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ABSTRACT

The first part of the dissertation studies a density deconvolution problem with small Berkson er-

rors. In this setting, the data is not available directly but rather in the form of convolution and one

needs to estimate the convolution of the unknown density with Berkson errors. While it is known

that the Berkson errors improve the precision of the reconstruction, it does not necessarily happen

when Berkson errors are small. Furthermore, the choice of bandwidth in density estimation has

been an open problem so far. In this dissertation, we provide an in-depth study of the choice of the

bandwidth which leads to the optimal error rates.

The second part of the dissertation studies a generative network model, the so-called Popularity

Adjusted Block Model (PABM) introduced by Sengupta and Chen (2018). The PABM general-

izes popular graph generative models such as the Stochastic Block Model (SBM) and the Degree

Corrected Block Model (DCBM). The advantages of the PABM is that, unlike mixed membership

models or the DCBM, it does not rely on any identifiability conditions, and leads to more flex-

ible spectral properties. We expand the theory of PABM to the case of an arbitrary number of

communities which possibly grows with a number of nodes in the network and is not assumed to

be known. We produce the estimators of the probability matrix and the community structure and

provide non-asymptotic upper bounds for the estimation and the clustering errors.

Majority of real-life networks are sparse, in the sense that they have few high degree nodes while

the rest of the nodes have low degrees. Since the SBM and DCBM do not allow to set any probabil-

ities of connections to zero, they model sparsity by enforcing the maximum connection probability

to be bounded above by a small quantity which precludes existence of high degree nodes. On the
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contrary, the PABM allows modeling some of the probabilities of connections between the nodes

as identical zeros while maintaining the rest of the probabilities non-negligible. This leads to the

Sparse Popularity Adjusted Block Model (SPABM). The SPABM reduces the size of parameter

set and leads to improved precision of estimation and clustering. We produce the estimators of the

probability matrix and the community structure in SPABM. Finally, we provide non-asymptotic

upper bounds for the estimation and the clustering errors.
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CHAPTER 1: INTRODUCTION

In this dissertation, we consider estimation and clustering for two types of data: indirect convolu-

tion data and network data.

The first part of the dissertation deals with the deconvolution problem. Deconvolution problems

occur in many fields of nonparametric statistics, for example, density estimation based on contam-

inated data, nonparametric regression with errors-in-variables, image and signal deblurring. Those

topics have received more and more attention during the last two decades. The real life applications

of deconvolution procedures are in econometrics, astronomy, biometrics, medical statistics, image

reconstruction. The general deconvolution problem for density estimation is one where a sam-

ple of independent and identically distributed (i.i.d.) variables Y1, ..., Yn is observed with random

measurement error. The observations are generated by the model

Yj = Xj + εj, Xj ∼ f, εj ∼ g.

Here the problem is to estimate the density f ofXj which are unknown, εj are called error variable

independent of Xj . g is known and is known as error density or blurring density.

In many real life problems one is interested in distribution of a certain variable which can be

observed only indirectly. Mathematically, this leads to a density deconvolution problem where

one needs to estimate the pdf of a variable X on the basis of observations of a surrogate vari-

able Y = X + ξ where the pdf fξ of ξ is known. The real life applications of this model arise

in econometrics, astronomy, biometrics, medical statistics, image reconstruction (see, e.g., Bovy

et al. (2011) and also Carroll et al. (2006) and Meister (2009) and references therein). Density de-
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convolution problem was extensively studied in the last thirty years (see, e.g., Carroll et al. (2009),

Comte and Kappus (2015), Goldenshluger (1999), Comte and Lacour (2011), and Meister (2009)

and references therein). However, Berkson (1950) argued that in many situations it is more appro-

priate to treat the true unobserved variable as being contaminated with an error itself and search

for the distribution of W = X + η where η is the so-called Berkson error with a known pdf fη.

Here, X , ξ and η are assumed to be independent. The objective is to estimate the pdf fW of W on

the basis of i.i.d. observations

Yi = Xi + ξi, i = 1, · · · , n, (1.1)

where Xi and ξi are i.i.d with, respectively, the pdfs fX which is unknown and fξ which is known.

Density fξ is called the error (or the blurring) density. However, in majority of practical situations,

the Berkson errors are small.

The objective of the first part of this dissertation is to study the situation where both the blurring

and the Berkson errors are present and, in addition, the Berkson errors ηi, i = 1, · · · , n, are small.

To quantify this phenomenon, we assume that the pdf fη is of the form fη(x) = σ−1g
(
σ−1x

)
,

where σ is small, specifically, σ = σn → 0 as n→∞ while the variable X has a non-asymptotic

scale. Specifically, we shall provide a full theoretical study of the bandwidth selection in a density

deconvolution with Berkson errors including estimation construction and errors evaluation.

The second part of the dissertation is devoted to the study of network data. A network (graph)

G = (V,E) is a structure made of nodes V and edges E. The degree of a node represents the

number of connections it has with other nodes in the network. Networks are more commonly

represented as graphs as well as in terms of matrices known as adjacency matrices. An adjacency

matrix is a binary matrix where Aij = 1 if there is an edge connecting node i and node j, and
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Aij = 0 otherwise. In this dissertation, we consider an undirected network with n nodes and no

self loops or multiple edges. We assume that elements of the adjacency matrix are generated as

independent Bernoulli variables with Pij being a probability of connections between nodes i and

j so that Aij = Ber(Pij), where P is a symmetric probability matrix. That is, we perform one

Bernoulli trial for each pair of edges, and record the result in both Aij and Aji.

A well-known feature of many empirical networks is community structure. Nodes in a network are

often found to belong to groups or communities that exhibit similar behavior. In general, commu-

nity structures may also refer to groups of vertices that connect in a similar manner to the rest of

the nodes in a graph without having necessarily a higher inner density. For example, dis-assortative

communities that have higher external connectivity. The primary interest in such networks is to un-

derstand which nodes exhibit similar behavior and in what way. The latter serves as the preliminary

step towards other learning tasks. Some of the applications of community detection in networks

include understanding of sociological behavior, protein to protein interaction, gene expressions,

recommendation systems, medical prognosis, image segmentation, natural language processing,

product-customer segmentation and web page sorting, to name a few.

The simplest model for the network is the Erdős Rényi random graph model G(n, p) where n

is the number of nodes and p is the probability of having an edge between two nodes, and all

edges form independently with probability p. This model does not allow the community structure

and is also too simplistic for the applications. The simplest random graph model for networks

with community structure is the Stochastic Block Model (SBM). In this model the connection

probability between two nodes is completely determined by the communities, to which the pair

of nodes belong. For this reason, every nodes inside a community have same degree distribution

and same expected degree, which is not true for majority of applications. The Degree Corrected

Block Model (DCBM) introduces the node-dependent weights, so that the probability of connec-
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tion between nodes inside the same community can vary. This makes DCBM more flexible than

SBM. However, it still cannot realistically model the real life networks, since a node with a higher

weight has uniformly higher connection probability in the network. The popularity of a node in

a community k is defined as the expected number of connection of that node to the nodes in the

community k. The Popularity Adjusted Block Model (PABM) recently introduced in Sengupta

and Chen (2018), defines the probability of connection between nodes as the product of the nodes’

popularities in the communities where another node belongs.

In this dissertation, we focus on community detection and estimation of the probability of connec-

tions matrix in the PABM. We develop methodology for estimation of P and clustering of nodes

into communities under this model. In addition, we provide non-asymptotic guarantees for the

estimation and clustering errors. One of the advantages of our approach is that we do not assume

that the number of communities in the network is known. Our estimation procedure provides the

oracle upper bounds for the error by imposing a penalty on the unknown number of communities.

Since the majority of real-life networks are sparse, we introduce the sparse PABM model. The

majority of sparse network models in the literature are based on a rather unrealistic assumption

that the maximum connection probability is bounded above by a small quantity. The reason for

this is that the SBM and DCBM do not allow to set probability of connection between two nodes

equal to zero since it is equal to the probability of connection between the communities to which

they belong, or make the nodes disconnected from the network. The flexibility of the PABM al-

lows modeling some of the probabilities of connections between the nodes as identical zeros while

maintaining the rest of the probabilities non-negligible, leading to the Sparse Popularity Adjusted

Block Model (SPABM). This formulation reduces the size of parameter set and leads to improved

precision of estimation and clustering. We produce the estimators of the probability matrix and the

community structure in this setting. Furthermore, we provide non-asymptotic upper bounds for the

estimation and the clustering errors.
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The rest of the dissertation is organized as follows.

In Chapter 2, we provide the complete theoretical treatment of density deconvolution with small

Berkson errors. Section 2.1 consists of background information that are used frequently in the

dissertation. We start with the brief development of density estimation techniques from histogram

to kernel estimator in Section 2.1.1. Section 2.1.2 contains the definition and properties of Fourier

transform and we present the important probabilistic tail inequalities that were used in proving

our results in Section 2.1.3. We formulate the deconvolution problem in Section 2.2. Section 2.3

constructs the deconvolution estimator. We evaluate the estimation error in Section 2.4. In partic-

ular, it provides an oracle inequality for the risk and studies the upper bounds for the risk under

specific assumptions on the class of underlying functions. We talk about adaptive estimation with

the Lepski’s method in Section 2.5. Section 2.6 provides the discussion over the results and the

proofs of the main and supplementary results can be found in Section 2.7.

Chapter 3 considers the estimation and clustering in the Popularity Adjusted Stochastic Block

Model. Section 3.1 briefly describes the background of statistical network models. Section 3.1.1

provides a brief description of random networks. We introduce the community structure and

describe the Stochastic Block Model, Degree Corrected Block Model and Popularity Adjusted

Stochastic Block Model in the Section 3.2. Section 3.3 describes the structure of the probability

matrix and the advantage of PABM in modeling network data. Section 3.4 introduce the nota-

tions we used for the second part of the dissertation. The optimization procedure to estimate the

probability matrix and clustering matrix is discussed in Section 3.5. We compute the estimation

and clustering errors in Section 4.3. Finally, the proofs of all the main results and supplementary

results for estimation and clustering in PABM are available in Section 3.7.

Chapter 4 is devoted to the estimation and clustering in the Sparse Popularity Adjusted Block-
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model. Section 4.1 introduces definitions of sparsity in blockmodels and discuss on the advantage

of PABM in modeling sparsity. We propose the optimization procedure for estimation and clus-

tering in sparse PABM in Section 4.2, where Section 4.2.1 discuss the structure of the probability

matrix in sparse PABM and Section 4.2.2 formulate the optimization problem for estimation and

clustering in sparse PABM. We compute the estimation and clustering errors in sparse PABM in

Section 4.3. We talk about two different types of penalty and its expression in the Section 4.3.1.

Our main results on the estimation and clustering errors are presented in the Section 4.3.2 and

Section 4.3.3 respectively. The proof of the main and supplementary results in sparse PABM can

be found in Section 4.4.

In Chapter 5, we discuss on the results obtained in the PABM and the sparse PABM. In addition,

we briefly talk about the possible direction of the future work.
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CHAPTER 2: DENSITY DECONVOLUTION WITH BERKSON ERRORS

The results presented in this chapter starting from the section 2.2 have been published in Rimal

and Pensky (2019).

2.1 Background Material

In this section we provide the background material that is required to comfortably read the disser-

tation. In this regards we define the terminology that were used in the dissertation. In addition, we

state the results that will be used later.

2.1.1 Introduction to Density Estimation

Let X1, · · · , Xn be identically distributed real valued random variables. Let the common distribu-

tion of i.i.d random vaariables X1, · · · , Xn is absolutely continuous with respect to the Lebesgue

measure on R. Then the density of this distribution is a unknown function f such that f : R →

[0,∞) which we wanted to estimate. The density estimation is a construction of estimate of den-

sity function from the observed data.

For a random variable X , with probability density function (pdf) f , one has

P(a < X < b) =

∫ b

a

f(x)dx for all a < b.

An estimator of f is a function x 7→ fn(x,X1, · · · , Xn) measurable with respect to the observa-

tion (X1, · · · , Xn). There are two approaches to density estimation, which are Parametric Density

Estimation and Non Parametric Density Estimation. Suppose we know that f belongs to a para-
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metric family g(x, θ) : θ ∈ Θ, where g is a given function, and Θ ⊂ Rp with a fixed dimension p

independent of n. Then the problem of estimation of f is equivalent to estimation of the parameter

θ which is known as parametric problem of density estimation. In the parametric density estima-

tion, we know the shape of the distribution but we don’t know the values of the parameter. We

usually estimate the values of the parameter by using Maximum Likelihood Estimation methods

or Bayesian Estimation methods.

For example: suppose the n data points X1, X2, · · · , Xn are observed. Assume that

X1, X2, · · · , Xn ∼ N (µ, σ2)

Then we estimate µ and σ2 from the data, we usually estimate the values of the parameter by using

Maximum Likelihood Estimation methods or Bayesian Estimation methods. Finally

f(x;µ, σ2) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)

will be the pdf for the given data.

The main limitation of the parametric density estimation is that density function of the data were

constrained to fall in a given parametric family.

On the other hand, if we don’t have information about f then our problem of estimating f becomes

the non-parametric density estimation problem. In this case, we assume that f belongs to some

wide class of densities (also known as nonparametric classes of functions) F . For example, F

can be the Holder class of densities, or Sobolev class of densities, or set of all the continuous

probability densities on R or the set of all the Lipschitz continuous probability densities on R and
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many more. In the nonparametric density estimation, the form of the density is entirely determined

by the data without any model. Our work is mainly related to the non parametric density estimation

for the univariate case. We start with the review of some common methods of density estimation.

Histogram

Histogram is an oldest and most widely used density estimator. Given the dataX0, X1, X2, · · · , Xn,

First we specify the origin c0, then define

a = min
0≤i≤n

Xi, b = max
0≤i≤n

Xi

and divide [a, b] into k intervals of equal length h =
b− a
k

, then

Ij = (c0 + jh, c0 + (j + 1)h], j = · · · ,−1, 0, 1, · · ·

We choose the intervals open on the left and closed on the right for definiteness. Then the estimator

of the density is given by

f̂(x) =
1

nh

∑
i

I(Xi ∈ Ij), x ∈ Ij

The form of the histogram depends on the tuning parameters c0 and h.

The major drawback of the histogram is the discontinuity. We cannot use for further mathematical

treatment. A histogram is also difficult to construct as well as visualize in the multivariate case

because it is not easy to construct contour diagrams to represent the data. The problems in the

univariate case are worsened in the multivariate case because of the dependence of estimates on

the choice of origin and coordinate directions of the grid of cells.

The Naive Estimator

9



For any given h, we can estimate P[x ∈ (x− h, x+ h)] by the proportion of the sample falling in

the interval (x− h, x+ h).

The natural estimator f̂ of the density is given by choosing small number h with f̂(x) equals the

proportion of Xi’s falling in the interval (x− h, x+ h) divided by the n. That is

f̂(x) =
1

2hn

∑
i

I[Xi ∈ (x− h, x+ h)]

which can be written more formally as

f̂(x) =
1

nh

n∑
i=0

w

(
x−Xi

h

)

where weight function is defined by

w(x) =

 1/2 if |x| < 1

0 otherwise.

Naive estimator f̂(x) can be seen as constructing a histogram with every point is the center of

the sampling interval and f̂(x) is the ordinate of histogram at x. The density function obtained is

not continuous but piecewise constant with zero derivatives everywhere else. This makes it less

attractive as it cannot be used for further mathematical treatment where we need to deal with the

differentiation.

