p2)x = 0, (3.32)

O(q2r) andO(r2q) : g + 2fp1p2 = 0. (3.33)

Note that equations (3.23) and (3.24) were identically satisfied and thus omitted here. In Khawaja’s

paper we see equations (3.28), (3.29), (3.32) and (3.33) given exactly as they are above. To see

that the other conditions are equivalent we note that in his paper he had the additional determining

equations

55



(fp1)x − fp1(f1 − f7)− g6 = 0, (3.34)

(fp2)x + fp2(f1 − f7)− g10 = 0, (3.35)

g6(f1 − f7)− ip1(g1 − g13 − iυ + γ)− g6x + ip1t = 0, (3.36)

g10(f1 − f7) + ip2(g1 − g13 − iυ − γ) + g10x + ip2t = 0. (3.37)

We begin by solving equations (3.34) and (3.35) forg6 andg10, respectively. Now pluggingg6 into

equation (3.36) andg10 into equation (3.37) we obtain the system

2(fp1)x(f1 − f7)− fp1(f1 − f7)
2 − ip1(g1 − g13 − iυ + γ)− (fp1)xx

+fp1(f1 − f7)x + ip1t = 0, (3.38)

(fp2)x(f1 − f7) + fp2(f1 − f7)
2 + ip2(g1 − g13 − iυ − γ) + (fp2)xx

+fp2(f1 − f7)x + ip2t = 0, (3.39)

which are exactly equations (3.30) and (3.31). At this pointthe derivation of the final conditions on

the coefficient functions is exactly as it was given in the previous chapter and thus will be omitted

here. The Lax pair for this system is given by
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F = X1 + X2q + X3r (3.40)

G = if(X2qx − X3rx) + ifx(X3r − X2q) + if(X3,xr − X2,xq) + if [X1,X2]q − if [X1,X3]r

−if [X2,X3]qr + X0 (3.41)

As the PT-symmetric NLS is a special case of the system considered above we may obtain the

results through the necessary reductions. Lettingγ = v = 0, f = −a1, g = −a2 and taking

r(x, t) = q∗(−x, t) where∗ denotes the complex conjugate we obtain

O(1) : X1,t − X0,x + [X1,X0] = 0, (3.42)

O(q) : X2,t − i(a1X2)xx + i(a1[X1,X2])x + ia1x[X1,X2] + ia1[X1,X2,x]

+if [X1, [X1,X2]] + [X2,X0] = 0, (3.43)

O(r) : X3,t + i(a1X3)xx − i(a1[X1,X3])x − ia1x[X1,X3]− ia1[X1,X3,x]

ia1[X1, [X1,X3]] + [X3,X0] = 0, (3.44)

O(qr) : −2i(a1[X2,X3])x + ia1[X1, [X2,X3]]− ia1x[X2,X3] + ia1[X2, [X1,X3]]

−ia1[X3, [X1,X2]] = 0, (3.45)

O(q2) : −ia1[X2,X2,x] + ia1[X2, [X1,X2]] = 0, (3.46)

O(r2) : −ia1[X3,X3,x] + ia1[X3, [X1,X3]] = 0, (3.47)

O(q2r) : −ia2X2 + ia1[X2, [X2,X3]] = 0, (3.48)

O(r2q) : −ia2X3 − ia1[X3, [X2,X3]] = 0. (3.49)
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Utilizing the same set of generators

X0 =







g1 0

0 g13






, X1 =







f1 0

0 f7






, X2 =







0 ip1

0 0






, X3 =







0 0

−ip2 0






, (3.50)

we have the following set of conditions

O(1) : f1t − g1x = 0, (3.51)

O(1) : f7t − g13x = 0, (3.52)

O(q) : ip1t − ip1(g1 − g13) + (a1p1)xx − 2(f1 − f7)(p1a1)x

+a1p1(f1 − f7)
2 − a1p1(f1 − f7)x = 0, (3.53)

O(r) : ip2t + ip2(g1 − g13)− (a1p2)xx − 2(f1 − f7)(a1p2)x

−(f1 − f7)
2a1p2 − a1p2(f1 − f7)x = 0, (3.54)

O(qr) : −a1xp1p2 − 2(a1p1p2)x = 0, (3.55)

O(q2r) andO(r2q) : a2 + 2a1p1p2 = 0. (3.56)

As with the standard NLS, the final conditions on the coefficient functions can be found in the

previous chapter. The Lax pair for this system is then given by

F = X1 + X2q + X3r, (3.57)

G = −ia1(X2qx − X3rx)− ia1x(X3r − X2q)− ia1(X3,xr − X2,xq)− ia1[X1,X2]q + ia1[X1,X3]r

+ia1[X2,X3]qr + X0. (3.58)

58



Derivative Nonlinear Schrodinger Equation

In this section we derive the Lax pair and differential constraints for the variable-coefficient deriva-

tive nonlinear Schr̈odinger equation. The details of this example will be similar to that of the

standard NLS and PT-symmetric NLS. Following the extended Estabrook-Wahlquist procedure as

outlined at the beginning of the chapter we let

F = F(x, t, r, q), and G = G(x, t, r, q, rx, qx).

PluggingF andG as given above into equation (3.2) we obtain

Ft + Fqqt + Frrt −Gx −Gqqx −Gqxqxx −Grrx −Grxrxx + [F,G] = 0. (3.59)

Now using substituting forqt andrt using equations (2.42) and (2.43), respectively, we obtainthe

following equation,

Ft + (ia1Fq −Gqx)qxx − (ia1Fr +Grx)rxx − Fq(2a2rqqx + a2q
2rx)

−Fr(2a2qrrx + a2r
2qx)−Gx −Gqqx −Grrx + [F,G] = 0. (3.60)

SinceF andG do not depend onqxx or rxx we can set the coefficients of theqxx andrxx terms to
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zero. This requiresF andG satisfy the equations

ia1Fq −Gqx = 0 and ia1Fr +Grx = 0. (3.61)

Solving this in the same manner as in the NLS example we obtain

G = ia1(Fqqx − Frrx) +K
0(x, t, r, q). (3.62)

Plugging this expression forG into equation (3.60) we obtain

Ft − Fq(2a2rqqx + a2q
2rx)− Fr(2a2qrrx + a2r

2qx)− i(a1Fq)xqx + i(a1Fr)xrx −K
0
x

+ia1Frrr
2
x −K

0
rrx − ia1Fqqq

2
x −K

0
qqx + ia1[F,Fq]qx − ia1[F,Fr]rx + [F,K0] = 0. (3.63)

Now sinceF andK0 do not depend onqx or rx we can set the coefficients of the different powers

of rx andqx to zero. Setting the coefficients of theq2x andr2x terms to zero we obtain the conditions

−ia1Fqq = ia1Frr = 0. (3.64)

From these conditions it follows thatF must be of the formF = X1(x, t)+X2(x, t)r+X3(x, t)q+

X4(x, t)qr where theXi are matrices whose elements are functions ofx andt. As with the previous

examples these matrices are independent ofq, r, and their partial derivatives. Now setting the

coefficients of theqx andrx terms to zero we obtain the following conditions,
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−a2X3q
2 − a2X4q

2r + i(a1X2)x + i(a1X4)xq −K
0
r − ia1[X1,X2]− ia1[X1,X4]q

−ia1[X3,X2]q − ia1[X3,X4]q
2 − 2a2X2rq − 2a2X4q

2r = 0, (3.65)

−a2X2r
2 − a2X4r

2q − i(a1X3)x − i(a1X4)xr −K
0
q + ia1[X1,X3] + ia1[X1,X4]r

+ia1[X2,X3]r + ia1[X2,X4]r
2 − 2a2X3rq − 2a2X4r

2q = 0. (3.66)

In much the same way as for the NLS we denote the left-hand sideof (3.65) asξ(r, q) and the

left-hand side of (3.66) asη(r, q). For recovery ofK0 we require thatξq = ηr. Computingξq and

ηr we find

ξq = −2a2X3q − 2a2X4qr + i(a1X4)x − ia1[X1,X4]− ia1[X3,X2]− 2ia1[X3,X4]q

−2a2X2r − 4a2X4qr, (3.67)

ηr = −2a2X2r − 2a2X4rq − i(a1X4)x + ia1[X1,X4] + ia1[X2,X3] + 2ia1[X2,X4]r

−2a2X3q − 4a2X4rq. (3.68)

As with the NLS, consistency requiresξq andηr be equal. This is equivalent to the condition

2i(a1X4)x − 2ia1[X1,X4]− 2ia1[X3,X4]q − 2ia1[X2,X4]r = 0. (3.69)

Since theXi do not depend onq or r this previous condition requires
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2i(a1X4)x − 2ia1[X1,X4] = 0, (3.70)

−2ia1[X3,X4] = 0, (3.71)

−2ia1[X2,X4] = 0. (3.72)

Once again in following with the standard NLS we will takeX4 = 0 in order to simplify computa-

tions. Therefore we have

K
0
q = −a2X2r

2 − i(a1X3)x + ia1[X1,X3] + ia1[X2,X3]r − 2a2X3rq, (3.73)

K
0
r = −a2X3q

2 + i(a1X2)x − ia1[X1,X2]− ia1[X3,X2]q − 2a2X2rq. (3.74)

Integrating the first equation with respect toq yields

K
0 = −a2X2r

2q − i(a1X3)xq + ia1[X1,X3]q + ia1[X2,X3]rq − a2X3q
2r +K

∗(x, t, r).

Differentiating this equation with respect tor and requiring that it equal our previous expression

for K0
r we find thatK∗ must satisfy

K
∗
r = i(a1X2)x − ia1[X1,X2].

From this it follows
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K
∗ = i(a1X2)xr − ia1[X1,X2]r + X0(x, t),

whereX0 a matrix whose elements are functions ofx andt and which does not depend onq, r, or

their partial derivatives. Plugging this expression forK
∗ into our previous expression forK0 we

obtain the following final expression forK0,

K
0 = i(a1X2)xr − i(a1X3)xq − ia1[X1,X2]r + ia1[X1,X3]q + ia1[X2,X3]rq − a2X2r

2q

−a2X3q
2r + X0(x, t). (3.75)

Now plugging this and our expression forF into equation (3.63) we get

X1,t + X2,tr + X3,tq − i(a1X2)xxr + i(a1X3)xxq + i(a1[X1,X2])xr − i(a1[X1,X3])xq

−i(a1[X2,X3])xrq + (a2X2)xr
2q + (a2X3)xq

2r − X0,x + i[X1, (a1X2)x]r − [X1, (a1X3)x]q

−ia1[X1, [X1,X2]]r + ia1[X1, [X1,X3]]q + ia1[X1, [X2,X3]]rq − a2[X1,X2]r
2q − a2[X1,X3]q

2r

+[X1,X0] + i[X2, (a1X2)x]r
2 − i[X2, (a1X3)x]rq − ia1[X2, [X1,X2]]r

2 + ia1[X2, [X1,X3]]rq

+ia1[X2, [X2,X3]]r
2q + [X2,X0]r + i[X3, (a1X2)x]rq − i[X3, (a1X3)x]q

2 − ia1[X3, [X1,X2]]rq

+ia1[X3, [X1,X3]]q
2 + ia1[X3, [X2,X3]]q

2r + [X3,X0]q = 0. (3.76)

Since theXi are independent ofr andq we equate the coefficients of the different powers ofr and

q to zero thereby obtaining the following final constraints:
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O(1) : X1,t − X0,x + [X1,X0] = 0, (3.77)

O(q) : X3,t + i(a1X3)xx − i(a1[X1,X3])x − i[X1, (a1X3)x] + ia1[X1, [X1,X3]]

+[X3,X0] = 0, (3.78)

O(r) : X2,t − i(a1X2)xx + i(a1[X1,X2])x + i[X1, (a1X2)x]− ia1[X1, [X1,X2]]

+[X2,X0] = 0, (3.79)

O(rq) : −(a1[X2,X3])x + a1[X1, [X2,X3]]− [X2, (a1X3)x] + a1[X2, [X1,X3]] + [X3, (a1X2)x]

−a1[X3, [X1,X2]] = 0, (3.80)

O(q2) : −[X3, (a1X3)x] + a1[X3, [X1,X3]] = 0, (3.81)

O(r2) : [X2, (a1X2)x]− a1[X2, [X1,X2]] = 0, (3.82)

O(r2q) : (a2X2)x − a2[X1,X2] + ia1[X2, [X2,X3]] = 0, (3.83)

O(q2r) : (a2X3)x − a2[X1,X3] + ia1[X3, [X2,X3]] = 0. (3.84)

We take the following forms for the generators

X0 =







g1 g2

g3 g4






, X1 =







f1 0

0 f2






, X2 =







0 f3

0 0






, X3 =







0 0

f4 0






, (3.85)

where thefi andgj are yet to be determined functions ofx andt. Note that with this choice the

(3.81) and (3.82) equations are immediately satisfed. Fromequations (3.78) and (3.79) we obtain

the following conditions,
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g3f4 = g2f3 = 0, (3.86)

f4t + i(a1f4)xx − i(a1f4(f1 − f2))x + (f2 − f1)(a1f4)x + ia1f4(f1 − f2)
2

+f4(g4 − g1) = 0, (3.87)

f3t − i(a1f3)xx − i(a1f3(f1 − f2))x + (f2 − f1)(a1f3)x − ia1f3(f1 − f2)
2

−f3(g4 − g1) = 0. (3.88)

To keepX2 andX3 nonzero (and thus obtain nontrivial results) we forceg2 = g3 = 0. The

condition given by equation (3.80) reduces to the single equation

(a1f3f4)x + f3(a1f4)x + f4(a1f3)x = 0. (3.89)

The final two conditions now yield the system

(a2f3)x − a2f3(f2 − f1)− 2ia1f
2
3 f4 = 0, (3.90)

(a2f4)x + a2f4(f2 − f1) + 2ia1f
2
4 f3 = 0. (3.91)

At this point the resolution of the system given by equations(3.77) and (3.87) - (3.91) such that

theai are real-valued functions requires eitherf3 = 0 or f4 = 0. Without loss of generality we

choosef3 = 0 from which we obtain the new system of equations
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f1t − g1x = 0, (3.92)

f2t − g4x = 0, (3.93)

f4t + i(a1f4)xx − i(a1f4(f1 − f2))x + (f2 − f1)(a1f4)x + ia1f4(f1 − f2)
2

+f4(g4 − g1) = 0, (3.94)

(a2f4)x + a2f4(f2 − f1) = 0. (3.95)

Solving equations (3.92), (3.94) and (3.95) forf1, g4, andf2, respectively, we obtain

f1 =

∫

g1xdt+ F1(x), (3.96)

f2 = −(a2f4)x
a2f4

+

∫

g1xdt+ F1(x), (3.97)

g4 =
−ia22f4a1xx + ia1a2f4a2xx − 2ia1a

2
2xf4 + 2ia2a2xa1xf4 − f4ta

2
2

a22f4
+ g1, (3.98)

whereF1(x) is an arbitrary function ofx. Plugging these expressions into equation (3.93) yields

the integrability condition

a32a1xxx − ia2ta2xa2 + ia2xta
2
2 − 3a22a2xxa1x − 4a32xa1 + 5a1a2a2xa2xx + 4a22xa2a1x

−a22a1a2xxx − 2a2xa
2
2a1xx = 0. (3.99)

Since we require that theai be real this equation splits into the conditions
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a2ta2x − a2xta2 = 0, (3.100)

a32a1xxx − 3a22a2xxa1x − 4a32xa1 + 5a1a2a2xa2xx + 4a22xa2a1x

−a22a1a2xxx − 2a2xa
2
2a1xx = 0. (3.101)

With the aid of MAPLE we find that the previous system is exactly solvable with solution given by

a1(x, t) = F4(t)F2(x)

(

c1 + c2x− c1

∫

x dx

F2(x)
+ c1x

∫

dx

F2(x)

)

, (3.102)

a2(x, t) = F2(x)F3(t), (3.103)

whereF2, F3, andF4 are arbitrary functions in their respective variables andc1 andc2 are arbitrary

constants. The Lax pair for this system is then found to be

F = X1 + X3q, (3.104)

G = ia1X3qx − i(a1X3)xq + ia1[X1,X3]q − a2X3q
2r + X0. (3.105)

Fifth-Order Korteweg-de-Vries Equation

In this section we derive the Lax pair and differential constraints for the generalized fifth-order

variable-coefficient KdV. Following the procedure outlined earlier in the chapter we let
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F = F(x, t, u) and G = G(x, t, u, ux, uxx, uxxx, uxxxx).

PluggingF andG into equation (3.2) we obtain

Ft+Fuut−Gx−Guux−Guxuxx−Guxxuxxx−Guxxxuxxxx−Guxxxxuxxxxx+[F,G] = 0. (3.106)

Next, substituting forut in the previous expression using equation (2.66) we obtain the equation

Ft − Fu

(

a1uuxxx + a2uxuxx + a3u
2ux + a4uux + a5uxxx + a6uxxxxx + a7u+ a8ux

)

−Gx

−Guux −Guxuxx −Guxxuxxx −Guxxxuxxxx −Guxxxxuxxxxx + [F,G] = 0. (3.107)

SinceF andG do not depend onuxxxxx we can equate the coefficient of theuxxxxx term to zero.

This requires thatF andG satisfy

Guxxxx + a6Fu = 0 ⇒ G = −a6Fuuxxxx +K
0(x, t, u, ux, uxx, uxxx).

Updating equation (3.107) using the above expression forG we obtain the equation
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Ft − Fu

(

a1uuxxx + a2uxuxx + a3u
2ux + a4uux + a5uxxx + a7u+ a8ux

)

+ a6xFuuxxxx

+a6Fxuuxxxx −K
0
x −K

0
uux −K

0
ux
uxx −K

0
uxx
uxxx −K

0
uxxx

uxxxx + a6Fuuuxuxxxx

−[F,Fu]a6uxxxx + [F,K0] = 0. (3.108)

SinceF andK0 do not depend onuxxxx we can equate the coefficient of theuxxxx term to zero.

