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ABSTRACT

This dissertation is composed of two parts. In Part | a tepmibased on extended Lax Pairs is
first considered to derive variable-coefficient generélire of various Lax-integrable NLPDE hi-
erarchies recently introduced in the literature. It is destmted that the technique yields Lax- or
S-integrable nonlinear partial differential equationp@es) with both timeand space-dependent
coefficients which are thus more general than almost allscasesidered earlier via other methods
such as the PainlévTest, Bell Polynomials, and various similarity methodswigeer, this tech-
nique, although operationally effective, has the significdisadvantage that, for any integrable
system with spatiotemporally varying coefficients, one mgisess’ a generalization of the struc-
ture of the known Lax Pair for the corresponding system wiahstant coefficients. Motivated
by the somewhat arbitrary nature of the above procedure resept a generalization to the well-
known Estabrook-Wahlquist prolongation technique whicbvles a systematic procedure for
the derivation of the Lax representation. In order to obtainontrivial Lax representation we
must impose differential constraints on the variable coieffits present in the nlpde. The resulting
constraints determine a class of equations which reprggsamralizations to a previously known
integrable constant coefficient nlpde. We demonstate tleetafeness of this technique by de-
riving variable-coefficient generalizations to the noalin Schrodinger (NLS) equation, derivative
NLS equation, PT-symmetric NLS, fifth-order KdV, and threaations in the MKdV hierarchy. In
Part Il of this dissertation, we introduce three types ofislar manifold methods which have been
successfully used in the literature to derive exact sahstio many nonlinear PDEs extending over
a wide range of applications. The singular manifold methomssidered are: truncated Pairdev
analysis, Invariant Painlévanalysis, and a generalized Hirota expansion method. &edbn-
sider the KdV and KP-II equations as instructive exampldsreeusing each method to derive

nontrivial solutions to a microstructure PDE and two gelised Pochhammer-Chree equations.
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PART I: VARIABLE COEFFICIENT LAX-INTEGRABLE SYSTEMS



CHAPTER 1: INTRODUCTION

For a nonlinear partial differential equation (nlpde) thegpe space is infinite dimensional and
thus extension of integrability of a Hamiltonian system le tiouville-Arnold sense becomes
troublesome. As such, a universally accepted definitiontefjrability within the context of nlpdes
does not existin the literature [1]- [5]. For the purposethed dissertation, we will consider a nlpde
to be completely integrable if it can be expressed as the atility condition of a nontrivial Lax
pair. Here we take a trivial Lax pair to be one for which deparad on the spectral parameter
can be removed through a Gauge transformation. Indeed]pice s shown to possess a Lax pair
then from it one may derive a variety of remarkable propsriigcluding the existence of infinitely

many conserved quantities. More specifically, considepdaln1 + 1

oMy
F (u, &Bm@t") =0 (1.2)

whereF' : o/ — 2 is a continuous function from a function spagéto another function space
2. We say that (1.1) possesses a Lax representation if théserneatricesU,V € .#"*"(C),
where.#"*"(C) is the set ofr x n matrices with entries i, such that compatibility of the set

of equations

o, =Ud, &, =Vd (1.2)

is achieved upon satisfaction of (1.1). We say that a Lax fJdiV} is nontrivial if it depends
(nontrivially) on a spectral parameter. The matritkgandV are known as the space and time

evolution matrices for the scattering problem (1.2), resipely. Compatability of (1.2) requires



the cross-derivative conditioh,, = ®,, be satisfied. That is,

0=2,d,=Ud+Ud, —V, -V,
=U,®+UVD — V& — VUD

= (U, — V, + UV — VU) &, (1.3)

where0 is equivalent to the zero matrix upon satisfaction of (1.Ihtroducing the commutator

operation/A, B| = AB — BA the previous equation implie$ andV satisfy

U, —V,+ UV —VU=0. (1.4)

This equation is known as tlzero-curvature conditioand will form the basis of our investigation

in Part .

Variable-coefficient nonlinear partial differential eqjoas have a long history dating from their
derivations in a variety of physical contexts [6]- [18]. Hewer, almost all studies, including
those which derived exact solutions by a variety of techesqas well as those which considered
integrable sub-cases and various integrability propeiftgg methods such as Paingeanalysis,
Hirota’s method, and Bell Polynomials, treat variable-ficafnt nlpdes with coefficients which
are functions of the time only. Due to their computationainptexity and lack of an efficient
method for deriving the conditions for Lax integrabilitiiet question of integrability for equations

with time and space dependent coefficients has largely lgeemed.

In chapter 2 we introduce a method recently presented intdrature [19, 20] for deriving a Lax



pair for space and time dependent coefficient nlpdes. We itlstrate the method by deriving
the Lax pair and integrability conditions for the nonlin&ahrodinger (NLS) equation, derivative
NLS equation, PT-symmetric NLS, fifth-order KdV, and thregiations in the MKdV hierarchy.
This technique, although operationally effective, hassijaificant disadvantage that, for any inte-
grable system with spatiotemporally varying coefficientse must 'guess’ a generalization of the
structure of the known Lax Pair for the corresponding systeth constant coefficients. This in-
volves replacing constants in the Lax Pair for the constaefficient integrable system, including
powers of the spectral parameter, by functions. Providatidhe has guessed correctly and gener-
alized the constant coefficient system’s Lax Pair suffityemind this is of course hard to be sure
of 'a priori’, one may then proceed to systematically dedteeLax Pair for the corresponding

variable-coefficient integrable system [21].

Motivated by the somewhat arbitrary nature of the abovegmare, we embark in this dissertation
on an attempt to systematize the derivation of Lax-intelgrajgtems with variable coefficients. Of
the many techniques which have been employed for constaffiaient integrable systems, the
Estabrook-Wahlquist (EW) prolongation technique [26]-][B9among the most self-contained.
The method directly proceeds to attempt construction olLtnePair or linear spectral problem,
whose compatibility condition is the integrable systememdiscussion. While not at all guar-
anteed to work, any successful implementation of the teglenmeans that Lax-integrability has
already been verified during the procedure, and in additiet.eix Pair is algorithmically obtained.

We note that failure of the technique does not necessariyimon-integrability of the equation

contained in the compatibility condition of the assumed Par for other definitions of integra-

bility. It does however mean that the nlpde is not considésedintegrable. Due to the imprecise

nature of the definition of integrability, a nlpde may be ddased integrable in one sense but not



another. Indeed, consider the viscous Burgers’ equation

Uy + Uy = Vigy, (1.5)

wherer > 0 is the (constant) viscosity. By making use of the Cole-Hopidfarmationu(z,t) =
—21/‘% Burgers’ equation becomes, after a little manipulation ftbat equation; = v¢,,. Since
any linear partial differential equation is integrable vag shat Burgers’ equation is integrable in

the sense that it can be linearized. Now consider the (fogy$®LS equation

i = — 50 — HIYI (1.6)

wherek > 0 is a dimensionless constant. There is no transformationtwiakes this equation to
a linear equation, as was the case for Burgers’ equation. tHaywhis equation has been shown to
be integrable in many other ways. For example, there exists#ivial Lax pair for the NLS and
thus it is Lax-integrable. While transformations like the €&lopf transformation are examples

of explicitlinearizations a Lax pair can be thought of asraplicit linearization of a nilpde.

In applications, the coefficients of a nlpde may includeigpdependence, in addition to the tem-
poral variations that have been extensively consideretjusiariety of techniques. Both for this
reason, as well as for their general mathematical integgttnding integrable hierarchies of nlpdes
to includeboth spatial and temporal dependence of the coefficients is wbith. Hence, we at-
tempt to apply the Estabrook-Wahlquist (EW) technique toegate a variety of such integrable
systems with such spatiotemporally varying coefficientswelver, this immediately requires that
the technique be significantly generalized or broadeneehiaral different ways which we outline

in chapter 3. We then illustrate the effectiveness of thig ard extended method by deriving the



Lax pair and integrability condition for the nonlinear Sotinger (NLS) equation, derivative NLS
equation, PT-symmetric NLS, fifth-order KdV, and the firstiation in the MKdV hierarchy. As an
instructive example of when the extended Estabrook-Wastigquethod correctly breaks down we

then consider a generalization to the nonintegrable cgbictic nonlinear Sclirdinger equation.



CHAPTER 2: KHAWAJA'SLAX PAIR METHOD

In this chapter we review Khawaja’s Lax pair method for degvthe differential constraints nec-
essary for compatibility of the Lax pair associated with aiatae-coefficient nlpde. We then
illustrate this method by deriving variable-coefficienthgealizations to the nonlinear Schrodinger
(NLS) equation, derivative NLS equation, PT-symmetric Nfiffh-order KdV, and three equations
in the MKdV hierarchy.

Outline of Khawaja’s Method

In Khawaja’s Lax pair method [19, 20], one seeks to repreaemariable-coefficient generalization
to a constant-coefficient nonlinear pde as the compatilstindition of a Lax pair. The method
is based on the assumption that the Lax pair for the constafticient nlpde is known. A Lax

pair for an nlpde can be derived in various ways. Common metiradude the Ablowitz-Kaup-

Newell-Segur (AKNS) scheme, the Wadati-Konno-Ichikawa (N\V&heme, and the Estabrook-
Wahlquist method. Once a Lax pair is obtained, it may be deos®d into an expansion about
powers of the unknown function and its derivatives wherectefficients are constant coefficient

matrices. For example, we may write a Lax pgif, V} for the KdV equation

U + ULy + OUyyy = 0 (2.1)



as

—ik 1 0 0
U= + u, (2.2a)
0 ik ~Lg
— 4k 4R? Lig -1 ooy, [& o0 0 0
V= + u+ u” + Uy + Ugys
. 2 . 1 1. 1 1
0 42]{?3 —§k2 —glkf 18 0 52]{5 ~% 6 0

(2.2b)

where heré: is the spectral parameter associated with the linear eideeproblem (i.e. the Lax
pair). In this method one replaces the elements in the colstefficient matrices present in the
Lax pair expansion with undetermined functions of spacetane. Compatibility of this new Lax
pair is then enforced, allowing for the determination offilmections in the Lax Pair and derivation
of the variable-coefficient constraints. Unfortunatetysioften the case that merely altering the
existing form of the constant-coefficient Lax pair is notfgugnt. Intuition and a little trial-and-
error may be required to determine additional terms whick need to be added to the expansion
in order to ensure nontrivial compatibility. In fact, in oaghis papers [20] Khawaja alludes to the
difficulty in this step of the procedure and further remahat it took several attempts to find the

correct form for the Lax pair he derived.

PT-Symmetric and Standard Nonlinear Satinger Equations

We begin with the derivation of the Lax pair and differentainstraints for the standard NLS

equation. To keep things somewhat general we will consluesystem



iQt($7 t) = —f(l’, t)qu(fb, t) - g(l’, t)qg(m7 t)T(ZL‘, t) - U(l’, t)‘](xa t) - Z'/7<m7 t)Q(xv t>(23)

ire(z,t) = f(z,)re(z, ) + gla, t)r?(z, t)q(z, t) + v(x, )r(z,t) — iy(z, )r(x,t). (2.4)

For the choice (z,t) = ¢*(z,t), where* denotes the complex conjugate, this system is equivalent
to a variable-coefficient NLS equation. However, with theicksv(z,t) = ~(z,t) = 0 and
r(x,t) = ¢*(—=z,t) this system is equivalent to the PT-symmetric NLS. Theesfare may obtain

the results for both the standard cubic NLS and the PT-synieriét. S simultaneously by studying
system (2.3). Following Khawaja’s method we expandrendV matrices in powers af, r, and

their partial derivatives. We therefore seek a Lax pair efftrm

U— Ji+ f2q f3+ fag (2.53)

_f5 + fer fr+ far

g1 + 924 + 93qz + gaqr 95 + 964 + 974z + gsqr
and V — 1192 3 4 51 9o 7 8 (2.5b)

9o + G107 + 9117z + G129 G13 + G147 + G157 + G16qT

where f;_g andg;_1¢ are unknown functions aof andt¢. Compatibility ofU andV requires

Uy =V, +[U,V] = 0= ! pie b hle (2.6)

pa(x, 1) F3[g, 7] 0

where F;[q, r] represents thé" equation in (2.3), ang, » are arbitrary real-valued functions. It
should be clear that this off-diagonal compatibility cdrah requires that the coefficients of the

and ther on the off-diagonal ot be zero. Indeed upon pluggitgjandV into the compatibility

9



condition we immediately find that compatibility requires

fo=fi=fi=fs=92=93=05=098 = go = gi12 = G1a = G15 = 0, fa = ip1, fo = —ip2,

97 = —fp1,911 = —fP2, 94 = —G16 = —ifp1D2.

The remaining constraints are given by

fie — g1z =0 (2.7)
frt = g13. =0 (2.8)
2fpipa+9=0 (2.9)
fapr = for(fr = f2) + fP1a — 96 = 0 (2.10)
fap2 + fp2(fi = f1) + fP2e — 910 =0 (2.11)
96(f1 = f) = ip1(g1 — 913 — 10 + ) — gou + 11 = 0 (2.12)
g(f1 = fr) +ip2(g1 — g13 — 10 — 7) + g0z + ip2r = 0 (2.13)
(fP1p2)s + gr0p1 + gop2 = 0. (2.14)

We will now review the reduction of the system (2.7)-(2.1d ttie differential constraints which

may be found in [20]. Solving eq. (2.9) fgip,p, and substituting the result into (2.14) we obtain

1
50 + g1op1 + gep2 = 0. (2.15)

10



Upon multiplying equation (2.10) by, and equation (2.11) by, and adding, we obtain

(fP1p2)e + P1p2fe — gep2 — grop1 = 0. (2.16)

Now utilizing equations (2.9), (2.15), and (2.16) we find

Lot o - oAt) (2.17)

wherec(t) is arbitrary. Now multiplying equation (2.10) by and equation (2.11) by, and

subtracting, we get

1 z
f1—f7=—£+—[log&} | fPip (2.18)
o 2 91, g

Multiplying equation (2.12) by, and equation (2.13) by, and adding, we get

(g6p2 + g1001) (f1 — f7) — 2ip1pay — GeaP2 + Gr0zP1 + iP1D2 + iparp1 = 0. (2.19)

Substituting forfy, g10, p2, andf using equations (2.18), (2.15), (2.9), and (2.17), resypadgf we

obtain

o ]

2 2 - 3 g3 3g°
<@> _9_x+9_+i<ﬂ+£_ ggt):o, (2.20)
P/, ¢

11



Solving for gg we find

| b
wnn khﬂku_%g/ 39— A9 4o ] (2.21)
qg 292 2 &

wherek,,. andky; are arbitrary real functions @fobtained through integration. On the other hand,

multiplying equation (2.12) by, and equation (2.13) by, and subtracting, we get

(g6p2 — g10p1)(f1 — f7) — 2ip1p2(g1 — g13 — V) — GeaD2 — Gr0aP1 + IP1eP2 — ipupr = 0. (2.22)

Once again, substituting faf, g10, p2, and f using egs. (2.18), (2.15), (2.9), and (2.17), respec-

tively, we now obtain

02 COuz . 2.2
;G _ Cxe  969: 959

. 3 ¢
g g3 ap - (91 — g1z —iv) — ST ) (2.23)
1 1

29 ;1 2

Solving forg; — g3 we get

. g%g2 ¢ 2 -3 +2ig69:  1c(qQes — 27
g1 — iy — v+ 090 4 © 20pu = 31+ 2igogs _ (99 - 9z) (2.24)
cpi  2c 29p1 29

Now subtracting equation (2.8) from equation (2.7) and submg for f; — f; andg; — g13 using

(2.18) and (2.24), respectively, we obtain

12



2kq; . _ .
v, = =% = Lok + ) + £ / (39t — ey + c)) dx
C C c c
g 9 . 3 9 .. 2)) 4 c (1
+ 508 (C(gt( ey 4 ¢) — 3cgy) + g(c( c%+c)—c)) x_@ 5 ]
(9 : 2
o (E(%” ) = Zk”gt) | (2.25)

Sincew is assumed to be real the imaginary part of (2.25) must vailisat is, we require

9(2]{:17’7 + l%lr) - lergt =0 (226)

from which we obtain

gi(xz,t) 1 l%:lr(t)

g(z,t) 2k, (t) (2.27)

’7(‘T’t) =

Now substitutinge(t) = f(z,t)g(x,t)? into (2.25), combining integrals, and differentiating hwit

respect tac we obtain the final condition

3 (filgr — 297) — fug) + f26* + 2F20%(gUea — govz) — 2F%* (v + 29%) — 216G}

+ 25 (4giy + gu) + £1(3692 — 48992 9re + 109792 Guze + 92 (692, — GGzrax)) = 0. (2.28)

As the PT-symmetric NLS is a special case of the system (2tB)fv= —a1, g = —as, v =~v =0,

andr(x,t) = ¢*(—x,t) we can exploit the Lax pair constraints derived above fanddiad NLS to

13



obtain the constraints for the PT-symmetric NLS. We theeefond, utilizing the samé& andU
that were given earlier in the section, that compatibilitger the requirement thatandq satisfy

the PT-symmetric NLS requires

fo=fa=fi=fs=0=903=05=093=09= 12 = g1a = g15 = 0, f1 = ip1, fo = —ipa,

g7 = aip1, 911 = a1P2, g4 = —gie = La1P1P2-

and the remaining constaints are given by

Jit = g1z = 0, (2.29)
Jrt — G132 = 0, (2.30)
2a1p1p2 + az = 0, (2.31)
—aip1 + aipi(fi — f7) — a1prz — g6 = 0, (2.32)
—a1:ps — ar1p2(fi — f7) — a1p2: — g10 = 0, (2.33)
96(f1 — f7) — ip1(g1 — 913) — Gex + ip1e = 0, (2.34)
g10(f1 — f7) +ip2(g1 — 913) + Grox + ip2 = 0, (2.35)
—(a1p1p2)z + gr0p1 + gep2 = 0. (2.36)

From equations (2.17) and (2.27) we get

a2(‘7;7t> = f(t)g(x)v (2.37)

14



and

c(t) c(t)
t) = = : 2.38
N e T e (239
Plugging these results into (2.28) we obtain
C4 (36(g/)4 o 48g(g')2g" + 1Og2g/g/// + 6g2(g//>2 o 939////)
+ g8 (c Fef — 62 F2f2 — ef'é+ 333 + f%?) —0. (2.39)
Equation (2.39) may be further reduced to the system
36(91)4 _ 489(9/)29// + 10929/9”/ + 692<g//)2 _ 93 mr__ 0, (240)
cfef — 62 f2f% —cf'é+ 32 + fit =0. (2.41)

This final set of equations represents the conditions on d@niable coefficients in (2.3) required

for Lax-integrability.

Derivative Nonlinear Schrodinger Equation

In this section we derive the Lax pair and differential coaisits for the derivative nonlinear

Schibdinger equation. We consider the equivalent system

15



iq(z,t) + a1 (2, 1) Qe (2, 1) + dag(x, 1) (¢*(z, t)r (2, 1)), = 0, (2.42)

—iry(z,t) + a1(z, t)ree (2, 1) — dag(x, t)(r*(z, t)q(z, 1)), = 0, (2.43)

wherer(x,t) = ¢*(z,t) and again‘ denotes the complex conjugate. The Lax phiandV are

expanded in powers gfandr and their partial derivatives as follows

U — Ji+ foq f3+ faq ’ (2.44)

_f5 + fer fr+ fsr

91 + 929 + 93qx + gaqr 95 + 96q + 9747 + 98qs + Goq>T
v - 1+ 92 3 4 5+ o 7 8 9 . (2.45)

G0 + guT + g12qr + Gi3rx + G1ar’q 915 + 9167 + G177z + G18qT

where f;_g andg; _,o are unknown functions aof and¢. Note that the compatibility condition

U~ V, +[UV]=0= 0 mil@0)Flar) (2.46)

0 0

we enforce, wherd’|[q, r| represents (2.42) and (z,t) is unknown, is chosen out of necessity.

Upon considering a more standard compatibility conditistihet considered by Khawaja,

Uy =V, + U, V] =0 = ! pile 0l (2.47)

pa(x, 1) F3[g, 7] 0

16



we find that the only solution requires or p, be zero. We chose to Igt = 0 but it is important
to note that the conditions would not change if we hadpsetqual to zero instead. Given this

modification to the zero-curvature condition compatipibf U andV immediately requires

f2=f5=f6=f8292293:g4=g7:g112912291429162917291820,

gs = —piai, fa = ip1, g9 = ip1as.

After substituting these into the compatibility conditothe remaining contraints are then given

by

fit — g1 = 0, (2.48)
fre — 9152 = 0, (2.49)
(praz)e +praz(fr — f1) =0, (2.50)
(p1a1)e +praa(fr — f1) — g6 = 0, (2.51)
—gs2 — 95(fr — f1) =0, (2.52)
ipr — Yoo + 101(915 — 91) — ge(f7 — f1) = 0. (2.53)

Deriving a relation betweet, andas,

As it turns out, equations (2.48) and (2.50)-(2.53) may beesbexactly forf,, f-, gs, g5 andg;s,

respectively. Upon solving equations (2.48) and (2.5032for f1, f+, gs, g5 andg,5 we obtain
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o= e, (2.55)
P1a2

g5 = H(t)ef (f1ff7)dw, (2.56)

g6 = (plal)xGQ - (101@2)31;@17 (2.57)

a2

) )

gi15 = _p_ (96z — Pt — gﬁ(fl - f7)) +91- (2.58)
1

Plugging these results into the remaining equation, (2wW8)obtain the constraint

2 2 2 2 2 2 2
2D1a5012D100 — 2D1,0501, — 2P10201P12022 + P11 200 + 2P1205P1 010z — D]020150224

2 2 2
+2p1 020102, + 2D10105,D15 — 2P120201D1 024 + PIA10220225 — 2P101 22 D12202

_p%a2ala2mmz + ip%(aﬂlmt — Qi) = 0. (2.59)

In order to have meaningful results we must require thatttege real-valued functions. Thus we

can decouple the last constraint into the following equetio

2 2 2 2 92 2 2
2p105012P120 — 2P1,05010 — 2D102012P1202; + PA5A1 20z + 2P1205D1 A 12z — D] 020150224
2 2 2
+2p1, 020102, + 2P101G5,D1z — 2D120201 D102z, + PIO1G25 0005 — 2P101 025 D12202
2
—P1A2010252 = 07 (260)

A2, — Q¢ = 0. (2.61)
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Takingp; = a, we obtain the final constraints

A2tQ2y — Q2qta2 = 0, (2.62)
5 3a3 4a3 5 4a;
Ao@gze — OAoQ2pr A1y — 9,01 + 0a1a202, 02,7 + Ao, A2

_a§a1a2mx:p - 2a21a§a1:px = 0. (263)

With the aid of MAPLE we find that the previous system is exastlvable fora; anda; with

solution given by

z dx

iz, t) = FyO)F(x)(c + eox) — oy Fa(t) Fa(x) / o+ arF( e / —(2 64)
() = Fy(a)Fy(l). (2.65)

This final set of expressions represents the forms for thehlar coefficients in the variable-

coefficient DNLS required for Lax-integrability.
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Fifth-Order Korteweg-de-Vries Equation

In this section we derive the Lax pair and differential cosisits for a generalized variable-

coefficient fifth-order KdV equation (vcKdV) given by

2
Uy + A1 UUL gy + WUz Ugy + Azl Ug + AgUUy + A5Ugyq + QeUgrrrs + aru + agly = 0. (266)

Following Khawaja’s method the Lax pair for the generalizetkdV equation is expanded in

powers ofu and its derivatives as follows:

U - Ji+ fou f3+ fau 7 (2.67)

_f5 + fou fr+ fsu

ViV,
Vo= , (2.68)

Vs V4

whereV; = gi + grr1t + grr2t® + Gos3U° + Grralin + Grrs5U2 + Grr6Usn + Got7Ung + Jit8Ugas +
Ok 9UUzze + Jpr10Uzzas, K = 11(i — 1) + 1 and f1_g(z,t) andg; _44(z, t) are unknown functions.