The Kernel Estimator

The kernel function K : R → R is an integrable function satisfying
∫ ∞
−∞

K(z)dz = 1. The

Kernel Estimator is a generalization of the naive estimator by replacing the weight function w with

10



a kernel function K. The Kernel density estimator f̂ of the density f is given by

f̂(x) =
1

nh

n∑
i=0

K

(
x−Xi

h

)

where K is a kernel function and the parameter h is called a bandwidth of the estimator. The

Kernel estimator can be considered as the sum of the bumps placed at the observations whereas

the naive estimator is a sum of boxes centered at the observations. The Kernel estimator is the

most commonly studied and widely used density estimator. If the kernel function is non-negative

everywhere, then the estimator will be a probability density which inherits the continuity and

differentiability property of the kernel K. Although Kernel estimator suffers from the tendency

of appearing spurious noise in the tails of the estimates when applied to data from long-tailed

distributions, there have been various adaptive methods available in the literature (for example:

look Silverman (1986)) to deal with the issue.

2.1.2 Fourier Transform

Definition 2.1.1. For any function f ∈ L1(R), we define its Fourier transform f ∗ by

f ∗(x) =

∫ ∞
−∞

eixtf(t)dt

Definition 2.1.2. Let X and Y be two continuous random variables with density functions f and

g respectively defined on R. Then the convolution of f and g is denoted by f ∗ g is a real valued

function defined by

(f ∗ g)(z) =

∫
f(z − y)g(y)dy =

∫
f(x)g(z − y)dx = (g ∗ f)(z)
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The distribution of the random variable X is the information about what values X takes with what

probabilities. The distribution of X is determined by the cumulative distribution function (CDF)

defined by

FX(t) = P(X ≤ t), t ∈ R

The relation

P(X > t) = 1− FX(t)

is useful to work with the tails of random variables.

The following lemma shows the density of sum of the two independent variables is equal to the

convolution of their densities.

Lemma 2.1.1. Let X and Y be two independent, continuous random variables with density func-

tions fX and fY respectively defined on R. Then the sum Z = X + Y is a continuous random

variable with density function fZ given by fZ = fX ∗ fY .

Proof. Let X and Y be two independent, continuous random variables with density functions fX

and fY respectively defined on R. Then the sum Z = X +Y is a continuous random variable with

the cumulative density function (cdf)

FX+Y (z) = P(X + Y ≤ z)

=

∫
x+y≤z

fX(x)fY (y)dxdy

=

∫ ∞
−∞

∫ z−x

−∞
fX(x)fY (y)dydx

=

∫ ∞
−∞

FY (z − x)fX(x)dx
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Then the density function of Z = X + Y is given by

fZ(z) =
d

dz

(
FX+Y (z)

)
=

∫ ∞
−∞

d

dz
FY (z − x)fX(x)dx

=

∫ ∞
−∞

fY (z − x)fX(x)dx

= (fX ∗ fY )(z)

The following lemma shows that Fourier transform takes convolution to the product.

Lemma 2.1.2. (Convolution theorem) Let f ∗ and g∗ are the Fourier transforms of a function f and

and g defined by

f ∗(x) =

∫ ∞
−∞

eixtf(t)dt, and g∗(x) =

∫ ∞
−∞

eixtg(t)dt

For any f, g ∈ L1(R), the Fourier transform of the convolution f ∗ g is given by

(f ∗ g)∗(x) = f ∗(x)g∗(x)

Plancherel theorem shows the relation between the integral of a function f to the integral of its

Fourier transform.

Lemma 2.1.3. (Plancherel theorem) For any f ∈ L1(R), let f ∗ denote the Fourier transforms of a

function f defined by

f ∗(x) =

∫ ∞
−∞

eixtf(t)dt

13



Then for any f ∈ L1(R) ∩ L2(R)

∫ ∞
−∞
|f(x)|2dx =

1

2π

∫ ∞
−∞
|f ∗(w)|2dw

The following lemma provides the condition for the existence of the inverse Fourier transform.

Lemma 2.1.4. Assume that f ∈ L1(R) is bounded and continuous at some x ∈ R and, in addition,

f ∗ ∈ L1(R). Then

f(x) =
1

2π

∫ ∞
−∞

e−ixtf ∗(t)dt

For the proof of the above lemma, refer to page 181 of Meister (2009).

2.1.3 Probabilistic Tail Inequalities

Concentration inequalities quantify how a random variable X deviates around its mean µ. They

form a two-sided bounds for the tails of X − µ such as

P(|X − µ| > t) ≤ exp(−f(t))

where f(t) is some increasing function of t.

Lemma 2.1.5. (Markov Inequality) Let X be a non negative random variable and suppose that

E(X) exists. Then for any positive real number t,

P(X ≥ t) ≤ E(X)

t

The proof of the lemma can be found in page 8 of the book High-Dimensional Probability by
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Vershynin (2018).

Lemma 2.1.6. (Hoeffding’s inequality) Let X1, · · · , Xn be independent random variables such

that ai ≤ Xi ≤ bi. Then for all t > 0

P

 n∑
i=1

(Xi − E(Xi)) ≥ t

 ≤ exp

−
2t2

n∑
i=1

(bi − ai)2



The proof of the lemma can be found in page 14 of the book High-Dimensional Probability by

Vershynin (2018).

Lemma 2.1.7. (Theorem 2.1, Hsu et al. (2012)) Let A ∈ Rn×n be a matrix, and let Σ = Tr(ATA).

Suppose that x = (x1, · · · , xn) is a random vector such that, for some µ ∈ Rn and σ ≥ 0,

E[exp(αT (x− µ))] ≤ exp
(
‖α‖2σ2/2

)
for all α ∈ Rn. For all t > 0

P

‖Ax‖2 ≥ σ2(Tr(Σ) + 2
√

Tr(Σ2) t+ 2‖Σ‖t) + Tr(ΣµµT )

1 + 2

(
‖Σ‖2

Tr(Σ2)
t

)1/2
 ≤ exp(−t).

The proof of the above result can be found in page 3 of the article Hsu et al. (2012).

Definition 2.1.3. (Sub-gaussian random variables) A random variable X that satisfies one of the

three equivalent properties given below is called a sub-gaussian random variable.

1. Tails: P{|X| > t} ≤ exp (1− t2/C2
1) for all t ≥ 0;

2. Moments: (E|X|p)1/p ≤ C2
√
p for all p ≥ 1;

3. Super-exponential moment: E exp(X2/C2
3) ≤ e, where the parameters C1, C2, C3 differing
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from each other by at most an absolute constant factor.

Nonasymptotic bound on the norm of a random matrix is very useful on various areas of pure and

applied mathematics (see Davidson and Szarek (2001), Rudelson and Vershynin (2010), Talagrand

(2014)). Bandeira and van Handel (2016) are interested to obtain upper and lower bounds on

‖X‖ in terms of natural parameters that capture the structure of X , that differ only by universal

constants. They consider investigating a norm of random matrices with independent entries. Let

X be an n × n symmetric matrix with Xij = gijbij , where {gij : i ≥ j} are i.i.d ∼ N(0, 1) and

{bij : i ≥ j} are given scalers. In this setting, the most useful non-asymptotic bound on the spectral

norm ‖X‖ due to consequence of non-commutative Khintchine inequality (see Lust-Piquard and

Pisier (1991) ) yields

E‖X‖ . σ
√

log(n), σ = max
i

√∑
j

b2
ij,

which fails to be sharp in the case of Wigner matrices. Since σ =
√
n results to

E‖X‖ .
√
n
√

log(n)

lacks correct scaling E‖X‖ ∼
√

log(n). But if we take X a diagonal matrix with independent

standard gaussian entries, then σ = 1 and hence E‖X‖ ∼
√

log(n). So the non-commutative

Khintchine bound is sharp in extreme cases, it fails to capture the structure of the matrix X in a

satisfactory manner.

Bandeira and van Handel (2016) proved the following results.

Lemma 2.1.8. (Theorem 1.1: Bandeira and Handel (2016)) Let X be an n× n symmetric matrix

with Xij = gijbij , where {gij : i ≥ j} are i.i.d ∼ N(0, 1) and {bij : i ≥ j} are given scalers.

Then

E‖X‖ ≤ (1 + ε)

{
2σ +

6

log(1 + ε)
σ∗
√

log(n)

}
16



for any 0 ≤ ε ≤ 1/2, where σ, and σ∗ are defined by

σ = max
i

√∑
j

b2
ij, and σ∗ = max

i,j
|bij|.

Let X be an n×m matrix with Xij = gijbij , where {gij : 1 ≤ i ≤ n, 1 ≤ j ≤ m} are independent

N(0, 1) random variables and {bij : 1 ≤ i ≤ n, 1 ≤ j ≤ m} are given scalers. One can obtain a

bound on E‖X‖ for a non symmetric matrix X by applying Theorem 1 on the symmetric matrix

X̃ =

 0 X

X∗ 0


They obtain the following result for rectangular matices.

Lemma 2.1.9. (Theorem 3.1: Bandeira and Handel (2016)) Let X be an n × m matrix with

Xij = gijbij . Then

E‖X‖ ≤ (1 + ε)

{
σ1 + σ2 +

5

log(1 + ε)
σ∗
√

log(n ∧m)

}

for any 0 ≤ ε ≤ 1/2.

Then they extend the result for independent random variables which is as follows.

Lemma 2.1.10. (Corollary 3.3: Bandeira and Handel (2016)) If the independent Gaussian vari-

ables gij are replaced by independent random variables ξij that are centered and sub-Gaussian in

the sense

E[ξij] = 0, P[|ξij > t|] ≤ C exp{−t2/2c} for all t ≥ 0, and i, j;
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then the Theorems 1.1 and 3.1 remain valid up to a universal constant that depends on C and

c only. That is, we have E‖X‖ . σ + σ∗
√

log(n) in the case of Theorem 1.1 and E‖X‖ .

σ1 + σ2 + σ∗
√

log(n ∧m) in the case of Theorem 3.1.

Lemma 2.1.11. (Singular value decomposition) Let A be a matrix of size n× p. Let r be the rank

of the matrix A. Then A can be decomposed as

A =
r∑
i=1

σiuiv
T
i

where

(i) σ1 ≥ σ2, · · · ,≥ σr > 0, and σ1, σ2, · · · , σr are called the singular values of A

(ii) σ2
1 ≥ σ2

2, · · · ,≥ σ2
r are the nonzero eigenvalues of ATA and AAT , and

(iii) {u1, · · · , ur} and {v1, · · · , vr} are two orthonormal families of Rn and Rp such that

AATui = σ2
i ui and ATAvi = σ2

i vi for i = 1, 2, · · · , r.

The proof of the SVD can be found in page 229 of the Giraud (2015).

Definition 2.1.4. (Frobenius norm)

The standard scalar product on matrices is 〈A,B〉F =
∑
i,j

AijBij . It induces the Frobenius norm

‖A‖2
F = Tr(ATA) =

r∑
i=1

σ2
i

where r is the rank of a matrix A.

Definition 2.1.5. (Operator norm) The operator norm of a matrix A is defined by ‖A‖2
op = σ1

where σ1 is the largest singular value of a matrix A.
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Definition 2.1.6. (Nuclear norm) The nuclear norm of a matrix A is defined by

‖A‖∗ =
r∑
i=1

σi

where σ1, σ2, · · · , σr are the singular values of A.

Definition 2.1.7. (Ky-Fan (2,q) norm) For any integer q ≥ 1, the Ky-Fan (2,q) norm of a matrix A

is defined by

‖A‖2
(2,q) =

q∑
i=1

σ2
i

where σ1, σ2, · · · , σr are the singular values of A.

We have the following relation between the matrix norms defined above.

‖A‖∗ ≤
√

rank(A)‖A‖F ; 〈A,B〉F ≤ ‖A‖∗‖A‖F , and ‖AB‖F ≤ ‖A‖op‖B‖F

|A‖(2,1) = ‖A‖op = σ1

Definition 2.1.8. (Moore-Penrose pseudo-inverse of arbitrary matrix A) Let A =
r∑
i=1

σiuiv
T
i be a

singular value decomposition of A with r = rank(A). The Moore-Penrose pseudo-inverse of A is

given by

A+ =
r∑
i=1

σi
−1viu

T
i

The problem of predicting m-dimensional vector y from a p-dimensional vector of covariates can

be formulated in a matrix form as

Y = XA∗ + E

where Y = [y
(i)
k ], i = 1, 2, · · · , n; k = 1, 2, · · · ,m and E = [ε

(i)
k ], i = 1, 2, · · · , n; k =

1, 2, · · · ,m. and X = [x
(i)
j ], i = 1, 2, · · · , n; j = 1, 2, · · · , p. If we know the rank r∗ of A∗.
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Then we would estimate A∗ by the maximum likelihood estimator Âr constrained to have a rank

at most r∗ by

Âr ∈ argmin
rank(A) ≤ r

‖Y −XA‖2
F

with r = r∗. The following lemma provides a useful formula for XÂr in terms of the singular

value decomposition of PY , where P is the orthogonal projector onto the range of X .

Lemma 2.1.12. Write P = X(XTX) +XT for the projection onto the range of X , with (XTX)+

the Moore-Penrose pseudo-inverse of XTX . Then, for any r ≥ 1, we have XÂr = (PY )r. As

a consequence, denoting by PY =

rank(PY )∑
k=1

σkukvk
T a singular value decomposition of PY , we

have for any r ≥ 1

XÂr =

r∧rank(PY )∑
k=1

σkukvk
T

Lemma 2.1.13. (Proposition 6.2 Giraud (2015))

Set rank(X) = q. For any r ≥ 1 and θ > 0, we have

‖XÂr −XA∗‖2
F ≤ C2(θ)

∑
k>r

σk(XA
∗)2 + 2C(θ)(1 + θ)r|PE|2op

with C(θ) = 1 + 2
θ
.

The proof of the above lemmas can be found in page 124 of the Giraud (2015).

2.2 Deconvolution Problem with Berkson Errors: Formulation

Estimation with Berkson errors occurs in a variety of statistics fields such as analysis of chemi-

cal, nutritional, economics or astronomical data (see, e.g., Kim et al. (2016), Long et al. (2016),

Robinson (1999), Wang (2003), Wason et al. (1984), among others). For example, in occupa-
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tional medicine, an important problem is the assessment of the health hazard of specific harmful

substances in a working area. A modeling approach usually assumes that there is a threshold

concentration, called the threshold limiting value (TLV), under which there is no risk due to the

substance. Estimating the TLV is of particular interest in the industrial workplace. The classical

errors in this model come from the measures of dust concentration in factories, while the Berkson

errors come from the usual occupational epidemiology construct, wherein no direct measures of

dust exposure are taken on individuals, but instead plant records of where they worked and for how

long are used to impute some version of dust exposure (see Carroll et al. (2006)). In economics,

the household income is usually not precisely collected due to the survey design or data sensitiv-

ity. It was described by Kim et al. (2016) (see also Geng and Koul (2018)) that when the income

data were collected by asking individuals which salary range categories they belong to, then the

midpoint of the range interval was used in analysis. In this case, it is wise to assume that the true

income fluctuates around the midpoint observation subject to errors.