This requires thatK0 satisfies

a6xFu + a6Fxu + a6Fuuux −K
0
uxxx

− [F,Fu]a6 = 0. (3.109)

Integrating with respect touxxx and solving forK0 we obtain

K
0 = a6xFuuxxx + a6Fxuuxxx + a6Fuuuxuxxx − [F,Fu]a6uxxx +K

1(x, t, u, ux, uxx). (3.110)

Updating equation (3.108) by plugging in our expression forK
0 we obtain the equation
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Ft − Fu

(

a1uuxxx + a2uxuxx + a3u
2ux + a4uux + a5uxxx + a7u+ a8ux

)

− a6xxFuuxxx

−2a6xFxuuxxx − a6Fxxuuxxx − a6xFuuuxuxxx − a6Fxuuuxuxxx + [Fx,Fu]a6uxxx

+[F,Fxu]a6uxxx + [F,Fu]a6xuxxx −K
1
x − a6xFuuuxuxxx − a6Fxuuuxuxxx −K

1
uux

−a6Fuuuu
2
xuxxx + [F,Fuu]a6uxuxxx − a6Fuuuxxuxxx −K

1
ux
uxx −K

1
uxx
uxxx + [F,K1]

+a6x[F,Fu]uxxx + a6[F,Fxu]uxxx + a6[F,Fuu]uxuxxx − [F, [F,Fu]]a6uxxx = 0. (3.111)

SinceF andK1 do not depend onuxxx we can equate the coefficient of theuxxx term to zero. This

requires thatK1 satisfies the equation

−Fu(a1u+ a5)− a6xxFu − 2a6xFxu − a6Fxxu − a6xFuuux − a6Fxuuux

+[Fx,Fu]a6 + [F,Fxu]a6 + [F,Fu]a6x − a6xFuuux − a6Fxuuux − a6Fuuuu
2
x

+[F,Fuu]a6ux − a6Fuuuxx −K
1
uxx

+ a6x[F,Fu] + a6[F,Fxu] + a6[F,Fuu]ux

−[F, [F,Fu]]a6 = 0. (3.112)

Integrating with respect touxx and solving forK1 and collecting like terms we have

K
1 = −Fu(a1u+ a5)uxx − (a6Fu)xxuxx − 2(a6Fuu)xuxuxx + 2(a6[F,Fu])xuxx

−a6Fuuuu
2
xuxx + 2a6[F,Fuu]uxuxx −

1

2
a6Fuuu

2
xx − a6[Fx,Fu]uxx

−a6[F, [F,Fu]]uxx +K
2(x, t, u, ux). (3.113)
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Plugging the expression forK1 into equation (3.111) and simplifying a little bit we obtainthe large

equation

Ft − Fu(a2uxuxx + a3u
2ux + a4uux + a7u+ a8ux) + (a1Fu)xuuxx + (a5Fu)xuxx

+(a6Fu)xxxuxx + 2(a6Fuu)xxuxuxx − (a6[F,Fu])xxuxx + (a6Fuuu)xu
2
xuxx

+
1

2
(a6Fuu)xu

2
xx − ([F, (a6Fu)x])xuxx + (a6[F, [F,Fu]])xuxx −K

2
x + Fuua1uuxuxx

+Fua1uxuxx + Fuua5uxuxx + (a6Fuu)xxuxuxx + 2(a6Fuuu)xu
2
xuxx + a6Fuuuuu

3
xuxx

−a6[Fu,Fuu]u
2
xuxx − a6[F,Fuuu]u

2
xuxx +

5

2
a6Fuuuu

2
xxux − [Fu, (a6Fu)x]uxuxx

−2[F, (a6Fuu)x]uxuxx − a6[Fu,Fuu]u
2
xuxx − a6[F,Fuuu]u

2
xuxx + a6[Fu, [F,Fu]]uxuxx

+a6[F, [F,Fuu]]uxuxx −K
2
uux + 2(a6Fuu)xu

2
xx −

3

2
a6[F,Fuu]u

2
xx −K

2
ux
uxx

−a5[F,Fu]uxx − [F, (a6Fu)xx]uxx − [F, (a6Fuu)x]uxuxx + [F, (a6[F,Fu])x]uxx

−a6[F,Fuuu]u
2
xuxx + 2a6[F, [F,Fuu]]uxuxx + [F, [F, (a6Fu)x]]uxx − a1[F,Fu]uuxx

−a6[F, [F, [F,Fu]]]uxx − 3(a6[F,Fuu])xuxuxx + [F,K2] = 0. (3.114)

SinceK2 andF do not depend onuxx we can start by setting the coefficients of theu2xx and theuxx

terms to zero. Note the difference here to that of the previous steps. Here we have multiple powers

of uxx present in equation (3.114). Setting theO(u2xx) term to zero we obtain the condition

3

2
(a6Fuu)x +

5

2
a6Fuuuux −

3

2
a6[F,Fuu] = 0. (3.115)

SinceF does not depend onux we must additionally require that the coefficient of theux term in

this previous expression is zero. This is equivalent toF satisfying
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Fuuu = 0 ⇒ F = X1(x, t) + X2(x, t)u+
1

2
X3(x, t)u

2,

where theXi are matrices whose elements are functions ofx andt and do not depend onu or its

partial derivatives. Plugging this expression forF into equation (3.115) we obtain the condition

3(a6X3)x − 3a6([X1,X3] + [X2,X3]u) = 0. (3.116)

Since theXi do not depend onu we can set the coefficient of theu term to zero. That is, we require

thatX2 andX3 commute. We find now that equation (3.116) reduces to

(a6X3)x − a6[X1,X3] = 0. (3.117)

For ease of computation and in order to immediately satisfy equation (3.117) we setX3 = 0.

Plugging our expression forF into equation (3.114) we obtain the large equation
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X1,t + X2,tu− X2(a2uxuxx + a3u
2ux + a4uux + a7u+ a8ux) + (a1X2)xuuxx + (a5X2)xuxx

+(a6X2)xxxuxx − (a6[X1,X2])xxuxx −K
2
x + X2a1uxuxx − [X2, (a6X2)x]uxuxx

−([X1, (a6X2)x])xuxx − ([X2, (a6X2)x])xuuxx + (a6[X1, [X1,X2]])xuxx + (a6[X2, [X1,X2]])xuuxx

−K
2
uux −K

2
ux
uxx − a1[X1,X2]uuxx + a6[X2, [X1,X2]]uxuxx + [X2, (a6[X1,X2])x]uuxx

−a5[X1,X2]uxx − [X1, (a6X2)xx]uxx − [X2, (a6X2)xx]uuxx + [X1, (a6[X1,X2])x]uxx

+[X1, [X1, (a6X2)x]]uxx + [X1, [X2, (a6X2)x]]uuxx + [X2, [X1, (a6X2)x]]uuxx + [X1,K
2]

−a6[X1, [X1, [X1,X2]]]uxx − a6[X1, [X2, [X1,X2]]]uuxx − a6[X2, [X1, [X1,X2]]]uuxx

+[X2, [X2, (a6X2)x]]u
2uxx − a6[X2, [X2, [X1,X2]]]u

2uxx + [X2,K
2]u = 0. (3.118)

Again using the fact that theXi andK2 do not depend onuxx we can set the coefficient of theuxx

term in equation (3.118) to zero. This requires

(a6X2)xxx − (a6[X1,X2])xx + a1X2ux − [X2, (a6X2)x]ux − a2X2ux

−([X1, (a6X2)x])x − ([X2, (a6X2)x])xu+ (a6[X1, [X1,X2]])x + (a6[X2, [X1,X2]])xu

−K
2
ux

− a1[X1,X2]u+ a6[X2, [X1,X2]]ux + [X2, (a6[X1,X2])x]u+ (a5X2)x

−a5[X1,X2]− [X1, (a6X2)xx]− [X2, (a6X2)xx]u+ [X1, (a6[X1,X2])x]

+[X1, [X1, (a6X2)x]] + [X1, [X2, (a6X2)x]]u+ [X2, [X1, (a6X2)x]]u+ (a1X2)xu

−a6[X1, [X1, [X1,X2]]]− a6[X1, [X2, [X1,X2]]]u− a6[X2, [X1, [X1,X2]]]u

+[X2, [X2, (a6X2)x]]u
2 − a6[X2, [X2, [X1,X2]]]u

2 = 0. (3.119)
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Integrating equation (3.119) with respect toux and solving forK2 we find

K
2 = (a6X2)xxxux +

1

2
a1X2u

2
x −

1

2
[X2, (a6X2)x]u

2
x −

1

2
a2X2u

2
x + (a6[X2, [X1,X2]])xuux

−(a6[X1,X2])xxux − ([X1, (a6X2)x])xux − ([X2, (a6X2)x])xuux + (a6[X1, [X1,X2]])xux

−a1[X1,X2]uux +
1

2
a6[X2, [X1,X2]]u

2
x + [X2, (a6[X1,X2])x]uux + (a1X2)xuux

−a5[X1,X2]ux − [X1, (a6X2)xx]ux − [X2, (a6X2)xx]uux + [X1, (a6[X1,X2])x]ux

+[X1, [X1, (a6X2)x]]ux + [X1, [X2, (a6X2)x]]uux + [X2, [X1, (a6X2)x]]uux + (a5X2)xux

−a6[X1, [X1, [X1,X2]]]ux − a6[X1, [X2, [X1,X2]]]uux − a6[X2, [X1, [X1,X2]]]uux

+[X2, [X2, (a6X2)x]]u
2ux − a6[X2, [X2, [X1,X2]]]u

2ux +K
3(x, t, u). (3.120)

It is helpful at this stage to define the following new matrices

X4 = [X1,X2], X5 = [X1,X4], X6 = [X2,X4] (3.121)

X7 = [X1,X5], X8 = [X2,X5], X9 = [X1,X6], X10 = [X2,X6] (3.122)

for clarity and in order to reduce the size of the equations tofollow. Plugging the expression for

K
2 into equation (3.118) we obtain the updated equation
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X1,t + X2,tu− X2(a3u
2ux + a4uux + a7u+ a8ux)− (a6X6)xu

2
x + a1X4u

2
x

−(a6X2)xxxxux −
1

2
(a1X2)xu

2
x +

1

2
([X2, (a6X2)x])xu

2
x +

1

2
(a2X2)xu

2
x

+(a6X4)xxxux + ([X1, (a6X2)x])xxux + ([X2, (a6X2)x])xxuux − (a6X5)xxux

+(a1X4)xuux −
1

2
(a6X6)xu

2
x − ([X2, (a6X4)x])xuux − (a5X2)xxux − (a1X2)xxuux

+(a5X4)xux + ([X1, (a6X2)xx])xux + ([X2, (a6X2)xx])xuux − ([X1, (a6X4)x])xux

−([X1, [X1, (a6X2)x]])xux − ([X1, [X2, (a6X2)x]])xuux − ([X2, [X1, (a6X2)x]])xuux

−([X2, [X2, (a6X2)x]])xu
2ux + (a6X10)xu

2ux −K
3
x + ([X2, (a6X2)x])xu

2
x + a6X9u

2
x

−[X2, (a6X4)x]u
2
x + [X2, (a6X2)xx]u

2
x + a6X8u

2
x + (a6X9)xuux + (a6X8)xuux

−[X1, [X2, (a6X2)x]]u
2
x − [X2, [X1, (a6X2)x]]u

2
x − (a1X2)xu

2
x − (a6X6)xxuux

−2[X2, [X2, (a6X2)x]]uu
2
x + 2a6X10uu

2
x −K

3
uux + [X1, (a6X5)x]ux −

1

2
a2X4u

2
x

+[X1, (a6X2)xxx]ux +
1

2
a1X4u

2
x −

1

2
[X1, [X2, (a6X2)x]]u

2
x + [X1, (a6X6)x]uux

−[X1, (a6X4)xx]ux − [X1, ([X1, (a6X2)x])x]ux − [X1, ([X2, (a6X2)x])x]uux

−a1X5uux +
1

2
a6X9u

2
x + [X1, [X2, (a6X4)x]]uux + [X1, (a5X2)x]ux + (a6X7)xux

−a5X5ux − [X1, [X1, (a6X2)xx]]ux − [X1, [X2, (a6X2)xx]]uux + [X1, [X1, (a6X4)x]]ux

+[X1, [X1, [X1, (a6X2)x]]]ux + [X1, [X1, [X2, (a6X2)x]]]uux + [X1, [X2, [X1, (a6X2)x]]]uux

−a6[X1,X7]ux − a6[X1,X9]uux − a6[X1,X8]uux + [X2, [X1, (a6X4)x]]uux

+[X1, [X2, [X2, (a6X2)x]]]u
2ux − a6[X1,X10]u

2ux + [X1,K
3] + [X1, (a1X2)x]uux

+[X2, (a6X2)xxx]uux −
1

2
[X2, [X2, (a6X2)x]]uu

2
x + [X2, (a6X6)x]u

2ux + [X2, (a6X5)x]uux

−[X2, (a6X4)xx]uux − [X2, ([X1, (a6X2)x])x]uux − [X2, ([X2, (a6X2)x])x]u
2ux

−a1X6u
2ux +

1

2
a6X10uu

2
x + [X2, [X2, (a6X4)x]]u

2ux + [X2, (a5X2)x]uux

−a5X6uux − [X2, [X1, (a6X2)xx]]uux − [X2, [X2, (a6X2)xx]]u
2ux − a6[X2,X8]u

2ux
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+[X2, [X1, [X1, (a6X2)x]]]uux + [X2, [X1, [X2, (a6X2)x]]]u
2ux + [X2, (a1X2)x]u

2ux

+[X2, [X2, [X1, (a6X2)x]]]u
2ux − a6[X2,X7]uux − a6[X2,X9]u

2ux − a6[X2,X10]u
3ux

+[X2, [X2, [X2, (a6X2)x]]]u
3ux + [X2,K

3]u = 0. (3.123)

Now sinceK3 and theXi do not depend onux we can set the coefficient of theu2x term to zero in

equation (3.123). This is equivalent to the requirement that

3([X2, (a6X2)x])x − 3(a1X2)x + (a2X2)x − 3(a6X6)x + 3a1X4 + 3a6X9

−3[X1, [X2, (a6X2)x]]− 2[X2, [X1, (a6X2)x]]− 2[X2, (a6X4)x] + 2[X2, (a6X2)xx]

−a2X4 + 2a6X8 + 5a6X10 − 5[X2, [X2, (a6X2)x]] = 0. (3.124)

Further since we know that theXi do not depend onu we can decouple this condition into the

system

3([X2, (a6X2)x])x − 3(a1X2)x + (a2X2)x − 3(a6X6)x + 3a1X4 + 3a6X9

−3[X1, [X2, (a6X2)x]]− 2[X2, [X1, (a6X2)x]]− 2[X2, (a6X4)x] + 2[X2, (a6X2)xx]

−a2X4 + 2a6X8 = 0, (3.125)

a6X10 − [X2, [X2, (a6X2)x]] = 0. (3.126)
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Taking these conditions into account and once again noting the fact thatK3 and theXi do not

depend onux we can simplify and equate the coefficient of theux in equation (3.123) to zero. This

results in the condition

−X2(a3u
2 + a4u+ a8)− (a6X2)xxxx −K

3
u + [X1, (a6X5)x]

+(a6X4)xxx + ([X1, (a6X2)x])xx + ([X2, (a6X2)x])xxu− (a6X5)xx

+(a1X4)xu− ([X2, (a6X4)x])xu− (a5X2)xx − (a1X2)xxu− a1X6u
2

+(a5X4)x + ([X1, (a6X2)xx])x + ([X2, (a6X2)xx])xu− ([X1, (a6X4)x])x

−([X1, [X1, (a6X2)x]])x − ([X1, [X2, (a6X2)x]])xu− ([X2, [X1, (a6X2)x]])xu

+(a6X9)xu+ (a6X8)xu− (a6X6)xxu+ [X1, (a6X2)xxx] + [X1, (a6X6)x]u

−[X1, (a6X4)xx]− [X1, ([X1, (a6X2)x])x]− [X1, ([X2, (a6X2)x])x]u

−a1X5u+ [X1, [X2, (a6X4)x]]u+ [X1, (a5X2)x] + (a6X7)x + [X2, [X2, (a6X4)x]]u
2

−a5X5 − [X1, [X1, (a6X2)xx]]− [X1, [X2, (a6X2)xx]]u+ [X1, [X1, (a6X4)x]]

+[X1, [X1, [X1, (a6X2)x]]] + [X1, [X1, [X2, (a6X2)x]]]u+ [X1, [X2, [X1, (a6X2)x]]]u

−a6[X1,X7]− a6[X1,X9]u− a6[X1,X8]u+ [X2, [X1, (a6X4)x]]u

+[X2, (a6X2)xxx]u+ [X2, (a6X6)x]u
2 + [X2, (a6X5)x]u+ [X1, (a1X2)x]u

−[X2, (a6X4)xx]u− [X2, ([X1, (a6X2)x])x]u− [X2, ([X2, (a6X2)x])x]u
2

−a5X6u− [X2, [X1, (a6X2)xx]]u− [X2, [X2, (a6X2)xx]]u
2 + [X2, (a5X2)x]u

+[X2, [X1, [X1, (a6X2)x]]]u+ [X2, [X1, [X2, (a6X2)x]]]u
2 + [X2, (a1X2)x]u

2

+[X2, [X2, [X1, (a6X2)x]]]u
2 − a6[X2,X7]u− a6[X2,X9]u

2 − a6[X2,X8]u
2 = 0. (3.127)

Integrating with respect tou and solving forK3 in equation (3.127) we find
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K
3 = −1