The compatibility condition

U —V, + U, V] =0= ! pie F (] (2.69)
po(z,t)Fu] 0
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whereF'[u] represents equation (2.66) amd »(z, t) are unknown functions requires immediately
that some of the unknown functions be zero, indicative ofghtly incorrect initial guess. That is,
we find thatgs; = g30 = fo = g4 = g10 = g11 = fs = 937 = gqu3 = gaa = 0. Itiis instructive to
include this incorrect guess rather than remove them bledmiet and include only the final, correct
form. This indeed motivates the need for a new method, whiehintroduce in the next chap-
ter, which would remove as much human error as possible shilleemaining computationally
tractable. We find that compatibility under the zero curiatondition requires that the remaining

unknown functions satisfy a large coupled system of algelanad partial differential equations

1 1
fa=p1,015 = _§p1a3ag21 = —pias, fo6 = P2, 926 = _§p2a67933 = —DPa2ae,
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294 — g3 =0, 939 — g6 = 0,

P2917 — P1g2s = 0, P2919 — P1gso = 0,

G19 + 2917 = —p1as, g30 + 2gas = —paas,

ga1 + 239 = 0, gs + 296 = 0,

g39: + f3g928 — fsg17 =0, oz + [5917 — f3gas = 0,

2925 + p2(gss — g5) = —Pada, 919+ p1(go — ga2) = —pray,

gs + D2g20 — P1g31 = 0, 941 + P1gs1 — p2gao = 0,

930 + P2(ga2 — go) = —paa, 9o + as(p2fs — p1fs) =0,

gaz + ag(prfs — pafs) =0, 2914 + p1(gs — g3s) = —p1aa,

293 + p2916 — p1gar = 0, 2936 + 1927 — P2916 = 0,

92 + sz + 5916 — f3g2r = 0, 935 + 93sz + f3921 — f5916 = 0,

97 + Gou + f5920 — f3g31 = 0, D1 (925 + %fsaza) — P2 (914 + %f:sas) =0,
Jit = 910 + f3923 — [5012 = 0, Jre = 9340 + fs912 — f3923 = 0,

g5 + g7z + fs918 — f3920 = 0, 938 + Gaow + f3920 — f5918 = 0,

940 + Ga2o + f3931 — f5920 = 0, (p2a6): — gs1 + paas(fi — f7) =0,

9350 + P1923 + f3920 — p2gi2 — f5913 = 0, G360 + P1924 + f3925 — P21z — f5914 = 0,
G2z + P2912 + [5913 — P1923 — f3924 = 0, G3x + D213 + f5914 — P1G2s — f3925 = 0,
g8z + P2g18 + f5919 — P1929 — f3930 = 0, Ga1z + P1929 + f3930 — P2g1s — f5919 = 0,

Gosz + 92s(f1 — f7) + f5(930 — 96) = O, G172 + 917(fr — f1) + f3(g96 — g39) = O,
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1 1
2920 — (p166)x + pras(fi — f7) =0, =(p2as)s + sp2as(fr — f7) + p2(g93 — g36) = 0,

3 3
fst — Gaze + g23(fr — f1) + f5(91 — g34) =0, Goa + gore + gor(f1 — fr) + f5(g3s — g5) = —paas,
fat = 9120 + g12(fi — f1) + f3(g3a — 91) =0, ga9 + g1z + 931 (f1 — f7) + f5(9a2 — g9) = —paas,
1 1

g(Pla:&)z + §p1a3(f7 — f1) +p1(g36 —93) =0, 918 + gooz + 920(f7 — f1) + f3(99 — ga2) = —p1as,

Go7 + G205 + 920(f1 — f7) + f5(ga0 — 97) =0, 916 + G132 + 918(f7 — f1) + f3(97 — ga0) =0,

913+ Gi6z + g16(f7 — f1) + f3(95 — g3s) = —pras,
Groz + g19(f7 — f1) + p1(97 — ga0) + f3(9s — gu) = 0,

930z + 930(f1 — f7) + p2(920 — 97) + f5(941 — gs) =0,

914z + qua(fr — f1) + p1(g2 — 935) + f3(93 — g36) = 0,
G5z + Gos(f1 — fz) + p2(g35 — 92) + f5(936 — g3) = 0,
Pre — G1se + 913(f1 — f7) + p1(g3a — 91) + f3(g35 — 92) = prar,

Pat — Goax + goa(f7r — f1) + pa(g1 — g34) + f5(92 — g35) = paaz.

Deriving a relation between the

In this section we reduce the previous system down to equatidhich depend solely on theg's.
We find thatg, = 0 for k = 2,3,5 -9, 35, 36,38 — 42 and
Jr=J1, /5 = 3,923 = G12,934 = 91,930 = —G19 = P11, J25 = G14 = —%p1a4,931 = —g20 =
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_(pIGG)myglfi = —¢g27 = —918z, P2 = P1,

g18 = —g29 = —P1045 — (p1a6):m:7
1
g2 = —0g17 = —§<H2(t) - Hl(t))a

g24 = —(g13 = _(plaS)xac - (plaﬁ)xxacz — pias,
_ Hi(Y)
| =—2

ay

ag—4 = Ho_4(t)ay,

Y

which leads to the PDE

H H H H H
(_1) X ( 1a5> I ( 1a6> 4 ( 1CL8) _ 1a7. (2.72)
a1 t a1 TTT ay TXTTT a1 T ay

One clear solution to the equation above (for # 0) is

H H H H
o= () 4 (%) (T + (=) ), (2.73)
Hl a1 t a1 TTT ay TTLTL a1 T

wherea, as, ag, ag and H,_4 are arbitrary functions in their respective variables.
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Modified Korteweg-de-Vries Hierarchy

In this section we derive the Lax pairs and differential ¢oaists for three equations in a variable-

coefficient modified KdV hierarchy

Uy + A1V + 20?0, = 0, (2.74)

U+ D1 Usprse + D202 Ve + D30V Ve + bwi + bsvto, = 0, (2.75)

and

2 2
Ut + C1VUzzazzae + CoUV VUgpzaaza + CaVVpq Ve + C5V, Vs

2 4 3 2.3 6
+C6U,V,, + CTU Vgge + C8V°VUse + CoU U, + €10V v, = 0. (2.76)

Once again following Khawaja’'s method the Lax pairs are aded in powers of; and its deriva-

tives as follows:

U Ji+ fav fa+ fav | 2.77)

fs+ fev  fr+ fsv

- ViV

Vio= . (i=1,2,3) (2.78)
Vi vy
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where

Vil = g1+ gov + g307,
Vi = ga+ gsv+ gev® + grv® + ggve + Govas,
V31 = g0+ 9110 + g120* + 9130° + 91402 + G15Ves,

V41 = g6+ 9170 + g1gv?,

91?]323 + 92U4 + g3VVzy + 94U2 + g5 + 96Vzzax + gﬂwz + gSUQUmm + 99U5 + J10Vzzx
+0110%0; + 91202z + G130° + 91405 + G150,

2 4 2 2 2 5
g16V; + G170 + G180V + G19V” + Goo + G21Vezzz + 922VV; + 23V Uy + G24v
+G95Vzzz + G260V + GorVsz + G2gV® + GaoUs + Ga0¥,

2 4 2 2 2 5
931V, + G320V + §33VVzz + G340° + 935 + 936Vszzae T 9370V, + g38V Vgz + G390V
+040Vzzz + G210°Vp + Ga2Vsz + Gazv® + gaaVy + Gusv,

2 4 2 2 2 5
946Uy + gar¥ + gagVUsp + gag¥” + G50 + G51Vazar + 952005 + G530 Vg + G540

+g55,USCCCI + 956U2vx + 957V + 9582}3 + 959Uz + geoU,
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3 2 2.2 3 2 2 4
‘/1 = 0 + ga2v + g3VUyy + 94UV + gsv v, + 96U Ugy + 97V + 98VVzzzr + 99U, + g10? -,
6
+911v
3 2 2 2 2 4 2 2
V5 = 9190 Vg + 913005 + g140 Vs + G150 Uz + 916V Vs + G170, Vax + G180V,
2 3,2 4
+919U Vyzzx + G200V U, + G210V Ugg + G220V Uy + G230V Vg + G247V + go5Uyg + 926Vzs
3 3 5 7
+927vx:c:(; + 928Vzaza + 929Vzzax + 930Vzzzzze + 931U, + g32v + g33v + g34v + 935,
3 2 2 2 2 4 2
V3 = 936V Vgar + G370V, + G380 Vpz + G390 Uz + G40V Uz + G41U, Vs
2 2 3,2 4
+g42vvxqj + 943V VUgzax + G440V, + G450V Ugy + Ga6VVz Uy + G470V Vg + g48v + g49Uy
3 3 5 7
+950Uxx + 951Vzzx + 952Vzzzx + 953Vzzzax + 954Vzazazx + 9557}33 + gs6v + G570 + G580 + 959,
3 2 2.2 3 2 2 4
Vi = 960+ 961V + J6200Vzz + J63VzVaze + G640V U, + J65U" Vaz + J66V5p + J670Vzzze + JosVs + JooU

+g70v6.

It is immediately clear from the latter twg' matrices that finding the correct form of the time
evolution matrix in the Lax pair via Khawaja's method can leydifficult. Through various
insufficient guesses we arrived at the previous forms, fackvive will now give the results. The
compatibility condition gives

0 pi(z, t)F;[v]

U~V +[UV]=0= (2.79)
qi(z, t)F;[v] 0

, WhereF;[v] represents thé” equation in the MKDV hierarchyi(= 1 — 3).
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Determining Equations for the First Equation

Requiring the compatibility condition yield a multiple &1 [v] in the off-diagonal as given above

yields the following large coupled system of algebraic aadigl differential equations

fi=p1,f6 = q1. 97 = —3p102, g9 = —Ppra1, g13 = —3q102, g15 = —quas, fo = fs = g2 = g6 =
0,

fsar — fsp1 =0, 918z +P1g11 — 195 = 0,

93z + 195 — P19 = 0, 17+ f3g14 — f598 = 0,

2g18 + p191a — q19s = 0, 92 + f598 — f3g14 =0,

295 + q19s — p1G14a = 0, fs(g18 — 93) + q1(g17 — g2) = 0,

f3(g18 — g3) + P1(g17 — g2) = 0, Jit = g1z + f3910 — f594 = 0,

frt = 9162 — f3910 + f594 = 0, 911 + g4z — guu(fr — f1) =0,

g5 + gsa + gs(fr — f1) =0, 98 — (ma1)e — praa(fr — f1) =0,

g1 — (@a1)e + qra:(fr — f1) =0, G17z + f3g11 — f595 + p1gio — @194 = 0,

G2 — f3gi1 + f595 — P1gio + @194 = 0, %(plaz)x + %Ih%(f? — f1) + pi(gis — g3) =0,
%(fhfh)x - %@h@(f? —f1) —ai(g1s — 93) =0, f3r — guw — 94(fr — f1) — f3(g1 — 916) = 0,
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J5t = G10e + g10(fr — f1) + f5(91 — 916) = 0,

P1t — G5z — 95(f7 - fl) - P1(91 - 916) - f3(92 - 917) =0,

ot — g1z + 911 (fr — f1) + @1(91 — g16) + f5(92 — g17) = 0.

Deriving a relation between the

In this section we reduce the previous system down to equatidich depend solely on thg's.

In doing so we find that

gs=0=fr=fl=0w=01=g1r=0=Ff=Ff=0,¢g=—p =—

gig = —g3 = — )
g11 = —095 = Y8z,

g1a=—gs = —C(t)(—)a,

which leads to the condition

Ky

K

2 2 2
F301220502, — 60150205, + 301,050, = 0,

3 2
6aiay, — 6a1a202,02,5 + 10502502 —

whereK (t) andC'(t) are arbitrary functions of

29

3 2
Qo + G509 —

C(t)

az ’

3
a2alazmc

(2.81)



Determining Equations for the Second Equation

Requiring the compatability condition yield a multiple Bf[v] in the off-diagonal yields the fol-

lowing large coupled system of algebraic and partial défferal equations

Q1 =DP1,951 = g6 = G52 = g7 = g53 = gz = Ggsa = g9 = 0,918 = —2016,933 = —2031, Jag =

—2946, 936 = g21 = —p1b1, 931 = gaz = —P1b4, gzs = g3 = —Pp1ba, gzg = gou = —%plbm

by = 2by + 20y,

gs5 + p1bi(fs — f2) =0,

291 — ga5 + g10 =0,

g1 + 4917 — gs6 = 0,

G14 — 2934 — gs9 = 0,

g26 — 4947 — g = 0,

910 — 2946 — g25 = 0,

914 + 2Ga9 — g29 = 0,

955 + 2g16 — g10 = 0,

Jit — 95z + f2935 — f3920 = 0,
960 + gsox + f291a — f3g920 = 0,
915+ Graz + f3929 — f2gas = 0,
G2 + Groz + f3925 — f2ga0 = 0,

1
932 — 917 + 5p1b5(f3 — f2) =0,

30

91z + [3916 — fag31 = 0,

Ga6: + f2g31 — f3g16 = 0,

g1o +p1bi(f2 — f3) =0,

911 — 4932 — gs6 = 0,

G1a + 2919 — gs9 = 0,

G1a — 294 — ga9 = 0,

g1 — 492 — gas = 0,

955 — 2931 — g10 = 0,

Jat = G50z + f3920 — f2g3s = 0,
959 + g5t + f2912 — f3g927 = 0,
G1a + G2z + f3927 — faga2 =0,
3958 + 956z + fagar — f3ges = 0,
3913 + 9112 + f3926 — f2911 = 0,

957 + G550 + f29140 — f3925 = 0,



927 — Ga2 + 29462 + 2f2931 — 2f3916 = 0, 950 + 9ase — 95 — Gas(f1 — f1) — f3(g15 — ge0) = 0,

919 — g3a — Gssx + f3gas — f2ga3 = 0, 958 — G17e — G13 — 917(fa — f1) — fa(g2 — ga7) = O,
912 + 2g12 — gor + 2f3916 — 2f2931 = 0, g5 + gsox — 13 — g32(fa — f1) — f3(ga7 — 92) = 0,
915 + Ga9x — 930 + f2gsa — f3919 = 0, 934 — G13z — G19 + fagaz — f3g2s = 0,

931z + 931 (fa — f1) + f3(ga6 — 91) = 0, 925 — (p1b1)e — p1bi(fa — f1) =0,

910 — (P1b1)z + p1b1i(fa — f1) =0, g1 — 2916 + 2931 + p1ba(fo — f3) = 0,

2011 + 916 — 931 + prba(fa — f3) = 0, 920 — geozx — 935 + f3g30 — f2g45 = 0,

928 — Garz — Gaz + f3g21 — f2gs2 = 0, g31 + 2956 — g16 — p1ba(f2 — f3) = 0,

2931 — gs6 — 2016 + p1ba(fa — f3) = 0, 935 — G15z — G20 + f2915 — f3g30 = 0,

9aa + Gaze — gi2(fa — f1) + f3(g57 — 912) =0, gaz + Gaow — Gao(fs — f1) — f3(g10 — g55) = O,
921 + Go5e + 925(f1 — f1) + fa(g10 — g55) = 0, 930 + G20z + G20(f1 — f1) + fa(g1a — g59) = 0,
for = G200 — g20(fa — f1) — fo(g5 — g50) = O, fst = G350 + g35(f1 — f1) + f3(95 — gs0) = 0,
3943 + ga1e — gu1(fa — f1) — f3(g11 — gs6) = 0, Gas + Gaaw — gaa(fa — f1) — f3(g14 — g59) = 0,
3928 + G2z + G26(f1 — f1) + fa(gu — g56) =0, gog + gorw + gor(fa — f1) + f2(g12 — gs57) = 0,
926 + 2916 — 201 — (P1b2)s — p1ba(fa — f1) =0,  gar — g2 + %(p1b5)ac + %plb5(f4 - fi) =0,

919 — Gasz — 9a — gas(fa — f1) — fa(g13 — g58) = 0, guz — Gos — G2 + fog32 — f3g17 = 0,

950 — G30x — 95 — gz0(fa — f1) — f2(g15 — ge0) = 0, 16z + g16(f1 — f1) + f2(g1 — gas) = O,

960 + 93ae — 15 — g3a(fa — f1) = f3(92 — ga9) = 0, ga6 — 2926 — g1 + (P1ba)s + P1ba(fa — f1) =0,
916 + 2911 — g1 — (p1ba)z + p1ba(fa — f1) =0, 2946 — g1 — 201 + (p1b2)e — p1ba(fa — f1) = 0,

1

1
92 — Ga7 + g(plbs)x - gplbs(f4 - fl) =0, 960 — Y192 — G15 — 919(f4 - f1) - f2(949 - 94) =0,

919 + Gaze — 91 — gas(fa — f1) — f3(g13 — g58) = 0,945 — Gaw — g30 + f2934 — f3910 = 0,

31



957 + 29160 — q12 + 2916 (fa — f1) — 2f2(946 — 91) =0,

12 + 29312 — 957 — 2931(fa — f1) — 2f3(g1 — ga6) = 0.

Deriving a relation between thig

In this section we reduce the previous system down to equetidnich depend solely on tligs.
In doing so we find thag, = 0fork =1,2,4,5,10 — 17,29, 31, 32, 44, 46, 47, 49, 50, 55 — 58,

fo=1=0,f5= fa,p2 = %:),934 = —019, 942 = Go7, Y59 = 2919, Ja0 = 925,941 = 26, J6o =

919z
1
945 = G30 + 2919 f2, gi9 = §f2(943 — §28),
b
935 = g20 — 2f22919, gos = H(t) <b_1> )
5/ x
b b
926 = H(t) 2 ) gor = —H(t) =2 )
bs/ b5/ vu
1 bz bl
943 3 ( ) <b5)x$ 930 <b5>:m:$$7
and
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This leads to the following conditions on thg

b3 - 2[72 —+ 2[)4, (285)

bs = C(t)(2by — bs), (2.86)

12095620005 + 12650022040 — 3b22abieb; + 4b3bo4zabs — 4boboyyeb] — 24bobs bay + 24bobo, b7,
+12b§b21b4mm - 12b§b4xb4xaz + 4b§b4b4xmﬁ - b2bib4xmz - 24b§xb4b4:p + 6b2xb4b421x - 3b2xb?1b4:px

Fbogeably — 6bobl, — 4b3bagee + 24ah, by — 24boboyboyyby + 6bybybyyba, = 0, (2.87)

and

9600, b b, + 96000,53, 52, — 48000, 62,5 + 120001ba,bl. — 3840b1,bsb3, — 240b1,bob, +
1920b1,b% by + 120b1,babt. + 38406103, — 1206155, + 7680b15bsb3. bas — 5760b1abeb3 b2, +
1920b1,bobosb®. — 384001358, babas -+ 2880b1ab, bab2. — 960b1sbasbab?. — 32b1smmmsll +
D1zwzzab + 1001202202005 — 8001222205040 — B012222bibse + 8001202220504 — 8001222220303 +
4001202020365 — 1061202020205 + 3201030200020 + 201020020203 — 1601030400000 — b1040sss000 —
060D, b2, — 240b1,b3B2.  + 30b1,b302, . + 16001.08b20000 — 80b1sb2bsrene + 100120 b2000e —
5015030 4z2zs + 1920b1,,0303 . — 240b;,,0303, + 48001,,03 .03 — 60b1,,0303, + 3200150302500 —
160014:0504020 + 200102020200] — 10b100b3bszee — 640014000305, — 160014200307, +
80015503, b3 + 2001450302, + 320014503920 — 1600142030450 + 2001350092205 —

10b1xa}xbib4zz + 960b1b%b2a}xb2xl‘xb4 - 480b1b2b2xxb4zmcbz21 - 480blb%b4xarb2x:ca:b4 + 24Oblb2b2xzb421 +
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240b103b4b422b4z00 — 1200102b3bagabizes + 4800105620 b20002bs — 240016220 bogaraby —
240b103b22b4b 4500z + 1200102b2,b3b40000 — 24001 03b25002b4b40 + 12001 b2bsg00b5bs0 +
12001 03b4b40bszcae — 60010903b4zbszare — 5T6001:05D200202bar + 2880010302, bagbisze —
5760b1,b2b2 boyiby + 2880b1,09b3 babize — 1440b1,boboy bsb3, + 72001020403 bary —
144061, b9 boab2bss + 720610 bobsb2. bave — 1440b1,bosbonsb2bss + T20b1bob2basbave +
192061565020 0202204 — 960b1405b22b4b4z00 — 96001:03b220004040 + 480b1,03b4b40bsgze —
96001402020 02052b3 + 48001402b2,03b 4200 + 4800140902402b3b40 — 24001,02b3b40b4000 +
288061 1,03b9:b9,504 — 144001 3,0302,b4b4zs — 1440b1,,030945504040 + 72001 5:0304b42 b4z —
1440b142b2b25b22207 4+ 720b142b2b20030400 + T200142b2b94203b40 — 3600142020304z bszs +
1152001 b33, borabae — HT60b1b2 boppbibsy — 5760010903 byybazs + 28806162 bsbspbize —
5760b1b2b2,boyp b3, + 288001 by borybab?, + 288001 b9boy b3 bare — 14400109043 bars —
28800, bybo, b2

2xx

by — 2880b1b2b2, b2 pbige — 7200109509403 b4zs — 72001 boboybab3,, +
14400, bob2

2xx

bsbay + 144001 03b2400420420 + 360b1b2,,030420400 + 36001b2b4by b3, —
1920616963 b2zzibs + 960016263 bibazze — 1920b163b2,b220004: — 480b1b23b242203b4s +
96001 b2b2,b42bszee + 240b109,0204504000 — 48001 b2bogrrbab?, + 2400109043 bazee —
144001 ,03b22204b4z2 + T20b1,0909,:030450 + 2880014023, b4bay — 14406y 1,900, b403, —
960b1202b5022b4b42 + 480b120202b22b3b42 4 5760b12b2b22b25004bse — 288001450202404b4zbsze —
1440b1 b2bo4zbabazbaze + 19200102b2:b20200abar — 960b1b2b22babszbizee — 6400163b200b2020 +
8001 b250b202b] + 32001030200 b420e — 4001022003 Dszae + 3200103025020z — 40b1b2200b3bsze —
1600103b420bszze + 200163b40004020 — 3200103b22020000 + 40b1b22b20020 + 1600103022 b4r00e —
2001b2:03bszaze + 160b103b200r0bsz — 2001b25000030se — 80b103Dsbszaea + 100103b4zbazars +
5760010303 oy — 2880010303 baysy + 1440610302403, — 720010303 baze + 14400103 boyibi —
7200162, 020400 + 36001,09,:0303 . — 180010303 bazy — 128001,b3b2,b2500 + 6400103090400z +
640b1203b2202040 — 32001:03b4:bazae + 160014b22b220203 — 80b1:02003bszze — 80b12b2202b3bax +
40b1203b4zbszze — 1920014203b22b200 + 9600142b3b20b420 + 960b12003b202040 — 480b12005b45bag +
240b122020020005 — 120b12002003b420 — 120b1200902b3b40 + 60b12203b42b420 — 320b1202203b22b4 +
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T680b1bob3, oy + 3840b1 53 boysby + 3840b1bob3. base — 19206153, babaye -+ 96001 babogeb?, —
48001 bywgbsb?, — 480b1bsb3 bayy + 240b1b4b3, by + 2880, b2by, b2

2z

+ T20bybyy b2, b2 +
7200, b2y, b2

dxx

+ 18001 bo, b33, — 14400,b3b3, b4 — 3600, b3

dxx 2xx 2xx

b2bs — 360b1b2b,,b2

dxx —

90b1b3byib? ., + 1920016203 boyrs + 4800103, borrrbs — 960b1 0303, basre — 2400103, b3b4sss +
480D1b2bgeanbl, + 12001 D940 302, — 240610202 buagae — 60016302, bizee — 640103020 000bs +
48b1b3b21022207 — 16b1b2b0300205 + 320103b4bszzsas — 24b10305b4s0200 + 8b10203bss 0100 +
960b1:03b220bsge + 1440010303

2xx

by + 360b1,b2b4b2,, — T20b1,bob?

2xx

b2 — 180b;,bob202, . —

80b1:0202222203 + 4001,0903b43200 — 288001400305 by + 144001 4,b3b2,b%, — 19206y ,,b2b3 by +
240b13,b2b4b3, — 7200103, 03045 + 36001,,00,0303, — 64001 4:03D222004 + 320b122650404000 +
480b12503b2200207 — 24001200503 b4z00 — 1600102b2b220003 + 80b1200203b4z0e + 6400140005b20bse +
96001 42,0302,b4 + 24001 35030403, — 48001 4550203,.07 — 1200144020303, — 8001 50202203b4s —
64001222b3022204 + 32001220050404z0 + 4800142005b9200] — 24001200 0507040 — 160b14020202220F +

8001222020342z + 1600142000309, + 1200103

2xx

bz —+ 288061b2621b2w:)§b4b4xz = 07

whereH (t) andC'(t) are arbitrary functions of.

Determining Equations for the Third Equation

Requiring the compatability condition yield a multiple Bf[v] in the off-diagonal yields the fol-
lowing large coupled system of algebraic and partial déffetral equations

fo=fs = 0,934 = _%p1a107g20 = —%p3a9>f4 = P3; 930 = —P3G1,921 = —P3ar,gig =
—P302, gs4 = (301,958 = %Q3a107944 = %Q3a9,945 = 307,913 = G302, fo = —q3,963 = —Jor =

—gs = g1 = Ga(t), g6 = g7 = G7(t), gss = —3593 = go = Go(t), fs = fs, fr = f1, a3 = —Ds,
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f3(gi+24 - gz) = 07 (l =12 - ]-87 227 23a 25 — 297 31— 33)
f3(givs9 —gi) =0, (i =2,3,5,6,8,10,11)

1
i§(p3010)x + p3(g70 — g11) = 0,

i+ Gitre =0, (i =24 — 29,48 — 52)
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2

3P3Co + 4psay = pscs,

g23 — p3(202 - 03) =0,
1

Ges = _§G637

923 + 917 = —P3Cs,

ga7 + ga1 = —P3cs,

g6 — P3(936 - 916) =0,

1
g11 — 6]73(940 - 916) =0,
ge5 + p3(g36 — g12) = 0,
1
Jeo + ZP3(939 —g15) =0,

950 — P3(937 - 913) =0,
g8z — p3(952 - 928) =0,
G622 + P3(gs0 — g26) = 0,

G5z + P3(gss — g14) = 0,

G12 — (P3¢2)z — p3(ger — gs) = 0,

Gar — p3(2c2 — ¢3) =0,
1

G7 = _§G47
1

Ges = —§G62,

923 + 2g18 = —pacq,

Ga7 + 2042 = —p3ca,

gs — pg(g53 - 929) =0,

1
g1 + =p3(ga9 — g25) =0,

2
1

o4 + §p3(955 —g31) =0,
1

g7o0 + 6P3(940 — g16) =0,

93z — P3(gs0 — 926) = 0,
910z — P3(gs6 — gs2) = 0,
o1z + P3(gas — gaa) = 0,
o7z + P3(gs2 — gas) = 0,

2012 + o3z + g22 = 0,
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918 + 2917 = —Pp3Cs,
ga2 + 2941 = —P3Cs,

g3 — P3(gs1 — ga7) = 0,

1

g2 — 5293(949 - 925) =0,
1

gs — §p3(955 - 931) =0,

gio0 — ip:z(g:ag —g15) =0,
o2 + p3(gs1 — gar) = 0,
o7 + P3(gs3 — gao) = 0,
Gox — P3(gas — g24) = 0,
9oz — P3(g3s — g14) = 0,
911z — p3(gs7 — g33) = 0,
o4z + P3(g37 — g13) = 0,

Ge9z + P3(gs6 — g32) = 0,

gr0z + P3(gs7 — g33) = 0,



913 + 9312 = 0, g4 + g12: = 0, 915 + G1az + P3(g3 — ge2) =0,

916 — (P3¢7)z — P3(ges — gs) = 0, 2915 + g13. = 0, 4916 — %(p?)CQ):c — p3(ges — g5) = 0,
4g40 — %(pZSCQ)w +p3(g6a — 95) = 0, gaz + gisa = 0, 3932 + G152 = 0,

937 + G552 = 0, g3s + 936z = 0, 939 + 938z — P3(g3 — gs2) = 0,

90 — (P3¢7)z + P3(ges — gs) = 0, 946 + Gazz = 0, 946 + Garz + 2936 = 0,

3956 + g39: = 0, 9957 + Gaox = 0, p3(gso — g35) + f3(gas — gaa) = 0,
916 + g16z + 5933 = 0, 2q13 + 9220 + 2014 = 0, Go2 + g17z + 3931 = 0,

2937 + a6z + 2938 = 0, 946 + ga1z + 3955 = 0, 295 + 396 — p3(gas — g22) = 0,

fit — g1z — f3(g35 + gs0) = 0, 2964 + 3965 + P3(ga6 — 922) = 0, fir — Geoa + f3(g35 — gs9) = 0,
fat — 9352 + f3(g60 — g1) = 0, f3t = 959 — f3(960 — 91) = 0, 9562 — P3(g2 — g61) = 0,

9320 + p3(g2 — ge1) = 0, 933z + P3(g10 — geo) = 0, 957z — P3(g10 — geo) = 0,

920 — (p3c1)z = 0, 936 — (P3¢2)z + P3(g67r — 98) = 0, P1t — g24z — P3(91 — g60) = 0,

953 — (p3c1)z. = 0, 2939 + a7z = 0, D1 — Gase + P3(91 — geo) = 0.