Estimation with Berkson errors was studied by Carroll et al. (2009), Delaigle (2007), Delaigle

(2008), Du et al. (2011), Geng and Koul (2018), Wang (2003), Wang et al. (2004) among others. It

is well known that the presence of Berkson errors improves precision of estimation of the density

function fW . For example, Delaigle (2007), Delaigle (2008) who studied estimation with Berkson

errors noted that in the cases when the pdf fη of Berkson errors has higher degree of smoothness

than the error density fξ, one can obtain estimators of fW with the parametric convergence rate.

However, in majority of practical situations, the Berkson errors are small. Hence, the question

arises whether small Berkson errors improve the estimation accuracy and how much. A similar

inquiry has been recently carried out by Long et al. (2016) who considered a somewhat different

setting. In particular, they studied a p-dimensional version of the problem where variable X is

directly observed and the objective is estimation of the pdf fW of W = X + η on the basis of ob-

servations X1, · · · , Xn where the pdf fη of η is known and variable η is small. In this formulation,
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the pdf fW can be written as

fW (x) =

∫
Rp
fX(x− z)fη(z)dz

and can be estimated by

f̂W (x) = n−1

n∑
i=1

fη(x−Xi) (2.1)

with the parametric error rate of Cn−1. However, if Var(η) = σ2 is small, this rate becomes

C(σ)n−1 where C(σ)→∞ when σ → 0, so the error of the estimator (2.1) may be very high.

To resolve this difficulty, in addition to estimator (2.1), Long et al. (2016) proposed two alternative

kernel estimators where the bandwidths of the kernels are chosen as h = hW or h = hX , so

to minimize the error of the estimator of fW in the first case and the error of the estimator of

fX in the second case. Subsequently, the authors studied all three estimators by simulations and

concluded that overall the kernel estimator with h = hW outperforms the remaining two. When

the error variance σ is small, the estimator (2.1) leads to sub-optimal error rates. On the other hand,

the choice of h = hX leads to oversmoothing, especially, when the error variance is large. The

authors do not provide a comprehensive theoretical study of the bandwidth selection in a general

case. In particular, their rule-of-thumb recipe is based on the case where fX is a Gaussian density.

In particular, Long et al. (2016) did not investigate when estimator (2.1) that corresponds to the

bandwidth h = 0 is preferable and suggested that it is always suboptimal.

The objective of the dissertation is to study the situation where both the blurring and the Berkson

errors are present and, in addition, the Berkson errors ηi, i = 1, · · · , n, are small. To quantify this

phenomenon, we assume that the pdf fη is of the form

fη(x) = σ−1g
(
σ−1x

)
, (2.2)
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where σ is small, specifically, σ = σn → 0 as n→∞ while the variable X has a non-asymptotic

scale. Specifically, we shall provide a full theoretical study of the bandwidth selection in a density

deconvolution with Berkson errors.

The setting of Long et al. (2016) corresponds to the multivariate version of the problem in this

paper where ξi = 0 and f ∗ξ = 1. We provide full theoretical treatment of the problem. In particular,

we prove that one should always choose the bandwidth to minimize the error of the estimator of

fW , but in some cases this optimal bandwidth can be zero if σ lies above some threshold that

depends on the shapes of the densities fξ, fX and g and the sample size. In the particular case

studied by Long et al. (2016) the latter situation would lead to the estimator of the form (2.1).

Since the setting (2.2) leads to three asymptotic parameters, n, σ and h, in order to keep the paper

clear and readable, we consider a one-dimensional version of the problem. Extensions of our

results to the situation of multivariate densities is a matter of future work.

In what follows, we are using the following notations. For any function f , f ∗ denotes its Fourier

transform defined by f ∗(x) =

∫ ∞
−∞

eixtf(t)dt. If f is a pdf, then f ∗ is the characteristic function

of f . We use the symbol C for a generic positive constant, which takes different values at different

places and is independent of n. Also, for any positive functions a(n) and b(n), we write a(n) �

b(n) if the ratio a(n)/b(n) is bounded above and below by finite positive constants independent of

n, and a(n) . b(n) if the ratio a(n)/b(n) is bounded above by finite positive constants independent

of n.
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2.3 Construction of the Deconvolution Estimator

Since (1.1) and W = X + η imply that

f ∗Y (w) = f ∗X(w)f ∗ξ (w), f ∗W (w) = f ∗X(w)f ∗η (w) (2.3)

and also, due to (2.2), f ∗η (w) = g∗(σw), one obtains

f ∗W (w) = f ∗X(w)g∗(σw) =
f ∗Y (w)g∗(σw)

f ∗ξ (w)

Note that the unbiased estimator of f ∗Y (w) is given by the empirical characteristic function

f̂ ∗Y (w) = n−1

n∑
j=1

exp(iwYj). (2.4)

If g∗(σw)/f ∗ξ (w) is square integrable, i.e.

ρ2(σ) =

∫ ∞
−∞

∣∣∣∣∣g∗(σw)

f ∗ξ (w)

∣∣∣∣∣
2

dw <∞, (2.5)

then the inverse Fourier transform of f ∗Y (w)g∗(σw)/f ∗ξ (w) exists and fW (x) can be estimated by

f̂W (x) =
1

2π

∫ ∞
−∞

exp(−iwx)
f̂ ∗Y (w)g∗(σw)

f ∗ξ (w)
dw (2.6)

If g∗(σw)/f ∗ξ (w) is not square integrable, one needs to obtain a kernel estimator of fW . Construct

approximations fW,h and f ∗W,h of fW and f ∗W , respectively,

fW,h(x) =

∫ ∞
−∞

1

h
K

(
x− w
h

)
fW (w)dw, f ∗W,h(s) = K∗(sh)

f ∗Y (s)g∗(σs)

f ∗ξ (s)
(2.7)
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and arrive at the estimator f̂ ∗W,h(s) of f ∗W,h(s) of the form

f̂ ∗W,h(s) = K∗(sh)f̂ ∗Y (s)g∗(σs)/f ∗ξ (s)

where f̂ ∗Y is defined in (2.4).

Consider the kernel function K(x) = sin(x)/(πx), so that K∗(s) = I(|s| ≤ 1), where I(A)

denotes the indicator function of a set A. Since K∗(s) is bounded and compactly supported, the

inverse Fourier transform of f̂ ∗W,h always exists and

f̂W,h(x) =
1

2π

∫ ∞
−∞

exp(−ixs) f̂
∗
Y (s)K∗(sh)g∗(σs)

f ∗ξ (s)
ds (2.8)

We set f̂W,0(x) ≡ f̂W (x).

In order to obtain an expression for the bandwidth h we introduce the following assumptions:

(A1) There exists positive numbers cξ and Cξ and nonnegative numbers a, b and d such that for

any s

cξ(s
2 + 1)−

a
2 exp(−d|s|b) ≤ |f ∗ξ (s)| ≤ Cξ(s

2 + 1)−
a
2 exp(−d|s|b) (2.9)

where b = 0 iff d = 0 and a > 0 whenever d = 0.

(A2) There exists positive numbers cg and Cg and nonnegative numbers ϑ, β and γ such that for

any s

cg(s
2 + 1)−

ϑ
2 exp(−γ|s|β) ≤ |g∗(s)| ≤ Cg(s

2 + 1)−
ϑ
2 exp(−γ|s|β), (2.10)

where β = 0 iff γ = 0 and ϑ > 0 whenever γ = 0.
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(A3) fX(s) belongs to the Sobolev ball

S(k,B) = {f :

∫ ∞
−∞
|f ∗X(s)|2(s2 + 1)k ds ≤ B2, k ≥ 1/2}. (2.11)

Also, since density deconvolution with Berkson errors of relatively large size has been fairly well

studied, below we only study the case where σ is small, in particular, if γ > 0, d > 0, one has

σ < 0.5 (d/γ)1/b. (2.12)

2.4 Estimation Error

We characterize the precision of the estimator f̂W,h of fW by its Mean Integrated Squared Error

(MISE)

MISE(f̂W,h, fW ) = E
∫ ∞
−∞
|f̂W,h(x)− fW (x)|2dx.

Since, under Assumptions (2.9)–(2.11), both f̂ ∗W,h and f ∗W are square integrable, by the Plancherel

theorem, derive that

MISE(f̂W,h, fW ) =
1

2π
E
∫ ∞
−∞

|g∗(σs)|2

|f ∗ξ (s)|2
|K∗(sh)f̂ ∗Y (s)− f ∗Y (s)|2 ds

Therefore,

MISE(f̂W,h, fW ) = R1(f̂W,h, fW ) + n−1R2(f̂W,h, fW ) (2.13)
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where

R1(f̂W,h, fW ) = ‖Ef̂W,h − fW‖2 =
1

2π

∫ ∞
−∞
|g∗(σs)|2 |f ∗X(s)|2 I(|s| > h−1) ds (2.14)

is the integrated squared bias of the estimator f̂W,h and

R2(f̂W,h, fW ) = nE‖f̂W,h − Ef̂W,h‖2 ≤ I(σ, h) (2.15)

where

I(σ, h) =
1

2π

∫ 1/h

−1/h

|g∗(σs)|2

|f ∗ξ (s)|2
ds. (2.16)

We shall be interested in the maximum value of MISE(f̂W,h, fW ) over all fX ∈ S(k,B) where

S(k,B) is defined in (2.11). In particular, we denote Ef̂W,h = fW,h and define

∆ ≡ ∆(n, σ, h) = max
fX∈S(k,B)

MISE(f̂W,h, fW ) subject to f ∗W (w) = f ∗X(w)f ∗η (w). (2.17)

It is easy to see that

∆ ≤ ∆1 + n−1 ∆2 (2.18)

where

∆1 ≡ ∆1(n, σ, h) = max
fX∈S(k,B)

R1(f̂W,h, fW ), ∆2 ≡ ∆2(n, σ, h) = max
fX∈S(k,B)

R2(f̂W,h, fW )

(2.19)

Then, the following statements hold.
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Lemma 2.4.1. Under the assumptions (2.9)–(2.12), for ∆1 in (2.19), one has

∆1 .

 σ−2ϑh2ϑ+2k exp
(
−2γ

(
σ/h

)β) if h < σ

h2k if h ≥ σ
(2.20)

Lemma 2.4.2. If β > b > 0, denote

κ =

(
db

γβ

) b
β−b
[
d(β − b)

b

]
> 0. (2.21)

Then, under the assumptions (2.9)–(2.12), the expressions for ∆2 defined in (2.19), are given in

Table 2.1.

Observe that in every case, the expression for the variance depends not only on the values of h, σ

and n but also on their mutual relationship. Also, the bias term ∆1(σ, h) is an increasing function

of h while the variance term ∆2(σ, h) is a decreasing function of h, so the optimal value h = hopt

is such that ∆1(σ, h) � n−1 ∆2(σ, h). Theorem 2.4.1 below presents the optimal expressions hopt

for the bandwidth h as well as the corresponding values for the risk ∆(n, σ, hopt) where ∆(n, σ, h)

is defined in (2.17).

Theorem 2.4.1. Let conditions (2.9)–(2.12) hold. Then, the asymptotic values of

hopt = arg min
h

[∆(n, σ, h)]
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Table 2.1: The asymptotic expressions for ∆2 ≡ ∆2(σ, h)

Case ∆2

I) b = β = 0, ϑ > a+ 1
2
, min

(
h−(2a+1), σ−(2a+1)

)
II) b = β = 0, ϑ = a+ 1

2
min

(
h−(2a+1), σ−(2a+1)

)
max

{
ln
(
σ
h

)
, 1
}

III) b = β = 0, ϑ < a+ 1
2
, h−(2a+1) min

{(
h
σ

)2ϑ

, 1

}

IV) b = 0, β > 0 min
(
h−(2a+1), σ−(2a+1)

)
V) β > b > 0, h >

(
γβ
db
σβ
) 1
β−b

h−(2a+1)+bexp(2dh−b) min

{(
h
σ

)2ϑ

, 1

}
β > b > 0, h <

(
γβ
db
σβ
) 1
β−b

exp
(
κσ−

βb
β−b

)
σ

β
β−b .

b−2
2
−2ϑ

VI) b = β > 0 h−(2a+1)+b exp(2h−b(d− γσb)) min

{(
h
σ

)2ϑ

, 1

}

VII) b > 0, β = 0 h−(2a+1)+bexp(2dh−b) min

{(
h
σ

)2ϑ

, 1

}

VIII) b > β > 0 h−(2a+1)+bexp(2dh−b) min

{(
h
σ

)2ϑ

, 1

}

and also of ∆(n, σ, hopt) are provided in Table 2.2. Here,

µ1 = µ1(n) =

 1

2d

(
lnn+

(
b− 2a− 1

b

)
ln lnn

)− 1
b

,

(2.22)

µ2 = µ2(n) =

 1

2(d− γσb)

(
lnn+

(
b− 2a− 1

b

)
ln lnn

)− 1
b

.
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Table 2.2: The optimal values of the bandwidth h and the corresponding expressions for the MISE

Case ∆(n, σ, hopt) condition hopt

I) b = β = 0, n−1σ−(2a+1) σ > n−
1

2k+2a+1 0

ϑ > a+ 1
2

n−
2k

2k+2a+1 σ ≤ n−
1

2k+2a+1 n−
1

2k+2a+1

II) b = β = 0 n−1σ−(2a+1) lnn σ > n−
1

2k+2a+1 n−
1

2k+2a+1

ϑ = a+ 1
2

n−
2k

2k+2a+1 σ ≤ n−
1

2k+2a+1 n−
1

2k+2a+1

III) b = β = 0, σ−2ϑn−
2ϑ+2k

2k+2a+1 σ > n−
1

2k+2a+1 n−
1

2k+2a+1

ϑ < a+ 1
2

n−
2k

2k+2a+1 σ ≤ n−
1

2k+2a+1 n−
1

2k+2a+1

IV) b = 0, β > 0 n−1σ−(2a+1) σ > n−
1

2k+2a+1 0

n−
2k

2k+2a+1 σ ≤ n−
1

2k+2a+1 n−
1

2k+2a+1

V) β > b > 0 n−1 exp
(
κσ

−βb
β−b

)
σ
β(b−2)
2(β−b)−2ϑ σ > µ1 0

(lnn)−
2k
b σ ≤ µ1 µ1

VI) b = β > 0 σ−2ϑ (lnn)−
2ϑ+2k
b exp

(
−2γσβ (lnn)

β
b

)
σ > µ1 µ1

(lnn)−
2k
b σ ≤ µ1 µ2

VII) b > 0, β = 0 (lnn)−
(2ϑ+2k)

b σ−2ϑ σ > µ1 µ1

(lnn)−
2k
b σ ≤ µ1 µ1

VIII) b > β > 0 σ−2ϑ (lnn)
(1+2a−2ϑ)

b
−1 σ > µ1 µ1

(lnn)−
2k
b σ ≤ µ1 µ1

The optimal values hopt of the bandwidth h and the corresponding expressions for ∆(n, σ, h) de-
fined in (2.18). Here, µ1 and µ2 are given by (2.22).

2.5 Adaptive Estimation Using Lepski’s Method

Note that although Theorem 2.4.1 provides the optimal values for the bandwidth and the corre-

sponding convergence rates, in practice, we can use those values only in the cases V-VIII, since

in the cases I-IV the value of the optimal bandwidth hopt depends on the smoothness parame-

ter k of the unknown density fX . Moreover, in cases I and IV the optimal bandwidth is zero if

σ > n−
1

2k+2a+1 where the threshold value n−
1

2k+2a+1 itself depends on the unknown value of k. In
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order to resolve this difficulty, we use a novel modification of the Lepski method for construction

of adaptive estimators (see, e.g., Lepski and Spokoiny (1997), Goldenshluger and Lepski (2011)).