3
a3X2u

3 − 1

2
a4X2u

2 − a8X2u− (a6X2)xxxxu+ [X1, (a6X5)x]u−
1

2
a6[X2,X7]u

2

+(a6X4)xxxu+ ([X1, (a6X2)x])xxu+
1

2
([X2, (a6X2)x])xxu

2 − (a6X5)xxu

+
1

2
(a1X4)xu

2 − 1

2
([X2, (a6X4)x])xu

2 − (a5X2)xxu−
1

2
(a1X2)xxu

2 − 1

3
a1X6u

3

+(a5X4)xu+ ([X1, (a6X2)xx])xu+
1

2
([X2, (a6X2)xx])xu

2 − ([X1, (a6X4)x])xu

−([X1, [X1, (a6X2)x]])xu−
1

2
([X1, [X2, (a6X2)x]])xu

2 − 1

2
([X2, [X1, (a6X2)x]])xu

2

+
1

2
(a6X9)xu

2 +
1

2
(a6X8)xu

2 − 1

2
(a6X6)xxu

2 + [X1, (a6X2)xxx]u+
1

2
[X1, (a6X6)x]u

2

−[X1, (a6X4)xx]u− [X1, ([X1, (a6X2)x])x]u−
1

2
[X1, ([X2, (a6X2)x])x]u

2 − 1

2
a1X5u

2

+
1

2
[X1, [X2, (a6X4)x]]u

2 + [X1, (a5X2)x]u+ (a6X7)xu+
1

3
[X2, [X2, (a6X4)x]]u

3

−a5X5u− [X1, [X1, (a6X2)xx]]u−
1

2
[X1, [X2, (a6X2)xx]]u

2 + [X1, [X1, (a6X4)x]]u

+[X1, [X1, [X1, (a6X2)x]]]u+
1

2
[X1, [X1, [X2, (a6X2)x]]]u

2 +
1

2
[X1, [X2, [X1, (a6X2)x]]]u

2

−a6[X1,X7]u−
1

2
a6[X1,X9]u

2 − 1

2
a6[X1,X8]u

2 +
1

2
[X2, [X1, (a6X4)x]]u

2

+
1

2
[X2, (a6X2)xxx]u

2 +
1

3
[X2, (a6X6)x]u

3 +
1

2
[X2, (a6X5)x]u

2 +
1

2
[X1, (a1X2)x]u

2

−1

2
[X2, (a6X4)xx]u

2 − 1

2
[X2, ([X1, (a6X2)x])x]u

2 − 1

3
[X2, ([X2, (a6X2)x])x]u

3

−1

2
a5X6u

2 − 1

2
[X2, [X1, (a6X2)xx]]u

2 − 1

3
[X2, [X2, (a6X2)xx]]u

3 +
1

2
[X2, (a5X2)x]u

2

+
1

2
[X2, [X1, [X1, (a6X2)x]]]u

2 +
1

3
[X2, [X1, [X2, (a6X2)x]]]u

3 +
1

3
[X2, (a1X2)x]u

3

+
1

3
[X2, [X2, [X1, (a6X2)x]]]u

3 − 1

3
a6[X2,X9]u

3 − 1

3
a6[X2,X8]u

3 + X0(x, t). (3.128)

whereX0 is a matrix whose elements are functions ofx and t and does not depend onu or its

partial derivatives. Next, we update equation (3.123) by plugging in the expression forK3. Upon

doing this we will have a rather large expression which is nothing more than an algebraic equation

in u. In this final step, as theXi do not depend onu, we set the coefficients of the different powers
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of u in this last, lengthy expression to zero. At the different orders ofu we find the following

conditions

O(1) : X1,t − X0,x + [X1,X0] = 0, (3.129)

O(u) : [X2,X0]− a6[X1, [X1,X7]] + [X1, [X1, [X1, (a6X4)x]]] + [X1, [X1, [X1, [X1, (a6X2)x]]]]

+[X1, [X1, (a5X2)x]]− [X1, [X1, [X1, (a6X2)xx]]] + [X1, (a6X7)x]− [X1, [X1, (a6X4)xx]]

−a5X7 − [X1, [X1, ([X1, (a6X2)x])x]] + [X1, [X1, (a6X2)xxx]]− [X1, ([X1, (a6X4)x])x]

−[X1, ([X1, [X1, (a6X2)x]])x] + [X1, (a5X4)x] + [X1, ([X1, (a6X2)xx])x]− [X1, (a5X2)xx]

−[X1, (a6X5)xx] + [X1, (a6X4)xxx] + [X1, ([X1, (a6X2)x])xx]− a8X4 − [X1, (a6X2)xxxx]

+[X1, [X1, (a6X5)x]] + (a6[X1,X7])x − ([X1, [X1, [X1, (a6X2)x]]])x − ([X1, [X1, (a6X4)x]])x

+(a8X2)x + ([X1, [X1, (a6X2)xx]])x − ([X1, (a5X2)x])x − (a6X7)xx + ([X1, (a6X4)xx])x

+([X1, ([X1, (a6X2)x])x])x − ([X1, (a6X2)xxx])x + ([X1, [X1, (a6X2)x]])xx + (a5X5)x

+X2,t − ([X1, (a6X2)xx])xx − (a5X4)xx + (a5X2)xxx + (a6X5)xxx − ([X1, (a6X2)x])xxx

−([X1, (a6X5)x])x + (a6X2)xxxxx − (a6X4)xxxx − a7X2 + ([X1, (a6X4)x])xx = 0, (3.130)
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O(u2) : −2a5X8 − 2a6[X2, [X1,X7]] + 2[X2, [X1, [X1, [X1, (a6X2)x]]]] + 2[X2, [X1, [X1, (a6X4)x]]]

−2[X2, [X1, [X1, (a6X2)xx]]] + 2[X2, [X1, (a5X2)x]]− 2[X2, [X1, ([X1, (a6X2)x])x]]− a4X4

+2[X2, (a6X7)x]− 2[X2, [X1, (a6X4)xx]] + 2[X2, [X1, (a6X2)xxx]]− 2[X2, ([X1, (a6X4)x])x]

−2[X2, ([X1, [X1, (a6X2)x]])x] + 2[X2, (a5X4)x] + 2[X2, ([X1, (a6X2)xx])x]− 2[X2, (a5X2)xx]

+2[X2, (a6X4)xxx] + 2[X2, ([X1, (a6X2)x])xx]− 2[X2, (a6X2)xxxx] + 2[X2, [X1, (a6X5)x]]

−2[X2, (a6X5)xx]− a5X9 + [X1, [X2, (a5X2)x]] + [X1, [X2, [X1, [X1, (a6X2)x]]]]

−[X1, [X2, [X1, (a6X2)xx]]] + [X1, [X1, (a1X2)x]]− [X1, [X2, ([X1, (a6X2)x])x]]

+[X1, [X1, [X1, [X2, (a6X2)x]]]]− [X1, [X2, (a6X4)xx]] + [X1, [X2, [X1, (a6X4)x]]]

−a6[X1, [X1,X9]] + [X1, [X2, (a6X2)xxx]] + [X1, [X1, [X2, [X1, (a6X2)x]]]]

+[X1, [X2, (a6X5)x]]− [X1, [X1, [X2, (a6X2)xx]]]− [X1, [X1, ([X2, (a6X2)x])x]]

−a6[X1, [X1,X8]] + [X1, [X1, [X2, (a6X4)x]]]− a1X7 + [X1, [X1, (a6X6)x]]

−[X1, ([X2, [X1, (a6X2)x]])x] + [X1, (a6X9)x] + [X1, (a6X8)x]− [X1, (a6X6)xx]

−[X1, ([X1, [X2, (a6X2)x]])x] + [X1, ([X2, (a6X2)xx])x]− [X1, ([X2, (a6X4)x])x]

−[X1, (a1X2)xx] + [X1, (a1X4)x] + [X1, ([X2, (a6X2)x])xx]− a6[X1, [X2,X7]]

−([X2, (a5X2)x])x − ([X2, [X1, [X1, (a6X2)x]]])x + ([X2, [X1, (a6X2)xx]])x

+(a5X6)x + ([X2, ([X1, (a6X2)x])x])x − ([X2, (a6X5)x])x − ([X1, (a1X2)x])x

+([X2, (a6X4)xx])x + (a6[X1,X9])x + (a6[X1,X8])x − ([X2, [X1, (a6X4)x]])x

−([X2, (a6X2)xxx])x − ([X1, [X1, [X2, (a6X2)x]]])x − ([X1, [X2, [X1, (a6X2)x]]])x

+([X1, [X2, (a6X2)xx]])x − ([X1, [X2, (a6X4)x]])x + ([X1, ([X2, (a6X2)x])x])x

+(a1X5)x − ([X1, (a6X6)x])x − (a6X9)xx − (a6X8)xx + ([X1, [X2, (a6X2)x]])xx

+(a6X6)xxx + ([X2, [X1, (a6X2)x]])xx − ([X2, (a6X2)xx])xx + ([X2, (a6X4)x])xx

+(a1X2)xxx − (a1X4)xx − ([X2, (a6X2)x])xxx + (a6[X2,X7])x + (a4X2)x = 0, (3.131)

80



O(u3) : −2([X2, (a6X6)x])x + 3[X2, [X2, [X1, [X1, (a6X2)x]]]]− 3[X2, [X2, [X1, (a6X2)xx]]]

+2(a3X2)x − 3[X2, [X2, (a6X4)xx]] + 3[X2, [X2, (a6X5)x]] + 3[X2, [X1, (a1X2)x]]

−3[X2, [X2, ([X1, (a6X2)x])x]]− 3a6[X2, [X1,X9]] + 3[X2, [X1, [X2, [X1, (a6X2)x]]]]

−3a6[X2, [X1,X8]] + 3[X2, [X2, [X1, (a6X4)x]]] + 3[X2, [X1, [X1, [X2, (a6X2)x]]]]

+3[X2, [X2, (a6X2)xxx]]− 3[X2, [X1, [X2, (a6X2)xx]]]− 3[X2, [X1, ([X2, (a6X2)x])x]]

−3a1X8 + 3[X2, [X1, [X2, (a6X4)x]]] + 3[X2, [X1, (a6X6)x]]− 3[X2, (a6X6)xx]

−3[X2, ([X2, [X1, (a6X2)x]])x] + 3[X2, (a6X9)x]− 3[X2, ([X1, [X2, (a6X2)x]])x]

+3[X2, ([X2, (a6X2)xx])x]− 3[X2, (a1X2)xx] + 3[X2, ([X2, (a6X2)x])xx] + 3[X2, (a1X4)x]

+3[X2, (a6X8)x]− 3[X2, ([X2, (a6X4)x])x]− 3a6[X2, [X2,X7]]− 2a6[X1, [X2,X9]]

+2[X1, [X2, (a1X2)x]] + 2[X1, [X2, [X2, [X1, (a6X2)x]]]]− 2[X1, [X2, ([X2, (a6X2)x])x]]

+2[X1, [X2, [X1, [X2, (a6X2)x]]]]− 2[X1, [X2, [X2, (a6X2)xx]]]− 2a6[X1, [X2,X8]]

+2[X1, [X2, (a6X6)x]] + 2[X1, [X2, [X2, (a6X4)x]]]− 2a1X9 − 2([X2, (a1X2)x])x

−2a3X4 + 2(a6[X2,X9])x + 2(a6[X2,X8])x − 2([X2, [X1, [X2, (a6X2)x]]])x

−2([X2, [X2, [X1, (a6X2)x]]])x + 2([X2, [X2, (a6X2)xx]])x + 2([X2, ([X2, (a6X2)x])x])x

−2([X2, [X2, (a6X4)x]])x + 2(a1X6)x = 0, (3.132)

O(u4) : [X2, [X2, [X2, [X1, (a6X2)x]]]]− a6[X2, [X2,X8]] + [X2, [X2, [X1, [X2, (a6X2)x]]]]

−a6[X2, [X2,X9]]− [X2, [X2, [X2, (a6X2)xx]]]− [X2, [X2, ([X2, (a6X2)x])x]]

+[X2, [X2, (a6X6)x]] + [X2, [X2, [X2, (a6X4)x]]] = 0. (3.133)
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Note that if we decouple equation (3.125) into the followingthree conditions

([X2, (a6X2)x])x − (a6X6)x + a6X9 − [X1, [X2, (a6X2)x]] = 0, (3.134)

[X2, [X1, (a6X2)x]] + [X2, (a6X4)x]− [X2, (a6X2)xx]− a6X8 = 0, (3.135)

((a2 − 3a1)X2)x − (a2 − 3a1)X4 = 0, (3.136)

then theO(u4) equation is identically satisfied. To reduce the complexityof theO(u3) equation

we can decouple it into the following two equations

[X2, [X1, [X1, (a6X2)x]]]− [X2, [X1, (a6X2)xx]]− [X2, (a6X4)xx] + [X2, (a6X5)x]

+[X1, (a1X2)x]− [X2, ([X1, (a6X2)x])x] + [X2, [X1, (a6X4)x]] + [X2, (a6X2)xxx]

−a1X5 − (a1X2)xx + (a1X4)x − a6[X2,X7] = 0, (3.137)

(a3X2)x + [X1, [X2, (a1X2)x]]− a1X9 − ([X2, (a1X2)x])x − a3X4 + (a1X6)x = 0.(3.138)

From this last condition, we can use equations (3.134)-(3.138) to reduce theO(u2) condition to

the following equation
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−a5X8 − a6[X2, [X1,X7]] + [X2, [X1, [X1, [X1, (a6X2)x]]]] + [X2, [X1, [X1, (a6X4)x]]]

−[X2, [X1, [X1, (a6X2)xx]]] + [X2, [X1, (a5X2)x]]− [X2, [X1, ([X1, (a6X2)x])x]]

+[X2, (a6X7)x]− [X2, [X1, (a6X4)xx]] + [X2, [X1, (a6X2)xxx]]− [X2, ([X1, (a6X4)x])x]

−[X2, ([X1, [X1, (a6X2)x]])x] + [X2, (a5X4)x] + [X2, ([X1, (a6X2)xx])x]− [X2, (a5X2)xx]

+[X2, (a6X4)xxx] + [X2, ([X1, (a6X2)x])xx]− [X2, (a6X2)xxxx] + [X2, [X1, (a6X5)x]]

−[X2, (a6X5)xx]−
1

2
a5X9 +

1

2
[X1, [X2, (a5X2)x]]−

1

2
([X2, (a5X2)x])x +

1

2
(a5X6)x

−1

2
a4X4 +

1

2
(a4X2)x = 0. (3.139)

Decoupling this equation allows for the simplification of theO(u) equation. Thus we write the

previous condition as the following system of equations

−[X1, (a6X4)x]− [X1, [X1, (a6X2)x]] + a5X4 + [X1, (a6X2)xx]− (a5X2)x

+(a6X4)xx + ([X1, (a6X2)x])x − (a6X2)xxx − (a6X5)x = 0, (3.140)

−a5X9 + [X1, [X2, (a5X2)x]]− ([X2, (a5X2)x])x + (a5X6)x −
1

2
a4X4 +

1

2
(a4X2)x = 0.(3.141)

Using the previous system theO(u) equation is reduced to the following, simpler equation

X2,t + [X2,X0]− a8X4 + (a8X2)x − a7X2 = 0. (3.142)

We therefore find that the final, reduced constraints are given by equations (3.126), (3.134)-(3.138)
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and (3.140)-(3.142). In order to satisfy these constraintswe begin with the following forms for our

generators,

X0 =







g1(x, t) g2(x, t)

g3(x, t) g4(x, t)






, X1 =







0 f1(x, t)

f2(x, t) 0






, X2 =







0 f3(x, t)

f4(x, t) 0






.

To get more general results we will assumea2 6= 3a1. Note that had we instead opted for the forms

X0 =







g1(x, t) g12(x, t)

g23(x, t) g34(x, t)






, X1 =







f1(x, t) f3(x, t)

f5(x, t) f7(x, t)






, X2 =







f2(x, t) f4(x, t)

f6(x, t) f8(x, t)






,

we would obtain an equivalent system to that obtained in [21]. The additional unknown functions

which appear in Khawaja’s method [21] can be introduced with the proper substitutions via their

functional dependence on the twelve unknown functions given above.