Deriving a relation between the

In this section we reduce the previous system down to equatidich depend solely on thgs.

In doing so we find that

gea = g5 = ge5s = g = g61 = g2 = J10 = 69 = g70 = J11 = G4(t) = Gg(t) =0, gs9 = 935, geo =

91,942 = 918,940 = 916,952 = G28,953 = g29,955 = g31,936 = G12,939 = J15,956 — G32, 941 =
H(t)

€10

917, 957 = 933, 937 = 913, 947 = g23,P3 = , 920 = (P3€1)a, 912 = (P3C2)as 915 = _%.913:1:7932 =
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—§915x,928 = —(p3C1)ae; 933 = G33(), 9i = —Giw, (i =24 — 27,48 — 51)

g23 = —P3Cs — 17,
918 = —P3Ce — 2917,

g16 = (P3C7)a:,
1 1

914 = G124 — §gl7wx — 313 — 5(19305)”,
1 1
938 = —9g13 + G120 — 591711 — 5(]0305)117

which leads to the following conditions on thg

Cyp = —]_OCQ + 503 + 206 - 4657

Cg = 407 4+ 509,

1
g13 = g(P3(203 — C5 — 602))3::::,

G22 = G172 — 2912 + (D3C5) s

916 = G170 — 2912 + (P3C5) 2>

1
g31 = 5(2912 — 20172 — (P3C5) )

g17 = p3(cs — 2¢0 — ¢5),

C102C6 — C6C100 — 2C5C102 1 2C5,C10 + C102C3 — C32C10 = 0,

—12¢10,¢7 + 12¢7,¢10 + C102C9 — CopCr0 = 0,

3 2 2
5Gcyy — 2H c10,C72C10 + HyoCrun + 2H cly,,07 — Here10C1022 = 0,
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(2.91)
(2.92)
(2.93)
(2.94)
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2 2 2
1463010;3 — 703010010:m: — 60C2010$ + 30026100103333 + 60023;610010:5 — 3002&::1:610 + 4053361061055
2 2 2
_140330010010:1: + 763:1::5010 — 4050101: + 20501061%}1} — 205xz010 = O, (296)
18c3cy, — 18 3asc; 18 2w+ 9C3.C2 60cyc?
C3C10, — 18C3€10C102C1022 + 9A3C0Clozzz — 18C32C10C 0, + IC32C1oC1022 — OUC2CT g,
+60 — 10¢y¢? + 60 20w — 30co,C] — 3024507
€2€10€102C10z C2C19C10zzx C22C10C1 0y C2:C10C10zx C244:C10C102
10 3+ 6 2w — 3C52Ca 3C500C 9300 Ch 3 3
+ CozzzCro + C52C10C 0 — 9C52C10C10zz — 9C522C19C10x + C322C10C10z — 9C3zxxC1g
6escy 3 3,=0 2.97
—0¢5C7 0, + C5C10C102C1022 — €5C10C10zza T Coa22C19 = U, (2.97)
T+ 5040 0, — T ¢ 6 5040¢c;c!
Cl:):xxxmz;tclo + CGCmClox - Clx:m:xxmclocl(]a: - Clclocl&vxxxxmz - Clclox
—Te1.c ¢ — 2520140 C30 o0+ EJ + 210¢1 4gu 0o — S0
121010z x 20 lxzxC10%102 H 10 lezxx 101022 10410t
6 4 3 6 5 2
_35clxzzclocloxmcw - 21061x:pxxclocl[)x - 2lclzzx:r:pcl[)010$z + 14061:13610610933”
—630c;¢] — 630c1,C10C; 5040c, cjyc;
ClcloclomCIO:pxCIOw:vxx Clxclocloxm + 01010010m010xx010xm
4 2 4 2 5
_63001610010xw010x3m7 - 12601610010x010x:pwxm + 7001610010xrm010mmmm
5 2 3 2 3 3
+14¢1¢70C102C10zzzz20e — 12600¢1¢10CT05Cl0ze + 2520€1€70C102C 000
2 4 3 2 2 3 3
—12600¢1,,¢1C105C102z + 7560¢14,610CT05C100x + 3360C12C10C105C10025
210c;,.¢3 84cy,c} 5040¢1,4C50C)
+ ClmclocIOaxxCIOxaEmm + ClxclocIOmCIOxxmacz + ClxzclocloxCIOx:v
—1260c155¢ 2 420¢1 44} 21014461
C122C10C102C10zz2 + C122C10C1022C10zz2 + C122C10C102C10zz22
2520¢1 ¢} 840c,c}yc) 1260 e
- C12C19C102C1022C10zzx + C1C10C102C10zz20 — Clzz2C10C102C10zz
5 4 2 4 2
+4261010610xa:010xcm:a:x - 4200161001%:61035333; - 63061z010610m010xxccm
4 2 3 4 2 4

5 2 5 5
+4201mcx:tx610610x + 2800196:6:0610010300101‘9:36 + 21oclxx:c:c610610x010xx

6 6 5
_zlclxmcloclﬂxxmcx - 35clxxmxc10610xxx + 15210616100101»010:1:x = Oa (298)
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and

5 5 5 3 2 4
—240c3c, + 720coc), + 120c5¢],, + 40¢3022C10CT02 — 20C3222C10C1002
3 2 4 2 3 4
—180¢24¢19C 05z T 30C22C10C102zz2 + 360C222C70CT 0, + 60C222C10Cl0022
4 3 2 4 2 3
+6002xmcclocl()xw - 3oc5xcloclom + 5C5x0100101x:px + 60051:1:6100101
4 4 2 3 4
+1oc5xazxcloclﬂxaz + 65010610mmxw:v - 120031161001033 - 2063:13:2610610211
—10c3,.c] 30 1 5 1 —-10 1
C32C10C10zz2 + CoxzazazCi19Cl0x + CsxzaxC10C10x C3zza2C10C10x
2 — 720 o — 120 Toe 240 1
_CSmmxmmclo - C2z010010x - 652:01061(]33 + C3xclﬁcloz
—120¢5¢%,2 40c5¢3 20cs¢
c3c1oclox610xxa: + 03010010$$610$$$ + 03010010x010x:m:m
120¢3,.C; — 1440 3 540cyc] 7
+120¢344.€10C102C1022 C2C10C102C10zz T 04UC2C1(C102CT 05
—60cyc? 1080¢5,¢3) 3 — 240¢2,¢]
C2C10C102C10z 2T + C22C10C102C10zx C2:C10C102C10zz2
—40¢s.c3 — 60 3 — 240 3
C5:C10C102C10zzx C52xC10C102C1022 C5C10C104C10zx
3 2 3 2 5 2 2
180¢s,C3C 120cy¢3 80cs,C
+ C52C10C102C100 — C2C10C1022C10zzx + C32C19C102C10zzx
4 4 5 2 2
+1065mc610010x:0x - 263010610xx:c:0x - 662xxxx:cc10 - 36063:{:610610x010xx
20csc? 10cscs 60c5CcToCs (een
- 05010010”0101“ - 05610010:1:0101:(::1:1: + 0561001()3;010:5:1:9: + 620106109636111‘
4480 H + 360cac]yc] — 360C204C5
C3C10C10,C10z C2C10C102C10z2 C22xC10C102C10z2

2 2 3 2 _
+90656100101010xx — 1200290:}0:):61001090 =0,

whereG(t) and H (t) are arbitrary functions of.
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CHAPTER 3: THE EXTENDED ESTABROOK-WAHLQUIST METHOD

In this chapter we present the extended Estabrook-Wahlo&thod for deriving the differential
constraints necessary for compatibility of the Lax paioagsted with a variable-coefficient nipde.
We then illustrate the effectiveness of this method by degivariable-coefficient generalizations
to the nonlinear Sckdinger (NLS) equation, derivative NLS equation, PT-syrtraéNLS, fifth-
order KdV, and the first equation in the MKdV hierarchy. As aafiexample, we consider a
variable-coefficient extension to the nonintegrable cwuimtic NLS and show that the extended
Estabrook-Wahlquist method correctly breaks down upoengiting to satisfy the consistency

conditions.

Outline of the Extended Estabrook-Wahlquist Method

In the standard Estabrook-Wahlquist method one beginsawtbnstant-coefficient nlpde and as-
sumes an implicit dependence on the unknown function(s)tarftheir) partial derivatives for the

spatial and time evolution matrice, () involved in the linear scattering problem

77Z}$ :Fd}» ¢t :G¢

The evolution matrice& and G are connected via a zero-curvature condition (indeperedehc

path in spatial and time evolution) derived by requiring = v,,. That is, it requires

F, — G, + [F,G] = 0 (3.1)
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upon satisfaction of the nlpde.

For simplicity in outlining the details of the method we wibnsider a system with only one
unknown function, namely:(x,t). Generalization of the procedure to follow to systems with

n > 2 unknown functions is straightforward. Let

F = F(u, g, Uty .., Umznt), G = G(u, uy, ut, . . ., Ukg jt)

. . . . . +
represent the space and time evolution matrices of a Laxneajpectively, where,,, ,, = %.

Plugging these into (3.1) we obtain the equivalent condlitio

Z IFumz,mumm,(n—&—l)t - Z Gujw,ktu(j—l-l)m,kt + []Fv G} =0

Jk

As we are now lettind® andG have explicit dependence anandt¢ and for notational clarity, it

will be more convenient to consider the following versiortlué zero-curvature condition

D,F — D,G + [F,G] = 0 (3.2)

where O and D, are the total derivative operators on time and space, régplyc Recall the

definition of the total derivative

_Of , 0f du  Of Ouy f du,

D.f(z,t,uy(z,t), ug(z,t), ..., uy(z,t)) = A + a9z Bun Ba v
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Thus we can write the compatibility condition as

IE?t + Z Fumw,ntum:c,(n—&-l)t - GJ} - Z Gujrﬂktu(j—i-l)x,kt + [IF, G] =0
m,n ]7k
It is important to note that the subscriptedndt denotes the partial derivative with respect to only
thex andt elements, respectively. That is, althougland it's derivatives depend anandt this
will not invoke use of the chain rule as they are treated aspeddent variables. This will become

more clear in the examples of the next section.

From here there is often a systematic approach [26]- [29Eterthining the explicit dependence
of FandG onw and its derivatives which is outlined in [28] and will be i#éd in the examples

to follow.

Typically one take& to depend on all terms in the nlpde for which there is a patitia¢ deriva-
tive present. Similarly one may take to depend on all terms for which there is a partial space

derivative present. For example, given the Camassa-Holatieq,

U + 2kux — Uggt + 3UUL — 2UgUgy — Ulgyy = 07

one would consideF = F(u, u,,) andG = G(u, u,, u,;). Imposing compatibility allows one to
determine the explicit form df andG in a very algorithmic way. Additionally the compatibility
condition induces a set of constraints on the coefficientioest inIF andG. These coefficient

matrices subject to the constraints generate a finite diioiealsmatrix Lie algebra.

In the extended Estabrook-Wahlquist method we once agkeltaand G to be functions ofu

and its partial derivatives but now additionally allow dedence orx andt. Although the details
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change, the general procedure will remain essentially éimees This typically entails equating
the coefficient of the highest partial derivative in spacehef unknown function(s) to zero and
working our way down until we have eliminated all partialiglatives of the unknown function(s).
This is simply because the spatial derivative of the timdugian matrix G will introduce a term
which contains a spatial derivative of the unknown functidlegree one greater than that which
G depends on. For example, in the case of the Camassa-Holmaquath G as it was given

above one would have

The final term in the above expression involvgs, (i.e. a spatial derivative af one degree higher
thanG depends on.) This result, coupled with the terms resultiomfthe elimination of the:,
using the evolution equation, yielda,. term whose coefficient must necessarily vanisii asd

G do not depend on,... Before considering some examples we make the followingrghtens.

This extended method usually results in a large partialedsftial equation (in the standard
Estabrook-Wahlquist method, this is an algebraic equatiwhich can be solved by equating the
coefficients of the different powers of the unknown functjan(gero. This final step induces a
set of constraints on the coefficient matricesFimnd G. Another big difference which we will
see in the examples comes in the final and, arguably, the sstlep. In the standard Estabrook-
Wahlquist method the final step involves finding explicim®ifor the set of coefficient matrices
such that they satisfy the contraints derived in the proocedund depend on a spectral parame-
ter. Note these constraints are nothing more than a systertgebeaic matrix equations. In the
extended Estabrook-Wahlquist method these constraintbevih the form of matrix partial dif-
ferential equations which can be used to derive an integtgibndition on the coefficients in the

nipde.
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Note that compatibility of the time and space evolution meas will yield a set of constraints
which contain the constant coefficient constraints as aetulda fact, taking the variable coef-
ficients to be the appropriate constants will yield exadtly Estabrook-Wahlquist results for the
constant coefficient version of the nlpde. That is, the gands given by the Estabrook-Wahlquist
method for a constant coefficient nlpde are always a propesetlof the constraints given by a
variable-coefficient version of the nlpde. This can easdyshown. Letting® andG not depend
explicitly on z andt¢ and taking the coefficients in the NLPDE to be constant the-zarvature

condition as it is written above becomes

Zwumz,ntummy(n+l)t - Z GUJL’ktu(j+1)$,kt _'_ I:IF7 G] = 07

i,k
which is exactly the standard Estabrook-Wahlquist method.

The conditions derived via mandating (3.2) be satisfied wgmdations of the variable-coefficient
nlpde may be used to determine conditions on the coefficiettices and variable coefficients
(present in the NLPDE). Successful closure of these canmditis equivalent to the system being
S-integrable. A major advantage to using the Estabrooklyjugt method that carries forward

with the extension is the fact that it requires little guesdnand yields quite general results.

PT-Symmetric and Standard Nonlinear Satinger Equation

We begin with the derivation of the Lax pair and differentahstraints for the variable-coefficient

standard NLS equation. Following with the procedure oatlimabove we choose

F=F(z,t,q,7), and G = G(z,t,7,q, 7+, ¢z).
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Compatibility requires these matrices satisfy the zeraature conditions given by (3.2). Plug-

ging F andG into (3.2) we have

Fo+Fore+Fog — Gy — Gory — Gugw — Gryrie — Gy g + [F, G| = 0. (3.3)

Now requiring this be satisfied upon solutions of (2.3) wéofwlthe standard technique of elimi-

natingr; andu, via (2.3) from which we obtain

Fy — iF, (free + 9r2q + (v —i9)7) + iFy(fqoa + 9¢°7 + (v +i7)q)

_Gz - Grrx - Gqu - errwm - quQIz + []Fu G] =0. (34)

SinceF andG do not depend on,,. or r,, we collect the coefficients af,, andr,, and equate

them to zero. This requires

—ifF, - G,, =0, andifF, — G, = 0. (3.5)

Solving this linear system yields

G =if(Fuq. — F,rp) + K2, t,q,7). (3.6)

Plugging this expression fdr into equation (3.4) gives us the updated requirement
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Fi — iF,(9r%q + (v — i)r) + iFy(9¢°r + (v +i7)q) — i fo(Fyqe — Frrs)
_Kquf - Kgrx - Zf(quq:c - chra:) - Zf(quqc% - Frrri) - Kg + qux [IF’ Fq]

—ifr, [F,F,]+ [F,K°] =0. (3.7)

Now sinceF and K’ do not depend op, andr, we collect the coefficients of th¢ andr? and

equate them to zero. This now requires

ifF =0 = —ifFy,.

From this, it follows via simple integration th&tdepends o andr explicitly as follows,

F=X(z,t) +Xo(z,t)g + Xs(x, t)r + Xy(x, t)rq,

where theX; in this expression are arbitrary matrices whose elemegtfuactions ofr andt¢ but
do not depend on, r, or their partial derivatives. Plugging this expressionfanto equation (3.7)

we obtain
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X+ Ko oq + Xaor + Xaprq — i(Xz +Xag) (7% + (v — iv)r) +i(Xe + Xar) (9¢%r + (v +17)q)
—if(Xg + Xyr) gy — (X5 + Xyq)ry) — KSQI — K%, —if(Xow + Xua?)e — (X, + Xy 20)72)
K + i f[X0, Xolge + i f[Xs, Xolrg, + i f[Xy, Xolrqqe + i f[X0, XaJrge + i f[Xs, Xa]rqq,

+i f[Xs, X r?qe — i f[X1, Xalra — i f[Xe, Xs]qre — if [Xy, Xslqrr, — i f[X1, Xa]qr,

_Zf[X27 X4]C]27"x - Zf[Xc}a X4]C]T7"x + [Xla KO] + [XQa Ko]q + [X?n KO]T + [X47 Ko]qr = 0. (38)

Noting the antisymmetry of the commutator, thafds B] = —[B, A] (which is required if theX;

are elements of a Lie algebra), we can further simplify thevjmus expression to obtain

Xiy + Xoq + Xaur + Xarg — i(Xs + Xuq) (grg + (v — iv)r) +i(Xo + Xyr) (9¢°r + (v +i7)q)
_fo((XZ + X47ﬁ)q:z: - (XB + X4Q)Tx) - Kgqgﬁ - Kg% - Zf<<X2,x + X4,xr)q:c - (Xi’),x + X4,xq>rx)
—K? + i f[Xy, Xo]qe + i f[Xs, Xo]rq, + i f[Xy, Xa]rqe + i f[Xs, Xy]riq, — i f[Xy, Xa]r,

—i X, Xs]qre — if [Xy, Xylqre — i f[Xs, Xy]gPre = 0. (3.9)

As before, since th&; andK" do not depend on, or ¢, we equate the coefficients of the and

r,, terms to zero. We therefore require the following equatemessatisfied,
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—ifo(Xo +Xyr) = K — i f (oo + Xyor) + i f[Xq, Xo] + i fr[Xy, Xy
—ifr[Xy, Xs] + i fr?[Xs, Xy] = 0, (3.10)
ifo(Xs +Xaq) — K +if (Xa o + Xa2q) — if Xy, Xa] — if q[Xq, X

—ifq[Xe, Xs] — i fq°[X2,Xy] = 0. (3.11)

Upon trying to integrate this system one finds that the syssemm its current state inconsistent

unless a consistency condition is satisfied. Recall thangaveystem of PDEs

\Ijq - 5(% T‘) and\IjT = 7](% T)?

if we are to recovel we must satisfy a consistency condition. That is, we mus¢ bawv= ¥, =

VU,, = n,. Interms of equations (3.10) and (3.11) we have

g(q, 7") = —fo(Xg =+ X4T) — Zf(X2,;v —f- X4’IT) —I— Zf[Xl, Xg] + ifT[Xh Xd
—ifr[Xy, X3 + i fr?[X3, Xy] = 0 (3.12)
n(g,r) = ife(Xs+Xyq) +if(Xzp +Xyoq) — if[Xq, Xs] —ifq[Xq, Xy]

—ifq[Xo, Xs] —ifq*[Xs,X4] = 0 (3.13)

Thus the consistency conditio§. (= 7,) requires that
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—ZfIX4 — Z'fX47m + 'Lf[Xh X4] — Zf[XQ, Xg] + 2’Lf[X3, X4]7” = Zf$X4 + ifX;LII — Zf[Xh X4]

—i f[Xo, X3] — 20 f[Xo, Xyq

hold. But this means we must have

One easy choice to make the system consistent, and for tipegmiof demonstrating how this

method can reproduce results previously obtained in teealre, is to seK, = 0. Thus the

system becomes

K2 = —foXQ — ifXQ’;E + Zf[Xh X2] - ifT[X% X3]7 (315)

K) = ifeXs+ifXs, —if[Xy, Xs] —ifq[Xe, Xs]. (3.16)

Integrating the first equation with respectjtave obtain

KO = _foXQQ — ZfXg@«q + Zf[Xl, Xg]q — Zf[XQ, Xg]rq + K*(I, t, T).