Below we consider cases I-IV, for which the optimal value hopt depends on the unknown parameter

k. To start with, note that, by Lemma 2.4.1, if hopt = 0, as it happens in cases I and IV, one has

∆(n, σ, 0) � ∆(n, σ, n−1)

Moreover, if σ ≤ n−
1

2a+1 < n−
1

2k+2a+1 , then hopt > 1/n.

In order to replace the unknown value of hopt by its estimated value, we use the variance term given

by

D(n, σ, h) = ‖f̂W,h(x)− fW,h(x)‖2 = 1
2π
‖f̂ ∗W,h(x)− f ∗W,h(x)‖2

= 1
2π

∫ 1/h

−1/h

|g∗(σs)|2

|f ∗ξ (s)|2
|f̂ ∗Y (s)− f ∗Y (s)|2 ds.

If h ≥ 1/n, then it is easy to see that

D(n, σ, h) ≤ max
|s|≤n

|f̂ ∗Y (s)− f ∗Y (s)|2 I(σ, h)

where I(σ, h) is defined in (2.16).

Recall also that the value hopt is such that it minimizes the sum of ∆1(n, σ, h) + n−1∆2(n, σ, h)

where, under the assumptions A1 - A3, the first term is growing polynomially in hwhile the second

is decreasing polynomially in h. Therefore,

∆(n, σ, hopt) � ∆1(n, σ, hopt) � n−1 I(n, σ, hopt). (2.23)
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Consider the sets

J = {1, 2, 3, · · · , jmax} and H = {h = 2−j, j ∈ J } (2.24)

and denote

jmax = min

(
lnn

2a+ 1
, ln

(
1

σ

))
. (2.25)

Let q > 0 be such that E(|X1|q) ≤ Cq <∞ and

C(τ, q) ≥ 8
√

2τ(q + 1) + 6q + 2/
√
q. (2.26)

Define a set in the sample space

Ωσ,n =

 {w : ‖ f̂W,σ − fW, 1
n
‖ ≥ 4C(τ, q)

√
n−1 I(σ, 1/n) lnn} for cases I and IV

∅ (the empty set) for cases II and III.
(2.27)

Then, the following statement holds.

Theorem 2.5.1. Let conditions (2.9)–(2.12) hold with b = 0 (cases I-IV) and τ ≥ 4. Define

ĥ =

 1/n if w ∈ Ωσ,n

max{h ∈ H : ‖f̂W,h − fW,h̃‖ ≤ 4C(τ, q)
√

lnn
n
I(σ, h̃) for any h̃ ≤ h, h̃ ∈ H} if w /∈ Ωσ,n

Then

E‖f̂W,ĥ − fW‖
2 . ∆(n, σ, hopt) lnn. (2.28)
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2.6 Discussion

In this work, our main goal was to justify the choice of a bandwidth in deconvolution problems

with small Berkson errors. To the best of our knowledge, our paper is the first paper which carries

out a comprehensive theoretical study of density deconvolution with Berkson errors when Berkson

errors are asymptotically small.

In particular, we refined the conclusion of Long et al. (2016) and studied the relationship between

the three parameters: the bandwidth h, the sample size n and the standard deviation of the Berkson

errors σ. As Theorem 2.4.1 above shows, the expressions for the optimal bandwidth are always

chosen to minimize the error in the estimator of the density of interest fW . In particular, if h = 0

is possible, one should choose this value as long as the Berkson errors are not too small, i.e., σ

lies above some threshold level that depends on the shapes of the densities and the number of

observations n.

In order to uncover the reason for this, compare expressions (2.6) and (2.8) and observe that g∗(σs)

in (2.6) acts as a kernel function g with the bandwidth h = σ. If σ is large enough (i.e σ > hopt,

where hopt is the value of h that achieves the best bias-variance balance), then convolution with g

leads to sufficient regularization and no kernel estimation is necessary. However , if σ < hopt then

one needs additional kernel smoothing with h > σ.

The setting of Long et al. (2016) corresponds to the cases I, II, III and IV in Tables 1 and 2

with a = b = 0. If ϑ > 1/2, then hopt is zero if σ is large enough and hopt is of the order

n−1/(2k+1) (where k is the degree of smoothness of the density fX of the measurements) otherwise.

The choice depends on the relationship between parameters σ, n and k. Since k is unknown, we

construct adaptive estimators of fW using a novel modification of Lepski method. Indeed, one

cannot use the traditional Lepski method since the value of the optimal bandwidth depends on
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the relationship between σ and the unknown threshold n−1/(2k+2a+1). Hence, our paper presents a

non-trivial extension of the Lepski technique.

Note that we did not consider the case of the multivariate density functions. This extension is fairly

straightforward but rather cumbersome. We shall leave this case for the future investigation.

2.7 Supplementary Lemmas and Proofs

2.7.1 Proof of Lemma 2.4.1.

Proof. Since for any fX ∈ S(k,B) one has

∆1 = max
fX∈S(k,B)

‖Ef̂W,h − fW‖2.

= max
fX∈S(k,B)

1

2π

∫
|s|>1/h

|g∗ (σs) |2|f ∗X(s)|2ds

= max
fX∈S(k,B)

1

π

∫ ∞
1
h

|g∗(σs)|2|f ∗X(s)|2ds

≤ max
fX∈S(k,B)

2Cg
π

∫ ∞
1
h

(σ2s2 + 1)−ϑ exp(−2γ|s|βσβ)
(s2 + 1)k

(s2 + 1)k
|f ∗X(s)|2ds

≤ 2Cg B
2

π
max
s≥ 1

h

[
(σ2s2 + 1)−ϑ exp(−2γ|s|βσβ)

]
(h−2 + 1)−k,

obtain

∆1 . min

{(
h

σ

)2ϑ

, 1

}
h2k exp

(
−2γ

(
σ

h

)β)
which implies (2.20).
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2.7.2 Proof of Lemma 2.4.2

Proof. Note that the variance term is given by

∆2 ≤
1

2 π

∫ ∞
−∞

|g∗(σs)|2

|f ∗ξ (s)|2
I(|s| < h−1)ds

≤ Cg
cξ

∫ 1
h

0

(σ2s2 + 1)−ϑ (s2 + 1)a exp(−2γ|s|βσβ + 2d|s|b) ds

Using change of variables s=z/h obtain

∆2 . h−(2a+1) V (σ, h) with V (σ, h) =

∫ 1

0

P (z|σ, h) exp{φ(z|σ, h)}dz (2.29)

where

φ(z|σ, h) = 2dzbh−b − 2γzβσβh−β, P (z|σ, h) =
(
σ2z2h−2 + 1

)−ϑ (
z2 + h2

)a (2.30)

For cases when b = 0 (cases I-IV), one can obtain an asymptotic expression for ∆2 using direct

calculations. If b > 0 and d ≥ 0, one needs to apply Lemma 2.7.4. Denote by z0 and zh,

respectively, the point where φ(z|σ, h) attains its global maximum on the interval [0, 1] and its

critical point:

z0 ≡ z0(σ, h) = argmax
z∈[0,1]

φ(z|σ, h), zh =
(
db (γβ)−1 σ−β

) 1
β−b

h (2.31)

Since zh > 0, there are two possible cases here: zh ∈ (0, 1] and zh > 1. If zh ∈ (0, 1], then

z0 = zh, φ′(z0) = 0 and φ′′(z0) < 0. If zh > 1, then z0 = 1 and φ′(z0) = φ′(1) > 0.
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Hence, Lemma 2.7.4 and formula (2.29) yield, that for small values of h and σ,

h2a+1 ∆2 .


exp{φ(zh|σ, h)}P (zh|σ, h)√

|φ′′(zh|σ, h)|
, if z0 = zh,

exp{φ(1|σ, h)}P (1|σ, h)

φ′(1|σ, h)
, if z0 = 1.

(2.32)

Here

φ(1|σ, h) = 2dh−b − 2γσβh−β, φ′(1|σ, h) = 2
(
dbh−b − γβσβh−β

)
P (1|σ, h) �

(
σ2h−2 + 1

)−ϑ
, P (zh|σ, h) =

(
σ2z2

hh
−2 + 1

)−ϑ (
z2
h + h2

)a (2.33)

Below we consider various cases.

Cases I, II, III: b = β = 0.

Note that

I(σ, h) =
2Cg

2

cξ2

∫ 1
h

0

(σ2s2 + 1)−ϑ(s2 + 1)ads =
2Cg

2

cξ2h

∫ 1

0

(
σ2z2h−2 + 1

)−ϑ (
z2h−2 + 1

)a
dz

(2.34)

If h ≥ σ, then σ2z2h−2 + 1 ∈ (1, 2) and I(σ, h) ≤ 21−ϑCg
2

cξ2
h−(2a+1).

If h < σ, then, by the change of variables σs = u in (2.34), obtain

I(σ, h) =
2Cg

2

cξ2σ

∫ σ
h

0

(
u2 + 1

)−ϑ (
u2σ−2 + 1

)a
du ≤ 2Cg

2Ca
cξ2

σ−(2a+1)

∫ σ
h

0

u2a

(u2 + 1)ϑ
du

Hence,

I(σ, h) ≤ 2Cg
2Ca

cξ2
min

(
h−(2a+1), σ−(2a+1)

)
∆hσ
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where

∆h,σ =


1 if ϑ > a+ 1/2

max
{

ln
(
σ
h

)
, 1
}

if ϑ = a+ 1/2

max
{

1,
(
σ
h

)2a−2ϑ+1
}

if ϑ < a+ 1/2

(2.35)

Case IV: b = 0, β > 0.

In this case,

∆2 � h−1

∫ 1

0

(
σ2z2h−2 + 1

)−ϑ (
z2h−2 + 1

)a
exp

(
−2γσβzβh−β

)
dz.

If h > σ then the argument of the exponent is bounded above and ∆2 � h−2a−1. If h < σ, then by

changing variables u = 2γ
(
σz/h

)β
, obtain

∆2 � σ−1

∫ ∞
0

( u

2γ

) 2
β

+ 1

−ϑ 1

σ2a

(
u

2γ

) 2a
β

+ 1

 exp(−u)u
1
β
−1du � σ−(2a+1)

Hence,

∆2 � min
(
h−(2a+1), σ−(2a+1)

)
.

Case V: β > b > 0.

In this case ρ2(σ) = ∞ in (2.5), so that h > 0. The expression for the variance is given by (2.29)

with φ(z|σ, h) defined in (2.30). Let zh be given by (2.31). It is easy to check that

zh =
(
db (γβ)−1 σ−β

) 1
β−b

h � σ−
β
β−bh. (2.36)
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It is easy to check that φ′′(zh|σ, h) < 0, so that zh is the local maximum. Now consider two cases.

(a) If h >

(
γβ

db
σβ
) 1

β−b

, then zh > 1. Hence, φ(z|σ, h) does not have a local maximum on

[0, 1] and it attains its global maximum at z0 = 1. Then, 2dh−b > φ(1|σ, h) = 2dh−b −

2γσβh−β > 2dh−b
(
1− b/β

)
. Moreover, since β > b and h >

(
γβ

db
σβ
) 1

β−b

> σ, one has

2dbh−b > 2γβσβh−β which yields

φ
′
(1|σ, h) = 2dbh−b − 2γβσβh−β = 2dbh−b

(
1− γβ

db
σβhb−β

)
� h−b

Plugging those expressions into the second equation of (2.32) and using (2.33), obtain

∆2 � h−(2a+1) min
{(
hσ−1

)2ϑ
, 1
}

exp(2dbh−b)hb � hb−2a−1 exp
(

2dh−b
)

(b) If h <
(
γβ

db
σβ
) 1

β−b

, then zh is given by formula (2.36) and z0 = zh < 1. Hence, ∆2 is given

by the first expression in formula (2.32)

∆2 �
exp(φ(zh|σ, h))√
|φ′′(zh|σ, h)|

h−(2a+1)
(
σ2z2

hh
−2 + 1

)−ϑ (
z2
h + h2

)a (2.37)

Note that, due to β > b > 0, β2

β−b >
βb
β−b and β − β2

β−b = − βb
β−b , one has

φ(zh|σ, h) =
2d

hb

(
db

γβ
σ−β

) b
β−b

hb − 2γσβ

hβ

(
db

γβ
σ−β

) β
β−b

hβ = κσ−
βb
β−b

where κ is a positive constant defined in (2.21). Also

φ′′(zh|σ, h) =
2

z2
h

(
db(b− 1)zbh

hb
− γβ(β − 1) zβhσ

β

hβ

)
=

2db(b− β)zb−2
h

hb
� zb−2

h

hb
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Then, plugging φ(zh|σ, h) and φ′′(zh|σ, h) into (2.37), obtain

∆2 � exp
(
κσ−

βb
β−b

)
σ
β(b−2)
2(β−b)−2ϑ.

Case VI: b = β > 0.

In this case ρ2(σ) = ∞ in (2.5), so that h > 0. Moreover, since φ(z|σ, h) = 2zb h−b(d − γσb)

where, due to condition (2.12), d− γσb > 0, z0 = 1 is the non-local maximum of φ(z|σ, h). Then,

the second expression in formula (2.32)

∆2 .
exp(φ(1|σ, h))

φ′(1|σ, h)
h−(2a+1)

(
σ2h−2 + 1

)−ϑ (2.38)

Using (2.33) with β = b, we derive

∆2 . hb−(2a+1) min

((
h

σ

)2ϑ

, 1

)
exp(2h−b(d− γσb))

Case VII: b > 0, β = γ = 0

In this case, z0 = 1 is the non-local maximum of φ(z|σ, h) and (2.33) yield φ(1|σ, h) = 2dh−b and

φ′(1|σ, h) = 2dbh−b. Plugging those expressions into (2.38), we derive

∆2 . min

((
h

σ

)2ϑ

, 1

)
hb−(2a+1)exp(2dh−b)
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Case VIII: b > β > 0

In this case ρ2(σ) = ∞ in (2.5), so that h > 0. Also, it is easy to check that although zh ∈ (0, 1),

one has φ′′(zh|σ, h) > 0 , so zh is the local minimum. It is easy to see that z0 = 1 and φ(1|σ, h) =

2dh−b(1 − γd−1σβhb−β) � 2dh−b. Moreover, φ′(1|σ, h) = 2h−b(db − γβσβhb−β) � h−b, so

formula (2.38) yields

∆2 . hb−(2a+1) min

((
h

σ

)2ϑ

, 1

)
exp(2dh−b).

2.7.3 Proof of Theorem 2.4.1

Proof. Consider various cases.

Cases I, II, III: b = β = 0.

One has

∆ . min
{(
hσ−1

)2ϑ
, 1
}
h2k + n−1 min

(
h−(2a+1), σ−(2a+1)

)
∆hσ (2.39)

where ∆h,σ is defined in (2.35).

Case I: b = β = 0, ϑ > a+ 1/2.