Taking the naive approach of beginning with the smaller conditions first we begin with equation

(3.136) which, utilizing the given forms forX0,X1, andX2, becomes

(a2 − 3a1)(f1f4 − f2f3) = 0, (3.143)

((a2 − 3a1)fj)x = 0, j = 3, 4. (3.144)

Solving this system forf2, f3 andf4 in this previous system yields
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f3(x, t) =
F3(t)

a2(x, t)− 3a1(x, t)
, (3.145)

f4(x, t) =
F4(t)

a2(x, t)− 3a1(x, t)
, (3.146)

f2(x, t) =
f1(x, t)F4(t)

F3(t)
, (3.147)

(3.148)

whereF3,4(t) are arbitrary functions oft. With these choices we’ve elected to satisfyX4 = 0 rather

thana2 = 3a1. This will greatly reduce the complexity of the remaining conditions while allowing

for the possibility of a less trivial relation betweena1 anda2. Looking next at equation (3.142)

with X4 = 0 we obtain the system

(

Fj

a2 − 3a1

)

t

− Fja7
a2 − 3a1

+

(

Fja8
a2 − 3a1

)

x

+
1

2

(

Fja4
a2 − 3a1

)

x

+(−1)j
Fj(g4 − g1)

a2 − 3a1
= 0 j = 3, 4, (3.149)

F3g3
a2 − 3a1

− F4g2
a2 − 3a1

= 0. (3.150)

Solving the second equation forg3 yields

g3 =
F4(t)g2(x, t)

F3(t)

Considering next theO(1) equation, we obtain the following system of equations
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g1x = g4x = 0, (3.151)

f1t − g2x + f1(g4 − g1) = 0, (3.152)

F3(F4f1)t − f1F4F3t − g2xF4F3 + F3F4f1(g1 − g4) = 0. (3.153)

It follows that we must haveg1(x, t) = G1(t) andg4(x, t) = G4(t) whereG1 andG4 are arbitrary

functions oft. Since equations (3.152) and (3.153) do not depend on theai they will not affect

the conditions on theai required for Lax-integrability of (2.66). On the other handthe remaining

conditions have been reduced to conditions involving soleytheai and the previously introduced

arbitrary functions oft. The remaining conditions are given by

(

a5
a2 − 3a1

)

x

+

(

a6
a2 − 3a1

)

xxx

= 0, (3.154)
(

a3
a2 − 3a1

)

x

= 0, (3.155)
(

a1
a2 − 3a1

)

xx

= 0, (3.156)
(

a4
a2 − 3a1

)

x

= 0. (3.157)

One can easily solve the system of equations given by equations (3.149), (3.154)-(3.157) yielding
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F4 = c1F3e
2
∫
(G4−G1)dt (3.158)

g2 =

∫

(f1t + f1(G4 −G1))dx+ F10 (3.159)

a2 = −(3F1 − 1− 3F2x)a1
F2x− F1

(3.160)

a3 =
F5a1

F2x− F1

(3.161)

a4 =
F6a1

F2x− F1

(3.162)

a6 =
(F7 + F8x+ F9x

2)a1
F2x− F1

−
∫ x ∫ y a5(z, t) dz dy

a2(z, t)− 3a1(z, t)
(3.163)

a7 =
a2 − 3a1
F3

(

F3

a2 − 3a1

)

t

+ (a2 − 3a1)

(

a8
a2 − 3a1

)

x

+G4 −G1 (3.164)

whereF5−10 are arbitrary functions oft. Note thata1, a5 anda8 have no restrictions beyond the

appropriate differentiability and integrability conditions. The Lax pair for the generalized variable-

coefficient KdV equation with the previous integrability conditions on the variable coefficients is

therefore given by

F = X1 + X2u, (3.165)

G = −a6X2uxxxx + (a6X2)xuxxx − X2(a1u+ a5)uxx − (a6X2)xxuxx − a8X2u

+
1

2
a1X2u

2
x −

1

2
a2X2u

2
x + (a1X2)xuux −

1

3
a3X2u

3 − 1

2
a4X2u

2 + X0. (3.166)
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Modified Korteweg-de-Vries Equation

In this section we derive the Lax pair and differential constraints for the first equation in the

variable-coefficient mKdV hierarchy. Following the procedure outlined at the beginning of the

chapter we let

F = F(x, t, u) and G = G(x, t, u, ux, uxx).

PluggingF andG into equation (3.2) we obtain

Ft + Fvvt −Gx −Gvvx −Gvxvxx −Gvxxvxxx + [F,G] = 0. (3.167)

Using equation (2.74) to substitute forvt in the equation given above we have

Ft −Gx − (Gv + b2Fvv
2)vx −Gvxvxx − (Gvxx + b1Fv)vxxx + [F,G] = 0. (3.168)

SinceF andG do not depend onvxxx we must set the coefficient of thevxxx term to zero from

which we find thatF andG must satisfy

Gvxx + b1Fv = 0 ⇒ G = −b1Fvvxx +K
0(x, t, v, vx).
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Substituting this expression forG into equation (3.168) we obtain the updated equation

Ft + (b1Fv)xvxx −K
0
x + b1Fvvvxvxx −K

0
vvx − b2Fvv

2vx −K
0
vxvxx − b1[F,Fv]vxx + [F,K0] = 0.

(3.169)

SinceF andK0 do not depend onvxx we can equate the coefficient of thevxx term to zero which

is equivalent to the requirement

(b1Fv)x + b1Fvvvx −K
0
vx − b1[F,Fv] = 0. (3.170)

Integrating with respect tovx and solving forK0 we have

K
0 = (b1Fv)xvx +

1

2
b1Fvvv

2
x − b1[F,Fv]vx +K

1(x, t, v).

Substituting this expression forK0 into equation (3.169) we have the following updated equation

Ft − (b1Fv)xxvx −
1

2
(b1Fvv)xv

2
x + (b1[F,Fv])xvx −K

1
x − (b1Fvv)xv

2
x −

1

2
b1Fvvvv

3
x

−K
1
vvx + b1[F,Fvv]v

2
x − b2Fvv

2vx + [F, (b1Fv)x]vx +
1

2
b1[F,Fvv]v

2
x − b1[F, [F,Fv]]vx

+[F,K1] = 0. (3.171)

SinceF andK1 do not depend onvx we can equate the coefficients of thevx, v2x andv3x terms to

zero from which we obtain the following system,
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O(v3x) : Fvvv = 0, (3.172)

O(v2x) :
1

2
(b1Fvv)x + (b1Fvv)x − b1[F,Fvv]−

1

2
b1[F,Fvv] = 0, (3.173)

O(vx) : (b1Fv)xx − (b1[F,Fv])x +K
1
v + b2Fvv

2 − [F, (b1Fv)x] + b1[F, [F,Fv]] = 0.(3.174)

Since the MKdV equation does not contain avvt term and for ease of computation we takeFvv = 0

from which we haveF = X1(x, t) + X2(x, t)v whereX1(x, t) andX2(x, t) are matrices whose

elements are functions ofx and t and do not depend onv or its partial derivatives. With this

requirement onF theO(v3x) andO(v2x) equations are immediately satisfied. Integrating theO(v3x)

equations with respect tov and solving forK1 we find

K
1 = −(b1X2)xxv + (b1[X1,X2])xv + [X1, (b1X2)x]v +

1

2
[X2, (b1X2)x]v

2 − b1[X1, [X1,X2]]v

−1

3
b2X2v

3 − 1

2
b1[X2, [X1,X2]]v

2 + X0(x, t), (3.175)

whereX0 is a matrix whose elements are functions ofx and t and does not depend onv or its

partial derivatives. Substituting the expression forK
1 into equation (3.171) we obtain
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X1,t + (b1X2)xxxv − (b1[X1,X2])xxv +
1

3
(b2X2)xv

3 − ([X1, (b1X2)x])xv −
1

2
([X2, (b1X2)x])xv

2

+(b1[X1, [X1,X2]])xv +
1

2
(b1[X2, [X1,X2]])xv

2 − X0,x − [X1, (b1X2)xx]v + [X1, (b1[X1,X2])x]v

+X2,tv −
1

3
b2[X1,X2]v

3 + [X1, [X1, (b1X2)x]]v +
1

2
[X1, [X2, (b1X2)x]]v

2 − b1[X1, [X1, [X1,X2]]]v

−1

2
b1[X1, [X2, [X1,X2]]]v

2 − [X2, (b1X2)xx]v
2 + [X2, (b1[X1,X2])x]v

2 + [X2, [X1, (b1X2)x]]v
2

+[X1,X0] +
1

2
[X2, [X2, (b1X2)x]]v

3 − b1[X2, [X1, [X1,X2]]]v
2 − 1

2
b1[X2, [X2, [X1,X2]]]v

3

+[X2,X0]v = 0 (3.176)

Since theXi do not depend onv we can equate the coefficients of the different powers ofv to zero.

In doing so we obtain the following system of equations

O(1) : X1,t − X0,x + [X1,X0] = 0, (3.177)

O(v) : X2,t − ([X1, (b1X2)x])x + (b1[X1, [X1,X2]])x − [X1, (b1X2)xx] + [X1, (b1[X1,X2])x]

−(b1[X1,X2])xx + (b1X2)xxx + [X1, [X1, (b1X2)x]]− b1[X1, [X1, [X1,X2]]]

+[X2,X0] = 0, (3.178)

O(v2) : −1

2
([X2, (b1X2)x])x +

1

2
(b1[X2, [X1,X2]])x +

1

2
[X1, [X2, (b1X2)x]]− [X2, (b1X2)xx]

−1

2
b1[X1, [X2, [X1,X2]]] + [X2, (b1[X1,X2])x]− b1[X2, [X1, [X1,X2]]]

+[X2, [X1, (b1X2)x]] = 0, (3.179)

O(v3) :
1

3
(b2X2)x −

1

3
b2[X1,X2] +

1

2
[X2, [X2, (b1X2)x]]−

1

2
b1[X2, [X2, [X1,X2]]] = 0.(3.180)

Note that if we decouple theO(v3) equation into the following system of equations
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b1[X1,X2]− (b1X2)x = 0, (3.181)

b2[X1,X2]− (b2X2)x = 0, (3.182)

we find that theO(v2) equation is immediately satisfied and theO(v) equation reduces to

[X2,X0] + X2,t = 0. (3.183)

Again at this point we should note that should we opt for the forms

X0 =







g1(x, t) g4(x, t)

g10(x, t) g16(x, t)






, X1 =







f1(x, t) f3(x, t)

f5(x, t) f7(x, t)






, X2 =







f2(x, t) f4(x, t)

f6(x, t) f8(x, t)







we would obtain an equivalent system of equations to that obtained in [21] for the mKdV. The

additional unknown functions which appear in Khawaja’s method [21] can be introduced (as in the

case of the fifth-order KdV equation) with the proper substitutions via their functional dependence

on the twelve unknown functions given above. Therefore, utilizing the same generators as in the

generalized KdV equation of the previous section we obtain the system of equations
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f1f4 − f2f3 = 0, (3.184)

(b1fj)x = (b2fj)x = 0 j = 3, 4, (3.185)

f3g3 − f4g2 = 0, (3.186)

fjt + (−1)jfj(g1 − g4) = 0 j = 3, 4, (3.187)

gjx + (−1)j(f1g3 − f2g2) = 0 j = 1, 4, (3.188)

fjt − g(j+1)x + (−1)jfj(g4 − g1) = 0 j = 2, 3. (3.189)

Solving this system with the aid of MAPLE yields

fj(x, t) =
Fj(t)

b1(x, t)
j = 3, 4, (3.190)

g3(x, t) =
F4(t)g2(x, t)

F3(t)
, (3.191)

f2(x, t) =
F4(t)f1(x, t)

F3(t)
, (3.192)

g1(x, t) = G1(t), (3.193)

g4(x, t) = G4(t), (3.194)

such thatF3, F4,G1,G4, and thebi are subject to the constraints
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(

Fj

b1

)

t

+ (−1)j(G1 −G4) = 0 j = 3, 4, (3.195)
(

b2Fj

b1

)

x

= 0 j = 3, 4, (3.196)

fjt − g(j+1)x + (−1)jfj(G4 −G1) = 0 j = 2, 3. (3.197)

Solving (3.195) and (3.196) forF4, b1, b2 andG4 we obtain

F4(t) =
c1F2(t)

2

F3(t)
, (3.198)

b1(x, t) = F1(x)F2(t), (3.199)

b2(x, t) = F1(x)F5(t), (3.200)

G4(t) =
F3(t)F

′
2(t)− F2(t)F

′
3(t) +G1(t)F2(t)F3(t)

F2(t)F3(t)
, (3.201)

g2(x, t) =

∫

[f1(x, t)]tF3(t)F2(t)− f1(x, t)F
′
3(t)F2(t) + f1(x, t)F3(t)F

′
2(t)

F3(t)F2(t)
dx+ F6(t),(3.202)

whereF1 andF2 are arbitrary functions in their respective variables andc1 is an arbitrary constant.

The Lax pair for the variable-coefficient MKdV equation withthe previous integrability conditions

is then given by

F = X1 + X2v (3.203)

G = −b1X2vxx −
1

3
b2X2v

3 + X0 (3.204)
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Cubic-Quintic Nonlinear Schrödinger Equation

In this section we consider an extended version of a standardnon-integrable nlpde, namely the

cubic-quintic nonlinear Schrödinger equation (CQNLS). Since the constant-coefficient systems

can be obtained as reductions of the extended systems in which the coefficient functions are taken

to be the appropriate constants, one would expect this method to breakdown in the case of the

CQNLS. As we will show in this section, the extended Estabrook-Wahlquist method indeed breaks

down for the CQNLS by requiring that the quintic term be removed or that the Lax pair be trivial

(i.e. F andG are both the zero matrix). Consider the following variable-coefficient generalization

to the nonintegrable CQNLS,

iψt + fψxx + hψ + g1|ψ|2ψ + g2|ψ|4ψ = 0, (3.205)

wheref, h, g1, andg2 are real functions ofx andt. It is imperative that the conditiong2 6= 0 hold.

Otherwise equation (3.205) reduces to the well-known cubic-NLS for which the results are given

in the PT-symmetric and standard nonlinear Schrödinger section. As with the cubic NLS, it will

be notationally cleaner to work with the following equivalent system,

iqt + fqxx + hq + g1q
2r + g2q

3r2 = 0, (3.206a)

−irt + frxx + hr + g1r
2q + g2r

3q2 = 0. (3.206b)

Following the procedure outlined earlier in the chapter we make an initial assumption only on the

implicit dependence of the Lax pair on the unknown function and its derivatives augmented by al-
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lowing dependence onx andt as well. That is, we takeF = F(q, r, x, t) andG = G(q, r, qx, rx, x, t).

Plugging these into the zero curvature condition yields

Fqqt + Frrt + Ft −Gqqx −Grrx −Gqxqxx −Grxrxx −Gx + [F,G] = 0. (3.207)

Utilizing equations (3.206) to eliminate theqt andrt terms in the equation above we obtain

ifFqqxx + ihFqq + ig1Fqq
2r + iFqq

3r2 − ifFrrxx − ihFrr − ig1Frr
2q − ig2Frr

3q2

+Ft −Gqqx −Grrx −Gqxqxx −Grxrxx −Gx + [F,G] = 0. (3.208)

SinceF andG do not depend onqxx or rxx the coefficients of theqxx andrxx must be zero. This is

equivalent to the conditions

ifFq −Gqx = 0, (3.209a)

ifFr +Grx = 0. (3.209b)

Solving this system forG in a method analogous to that discussed in the case of the NLS we find

G = ifFqqx − ifFrrx + K
0(q, r, x, t). Plugging this expression forG into equation (3.208) we

obtain the updated zero-curvature condition
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ihFqq + ig1Fqq
2r + ig2Fqq

3r2 − ihFrr − ig1Frr
2q − ig2Frr

3q2 + Ft − i(fFq)xqx

−ifFqqq
2
x + ifFrrr

2
x + i(fFr)xrx + if [F,Fq]qx − if [F,Fr]rx −K

0
qqx −K

0
rrx

−K
0
x + [F,K0] = 0. (3.210)

SinceF andK0 do not depend onqx or rx the coefficients of the different powers ofqx andrx must

be zero. This is equivalent to the system

Fqq = Frr = 0, (3.211a)

K
0
q + i(fFq)x − if [F,Fq] = 0, (3.211b)

K
0
r − i(fFq)x + if [F,Fr] = 0. (3.211c)

From the former two conditions it is clear thatF must be of the formF = X1 +X2q+X3r+X4qr

where theXi are matrices whose elements are functions ofx andt and do not depend onq, r, or

their partial derivatives. The inclusion of theX4qr term will not lead to any specific terms present

in equation (3.206) and thus we will takeX4 to be zero in order to satisfy the consistency conditions

(fX4)x − f [X1,X4] = 0, [X2,X4] = [X3,X4] = 0, (3.212)

which arise in the process of recoveringK0 from equations (3.211b) and (3.211c). Using the

derived explicit form forF we find thatK0 takes the form
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K
0 = −i(fX2)xq + if [X1,X2]q + if [X3,X2]rq + i(fX2)xr − if [X1,X3]r (3.213)

+X0, (3.214)

whereX0 is a matrix whose elements are functions ofx andt and does not depend onq, r, or their

partial derivatives. UsingX4 = 0 and the expressions forF andK0 to update the zero-curvature

condition (3.210) we obtain a rather long expression which is nothing more than a polynomial

in q andr. In order for the zero-curvature condition to be satisfied upon solutions to equations

(3.206) we must require that the coefficients of the different powers ofq andr be zero in much the

same fashion as we have done previously. Decoupling this large expression results in the following

system,
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O(1) : X1,t − X0,x + [X1,X0] = 0, (3.215)

O(q) : X2,t + ihX2 + i(fX2)xx − i(f [X1,X2])x − i[X1, (fX2)x] + if [X1, [X1,X2]]

+[X2,X0] = 0, (3.216)

O(r) : X3,t − ihX3 − i(fX2)xx + i(f [X1,X3])x + i[X1, (fX2)x]− if [X1, [X1,X2]]

+[X3,X0] = 0, (3.217)

O(rq) : −i(f [X3,X2])x + if [X1, [X3,X2]] + if [X2,X2,x]− if [X2, [X1,X3]]

−i[X3, (fX2)x] + if [X3, [X1,X2]] = 0, (3.218)

O(r2) : [X3, (fX2)x]− f [X3, [X1,X3]] = 0, (3.219)

O(q2) : [X2,X2,x]− [X2, [X1,X2]] = 0, (3.220)

O(r2q) : f [X3, [X3,X2]]− g1X3 = 0, (3.221)

O(q2r) : f [X2, [X3,X2]] + g1X2 = 0, (3.222)

O(q3r2) : X2g2 = 0, (3.223)

O(r3q2) : X3g2 = 0. (3.224)

At this point from the final two conditions it is clear that we must either haveX2 = X3 = 0 or

g2 = 0. As we requiredg2 6= 0 this means we must takeX2 = X3 = 0. But this completely

removes theq andr dependence of bothF andG rendering the Lax pair trivial. Therefore no

nontrivial Lax pair exists to equation (3.205).
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PART II: SOLUTIONS OF CONSTANT COEFFICIENT INTEGRABLE

SYSTEMS
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CHAPTER 4: EXACT SOLUTIONS OF NONLINEAR PDES

Introduction

In this chapter we employ three types of singular manifold methods, namely the truncated Painlevé,

invariant truncated Painlevé, and generalized Hirota expansions to derive exact traveling and non-

traveling wave solutions to various PDEs which occur in mathematical physics. Truncated Painlevé,

invariant truncated Painlevé, and the generalized Hirota expansion methods have been extensively

used over the past 30 years to derive solutions to a wide variety of nlpdes. In this chapter we will

give a brief introduction to each method and subsequently demonstrate each method on a classic

example for which the results are well known. Among the nlpdes considered will be the KdV

equation, Kadomtsev-Petviashvili II (KP-II) equation, a microstructure PDE which arises within

the context of one-dimensional wave propagation in microstructured solids [34] - [38]

vtt − bvxx −
µ

2
(v2)xx − δ(βvtt − γvxx)xx = 0 (4.1)

whereb, µ, δ, β, andγ are dimensionless parameters andv denotes the macro-deformation, and

two versions

(u− uxx)tt − (a1u+ a2u
2 + a3u

3)xx = 0 (4.2)

and

(u− uxx)tt − (a1u+ a3u
3 + a5u

5)xx = 0 (4.3)
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of a Pochhammer-Chree equation which describe the propagation of longitudinal deformation

waves [39] - [44] in elastic rods. While the results for the KdVand KP equations are known,

the solutions derived by the aforementioned methods for equations (4.1), (4.2), and (4.3) are new.