Now differentiating this and requiring that it equal ouryioeis expression fok? we find thatK*

must satisfy
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K: — foX:g + ifXg}w - Zf[Xl, Xg]

Integrating this expression with respecttwe easily find that

K* = ime3T + ifXg}xT — Zf[Xl, X3]’f’ + Xo(l‘, t),

whereX, is an arbitrary matrix whose elements are functions ahd¢ and does not depend gn
r, or their partial derivatives. Finally, plugging this eggsion forK* into our previous expression

for K° we have

KO = fo(Xgr—XQ(]) +Z-f(X37xT—X27xq> +Zf[X1, Xg]q—zf[Xl, Xg]T—’if[Xg, Xg]qr—i—X(). (317)

Plugging this into equation (3.9) we obtain
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Xy + Xopq + Xayr — iXs(grq + (v — iy)r) +iXe(gg*r + (v +i7)q) — i fou(Xgr — Xag)
~2i fo (X301 — Xopq) — i f K ar — Xozoq) — i(F[X0, Xa])oq + i(f[X1, Xs])or

—Xoo + i.fo (X1, Xs]r — [Xy, Xolq) + i f (X0, Xsar — [X0, Xop]q) + 1f X4, [Xy, Xo]g

—if X, Xy, X — i f X, [X, XsJgr + [Xy, Xo] + i [Xo, Xs]gr + i(f[Xa, Xs])agr

i f[Xa, X, Xollg? — i f[Xo, (X, Xallgr — i f [Xo, [Xo, Xa]lg®r + [Xo, Xolg — if.[Xs, Xo]rg
Hif (X, Xl — (X5, Xoulre) + i f [Xs, [Xi, Xoflrg — if [Xs, [Xi, Xa]Jr® — i f[Xs, [Xa, Xs]]gr®

+if ([Xo, X3 .)qr — [Xo, Xo,]¢%) + [X3, Xor = 0. (3.18)

Since theX; are independent ofandq we equate the coefficients of the different powers ahd

g to zero and thus obtain the following constraints at eackrrd- andg:
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O(1) : Xiy —Xou + [X1,Xo] = 0, (3.19)
O(q) &+ Koy +1Xo(v + i) +i(fXo)w — i(f[X1, Xo])o — ifa[X0, Xo] — i f[Xy, Xy
i f Xy, [Xy, Xo]] + [Xg, Xo] = 0, (3.20)
O(r) = Xgu —iXg(v — i) —i(fXs)ee + i(f[X1, X5])0 + 0.fo[X1, Xs] + i f[X1, X3 ]
—if[Xy, [Xy, Xs]] + [Xs, Xo] = 0, (3.21)

Oqr) + 2i(f[X9,X3]), — if[Xy, [Xo, Xg]] 4 i f2[ Xy, X3] — i f[Xs, [Xq, Xs]]

+if[Xs, [X1, X)) = 0, (3.22)
O(¢%) + if[Xe, Xou] — if[X, [X1, X)) = 0, (3.23)
O(r®) : if[X3,Xs.] —if[Xs, X1, X3]] =0, (3.24)
O(¢r) = igXy —if[Xy, Xy, Xs]] = 0, (3.25)
O(r?q) - igXs +if[Xs, [Xq, X5]] = 0. (3.26)

These equations collectively determine the conditionsifer_ax-integrability of the system (2.3).
Note that in general, as with the standard Estabrook-Wadtlguethod, the solution to the above
system is not unique. Moreover, as we will show, one findsrgsalution of the system of equa-
tions derived in the process of requiring compatibility anthe zero-curvature equation (such as
the system above) cannot be done in general. Rather it wilire@dditional compatibility condi-
tions be satisfied between the coefficients in system (218 rEsult is not unique to this system
but in fact typical of most systems (if not all). Provided waendind representations for thg,
and in doing so derive the necessary compatibility conastibetween the coefficient functions in

(2.3), we will obtain our Lax paiF andG. We will now show how to reproduce the results given
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in Khawaja’s paper. Let us consider Khawaja’s choices fetthmatrices. That is, we take

0 0 0 i 0 0
X, = |7 Xy = h x| P x, = . (3.27)

0 613 0 f7 0 0 —ipy 0

Plugging these into our integrability conditions yields

o) : fit—g1.=0, (3.28)
O(1) : fr—gi3. =0, (3.29)
O(q) : ipie—ipi(g1 — 913 — v +7) = (fP1)ew + 2(f1 = f1) (P12
—foi(fi = ) + fou(fi = fo)e = 0, (3.30)
O(r) + ipa +1p2(g1 — g1 — 10 =) + (fP2)ea + 2(/1 — 1) (fP2)e
+(fi = f2)’ fpa + fpa(fi = f2)e = 0, (3.31)
O(qr) + fepip2 +2(fp1ip2). =0, (3.32)
O(¢°r) andO(r?q) : g+ 2fpip2 = 0. (3.33)

Note that equations (3.23) and (3.24) were identicallysfiatli and thus omitted here. In Khawaja’s
paper we see equations (3.28), (3.29), (3.32) and (3.3&@ngxactly as they are above. To see
that the other conditions are equivalent we note that in &pephe had the additional determining

equations
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(fr)e = for(fr = f7) — 96 = 0, (3.34)

(fp2)e + fr2(fi — f7) — 910 = 0, (3.35)
g6(fr — f7) —ip1(g1 — 13 — W + ) — goz + ip1 = 0, (3.36)
gro(f1 — f7) +ip2(g1 — 913 — 10 —¥) + Groe + P2 = 0. (3.37)

We begin by solving equations (3.34) and (3.35)dgandg;,, respectively. Now pluggings into

eqguation (3.36) ang,, into equation (3.37) we obtain the system

2(fp1)a(fr — f1) = fr(fr = f2)* —ip1(91 — 913 — 10 + ) — (fP1)aa

+fp1(fi = fr)e +ip1e = 0, (3.38)
(fp2)a(fr = f2) + fo2(fr — f2)? 4+ ip2(91 — 13 — iv — ) + (fD2)aa
+fp2(fi = fr)e +ipar = 0, (3.39)

which are exactly equations (3.30) and (3.31). At this pthiatderivation of the final conditions on
the coefficient functions is exactly as it was given in thevmres chapter and thus will be omitted

here. The Lax pair for this system is given by
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]F = Xl + ng + X3T’ (340)
G = if(Xogqy — Xary) +ifo(Xsgr — Xoq) + i f (X3 ,r — Xo2q) + i f[Xy, Xo]g — i f[ Xy, X5]r

—Zf[XQ, Xg]qr + XO (341)

As the PT-symmetric NLS is a special case of the system ceresidabove we may obtain the
results through the necessary reductions. Letting v = 0, f = —a;, g = —a9 and taking

r(z,t) = ¢*(—x,t) where* denotes the complex conjugate we obtain

0(1) . Xl,t — Xo,x + [Xl, XO] = 0, (342)
O(Q) . Xg’t — l'(CLlXQ)xm + i(al[Xl, Xg])m + 7:(111 [Xl, Xg] + ial[Xl, Xg’m]
+i X1, [Xq, Xo]] + [Xa, Xo] = 0, (3.43)

O(r) + Xgp+i(a1X3)pe — (a1 [Xy, X)) — 101.[X1, X3] — a1 [Xy, X3,]

iay[Xq, [X1, Xs]] + [X3,Xo] = 0, (3.44)
O(qr) : —2i(a1[Xe, X))z + ia1[Xy, [Xo, X3]] — da1,[Xa, Xa] + ia; [Xo, X1, X3]]

—iay[Xs, [Xp, X)) = 0, (3.45)
O(¢?) : —ia[Xy,Xo,] +iay[Xo, [X;, Xs]] = 0, (3.46)
O(r?) : —iay[X3,Xs,] +ia,[Xs, [X;, X3]] =0, (3.47)
O(¢%r) : —iasXy +iai[Xy, [Xy, X3]] = 0, (3.48)
O(r?q) : —iapXs —iay[Xs, [Xg, X5)] = 0. (3.49)
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Utilizing the same set of generators

0 0 0 2 0 0
youl EU IS LA IO R ) , (3.50)

0 613 0 f7 0 0 —ipy 0

we have the following set of conditions

O(1) : fi—g1. =0, (3.51)
O(1) : fr—gi3. =0, (3.52)
O(q) =+ ipu—ipi(gr — g13) + (@1p1)ae — 2(f1 — f2)(Pra1)e

+api(fr = f2)? —api(fr = fr)e = 0, (3.53)

O(r) : ipar +ip2(91 — 913) — (@1P2)ez — 2(f1 — fr)(@1p2)a

—(fl - f7)2a1p2 - alpz(fl - f7)x =0, (3-54)
O(qr) : —aizpip2 — 2(a1p1p2)s = 0, (3.55)
O(¢*r) andO(r*q) : ag + 2a1pips = 0. (3.56)

As with the standard NLS, the final conditions on the coefficinctions can be found in the

previous chapter. The Lax pair for this system is then given b

F = Xl —|— ng + Xg?", (357)
G = —ia1(Xogqy — Xyry) —ia1,(Xgr — Xoq) —iay (X 17 — Xo 2q) — 101 [Xq, Xoq +iaq [ Xy, Xs]r
+ia1[X2, Xg]qr -+ Xo. (358)
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Derivative Nonlinear Schrodinger Equation

In this section we derive the Lax pair and differential coaisits for the variable-coefficient deriva-
tive nonlinear Schodinger equation. The details of this example will be simitathat of the
standard NLS and PT-symmetric NLS. Following the extendst@dirook-Wahlquist procedure as

outlined at the beginning of the chapter we let

F= F(x,t,r, Q)v and G = G(l’,t,ﬁ qs Tz,(lz)-

PluggingF andG as given above into equation (3.2) we obtain

Fi+Foq: +Fore — Gy — Gygw — Gy @ow — Gyryy — Gryrze + [F, G] = 0. (3.59)

Now using substituting fog; andr; using equations (2.42) and (2.43), respectively, we olttan

following equation,

F, + (iCLqu - qu)%cz’ - (ialFr + Grm)ra:x - Fq(2a2TQQx + CLQC_]Q’I“];)

—F.(2a2qrr, + a2r2qx) -G, -Gy, — Gy + [F,G] = 0. (3.60)

SinceF andG do not depend on,, or r,, we can set the coefficients of thg, andr,, terms to
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zero. This require® andG satisfy the equations

iaqu — qu =0 and a4 F, + er = 0. (361)

Solving this in the same manner as in the NLS example we obtain

G =ia(Fyqy — Fyry) + Ko(x, t,r,q). (3.62)

Plugging this expression fd# into equation (3.60) we obtain

F, — F,(2a27qq, + a2q°ry) — Fr(2a0qr7, + agr’q,) — i(a1FFy)2qs + i(arFy )7y — K

tia B2 — Kiry — ia1Foqqs — Kogo + ia1 [F, Folgs — iay [F, F,]r, + [F,K°] = 0. (3.63)

Now sinceF andK® do not depend on, or r, we can set the coefficients of the different powers

of r, andg, to zero. Setting the coefficients of thfandr2 terms to zero we obtain the conditions

—z'aquq = z'alFr,, =0. (364)

From these conditions it follows th&tmust be of the fornF = X (z, t) + Xo (2, t)r + X5(z, t)g +
X4 (z, t)gr where theX; are matrices whose elements are functionsafid:. As with the previous
examples these matrices are independent, of and their partial derivatives. Now setting the

coefficients of they, andr, terms to zero we obtain the following conditions,
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—a2X3q2 — a2X4q2T —f- i(01X2)x —I— i(a1X4)xq — KE — ial[Xl, Xg] — ial[Xl, X4]q
—ial[Xg, Xg]q — ial[X3, X4]q2 — QGQXQ’T‘(] — 2&2X4q27“ = O, (365)
—CL2X2T2 — a2X4r2q — i(a1X3)x — i(a1X4)xr — Kg + ial[Xl, Xg] —|— ial[Xl, X4]7"

+iay [Xo, Xa]r + ia;1 [Xo, Xy]r? — 2a9X3rq — 2a:X47%q = 0. (3.66)

In much the same way as for the NLS we denote the left-handd$i¢@.65) as¢(r, ¢) and the

left-hand side of (3.66) ag(r, ¢). For recovery ofK® we require that, = .. Computing¢, and

n, we find
éq = —2a2X3q — 2a2X4qr + i(a1X4)x — ial[Xl, X4] — ial[Xg, Xg] — 2iCL1[X3, X4]q
—2a9Xor — 4asXyqr, (3.67)
777« = —QCLQXQT‘ — 2@2X4T(] — i(a1X4)x —|— ial[Xl, X4] + ial[Xg, Xg] —+ 2ia1[X2, X4]7”
—2a9X3q — 4asXyrq. (3.68)

As with the NLS, consistency requirésandn, be equal. This is equivalent to the condition

21(@1X4)$ — 2l'a1[X1, X4] - 2ia1[X3, X4]q - 2ia1[X2, X4]T’ = 0. (369)

Since theX; do not depend on or r this previous condition requires
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2Z.(CL1X4>$ - 2ia1[X1, X4] = 0, (370)
—Qial[X;),, X4] = 0, (371)

—Q’éal[X27 X4] = 0. (372)

Once again in following with the standard NLS we will taKe = 0 in order to simplify computa-

tions. Therefore we have

Kg = —CLQXQTQ — Z.(CL1X3)$ —I— i(Ll[Xl, Xg} + ial[Xg, Xg]?“ — QGQX;J,TQ, (373)

Kg = —CZQXS(]Q + i(a1X2)x — ial[Xl, Xg] — ial[Xg, Xg]q — 2&2X27”q. (374)

Integrating the first equation with respectiggields

K° = —ayXor?q — i(a:1X3),q + ia1[X, Xa]q + a1 [Xo, Xs|rq — a9Xsq?r + K*(2,t,7).

Differentiating this equation with respect tcand requiring that it equal our previous expression

for K? we find thatK* must satisfy

K: = i(a1X2)x — ial[Xl, Xg]

From this it follows
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K* = i(a1X2)wT — ’iCLl [Xl, XQ]T + Xo(;ﬁ, t),

whereX, a matrix whose elements are functionscadnd¢ and which does not depend gy, or
their partial derivatives. Plugging this expression¥orinto our previous expression f@® we

obtain the following final expression fa’,

KO = i<a1X2)xT — i(CLng)xq — ial[Xl, Xz]r + i@l [Xl, Xg]q + ial[Xg, Xg]?”q — &QXQTQQ

—ayXsq°r + Xo(,t). (3.75)

Now plugging this and our expression fBinto equation (3.63) we get

Xy + X + X3¢ — i(a1Xo) g0m + 1(a1X3) 220 + i(a1 [ Xy, Xo])or — i(a1[Xy, X5])2¢
—i(a1[Xe, Xs])arq + (a2X0)or?q + (02X3)20°r — Koo 4 i[X1, (a1X),]r — [X1, (a1X5)4]g
—ia [Xy, [Xp, Xo]]r + ia1 [X1, [X1, X5]]q + ia1 [Xq, [Xo, Xs]Jrq — aa[X1, Xo]r?q — a2[Xq, Xs]¢r
+[X1, Xo] + i[Xa, (a1X2),]r* — i[Xa, (a1X3)4]rg — ia1[Xa, [X1, Xo]]r? + ia1[Xo, [X1, X3]]rg
tia; [Xy, [Xa, Xa]]r?q + [Xo, Xor + i[Xs, (a1X9).]rq — i[Xs, (a1X3),]¢% — ia1[Xs, [X1, Xa]]rq

+iar[Xs, [X1, Xa]]q? + ia1[Xs, [X, Xs)]¢*r + [X3, Xolg = 0. (3.76)

Since theX; are independent ofandq we equate the coefficients of the different powers ahd

q to zero thereby obtaining the following final constraints:
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O(].) . Xl,t - XO,:L’ + [Xl, Xo] = 07 (377)
O(q) + Xgp+i(a1X3)ee — i(ar[Xy, X)) — i[Xy, (01X3)] + dar [Xy, [Xy, X3]]
+[X3, Xo] =0, (3.78)

O(T) : X27t — i(a1X2)II + i(al[Xl, Xg])x + i[Xl, (CL1X2)$] — ial[Xl, [Xl, Xz]]

+[X,, Xo] = 0, (3.79)

O(rg) = —(a1[Xg, Xs])a + ar[Xy, [Xo, Xs]] = [Xg, (a1X5)e] + 01Xy, [Xy, X3]] + [Xs, (a1X3).]
—a[Xs, [X1, X)) = 0, (3.80)

O(®) : —[Xs, (1Xs),] + a1 [Xs, [X;, Xa]] = 0, (3.81)
O(r?) Xy, (a1Xa)a] — a1[Xy, X1, Xo]] = 0, (3.82)
O(r*q) = (a2X2)s — aa[Xy, Xo] + iay [Xy, [Xo, X3]] = 0, (3.83)
O(¢*r) : (a9X3)y — ao[Xy, Xs] + ia;[Xs, [Xy, X5]] = 0. (3.84)

We take the following forms for the generators

g1 g fi 0 0 f 0 0
XOZ ' ’ 7X1: ' aXQZ ’ 7X3: ) (385)

93 9a 0 f 0 0 fi O

where thef; andg; are yet to be determined functions:ofindt¢. Note that with this choice the
(3.81) and (3.82) equations are immediately satisfed. Fequations (3.78) and (3.79) we obtain

the following conditions,
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93fa = g2/3 =0, (3.86)

fae + (a1 fa)ee — ilar fa(fr = f2))a + (o — fi)(a1fa)e + iar fa(f1 — f2)?

+fi(9s —g91) =0, (3.87)
far — (a1 f3)ze — ilar f3(f1 — f2))a + (f2 = f1)(a1f3)e — a1 f3(f1 — f2)°
—f3(g4 — 1) = 0. (3.88)

To keepX; and X3 nonzero (and thus obtain nontrivial results) we forge= g3 = 0. The

condition given by equation (3.80) reduces to the singleagqo

(a1fsfa)z + fs(arfa)e + fa(arfs)e = 0. (3.89)

The final two conditions now yield the system

(a2f3>x - a2f3(f2 - fl) - 2ia1f3?f4 =0, (3-90)

(azfa)s + azfa(fo — f1) + 2ia f7 f3 = 0. (3.91)

At this point the resolution of the system given by equatig7) and (3.87) - (3.91) such that
the a; are real-valued functions requires eithfgr= 0 or f, = 0. Without loss of generality we

choosef; = 0 from which we obtain the new system of equations
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Jie — g1 = 0, (3.92)

fot = gz =0, (3.93)
far + (a1 fa)ae — iar falfr = f2))o + (f2 = fi) (a1 fa)e + iar fu(fr = f2)?

+fa(ga — 1) = 0, (3.94)
(azfa)z + azfa(fo — f1) = 0. (3.95)

Solving equations (3.92), (3.94) and (3.95) for g4, and f5, respectively, we obtain

fom ey [ s ), (3.97)
as fa
—103 f41pe + 10100 [40220 — 2101035, f1 + 2i0202,01, f1 — f1:03
i — 5faa1 102 f4a2 a2f1 504 22,01 f4 — f1:03 ta. (3.98)
2J4

whereFi(x) is an arbitrary function of. Plugging these expressions into equation (3.93) yields

the integrability condition

3 - - 2 2 3 2
Ay gz — 1At Q25,02 + 1022405 — 305025401, — 405,01 + D1 Q202,025 + 405, 0201,

—a%alagwm — 2a2wa§a1m =0. (3.99)

Since we require that the be real this equation splits into the conditions
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A2, — Aggpag = 0, (3.100)
5 3a3 4a3 5 4a3
501 zze — 90502521z — 405,01 + 9A10202, 02,5 + 405, 02015

—agalagmx - 2a2xaga1m =0. (3.101)

With the aid of MAPLE we find that the previous system is exastilvable with solution given by

a(z,t) = Fy(t)Fy(z) (cl+02x—cl/;2—zl§>+clx/%>, (3.102)
a2(I,t) = FQ(‘T)FZ&(t)u (3103)

whereF,, F3, andF} are arbitrary functions in their respective variables anaindc, are arbitrary

constants. The Lax pair for this system is then found to be

F = X, + Xy, (3.104)

G = ia:X3q, — i(a1X3).q + ia1[X1, X3]q — aaX3¢°r + Xo. (3.105)

Fifth-Order Korteweg-de-Vries Equation

In this section we derive the Lax pair and differential coaisits for the generalized fifth-order

variable-coefficient KdV. Following the procedure outlihearlier in the chapter we let
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:[F = IF(:E, t? u) and G = G<x7 t? u? uﬂ?? ufl‘fl'? u:):xx’ u:rx:vac)

PluggingF andG into equation (3.2) we obtain

Next, substituting for; in the previous expression using equation (2.66) we obkeareguation

2
Fy — Fy (010Ug0 + Q2Ugligs + 03Uty + 04Uy + 05Uags + G6Uazrze + G7U + gUy) — Gy

Uzzzx

SinceF andG do not depend onm,..., We can equate the coefficient of thg,.., term to zero.

This requires thaf' andG satisfy

G + CLGFU =0=>G= _QGFuuzxxa: + Ko(xa t) Uy, Uy, Ugy ua:a::l:)

Ugzzx

Updating equation (3.107) using the above expressioftfave obtain the equation

68



2
]Ft - IFu (aluuxa:ac T AUz Ugy + A3U Uy + A4UUL + A5Uggy + A7U + a8ua:) + a6xFuumxac1’

0 0 0 0 0
+a6]Fa:uuaca:J:a: - K;v - Kuua: - Kuwuxx - Kum; Ugzr — K Uzrzs + aﬁ]Fuuua:uzxx:c

Uzwx

—[F, Fu)astszze + [F, K% = 0. (3.108)

SincelF andK° do not depend on.,, we can equate the coefficient of the,,, term to zero.

This requires thak® satisfies

a6:Fy + agFpy + agFuuty, — Kgm — [F,F,Jag = 0. (3.109)

Integrating with respect to,., and solving fork® we obtain

KO = a6xIFuu:cxx + aGquumcx + aﬁFuuua:uxx:t - [Fa ]Fu]aﬁuxxx + Kl (.T, ta U, Uy, umx) (3110)

Updating equation (3.108) by plugging in our expressioriktme obtain the equation
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IE‘It - IE‘u (aluua}xw + QUzUyy + a'3u2ua; + AUy + A5Ugge + a7U + CLSUJ:) - anZ’]Fuua:acJ:
_QQGxFaEuua}xw - afG]F:ca:uu:cazm - a6a:IFuou:uxwx - aﬁFa:uuuzux:cJ: + [Fma Fu]aﬁux:px

+UF7 ]F:tu]afiux:cm + [Fa Fu]aﬁxux:ca; - K; - aﬁzFuuuzuxac:c - (IGIquuuqu:xz - qulux
_GGIFuuuuiumx + [Fa Fuu]aéiu:cuxmc - QGFuuuz‘xux:c:c - quu Ugy — KtLluxxx + [IF, Kl]

+agy []Fa Fu]uxx:c + ag [Fa qu]uxx:c + ag [Fa Fuu]urumcx - [Fa []F7 ]Fu”a6u:r:;m: =0. (3111)

SinceF andK! do not depend on,,, we can equate the coefficient of thg,, term to zero. This

requires thaK! satisfies the equation

_Fu(alu + a5) - a6xxIFu - Qaﬁxeu - QGFCEIU - a6xFuuux - aﬁquuux
+[Fx> ]Fu]aﬁ + [Fa Fa:u]a6 + []F7 Fu]a(i:(; - GGCEFUUU/I - a6quuux - GGFuuuui
+[F7 Fuu]at‘)uac - GGFuuuzx - Kilﬁzz + A6y []Fa Fu] + Qe []F7 ]qu] + Qg [Fa Fuu}u:r

—[F, [F,F,]]as = 0. (3.112)

Integrating with respect ta,, and solving forfK! and collecting like terms we have

Kl - _Fu(alu + a5)u$$ - (GGFu)mwuxm - 2(a6Fuu)a¢u$uzm + 2(a6[F7 Fu])mum:c
1
_GGFuuuuiuzx + 26L6 [F7 Fuu]uzua:a: - EQGFuuuigg — Qg [FLU) Fu]u;Uz

—ag[F, [F,Fy]|uge + K3 (2, t, u, uy). (3.113)
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Plugging the expression fé' into equation (3.111) and simplifying a little bit we obtdlive large

equation

F; — Fou(agUptipy + asuuy, + agut, + azu + agug) + (a1Fy)ptitiye + (a5Fy ) 2tas
+(a6F ) saatize + 2(a6F uu)satictize — (a6[F, Ful)oatior + (a6Fuwun)oUatian
+%(a6Fuu)xuix — ([F, (a6Fw)a))otize + (a6[F, [F, Fu]])aticr — K3 + Fuu@ ttiptizg
w01 U tgr + Fuy@statos + (a6Fuw)zotiotiar + 2(a6Fwun)oUatis + A6F s ten
—a6[F o, Fuuudtizy — a6[F, Fyu| U tes + gaaFuuUUixux — [Fu, (a6F0) o) tigtag
—2[F, (a6F uu) o) itz — 6[Fu, Fuu]tatis — ag[F, Fuyu]ti e, + ag[Fu, [F, Fy)ugte,
el [F, Funl bt — K+ 2a0F ), — SaolF, i, — K2 s

—a5[F, Fyluge — [F, (a6F0)ea|tize — [F; (@6Fuu)o]Uatice + [F, (a6]F, Fu]) o] tizs
—ag[F, FuuaU2tgy + 2a6[F, [F, Fuu]]totize + [F, [F, (a6Fu)e)]tee — a1[F, Fylttty,

—ag[F, [F, [F, Fo)])tee — 3(a6[F, Fuu))stiptize + [F, K] = 0. (3.114)

SinceK? andF do not depend on,, we can start by setting the coefficients of tffe and theu,,
terms to zero. Note the difference here to that of the prevsteps. Here we have multiple powers

of u,, present in equation (3.114). Setting théu?_) term to zero we obtain the condition

3 5 3
§(a6ﬁ7‘uu)aC + §a6Fuuuuz — §a6[F, Fu.] =0. (3.115)

SincelF does not depend om, we must additionally require that the coefficient of theterm in

this previous expression is zero. This is equivaleri gatisfying
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1
Fuuu =0=F= Xl(x,t) + XQ(SE,t)U + §X3(x,t)u2,

where theX; are matrices whose elements are functions ahd¢ and do not depend om or its

partial derivatives. Plugging this expressionfointo equation (3.115) we obtain the condition

Since theX; do not depend on we can set the coefficient of theterm to zero. That is, we require

thatX, andX3; commute. We find now that equation (3.116) reduces to

(a6X3)e — ag[Xy, X3] = 0. (3.117)

For ease of computation and in order to immediately satigiyagon (3.117) we seX; = 0.

Plugging our expression fdt into equation (3.114) we obtain the large equation
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Xy 4+ Xou — Xo(agugty, + asu*u, + aquuy, + azu + agty) + (a1Xe) Uty + (a5X9) 2 Usy
+(a6X2) 2aatlor — (a6[X1, Xo])natiss — K2 + Xo@1taUer — [Xa, (a6X2) o] Ualizg

— (X4, (a6X2) o)) 2tize — ([Xo, (@6X2)2])ettlzy + (a6[X1, [Xy, Xo]])atize + (a6[Xe, [X1, Xo]]) 2ttty
Ky — Kty — a1 [Xy, XoJutiy, + ag[Xo, [Xi, Xo]|uptier + [Xo, (a6[X1, Xa]) o utiy,

—a5[Xy, XoJtge — [X1, (06X2) 2] tee — [Xo, (06X9) 2] Utz + [X1, (a6[X1, Xo]) 2] ties

+[X1, [Xy, (a6X2) o] |tar + [Xi1, [Xo, (a6X2)o]]utier + [Xo, X1, (a6Xs)s]Jutter + [X1, K?]