In this case ρ2(σ) < ∞ and h = 0 is possible. If h = 0, then ∆ = O
(
σ−(2a+1)n−1

)
. If h 6= 0,

then choose h ≥ σ, so that ∆1(σ, h) . h2k, ∆2(σ, h) . h−(2a+1). Then, hopt � n−
1

2k+2a+1 and

∆1(σ, hopt) + n−1 ∆2(σ, hopt) . n−
2k

2k+2a+1 . Choose h = hopt if hopt ≥ σ, i.e., if n−
1

2k+2a+1 ≥ σ.
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Obtain

∆ �

 n−1 σ−(2a+1), hopt = 0 if σ > n−
1

2k+2a+1

n−
2k

2k+2a+1 , hopt = n−
1

2k+2a+1 if σ ≤ n−
1

2k+2a+1

Case II: b = β = 0, ϑ = a+ 1
2
.

Here, ∆ is given by (2.39) where ∆hσ = max
{

ln(σ/h), 1
}

. If h < σ, then ∆ . σ−2ϑh2ϑ+2k +

σ−(2a+1)n−1 ln(σ/h). Setting σ−2ϑh2ϑ+2k = σ−(2a+1)n−1 ln(σ/h) leads to

hopt � n−
1

2k+2a+1 , ∆ . n−1 σ−(2a+1) lnn.

Note that hopt < σ if and only if n−
1

2k+2a+1 < σ. Now, consider the case when h ≥ σ. Then by

(2.39), ∆ . n−
2k

2k+2a+1 if n−
1

2k+2a+1 ≥ σ. Hence

∆ �


σ−(2a+1)

n
lnn, hopt = n−

1
2k+2a+1 if σ > n−

1
2k+2a+1

n−
2k

2k+2a+1 , hopt � n−
1

2k+2a+1 if σ ≤ n−
1

2k+2a+1

Case III: b = β = 0, ϑ < a+ 1
2
.

First, consider the case when h < σ. Then, by (2.39) and (2.35), obtain

∆ . σ−2ϑh2ϑ+2k + σ−(2ϑ)n−1h2ϑ−2a−1.

Setting σ−2ϑh2ϑ+2k = σ−(2ϑ)n−1h2ϑ−2a−1, obtain hopt � n−
1

2k+2a+1 and ∆ . σ−2ϑn−
2ϑ+2k

2k+2a+1 . Also

note that hopt < σ if and only if σ > n−
1

2k+2a+1 . Now, consider the case when h ≥ σ. Then, (2.39)

and (2.35), derive that ∆ � n−
2k

2k+2a+1 if n−
1

2k+2a+1 ≥ σ. Hence

∆ �

 σ−2ϑn−
2ϑ+2k

2k+2a+1 , hopt = n−
1

2k+2a+1 if σ > n−
1

2k+2a+1

n−
2k

2k+2a+1 , hopt = n−
1

2k+2a+1 if σ ≤ n−
1

2k+2a+1
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Case IV: b = 0, β > 0.

In this case ρ2(σ) <∞ and h = 0 is possible. Consider the case h < σ. Then,

∆1(σ, h) . σ(−2ϑ)h2ϑ+2k exp

(
−2γ

(
σ

h

)β)
, ∆2(σ, h) . σ−(2a+1).

If h < σ, then hopt = 0 and ∆ � n−1σ−(2a+1). If h > σ, then ∆1(σ, h) ≤ h2k and ∆2(σ, h) .

h−(2a+1). Therefore, hopt � n−
1

2k+2a+1 and ∆ . n
−2k

2k+2a+1 . Observing that hopt ≥ σ if σ ≤

n−
1

2k+2a+1 , obtain

∆ �

 n−1σ−(2a+1) hopt = 0 if σ > n−
1

2k+2a+1

n−
2k

2k+2a+1 hopt = n−
1

2k+2a+1 if σ ≤ n−
1

2k+2a+1

Case V: β > b > 0.

In this case ρ2(σ) <∞ and h = 0 is possible. The bias is given by (2.20) and

∆2 .


n−1hb−2a−1 exp

(
2dh−b

)
if h >

(
γβ

db
σβ
) 1

β−b

n−1 exp
(
κσ

−βb
β−b

)
σ

β
β−b .

b−2
2
−2ϑ if h <

(
γβ

db
σβ
) 1

β−b

If h = 0, then ∆ � n−1 exp
(
κσ

−βb
β−b

)
σ

β
β−b .

b−2
2
−2ϑ. If h > 0, then one needs h > σ &

(
γβ
db
σβ
) 1
β−b

and ∆ � h2k + n−1hb−2a−1 exp
(
2dh−b

)
. Choosing h such that h2k = n−1hb−2a−1 exp

(
2dh−b

)
,

arrive at

(2dh−b)
2a+2k+1−b

b exp
(

2dh−b
)

= (2d)
2a+2k+1−b

b n (2.40)

and, by Lemma 2.7.5, obtain hopt = µ1(n) where µ1(n) is defined in (2.22), and, hence, ∆ �
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(lnn)−
2k
b . Therefore,

∆ �

 n−1 exp
(
κσ

−βb
β−b

)
σ
β(b−2)
2(β−b)−2ϑ, hopt = 0 if σ > µ1(n)

(lnn)−
2k
b , hopt = µ1(n), if σ ≤ µ1(n)

where µ1(n) is given by (2.22).

Case VI: b = β > 0, h > 0

Note that, due to (2.12), one has σ < (dγ−1)
1
b . Consider two cases. If h < σ, then

∆1(σ, h) . σ−2ϑh2ϑ+2k exp
(
−2γ

(
σ/h

)β)
, ∆2(σ, h) . h(b+2ϑ−2a−1)σ−2ϑ exp(2h−b(d−γσb)).

Then the bias-variance balance is achieved when

h(b−2k−2a−1) exp(2h−b(d− γσb) + 2γσbh−b) = n

which leads to (2.40) and, hence, hopt = µ1(n) where µ1(n) is defined in (2.22). Therefore,

hopt � (lnn)−
1
b and hence

∆ . σ−2ϑ (lnn)−
2ϑ+2k
b exp

(
−2γσβ (lnn)

β
b

)
.

If h ≥ σ, then ∆ . h2k + n−1hb−(2a+1) exp(2h−b(d − γσb)) and the bias-variance balance is

achieved when h2k � n−1hb−(2a+1) exp(2h−b(d − γσb)). Then, by Lemma 2.7.5, we derive that

hopt = µ2(n) where µ2(n) is defined in (2.22), and ∆ . (lnn)−
2k
b . Hence

∆ .

 σ(−2ϑ) (lnn)−
2ϑ+2k
b exp

(
−2γσβ (lnn)

β
b

)
, hopt = µ1(n), if σ > µ1(n)

(lnn)−
2k
b , hopt = µ2(n), if σ ≤ µ1(n)
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where µ1(n) and µ2(n) are given by (2.22).

Case VII: b > 0, β = 0

If h < σ, then

∆ . σ−2ϑh2ϑ+2k + n−1 σ−2ϑ h2ϑ−2a+b−1 exp(2dh−b)

Setting σ−2ϑh2ϑ+2k = n−1 σ−2ϑ h2ϑ−2a+b−1 exp(2dh−b), arrive at (2.40) and hopt = µ1(n) where

µ1(n)is defined in (2.22). Hence, hopt � (lnn)−1/b and ∆ . (lnn)−
2ϑ+2k
b σ−2ϑ, provided σ >

µ1(n).

If h ≥ σ, then

∆ . h2k + n−1hb−2a−1exp(2dh−b). (2.41)

Setting h2k ≈ n−1hb−2a−1 exp(2dh−b), arrive at (2.40), so that hopt = µ1(n) � (lnn)−1/b and

∆ . (lnn)−2k/b if σ ≤ µ1(n). Hence

∆ �

 (lnn)−
2ϑ+2k
b σ−2ϑ, hopt = µ1(n), if σ > µ1(n)

(lnn)−
2k
b , hopt = µ1(n), if σ ≤ µ1(n),

where µ1(n)is defined in (2.22).

Case VIII: b > β > 0

If h ≤ σ, then

∆(σ, h) . σ−2ϑh2ϑ+2k exp
(
−2γσβh−β

)
+ n−1h2ϑ+b−(2a+1)σ−2ϑ exp(2dh−b).

Then, the minimum of ∆(σ, h) is attained if n � hb−(2a+1)−2k exp(2dh−b + 2γσβh−β). Note that,
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due to σβ < (d/γ)h−(b−β), b > β and σ < 1, one has 2dh−b > 2γσβh−β . Therefore, we arrive at

(2.40), so that hopt � (lnn)−1/b and ∆ . σ−2ϑ(lnn)
(1+2a−2ϑ)

b
−1.

If h > σ, then ∆ . h2k + n−1hb−(2a+1) exp(2dh−b) which coincides with (2.41) and we obtain the

same expressions for hopt and ∆ as in that case. Hence

∆ �

 σ−2ϑ (lnn)
(1+2a−2ϑ)

b
−1 , hopt = µ1(n), if σ > µ1(n)

(lnn)−
2k
b , hopt = µ1(n), if σ ≤ µ1(n),

where µ1(n)is defined in (2.22).

2.7.4 Proof of Theorem 2.5.1

Proof. Observe that

E‖f̂W,ĥ − fW‖
2 = ∆̃1 + ∆̃2 + ∆̃3 (2.42)

where

∆̃1 = E
[
‖f̂W, 1

n
− fW‖2I(w ∈ Ωσ,n)

]
I
(
σ > n−

1
2a+1

)
∆̃2 =

jopt∑
j=1

E
[
‖f̂W,h − fW‖2I(ĥ = h = 2−j)I(w /∈ Ωσ,n or σ ≤ n−

1
2a+1 )

]
∆̃3 =

jmax∑
j=jopt+1

E‖f̂W,h − fW‖2 I(ĥ = h = 2−j) I(w /∈ Ωσ,n or σ ≤ n−
1

2a+1 )

We start with construction of an upper bound for ∆̃1. Consider the cases I and IV, since, otherwise,

∆̃1 = 0. Then

∆̃1 = E
[
‖f̂W, 1

n
− fW‖2I(w ∈ Ωσ,n)

]
I
(
σ > n−

1
2a+2k+1 = hopt

)
+E

[
‖f̂W, 1

n
− fW‖2I(w ∈ Ωσ,n)

]
I
(
n−

1
2a+1 < σ ≤ n−

1
2a+2k+1

)
= ∆̃11 + ∆̃12.
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Here
∆̃11 ≤ E‖f̂W, 1

n
− fW‖2 I(σ > hopt)

≤ C
[
σ−2ϑn−(2ϑ+2k) + n−1σ−(2a+1)

]
≤ Cn−1σ−(2a+1) = C∆opt ≡ C∆(n, σ, hopt)

For ∆̃12, one has

∆̃12 ≤
√

E‖f̂W, 1
n
− fW‖4

√
P
[
(w ∈ Ωσ,n) I

(
σ ≤ n−

1
2a+2k+1

)]

By Lemma 2.7.2, in cases I and IV, E‖f̂W, 1
n
− fW‖4 ≤ Cn2 and ∆̃12 ≤ C[nn−

τ
2 ] ≤ Cn−

2k
2k+2a+1

provided τ ≥ 4. Therefore,

∆̃1 ≤ C∆(n, σ, hopt). (2.43)

Now we find an upper bound for ∆̃2. For ∆̃2, ĥ ≥ hopt. Recall that, by definition of ĥ, if

ĥ = h ≥ hopt, then

‖f̂W,h − f̂W,hopt‖2 ≤ 16C2(τ, q) I(σ, hopt)n
−1 lnn.

Therefore,

∆̃2 ≤ E
[
‖f̂W,ĥ − fW‖2I(ĥ ≥ hopt)

]
≤ E

[
‖f̂W,ĥ − f̂W,hopt‖2 I(ĥ ≥ hopt)

]
+ 2E‖f̂W,hopt − fW‖2

≤ 32C2(τ, q)n−1 I(σ, hopt) lnn+ ∆(n, σ, hopt) ≤ C∆(n, σ, hopt) lnn,

where ∆(n, σ, h) is defined in (2.17). Hence,

∆̃2 ≤ C∆(n, σ, hopt) lnn (2.44)

46



Now we find an upper bound for ∆̃3. Note that

∆̃3 ≤
jmax∑

j=jopt+1

E
[
‖f̂W,h − fW‖2I(ĥ = h = 2−j)

]

If ĥ = h = 2−j for j ≥ jopt + 1, then ĥ < hopt and, by the definition of ĥ, there exists j̃ and

h̃ = 2−j̃ < hopt, such that

‖f̂W,hopt − f̂W,h̃‖
2 ≥ 16C2(τ, q) I(σ, h̃)n−1 lnn. (2.45)

Since for any h ≤ hopt,

‖fW,h − fW‖2 ≤ C0 n
−1I(σ, h)

where C0 is an absolute constant, one has

‖f̂W,hopt − f̂W,h̃‖ ≤ ‖f̂W,hopt − fW,hopt‖+ ‖f̂W,h̃ − fW,h̃‖+ ‖fW,hopt − fW‖+ ‖fW,h̃ − fW‖

≤ C0

√
n−1I(σ, hopt) + C0

√
n−1I(σ, h̃) + ‖f̂W,hopt − fW,hopt‖+ ‖f̂W,h̃ − fW,h̃‖.

Hence, by Lemma 2.7.1, if n is large enough,

P
{
‖f̂W,hopt − fW,h̃‖ ≥ 4C(τ, q)

√
lnn
n
I(σ, h̃)

}
≤ P

{
‖f̂W,hopt − fW,hopt‖ ≥ 2C(τ, q)

√
lnn
n
I(σ, h̃)− C0

√
I(σ,hopt)

n

}
+P
{
‖f̂W,h̃ − fW,h̃‖ ≥ 2C(τ, q)

√
lnn
n
I(σ, h̃)− C0

√
I(σ,h̃)
n

}
≤ P

{
‖f̂W,hopt − fW,hopt‖ ≥ C(τ, q)

√
lnn
n
I(σ, hopt)

}
+ P

{
‖f̂W,h̃ − fW,h̃‖ ≥ C(τ, q)

√
lnn
n
I(σ, h̃)

}
≤ 2(2 + Cq)n

−τ .

Therefore

∆̃3 ≤
jmax∑

j=jopt+1

jmax∑
j̃=jopt+1

E
[
‖f̂W,ĥ − fW‖

2I(ĥ = 2−j)I(h̃ = 2−j̃)
]

47



where h̃ is such that the inequality (2.45) holds. Let Ωh̃ be a set on which (2.45) is true. Then

P(Ωh̃) ≤ 2(2 + Cq)n
−τ and

∆̃3 ≤
jmax∑

j=jopt+1

jmax∑
j̃=jopt+1

√
E‖f̂W,ĥ − fW‖4

√
P(Ωh̃)I(h̃ = 2−j̃) I(ĥ = 2−j)

.
jmax∑

j=jopt+1

jmax∑
j̃=jopt+1

n1− τ
2 ≤ C(lnn)2n1− τ

2 ≤ C∆(n, σ, hopt)

if τ/2 − 1 ≥ 1 which is true iff τ ≥ 4. Combination of the last inequality with (2.42), (2.43) and

(2.44) complete the proof.