Singular Manifold Methods

In this section we will give a brief description of the truncated Painlev́e, invariant Painlev́e, and

generalized Hirota expansion methods which will be subsequently utilized to derive exact solu-

tions. Each of these methods stem from a broader class of solution methods known as singular

manifold methods and thus will begin quite similarly. Givena nonlinear PDE we seek a Laurent

series solution centered about a movable singular manifoldφ(x, t) = 0. That is, for a nonlinear

PDE

N

(

u,
∂i+lu

∂ti∂xl11 · · · ∂xlnn

)

= 0, l1 + · · · ln = l (4.4)

in (n+ 1), we seek solution of the form

u(x, t) = φ(x, t)−α

α
∑

n=0

un(x, t)φ(x, t)n (4.5)

where theun are functions to be determined andα is the singularity degree. This truncated ex-

pansion of course only makes sense forα ∈ N thus implying that the functionu(x, t) is single-

valued about the movable, singularity manifolds. This condition was given by Weiss, Tabor, and

Carnevale [45] as an extension of the well-known Painlevé property from ODEs to PDEs. How-

ever, this may prove to be too strict a condition while endeavoring to obtain exact solutions. To
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circumvent this issue and thus extend the applicability of the truncated singular manifold method

for the cases whenα /∈ N one may define a substitutionv(x, t) = F (u(x, t)) for some suitably

well-defined (invertible) functionF (·) such that for the transformed equation

Ñ

(

u,
∂i+lu

∂ti∂xl11 · · · ∂xlnn

)

= 0, l1 + · · · ln = l (4.6)

we may seek a solution of the form

v(x, t) = φ(x, t)−β

β
∑

n=0

vn(x, t)φ(x, t)n (4.7)

where thevn are functions to be determined andβ ∈ N is the singularity degree. The solution to

the original nonlinear PDE is then given byu(x, t) = F−1(v(x, t)).

Plugging the truncated series expansion foru(x, t) into the nonlinear PDE and reconciling the

powers of the unknown functionφ will yield a recurrence relation from which we will determine

theun andα.

Truncated Painlev́e Analysis Method

In this section we will briefly outline the truncated Painlevé analysis method for nonlinear PDEs

as it was introduced by Weiss, Tabor, and Carnevale [45] in 1983. Following their procedure and

continuing from where we left off in the previous section, wemay reduce the order and complexity

of the recurrence relations with the introduction of the additional functions
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C0(x0, . . . , xn, t) =
φt

φx0

(4.8)

C1(x0, . . . , xn, t) =
φx1

φx0

(4.9)

... (4.10)

Cn(x0, . . . , xn, t) =
φxn

φx0

(4.11)

V (x0, . . . , xn, t) =
φx0x0

φx0

(4.12)

It is clear that after making use of these additonal functions we will have eliminated all partial

derivatives ofφ exceptingφx. For simplicity it is common to allow theCi(x, t) andV (x, t) to be

constants, thereby reducing a system of PDEs (more than likely nonlinear) in{Ci(x, t), V (x, t)} to

an algebraic system in{Ci, V } for (i = 0, . . . , n). It is straightforward to see that this simplifica-

tion is equivalent assuming a traveling-wave form forφ.

Once we have determined the unknown coefficient functionsun in the truncated series solution

as well as the unknownCi(x, t) andV (x, t) we will have the required information to recover the

singularity manifoldφ. Upon determiningφ we may plug it into the truncated expansion, thus

obtaining an exact solution to the original PDE.

Example: KP-II Equation

Before presenting the main results for the microstructure PDE and Pochhammer-Chree equations

we will demonstrate the effectiveness of the truncated Painlevé analysis method on a classic exam-

ple in(2+1), the KP-II equation. The KP-II equation [51]- [54], a two-dimensional generalization

of the well-known KdV equation describing weakly transverse water waves in a long-wave regime
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with small surface tension is given by

(ut + uux + ǫ2uxxx)x + λuyy = 0. (4.13)

Pluggingφ−α into (4.13) and balancing the(uux)x anduxxxx terms we find that the degree of the

singularity,α, is equal to2. Therefore we seek a solution of the form

u(x, y, t) =
u0(x, y, t)

φ(x, y, t)2
+
u1(x, y, t)

φ(x, y, t)
+ u2(x, y, t) (4.14)

for equation (4.13). Plugging the truncated expansion (4.14) into (4.13) and resolving the powers

of φ yields the recurrence relation

un−4,xt + (n− 5)un−3,xφt + (n− 5)un−3φxt + (n− 4)(n− 5)un−2φxφt

+ (n− 5)un−3,tφx + ǫ2(un−4,xxxx + 4(n− 5)un−3,xxxφx + 6(n− 5)un−3,xxφxx

+ 6(n− 4)(n− 5)un−2,xxφ
2
x + 4(n− 5)un−3,xφxxx + 12(n− 4)(n− 5)un−2,xφxφxx

+ 4(n− 3)(n− 4)(n− 5)un−1,xφ
3
x + (n− 5)un−3φxxxx + 4(n− 4)(n− 5)un−2φxφxxx

+ 3(n− 4)(n− 5)un−2φ
2
xx + 6(n− 3)(n− 4)(n− 5)un−1φ

2
xφxx

+ (n− 2)(n− 3)(n− 4)(n− 5)unφ
4
x) + λ(un−4,yy + 2(n− 5)un−3,yφy + (n− 5)un−3φyy

+ (n− 4)(n− 5)un−2φ
2
y) +

n
∑

k=0

(uk,xun−k−2,x + (n− k − 3)uk,xun−k−1φx + (k − 2)ukun−k−1,xφx

+ (k − 2)(n− k − 2)ukun−kφ
2
x + uk(un−k−2,xx + 2(n− k − 3)un−k−1,xφx

+ (n− k − 3)un−k−1φxx + (n− k − 2)(n− k − 3)un−kφ
2
x)) = 0 (4.15)
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whereun = 0 if n < 0 andun,x ≡ ∂
∂x

(un). Upon satisfaction of the recurrence relation at the

lowest powers ofφ we find

n = 0 : u0 = −12ǫ2φ2
x (4.16)

n = 1 : u1 = 12ǫ2φxx (4.17)

n = 2 : u2 = φ−2
x (3ǫ2φ2

xx − φxφt − 4ǫ2φxφxxx − λφ2
y) (4.18)

which we may write in the cleaner form

u(x, y, t) = −2[log(φ)]xx + u2(x, y, t) (4.19)

For simplicity we allowC(x, y, t) (ourC0(x, y, t) function),V (x, y, t) andQ(x, y, t) (ourC1(x, y, t)

function) to be the constantsC, V , andQ, respectively. Upon making this simplification we easily

reconcile the remainder of the coefficients ofφ thus obtaining the solution

u0(x, y, t) = −12ǫ2φ2
x (4.20)

u1(x, y, t) = 12ǫ2V φx (4.21)

u2(x, y, t) = 3ǫ2V 2 − C − 4ǫ2V 2 − λQ2 (4.22)

φ(x, y, t) = c1 + c2e
V (x+Qy+Ct) (4.23)
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wherec1 andc2 are arbitrary constants. Our solution can be written in the more compact form

u(x, y, t) = −12ǫ2 [log(φ(x, y, t))]xx + 3ǫ2V 2 − C − 4ǫ2V 2 − λQ2 (4.24)

From this form of the solution it follows that a nontrivial (in this context non-constant) solution

requiresc1 6= 0.

We will now plot the solution derived above for two differents choices for the set of parameters (see

figure 4.1). For the first choice we take(ǫ, λ, V,Q,C, c1, c2) = (1, 1,−1, 1, i, 1, 1). The solution

(4.24) att = 1 then becomes

u(x, y, 1) = − 12e−x−y−i

(1 + e−x−y−i)2
− 2− i. (4.25)

It is clear that for this set of parameters the solution is complex-valued. Therefore to better visualize

the solution we plot the real and imaginary parts separately.

107



Figure 4.1: Plots of the real (left) and imaginary (right) parts of the solution to the KP-II equation at
t = 1 on the rectangle[−3π, 3π]× [−3π, 3π] with the choice of parameters(ǫ, λ, V,Q,C, c1, c2) =
(1, 1,−1, 1, i, 1, 1).

As a second choice for the set of parameters we will take(ǫ, λ, V,Q,C, c1, c2) = (1, 1,−1,−1,−2, 1, 1)

for which the solution (4.24) att = 1 becomes

u(x, y, 1) = − 12e−x+y+2

(1 + e−x+y+2)2
= −6sech2 ((1/2)(−x+ y + 2)) . (4.26)

The plot for this solution is given in figure 4.2.
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Figure 4.2: Plot of the solution to the KP-II equation att = 1 on the rectangle[−10, 10]×[−10, 10]
with the choice of parameters(ǫ, λ, V,Q,C, c1, c2) = (1, 1,−1,−1,−2, 1, 1).

Microstructure PDE

In this section we use the truncated Painlevé analysis method to construct an exact solution to the

microstructure PDE given earlier in the section by equation(4.1). Pluggingφ−α into (4.1) and

balancing the(v2)xx andvxxxx terms we find that the degree of the singularity,α, is equal to2. In

fact, this amounted to balancing the same terms that we did for the KP-II equation so we could

have borrowed the results from the leading order analysis inthe previous section. Sinceα = 2, we

seek a solution of the form

u(x, t) =
u0(x, t)

φ(x, t)2
+
u1(x, t)

φ(x, t)
+ u2(x, t) (4.27)
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for equation (4.1). Plugging the truncated expansion (4.27) into (4.1) and resolving the powers of

φ yields the large recurrence relation

um−4,tt − bum−4,xx + (m− 5)(2um−3,tφt − 2bum−3,xφx + um−3(φtt − bφxx)

+(m− 4)um−2(φ
2
t − bφ2

x))− µ

m
∑

k=0

{uk,xum−k−2,x + ukum−k−2,xx

+(m− k − 3)(uk,xum−k−1φx + 2ukum−k−1,xφx + (m− k − 2)ukum−kφ
2
x

+ukum−k−1φxx) + (k − 2)(ukum−k−1,xφx + (m− k − 2)ukum−kφ
2
x)
}

− δβ(um−4,xxtt

+(m− 5)(2um−3,xxtφt + um−3,xxφtt + 2um−3,xttφx + 4um−3,xtφxt + 2um−3,xφxtt

+um−3,ttφxx + 2um−3,tφxxt + um−3φxxtt + (m− 4)(um−2,xxφ
2
t + um−2,ttφ

2
x

+4um−2,xtφxφt + 4um−2,xφtφxt + 2um−2,xφxφtt + 4um−2,tφxφxt + 2um−2φ
2
xt

+2um−2φxφxtt + 2um−2,tφtφxx + um−2φtφxxt + um−2φxxφtt + um−2φxxtφt

+(m− 3)(2um−1,xφxφ
2
t + 2um−1,tφ

2
xφt + 4um−1φxφtφxt + um−1φ

2
xφtt + um−1φxxφ

2
t

+(m− 2)umφ
2
xφ

2
t )))) + δγ(um−4,xxxx + (m− 5)(um−3φxxxx + 4um−3,xφxxx

+6um−3,xxφxx + 4um−3,xxxφx + (m− 4)(um−2(4φxφxxx + 3φ2
xx) + 12um−2,xφxφxx

+6um−2,xxφ
2
x + (m− 3)(4um−1,xφ

3
x + 6um−1φ

2
xφxx + (m− 2)umφ

4
x)))) = 0 (4.28)

where once againun = 0 if n < 0 andun,x ≡ ∂
∂x

(un). Upon satisfaction of the recurrence relation

at the lowest powers ofφ we find
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m = 0 : u0 = −12δ

µ
(γφ2

t − βφ2
x) (4.29)

m = 1 : u1 =
12δ

5µ(γφ2
x − βφ2

t )

(

5γ2φ2
xφxx + 5β2φ2

tφtt − βγ(φ2
tφxx + φ2

xφtt)− 8βγφtφxφxt

)

(4.30)

m = 2 : u2 =
1

25φ3
xµ(βφ

2
t − γφ2

x)
3
(25β3φxφ

8
t − 25γ3φ7

xφ
2
t + 25γ3bφ9

x − 25β3bφ3
xφ

9
t − 75β2γφ3

xφ
6
t

+ 75βγ2φ5
xφ

4
t + 171δγ4φ7

xφ
2
xx − 120δγ4φ8

xφxxx + 75β2γbφ5
xφ

4
t − 75βγ2bφ2

xφ
2
t

− 120δβ3γφ2
xφxxφxtφ

5
t + 292δβ2γ2φ4

xφxxφxtφ
3
t − 856δβγ3φ6

xφxxφxtφ
3
t − 128δβ3γφ4

xφxtφ
3
tφtt

− 10δβ3γφ3
xφxxφ

4
tφtt + 340δβ2γ2φ5

xφxxφ
2
tφtt − 356δβ2γ2φ6

xφxtφtφtt + 160δβ3γφ5
xφ

3
tφttt

− 60δβ2γ2φ7
xφtφttt − 476δβ3γφ3

xφ
2
xtφ

4
t + 584δβ2γ2φ5

xφ
2
xtφ

2
t + 215δβ2γ2φ3

xφ
2
xxφ

4
t

− 110δβγ3φ5
xφ

2
xxφ

2
t − 100δβ3γφxφ

2
xxφ

6
t − 100δβ3γφ2

xφxxxφ
6
t − 60δβ3γφ3

xφxxtφ
5
t

+ 120δβ2γ2φ4
xφxxxφ

4
t − 360δβ2γ2φ5

xφxxtφ
3
t + 100δβγ3φ6

xφxxxφ
2
t + 300δβγ3φ7

xφxxtφt

− 220δβ4φ2
xφxtφ

5
tφtt + 22δβγ3φ7

xφxxφtt + 480δβ3γφ4
xφxttφ

4
t − 420δβ2γ2φ6

xφxttφ
2
t

+ 150δβ3γφ5
xφ

2
tφ

2
tt − 100δβ4φ3

xφ
5
tφttt + 336δβ4φxφ

2
xtφ

6
t + 120δβ4φxφxxtφ

7
t + 260δβγ3φ7

xφ
2
xt

− 20δβ4φxxφxtφ
7
t − 140δβ4φ2

xφxttφ
6
t + 80δβγ3φ8

xφxtt + 75δβ4φ3
xφ

4
tφ

2
tt − 49δβ2γ2φ7

xφ
2
tt)(4.31)

Once again we will find that without the assumption thatC(x, t) andV (x, t) be constants the

calculations will become unnecessarily complicated. Under this reduction we find that elimina-

tion of the remaining coefficients ofφ requires thatC = 1 while V can remain arbitrary. Using

C(x, t) = 1 andV (x, t) = V (constant) the previous equations reduce to
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u0(x, t) =
12δ(γ − β)φ2

x

µ
(4.32)

u1(x, t) = −12δ(γ − β)V φx

µ
(4.33)

u2(x, t) =
V 2δ(γ − β) + 1− b

µ
(4.34)

and we obtain the solution for the singularity manifold

φ(x, t) = c1 + c2e
V (x+t) (4.35)

wherec1 andc2 are arbitrary constants. As with the KP-II equation we may write the the equation

in a more convenient form

u(x, t) =
12δ(β − γ)

µ
(log(φ(x, t)))xx +

V 2δ(γ − β) + 1− b

µ
(4.36)

From this form of the solution we make the observation that a nontrivial (once again taken to mean

non-constant) solution will require thatc1 6= 0 but alsoδ 6= 0 andβ 6= γ.

We will now plot the solution derived above for the set of parameters(c1, c2, V, γ, µ, δ, β, b) =

(1, 1,−1, 1, 1, 1,−1, 1). The solution (4.36) then becomes

u(x, t) = 2
(e−2x−2t − 10e−x−t + 1)

(1 + e−x−t)2
. (4.37)

The plot for this solution is given in figure 4.3.
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Figure 4.3: Plot of the solution (4.37) fort = −10, 0, 10 on the interval[−20, 20] with the choice
of parameters(c1, c2, V, γ, µ, δ, β, b) = (1, 1,−1, 1, 1, 1,−1, 1).

Generalized Pochhammer-Chree Equations

In this section we use the truncated Painlevé analysis method to construct an exact solution to the

generalized Pochhammer-Chree equations given earlier in the section by equations (4.2) and (4.3).