—CL6[X1, [Xh [Xl, XZ]Huxm - GG[Xl, [Xz, [Xb XQ]HUUm - a6[X27 [Xh [Xh XQH]UUm

+[X2, [Xg, (CL6X2)IHU2U$$ — a6[X2, [Xg, [Xl, Xg]]]’uQUmI + [Xg, KZ]U, = O (3118)

Again using the fact that thi; andK? do not depend on,, we can set the coefficient of the,

term in equation (3.118) to zero. This requires

(a6X2)zae — (a6[X1, Xo))zz + a1Xou, — [Xo, (a6X2) U, — aaXou,

—([X41, (a6X2)a])e — ([X2, (a6X2)o])ot + (a6[X1, [X1, X))o + (as[Xa, [X1, Xo]])zu
—Kzz — a1[Xy, Xolu + ag[Xo, [X1, Xo]Ju, + [Xo, (a6[X1, Xo])z]u + (a5X2),
—a5[Xy, Xo] = [X1, (06X2) 0] — [Xa2, (a6X2)ealu + [X1, (a6[X1, Xs])o]

+[X1, [Xq, (a6X2),]] + [X1, [Xo, (a6X2)]Ju + [Xo, [Xy, (a6Xs).|Ju + (a1X2),u
—ag[Xy, [Xy, [X0, Xo]]] — a6[X, [Xo, [X, Xo][Ju — a6[Xs, [Xq, X, X Ju

+[Xy, [Xy, (a6Xa)s]Ju? — ag[Xy, [Xa, [Xy, Xo]JJu? = 0. (3.119)
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Integrating equation (3.119) with respectitpand solving forK? we find

K2

(6% asetts + %0082 — 2 [, (K)o — %@Xgui + (a6 [Xa, [X1, Xl Jutitiy
—(a6[X1, Xo])zatte — ([X1, (€6X2)0])atte — ([Xe2, (a6X2)s])suus + (as[X1, [X1, Xo]])2us
—a, [Xy, XoJuu, + %aﬁ[xz, Xy, Xo]Ju2 + [Xo, (as[X1, Xo])oJuu, + (a1Xg)uu,
—as[Xy, XoJu, — [Xi, (a6X2)enlts — [Xo, (a6X2)se|uus + [Xi, (a6[Xy, Xo])]u,

+[Xy, X1, (06X2)0]Jue + [X1, [Xy, (a6X2)o]Juus + [Xo, [Xi, (a6X2)o]Juus + (a5X2)0us
—ag[X1, [X1, [X1, Xa]]Jue — a[Xu, [Xo, [X1, Xo]Jutte — ag[Xa, [X1, [X1, Xo]]Jutty

+[X27 [Xg, (G6X2)$]]U2U$ — (16[X2, [Xg, [Xl, XQ]HUQUI + Kg(ZE, t, U) (3120)

It is helpful at this stage to define the following new matsice

Xy =X, Xy], X5 =[X1,Xy], Xp=[Xy,X,] (3.121)

X7 = [X17X5]7 XS = [X27X5]7 XQ = [XhXG]a XlO == [XQaX6] (3122)

for clarity and in order to reduce the size of the equation®iiow. Plugging the expression for

K? into equation (3.118) we obtain the updated equation
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Xy + Xou — Xg(agugux + aquu, + azu + aguy) — (aGXG)xui + a1X4ui

(@6 et — (@ Ka)u + (K, (a6Ko)u]) o + 3 (as%0)

H(a6X4) zzatle + (X1, (06X2)2)) 2otz + ([Xo, (06X2)2])zztitty — (06Xs5)2Us
+(a1Xyg)puu, — %(aﬁXe)IU?g — ([Xe, (a6X4)])zunty — (a5X2)eptts — (1Xs)pputy
+(a5Xy) 2tz + ([X1, (a6X2) 2] atle + ([Xo, (06X2) o)) vt — ([Xi, (a6X4)s]) 2 Ua
—([X1, [X4, (a6X2)o]])ave — (X1, [Xa, (06X2)a]])auts — ([Xo, X1, (a6X2)o]])avtis
—([X, [Xg, (a6X2) 2] et us + (a6X10) U, — K2 + ([Xo, (a6Xa)e]) w2 + asXou?
—[Xy, (asXy)]u2 + [Xo, (a6Xa) o] + asXgu? + (a6Xo) Uty + (a6Xg) Uty

—[X4, [Xy, (agXa).]Jui — [Xo, [X1, (a6Xa)o]]us — (a1X2)2u7 — (46Xe) zatitts

1
_2[X27 [Xg, (a6X2)z]]uui + 20/6X10UU326 — Kium + [Xl, <G6X5)Z]U@ — §CLQX4'LLD2U
1 1
+[X1, (06X2) e |t + §CL1X4U§ - §[X1, [Xa, (a6Xa)q]]ul + [X1, (a6Xe)o]utsy

— X1, (a6Xa)za]us — X1, (X1, (a6X2)])a]ue — [Xi, ([Xeo, (a6X2),])2]uu,

— a1 Xsuu, + %aﬁxgug + X, [Xa, (a6Xa)o]Jutte + [X1, (a5X2)o]te + (a6Xr)otta
—asXsug — [Xy, [Xy, (a6Xs2)aa]Jus — [Xi, [Xo, (a6X2)aa]Juvs + (X1, [Xy, (a6X4)a]]us
X1, Xy, [Xy, (a6Xo)]JJus + (X, [Xy, [Xo, (a6Xo)o]Juus + [Xq, [Xo, Xy, (a6X2),]]Juu,
—ag[ X1, Xt — ag[X1, XoJutz — ag[Xy, XsJuts + [Xa, [X1, (a6X0)e]Jutie

+[X4, Xy, [Xo, (a6Xe)o]|Julu, — ag[Xy, Xio]u?u, + [Xi, K?] + [Xy, (a:1X2)Juu,

o, (06 ) et — 5 5, (Ko, (063t + [, (a6t + (K, (063 ) e
— (X, (a6Xy)elutty — [Xo, (X, (06Xa)a])o ut, — [Xo, ([Xo, (aXe).])e]u’ts,

1
—CL1X6U2U$ + §G6X10UU§ + [Xg, [Xg, (CLGX4)33]]U2U1~ + [Xg, (a5X2)z]uuz

—asXeuu, — [Xo, [X1, (a6Xa) za) vty — [Xa, [Xo, (a6X2)pe)Juu, — a6[Xa, Xg]uu,
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+[Xo, [Xi, [X1, (a6Xa )] Jur, + [Xo, [X1, [Xa, (a6Xso)]|Juu, + [Xa, (a1Xg).]uu,
—I—[Xm [Xz, [Xl, (G’GXZ)CE]HU2U’$ — Gg [Xz, X7]qu — Qg [Xz, Xg]uzuz — Qg [XQ, X10]U3Um

+[Xo, [Xy, [Xg, (a6Xa)]]|Jutu, + [Xo, K*|u = 0. (3.123)

Now sinceK? and theX; do not depend omn, we can set the coefficient of thé term to zero in

equation (3.123). This is equivalent to the requiremerit tha

3([X2, (a(;XQ)x])z — 3(@1X2)x + (aQXQ)x — 3(a6X6)x + 3G1X4 + 3CLGX9
—3[X1, [Xy, (a6X2):]] — 2[Xo, [Xy, (a6X2).]] — 2[Xy, (a6X4):] + 2[X2, (€6X2) 4]

—CL2X4 + 2a6X8 + 5&6X10 — 5[X2, [Xg, (UJGX2)xH =0. (3124)

Further since we know that th€; do not depend om we can decouple this condition into the

system

3([Xsg, (a6X2)s])s — 3(a1Xs)y + (a2Xs3), — 3(a6Xs)s + 301Xy + 3a6Xo
—3[X4, [X, (a6X2).]] — 2[Xy, [X1, (a6X2),]] — 2[Xs, (a6Xy),] + 2[Xy, (a6X2) 4z
—a2X4 —+ 2a6X8 = 0, (3125)

G6X10 - [Xg, [Xz, (G'6X2)x]] =0. (3126)
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Taking these conditions into account and once again notiagdct thatk® and theX; do not
depend on:,, we can simplify and equate the coefficient of thean equation (3.123) to zero. This

results in the condition

—Xo(asu® + asu + ag) — (46X2)paes — K + [X1, (a6X5)]

+(a6X4) a0z + ([X1, (a6X2)0])ze + ([X2, (06X2)a])eatt — (a6X5) 0z

HarXa)zu — (X, (a6Xa)e])or — (a5X2)se — (01X2)ppu — a1 Xeu”

+(a5X4)z + (X1, (06X2)a0])o + (X2, (a6X2)a])av — ([X3, (06X4)a])a

— (X1, Xy, (a6X2)a]])z — (X1, [X, (06X2)o]])ou — ([X2, X1, (a6X2)z]])au
+(a6Xg)u + (a6Xs)su — (a6Xe) st + [Xi1, (6X2)sza] + (X1, (a6X6)s]u

—[X1, (6X4)za] — [Xy, ([X3, (06X2)a])a] — [Xy, ([X2, (06X2)a])a]u

—axXsu + [Xy, (X, (a6Xa)alJu + (X1, (a5Xe)a] + (a6X7)s + [Xz, [Xo, (a6Xa)a]Ju?
—a5X5 — [X4, [Xy, (06X2)ae]] — [X1, [Xo, (06X2)ae]]u + [X1, [X1, (a6X4).]]

X0, [Xq, (X, (a6X):]]] + (X, [Xq, (X, (asXo)e]]Ju + [Xy, [Xo, [Xy, (a6X2).]]]u
—a[X1, X7] — a6[Xy, Xo|u — ag[Xy, Xglu + [Xy, [Xy, (a6Xy).]]u

+[Xg, (a6X0) zze]t + [Xo, (a6Xe6)2]u® + [Xo, (a6Xs)Ju + [X1, (a:X2),]u

—[Xs, (a6Xa)aalu — [Xo, (X1, (a6Xo)a])a]u — [Xo, ([Xa, (a6X2)])o]u?

—asXou — [Xa, [Xi1, (a6Xo)zallu — [Xa, [Xz, (a6Xz)s0]Ju” + [Xa, (a5X2).]u

+[Xo, [Xy, Xy, (a6Xa)a]Ju + [Xe, [X1, [Xe, (a6Xs)o]]Ju” + [Xa, (a1X2)s]u”

+[Xy, [Xo, [X1, (a6Xs))]]Ju? — a6[Xo, Xr|u — a6[Xy, Xo]u? — ag[Xy, XgJu? = 0. (3.127)

Integrating with respect te and solving fork? in equation (3.127) we find
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1 1 1
K3 = —§CL3X2U3 — §G4X2U2 — CLngU — <a6X2)xa:a:xu + [Xl, (CLGXE'))x]’LL — 5(16[X2, X7]U2

+(a6X4)xzzu + ([Xh (a6X2>x])xzu + %([X% (QGXZ)x])w:vu2 - (a6X5>xwu

1 o 1 2 1 o 1 3
§(a1X4)zU - 5([X2, (a6X4)x])xu - (%Xz)mu - §(a1X2)mU - §G1X6U
+H(asXy)u + (X1, (a6X2)ga]) st + %([Xm (a6X2)wx]>zu2 — (X4, (a6X4)z])zu

+

(1%, [, (a0 )ul]at — 5 (K, (Ko, (asXolu et — (K, (K0, (a6 )u])on?

1 , 1 , 1 5 1 2
+§(a6X9)zU + §(GGX8);EU — §(G6X6)w$u —:[Xh (a6X2)zaa]u + §[X17 (a6Xg)z]u

— X4, (@6X4g)aa]u — [Xy, ([Xy, (a6X2)2])e]u — §[X1, (X2, (a6X2)s])lu? — %MXSUQ

+§[X1> Xy, (a6Xa)]Ju” + [Xi, (a5Xo)o]u + (a6X7)ou + %[X% Xy, (aX4)]Ju’

—CL5X5U — [Xl, [Xl, (a6X2)m]]u — %[Xl, [XQ, (Cl(;Xg)mx]]’U/z + [Xl, [Xl, (CL6X4)$HU
0, 50, 6, (oo lal -+ 5[5, K0, [, (0ol + 5[4, (Ko, [, (06X o
o[, Xl — SoalXa, Xolu? = SalXa, Xlu? + 5[, %1, (asX).u?

1 1 ) 1 1
+§[X2> (G6X2)xm]u2 + g[Xz, (G‘GXG)CE]U/S + §[X2, (G6X5)x]U2 + §[X1> (G1X2)az]u2

5, (X )aei = 5[0, (X1, (@6X)a))alu? = 5[5, (Ko, (a6Xa)aDule?
~gasKa? — 5, 1K, (a%a)ealu? — 31K, (Ko, (a6 el + 5[, (a5%0).1”
e, [, K0, CouXa)ol ] + 50, 60, (o, (0¥l + 506, (@) o

1 1 1
+31Xe, [Xy, [Xy, (a6Xs)]Ju’ — §a6[X2>X9]U3 - gaﬁ[Xme}us +Xo(z,t).  (3.128)

whereX, is a matrix whose elements are functionsrodnd¢ and does not depend anor its
partial derivatives. Next, we update equation (3.123) ligging in the expression fd®. Upon
doing this we will have a rather large expression which isimaf more than an algebraic equation

in u. In this final step, as th¥; do not depend on, we set the coefficients of the different powers
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of w in this last, lengthy expression to zero. At the differerdess ofu we find the following

conditions
0(1) . Xl,t — XO,x -+ [Xl, Xo] = O, (3129)
Ou) + [Xg,Xo] — ae[X, [Xy, X7]] + [Xq, [Xy, [X1, (a6Xa)2]]] + X1, [Xy, [Xy, [Xp, (a6X2).]]]]

+[X1, [X, (a5X0)0]] — (X, (X, [X, (06X )eal]] + X0, (06X7)a] — (X, X, (a6X4) 0]
—as X7 — [Xo, [Xo, (X, (a6X2)z])a]] + X0, X5, (06X2)oaa]] — [X, (XK1, (a6X4)a])a]

— X1, (X4, [X, (a6X2)0]])a] + X1, (a5Xa)a] + [Xy, (X1, (06X2)a0])a] — (X4, (a5X2)40]

— X4, (6X5)a0] + (X1, (a6X4)awa] + X1, (X1, (06X2)0])za] — asXa — [X1, (06X2)00a]
+IX0, [X5, (a6X5)o]] + (a6 X, X))o — (X5, [Xy, [Xy, (a6X2)a]]])e — (X, [Xy, (a6X4)2]])a
+(asXa)e + (X1, X1, (06X2)00]])e — (X1, (05X2)2])e — (a6X7)00 + (X1, (06X4)a])e
(X1, (X1, (a6Xo)a])a])e — (K1, (@6X2)aze])x + (K1, [Xi, (a6X2)2]])ze + (a5X5),

+Xap — ([X1, (a6X2)aa])oz — (a5XK4)ze + (05X2) a0z + (a6X5)z0e — ([X1, (a6X2)s])z0a

— (X4, (@6X5)2))2 + (a6X2) sozza — (a6X4) zzee — 07Xo + ([X4, (a6X4)z])ze = 0, (3.130)
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. —2a5X8 — QGG[XQ, [Xl, X7H —f- Q[Xg, [Xl, [Xl, [Xl, (GGXQ)I]”] —f- 2[X2, [Xl, [Xh (a6X4)xH]

—2[Xg, [X1, [X1, (a6X2)za]]] + 2[Xa, [X1, (a5X2)]] — 2[Xg, [X1, ([Xy, (a6X2)2])z]] — asXy

+2[Xy, (a6X7)s] — 2[Xg, [X1, (a6X4)zz]] + 2[Xo, [Xi, (a6X2)zaz]] — 2[X2, ([X1, (a6X4)z])s]

PA

+2 29 (a6X4)xJ}a}] + 2[X27 ([Xb (a6X2>JJDxx] - 2[X27 (a6X2):L‘xmc] + 2[X2; [Xh (G’GXE))IH

[
—2[X, ([Xy, [Xi, (@6X2)2]])z] + 2[Xs, (a5Xa)s] + 2[Xs, ([Xi, (€6X2)2a])a] — 2[Xs, (45X2) 0]
—2[Xs, (46X )ae] — a5Xo + [Xy, [Xy, (a5X0).]] 4 X5, [Xo, [Xy, [Xy, (a6X2).]]]]

— X0, [Xo, X5, (06Xa)eal]] + [Xa, [Xy, (a1Xo)a]] = X5, [Xo, (X, (a6X2)a])a]]

+[X1, [Xq, [Xq, [Xa, (a6Xe) )] — [Xy, [Xa, (a6Xy)za]] + [Xq, [Xo, [X1, (a6X4)2]]]

—a6 X1, [X, Xo]] + [X1, [Xe, (a6X2)aaa]] + X1, X1, [Xo, X4, (a6X2)o]]]

X4, (X, (a6Xs)o]] — [X1, [Xy, [X, (a6X2)ea]]] — (X1, [X1, (X2, (a6X2)0])2]]

—ag X1, [Xo, Xs]] + [X1, [Xy, [Xg, (06X4)s]]] — ar X7 + [X4, [X, (a6X6).]]

— X0, (X, [Xy, (a6Xa)o]])a] + [X1, (06X )o] 4 [X1, (a6Xs)e] — [X1, (06X6) 0]

— X0, (X3, (X, (a6Xa)o]])a] + [X1, (X, (06Xs)0a])e] — X1, (X2, (a6X4)z])a]

=X, (01X)ae] + (X1, (a1X4)o] 4 [X, (X2, (06X2)z])aa] — a[X1, [Xo, X7]]

—([X2, (a5X2)e])e — ([X2, [Xy, [X4, (a6X2)a]]])e + (X2, [X1, (a6X2)00]])e

+(a5Xe)s + ([Xo, (X1, (a6X2)0))e])e — (X2, (a6X5)2])z — (X1, (@1X2)4])s

+([X2, (a6X1)as])z + (a6[X1, Xo])z + (a6[X1, X))z — (X, [Xi, (a6X4)s]])a

— (X2, (a6X2)a0a])e — (X1, [X1, [Xa, (06X2)a]]])e — (X1, [Xo, (X4, (a6X2)o]]])e

(X4, X, (06X2)ea]])e = (X1, [Xo, (a6Xa)a]])a + (X1, (X2, (06X2)z])z])a

+(a1Xs5)0 — (X5, (a6X6)o])e — (06X0)ea — (a6Xs)aa + ([X1, [Xz, (06X2)0]])aa

+(a6X6) a0 + ([X2, [X1, (a6X2)s]])ae — ([X2, (a6X2)02])ae + ([X2, (a6X4)s])za

+(G1X2)xmy - (G1X4)zx - ([X27 (a6X2)x])zxx + (a6[X27 X7])x + (a4X2)x = 07 (3131)
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O(u?) :

b —2([Xy, (a6Xe)])x + 3[Xa, [Xa, [Xy, [Xy, (a6X2)]]]] — 3[Xy, [Xo, [Xi, (46X2)..]]]

+2(a3Xs)s — 3[Xy, [Xy, (06X4)aa]] + 3[Xz, [Xa, (a6X5),]] + 3[Xa, [X1, (a1X3)4]]
—3[Xa, [Xe, (X1, (a6X2)e])a]] — 3a6[Xe, [X1, Xo] + 3[X, [Xy, [Xo, [Xy, (a6Xe)]]]]
—3ag[Xs, [X1, Xs]] + 3[Xq, [Xo, [X4, (a6X4)o]]] + 3[Xa, X4, [Xy, [Xs, (a6X2)s]]]
+3[Xa, [Xa, (a6X2)aaa]] — 3[Xa, [Xi, [Xy, (a6X2)a0]]] — 3[Xa, [Xy, ([X, (a6X2)s])]]

—3a1Xg + 3[Xo, [Xy, [Xo, (a6X4).]]] + 3[Xs, [X1, (a6X6):]] — 3[Xa, (46X6) ]

(a6Xs)o] = 3[Xs, ([Xg, (06X4)a])a] — 3a6[Xs, [Xo, X7]] — 2a6[X,, [Xg, Xo]]
Xy, [Xg, (02X)a]] + 2[X4, [Xy, [X, [Xy, (a6X2)a]]]] — 2[X4, [X, (X, (a6X2).])a]]
Xy, Xy, [Xy, [Xa, (a6Xa)o]]l] = 20X, [Xa, [Xs, (a6Xs)ae]]] — 2a6[X, [Xo, X4]

X, (a6Xe)z]] + 2[X4, [X, [X, (a6Xa)o]]] — 201X — 2([Xy, (01X3)q])a
—2a3Xy + 2(a6[Xs, Xol)a + 2(as[Xs, Xs])o — 2([Xs, [Xy, [Xs, (a6X2)a]]])e

—2([Xy, [X, [X4, (a6Xa)o]])e + 2([Xe, [X, (06X2)al])z + 2([X2, (X2, (a6X2)e])a])x

—2([Xy, [Xo, (a6X4):]])z + 2(a1X6), = 0, (3.132)

[Xa, [Xy, [Xy, [X1, (a6X2).]]] — as[Xa, [Xg, Xs]] + [Xa, [Xa, [Xy, [Xy, (a6Xz).]]]]
—ag[Xy, [Xy, Xo]| — [Xo, [X, [Xy, (a6Xa)z]]] — [Xo, [X, ([Xg, (a6X2).])]

+[Xs, [Xs, (a6Xe)a]] + X, [Xs, [Xs, (a6Xy).]]] = 0. (3.133)
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Note that if we decouple equation (3.125) into the followihgee conditions

(X, (a6X2)z]) e — (a6Xg), + asXg — [X1, [Xo, (a6X2),]] =0, (3.134)
Xy, [Xy, (a6Xs)s]] + [Xo, (a6Xy)2] — [Xo, (a6X2)z] — aXs = 0, (3.135)
((CLQ — 3a1)X2)z - (CLQ — 3(11)X4 = 0, (3136)

then theO(u?) equation is identically satisfied. To reduce the compleaftthe O(u*) equation

we can decouple it into the following two equations

[Xa, [Xp, [Xy, (@6X2).]]] — [Xe, [X1, (a6Xa)we]] — [Xo, (a6X4)za] + [Xo, (6X5)]
+[1X, (a1 Xy) ] — [Xa, (X1, (a6X2)s])a] + [Xa, [Xi, (a6Xa)e]] + [Xo, (06X2) raz]
—1X5 — (1X9) e + (1Xy), — a6[Xo, X7] =0, (3.137)

(CL3X2)33 + [Xl, [Xg, (CL1X2)$H — CL1X9 — ([Xg, (CL1X2)33])$ — CL3X4 -+ (CL1§§6>27 = q3138)

From this last condition, we can use equations (3.134)3@.10 reduce th&(u?) condition to

the following equation
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—a5Xs — ag[Xa, [Xy, Xr]] + [Xo, [Xy, [Xy, [Xy, (a6Xa)o]]]] + [Xg, (X4, [Xy, (a6Xs).]]]
—[Xa, [X4, X4, (a6Xa)ae]l] + [Xo, [Xo, (a5Xo)a]] = [Xo, [Xo, (X4, (a6X2)e])o]]

X, (06X7)] — (X2, [X4, (a6Xa)aal] + (X2, [X5, (06X 2)aa]] — [Xo, (K1, (06X4)a])a]
=X, (X4, [Xq, (a6Xo)a]])] + [X2, (05Xa)a] + [Xo, (X1, (a6X2)za])a] — [Xo, (a5X2)za]
+[Xa, (a6X4)awa] + [Xo, (X1, (06X2)0])aa] — [X2, (a6X2)ana] + [Xe2, [X1, (a6X5)s]]

(
Ko, (a6 )os] — 5550 + 3 K, (Ko, (05%0)a]] — (Ko, (a5Xo)al)s + 5(asKo)

1 1
—§CL4X4 + §(G4X2)$ = 0. (3139)

Decoupling this equation allows for the simplification oétf () equation. Thus we write the

previous condition as the following system of equations

—[X1, (a6Xy)a] — [Xi, [Xi, (a6X2)]] + asXy + [Xq, (06X2) 2] — (a5X2),

+(a6X4)zz + (X1, (a6X2)2])e — (46X2) g0z — (a6X5), = 0, (3.140)

1
—CL5X9 + [le [X27 <a5X2)x]] - ([X27 <a5X2)x])w + (a5X6)w - —CL4X4 + §<G4X2)x 2630141)
Using the previous system tli&(«) equation is reduced to the following, simpler equation
Xoy + [Xo, Xo] — asXy + (asXs), — arXs = 0. (3.142)

We therefore find that the final, reduced constraints arendiyeequations (3.126), (3.134)-(3.138)
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and (3.140)-(3.142). In order to satisfy these constrauatbegin with the following forms for our

generators,

X(): gl(xvt) 92(x7t) ,Xlz 0 fl(x7t) 7X2: 0 f3(x7t)

g3(z,t) ga(x,t) fo(z, 1) 0 fa(z, 1) 0

To get more general results we will assume# 3a;. Note that had we instead opted for the forms

gl(x’t) 912(17’75) X fl(xvt) f3(£(],t) X f2(xvt) f4(l’,t)

XOZ 5 1= 5 2 = )

923(5C7t> g34<£lj',t) f5($,t) f7<£lj',t) fﬁ(xvt) fg(ill‘,t)

we would obtain an equivalent system to that obtained in [2hE &dditional unknown functions
which appear in Khawaja's method [21] can be introduced with theppr substitutions via their

functional dependence on the twelve unknown functions givevea

Taking the naive approach of beginning with the smaller @t first we begin with equation

(3.136) which, utilizing the given forms fa£,, X;, andX,, becomes

(az = 3a1)(fifs — fof3) =0, (3.143)
((a2 —3a1)f;)e =0, j=34. (3.144)

Solving this system fof,, f5 and f, in this previous system yields
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fslz ) = as(x,t) — a1 (z,t)’ (3.145)
_ Fy(t)

flat) = ot (3.146)

bzt = D (xﬁ’;gg‘*(t) , (3.147)

(3.148)

where[ 4(t) are arbitrary functions aof With these choices we've elected to satiXfy= 0 rather
thanay; = 3a;. This will greatly reduce the complexity of the remaininghddgions while allowing
for the possibility of a less trivial relation between anda,. Looking next at equation (3.142)

with X, = 0 we obtain the system

.
el gy (3.149)
as — 3a,
F. F.
393 492 _ 0. (3.150)

Solving the second equation fgy yields

F4(t)92 (Iv t)

g3 = 20

Considering next thé&(1) equation, we obtain the following system of equations
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91z = G4z = O, (3151)
fit — gox + f1(9a — g1) = 0, (3.152)

Fy(Fufi)e — fiFuF3 — oo FuFs + F3Fyf1(91 — g4) = 0. (3.153)

It follows that we must have, (z,t) = G1(t) andgy(z,t) = G4(t) whereG, andG, are arbitrary
functions oft. Since equations (3.152) and (3.153) do not depend on;ttieey will not affect
the conditions on the; required for Lax-integrability of (2.66). On the other hathé remaining
conditions have been reduced to conditions involving stiey:; and the previously introduced

arbitrary functions of. The remaining conditions are given by

( @ ) n ( a6 ) —0, (3.154)

az —3ay /), as —3ay ) ..