2.7.5 Supplementary Lemmas and Their Proofs

Lemma 2.7.1. Consider Y1, Y2, · · · , Yn i.i.d such that E(|Y1|q) ≤ Cq with q > 0. Let τ ≥ 1 and

C(τ, q) satisfies assumption (2.26) and I(σ, h) be defined by (2.16). Then there exists a set Ω such

that for w ∈ Ω and all h ≥ 1/n simultaneously

‖f̂W,h(x)− fW,h(x)‖2 ≤ C(τ, q)2 I(σ, h)n−1 lnn (2.46)

and

P(Ω) ≥ 1− (2 + Cq)n
−τ (2.47)

Proof. Let f ∗Y (w) = E(f̂ ∗Y (w)) where f̂ ∗Y (w) =
1

n

n∑
k=1

exp(iYkw) =
1

n

n∑
k=1

[
cos(Ykw) + i sin(Ykw)

]
.

First we show there exists a set Ω such that for w ∈ Ω

P

(
sup
|w|≤n
|f̂ ∗Y (w)− f ∗Y (w)| > C(τ, q)

√
lnn/n

)
≤ (2 + Cq)n

−τ (2.48)
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provided C(τ, q) satisfies assumption (2.26). Then it is sufficient to prove that

P

 sup
|w|≤n

∣∣∣∣∣∣ 1n
n∑
k=1

[
cos(Ykw)− E(cos(Ykw))

]∣∣∣∣∣∣ > C(τ, q)

2

√
lnn

n

 ≤ 2 + Cq
nτ

(2.49)

Let B be the set where the inequality (2.49) holds. For any γ > 0,

P(B) ≤ P
(
B ∩ {max

1≤k≤n
|Yk| ≤ nγ}

)
+ P

(
max

1≤k≤n
|Yk| > nγ

)
(2.50)

By Markov inequality,

P
(

max
1≤k≤n

|Yk| ≥ nγ
)
≤ n−γq E

(
max

1≤k≤n
|Yk|q

)
≤ n−γq

n∑
k=1

E|Yk|q ≤ n−γq+1 E|Y1|q. (2.51)

Set γ = (τ + 1)/q, hence, γq − 1 = τ . Then

P(B) ≤ P
(
B ∩ {max

1≤k≤n
|Yk| ≤ nγ}

)
+ n−τ E|Y1|q. (2.52)

Partition the interval [−n, n] into M sub-intervals by points wj, j = 0, 1, 2, 3, · · · ,M , such that

w0 = −n, wj − wj−1 = n−(γ+1), so that M = 2nγ+2. Consider a random functions Zk(w) =[
cos(Ykw)− E(cos(Ykw))

]
I(|Yk| ≤ nγ). Since |Yk| ≤ nγ and |∂(cos(Y w))/∂w| ≤ |Y | ≤ nγ ,

obtain

|Zk(w)− Zk(w′)| ≤ 2nγ|w − w′|.

Therefore Zk(w) satisfies the Lipschitz condition and, for any w ∈ [−n, n], there exists wj such

that ∣∣∣∣∣∣ 1n
n∑
k=1

Zk(w)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1n

n∑
k=1

Zk(wj)

∣∣∣∣∣∣+ 2nγ.
1

nγ+1

49



Hence,

P
(
B ∩ {max

1≤k≤n
|Yk| ≤ nγ}

)
≤ P

 max
1≤j≤M

∣∣∣∣∣∣ 1n
n∑
k=1

Zk(wj)

∣∣∣∣∣∣+
2

n
>
C(τ, q)

2

√
lnn

n


≤ P

 max
1≤j≤M

∣∣∣∣∣∣ 1n
n∑
k=1

Zk(wj)

∣∣∣∣∣∣ > C(τ, q)

4

√
lnn

n


≤

M∑
j=1

P


∣∣∣∣∣∣ 1n

n∑
k=1

Zk(wj)

∣∣∣∣∣∣ > C(τ, q)

4

√
lnn

n


provided

C(τ, q)

4

√
lnn

n
≥ 2

n
,

which is guaranteed by condition (2.26).

Using Hoeffding inequality with ξk = Zk(wj) where |ξk| ≤ 2 and t = C(τ,q)
4

√
lnn
n

, obtain that

P


∣∣∣∣∣∣ 1n

n∑
k=1

Zk(wj)

∣∣∣∣∣∣ > C(τ, q)

4

√
lnn

n

 ≤ 2 exp

(
−(C(τ, q))2 lnn

128

)

and

P
(
B ∩ {max

1≤k≤n
|Yk| ≤ nγ}

)
≤ 2n−τ (2.53)

is guaranteed by condition (2.26). Validity of (2.48) follows from the inequality (2.52) and (2.53).
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In order to prove (2.46), note that 1/h ≤ n and

‖f̂W,h − fW,h‖2 = 1
2π
‖f̂ ∗W,h − f ∗W,h‖2

= 1
2π

∫ 1/h

−1/h

|g∗(σs)|2

|f ∗ξ (s)|2
|f̂ ∗Y (s)− f ∗Y (s)|2ds

≤ sup
|s|≤n
|f̂ ∗Y (s)− f ∗Y (s)|2 I(σ, h)

which completes the proof.

Lemma 2.7.2. Let hmin = max{σ, n−
1

2a+1}. Then, for any h ∈ [hmin, 1/2] , one has

E‖f̂W,h − fW‖4 ≤


Cσ−(4a+3)n−1, cases I, IV

Cσ−(4a+3)n−1 lnn, case II

Cn2, case III

In particular, if σ ≥ n−
1

2a+1 , then E‖f̂W,h − fW‖4 ≤ Cn2.

Proof. Note that

E‖f̂W,h − fW‖4 = E‖f̂W,h − Ef̂W,h + Ef̂W,h − fW‖4 ≤ 8E‖f̂W,h − Ef̂W,h‖4 + 8‖Ef̂W,h − fW‖4.

(2.54)

Then,

‖Ef̂W,h − fW‖4 = [R1(f̂W,h, fW )]2 ≤ ∆2
1 ≤ 1
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where ∆1 is defined in (2.19). To find an upper bound for the first term, note that for any x

|f̂W,h(x)| ≤ 1
2π

∫ 1/h

−1/h

|g∗(σs)|
|f ∗ξ (s)|

ds

≤ 1
2π

∫ 1/h

−1/h

Cg(σ
2s2 + 1)−

ϑ
2 exp(−γ|σs|β)

cξ(s2 + 1)−
a
2

ds

≤ C min
(
h−(a+1), σ−(a+1)

)
∆̃h,σ

where

∆̃h,σ =


1 in case I and IV

max
{

ln
(
σ
h

)
, 1
}

in case II

max
{

1,
(
σ
h

)a−ϑ+1
}

in case III

The same upper bound holds for fW,h = Ef̂W,h. Hence,

‖f̂W,h − Ef̂W,h‖2
∞ ≤ C min

(
h−2(a+1), σ−2(a+1)

)
∆̃2
h,σ. (2.55)

Therefore,

E‖f̂W,h − fW,h‖4 ≤ E
[
‖f̂W,h − fW,h‖2

]
‖f̂W,h − fW,h‖2

∞

≤ C n−1 min
(
h−(4a+3), σ−(4a+3)

)
∆̃2
h,σ∆2

h,σ

where, according to Lemma 2.4.2, ∆h,σ is of the form (2.35). Observe that an upper bound for the

first term in (2.54) is larger than the second term and that

E‖f̂W,h − fW‖4 ≤


Cσ−(4a+3)n−1, in cases I, IV

Cσ−(4a+3)n−1 ln
(

1
hmin

)
, in case II

h−(4a+3)n−1, in case III

Since hmin ≥ n−
1

2a+1 , we finally obtain (2.54).

Now, let σ ≥ n−
1

2a+1 , then σ−(4a+3)n−1 ≤ n−1n
4a+3
2a+1 ≤ n

2a+2
2a+1 ≤ n2, which completes the proof.
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Lemma 2.7.3. Let σ ≤ n−
1

2a+2k+1 and Ωσ,n be defined by formula (2.27). Then in the cases I and

IV, if n is large enough,

P(Ωσ,n) ≤ (2 + Cq)n
−τ (2.56)

Proof. Note that

‖f̂W,σ − f̂W, 1
n
‖ ≤ ‖f̂W,σ − fW,σ‖+ ‖f̂W, 1

n
− fW, 1

n
‖+ ‖fW,σ − fW‖+ ‖fW, 1

n
− fW‖ (2.57)

Then by Lemma 2.4.1, for some absolute constant C̃,

‖fW,σ − fW‖ ≤ C̃σ−k; ‖fW, 1
n
− fW‖ ≤ C̃n−k < C̃σk

Also, by Corollary 2.7.1, for w ∈ Ω

‖f̂W,σ − fW,σ‖ ≤ C(τ, q)

√
I(σ, σ) lnn

n
≤ C(τ, q)

√
I(σ, 1/n) lnn

n

and

‖f̂W, 1
n
− fW, 1

n
‖ ≤ C(τ, q)

√
I(σ, 1/n) lnn

n

Hence, it follows from (2.57), that for w ∈ Ω

‖f̂W,σ − f̂W, 1
n
‖ ≤ 2C(τ, q)

√
I(σ, 1/n) lnn

n
+ 2C̃σk.

Therefore, for w ∈ Ω,

‖f̂W,σ − f̂W, 1
n
‖ ≥ 4C(τ, q)

√
I(σ, 1/n) lnn

n
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cannot be true, unless

C(τ, q)

√
I(σ, 1/n) lnn

n
< C̃σk. (2.58)

By Lemma 2.4.2, in the cases I and IV, one has I(σ, 1/n) ≤ ˜̃Cσ−(2a+1). So, inequality (2.58) holds

only if C(τ, q) ( ˜̃C)2σ−(a+ 1
2

)
√

lnn/n < C̃σk, which is equivalent to σ > C̄
(
n−1 lnn

) 1
2k+2a+1

where C̄ = ˜̃CC(τ, q)/C̃. Therefore, if w ∈ Ω and σ ≤ n−
1

2k+2a+1 , where n is such that

C̄ (lnn)
1

2k+2a+1 ≥ 1, then (2.58) is not true. Hence, w /∈ Ωσ,n, so that Ωσ,n ⊂ Ωc and (2.56)

holds.

Lemma 2.7.4. Consider an integral of the form

I(λ) =

∫ m2

m1

Pλ(z) exp(Qλ(z))dz (2.59)

where 0 ≤ m1 < m2 < ∞ and Pλ(z) and Qλ(z) are real valued differentiable functions of z and

λ→∞ is a large parameter. Let

z0 ≡ z0,λ = argmax
z∈[m1,m2]

Qλ(z)

be an unique global maximum of Qλ(z) on the interval [m1,m2]. Assume that the following con-

ditions hold:

• A function P is a positive slowly varying function, i.e., for any t > 0 one has limx→∞ P (tx)/P (x) =

1.

• Qλ(z0)−Qλ(z) increases monotonically for λ ≥ λ0 as λ→∞.
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• If Q
′

λ(z0) = 0, then for every λ ≥ λ0

lim
x→0

Qλ(z0 + x)−Qλ(z0)

x2
=
Q
′′

λ(z0)

2
< 0 (2.60)

• If Q
′

λ(z0) 6= 0, then for every λ ≥ λ0

lim
x→0

Qλ(z0 + x)−Qλ(z0)

x
= Q

′

λ(z0) 6= 0 (2.61)

Then, as λ→∞,

I(λ) �


exp{Qλ(z0)}Pλ(z0)√

|Q′′λ(z0)|
, if (2.60) holds,

exp{Qλ(z0)}Pλ(z0)

Q
′
λ(z0)

, if (2.61) holds
(2.62)

Proof. Comparing (2.59) with the integral

I(λ) =

∫
G(z) exp(−F (z))dz (2.63)

obtain F (z) = −Qλ(z), G(z) = Pλ(z). Then, following the calculations in Dingle (1973) with

F (z0) = −Qλ(z0), F1(z0) = −Q′λ(z0), from the formulas (3) and (4), page 111, obtain

I(λ) = [−Q′λ(z0)]−1 exp{Qλ(z0)}
∞∑
0

Lr

where Lr is given by

Lr = −Q′λ(z0)

(
d

Q′λ(z) dz

)r
Pλ(z)

Q′λ(z)

∣∣∣∣∣
z=z0
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Hence, taking the term with r = 0, obtain, when (2.60) holds:

I(λ) ≈ exp{Qλ(z0)}Pλ(z0)

Q
′
λ(z0)

.

Now, consider the case when (2.61) holds.

Then following the calculations in Dingle (1973), page 118, obtain

I(λ) = exp{Qλ(z0)}
∫

exp{−f 2}Pλ(z)dz

where

f =
√
Qλ(z0)−Qλ(z) ∼

√
F2/2 z as z → z0

with F2(z0) = −Q′′λ(z0). Therefore, from formulas (16) and (17), page 119, obtain

I(λ) =

[
π

−2Q′′λ(z0)

] 1
2

exp{Qλ(z0)}
∞∑
0

Lr

where Lr is given by

Lr = Q′λ(z0)

(
d

2 f ′ dz

)r
Pλ(z)

f ′

∣∣∣∣∣
z=z0

Hence, taking the term with r = 0, obtain, when (2.61) holds:

I(λ) ≈
√
π exp{Qλ(z0)}Pλ(z0)√

−2Q′′λ(z0)

which is equivalent to second expression of (2.62).

Lemma 2.7.5. Let n be large and z ∈ R be a fixed quantity. Then, as n→∞, the solution of the
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equation

emmz = n (2.64)

is given by

m = (lnn− z ln lnn)(1 + o(1)), n→∞. (2.65)

Proof. Since emmz = n, then m + z lnm = lnn and m = lnn − z lnm. Plugging this m

back into (2.64), obtain elnn−z lnm(lnn − z lnm)z = n. Since for large values of n, one has

(lnn− z lnm)z ≈ (lnn)z, the previous equation becomes (lnn)zne−z lnm ≈ n, so that z ln lnn ≈

z lnm which yields (2.65).
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CHAPTER 3: ESTIMATION AND CLUSTERING IN THE POPULARITY

ADJUSTED BLOCK MODEL

3.1 Statistical Network Models: Background

We can see that networks are available everywhere in science. They have become a center of

attention for discussion in everyday life. With the evolution of digital technology, the network data

are more readily available than before. Since many fields involve the study of networks in some

form, the formal statistical models for the analysis of network data have emerged as a major topic

of interest in diverse areas of study. Networks have been used in predicting community evolution,

recommendation systems (for example: Netflix and Youtube in recommending movies), targeted

marketing (for example: Amazon suggesting items ), personal influence (for example: politics, link

prediction), detection of disease (for example: cancer or tumor types), criminology (for example:

to identify criminal group, fraud, etc) to name a few. The existing set of statistical network models

may be classified into various categories, but we only consider the one that is related to the static

network. Static network models concentrate on explaining the observed set of links based on a

single snapshot of the network (Goldenberg et al. (2010)). We start with the definition of the

random network.

3.1.1 Random Network

As it was said, a network G = (V,E) is a structure made of nodes (vertices) denoted by V and

edges (also called links) denoted by E, that connect nodes in various relationships. Networks are

more commonly represented as graphs. They are also represented in terms of matrices known as

adjacency matrices. Networks can be weighted, signed, undirected, and directed. The edges in the
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weighted network are associated with numerical values. Edges in signed network are associated

with positive and negative relationships. Directed networks have direction associated with edges

whereas direction does not matter in undirected network. The degree of the nodes represents the

number of links it has to other nodes.