Pluggingφ−α into (4.2) and balancing the(u3)xx anduxxtt terms we find that the degree of the

singularity,α, is equal to1. Following the procedure outlined earlier in the chapter using α = 1

and thus we seek a solution of the form

u(x, t) =
u0(x, t)

φ(x, t)
+ u1(x, t). (4.38)

for equation (4.2). Now consider the following generalizedhigher-order Pochhammer-Chree equa-
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tion

(u− uxx)tt −
(

n
∑

i=0

a2i+1u
2i+1

)

xx

= 0, (4.39)

wherea2n+1 6= 0. Pluggingφ−α into (4.39) and balancing the(u2n+1)xx anduxxtt terms leads to

α = 1
n
. Forn ≥ 2 (e.g. polynomial nonlinearity of degree5 or higher),α will be noninteger. We

may circumvent this by substitutingu(x, t) = [v(x, t)]
1

n . for whichα becomes 1 for alln ≥ 1.

Pluggingu(x, t) = [v(x, t)]
1

n into equation (4.39) and multiplying through byn4[v(x, t)]4−
1

n we

obtain the following complicated new NLPDE

0 = −(1− n)(1− 2n)(1− 3n)v2t v
2
x − n(1− n)(1− 2n)v(v2xvtt + 4vxvtvxt + v2t vxx)

+n2(1− n)v2(v2t − 2vxvxtt − vxxvtt − 2vtvxxt − 2v2xt) + n3v3(vtt − vxxtt)

−v2n2

n
∑

i=0

a2i+1(2i+ 1)v
2i
n

{

(2i+ 1− n)v2x + nvvxx
}

. (4.40)

Note that ifn = 1 (corresponding to equation (4.2)) then most of the terms in equation (4.40)

vanish yielding fewer (and smaller) determining equationsfor the ui, C, andV . For n 6= 1,

however, these terms do not vanish. We then find that the resulting system of equations for theui,

C, andV are overdetermined and in fact inconsistent. For this reason we will proceed with only

the derivation of the solution to equation (4.2) here. Plugging (4.38) into (4.2) withα = 1 gives us

the following recurrence relation for theum’s
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0 = −2(m− 2)(m− 3)(m− 4)φxφ
2
tum−1,x − (m− 3)(m− 4)(2φtφxxt + φttφxx + 2φxφxtt)um−2

−2(m− 3)(m− 4)(φtφxx + 2φxφxt)um−2,t − 4(m− 3)(m− 4)φtφxum−2,xt

−2(m− 3)(m− 4)(φxφtt + 2φtφxt)um−2,x + um−4,tt − (m− 1)(m− 2)(m− 3)(m− 4)φ2
tφ

2
xum

−um−4,xxtt − 2(m− 2)(m− 3)(m− 4)φtφ
2
xum−1,t − 2(m− 3)(m− 4)φ2

xtum−2

−(m− 3)(m− 4)φ2
tum−2,xx − (m− 2)(m− 3)(m− 4)φ2

tφxxum−1 + (m− 3)(m− 4)φ2
tum−2

−(m− 2)(m− 3)(m− 4)φ2
xφttum−1 − (m− 3)(m− 4)φ2

xum−2,tt − a1((m− 3)(m− 4)φ2
xum−2

+2(m− 4)φxum−3,x + (m− 4)φxxum−3 + um−4,xx)− 4(m− 2)(m− 3)(m− 4)φxφtφxtum−1

+2(m− 4)φtum−3,t − 2(m− 4)φtum−3,xxt − 2(m− 4)φxum−3,xtt − (m− 4)φxxum−3,tt

−2(m− 4)φxttum−3,x − (m− 4)φxxttum−3 − 2(m− 4)φxxtum−3,t − (m− 4)φttum−3,xx

−4(m− 4)φxtum−3,xt + (m− 4)φttum−3 − 2a2

m
∑

j=0

[(m− j − 2)(m− j − 3)φ2
xujum−j−1

+2(m− j − 3)φxujum−j−2,x + (m− j − 3)φxxujum−j−2 + ujum−j−3,xx]

−3a3

m
∑

j=0

m−j
∑

k=0

[(m− k − j − 1)(m− k − j − 2)φ2
xujukum−k−j + ujukum−k−j−2,xx

+(m− k − j − 2)φxxujukum−k−j−1 + 2(m− k − j − 2)φxujukum−k−j−1,x]

−6a3

m
∑

j=0

m−j
∑

k=0

[(m− k − j − 1)(k − 1)φ2
xujukum−k−j + (m− k − j − 2)φxujuk,xum−k−j−1

+ujuk,xum−k−j−2,x + (k − 1)φxujukum−j−k−1,x]− 2a2

m
∑

j=0

[(j − 1)(m− j − 2)φ2
xujum−j−1

+(j − 1)φxujum−j−2,x + (m− j − 3)φxuj,xum−j−2 + uj,xum−j−3,x]

whereum = 0 if m < 0 andum,x ≡ ∂
∂x

(um).

Iterating throughm values we obtain the coefficients of the different powers ofφ. Solving the first

two for u0 andu1 we have
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m = 0 : u0 = − 2φt√
−2a3

(4.41)

m = 1 : u1 = −1

3

a2φt

√
−2a3 − 3a3φtt

a3φt

√
−2a3

(4.42)

(4.43)

Substituting inC andV and letting both be constants the solution to the remaining system of

equations is easily found to be

u0(x, t) =
2Cφx√
−2a3

(4.44)

u1(x, t) =

√
2(3CV a3 + a2

√
−2a3)

6(−a3)3/2
(4.45)

C = −sgn
(

3a1a3 − a22
)

(4.46)

V =

√

6a3(3a1a3 − a22 − 3a3)

3a3
(4.47)

φ(x, t) = c1 + c2e
V (x+Ct) (4.48)

where sgn(x) =











1 , x > 0

−1 , x < 0
. This again lends itself to a rather nice expression foru(x, t)

given by

u(x, t) =
2C√
−2a3

(log(φ(x, t)))x +

√
2(3CV a3 + a2

√
−2a3)

6(−a3)3/2
(4.49)

for equation (4.2). We will now plot the solution derived above for the set of parameters(c1, c2, a1, a2, a3) =
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(1, 1, 1, 1,−1). The solution (4.49) then becomes

u(x, t) = − 2√
3

e−
√

2

3
(x+t)

1 + e−
√

2

3
(x+t)

+
1 +

√
3

3
. (4.50)

The plot for this solution is given in figure 4.4.

Figure 4.4: Plot of the solution (4.50) fort = −10, 0, 10 on the interval[−20, 20] with the choice
of parameters(c1, c2, a1, a2, a3) = (1, 1, 1, 1,−1).
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Invariant Painlev́e Analysis Method

In 1989 Conte [46] showed that the Painlevé analysis of PDEs was in fact invariant under an

arbitrary homographic transformation of the singularity manifold φ. That is, the analysis was

invariant under any transformation ofφ of the form

φ 7→ aφ+ b

cφ+ d
s.t. ad− bc = 1. (4.51)

He found the ”best“ choice of new expansion function to be thefunction

χ ≡ ψ

ψx1

=

(

φx1

φ− φ0

− φx1x1

2φx1

)−1

(4.52)

ψ = (φ− φ0)φ
−1/2
x1

(4.53)

From this definition it can then be shown that the new expansion variableχ satisfies the following

Ricatti equations

χx1
= 1 +

1

2
Sχ2

χt = −C1 + C1,x1
χ− 1

2
(C1S + C1,x1x1

)χ2

χx2
= −C2 + C2,x1

χ− 1

2
(C2S + C2,x1x1

)χ2

...

χxn = −Cn + Cn,x1
χ− 1

2
(CnS + Cn,x1x1

)χ2 (4.54)
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and thusψ satisfies the following linear equations

ψx1x1
= −1

2
Sψ

ψt =
1

2
C1,x1

ψ − C1ψx1

ψx2
=

1

2
C1,x1

ψ − C1ψx1

...

ψxn =
1

2
Cn,x1

ψ − Cnψx1
(4.55)

whereS (the Schwarzian derivative) and theCi are defined by

S =
φx1x1x1

φx1

− 3

2

(

φx1x1

φx1

)2

(4.56)

C1 = − φt

φx1

(4.57)

Ci = −φxi

φx1

(2 ≥ i ≤ n) (4.58)

and are also invariant under the group of homographic transformations. It is important to note that

the systems (4.54) and (4.55) are equivalent to each other. TheCi andS are linked by the cross

derivative conditions
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φx1x1x1t = φtx1x1x1
(4.59)

φx1x1x1x2
= φx2x1x1x1

(4.60)

... (4.61)

φx1x1x1xn = φxnx1x1x1
(4.62)

which are equivalent to the conditions

St + C1,x1x1x1
+ 2C1,x1

S + C1Sx1
= 0 (4.63)

Sx2
+ C2,x1x1x1

+ 2C2,x1
S + C2Sx1

= 0 (4.64)

... (4.65)

Sxn + Cn,x1x1x1
+ 2Cn,x1

S + CnSx1
= 0 (4.66)

Upon determining the unknown coefficients in our truncated expansion and resolving these condi-

tions, thereby determining our expansion functionχ we will have obtained an exact solution to the

original PDE.

Example: KdV Equation

Before presenting the main results for the microstructure PDE and Pochhammer-Chree equations

we would like to demonstrate the effectiveness of the truncated invariant Painlev́e analysis method

on the KdV equation. The KdV equation enjoys a wide variety ofapplications accross multiple
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disciplines. The KdV equation [55] - [57], which describes the propagation of weakly dispersive

and weakly nonlinear water waves, is often given by

ut + uxxx − 6uux = 0 (4.67)

Pluggingχ−α into (4.67) and balancing theuux anduxxx terms we find that the degree of the

singularity,α, is equal to2. Therefore we seek a solution of the form

u(x, t) =
u0(x, t)

χ(x, t)2
+
u1(x, t)

χ(x, t)
+ u2(x, t) (4.68)

for equation (4.67). Plugging the truncated expansion (4.68) into (4.67), eliminating the partial

derivatives ofχ, and collecting in powers ofχ yields the system of equations
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O(χ−5) : −24u0 + 12u20 = 0 (4.69)

O(χ−4) : −6u0(u0,x − u1) + 12u0u1 + 18u0,x − 6u1 = 0 (4.70)

O(χ−3) : 2u0C − 20u0S − 6u0(u1,x − u0S)− 6u1(u0,x − u1) + 12u2u0 − 6u0,xx + 6u1,x = 0(4.71)

O(χ−2) : u0,t − u1,xx − 4u1S + 21u0,xS − 6u0

(

u2,x −
1

2
u1S

)

− 6u1(u1,x − u0S)

−6u2(u0,x − u1) + 5u0Sx − 2u0Cx + u1C + u0,xxx = 0 (4.72)

O(χ−1) : u1,t + 3u1,xS − 3u0,xSx − 6u1

(

u2,x −
1

2
u1S

)

− 6u2(u1,x − u0S)

+u0(CS + Cxx) + u1Sx − 3u0,xxS − 2u0

(

1

2
Sxx + 2S2

)

− u1Cx + u1,xxx = 0(4.73)

O(χ0) :
3

2
u0,xS

2 − u1

(

1

2
Sxx + 2S2

)

+
3

2
u1S

2 +
3

2
u0SSx + u2,t −

3

2
u1,xSx −

3

2
u1,xxS

−6u2

(

u2,x −
1

2
u1S

)

+ u2,xxx +
1

2
u1(CS + Cxx) = 0 (4.74)

We now have a system of equations for the unknown functionsu0, u1, u2, C andS. It is often

useful to impose certain conditions (such asC, S constant) to reduce computational complexity,

however a major drawback as one may deduce is that our solutions will become more trivial.

Instead, leavingS andC as functions ofx andt and solving this system with the aid of MAPLE

yields the following results
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u0(x, t) = 2, (4.75)

u1(x, t) = 0, (4.76)

u2(x, t) =
2

3
S(x, t)− 1

6
C(x, t), (4.77)

C(x, t) =
x

3t+ C1

, (4.78)

S(x, t) =
x

3t+ C1

. (4.79)

Using our equations forψ andχwe are then able to find the following rather complicated solutions

ψ =
(3t+ C1)

1/3
(

C3x 0F1(,
4
3
;− x3

54t+18C1
) + C2(3t+ C1)

1/3
0F1(,

2
3
;− x3

54t+18C1
)
)

√
9t+ 3C1

, (4.80)

χ =
C3x 0F1(,

4
3
;− x3

54t+18C1
) + C2(3t+ C1)

1/3
0F1(,

2
3
;− x3

54t+18C1
)

C3 0F1(,
4
3
;− x3

54t+18C1
)− 9

4

C3x3
0F1(,

7

3
;− x3

54t+18C1
)

54t+18C1
− 9

2

C2(3t+C1)1/3x2
0F1(,

5

3
;− x3

54t+18C1
)

54t+18C1

,(4.81)

from which our equation foru(x, t) gives us the following solution

u(x, t) = 2







C3 0F1(,
4
3
;− x3

54t+18C1
)− 9

4

C3x3
0F1(,

7

3
;− x3

54t+18C1
)

54t+18C1
− 9

2

C2(3t+C1)1/3x2
0F1(,

5

3
;− x3

54t+18C1
)

54t+18C1

C3x 0F1(,
4
3
;− x3

54t+18C1
) + C2(3t+ C1)1/3 0F1(,

2
3
;− x3

54t+18C1
)







2

+
x

6t+ 2C1

, (4.82)
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where0F1(, b; z) is the hypergeometric function defined by

0F1(, b; z) =
∞
∑

k=0

Γ(b)zk

Γ(b+ k)k!
, (4.83)

andΓ(a) is the gamma function.

We will now plot the solution derived above for the set of parameters(C1, C2, C3) = (1, 1, 0) for

which the solution (4.82) then becomes

u(x, t) = − x

3t+ 1







I2/3

(√
2
3

√

− x3

3t+1

)

I−1/3

(√
2
3

√

− x3

3t+1

)







2

. (4.84)

The plot for this solution is given in figure 4.5.
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Figure 4.5: Plot of the solution (4.84) fort = −2 and2 on the interval[−35, 35] with the choice
of parameters(C1, C2, C3) = (1, 1, 0).

We remark thatu(x, t) is not of traveling wave form. The inclusion of bothu(x,−2) andu(x, 2)

in the same plot was to show near symmetry of the solution (4.84) in t for |t| ≥ 1.

MicroStructure PDE

In this section we use the truncated invariant Painlevé analysis method to construct an exact solu-

tion to the microstructure PDE given earlier in the chapter by equation (4.1). Pluggingχ−α into

(4.1) and balancing the(v2)xx andvxxxx terms we find that the degree of the singularity,α, is equal
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to 2. Sinceα = 2, we seek a solution of the form

v(x, t) =
v0(x, t)

χ(x, t)2
+
v1(x, t)

χ(x, t)
+ v2(x, t) (4.85)

for equation (4.1). Plugging the truncated expansion (4.85) into (4.1) and and eliminating all

derivatives ofχ yields the Painleve-B̈acklund equations order by order inχ. Due to the complex-

ity of the Painlev́e-Bäcklund equations we shall make a further assumption onC(x, t) that it be

constant. With this assumption on the functionC(x, t) the first three Painleve-B̈acklund equations

become

12βδC2v0 − 12γδv0 + µv20 = 0, (4.86)

−µ
2
(8v0(v1 − v0,x) + 2v0(2v1 − 4v0,x) + 12v0v1)− δ[β(24C2v1 − 48C2v0,x

+48Cv0,t)− γ(24v1 − 96v0,x)] = 0, (4.87)

6C2v0 − 6bv0 −
µ

2

(

−8v0v1,x + 2(v0,x − v1)
2 + 2v0(v0,xx − 2v1,x) + 2v1(2v1 − 4v0,x)

+12v0v2)− δ
(

β(24v0C
2S − 12C2v1,x + 6C2v0,xx + 12Cv1,t − 24Cv0,xt + 6v0,tt)

−γ(24v0S − 24v1,x + 36v0,xx))− 8µv20S − 96δv0S
(

βC2 − γ
)

= 0, (4.88)

where it is important to keep in mind that at this point we havenot made any additional assumptions

on the functionS(x, t). Solving the three equations above forv0, v1, andv2 with the aid of MAPLE

we obtain
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v0 = −12δ(C2β − γ)

µ
, (4.89)

v1 = 0, (4.90)

v2 = −4C2βδS − 4γδS − C2 + b

µ
. (4.91)

The next step is to use the remaining Painleé-Bäcklund equations to determine the functionS(x, t)

and, if necessary, the constantC. Using the previous expressions forv0, v1, andv2 with C constant

the remaining Painlev́e-Bäcklund equations become

24µ−1
(

C2β − γ
)

δ2
[(

18C2β + γ
)

Sx + 19CβSt

]

= 0, (4.92)

24µ−1δ2
(

γ − C2β
) [(

3C2β + γ
)

Sxx + 4CβSxt

]

= 0, (4.93)

12µ−1δ
(

C2β − γ
)

[(

8C2δβ +
δγ

2

)

(S2)x +
17Cδβ

2
(S2)t + δ (CβSt + γSx)xx

−C2Sx − CSt

]

= 0, (4.94)

2µ−1δ
(

γ − C2β
) [

δ
(

14C2β + 4γ
)

SSxx + 18CδβSSxt + δ
(

8C2β + γ
)

S2
x

−18δβS2
t − 9CδβSxSt + 2Stt − 2C2Sxx + 2δγSxxxx − 2δβSxxtt

]

= 0. (4.95)

It follows that a rather simple solution would be to takeC = ±
√

γ
β
. Looking back at the forms

of u0 andu2 we see that this choice would makeu0 = 0 andu2 = constant thereby giving only

a constant solution. For less trivial results we will require thatC 6= ±
√

γ
β
. Another simple,

yet sufficient, solution to the previous system is to takeS to be a constant. UsingC(x, t) = C,

S(x, t) = S (whereC andS are constants) and the determining equations forψ(x, t) we find that
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ψ(x, t) takes the form

ψ(x, t) = c1 sin

(
√

S

2
(x− Ct)

)

+ c2 cos

(
√

S

2
(x− Ct)

)

, (4.96)

wherec1 andc2 are arbitrary constants. Substituting this expression forψ into the expression for

χ in terms ofψ (given earlier in the section) we arrive at the following traveling wave solution to

equation (4.1),

v(x, t) =
6Sδ(γ − C2β)

[

c1 cos
(√

S
2
(x− Ct)

)

− c2 sin
(√

S
2
(x− Ct)

)]2

µ
[

c1 sin
(√

S
2
(x− Ct)

)

+ c2 cos
(√

S
2
(x− Ct)

)]2

−µ−1(4Sδ(C2β − γ)− C2 + b). (4.97)

From this form of the solution we make the observation that a nontrivial (once again taken to

mean non-constant) solution will require thatc1 6= 0 andc2 6= 0. We make the additional remark

that the solution will have two qualitatively different forms depending on the sign ofS. On one

hand, forS > 0 andt = t0 fixed the solution will be periodic with infinitely many singularities a

x = Ct0 −
√

2
S
tan−1

(

− c2
c1

)

. On the other hand, forS < 0 the solution will involve hyperbolic

sines and hyperbolic cosines and thus will be continuous onR
2 for most parameter set choices.