( 4 ) —0, (3.155)
a9 — 3@1 =

( o ) —0, (3.156)
ag — 3@1 .

< 4 ) —0. (3.157)
a9 — 3&1 z

One can easily solve the system of equations given by emsa8149), (3.154)-(3.157) yielding
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Fy = ¢ Fye?) (Ga-Gudt (3.158)

g2 = /(f1t+f1(G4—G1))d$+F1o (3.159)
. (3F1 —1- 3F2[E)CL1
az = For B, (3.160)
o Fsa,
as = Fyr— Iy (3.161)
F6a1
= —) 3.162
“ FQZE' — Fl ( )

Fr + Fyx + Fya? [
ag = (Fr + Fyx + Fox )(Il—// ol (3.163)

Fox — Fy as(z,t) — 3ay(z,t)

a; = a2 — 3m ( £y ) + (a2 — 3a1) ( o > + Gy — Gy (3.164)
t X

F3 g — 3@1 a9 — 3(11

where F5_y, are arbitrary functions of. Note thata,, a5 andag have no restrictions beyond the
appropriate differentiability and integrability conditis. The Lax pair for the generalized variable-
coefficient KdV equation with the previous integrabilitynzbtions on the variable coefficients is

therefore given by

F = X+ Xou, (3.165)
G - _a6X2umzxx + (QGXZ)xummz - X2(alu + a5>uxx - (a6X2)xmumx - CL8§§2u
1 1 1 1
+§G1X2U§ - §CL2X2U3 + (Q1X2)quz — §G3X2u3 — §G4X2U2 + XO. (3166)
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Modified Korteweg-de-Vries Equation

In this section we derive the Lax pair and differential coaisits for the first equation in the
variable-coefficient mKdV hierarchy. Following the procee outlined at the beginning of the

chapter we let

F=TF(z,t,u) and G = G(z,t, u, Uy, Uzy).

PluggingF andG into equation (3.2) we obtain

Fy + Fovy — Gy — Gyup — Gy vpr — Gy, Vpue + [F, G] = 0. (3.167)

Vzzx

Using equation (2.74) to substitute farin the equation given above we have

F; — Gy — (Gy + boFvH)v, — Gy, Ve — (G, + b1Fy)Vgse + [F,G] = 0. (3.168)

Vzz

SinceFF andG do not depend om,,, we must set the coefficient of the,, term to zero from

which we find thaff andG must satisfy

Gy, + 0iF, = 0= G = —b;F,v, + KO(2,t,v,0,).

Vzzx
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Substituting this expression f@ into equation (3.168) we obtain the updated equation

Ft + (bva)zvxa: - Kg + bvavvaxx - Kovx - b2]FvUZUm - ngvzx - bl []Fa Fv]vzx + [Fa KO] = 0.

v

(3.169)

SincelF andK" do not depend on,, we can equate the coefficient of thg, term to zero which

is equivalent to the requirement

(bva)x + bl]Fvv'Uz - Kgx - bl []Fv IFU] =0. (3170)

Integrating with respect to, and solving forK® we have

1
K® = (b,F,),v, + §bl]vafc — 0 [F,F)v, + K'(z,t,0).

Substituting this expression & into equation (3.169) we have the following updated equatio

1
Ft - (bl]F’U)ZBJTU.T - (blF’UU>1‘U§ + (bl []F, Fv]).tv:v - Ki - (bvav)xvi - §b1]FvUvU§

1

2
1

—Klv, + bi[F, Fyv? — boFv?v, + [F, (01F,)]v, + 5b1 [F,Fy]v — b[F, [F,F,]]v,

+[F,K'] = 0. (3.171)

SinceF andK' do not depend om, we can equate the coefficients of the v2 andv? terms to

zero from which we obtain the following system,
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Fopw = 0, (3172)
1 1
E(bvav)z + (bllﬁ‘vv)a: - bl [F, Fvv] - ébl[FJFvv] = 07 (3173)

O(ve) : (01Fy)ew — (1[F, Fy))e + KL + byF 0% — [F, (byF,),] + b1 [F, [F,F,]] = 03.174)

Since the MKdV equation does not contaimagterm and for ease of computation we tdke = 0
from which we haveF = X, (z,t) + Xy(z,t)v whereX, (z,t) andXy(z,t) are matrices whose
elements are functions aof andt¢ and do not depend on or its partial derivatives. With this

requirement of the O(v2) andO(v?) equations are immediately satisfied. Integrating@te?)

equations with respect toand solving fork! we find

1
Kl = —(b1X2)m¢U + (bl [Xl, Xg])xv + [le (b1X2)m]U —I— §[X2, (b1X2)x]U2 — b1 [Xl, [Xl, Xg]]v
1 1
—ngXQ’US — 5[)1 [Xg, [Xl, Xg]]vz -+ Xo(l', t), (3175)

whereX, is a matrix whose elements are functionsrodnd¢ and does not depend anor its

partial derivatives. Substituting the expressionorinto equation (3.171) we obtain

90



X+ (1wt = (0150, Kol )awt + 5 (ba)ut® = (50, (03)a v — 5o, (01 3a).?
oK, K1, Kal])ov + 50K, (K1, Kal])ot? — X — (K1, (Kool + [, (01K Koo
+Xo v — %bg (X1, Xolv? 4 [Xq, [Xq, (01Xs) ] + %[Xl, [Xo, (0:X3),]]v? — b1 [Xy, [Xy, [Xq, Xo]]Jv
— S5, K, [, Kl — [, (0K )uelo? o+ [, (0[5, Kal)Je? + 5, K, (1% o

o

+[X4, Xo] + 5 Xa, [Xa, (01Xo)e]Jv* — b [Xo, [Xy, [Xy, Xo]]Jo? —

S0, [, 2, 0]

+[X2,X0]U =0 (3176)

Since theX; do not depend on we can equate the coefficients of the different powerstofzero.

In doing so we obtain the following system of equations

O(1) : Xy — Xou + X1, Xo] = 0, (3.177)
O) Koo = (1, (1 Xa)el)o + (a0, 50, Kol — Ko, (43 + s, (152, o]
(000, Ko (1K e+ 3, [0, ()] = a3, 5, 562, 0]
X, Xo] = 0, (3.178)
O?) & —5([a, (bKa)al)a + 5 (1[5, K0, Kol + 5151, (Ko, (43).]) = K, (o)

—%bl (X1, (X, (X, Xo]] + Xy, (01X, Xo])a] — 01X, [Xy, [Xy, Xo]]]

+[Xy, [X1, (01 Xg).]] = 0, (3.179)
O’ : %(bQXQ)x - %bz[xl,xg} + 5%, [, (1%0)a]] %bl[Xz, X, [Xy, Xo]l] = 0(3.180)

Note that if we decouple th@(v3) equation into the following system of equations
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bi[Xq, Xo] — (01X), =0, (3.181)

ba[ Xy, Xo] — (02Xs), = 0, (3.182)

we find that theD(v?) equation is immediately satisfied and thév) equation reduces to

[Xz, Xo] + Xo, = . (3.183)

Again at this point we should note that should we opt for threnfo

gi1(z,t)  ga(z,t) < filz,t)  fs(x,t) 5 folz,t)  fa(z,t)

XOZ 3 1= 2 =

I

910(x3t> 916(?[7,75) f5(:13,t> f7(177t) fﬁ(xvt) f8(m7t)

we would obtain an equivalent system of equations to thaioét in [21] for the mKdV. The

additional unknown functions which appear in Khawaja'simoet[21] can be introduced (as in the
case of the fifth-order KdV equation) with the proper subsitins via their functional dependence
on the twelve unknown functions given above. Therefordizuig the same generators as in the

generalized KdV equation of the previous section we obtarslystem of equations
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Jifa— fafs =0,
(blfj)x = (b2fj)ar =0 j =34,
J393 — faga =0,

fit + (=1 fi(g1 —ga) =0 j =34,
giz + (=1)(f1g5 — f292) =0 j=1,4,

fit = 9112 + (=1 fi(ga— 1) =0 j=2,3.

Solving this system with the aid of MAPLE yields

filwt) = bf}fi) j=3,4,
gs(z,t) = %@(fﬁ,
folz,t) = %&({Cﬁ’

gi(x,t) = Gi(t),

94($7 t) = G4<t)7

such thatr;, Fy, G, G4, and theb; are subject to the constraints
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(3.187)
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(3.189)

(3.190)
(3.191)

(3.192)
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(3.194)



F :
(#) F (-G -Gy =0 j=34, (3.195)
L/ ¢
F.
(bb_) —0 j=3.4, (3.196)
1/,
fit = 9+ve + (1) f;(G1 = G1) =0 j=2,3. (3.197)

i) = g—((f)) (3.198)
b(z.t) = Fi(2)B), (3.199)
bo(z,t) = Fi(z)Fs(t), (3.200)
Gy — PO _FQ(;)?S%(; Gi(O P F(t) a201)
ot /[fl(%t)]th(t)Fﬁ)—fl(;;(tt)ﬁ(:t);’z(t)+f1(fc7t)F3(t)F2’(t) o E(@202)

wherefF; andF; are arbitrary functions in their respective variables anid an arbitrary constant.

The Lax pair for the variable-coefficient MKdV equation witte previous integrability conditions

is then given by

F = X, 4 X0 (3.203)

1
G = —b1Xovzy — gbzxzv?’ + Xo (3.204)
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Cubic-Quintic Nonlinear Sclkdinger Equation

In this section we consider an extended version of a stanuameintegrable nlpde, namely the
cubic-quintic nonlinear Scbdinger equation (CQNLS). Since the constant-coefficiestesys
can be obtained as reductions of the extended systems i wWigcoefficient functions are taken
to be the appropriate constants, one would expect this mdthbdreakdown in the case of the
CQNLS. As we will show in this section, the extended Estabsdé@hlquist method indeed breaks
down for the CQNLS by requiring that the quintic term be rentbegethat the Lax pair be trivial
(i.e. F andG are both the zero matrix). Consider the following variabdefticient generalization

to the nonintegrable CQNLS,

wheref, h, g1, andg, are real functions of andt. It is imperative that the conditiog, # 0 hold.
Otherwise equation (3.205) reduces to the well-known ctli& for which the results are given
in the PT-symmetric and standard nonlinear $dimiger section. As with the cubic NLS, it will

be notationally cleaner to work with the following equivalesystem,

i+ foe + hg + 91@°r + g2q’r* = 0, (3.206a)

—ir¢ 4+ fToe + hr + g17°q + gor’q® = 0. (3.206b)

Following the procedure outlined earlier in the chapter vakenan initial assumption only on the

implicit dependence of the Lax pair on the unknown functiod as derivatives augmented by al-
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lowing dependence anandt as well. Thatis, we také = F(q, r, x,t) andG = G(q, 7, gz, s, T, 1).

Plugging these into the zero curvature condition yields

IFQQt + Frrt + Ft — qux — G’TT‘x — GqLQJT$ - Grpgﬂ"xw — (GTQ; + []F, G] = 0 (3207)

Utilizing equations (3.206) to eliminate thhgandr; terms in the equation above we obtain

i fF yGun + ihFyq + i1 Fo@Pr + iF ¢ *r?* — i fF 1y — ihFor — igiFor?q — igoF,r3q?

+F — Gyt — Gy — Gy @uoe — Gryrye — G, + [F,G] = 0. (3.208)

SincelF andG do not depend on,, or ., the coefficients of the,, andr,, must be zero. This is

equivalent to the conditions

ifF, — G,, =0, (3.209a)

ifF, + G, =0. (3.209h)

Solving this system fo& in a method analogous to that discussed in the case of the NLigd/
G = ifF,q. — ifF,r, + K°q,r x,t). Plugging this expression fdk into equation (3.208) we

obtain the updated zero-curvature condition
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ihFF,q + iglquq2T + igglﬁ‘qq3r2 — ihFF.r — iglFﬂ‘Qq — igglﬁ}rqu +F, — i(fFy)2qs
—ifFu@s + i fFr2 + i(fF,)ore + if[F, Fylqe — i f[F, F,]r, — K‘;qx ~Kr,

~K% +[F,K% = 0. (3.210)

SincelF andK' do not depend on, or r, the coefficients of the different powersgfandr, must

be zero. This is equivalent to the system

F, =F. =0, (3.211a)
K +i(fFy)e — if[F,Fy] =0, (3.211b)
K. — i(fFq). + i f[F,F,] = 0. (3.211c)

From the former two conditions it is clear tHamust be of the fornf = X + Xoq + X3r + Xyqr

where theX; are matrices whose elements are functions ahd¢ and do not depend of r, or

their partial derivatives. The inclusion of tiggr term will not lead to any specific terms present

in equation (3.206) and thus we will takg to be zero in order to satisfy the consistency conditions

(fXy)e — [IX, Xy] =0, [Xo, Xy] = [X3,X4] =0, (3.212)

which arise in the process of recoveriffy from equations (3.211b) and (3.211c). Using the

derived explicit form for we find thatK® takes the form
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K = —i(fXy).q +if[Xy, Xo]q +if[Xs, Xo|rqg + i(fXo),r —if[Xy, Xs]r  (3.213)

+Xo, (3.214)

whereX, is a matrix whose elements are functions:@&nd¢ and does not depend gnr, or their
partial derivatives. Using, = 0 and the expressions fdr and K° to update the zero-curvature
condition (3.210) we obtain a rather long expression whghathing more than a polynomial
in ¢ andr. In order for the zero-curvature condition to be satisfiedrupolutions to equations
(3.206) we must require that the coefficients of the diffepowers ofg andr be zero in much the
same fashion as we have done previously. Decoupling tlye Expression results in the following

system,
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O(l) . Xl,t - XOJ + [Xl,Xo] = 0, (3215)
O(q) + Xoz +ihXo 4+ i(fXg)ze — i(f1X1, X)) — i[Xy, (fXy)a] + 0 f[Xy, [Xy, Xy
+[X,, Xo] = 0, (3.216)

O(T’) . Xgi — Zth — Z(fXQ)mC + Z(f[Xl, Xg])x + i[Xl, (fXQ)x] — Zf[Xl, [Xl, XQH

+[Xs5,Xo] =0, (3.217)

O(rq) : —i(f[Xs,Xo])s + i f[X1, [Xs, Xo]] + i f[Xo, Xoa] — if[Xa, [X1, X3]]
—i[Xs, (fX3)] + i f[Xs, X1, X,]] = 0, (3.218)
O(r?) + [Xs, (fXa)a) — f[Xs, [X1,X3]] =0, (3.219)
O(¢") & [Xo, o] — [Xo, [X1, Xo]] = 0, (3.220)
O(r*q) + f[Xs[X5,Xo]] — 1 X3 = 0, (3.221)
Olg®r) = fXo, [X5, Xo]] + 91Xo = 0, (3.222)
O(g’r®) : Xago =0, (3.223)
O(r3¢®) : Xzgo = 0. (3.224)

At this point from the final two conditions it is clear that weust either haveX, = X5 = 0 or
g2 = 0. As we requiredj; # 0 this means we must také, = X3 = 0. But this completely
removes the; andr dependence of both and G rendering the Lax pair trivial. Therefore no

nontrivial Lax pair exists to equation (3.205).
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PART I1: SOLUTIONS OF CONSTANT COEFFICIENT INTEGRABLE
SYSTEMS
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CHAPTER 4: EXACT SOLUTIONS OF NONLINEAR PDES

Introduction

In this chapter we employ three types of singular manifolthods, namely the truncated Pairéev
invariant truncated Painléy and generalized Hirota expansions to derive exact travahd non-
traveling wave solutions to various PDEs which occur in raathtical physics. Truncated Paingev
invariant truncated Painléy and the generalized Hirota expansion methods have bémmsasely
used over the past 30 years to derive solutions to a widetyarianlpdes. In this chapter we will
give a brief introduction to each method and subsequentiyothstrate each method on a classic
example for which the results are well known. Among the népdensidered will be the KdV
equation, Kadomtsev-Petviashvili Il (KP-I) equation, &rmstructure PDE which arises within

the context of one-dimensional wave propagation in micuastired solids [34] - [38]

E(0%)az = 8(Bu = VVie)as = 0 (4.1)

Vit — bv;m’ -

whereb, u, 9, B, andy are dimensionless parameters andenotes the macro-deformation, and

two versions

(U — Ugy )y — (@ru + asu® + a3u3)m =0 (4.2)

and

(U — Ugy )y — (@1u + asu’ + a5u5)m =0 (4.3)
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of a Pochhammer-Chree equation which describe the propagatilongitudinal deformation
waves [39] - [44] in elastic rods. While the results for the KdWd KP equations are known,

the solutions derived by the aforementioned methods foataps (4.1), (4.2), and (4.3) are new.

Singular Manifold Methods

In this section we will give a brief description of the truted Painle@, invariant Painle®, and
generalized Hirota expansion methods which will be subsety utilized to derive exact solu-
tions. Each of these methods stem from a broader class disolmethods known as singular
manifold methods and thus will begin quite similarly. Givemonlinear PDE we seek a Laurent
series solution centered about a movable singular manifotdt) = 0. That is, for a nonlinear

PDE

ai+l
1 DY /)/’LFL

in (n + 1), we seek solution of the form

u(X,t) = ¢(X, 1) Y un(X, )X, )" (4.5)

where theu,, are functions to be determined ands the singularity degree. This truncated ex-
pansion of course only makes sensedoe N thus implying that the functiom(x, ¢) is single-
valued about the movable, singularity manifolds. This ¢toowl was given by Weiss, Tabor, and
Carnevale [45] as an extension of the well-known Paimlgroperty from ODEs to PDEs. How-

ever, this may prove to be too strict a condition while endeag to obtain exact solutions. To
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circumvent this issue and thus extend the applicabilityhefttuncated singular manifold method
for the cases when ¢ N one may define a substitutianix, t) = F(u(X,t)) for some suitably

well-defined (invertible) functior'(-) such that for the transformed equation

_ az‘-ﬁ—lu
N, — =0, L4-l=I 4.6
(“ 8t’8:clf'--8xﬁy> ' (4.6)

we may seek a solution of the form

v(X,t) = ¢(X, )" " un (X, t)p(x, )" (4.7)

where thev,, are functions to be determined afd= N is the singularity degree. The solution to

the original nonlinear PDE is then given byx, t) = F~1(v(x, 1)).

Plugging the truncated series expansiond@x,t) into the nonlinear PDE and reconciling the
powers of the unknown function will yield a recurrence relation from which we will deternein

thew,, anda.

Truncated Painleéy Analysis Method

In this section we will briefly outline the truncated Pairéeanalysis method for nonlinear PDEs
as it was introduced by Weiss, Tabor, and Carnevale [45] ir8188llowing their procedure and
continuing from where we left off in the previous section, way reduce the order and complexity

of the recurrence relations with the introduction of theiaddal functions
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P

CO(:EOv"';xnvt) = Qb_ (48)

C1(fEQ, ey Ly, Zf) = ¢x1 (49)
Dag

(4.10)

Cu(xg, ..., xpy,t) = % (4.11)

V(zo,...,on,t) = % (4.12)

It is clear that after making use of these additonal fundtiare will have eliminated all partial
derivatives ofp exceptinge,.. For simplicity it is common to allow th€’;(x,¢) andV (x, t) to be
constants, thereby reducing a system of PDEs (more thdy tikalinear) in{C;(x, t), V(X,t)} to
an algebraic system ifC;, V'} for (i = 0,...,n). Itis straightforward to see that this simplifica-

tion is equivalent assuming a traveling-wave formdor

Once we have determined the unknown coefficient functignsh the truncated series solution
as well as the unknow@;(x,¢) andV'(x, t) we will have the required information to recover the
singularity manifold¢. Upon determiningh we may plug it into the truncated expansion, thus

obtaining an exact solution to the original PDE.

Example: KP-I1I Equation

Before presenting the main results for the microstructur& BBd Pochhammer-Chree equations
we will demonstrate the effectiveness of the truncatedl®aranalysis method on a classic exam-
plein(2+1), the KP-1l equation. The KP-Il equation [51]- [54], a twortgnsional generalization

of the well-known KdV equation describing weakly transeengater waves in a long-wave regime
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with small surface tension is given by

(uy + Uty + EUgay )z + Ay, = 0. (4.13)

Pluggingey—© into (4.13) and balancing thewu,. ), andu,,., terms we find that the degree of the

singularity,«, is equal t®. Therefore we seek a solution of the form

wo(x,y,t)  wi(x,y,t)
o(x,y, 1) olz,y,1)

u(z,y,t) = + ug(z,y,t) (4.14)

for equation (4.13). Plugging the truncated expansion{dirito (4.13) and resolving the powers

of ¢ yields the recurrence relation

Un—aat + (0 = B)n—300 + (0 = 5)un—s¢se + (0 — 4)(n — B)up_202¢¢

+ (1= 5)un31P0 + € (Un—sgame + 40 = 5)Un_3 2aae + 6(n = 5)tn_3 000rs

+6(n —4)(n — 5)tp-2,200% + 4N — 5)tn-30Puze + 12(0 — 4) (1 — 5)tp—200sbrs

+4(n = 3)(n — 4)(n = B)up_12¢; + (0 = 5)Un—3ssws + 4(n — 4) (N — 5)tn—20s0sa

+3(n = 4)(n = 5)uy—2¢, +6(n — 3)(n — 4)(n — 5)un_107 ¢

+(n = 2)(n = 3)(n = 4)(n = 5)undy) + Mun—ayy + 2(n = 5)tp_3,0y, + (1 — 5)un_30y,

+ (n—4)(n = 5)u,—207) + i(umunkm + (n—k — 3)ugptin_10: + (k — 2)uptly_j1 20,
i

+ (k=2)(n — k — 2)uptn_1®> + up(Un_p—220 + 20 — k — 3)Up_p_1.20s

+(n—k—=3) Uyt 10se +(n—k —2)(n —k — 3)u,_1¢2)) =0 (4.15)
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wherew,, = 0if n < 0 andu,,, = a% (u,). Upon satisfaction of the recurrence relation at the

lowest powers o we find

n=0 : uy=—12%¢2 (4.16)
n=1 : u = 126py, (4.17)
n=2: Uz = ¢;2(362 iz‘ - ¢x¢t - 462¢x¢xwx - )\sz) (418)

which we may write in the cleaner form

u(z,y,t) = —2[log(¢)]|ee + ua(z,y,t) (4.19)

For simplicity we allowC'(x, y, t) (ourCy(x, y, t) function),V (z, y,t) andQ(x, y, t) (ourCy(x, y, t)
function) to be the constan€s, V, and(@), respectively. Upon making this simplification we easily

reconcile the remainder of the coefficients/ahus obtaining the solution

uo(z,y,t) = —1262¢2 (4.20)
ui(z,y,t) = 122V ¢, (4.21)
us(z,y,t) = 3EV? - C —42V? — \Q? (4.22)

O(z,y,t) = ¢ + cpe? T (4.23)
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wherec; andc, are arbitrary constants. Our solution can be written in tkeencompact form

u(z,y,t) = =126 [log(¢(x, y, 1)), + 32 V> — C — 46*V? — \Q? (4.24)

From this form of the solution it follows that a nontriviah(this context non-constant) solution

requiresc; # 0.

We will now plot the solution derived above for two differemhoices for the set of parameters (see
figure 4.1). For the first choice we take A\, V,Q,C,c1,c) = (1,1,—1,1,4,1,1). The solution
(4.24) att = 1 then becomes

12~~~ _
u(z,y,1) = — (=i 2 —i. (4.25)

Itis clear that for this set of parameters the solution isglexvalued. Therefore to better visualize

the solution we plot the real and imaginary parts separately
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Figure 4.1: Plots of the real (left) and imaginary (rightjtgaf the solution to the KP-Il equation at
t = 1 on the rectanglé-3r, 37| x [—3m, 37] with the choice of paramete(s A\, V, Q, C, c1, c2) =
(1,1,-1,1,4,1,1).

As a second choice for the set of parameters we willtake V, Q,C, c1,¢c2) = (1,1, —1,—-1,-2,1,1)

for which the solution (4.24) &= 1 becomes

12efm+y+2

T ez = —0sec (1/2)(—w +y +2). (4.26)

u(m,y,l) - _<

The plot for this solution is given in figure 4.2.
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Figure 4.2: Plot of the solution to the KP-Il equatiort at 1 on the rectanglé-10, 10] x [—10, 10]
with the choice of parametefs, \, V, Q, C, ¢y, ¢0) = (1,1, -1, —-1,—-2,1,1).