A random network consists of n nodes where each pair of nodes is connected with the probability

p. The goal of the random network is to build a model that reproduces the properties of the real

networks (Barabási et al. (2016)). To construct a random network (also called a random graph),

we start with the n isolated nodes, then select a pair of nodes and generate a random number

between 0 and 1. If a generated number is at least p, connect the selected node pair with a link,

otherwise leave them disconnected. We continue this process for each of the
(
n
2

)
pairs of nodes.

A random network is called the Erdős-Rényi network, in honor of mathematicians Pál Erdős and

Alfréd Rényi, who played an important role in understanding their properties.

Table 3.1: Examples of some real networks

Network Node Link Network Type
I) Citation Network Paper Citations Directed
II) Email Email Addresses Emails Directed
III) Internet Routers Connections Undirected
IV) Social Network Users Interactions Undirected
IV)Coauthorship Network Research Scientist Coauthor a paper Undirected

In this dissertation, we work with the undirected network. For this type of network, the ij th element

of the adjacency matrix is defined as 1 if there is an edge between the ith node and the j th node,

and zero otherwise. The adjacency matrix is symmetric in this case.
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3.2 Community Structure and Blockmodels

Community detection aims at finding clusters as subgraphs within a given network. A community

is a cluster where many edges link nodes of the same group and few edges link nodes of differ-

ent group. We follow the general approach to community detection by considering a network as

a static view in which all the nodes and links in the network are kept unchanged throughout the

study. We assume that the network under consideration have underlying blocks. The assumption

in the block model is that the nodes inside the blocks have higher connectivity in comparison to

the nodes between the blocks. There are various random graph model on the community detection

problems such as Stochastic Block Model, Degree-Corrected Block Model, and Popularity Ad-

justed Stochastic Block Model and its variants. We study these models and developed the novel

estimation procedure for the Popularity Adjusted Stochastic Block Model and implemented the

Sparse Subspace Clustering method for the community detection in the model.

3.2.1 Stochastic Block Model (SBM)

Consider an undirected network with n nodes and no self loops and multiple edges. Let A be

its adjacency matrix. Then Aij = Ber(Pij), where P is a symmetric probability matrix whose

diagonal entries are zeroes and whose off-diagonal entries are between 0 and 1. A classical random

graph model for networks with community structure is the SBM that was introduced by Lorrain

and White (1971), Holland et al. (1983) and E. Fienberg et al. (1985). Under this model, all nodes

belonging to a community are considered to be stochastically equivalent, in the sense that they

have the same probability of forming a link with another node in the network. Various methods of

community detection have been studied under the SBM, examples include spectral clustering Rohe

et al. (2011), variational methods Celisse et al. (2012), and pseudo-likelihood methods Amini et al.

(2013).
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Under the K-block SBM, each node belongs to one of K distinct blocks or communities. Let

c denote the true community assignment vector with ci = a if the ith node belongs to the ath

community. Then for i < j, Pij = Bcicj where Bk,l is the probability of connection between

communities k and l. and so B is the K-by-K matrix of community link probabilities. Edges are

conditionally independent given c and B.

Under the SBM, two nodes belonging to the same community display community structure by

behaving identically, in a stochastic sense. In particular, any two nodes from the same commu-

nity have the same degree distribution and the same expected degree. Since the real-life networks

usually contain a very small number of high-degree nodes while the rest of the nodes have very

few connections (low degree), the SBM model fails to explain the structure of many networks that

occur in practice.

3.2.2 Degree Corrected Block Model (DCBM)

DCBM introduced by Karrer and Newman (2011) adds node-specific degree parameters such that

for i < j, Pij = θiBcicjθj , where θi and θj are the degree parameters for the respective nodes, and

B is the K-by-K matrix of baseline interaction between communities. Edges are conditionally in-

dependent given c, θ, and B. Identifiability of the parameters is ensured by a constraint of the form∑
i∈Na θi = 1,∀a = 1, ..., K, where Na is the set of nodes belonging to community a. DCBM

enforces node popularity to be uniformly proportional to the node degree. DCBM correctly de-

tects the communities, and accurately fits the total degree, by enforcing the node-specific degree

parameters. However the model fitting for node popularity is quite inaccurate.
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3.2.3 The Popularity Adjusted Block Model (PABM)

A network feature that is closely associated with community structure is the popularity of nodes

across communities, defined as the number of edges between a specific node and a specific com-

munity. Node popularity is inseparably associated with community structure. The observed pop-

ularity of the ith node in the rth community is given by Mir =
∑

i∈Nr Aij and the expectation of

this quantity is defined as µir = E[Mir] =
∑

i∈Nr Pij . We called µir is the popularity of the ith

node in the rth community. In practice, observed popularities of the n nodes in the K communities

vary considerably across nodes along with communities. SBM and the DCBM both put unrealistic

restrictions on node popularities.

DCBM fails to model node popularities in a flexible and realistic way. To fulfill the need of the

model that allows flexible and realistic modeling of node popularity, Sengupta and Chen (2018)

introduced a new random graph model, called PABM for modeling node popularity in networks

with community structure. They developed methodology for community detection and parame-

ter estimation under the PABM, and demonstrated the improvement achieved through this new

methodology. In PABM, for i < j,

Pij = VicjVjci (3.1)

where Vir, 1 ≤ i ≤ n, 1 ≤ r ≤ K, are the popularity scaling parameters and 0 ≤ Pij ≤ 1 for

all i < j. Thus, Pij depends on the popularity of node i in the community to which j belongs,

and the popularity of node j in the community to which i belongs. Similar to the identifiability

issue with the DCBM as discussed in Karrer and Newman (2011), the PABM also has a scaling

identifiability issue. To resolve that issue, Sengupta and Chen (2018) impose the identifiability

constraint Vrs = Vsr where Vrs =
∑
j∈Nr

Vjs.
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Furthermore, Set Vir = θi
√
Bcir so that

Vicj = θi

√
Bcicj

and

Vjci = θj

√
Bcicj

Then

Pij = VicjVjci = θi

√
Bcicj θj

√
Bcicj = θiBcicjθj

which shows that DCBM is a special case of PABM. Also if you set θi = 1 in the definition of Vir

above, so that

Vicj =
√
Bcicj

and

Vjci =
√
Bcicj

Then

Pij = VicjVjci =
√
Bcicj

√
Bcicj = Bcicj

which shows that SBM is a special case of PABM.

3.3 PABM: the Structure of the Probability Matrix

The ratio of popularities of the nodes (i, j) ∈ Nk in the same community k is equal to one for the

SBM, is independent of community k (a function of i and j only) in DCBM but can vary between

nodes and communities for the PABM, thus, allowing a more flexible modeling of connection

probabilities. Heuristically, the degree of node is a network-level feature, DCBM can model this
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feature well by allowing each node to have its own degree parameter. Popularity of the node is the

community level feature since the same node can be popular in one community and unpopular in

the other community. DCBM cannot model this feature accurately because it governs the relative

behavior of a node in all communities by a single degree parameter which forces a high degree

node to be relatively popular uniformly across the network and low degree node to be uniformly

unpopular. PABM fixes this issue by assigning parameters for every node- community combina-

tion.

The flexibility of PABM, however, is not limited to modeling the popularity parameters of the

nodes. In order to better understand the model, consider a rearranged version P (Z,K) of matrix

P where its first n1 rows correspond to nodes from class 1, the next n2 rows correspond to nodes

from class 2 and the last nK rows correspond to nodes from class K. Denote the (k, l)-th block of

matrix P (Z,K) by P (k,l)(Z,K). Since sub-matrix P (k,l)(Z,K) ∈ [0, 1]nk×nl corresponds to pairs

of nodes in communities (k, l) respectively, one obtains from (3.1) that P (k,l)
i,j = Vik,lVjl,k where ik

is the i-th element inNk and jl is the j-th element inNl. Thus, matrices P (k,l)(Z,K) are rank-one

matrices with the unique singular vectors generating them. Indeed, consider vectors Λ(k,l) with

elements Λ
(k,l)
i = Vik,l, where i = 1, . . . , nk and ik ∈ Nk. Then, equation (3.1) implies that

P (k,l)(Z,K) = Λ(k,l) [Λ(l,k)]T . (3.2)

Moreover, it follows from (3.1) and (3.2) that P (k,l)(Z,K) = [P (l,k)(Z,K)]T and that each pair of
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blocks (k, l) involves a unique combination of vectors Λ(l,k):

P (Z,K) =



Λ(1,1)(Λ(1,1))T Λ(1,2)(Λ(2,1))T · · · Λ(1,K)(Λ(K,1))T

Λ(2,1)(Λ(1,2))T Λ(2,2)(Λ(2,2))T · · · Λ(2,K)(Λ(K,2))T

...
... · · · ...

Λ(K,1)(Λ(1,K))T Λ(K,2)(Λ(2,K))T · · · Λ(K,K)(Λ(K,K))T


(3.3)

where

Λ =



Λ(1,1) Λ(1,2) · · · Λ(1,K)

Λ(2,1) Λ(2,2) · · · Λ(2,K)

...
... · · · ...

Λ(K,1) Λ(K,2) · · · Λ(K,K)


(3.4)

The latter implies that matrix P (Z,K) is formed by arbitrary rank one blocks and hence rank(P (Z,K)) =

rank(P ) can take any value between K and K2. In comparison, all other block models restrict the

rank of P to be exactly K. This is true not only for the SBM and DCBM discussed above but also

for their generalizations such as the Mixed Membership models (see, e.g., Airoldi et al. (2008) and

Cheng et al. (2017)) and the Degree Corrected Mixed Membership (DCMM) (see, e.g., Jin et al.

(2017)). Hence, the PABM allows for much more flexible spectral structure than any other block

model above.

This flexibility makes the PABM an attractive choice for modeling networks that appear in biologi-

cal sciences. Indeed, while social networks exhibit assortative behavior due to the human tendency

of forming strong associations, the biological networks tend to be more diverse. For this reason,

PABM tends to be a useful tool for modeling such networks.

However, while the PABM model is extremely valuable, the statistical inference in Sengupta and

Chen (2018) has been incomplete. In particular, the authors considered only the case of a small
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finite number of communities K; they provided only asymptotic consistency results as n → ∞

without any error bounds when n is finite; their clustering procedure was tailored to the case of

a small K, therefore, all simulations and real data examples in Sengupta and Chen (2018) only

tackled the case of K = 2.

The purpose of the present work is to address some of those deficiencies and to advance the theory

of the PABM. Specifically, we make the following contributions:

1. In contrast to Sengupta and Chen (2018), we consider the PABM with an arbitrary number

of communities which possibly grows with a number of nodes in the network and is not

assumed to be known.

2. We argue that the main appeal of the PABM is the flexibility of the spectral properties of the

graph and replace the estimators in Sengupta and Chen (2018) that are based on averaging

over the communities by more accurate counterparts based on low rank matrix approxima-

tions.

3. While Sengupta and Chen (2018) only proved convergence of the estimation and clustering

errors to zero as the number of nodes grows, we derive non-asymptotic upper bounds for

those errors when the number of communities is arbitrary. In particular, we produce an

upper bound for the estimation error of the matrix of the connection probabilities and provide

a condition that guarantees that the proportion of misclassified nodes is bounded above by

a specified quantity. All results in the PABM are non-asymptotic and are valid for any

combination of parameters.

In the next chapter we discuss estimation and clustering in PABM as a solution of a penalized

optimization procedure. We start with notations used throughout the chapter, formulate estimation

and clustering as solutions of an optimization procedure, and derive upper bounds for estimation
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errors as well as find sufficient conditions for the proportion of misclustered nodes to be bounded

above by a pre-specified quantity ρn with a high probability.

3.4 Notation

For any two positive sequences {an} and {bn}, an � bn means that there exists a constant C > 0

independent of n such that C−1an ≤ bn ≤ Can for any n. For any set Ω, denote cardinality of Ω

by |Ω|. For any numbers a and b, a∧ b = min(a, b). For any vector t ∈ Rp, denote its `2, `1, `0 and

`∞ norms by, respectively, ‖t‖, ‖t‖1, ‖t‖0 and ‖t‖∞. Denote by 1m the m-dimensional column

vector with all components equal to one.

For any matrix A, denote its spectral and Frobenius norms by, respectively, ‖A‖op and ‖A‖F . Let

vec(A) be the vector obtained from matrix A by sequentially stacking its columns.

Denote by ΠJ(X), the projection of a matrix X : n × m onto the set of matrices with non zero

elements in the set J = J1 × J2 = {(i, j) : i ∈ J1, j ∈ J2}. Denote by Π(1)(X) the best rank one

approximation of matrix X and by Πu,v(X) the rank one projection of X onto pair of unit vectors

u, v given by

Πu,v(X) = (uuT )X(vvT ). (3.5)

Then, Π(1)(X) = Πu,v(X) provided (u, v) is a pair of singular vectors of X corresponding to the

largest singular value.

Denote byMn,K a collection of clustering matrices Z ∈ {0, 1}n×K such that Zi,k = 1 iff i ∈ Nk,

i = 1, . . . , n, and ZTZ = diag(n1, . . . , nK) where nk = |Nk| is the size of community k, where

k = 1, . . . , K. Denote by PZ,K ∈ {0, 1}n×n the permutation matrix corresponding to Z ∈ Mn,K

that rearranges any matrix B ∈ Rn,n, so that its first n1 rows correspond to nodes from class 1, the
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next n2 rows correspond to nodes from class 2 and the last nK rows correspond to nodes from class

K. Recall that PZ,K is an orthogonal matrix with P−1
Z,K = PT

Z,K . For any PZ,K and any matrix

B ∈ Rn×n denote the permuted matrix and its blocks by, respectively, B(Z,K) and B(k,l)(Z,K),

where B(k,l)(Z,K) ∈ Rnk×nl , k, l = 1, . . . , K, and

B(Z,K) = PT
Z,KBPZ,K , B = PZ,KB(Z,K)PT

Z,K . (3.6)

Also, in the present and the next chapter of the dissertation, we use the star symbol to identify the

true quantities. In particular, we denote the true matrix of connection probabilities by P∗, the true

number of classes byK∗ and the true clustering matrix that partitions n nodes intoK∗ communities

by Z∗.

3.5 Optimization Procedure for Estimation and Clustering

In this section we consider estimation of the true probability matrix P∗. Consider block P (k,l)
∗ (Z∗, K∗)

of the rearranged version P∗(Z∗, K∗) of P∗. Let Λ ≡ Λ(Z∗, K∗) ∈ [0, 1]n×K∗ be a block matrix

with each column l partitioned into K∗ blocks Λ(k,l) ≡ Λ(k,l)(Z∗, K∗) ∈ [0, 1]nk . Then, due to

(3.2), P (k,l)
∗ (Z∗, K∗) are rank-one matrices such that P (k,l)

∗ (Z∗, K∗) = [P
(l,k)
∗ (Z∗, K∗)]

T and that

each pair of blocks (k, l) involves a unique combination of vectors Λ(k,l). The structures of matrices

P∗(Z∗, K∗), Λ and P∗ are illustrated in Figure 3.1.