Note that to ensure the solution is real-valued we will takec2 to be imaginary. We will now plot

the solution derived above for two parameter sets such thatS > 0 in the first set andS < 0 in

the second set. For the choice(c1, c2, S, C, γ, µ, δ, β, b) = (1, 1, 1,−1, 1, 1, 1,−1, 1) (S > 0) the
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solution (4.97) simplifies to

v(x, t) = −4 sin
(√

2(x+ t)
)

+ 5

sin
(√

2(x+ t)
)

− 1
, (4.98)

whereas for the choice(c1, c2, S, C, γ, µ, δ, β, b) = (1, 2i,−1, 1, 1, 1, 1,−1, 1) (S < 0) the solution

(4.97) simplifies to

v(x, t) =
4
[

5 cosh2
(

t−x√
2

)

+ 4 cosh
(

t−x√
2

)

sinh
(

t−x√
2

)

− 40
]

5 cosh2
(

t−x√
2

)

+ 4 cosh
(

t−x√
2

)

sinh
(

t−x√
2

)

− 1
. (4.99)

The plots of these solutions are given in figure 4.6.

Figure 4.6: (Left): Plot of the solution (4.97) for the choice of parameters
(c1, c2, S, C, γ, µ, δ, β, b) = (1, 1, 1,−1, 1, 1, 1,−1, 1) at t = 1 in the rectangle[−5π, 5π].
(Right): Plot of the solution (4.97) for the choice of parameters (c1, c2, S, C, γ, µ, δ, β, b) =
(1, 2i,−1, 1, 1, 1, 1,−1, 1) at t = −5, 0, 5 on the interval[−15, 15].
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Generalized Pochhammer-Chree Equations

In this section we use the truncated invariant Painlevé analysis method to construct an exact solu-

tion to the generalized Pochhammer-Chree equations given earlier in the chapter by equations (4.2)

and (4.3). Pluggingχ−α into (4.2) and balancing the(u3)xx anduxxtt terms we find that the degree

of the singularity,α(1), is equal to1. When balancing the(u5)xx anduxxtt terms in equation (4.3),

however, we find thatα(2) is equal to1/2. Due to the non-integer value ofα(2) we need to find an

appropriate substitution to makeα(2) a nonnegative integer. The substitution we use to accomplish

this isu(2)(x, t) =
(

v(2)(x, t)
)1/2

where it is important to keep in mind that the superscripts inthe

parenthesis are not powers nor derivatives but rather indicate which equation the term corresponds

to. That is, any term with(1) corresponds to equation (4.2) and any term with(2) corresponds to

equation (4.3). Running through the leading order analysis again on the new system now yields

α(2) = 1. Therefore we seek solutions of the form

u(1)(x, t) =
u
(1)
0 (x, t)

χ(1)(x, t)
+ u

(1)
1 (x, t) (4.100)

and

v(2)(x, t) =
v
(2)
0 (x, t)

χ(2)(x, t)
+ v

(2)
1 (x, t) (4.101)

for equations (4.2) and (4.3), respectively. Plugging these truncated expansions into their respective

equations and eliminating all derivatives ofχ yields the Painlev́e-Bäcklund equations order by

order inχ for equations (4.2) and (4.3). Due to the complexity of thesesystems of equations in

both cases we shall once again require thatC(x, t) be a constant. For equation (4.2) the first two

Painlev́e-Bäcklund equations are then
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−12u
(1)
0

(

2C2 + a3

(

u
(1)
0

)2
)

= 0, (4.102)

2Cu
(1)
0,t + 3a3

(

u
(1)
0

)2

u
(1)
1 − 3a3

(

u
(1)
0

)2

u
(1)
0,x + a2

(

u
(1)
0

)2

− 2C2u
(1)
0,x = 0, (4.103)

and for equation (4.3) the first two Painlevé-Bäcklund equations are

−35

4

(

v
(1)
0

)4
(

a5

(

v
(1)
0

)2

+
3

4
C2

)

= 0, (4.104)

−5

8

(

v
(1)
0

)3
(

64a5

(

v
(1)
0

)2

v
(1)
1 − 20a5

(

v
(1)
0

)2

v
(1)
0,x + 36C2v

(1)
1 − 3C2v

(1)
0,x

+6a3

(

v
(1)
0

)2

+ 3Cv
(1)
0,t

)

= 0. (4.105)

Solving the first two equations for both cases yields the following results

u
(1)
0 = −C

√

2

−a3
(4.106)

u
(1)
1 = − a2

3a3
(4.107)

v
(2)
0 =

√
3C

2
√−a5

(4.108)

v
(2)
1 = −3a3

8a5
(4.109)

At this point takingS(i)(x, t) to be a constant fori = 1, 2 reduces the remaining Painlevé-Bäcklund
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equations to a system of algebraic equations in theC(i) andS(i). Solving these systems for the

S(i)(x, t) andC(i)(x, t) we find

C(1) = C, (4.110)

S(1) =
1

3

a32 + 3C2a3 − 3a1a3
C2a3

, (4.111)

and

C(2) =
1

4

√

2(9a23 − 32a1a5)

a5(S(2) − 4)
, (4.112)

S(2) =
6a23

16a1a5 − 3a23
. (4.113)

Note that for equation (4.3) theC term must take a specific form (dependent on theai) whereas for

equation (4.2) we can take theC term to be arbitrary. In keeping with the notation of this section

we will useψ(1)(x, t) andψ(2)(x, t) for equations (4.2) and (4.3), respectively. From our values for

theS(i),s andC(i),s and the determining equations for theψ(i),s given earlier in the section we find

thatψ(1) andψ(2) take the following forms

ψ(1)(x, t) = c1 cos (λ(Ct− x)) + c2 sin (λ(Ct− x)) , (4.114)
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whereλ =
√

3C2a3−3a1a3+a2
2

6Ca3
, and

ψ(2)(x, t) = c1 cos

(√
3a3
(

4x
√
a5 + tσ

)

4
√
a5σ

)

+ c2 sin

(√
3a3
(

4x
√
a5 + tσ

)

4
√
a5σ

)

, (4.115)

whereσ =
√

16a1a5 − 3a23. Therefore we have the following traveling wave solutions,

u(1)(x, t) =
C
√

− 2
a3
λ(c1 sin(λ(

x
C
− t))− c2 cos(λ(

x
C
− t))))

c1 cos(λ(
x
C
− t))) + c2 sin(λ(

x
C
− t))

− a2
3a3

(4.116)

and, noting thatu(2)(x, t) =
√

v(2)(x, t),

u(2)(x, t) =

(

3 (32a1a5 − 9a23) a3(−c1 sin(y(x, t)) + c2 cos(y(x, t)))

4
√−a5(c1 cos(y(x, t)) + c2 sin(y(x, t)))

− 3a3
8a5

)1/2

, (4.117)

wherey(x, t) =
√
3a3(4x

√
a5+tσ)

4
√
a5σ

. These solutions have the potential to become complex-valued

but may be taken to be real provided we make suitable choices for the arbitrary constants. For

example, a rather simple requirement foru(1) is a3 < 0 andλ,C ∈ R. The conditionλ ∈ R

is equivalent to requiring thata1 satisfya1 <
a3
2

3a3
+ C2. Due to the nature ofu(2) being that of

a rational expression involving trigonometric functions inside a radical one cannot guarantee the

solutions are real for allx andt as we did previously without eliminating thex andt dependence.

However, given adequate choices it is possible to ensure thesolutions are real for some spatial and

time intervals.

We will now plot the solutions derived above for parameter sets which lead to qualitatively different

plots. We find that the choice of parameter sets may lead to solutions with zero, one, or infinitely
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many singularities. The case of zero or one singularity corresponds to parameters sets such that

λ ∈ iR (the set of imaginary numbers). That is, ifλ ∈ iR then c1
c2

≤ 1 corresponds to one

singularity whereasc1
c2
> 1 corresponds to no singularities. On the other hand, ifλ ∈ R then

there will be infinitely many singularities for all choices of c1, c2 ∈ R. For the parameter set

(c1, c2, C, a1, a2, a3) = (1, 1, 2, 1, 1,−1) the solution (4.116) becomes

u(1)(x, t) = −1

3

(2
√
6− 1) sin

(

3−1/2(2t− x)
)

+ (2
√
6 + 1) cos

(

3−1/2(2t− x)
)

sin (3−1/2(2t− x))− cos (3−1/2(2t− x))
, (4.118)

whereas for the choice(c1, c2, C, a1, a2, a3) = (3,−2i, 1, 2, 1,−1) the solution becomes

u(1)(x, t) = −1

3

(6
√
3− 2) sinh

(√

2
3
(t− x)

)

+ (4
√
3− 3) cosh

(√

2
3
(t− x)

)

3 cosh
(√

2
3
(t− x)

)

+ 2 sinh
(√

2
3
(t− x)

) . (4.119)

The plots of these solutions are given in figure 4.7.
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Figure 4.7: (Left): Plot of the solution (4.116) for the choice of parameters(c1, c2, C, a1, a2, a3) =
(1, 1, 2, 1, 1,−1) at t = 1 in the interval[−15, 15]. (Right): Plot of the solution (4.116) for the
choice of parameters(c1, c2, C, a1, a2, a3) = (3,−2i, 1, 2, 1,−1) at t = −5, 0, 5 in the interval
[−12, 12].

As mentioned above, for some choices of parameter set(c1, c2, a1, a3, a5) the term inside the square

root in the solution (4.117) may oscillate between positiveand negative values and thus will only

be real-valued in certain regions of thext−plane. For this reason we will only consider cases

where the solution is real-valued for all(x, t) ∈ R
2. In particular, we consider the parameter set

(c1, c2, a1, a3, a5) = (2i, 1, 1, 2,−1) for which the solution (4.117) becomes

u(2)(x, t) =
3

2





sinh
(√

21(t
√
7+2x)

14

)

+ cosh
(√

21(t
√
7+2x)

14

)

sinh
(√

21(t
√
7+2x)

14

)

+ 2 cosh
(√

21(t
√
7+2x)

14

)





1/2

(4.120)

The plot of this solution fort = −5, 0, 5 is given in figure 4.8.
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Figure 4.8: Plot of the solution (4.117) fort = −5, 0, 5 on the interval[−20, 15] with the choice of
parameters(c1, c2, a1, a3, a5) = (2i, 1, 1, 2,−1).

Generalized Hirota Expansion Method

In this section we will give a brief description of the generalized Hirota expansion method [50].

As previously mentioned, after plugging the truncated series solution into the PDE and reconciling

the powers ofφ we will obtain a recurrence relation from which we will determine theun and

α. In general we find that, after arranging the equations according to increasing order inφ, the

first equation will determineu0, the secondu1, etc. We continue this process until we have found

u0, . . . , uα−1 and keep the remaininguα unknown. The final term can be expanded in a power
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series aboutx1 = 0

uα(x1, . . . , xn, t) =
∞
∑

i=0

uα,i(x2, . . . , xn, t)x
i
1 (4.121)

Sinceα is finite and in general we will have an PDE with finite order of nonlinearity we will have

a finite number of remaining conditions to satisfy. Therefore plugging (4.121) into the remaining

equations will yield a heavily underdetermined system. Thus there will exist someN ∈ N such

thatuα,i(x2, . . . , xn, t) = 0 for all i ≥ N . That is,uα(x1, . . . , xn, t) can be represented by a finite

series. For ease of computation we forceφ(x1, . . . , xn, t) to be of the formφ(x1, . . . , xn, t) =

1 + exp{Γ(t) +∑n
l=1 xlΩl(t)}. This functional form is somewhat reminiscent of the standard

ansatz one considers whilst searching for a one-soliton solution via Hirota’s bilinear method. To

further reduce complexity we letΓ(t) = k1+k2t andΩl(t) = kl+2 wherekl ∈ C (l = 1, . . . , n+2).

Plugging the new expansion with knownun, n = 0, 1, . . . , α−1 into the remaining equations gives

rise to a new set of equations for each equation in the previous set of equations. From these we

will determine the unknownuα,i(t) andkl. If, in theory, we can solve for these terms we will

have found the last term in our truncated series expansion, as well as the form of the singularity

manifoldφ and therefore will have a solution to the original NLPDE.

Example: KP-II Equation

Before presenting the main results for the microstructure PDE and Pochhammer-Chree equations

we will demonstrate the effectiveness of the generalized Hirota expansion method on a classic

example in(2 + 1), the KP-II equation. As the procedure begins exactly as the standard truncated

Painlev́e method we find that the initial steps in this procedure yieldthe same results. That is, for

the KP-II equation given earlier by equation (4.13) we find that the degree of the singularityα,
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found by balancing the(uux)x anduxxxx terms, is equal to2. Therefore, we will once again seek

a solution of the form

u(x, y, t) =
u0(x, y, t)

φ(x, y, t)2
+
u1(x, y, t)

φ(x, y, t)
+ u2(x, y, t). (4.122)

Plugging the truncated expansion (4.122) into (4.13) yields the previously found recurrence rela-

tion

un−4,xt + (n− 5)un−3,xφt + (n− 5)un−3φxt + (n− 4)(n− 5)un−2φxφt

+ (n− 5)un−3,tφx + ǫ2(un−4,xxxx + 4(n− 5)un−3,xxxφx + 6(n− 5)un−3,xxφxx

+ 6(n− 4)(n− 5)un−2,xxφ
2
x + 4(n− 5)un−3,xφxxx + 12(n− 4)(n− 5)un−2,xφxφxx

+ 4(n− 3)(n− 4)(n− 5)un−1,xφ
3
x + (n− 5)un−3φxxxx + 4(n− 4)(n− 5)un−2φxφxxx

+ 3(n− 4)(n− 5)un−2φ
2
xx + (n− 3)(n− 4)(n− 5)un−1(6φ

2
xφxx + (n− 2)unφ

4
x))

+λ(un−4,yy + 2(n− 5)un−3,yφy + (n− 5)un−3φyy + (n− 4)(n− 5)un−2φ
2
y)

+
n
∑

k=0

(uk,xun−k−2,x + (n− k − 3)uk,xun−k−1φx + (k − 2)ukun−k−1,xφx

+ (k − 2)(n− k − 2)ukun−kφ
2
x + uk(un−k−2,xx + 2(n− k − 3)un−k−1,xφx

+ (n− k − 3)un−k−1φxx + (n− k − 2)(n− k − 3)un−kφ
2
x)) = 0 (4.123)

whereun = 0 if n < 0 andun,x ≡ ∂
∂x

(un). The difference here is that we will solve for only the

functionsu0 andu1, leaving the determination ofu2 to the end. Upon satisfaction of the recurrence
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relation at the lowest powers ofφ we find that

u0(x, y, t) = −12ǫ2φ2
x and u1(x, y, t) = 12ǫ2φxx (4.124)

Following the procedure as outlined earlier in the section with the assumed forms forΓ(t) andΩ(t)

we find thatu2 takes the relatively simple form

u2(x, y, t) = −k3k4 + ǫ2k43 + λk22
k23

(4.125)

wherek1−4 are arbitrary constants. With this the remaining equationsat each order ofφ are iden-

tically satisfied and thus we find the final solution given by

u(x, y, t) =
(ǫ2k43 + k3k4 + λk22)e

2k1+2k2y+2k3x+2k4t + 2(λk22 + k3k4 − 5ǫ2k43)e
k1+k2y+k3x+k4t

k23(1 + ek1+k2y+k3x+k4t)2

+
ǫ2k43 + k3k4 + λk22

k23(1 + ek1+k2y+k3x+k4t)2
(4.126)

We will now plot (see figure 4.9) the solution given by (4.126)for two different choices for the

set of parameters just as we did in truncated Painlevé analsis section. For the first choice we take

(k1, k2, k3, k4, ǫ, λ) = (1,−1,−1, i, 1, 1). The solution (4.126) att = 1 then becomes

u(x, y, 1) =
(2− i) (1 + e2+2i−2y−2x)− (8 + 2i)e1+i−y−x

(1 + e1+i−y−x)2
. (4.127)

It is clear that for this set of parameters the solution is complex-valued. Therefore, to better visu-
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Figure 4.9: Plots of the real (left) and imaginary (right) parts of the solution to the KP-II equation
att = 1 on the rectangle[−3π, 3π]×[−3π, 3π] with the choice of parameters(k1, k2, k3, k4, ǫ, λ) =
(1,−1,−1, i, 1, 1).

alize the solution we plot the real and imaginary parts separately.