Microstructure PDE

In this section we use the truncated Paiglewalysis method to construct an exact solution to the
microstructure PDE given earlier in the section by equai). Pluggings— into (4.1) and
balancing thev?),, andv,... terms we find that the degree of the singularityjs equal t®. In

fact, this amounted to balancing the same terms that we ditheoKP-Il equation so we could
have borrowed the results from the leading order analydiseiprevious section. Sinee= 2, we

seek a solution of the form

+ ug(w, 1) (4.27)
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for equation (4.1). Plugging the truncated expansion (4ir&d (4.1) and resolving the powers of

¢ yields the large recurrence relation

Um—att — DUim—a,20 + (M — 5) (2Up—3101 — 20Um—3 205 + Upm—3(Dr — bDyy)
+(m = D26 = b02)) = 11 Y {thkatim k2.0 + Ukl k2,20

k=0
+(m — k — 3) (Up pUm k102 + 2Uplm—p—1.202 + (M — k — 2)upt >
U U —k—1Paz) + (K — 2) (WU —k—1,00x + (M — k — Q)Ukumfk(éi)} — 05 (Um—a,zatt
+(m — 5)(2Um—3 2ot Dt + Um—3.200Pt + 2Unm—3 21t Pa + MU—3 2t Dt + 2Uin—3 2 Outt
F U346 Prz + 2Um—3.4Drwt + Um—3Gzzte + (M — 4) (Un—2.200F + Um0 1>
FAUp—2 21 Pu Pt + Ap—2 2Pt 00t + 2Up—2 OOt + AUy—2 1Py Pur + 2um_2¢it
+2U 202 Pt + 2Um—2,1 01 Pz + Um—2PtPuat + Um—2022Ptt + Um—20201P1
+(m = 3)(2Um—1,:00; + 21,1 P20t + Aim—1P2PtPat + Um—103 Pt + Um—1Paa®}
+(m = 2)umd267)))) + 6% (Um—azzez + (M — 5) (Um—3Praws + A3 2 Pras
+6Us,3 20 Prz + Y 320000 + (M — 4) (U2 (405 Pue + 362,) + 12U 2 2P0 Bua

where once again,, = 0 if n < 0 andu,, , = a% (u,). Upon satisfaction of the recurrence relation

at the lowest powers af we find
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120

m=0 5 u= =0} - 562) (4.29)
_ ) _ 120 2 2 2,2, 2 2 .
m=1 s = g (59700 + 55610 — 01(010us + G10u) — 8916i000)  (4:30)
1

M=2 s = gt gy (50°0a0) — 259°0,01 + 257°06), — 268°06,07 — 156102}

+ 7567020 + 17167 912, — 12007 35 buae + T5B°V0BL0} — T557°bd% 05

— 1206 3°Y2 uw 0t 0] + 2926 8°7° Gy iz Gt} — 856637° 05 bz dur 5y — 12863°103 bt} D
— 1063°Y¢ hua i G1t + 340057202 hra i b1t — 3566527200 barpron + 16065°7¢20} duus

— 6005%° 0L 1 — AT6O B 1030%,0, + D846 527 02,67 + 21568°7° 462, 6,

— 110687° 307,67 — 10065° v, 02,67 — 10005°Y02 braady — 6005° Y43 Puarhy

+ 120068°7 ¢y Paaadi — 36065°7° 0} 0urt®} + 100637 05 brrnd} + 300087 6L i b

— 22063 ¢ bardy Sut + 22037 P Puade + 4800 ° Yy banedt — 42008°7 S baredy

+ 1500 8°7¢5 67 0% — 10063207 b + 336054 0,0%,% + 12008 b by + 260087°61 62,

— 2000 Grr iy — 14006330y + 80057° 330t + T508° 06, 07 — 49657 6 67,(4.31)

Once again we will find that without the assumption thdtc,t) and V' (z,¢) be constants the
calculations will become unnecessarily complicated. Wrbis reduction we find that elimina-
tion of the remaining coefficients ef requires that” = 1 while V' can remain arbitrary. Using

C(z,t) = 1andV (z,t) = V (constant) the previous equations reduce to
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uo(x,t) = M (4.32)

7
up(z,t) = — 1200y = B)Vé (4.33)

o

2
— 1 —

us(x, t) Vil =h) + b (4.34)

o

and we obtain the solution for the singularity manifold

Bz, 1) = ¢ + cpeV @Y (4.35)

wherec; andc, are arbitrary constants. As with the KP-II equation we mayeathe the equation

in a more convenient form

V25(y—=pB)+1-b
L

_ 126(6 — ) (4.36)

u(z,t) (log(¢(, 1)), +

From this form of the solution we make the observation thadrgnivial (once again taken to mean

non-constant) solution will require that # 0 but alsod # 0 andg # ~.

We will now plot the solution derived above for the set of paeters(c, co, V, v, 1, 8, 5,b) =

(1,1,-1,1,1,1,—1,1). The solution (4.36) then becomes

(672x72t . 10671715 + 1)

u(a:,t) =2 (1 + e—ac—t)Q

(4.37)

The plot for this solution is given in figure 4.3.
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-20 -10

-4
u(x,10)

u(x,-10)]

u(x,0)

Figure 4.3: Plot of the solution (4.37) for= —10, 0, 10 on the interval—20, 20] with the choice
of parameter$017 Ca, v? Yy 1y 57 67 b) = (17 17 _17 17 17 17 _17 1)

Generalized Pochhammer-Chree Equations

In this section we use the truncated Paiglewalysis method to construct an exact solution to the
generalized Pochhammer-Chree equations given earliee iseittion by equations (4.2) and (4.3).
Plugging¢— into (4.2) and balancing th@:?),, andu,,;; terms we find that the degree of the
singularity, o, is equal tol. Following the procedure outlined earlier in the chaptengisr = 1

and thus we seek a solution of the form

uo(x,t)
o(z,t)

u(z,t) = + uq(z,t). (4.38)

for equation (4.2). Now consider the following generalibggher-order Pochhammer-Chree equa-
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tion

(U - uxac)tt - (Z a2i+1u2i+1) =0, (4-39)

whereas,,, .1 # 0. Plugginge—« into (4.39) and balancing th@?"*!),, andu,,,; terms leads to
o= % Forn > 2 (e.g. polynomial nonlinearity of degréeor higher),a will be noninteger. We
may circumvent this by substituting(z, t) = [v(z,t)]=. for which o becomes 1 for ath > 1.
Pluggingu(z,t) = [v(x,t)]% into equation (4.39) and multiplying through Iny‘f[v(a:,t)]‘*—% we

obtain the following complicated new NLPDE

0 = —(1—=n)(1-2n)(1-3n)vv:—n(l—n)1—2n)v(v2v + 40,0001 + VEVL,)
+n2(1 — )V (v} — 20Vn — VaeUy — 204000t — 202,) + 1203 (Vg — Vearr)
2,2 - : 2 ; 2
—vn Z azi1(20 + 1) {(2i + 1 — n)v2 + novg, ). (4.40)
=0

Note that ifn = 1 (corresponding to equation (4.2)) then most of the termsqumgon (4.40)
vanish yielding fewer (and smaller) determining equatitrsthe u;, C, andV. Forn # 1,
however, these terms do not vanish. We then find that thetimggslystem of equations for the,
C, andV are overdetermined and in fact inconsistent. For this reasowill proceed with only
the derivation of the solution to equation (4.2) here. Pingg4.38) into (4.2) withh = 1 gives us

the following recurrence relation for thg,’s
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0 = —2(m—2)(m—3)(m —4)dsdtm-1,0 — (M = 3)(m — 4)(20:bzat + Gr1Pue + 202 Dutt) 2
—2(m = 3)(m — 4)(¢thae + 20000t )tim—24 — 4(m — 3)(m — 4) g Patim 2,1
—2(m — 3)(m — 4)($atut + 201Dt Um0, + Um—aze — (M — 1)(m — 2)(m — 3)(m — 4) 2 2,
Uzt — 2(m = 2)(m = 3)(m — ) dtm1,4 — 2(m — 3)(m — 4)
—(m = 3)(m — 4)d{um-200 — (m = 2)(m = 3)(m — 4 duotim—1 + (m = 3)(m — 4) s
—(m = 2)(m = 3)(m — 4)¢duttm—1 — (m — 3)(m — 4)zum—24 — ar((m — 3)(m — 4) gt
+2(m — 4)Pptim—3.0 + (M — 4)rptlm—3 + Um—a,20) — 4(m — 2)(m = 3)(M — 4) 21Dt 1
+2(m — 4) Qi34 — 2(m — 4)Petin—300t — 2(m — 4)Putlim—3 200 — (M — 4)ratlm—3.10

—2(777, - 4)¢mttum73,x - (m - 4)¢zxttum73 - 2(m - 4)¢:mtum73,t - (m - 4)¢ttum73,:px

—A(m — 4)Gattim 3.0t + (M — ) dretim 5 — 202 »_[(m — j = 2)(m — j = 3)¢2ujttm ;1
§=0
+2(m —J— 3)¢mujum—j—2,x + (m —J— 3)¢mujum—j—2 + Ujum—j—s,m]
m m—j
—3as Z [(m =k —j = 1)(m —k — j — 2)QFuupt——j + UjUplm 2,20

m m—j
—6as Z [(m =k —j—1)(k = D)@2ujuptim x—j + (m —k — j — 2)Putjtg o Upm—k—j—1
7=0 k=0
+ujuk,xum7k7j72,m + (k - 1)¢xuj'u’kum*j*k*1,l"] — 2ay Z[(] - 1)(m - .] - 2>¢326ujum*j*1
=0

+(J = 1)@attjti—j—22 + (M — § = 3)Ppllj alhim—j—2 + Uj 2 Um—j—34]

whereu,, = 0if m < 0 andu,, = 2 (up,).

Iterating throughm values we obtain the coefficients of the different powers.dbolving the first

two for ug andu; we have
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20

=0 : = — 4.41

m=1 : u — _1a2¢t\/ —2a3 — 3a3dy (4_42)
3 azppy/—2a;3

(4.43)

Substituting inC' and V' and letting both be constants the solution to the remainysgesn of

equations is easily found to be

2C¢,

) = —— 4.44
UO('I" ) \/Tag ( )
\/5(30‘/&3 + a9/ —2&3)
uy(z,t) = 6(—a3) (4.45)
C = —Sgn(3a1a3 — ag) (4.46)
— a2 =
Vo V/6a3(3a1a3 — a3 — 3a3) (4.47)
3(13
(1) = ¢ + eV @Y (4.48)
1, x>0 _ ) . . .
where sgfr) = . This again lends itself to a rather nice expressiondor, ¢)
-1, x <0
given by
2C V2(3CV az + azy/—2az)
t) = 1 t 4.49
u(*% ) \/Tag ( Og((b(xa )))x + 6(—@3)3/2 ( )

for equation (4.2). We will now plot the solution derived abdor the set of parametefs, c2, ai, as, az) =
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(1,1,1,1,—1). The solution (4.49) then becomes

9 e Vi) 1+\/§
\/_1+e \/g“t) 3

u(z,t) = (4.50)

The plot for this solution is given in figure 4.4.

[/2

AL

Dx,0 — uV(x,-10) — 1)(x,10)|

Figure 4.4: Plot of the solution (4.50) for= —10, 0, 10 on the interval—20, 20] with the choice
of parameterscy, ¢y, a1, a2,a3) = (1,1,1,1, —1).
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Invariant Painle@ Analysis Method

In 1989 Conte [46] showed that the Pairdeanalysis of PDEs was in fact invariant under an

arbitrary homographic transformation of the singularitgnifold ¢. That is, the analysis was

invariant under any transformation @fof the form

ap+b

st ad—be—1.
cb+d aa e

O —

He found the "best” choice of new expansion function to beftimetion

=t ( $ar %xl)‘l
B wxl ¢ - ¢0 2‘%1

b= (¢ — do)pz./

(4.51)

(4.52)

(4.53)

From this definition it can then be shown that the new expan&wiabley satisfies the following

Ricatti equations

1
1
Xt = —Cr+Crgx— 5(015 + Cl7x1$1)x2
1
Xzog = —Cy + C’Q,le - §(C2S + C27x1$1)x2
1 2
Xew = _On —+ Cn,x1X — E(C’ns -+ Cn,:cl:m)x
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and thusy satisfies the following linear equations

1
wxlxl —§S¢
1
¢t = §Cl,x1¢_cl¢m
1
1/}$2 = §Cl,$1w_clwxl
1
Ve, = §Cn,x1w—0nwzl (4.55)

whereS (the Schwarzian derivative) and thg are defined by

¢x1xll’1 3 ¢Ill‘1 2
g — Cmmm 2 (Onm 4.56
e (%) (459
o o= fﬁ (4.57)

and are also invariant under the group of homographic toameftions. It is important to note that
the systems (4.54) and (4.55) are equivalent to each otlerCTand S are linked by the cross

derivative conditions
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¢m1x1x1t = ¢tm1m1x1 (459)

¢x1$1a:1x2 = gbxlewlxl (460)
(4.61)
¢x1x1x1xn = ¢xnx1x1x1 (462)

which are equivalent to the conditions

St + Chraroras +2C1 0,5 +C1Sy, = 0 (4.63)
Suy + Cooiorey + 2020, S + C2Sy, = 0 (4.64)
(4.65)

Sy + Crsyorzy + 2002 S + CoSy, = 0 (4.66)

Upon determining the unknown coefficients in our truncatqub@sion and resolving these condi-
tions, thereby determining our expansion functiowe will have obtained an exact solution to the

original PDE.

Example: KdV Equation

Before presenting the main results for the microstructur& Bbd Pochhammer-Chree equations
we would like to demonstrate the effectiveness of the trtettavariant Painley analysis method

on the KdV equation. The KdV equation enjoys a wide varietyapplications accross multiple
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disciplines. The KdV equation [55] - [57], which describle ppropagation of weakly dispersive

and weakly nonlinear water waves, is often given by

U + Ugpy — OuU, = 0 (4.67)

Plugging x— into (4.67) and balancing theu, andu,., terms we find that the degree of the

singularity,«, is equal t@. Therefore we seek a solution of the form

ug(x,t) | u(w,t) o
u(z,t) = NERIE + NET) + us(z, t) (4.68)

for equation (4.67). Plugging the truncated expansion8{itto (4.67), eliminating the partial

derivatives ofy, and collecting in powers of yields the system of equations
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O(x™®) @ —24ug+12u2 =0 (4.69)
O(x™) : —6up(ug, — 1) + 12upu; + 18ug, — 6u; = 0 (4.70)
O(x™®) : 2ueC — 20uyS — 6uo (U1 — uS) — 6ug(uo, — ur) + 12ugtg — 6ug 4y + 6uy (A D)
O(X™?) & oy — Ut gw — 41 S + 21ug S — 6ug (UQ,x — %1145) — 6uy (u1 — upS)

—6ug(ug e — u1) + SupSy — 2upCy + u1C + Ug 2w = 0 (4.72)

1
O(Xil) DU+ 3Up S — 3 Sy — 6wy (U2,x - §U15) — 6us (U, — upS)

1
+UO<CS + Cxx) + uls:r - 3u0,sz - 2uO (§Sxx + 252) - ulc:r + ul,xmm = (n73)

3 1 3 3 3 3
O(XO) . §U0,m52 — U <§S;m; + 252) + 5”152 + §UOSSx + Ut — iuLxSx — §u1,zm5
1 1
—6U2 <u2,:c - 5“18) + u2,zzz + 5“1(05 + sz) - O (474)

We now have a system of equations for the unknown functigns,, u,, C' and S. It is often
useful to impose certain conditions (such(@sS constant) to reduce computational complexity,
however a major drawback as one may deduce is that our swutwdl become more trivial.
Instead, leaving andC' as functions of: and¢ and solving this system with the aid of MAPLE

yields the following results
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wo(x,t) = 2, (4.75)

uy(x,t) = 0, (4.76)
w(z,t) = ;S(:L',t)—éC(x,t), (4.77)
Ofz,t) = 3tf o (4.78)
S(z,t) = 3tf o (4.79)

Using our equations fap andy we are then able to find the following rather complicated sohs

333
o (3t + C)/3 (ch oF1( 3 — o) + Ca(3t + C1)YV3 o Fi(, & m>) (4.50)
B VOt + 3C, T
1/3 3
X = Co oFi(, 55 —girter) + G238t + O o Fi (5 — o) (4.81)
o 23 o Ca OFl(,g;frffscl) o C2(3t+C1) /322 Opl(’g;%uffscl N
30 1(’ 3 54t+186’1) T 1 54t+18C1 2 54t+18C1

from which our equation fou(x, t) gives us the following solution

3 3 2
O F ( :1?3 ) o 2 0313 OFI(’%;754tf18C’1 ) . 2 02(3t+01)1/3$2 OFl(%?* 54t$1801 )
u(z,t) = 2 30010 35 T 180, 1 54t+18C1 2 54t+18C1
) - 1 3
Csx 0F1(7 35 —54t+1801) + 02(3t + Cl) /3 0F1(7 3 54tf1801)
x
T (4.82)
6t + 2C,’
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wherey F} (, b; z) is the hypergeometric function defined by

—  I(b)2*
OFl(a b; Z) = kz_% ﬁa (483)

andI'(a) is the gamma function.

We will now plot the solution derived above for the set of paeters(C;, Cs, C3) = (1,1,0) for

which the solution (4.82) then becomes

2

V2 x3
T 12/3 (T\/ _3t+1)
3t+1 N ’
I—l/3 (T _3t+1>

The plot for this solution is given in figure 4.5.

u(z,t) = (4.84)
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-30 -20 -10 0 10 20 30

X

u(x,-10)]

u(x,10)

Figure 4.5: Plot of the solution (4.84) for= —2 and2 on the interval—35, 35| with the choice
of parameter$C, Cy, C5) = (1,1,0).

We remark that.(z, t) is not of traveling wave form. The inclusion of botiiz, —2) andu(z, 2)

in the same plot was to show near symmetry of the solutiorj4r8 for |¢| > 1.

MicroStructure PDE

In this section we use the truncated invariant Pailanalysis method to construct an exact solu-
tion to the microstructure PDE given earlier in the chapteequation (4.1). Plugging— into

(4.1) and balancing th@?),, andv,... terms we find that the degree of the singularityis equal
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to 2. Sincea = 2, we seek a solution of the form

_wo(x,t) | wvi(w,t) -
v(z,t) = NP + ) + va(x, ) (4.85)

for equation (4.1). Plugging the truncated expansion 8% (4.1) and and eliminating all
derivatives ofy yields the Painleve-&cklund equations order by orderyn Due to the complex-
ity of the Painlee-Backlund equations we shall make a further assumptiod’on ¢) that it be

constant. With this assumption on the functi@f, t) the first three Painleve-d&klund equations

become

1285C%vy — 1270vg + pvg = 0, (4.86)
—g (8uo(v1 — o) + 209(2v1 — 4vg 5) + 12vgv7) — §[B(24C% v, — 48021;0@

+48Cvg ;) — v(24v1 — 960y )] = 0, (4.87)
6C2%vy — Gbug — g (—81}021175,; + 2(vo.2 — v1)* + 200 (Vo 2z — 201.2) + 201 (201 — dvp ;)
+120gv2) — 8 (B(24v9C*S — 12C%v1 , + 6C%vg 4y + 12C 01 4 — 24C00 4 + 6V0,11)

—7(24v9S — 2401 , + 36004,)) — 8 S — 9601, S (BC* — ) = 0, (4.88)

where itis important to keep in mind that at this point we haoemade any additional assumptions
on the functionS(z, t). Solving the three equations above fgrv;, andv, with the aid of MAPLE

we obtain
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25 _

v = _w, (4.89)
M

v = 0, (490)

| ACPR8S — 4468 — C* + b

I

(4.91)

Vg =

The next step is to use the remaining PaaBacklund equations to determine the functig(x, ¢)
and, if necessary, the consta&nt Using the previous expressions 1@t v;, andv, with C' constant

the remaining Painlé+Backlund equations become

24p7" (C?B — ) 6% [(18C*B +7) S, + 19CBS,| =0, (4.92)
24p710% (v — C?B) [(3C?B 4 7) Szw + 4CBSu] =0, (4.93)
126 (€2 - ) | (s¢208 + ) (520, + T8N+ 6 (S 750

—(C?S, — OS] =0, (4.94)

2075 (7 — C?B) [6 (14C28 + 4y) S5, + 180035 S, + 6 (8C2B +7) 52

—186357 — 9C085,S; + 25y — 2C° Sy + 267 Suzaw — 263Ssan] = 0. (4.95)

It follows that a rather simple solution would be to take= i\/g. Looking back at the forms
of uy anduy we see that this choice would makg = 0 andu, = constant thereby giving only
a constant solution. For less trivial results we will requihatC' # i\/g. Another simple,

yet sufficient, solution to the previous system is to t&k& be a constant. Using(z,t) = C,

S(z,t) = S (whereC andS are constants) and the determining equationg/for, t) we find that
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Y (x,t) takes the form

Y(x,t) = ¢ sin (\/g(x — C’t)) + ¢y cos (\/g(m — C’t)) : (4.96)

wherec; andc, are arbitrary constants. Substituting this expression/forto the expression for
x in terms ofy (given earlier in the section) we arrive at the followingvehng wave solution to

equation (4.1),

655(y — C2B) [01 COS <\/§({L’ — C’t)) — ¢98in (\/g(:lr — Ct))]z
m [01 sin <\/>(x - Ct)) -+ ¢y COS <\/§(9€ — Ct))F

—pH(480(C?*B — ) — C* + ). (4.97)

v(z,t) =

(S [)

From this form of the solution we make the observation thabatnivial (once again taken to
mean non-constant) solution will require that# 0 andc, # 0. We make the additional remark
that the solution will have two qualitatively different fos depending on the sign 6t On one
hand, forS > 0 andt = ¢, fixed the solution will be periodic with infinitely many siniguities a

x = Cty— \/gtan_l <—§—f> On the other hand, fa$ < 0 the solution will involve hyperbolic
sines and hyperbolic cosines and thus will be continuouRofor most parameter set choices.
Note that to ensure the solution is real-valued we will takéo be imaginary. We will now plot
the solution derived above for two parameter sets such&hat0 in the first set andd < 0 in

the second set. For the choigg, ¢, S,C, v, 1,9, 5,0) = (1,1,1,—1,1,1,1,—1,1) (S > 0) the
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solution (4.97) simplifies to

4sin (V2(z + 1)) +5

vl f) =~ sin (V2(z+1¢)) — 1

(4.98)

whereas for the choide, c2, S, C, v, 1,6, 8,b) = (1,2¢,—1,1,1,1,1,—1,1) (S < 0) the solution

(4.97) simplifies to

> _ 40} . (4.99)

)—1

v(x,t) =

[5 cosh? <t7> + 4 cosh (%) sinh (
5 cosh? (t7> + 4 cosh (t7> sinh (

SIT (sl

The plots of these solutions are given in figure 4.6.

Z Y
JUUUUUL |

_g!
u(x,-5)

-5t -4n -3n -2n - 0 ®m 2n 3m 4n Sm l
x

u(xS) u(x.0)]

Figure 4.6: (Left): Plot of the solution (4.97) for the cheicof parameters
(c1,¢0,5,C, v, 1, 6,6,b) = (1,1,1,—1,1,1,1,—1,1) att = 1 in the rectangle[—5m, 57].
(Right): Plot of the solution (4.97) for the choice of paraewst(cy,cs, S, C, v, 1, 0,3,b) =
(1,2i,—1,1,1,1,1,—1,1) att = —5,0, 5 on the interval—15, 15].

129



Generalized Pochhammer-Chree Equations

In this section we use the truncated invariant Paimlenalysis method to construct an exact solu-
tion to the generalized Pochhammer-Chree equations givearaa the chapter by equations (4.2)
and (4.3). Plugging—“ into (4.2) and balancing the:*),, andu,,;; terms we find that the degree
of the singularitynV), is equal tol. When balancing théu®),., andu,.,, terms in equation (4.3),
however, we find that?) is equal tol /2. Due to the non-integer value af? we need to find an
appropriate substitution to maké? a nonnegative integer. The substitution we use to accomplis
this isul?(z,t) = (v (x, t))l/2 where it is important to keep in mind that the superscripthée
parenthesis are not powers nor derivatives but ratherateliwhich equation the term corresponds
to. That is, any term with!) corresponds to equation (4.2) and any term Witlcorresponds to
equation (4.3). Running through the leading order analygisnaon the new system now yields

a® = 1. Therefore we seek solutions of the form

(1)
(g gy o @D o, 4.100
u (33, ) X(l) (.I', t) + Uy (:E7 ) ( )
and
(2
@y = D (DY @, 4.101
v (ZE, ) X(Q) (.CE, t) + U1 (Iv ) ( )

for equations (4.2) and (4.3), respectively. Pluggingettasncated expansions into their respective
equations and eliminating all derivatives pfyields the Painleg-Backlund equations order by
order iny for equations (4.2) and (4.3). Due to the complexity of thegsems of equations in
both cases we shall once again require thit, t) be a constant. For equation (4.2) the first two

Painlee-Backlund equations are then
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2
—12u(()1) (202 +as (ué”) ) =0,

2 2 2
2Cu&) + 3as (u(()l)) ugl) — 3as (ué”) u(()lg)c + ag (u(()l)) — 2Czu(()2,

and for equation (4.3) the first two PaineBacklund equations are

35 7 1)\ 4 n\2 3
7 (U(() )> (CL5 (v(() )> + 4_102> =0,

5 3 2 2
—3 (vél)) (64a5 (vé”) U%l) — 20as (vé”) v((]iz + 36021)9) - 3021)((]71;

2
+6as <v(()1)> + 30"0(()712) = 0.