As a second choice for the set of parameters we will take(k1, k2, k3, k4, ǫ, λ) = (1,−1,−1,−1, 1, 1)

for which the solution (4.24) att = 1 becomes

u(x, y, 1) =
3 (1− e−x−y)

2

(1 + e−x−y)2
= 3 tanh2 ((1/2)(−x− y)) . (4.128)

The plot for this solution is given in figure 4.10.
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Figure 4.10: Plot of the solution to the KP-II equation att = 1 on the rectangle[−10, 10] ×
[−10, 10] with the choice of parameters(k1, k2, k3, k4, ǫ, λ) = (1,−1,−1,−1, 1, 1).

Microstructure PDE

In this section we use the generalized Hirota expansion method to construct an exact solution to

the microstructure PDE given earlier in the chapter by equation (4.1). Pluggingφ−α into equation

(4.1) and balancing the(v2)xx andvxxxx terms we find that the degree of the singularity,α, is equal

to 2. Sinceα = 2, we seek a solution of the form

v(x, t) =
v0(x, t)

φ(x, t)2
+
v1(x, t)

φ(x, t)
+ v2(x, t) (4.129)

for equation (4.1). Plugging the truncated expansion (4.129) into equation (4.1) yields the recur-

rence relation given previously in the chapter in the Painlevé analyis section,
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vm−4,tt − bvm−4,xx + (m− 5)(2vm−3,tφt − 2bvm−3,xφx + vm−3(φtt − bφxx)

+(m− 4)vm−2(φ
2
t − bφ2

x))− µ

m
∑

k=0

{vk,xvm−k−2,x + vkvm−k−2,xx

+(m− k − 3)(vk,xvm−k−1φx + 2vkvm−k−1,xφx + (m− k − 2)vkum−kφ
2
x

+vkvm−k−1φxx) + (k − 2)(vkvm−k−1,xφx + (m− k − 2)vkvm−kφ
2
x)
}

− δβ(vm−4,xxtt

+(m− 5)(2vm−3,xxtφt + vm−3,xxφtt + 2vm−3,xttφx + 4vm−3,xtφxt + 2vm−3,xφxtt

+vm−3,ttφxx + 2vm−3,tφxxt + vm−3φxxtt + (m− 4)(vm−2,xxφ
2
t + vm−2,ttφ

2
x

+4vm−2,xtφxφt + 4vm−2,xφtφxt + 2vm−2,xφxφtt + 4vm−2,tφxφxt + 2vm−2φ
2
xt

+2vm−2φxφxtt + 2vm−2,tφtφxx + vm−2φtφxxt + vm−2φxxφtt + vm−2φxxtφt

+(m− 3)(2vm−1,xφxφ
2
t + 2vm−1,tφ

2
xφt + 4vm−1φxφtφxt + vm−1φ

2
xφtt + vm−1φxxφ

2
t

+(m− 2)vmφ
2
xφ

2
t )))) + δγ(vm−4,xxxx + (m− 5)(vm−3φxxxx + 4vm−3,xφxxx

+6vm−3,xxφxx + 4vm−3,xxxφx + (m− 4)(vm−2(4φxφxxx + 3φ2
xx) + 12vm−2,xφxφxx

+6vm−2,xxφ
2
x + (m− 3)(4vm−1,xφ

3
x + 6vm−1φ

2
xφxx + (m− 2)vmφ

4
x)))) = 0 (4.130)

where once againvn = 0 if n < 0 andvn,x ≡ ∂
∂x

(vn). Solving the first two equations (m = 0 and

m = 1) for v0 andv1 we again find

v0 = −12δ

µ
(γφ2

t − βφ2
x) (4.131)

v1 =
12δ (5γ2φ2

xφxx + 5β2φ2
tφtt − βγ(φ2

tφxx + φ2
xφtt)− 8βγφtφxφxt)

5µ(γφ2
x − βφ2

t )
(4.132)

Note that we do not solve forv2 at this time as we did previously when following the Painlevé
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analysis method. Rather, following the procedure for the generalized Hirota expansion method as

outlined earlier in the section and expanding thev2 in x with the assumed forms forΓ(t) andΩ(t)

we find thatv2 takes the relatively simple form

v2(x, t) =
µ

k23

(

δk23(k
2
3γ − βk22)− bk23 + k22

)

(4.133)

wherek1−3 are arbitrary constants. With this the remaining equationsat each order ofφ are iden-

tically satisfied and thus we find the final solution given by

v(x, t) = − 12δ(βk22 − γk23)exp{k1 + k2t+ k3x}
µ(1 + exp{k1 + k2t+ k3x})2

− 12δ(10βγk22k
2
3 − 5γ2k43 − 5β2k42)exp{k1 + k2t+ k3x}

µ(βk22 − γk23)(1 + exp{k1 + k2t+ k3x})

+
δγk43 − βk23 − δβk22k

2
3 + k22

µk23
(4.134)

We will now plot the solution derived for the parameter set(k1, k2, k3, γ, µ, δ, β, b) = (1,−1,−1, 1, 1, 1,−1, 1).

For this choice of parameter set the solution (4.134) simplifies to

v(x, t) =
2 (e−2t−2x+2 − 10e−t−x+1 + 1)

(1 + e−t−x+1)2
. (4.135)

The plot of this solution fort = −5, 0, 5 is given in figure 4.11.

143



Figure 4.11: Plot of the solution (4.134) to the microstructure PDE att = −5, 0, 5 on the interval
[−12, 12] with the choice of parameters(k1, k2, k3, γ, µ, δ, β, b) = (1,−1,−1, 1, 1, 1,−1, 1).

Generalized Pochhammer-Chree Equations

In this section we use the generalized Hirota expansion method to construct an exact solution to

the generalized Pochhammer-Chree equations given earlier in the chapter by equations (4.2) and

(4.3). Pluggingφ−α into equation (4.2) and balancing the(u3)xx anduxxtt terms we find that the

degree of the singularity,α, is equal to1. Following the procedure and using the proper substitution

(u(x, t) =
√

v(x, t)) for equation (4.3) as outlined in the previous sections we find thatα(i) = 1

(i = 1, 2). From this point on we will adopt the same notation used in theprevious section for

differentiating between results for equations (4.2) and (4.3). That is, we will use the superscript

(1) for terms corresponding to equation (4.2) and the superscript (2) for terms corresponding to
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equation (4.3). From the leading order analysis we seek solutions of the form

u(x, t) =
u0(x, t)

φ(1)(x, t)
+ u1(x, t) (4.136)

v(x, t) =
v0(x, t)

φ(2)(x, t)
+ v1(x, t) (4.137)

Plugging (4.136) and (4.137) into equation (4.2) we obtain the recurrence relation found earlier in

the chapter in the Painlevé analysis section for equation (4.2),
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−2(m− 2)(m− 3)(m− 4)φxφ
2
tum−1,x − (m− 3)(m− 4)(2φtφxxt + φttφxx + 2φxφxtt)um−2

−2(m− 3)(m− 4)(φtφxx + 2φxφxt)um−2,t − 4(m− 3)(m− 4)φtφxum−2,xt

−2(m− 3)(m− 4)(φxφtt + 2φtφxt)um−2,x + um−4,tt − (m− 1)(m− 2)(m− 3)(m− 4)φ2
tφ

2
xum

−um−4,xxtt − 2(m− 2)(m− 3)(m− 4)φtφ
2
xum−1,t − 2(m− 3)(m− 4)φ2

xtum−2

−(m− 3)(m− 4)φ2
tum−2,xx − (m− 2)(m− 3)(m− 4)φ2

tφxxum−1 + (m− 3)(m− 4)φ2
tum−2

−(m− 2)(m− 3)(m− 4)φ2
xφttum−1 − (m− 3)(m− 4)φ2

xum−2,tt − a1((m− 3)(m− 4)φ2
xum−2

+2(m− 4)φxum−3,x + (m− 4)φxxum−3 + um−4,xx)− 4(m− 2)(m− 3)(m− 4)φxφtφxtum−1

+2(m− 4)φtum−3,t − 2(m− 4)φtum−3,xxt − 2(m− 4)φxum−3,xtt − (m− 4)φxxum−3,tt

−2(m− 4)φxttum−3,x − (m− 4)φxxttum−3 − 2(m− 4)φxxtum−3,t − (m− 4)φttum−3,xx

−4(m− 4)φxtum−3,xt + (m− 4)φttum−3 − 2a2

m
∑

j=0

[(m− j − 2)(m− j − 3)φ2
xujum−j−1

+2(m− j − 3)φxujum−j−2,x + (m− j − 3)φxxujum−j−2 + ujum−j−3,xx]

−3a3

m
∑

j=0

m−j
∑

k=0

[(m− k − j − 1)(m− k − j − 2)φ2
xujukum−k−j + ujukum−k−j−2,xx

+(m− k − j − 2)φxxujukum−k−j−1 + 2(m− k − j − 2)φxujukum−k−j−1,x]

−6a3

m
∑

j=0

m−j
∑

k=0

[(m− k − j − 1)(k − 1)φ2
xujukum−k−j + (m− k − j − 2)φxujuk,xum−k−j−1

+ujuk,xum−k−j−2,x + (k − 1)φxujukum−j−k−1,x]− 2a2

m
∑

j=0

[(j − 1)(m− j − 2)φ2
xujum−j−1

+(j − 1)φxujum−j−2,x + (m− j − 3)φxuj,xum−j−2 + uj,xum−j−3,x] = 0,

whereum = 0 if m < 0 andum,x ≡ ∂
∂x

(um). As was the case in the Painlevé section we must

transform (4.3) according tou(x, t) =
√

v(x, t). The resulting equation will then follow from

equation (4.40) withn = 2. As one can see from the recurrence relation for equation (4.2) the
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recurrence relation for (4.40) would be unecessarily messyand therefore will be omitted. Iterating

throughm values in the recurrence relation for equation (4.2) we obtain the coefficients of the

different powers ofφ. Solving the equations for the coefficient of the lowest order of φ in each

case foru0 andv0 we find

u0(x, t) = −
√
2φt√−a3

and v0(x, t) = −
√
3φt

2
√−a5

. (4.138)

Here again we do not solve foru2 or v2 at this time as we did previously when following the

Painlev́e analysis method. Rather, following the procedure for the generalized Hirota expansion

method as outlined earlier in the section and expanding theu2 andv2 in x with the assumed forms

for theΓ(i)(t) andΩ(i)(t) we find thatu2 andv2 take the relatively simple forms

u1(x, t) = −
√
2(−2k

(1)
2 a3 + a2

√
−2a3)

6(−a3)3/2
and v1(x, t) =

√
6(9a23 + 2a2

√
6a3a5)

36a3
√
a3a5

(4.139)

wherek(1)2 is an arbitrary constant. Unlike the results for the KP equation and microstructure PDE

we cannot assume here that thek(i)j (j = 1, 2, 3) in theφ(i) are arbitrary. Rather we find that only

k
(1)
1 , k(1)2 , andk(2)1 will be allowed to be arbitrary. Solving for the remainingk(i)j in terms of the

coefficients in their respective PDEs ((4.2) or (4.3)) and the previousk(i)m theφ(i) are readily found

to be

φ(1)(x, t) = 1 + exp

{

k1 + k2t−
k2
√
6
√

a3(−3k22a3 + 6a1a3 − 2a22)

−3k22a3 + 6a1a3 − 2a22
x

}

(4.140)
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and

φ(2)(x, t) = 1 + exp

{

k1 −
3a3

2
√
−3a5

t− 6
√
2a3
√

a5(32a1a5 − 6a23)√
−3a5(32a1a5 − 6a23)

x

}

. (4.141)

With this the remaining equations at each order ofφ(i) are identically satisfied and thus we find the

final solutions are given by

u(1)(x, t) = − 2k2exp{y(1)(x, t)}√
−2a3(1 + exp{y(1)(x, t)}) −

√
2(−2k2a3 + a2

√
−2a3)

6(−a3)3/2
(4.142)

and, noting again thatu(x, t) =
√

v(x, t),

u(2)(x, t) =

(

3k2exp{y(2)(x, t)}
2
√
−3a5(1 + exp{y(2)(x, t)}) +

√
6(9a23 + 2a1

√
6a3a5)

36a3
√
a3a5

)1/2

, (4.143)

where

y(1)(x, t) = k1 + k2t−
k2
√
6
√

a3(−3k22a3 + 6a1a3 − 2a22)

−3k22a3 + 6a1a3 − 2a22
x (4.144)

and

y(2)(x, t) = k1 −
3a3

2
√
−3a5

t− 6
√
2a3
√

a5(32a1a5 − 6a23)√
−3a5(32a1a5 − 6a23)

x. (4.145)

Again, we see that these solutions may be complex-valued butcan be taken to be real with suitable

choices of the arbitrary constants involved. For example, for u(1) we may takea3 < 0 anda1 <
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a2
2

3a3
+

k2
2

2
. Foru(2) we may takea5 < 0, a3 < 0, and− 3

√
6a2

3

4
√
a3a5

< a1 <
3a2

3

16a5
.

We will now plot the solutions derived above for parameter sets which lead to real-valued solutions.

For the parameter set(k1, k2, a1, a2, a3) = (0, 1, 1, 1,−1) the solution (4.142) becomes

u(1)(x, t) =

√
2

6

3 +
√
2 + (2

√
2− 6)et+

√
6/5x

2et+
√

6/5x + 1
. (4.146)

The plot of this solution fort = −5, 0, 5 is given in figure 4.12.

Figure 4.12: Plot of the solution (4.142) fort = −5, 0, 5 on the interval[−12, 12] with the choice
of parameters(k1, k2, a1, a2, a3) = (0, 1, 1, 1,−1).
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As with the previous section, for some choices of parameter set (k1, a1, a3, a5) the term inside the

square root in the solution (4.143) may oscillate between positive and negative values and thus will

only be real-valued in certain regions of thext−plane. For this reason we will only consider cases

where the solution is real-valued for all(x, t) ∈ R
2. In particular, we consider the parameter set

(k1, a1, a3, a5) = (0, 1, 1,−1) for which the solution (4.143) becomes

u(2)(x, t) =

√
3

2

(

1 + e
−

√

3

2
t+ 2

√

3
√

19
x
)−1/2

(4.147)

The plot of this solution fort = −5, 0, 5 is given in figure 4.13.

Figure 4.13: Plot of the solution (4.143) fort = −5, 0, 5 on the interval[−12, 20] with the choice
of parameters(k1, a1, a3, a5) = (0, 1, 1,−1).
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CHAPTER 5: CONCLUSION

In the first part of this dissertation we presented two methods for deriving the Lax pair for variable-

coefficient nlpdes, namely Khawaja’s Lax pair method and theextended Estabrook-Wahlquist

method. In doing so we determined the necessary conditions on the variable coefficients for

the variable-coefficient nonlinear PDEs to be Lax-integrable. The latter technique is introduced

here in the context of space and time dependent coefficients for the first time. As the extended

Estabrook-Wahlquist method requires many fewer assumptions and is algorithmic it proves to be a

vast improvement over Khawaja’s Lax pair method.

As stated in the introduction, an accepted definition for integrability of a nonlinear PDE does not

currently exist in the literature. However, many nonlinearPDEs which have been classified as in-

tegrable share a remarkable number of properties. Perhaps the most important of these properties

is the existence of a nontrivial Lax pair. We have derived variable-coefficient extensions to several

well-known integrable nonlinear PDEs from the requirementthat they possess nontrivial Lax rep-

resentations as well as proving the nonexistence of a nontrivial Lax pair to an extension to a known

nonintegrable nonlinear PDE.

In the second part of this dissertation we gave a brief introduction to three distinct types of sin-

gular manifold methods: truncated Painlevé analysis, truncated invariant Painlevé analysis, and a

generalized Hirota expansion method. These methods were then demonstrated on the well-known

integrable KdV and KP-II equations. Plots of the derived solutions were given for various choices

of the arbitrary constants and system parameters involved.Following these examples we employed

each method of solution to derive nontrivial solutions to a microstructure PDE and two general-

ized Pochhammer-Chree equations. We found that the truncated Painlev́e analysis method failed

to produce a solution for the second of the two Pochhammer-Chree equations (equation (4.3))
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but was successful in all other cases considered. On the other hand, the invariant Painlevé analysis

and generalized Hirota expansion methods successfully produced solutions in all cases considered.

Plots of the derived solutions were given for various choices of the arbitrary constants and system

parameters involved.

Future work will be centered around the results presented inpart 1 of this dissertation. Due to the

algorithmic nature of the extended Estabrook-Wahlquist method the natural question of whether the

whole procedure can be programmed arises. Although the results in part 1 were derived partially

by hand, the entire process (or at least up to derivation of the determining equations for theXi) can

be programmed in a computer algebra system such as MAPLE or MATHEMATICA.

As a first possible direction for future research we would like to look into developing a program

(for MAPLE or MATHEMATICA) which, given a variable-coefficient nlpde, would carry out the

extended Estabrook-Wahlquist procedure.

Many PDEs which are integrable by this definition have been shown to possess a variety of other

interesting properties, e.g. the existence of infinitely many conserved quantities, a biHamiltonian

representation, solvability by the Inverse Scattering Transform, etc..

It would be of interest to study these new extended systems todetermine if they share the same

properties common to integrable systems as their constant coefficient predecessors.

As these generalized systems contain as limiting subcases the constant coefficient equations from

which they stem their study may lead to interesting results such as generalized biHamiltonian

structures which in turn could determine hierarchies of variable-coefficient nonlinear PDEs.

In [?]- [?] we considered variable-coefficient extensions to the KdV,mKdV, NLS, DNLS, and PT-

symmetric NLS equations. We have derived extensions to onlya few of the many known PDEs in

the field of integrable equations.
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As a third direction we may utilize the extended Estabrook-Wahlquist method to derive integrable

extensions to many other known systems thus broadening the field.
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