Solving the first two equations for both cases yields thefailhg results

2
ugl) = —C —
n _ _ %2
“ 3@3
L2 _ V3C
0 2\/—(15
ORI
! 8@5

(4.102)

(4.103)

(4.104)

(4.105)

(4.106)

(4.107)

(4.108)

(4.109)

At this point takingS® (x, t) to be a constant far= 1, 2 reduces the remaining Painke®acklund
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equations to a system of algebraic equations in@fieand S”. Solving these systems for the

SO (x,t) andC® (z,t) we find

ch = ¢, (4.110)
1 3 2 o
s §%+3CC‘2‘23 Saay (4.111)
and
1 [2(9a3 — 32a;a5)
@ _ 1 3
c® = 4\/ (5O —4) (4.112)
2
S@ Oa (4.113)

16aias — 3a3’

Note that for equation (4.3) the€ term must take a specific form (dependent ondf)evhereas for
equation (4.2) we can take tliéterm to be arbitrary. In keeping with the notation of thists®c
we will usey™ (z, t) andy® (z, t) for equations (4.2) and (4.3), respectively. From our vafoe
the s andC?) s and the determining equations for th€&) s given earlier in the section we find

thaty)(") andy(® take the following forms

YW (z,t) = ¢ cos (M(Ct — x)) + o sin (A(Ct — z)), (4.114)
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o 3C2a3—3aiaz+a2
where\ = 4/ —m and

3as (4 3a (4
P (x,) = ¢ cos <\/_a3 <4\$/\aif+ ta)) + ¢y sin (fafﬂ (43%? +to)

) . (4.115)

whereo = \/16a;a5; — 3a3. Therefore we have the following traveling wave solutions,

o, 1) = C —f—gA(cl sin(A(g —t)) — cacos(A (& —1)))) Ca 4116
U = crcos(ME — 1)) + casin(A(E — 1)) 3as '

and, noting that® (z,t) = \/v® (x, 1),

u(2)(;c, £ = (3 (32ar1as — 9a3) az(—cy sin(y(z,t)) + cocos(y(x,t)))  3as

1/2
4v/=as(er cos(y(, 1)) + csin(y(z, 1)) _8—%> , (4117)

wherey(z,t) = % These solutions have the potential to become complexeualu

but may be taken to be real provided we make suitable choarethé arbitrary constants. For
example, a rather simple requirement fob) is a; < 0 and\,C € R. The condition\ € R

a

is equivalent to requiring that;, satisfya; < % + C?. Due to the nature o&® being that of
a rational expression involving trigonometric functionside a radical one cannot guarantee the
solutions are real for alt andt as we did previously without eliminating theandt¢ dependence.
However, given adequate choices it is possible to ensuredlindons are real for some spatial and

time intervals.

We will now plot the solutions derived above for parameteés sdich lead to qualitatively different

plots. We find that the choice of parameter sets may lead taisns with zero, one, or infinitely
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many singularities. The case of zero or one singularityesponds to parameters sets such that
A € iR (the set of imaginary numbers). That is,Nf€ iR then£ < 1 corresponds to one
singularity wherea% > 1 corresponds to no singularities. On the other hand, & R then
there will be infinitely many singularities for all choice$ @,c; € R. For the parameter set

(c1,¢9,Cray,a9,a3) = (1,1,2,1,1,—1) the solution (4.116) becomes

C1(2v6 —1)sin (372(2t — ) + (2v/6 + 1) cos (37/2(2t — 7))

3 sin (371/2(2t — x)) — cos (3-1/2(2t — z)) ,  (4.118)

u (z,t) =

whereas for the choicg, c2, C, a1, as, a3) = (3, —2i, 1,2, 1, —1) the solution becomes

)L (633 —2)sinh (\/2(t = 2)) + (4v3 = 3) cosh (/3(t — ) o)

3 cosh <\/g(t — x)) + 2sinh (\/g(t — x))

The plots of these solutions are given in figure 4.7.
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-4

-05
6l

g/ — ux,0) — 1V (x,-5) — u'V(x,5)

Figure 4.7: (Left): Plot of the solution (4.116) for the cbeiof parameter§:, co, C, aq, as, az) =
(1,1,2,1,1,—1) att = 1 in the interval[—15, 15]. (Right): Plot of the solution (4.116) for the
choice of parameterg:, o, C, a1, a9,a3) = (3,-2i,1,2,1,—1) att = —5,0,5 in the interval
[—12,12].

As mentioned above, for some choices of parametdrsetb, a;, as, as) the term inside the square
root in the solution (4.117) may oscillate between posiéne negative values and thus will only
be real-valued in certain regions of theé—plane. For this reason we will only consider cases
where the solution is real-valued for &i,¢) € R2. In particular, we consider the parameter set

(c1,¢9,a1,a3,as) = (2i,1,1,2,—1) for which the solution (4.117) becomes

sinh (—\/ﬁ(tﬁﬂx)) + cosh (—\/ﬁ(tﬁﬁx)) 2
u (x,t) = =

2 Sinh<w>+2mh<ﬂ> (4.120)

The plot of this solution for = —5,0, 5 is given in figure 4.8.
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Figure 4.8: Plot of the solution (4.117) for= —5, 0, 5 on the interval—20, 15] with the choice of
parametergc, ¢, a1, a3, as) = (2i,1,1,2,—1).

Generalized Hirota Expansion Method

In this section we will give a brief description of the gerdeed Hirota expansion method [50].
As previously mentioned, after plugging the truncatedesesolution into the PDE and reconciling
the powers ofp we will obtain a recurrence relation from which we will detene thew,, and

a. In general we find that, after arranging the equations awegrto increasing order in, the
first equation will determine,, the second.;, etc. We continue this process until we have found

Up, - - -, U1 and keep the remaining, unknown. The final term can be expanded in a power
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series about; = 0

Ua(T1, ..oy Ty, t) = Z Uni(To,. . Ty, )T} (4.121)
i=0

Sincea is finite and in general we will have an PDE with finite order ohhnearity we will have

a finite number of remaining conditions to satisfy. Therefplugging (4.121) into the remaining
equations will yield a heavily underdetermined system. sTtiere will exist soméV € N such
thatu, ;(z2,...,z,,t) = 0foralli > N. Thatis,u,(z1, ..., z,,t) can be represented by a finite
series. For ease of computation we forge, ..., z,,t) to be of the form¢(zy, ..., z,,t) =

1 + exp{T'(¢t) + > -, = 4(t)}. This functional form is somewhat reminiscent of the stadda
ansatz one considers whilst searching for a one-solitantisal via Hirota’s bilinear method. To
further reduce complexity we |&(t) = k; + kot and2;(t) = k.o wherek, e C(I =1,...,n+2).
Plugging the new expansion with knowp, n = 0,1, ..., a—1 into the remaining equations gives
rise to a new set of equations for each equation in the prewsetiof equations. From these we
will determine the unknown, ;(t) andk;. If, in theory, we can solve for these terms we will
have found the last term in our truncated series expansgowed as the form of the singularity

manifold ¢ and therefore will have a solution to the original NLPDE.

Example: KP-II Equation

Before presenting the main results for the microstructur& RBd Pochhammer-Chree equations
we will demonstrate the effectiveness of the generalizedtBliexpansion method on a classic
example in(2 4 1), the KP-Il equation. As the procedure begins exactly asttedsrd truncated
Painlewe method we find that the initial steps in this procedure tletdsame results. That is, for

the KP-1l equation given earlier by equation (4.13) we findttthe degree of the singularity,
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found by balancing théuu, ), andu,.., terms, is equal t@. Therefore, we will once again seek

a solution of the form

uo(z,y,t)  wi(z,y,t)
o(z,y,t)* oz, y,t)

u(z,y,t) = +us(z,y,t). (4.122)

Plugging the truncated expansion (4.122) into (4.13) wi¢hek previously found recurrence rela-

tion

Un—azt + (0 = 5)tn_3201 + (0 = 5)tn_30z + (0 — 4)(n = 5)un_202¢1

+ (= 5)tn 3100 + € (Un—aprae + 41 = 5)Un_32000s + 6(n = 5)n3 20 Pua

+6(n = 4)(n = 5)un—22007 + 4(n = 5)tn—300s0s +12(n — 4) (1 = 5)tn—2000P0
+4(n = 3)(n = 4)(n = 5)up—1,05 + (1 — 5)n—3busze + 4(n — 4)(n = 5)tn_200Puee
+3(n = 4)(n = 5)un—2¢7, + (n = 3)(n — 4)(n — 5)uu—1 (6630w, + (0 — 2)und}))
AN (Un—ay + 2(n — 5)tn_3,4Py + (1 = 5)tUp_3¢y, + (n — 4)(n — 5)u,_267)

+ i(uk,xun_k_m (= k= 3)upatn k10s + (k — 2) Uty g1 200

- ]Z;O— 2)(n — k — 2)uptty @2 4+ Up(Un—p—2.20 + 2(0 — k — 3)Up_p_1.200

+(n—k—=3) Uyt 10se + (n—k—2)(n —k — 3)u,_1¢?)) =0 (4.123)

whereu,, = 0 if n < 0 andu,,, = % (un). The difference here is that we will solve for only the

functionsu, andu,, leaving the determination af, to the end. Upon satisfaction of the recurrence
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relation at the lowest powers ofwe find that

uo(x,y, t) = —12€2¢i and wu(x,y,t) = 12e2¢m (4.124)

Following the procedure as outlined earlier in the sectith e assumed forms fai(¢) and((t)

we find thatu, takes the relatively simple form

ksk 2kA 4+ \K2
uy(z,y,t) = — s 6k23 o (4.125)
3

wherek,_4 are arbitrary constants. With this the remaining equataireach order o are iden-

tically satisfied and thus we find the final solution given by

(€2k’§ + k’gk’4 + Ak%)€2k1+2k2y+2k3x+2k4t + 2()\/’6’% + k3k‘4 o 5€2k§>ek1+k2y+k3w+k4t

U(I7 Y, t) = k’%(l + ek1+k2y+k3x+k4t)2

€2k5 + kaky + \k3 4,196
kg(l + ek1+k2y+k3:p+k4t)2 ( ’ )

We will now plot (see figure 4.9) the solution given by (4.12®) two different choices for the
set of parameters just as we did in truncated Pambalsis section. For the first choice we take

(k1, ko, k3, kg, e, A) = (1,—1,—1,4,1,1). The solution (4.126) at= 1 then becomes

2 -4 (1 2+2i—2y—2x\ __ 27)elti-y—=
ulz,y,1) = EZD e ) = (84 2i)e . (4.127)
(1+ elﬂ—y—x)2

It is clear that for this set of parameters the solution is plexvalued. Therefore, to better visu-
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Figure 4.9: Plots of the real (left) and imaginary (rightytsaf the solution to the KP-II equation
att = 1 on the rectanglé-3w, 37| x [—3m, 37| with the choice of paramete(s,, ko, k3, k4, €, \) =
(1,—1,-1,4,1,1).

alize the solution we plot the real and imaginary parts sepby.

As a second choice for the set of parameters we will takeks, ks, kg, e, A) = (1, —1,—-1,—1,1,1)

for which the solution (4.24) &= 1 becomes

3(1— e v)?

(I+eov)? 3tanh” ((1/2)(—z —y)). (4.128)

u(z,y,1) =

The plot for this solution is given in figure 4.10.
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Figure 4.10: Plot of the solution to the KP-II equationtat 1 on the rectanglé—10, 10] x
[—10, 10] with the choice of paramete($,, ko, k3, k4, ¢, \) = (1,—1,—1,—1,1,1).

Microstructure PDE

In this section we use the generalized Hirota expansion adetitn construct an exact solution to
the microstructure PDE given earlier in the chapter by eqond#.1). Pluggings—© into equation
(4.1) and balancing th@?),., andv,... terms we find that the degree of the singularityis equal

to 2. Sincea = 2, we seek a solution of the form

’ ;f)) + vo(z, 1) (4.129)

for equation (4.1). Plugging the truncated expansion @).ir&o equation (4.1) yields the recur-

rence relation given previously in the chapter in the Paimkmnalyis section,
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Um—apt — DUm—s e + (M —5)(20m_3,10 — 2bVp_3.202 + Vin—3(ds — bdrs)
+(m — 4)vym—2(¢7 — bB2)) — Z {Vk 2 Vm—k—2.2 + VkUm—k—2,00

k=0
+(m =k = 3)(VkaVm—k—1¢2 + 20Um k1202 + (M — k — 2)Uktn 107
RV 10zz) + (b — 2) (0pUm—k—1,200 + (M — k — 2)00m—102) } — 08(Vm—dzont
+(m = 5)(2Vm-3,20t®t + Vm—320P1 + 2Um—32ttPz + HV0m_321Pat + 2Vm—32Pent
+Um 3.4t Brz + 2Um—3tPuat + Vm—3Prztt + (M — 4) (V22207 + V240>
F4U1—2 21 P2 Pt + AUm—2 2 O1 Pt + 2052 2 Ox Oy + 4V —2 1Oy + QUm,Q@QUt
+201 202 Pzt + 20m 21Dtz + Vm—20tPazt + Vm—2020Ptt + Vm—2020t 01
+(m = 3)2um-1:0:0; + 201,050 + 40m_10201 00t + V10204 + V-1 Pea®}
+(m = 2)vm@27)))) + 07 (Vm—tz20e + (11— 5)(Vm—3Psaza + 40m—3.0Pan
60300000 + Wm-s,0000r + (M — 4) (Vn-2(400Gree + 30%,) + 120220000

+6Um—2,az:c¢i + (m - 3)(4vm—1,z¢§c + 6Um—1¢i¢$$ + (m - 2)vm¢i>))) =0 (4130)

where once again, = 0 if n < 0 andv,,, = 5% (v,). Solving the first two equations{ = 0 and

m = 1) for vy andv; we again find

—%%qs? — 8e?) (4.131)

120 (572¢:2c¢;m + 5ﬂ2¢?¢tt - 5’7(¢f¢$z + gb?:gbtt) _ 8ﬂ’7¢t¢m¢xt>
= 4.13
. Sz — Be7) (4.132)

Note that we do not solve far, at this time as we did previously when following the Pai@ev
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analysis method. Rather, following the procedure for theegaized Hirota expansion method as
outlined earlier in the section and expanding thén = with the assumed forms fai(¢) and<)(¢)

we find thatv, takes the relatively simple form

vle,t) = o (K3 — BK3) — bk} + i3) (4.133)
3

wherek;_3 are arbitrary constants. With this the remaining equatairesach order o are iden-

tically satisfied and thus we find the final solution given by

126(Bk3 — vk3)exp{ky + kot + kzz}
p(1+ exp{ky + kot + ksx})?
126(108vk3k3 — 52k — 55%ks)exp{ky + kot + ksx}
w(Bks —vk3)(1 + exp{ky + kot + ks })
Sykd — B2 — 58K + k2
juk3

v(z,t) = —

(4.134)

We will now plot the solution derived for the parameter(get ko, ks, v, 11,9, 5,0) = (1, —-1,—1,1,1,1, -1, 1).

For this choice of parameter set the solution (4.134) simeglto

2 (e—Qt—2x+2 _ 1O€—t—x+1 + 1)
vz, t) = == : (4.135)

The plot of this solution for = —5,0, 5 is given in figure 4.11.
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-10 -5

| Vv(x,5) v(x,0) v(x,-5)]

Figure 4.11: Plot of the solution (4.134) to the microstuetPDE at = —5,0, 5 on the interval
[—12, 12] with the choice of paramete($;, ko, k3,7, 11,9, 5,0) = (1,—1,—1,1,1,1,—1,1).

Generalized Pochhammer-Chree Equations

In this section we use the generalized Hirota expansion adetitn construct an exact solution to
the generalized Pochhammer-Chree equations given earlibeichapter by equations (4.2) and
(4.3). Pluggingy—© into equation (4.2) and balancing the®),, andu,.;; terms we find that the
degree of the singularity, is equal tol. Following the procedure and using the proper substitution
(u(zx,t) = \/m) for equation (4.3) as outlined in the previous sections we fhata) = 1

(¢ = 1,2). From this point on we will adopt the same notation used inpife¥ious section for
differentiating between results for equations (4.2) an8)(4That is, we will use the superscript

() for terms corresponding to equation (4.2) and the sup@ts@tifor terms corresponding to
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equation (4.3). From the leading order analysis we seekisnkiof the form

~ ugp(w, )
vo(x,t)
v(z,t) = m + vy (z, ) (4.137)

Plugging (4.136) and (4.137) into equation (4.2) we obtaerecurrence relation found earlier in

the chapter in the Painlévanalysis section for equation (4.2),
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—2(m = 2)(m = 3)(m — 4)¢odfum-1. — (M = 3)(M — 4)(201Puet + PPz + 200 Putt)Um—2
—2(m — 3)(m — 4)(PtPza + 2¢0Pat)ttm—24 — 4(m — 3)(m — 4) G Patim 2,01

—2(m = 3)(m — 4)(Pdu + 201¢Pet)thm—2.0 + Um—azt — (m — 1)(m — 2)(m — 3)(m — 4) 7 Pt
~ U gare — 2(m — 2)(m = 3)(m — )@ dum—1, — 2(m — 3)(m — 4) ¢, U2

—(m = 3)(m — 4)dum—sze — (M — 2)(m = 3)(m — )¢} Puattm—1 + (m — 3)(m — 4) s
—(m = 2)(m = 3)(m — )¢ dutim—1 — (m — 3)(m — 4)Pum—2u — ar((m — 3)(m — 4) P
+2(m — 4)pptm—32 + (M — 4)Pratlm—3 + Um—1.22) — 4(m — 2)(Mm — 3) (M — 4)Pp Pt Pt tm—1
+2(m — 4)Prttn—34 — 2(m — 4)drtlin—302t — 2(M — 4)Prtlm—3 200 — (M — 4) o311

—=2(m — 4)buttim—30 — (M — 4)Puaritim—3 — 2(M — 4)Puartim—31 — (M — 4) U3 22

m

—4(m = ) Gartim 300 + (M — ) Puett—s — 2a3 Y _[(m = j = 2)(m — j — 3)2tjtnn_j 1
j=0

+2(m — § = 3)PatljUm—j—2 + (M — J — 3)PpatljUp—j—2 + UjUm—j—3 24]

1y

m—j

[(m—k—jG—1)(m—k—j— 2)¢2uuptlm g + Wjlglm 2.0

=0 k=0
+(m —k — j = 2)Pupttjuptim—g—j—1 + 2(m — k — j — 2)PpUjUpUm—k—j—1,4]
m m—j
—6ag Z [(m —k — 3§ —1)(k — 1)Q2ujuptipm ki + (m — k — j — 2)Ppttjlp pUpm—k—j—1
=0 k=0
Ut k2 + (k= Dduujugtin k1] = 2a3 > [(F = D(m = j = 2)¢Fuum
=0

+(J — 1)ppttjtm—j—2,0 + (M — J — 3)Patj o Um—j—2 + Uj pUm—j—3 5] =0,

whereu,, = 0if m < 0 andu,,, = % (unm). As was the case in the Painéegection we must
transform (4.3) according ta(z,t) = \/v(z,t). The resulting equation will then follow from

equation (4.40) witm = 2. As one can see from the recurrence relation for equatid) (e
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recurrence relation for (4.40) would be unecessarily masshtherefore will be omitted. Iterating
throughm values in the recurrence relation for equation (4.2) we iobtee coefficients of the
different powers ofp. Solving the equations for the coefficient of the lowest omfes in each

case foruy andv, we find

uo(z,t) = — V20, and wvy(z,t) = — V30,

—as 2\/ —a5'

(4.138)

Here again we do not solve far, or v, at this time as we did previously when following the
Painlee analysis method. Rather, following the procedure for theegdized Hirota expansion
method as outlined earlier in the section and expanding4l@ndv, in = with the assumed forms

for theT'™(¢) andQ® (¢) we find thatu, andwv, take the relatively simple forms

2(—2k V=2 5+ 2a9/
U,l(x’t) _ _\/‘( ]{72 a3 + ao CL3) and ’Ul(,jlj,t) _ \/6(9@3 + Zag 6@3@5) (4139)
6(-@3)3/2 36@3«/@3@5

Wherekél) Is an arbitrary constant. Unlike the results for the KP eiguedind microstructure PDE
we cannot assume here that f&j@ (j =1,2,3) inthe ¢ are arbitrary. Rather we find that only
kY, kY, andk{? will be allowed to be arbitrary. Solving for the remainig’ in terms of the
coefficients in their respective PDEs ((4.2) or (4.3)) ar&jpreviousk,(?? the o are readily found

to be

(4.140)

_ QL2 — 92
¢(1)(5L’,t) =1+ exp{k;1 T kot — kz\/g\/ag( 3ksas + 6a,as a2)$}

—3k2az + 6ayaz — 2a3
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and

t—

— 4.141
2/ —3as Vv —3a5(32a1a5 — 6a3) ( )

¢(2)(£L',t) =14+ eXp{kl 3@3 6\/5&3\/&5(32&16% — 6a§)x} ‘

With this the remaining equations at each ordep®fare identically satisfied and thus we find the

final solutions are given by

2koexpl{y' (z, )} V2(—2ksaz + asy/—2az)
V=2as(1+explyV(a,1)}) 6(—az)*?

uV (z,t) = — (4.142)

and, noting again that(x, t) = \/v(x, t),

1/2
e B 3koexp{y® (z,1)} V6(9a2 + 2a,+/6asas)
(@)= (2@(1 Fexply@(n,8)}) | 36asy/asa - (143

where
k \/6\/a (—3k3az + 6ajaz — 2a3)
W () = ky + kot — = AN A — 4.144
y (I7 ) ! + 2 —3]6‘%&3 + 6&1@3 — 2&% * ( )
and
2
y(2) (:L‘, t) _ kl _ 3&3 6\/5@3 \/CL5(32CL16L5 - 6CL3> (4145)

t —_
2/ —3as v—3as5(32a,a5 — 6a2)

Again, we see that these solutions may be complex-valuecHoibe taken to be real with suitable

choices of the arbitrary constants involved. For exammleyf) we may taker; < 0 anda; <
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a2 k2 2) 3v/6a2 3a2
e+ 3 Foru'®) we may takei; < 0, az < 0, and—wﬁ <ar < fga-

We will now plot the solutions derived above for parametés séhich lead to real-valued solutions.

For the parameter séky, ks, a1, az,a3) = (0,1, 1,1, —1) the solution (4.142) becomes

VI3 VR (V2 6V
-6 26! tV/6/5 1 |

uM (z,t) (4.146)

The plot of this solution for = —5, 0, 5 is given in figure 4.12.

1.0

0.8

-10 -5 0 10

-0.2

|— iV x,-5) —— V00 — uVix,5)]

Figure 4.12: Plot of the solution (4.142) foe= —5, 0,5 on the interval—12, 12] with the choice
of parametersk,, ks, a1, as,a3) = (0,1,1,1,—1).
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As with the previous section, for some choices of parametgiis, a,, a3, as) the term inside the
square root in the solution (4.143) may oscillate betweesitipe and negative values and thus will
only be real-valued in certain regions of thie-plane. For this reason we will only consider cases
where the solution is real-valued for &, ¢) € R?. In particular, we consider the parameter set

(k1,a1,as3,a5) = (0,1,1,—1) for which the solution (4.143) becomes

(4.147)

The plot of this solution for = —5, 0, 5 is given in figure 4.13.

-10

— 1?0 — 1P x5 — u?x.5)

Figure 4.13: Plot of the solution (4.143) foe= —5, 0,5 on the interval—12, 20] with the choice
of parametersk,, a;, as,as) = (0,1,1, —1).
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CHAPTER 5: CONCLUSION

In the first part of this dissertation we presented two medthodderiving the Lax pair for variable-
coefficient nlpdes, namely Khawaja’'s Lax pair method andekiended Estabrook-Wahlquist
method. In doing so we determined the necessary conditionth® variable coefficients for
the variable-coefficient nonlinear PDEs to be Lax-intetgaldhe latter technique is introduced
here in the context of space and time dependent coefficienthé first time. As the extended
Estabrook-Wahlquist method requires many fewer assumgp#aad is algorithmic it proves to be a

vast improvement over Khawaja’s Lax pair method.

As stated in the introduction, an accepted definition foegnability of a nonlinear PDE does not
currently exist in the literature. However, many nonlinB&Ets which have been classified as in-
tegrable share a remarkable number of properties. Perhapsdst important of these properties
is the existence of a nontrivial Lax pair. We have derivedalde-coefficient extensions to several
well-known integrable nonlinear PDEs from the requirentbat they possess nontrivial Lax rep-
resentations as well as proving the nonexistence of a na@ittiax pair to an extension to a known

nonintegrable nonlinear PDE.

In the second part of this dissertation we gave a brief intctidn to three distinct types of sin-
gular manifold methods: truncated Paireanalysis, truncated invariant Pairéeanalysis, and a
generalized Hirota expansion method. These methods wenedigmonstrated on the well-known
integrable KdV and KP-Il equations. Plots of the deriveduiohs were given for various choices
of the arbitrary constants and system parameters invord@tbwing these examples we employed
each method of solution to derive nontrivial solutions to iarostructure PDE and two general-
ized Pochhammer-Chree equations. We found that the truh@aimlee analysis method failed

to produce a solution for the second of the two PochhammeeeChquations (equation (4.3))
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but was successful in all other cases considered. On thelwdhe, the invariant Painlévanalysis
and generalized Hirota expansion methods successfuljuper solutions in all cases considered.
Plots of the derived solutions were given for various cheigkthe arbitrary constants and system

parameters involved.

Future work will be centered around the results presentgaiinl of this dissertation. Due to the
algorithmic nature of the extended Estabrook-Wahlquighoethe natural question of whether the
whole procedure can be programmed arises. Although théisesyart 1 were derived partially
by hand, the entire process (or at least up to derivationeoflftermining equations for thg) can

be programmed in a computer algebra system such as MAPLE aHEMATICA.

As a first possible direction for future research we woule li& look into developing a program
(for MAPLE or MATHEMATICA) which, given a variable-coeffici nlpde, would carry out the

extended Estabrook-Wabhlquist procedure.

Many PDEs which are integrable by this definition have beenwshto possess a variety of other
interesting properties, e.g. the existence of infinitelynyneonserved quantities, a biHamiltonian

representation, solvability by the Inverse Scatteringh$farm, etc..

It would be of interest to study these new extended systerdetiermine if they share the same

properties common to integrable systems as their consbaffident predecessors.

As these generalized systems contain as limiting subcheehstant coefficient equations from
which they stem their study may lead to interesting resuithsas generalized biHamiltonian

structures which in turn could determine hierarchies ofalde-coefficient nonlinear PDEs.

In [?]- [?] we considered variable-coefficient extensions to the KdKdV, NLS, DNLS, and PT-
symmetric NLS equations. We have derived extensions to afdyv of the many known PDES in

the field of integrable equations.
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As a third direction we may utilize the extended Estabroailijuist method to derive integrable

extensions to many other known systems thus broadeningelide fi
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