Observe that although matrices P (k,l)
∗ (Z∗, K∗) in (3.2) are well defined, vectors Λ(k,l) and Λ(l,k) can

be determined only up to a multiplicative constant. In particular, under the constraint

1TnkΛ
(k,l) = 1TnlΛ

(l,k), (3.7)

Sengupta and Chen (2018) obtained explicit expressions for vectors Λ(k,l) and Λ(l,k) in (3.2).
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Figure 3.1: Matrices Λ, P (Z,K) and P in the case of n = 5 and K = 2. Matrix Λ (top
left): Λ(1,1) (red), Λ(2,1) (blue), Λ(1,2) (yellow), Λ(2,2) (violet). Assembling re-organized prob-
ability matrix P (Z,K) (top right): P (1,1)(Z,K) (red), P (2,1)(Z,K) (green), P (2,2)(Z,K) (vio-
let). Re-organized probability matrix P (Z,K) (bottom left): P (1,1)(Z,K) (red), P (2,1)(Z,K) and
P (1,2)(Z,K) (green), P (2,2)(Z,K) (violet). Probability matrix P (bottom right): nodes 1,3,4 are in
community 1; nodes 2 and 5 are in community 2.

In reality, K∗ and matrices Z∗ and P∗ are unknown and need to be recovered. If K∗ were known,

in order to estimate Z∗ and P∗, one could permute the rows and the columns of the adjacency

matrix A using permutation matrix PZ,K∗ obtaining matrix A(Z,K∗) = PT
Z,K∗APZ,K∗ and then,

following assumption (3.2), minimize some divergence measure between blocks of A(Z,K∗) and

the products Λ(k,l) [Λ(l,k)]T . One of such measures is the Bregman divergence between A(Z,K∗)

and Λ(k,l) [Λ(l,k)]T .

The Bregman divergence between vectors x and y associated with a continuously-differentiable,
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strictly convex function F is defined as

DF (x, y) = F (x)− F (y)− 〈∇F (y), x− y〉

where∇F (y) is the gradient of F with respect to y. The Bregman divergence between any matrices

X and Y of the same dimension can be defined as the Bregman divergence between their vectorized

versions: DF (X, Y ) = DF (vec(X), vec(Y )). It is well known that DF (X, Y ) ≥ 0 for any X and

Y and DF (X, Y ) = 0 iff X = Y . In particular, the Poisson log-likelihood maximization used in

Sengupta and Chen (2018) corresponds to minimizing the Bregman divergence with

F (x) =
∑
i

(xi lnxi − xi).

Under the assumption (3.2) and the constraint (3.7) of Sengupta and Chen (2018), the latter leads

to maximization over Λ(k,l) and Z ∈Mn,K∗ of the following quantity

l(Λ|A) = −DF (A,Λ) =
K∗∑
k,l=1

nk∑
i=1

nl∑
j=1

[
A

(k,l)
i,j ln

(
Λ

(k,l)
i Λ

(l,k)
j

)
−
(

Λ
(k,l)
i Λ

(l,k)
j

)]
. (3.8)

where A(k,l) stands for A(k,l)(Z,K∗), the (k, l)-th block of matrix A(Z,K∗). It is easy to see

that the expression (3.8) coincides with the Poisson log-likelihood up to a term which depends on

matrix A only, and is independent of P,Z and K∗. Maximization of (3.8) over Λ, under condition

(3.7), for given Z and K∗, leads to the estimators of Λ obtained in Sengupta and Chen (2018)

Λ̂(k,l) =
A(k,l)(Z,K∗)1nl√
1TnkA

(k,l)(Z,K∗)1nl

; Λ̂(l,k) =
(A(k,l)(Z,K∗))

T1nk√
1TnkA

(k,l)(Z,K∗)1nl

. (3.9)

Afterwards, Sengupta and Chen (2018) plug the estimators (3.9) into (3.8), thus, obtaining the

likelihood modularity function which they further maximize in order to obtain community assign-
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ments.

In the present work, we use the Bregman divergence associated with the Euclidean distance (F (x) =

‖x‖2) which, for a given K, leads to the following optimization problem

(Λ̂, Ẑ) ∈ argmin
Λ,Z


K∑

k,l=1

∥∥∥A(k,l)(Z,K)− Λ(k,l)[Λ(l,k)]T
∥∥∥2

F

 s.t. A(Z,K) = PT
Z,KAPZ,K

Note that recovery of the components Λ(k,l) and Λ(l,k) of the products above relies on an identifia-

bility condition of the type (3.7). Since these conditions can be imposed in a variety of ways, we

denote Θ(k,l) = Λ(k,l)[Λ(l,k)]T and recover the uniquely defined rank one matrix Θ(k,l). In addition,

since the number of clustersK is unknown, we impose a penalty onK in order to safeguard against

choosing too many clusters. Hence, we need to solve the following optimization problem

(Θ̂, Ẑ, K̂) ∈ argmin
Θ,Z,K


K∑

k,l=1

∥∥∥A(k,l)(Z,K)−Θ(k,l)
∥∥∥2

F
+ Pen(n,K)


s.t. A(Z,K) = PT

Z,KAPZ,K , rank(Θ(k,l)) = 1; k, l = 1, 2, · · · , K.
(3.10)

Here, Θ̂ is the block matrix with blocks Θ̂(k,l), k, l = 1, . . . , K̂ and Pen(n,K) will be defined later.

Observe that, if Ẑ and K̂ were known, the best solution of problem (4.5) would be given by the

rank one approximations Θ̂(k,l) of matrices A(k,l)(Ẑ, K̂)

Θ̂(k,l)(Ẑ, K̂) = Πû,v̂

(
A(k,l)(Ẑ, K̂)

)
= σ̂

(k,l)
1 û(k,l)(Ẑ, K̂)(v̂(k,l)(Ẑ, K̂))T , (3.11)

where σ̂(k,l)
1 are the largest singular values of matrices A(k,l)(Ẑ, K̂)); û(k,l)(Ẑ, K̂), v̂(k,l)(Ẑ, K̂) are

the corresponding singular vectors, and Πû,v̂

(
A(k,l)(Ẑ, K̂)

)
is the rank one projection of matrix

A(k,l)(Ẑ, K̂) (see Lemma 4.4.1 for the exact expression). Plugging (4.6) into (4.5), we rewrite
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optimization problem (4.5) as

(Ẑ, K̂) ∈ argmin
Z,K


K∑

k,l=1

∥∥∥∥A(k,l)(Z,K)− Πû,v̂

(
A(k,l)(Z,K)

)∥∥∥∥2

F

+ Pen(n,K)


s.t. A(Z,K) = PT

Z,KAPZ,K

(3.12)

In order to obtain (Ẑ, K̂), one needs to solve optimization problem (4.7) for every K, obtaining

ẐK ∈ argmin
Z∈Mn,K


K∑

k,l=1

∥∥∥∥A(k,l)(Z,K)− Πû,v̂

(
A(k,l)(Z,K)

)∥∥∥∥2

F

 (3.13)

and then find K̂ as

K̂ ∈ argmin
K


K∑

k,l=1

∥∥∥∥A(k,l)(ẐK , K)− Πû,v̂

(
A(k,l)(ẐK , K)

)∥∥∥∥2

F

+ Pen(n,K)

 . (3.14)

Note that if the true number of clusters K∗ were known, the penalty in (4.5) and (4.7) would be

unnecessary.

Remark 1. Advantages of our estimation procedure. There are several advantages of the es-

timator (4.6) in comparison with estimators (3.9) of Sengupta and Chen (2018). First, rather than

obtaining estimators in (3.9) by averaging, we derive the rank one approximations of the unknown

sub-matrices of probabilities which lead to the minimal error (see, e.g., Giraud (2015)) even when

some of the nodes are misclustered and, therefore, the matrices P (k,l)
∗ (Ẑ, K̂) are not necessarily

of rank one. Indeed, the estimators obtained by averaging are suboptimal since matrix P∗ is con-

taminated with errors. Second, recoveries of the matrices Θ(k,l) do not require any identifiability

conditions that can be imposed in a variety of ways. Finally, estimators Λ̂(k,k) of vectors Λ(k,k) in

(3.9) require the knowledge of the diagonal elements of matrix A that are not available. On the

contrary, the rank one approximation of a matrix can be achieved in the presence of missing values
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(see, e.g., Klopp, Lounici and Tsybakov (2017)).

Remark 2. The true community assignment. Sengupta and Chen (2018) show that the like-

lihood modularity is maximized at the true community assignment provided the, so called, de-

tectability condition holds: for any two distinct communities Nl and Nk and any two nodes,

j1 ∈ Nl and j2 ∈ Nk, the set {(P∗)i,j1/(P∗)i,j2}ni=1 assumes at least K∗ + 1 distinct values, where

K∗ is the true (known) number of clusters and P∗ is the unknown true matrix of probabilities. In our

case, the correct community assignment is a solution of the optimization problem (4.8) if matrix P∗

is a unique combination (up to permutations) of the K2 rank one matrices. The latter is guaranteed

if collections of vectors Λ(k,1), . . . ,Λ(k,K∗) are linearly independent for any k = 1, . . . , K∗. Milder

conditions can be found in Soltanolkotabi and Candes (2012).

3.6 The Errors of Estimation and Clustering

In this section we evaluate the estimation and the clustering errors. We choose the penalty which,

with high probability, exceeds the random errors. In particular, we denote

F1(n,K) = C1nK + C2K
2 ln(ne) + C3(lnn+ n lnK) (3.15)

F2(n,K) = 2 lnn+ 2n lnK, (3.16)

where C1, C2 and C3 are absolute constants. Define the penalty of the form

Pen(n,K) =
(
2 + 16 β−1

1

)
F1(n,K) + β−1

2 F2(n,K), (3.17)

where positive parameters β1 and β2 are such that β1 + β2 < 1. Then, the following statement

holds.

Theorem 3.6.1. Let (Θ̂, Ẑ, K̂) be a solution of optimization problem (4.5). Construct the estimator
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P̂ of P∗ of the form

P̂ = PẐ,K̂Θ̂(Ẑ, K̂)PT
Ẑ,K̂

(3.18)

where PẐ,K̂ is the permutation matrix corresponding to (Ẑ, K̂). Then, for any t > 0 and C̃ =

C̃(C3) given in (4.22), one has

P

{
1

n2

∥∥∥P̂ − P∗∥∥∥2

F
≤ Pen(n,K∗)

(1− β1 − β2)n2
+
C̃t

n2

}
≥ 1− 3e−t, (3.19)

1

n2
E
∥∥∥P̂ − P∗∥∥∥2

F
≤ Pen(n,K∗)

(1− β1 − β2)n2
+

3C̃

n2
(3.20)

Remark 3. The penalty. By rearranging and combining the terms, the penalty in (3.17) can be

written in the form

Pen(n,K) = H1nK +H2K
2 lnn+H3n lnK, (3.21)

where Hi ≡ Hi(β1, β2, C1, C2, C3), i = 1, 2, 3, and the estimation errors in (4.20) and (4.21) are

proportional to the right hand side of (4.16). The first term in (4.16) corresponds to the error of

estimating nK unknown entries of matrix Λ, the second term is associated with estimation of rank

K2 matrix while the last term is due to the clustering of n nodes into K communities. If K grows

with n, i.e., K = K(n) → ∞ as n → ∞, then the first term in (4.16) dominates the other two

terms. However, in the case of a fixed K, the first and the third terms grow at the same rate as

n→∞. The second term is always of a smaller order provided K(n)/n→ 0.

In order to evaluate the clustering error, we assume that the true number of classes K = K∗ is

known. Let Z∗ ∈ Mn,K∗ be the true clustering matrix. Then Ẑ ≡ ẐK is a solution of the opti-

mization problem (4.8). Note that if Z∗ is the true clustering matrix and Z is any other clustering
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matrix, then the proportion of misclustered nodes can be evaluated as

Err(Z,Z∗) = (2n)−1 min
PK∈PK

‖ZPK − Z∗‖1 = (2n)−1 min
PK∈PK

‖ZPK − Z∗‖2
F (3.22)

where PK is the set of permutation matrices PK : {1, 2, · · · , K} −→ {1, 2, · · · , K}. Let

Υ(Z∗, ρ) =

{
Z ∈Mn,K : (2n)−1 min

PK∈PK
‖ZPK − Z∗‖1 ≥ ρ

}
(3.23)

be the set of clustering matrices with the proportion of misclustered nodes being at least ρ, ρ < 1.

The success of clustering in (4.8) relies upon the fact that matrix P∗ is a collection of K2 rank

one blocks, so that the operator and the Frobenius norms of each block are the same. On the other

hand, if clustering were incorrect, the ranks of the blocks would increase which would lead to the

discrepancy between their operator and Frobenius norms. In particular, the following statement is

true.

Theorem 3.6.2. LetK = K∗ be the true number of clusters and Z∗ ∈Mn,K∗ be the true clustering

matrix. If for some α1, α2, ρn ∈ (0, 1), one has

‖P∗‖2
F−

1 + α2

1− α1

max
Z∈Υ(Z∗,ρn)

K∑
k,l=1

∥∥∥P (k,l)
∗ (Z)

∥∥∥2

op
≥ H[C1nK+C2K

2 ln(ne)+C3(n lnK+t)], (3.24)

then, with probability at least 1 − 2e−t, the proportion of the misclassified nodes is at most ρn.

Here, H ≡ H(α1, α2), is a function of α1 and α2 only.
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3.7 Supplementary Statements and Proofs

3.7.1 Proof of Theorem 3.6.1.

Denote Ξ = A − P∗ and recall that, given matrix P∗, entries Ξi,j = Ai,j − (P∗)ij of Ξ are the

independent Bernoulli errors for 1 ≤ i ≤ j ≤ n and Ai,j = Aj,i. Then, following notation (3.6),

for any Z and K

Ξ(Z,K) = PT
Z,KΞPZ,K and P∗(Z,K) = PT

Z,KP∗PZ,K .

Then it follows from (4.5) that

∥∥∥PT
Ẑ,K̂

APẐ,K̂ − Θ̂(Ẑ, K̂)
∥∥∥2

F
+Pen(n, K̂) ≤

∥∥∥PT
Z∗,K∗APZ∗,K∗ −PT

Z∗,K∗P∗PZ∗,K∗

∥∥∥2

F
+Pen(n,K∗)

Using the fact that permutation matrices are orthogonal, we can rewrite the previous inequality as

∥∥∥A−PẐ,K̂Θ̂(Ẑ, K̂)PT
Ẑ,K̂

∥∥∥2

F
+ Pen(n, K̂) ≤‖A− P∗‖2

F + Pen(n,K∗). (3.25)

Hence, (4.30) and (4.18) yield

∥∥∥A− P̂∥∥∥2

F
≤‖A− P∗‖2

F + Pen(n,K∗)− Pen(n, K̂) (3.26)

Subtracting and adding P∗ in the norm of the left-hand side of (4.31), we rewrite (4.31) as

∥∥∥P̂ − P∗∥∥∥2

F
≤ ∆(Ẑ, K̂) + Pen(n,K∗)− Pen(n, K̂), (3.27)
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where

∆(Ẑ, K̂) = 2Tr
[
ΞT (P̂ − P∗)

]
. (3.28)

Again, using orthogonality of the permutation matrices, we can rewrite

∆(Ẑ, K̂) = 2〈Ξ(Ẑ, K̂), (Θ̂(Ẑ, K̂)− P∗(Ẑ, K̂))〉,

where 〈A,B〉 = Tr(ATB). Then, in the block form, ∆(Ẑ, K̂) appears as

∆(Ẑ, K̂) =
K̂∑

k,l=1

∆(k,l)(Ẑ, K̂) (3.29)

where

∆(k,l)(Ẑ, K̂) = 2

〈
Ξ(k,l)(Ẑ, K̂),Πû,v̂

(
A(k,l)(Ẑ, K̂)

)
− P (k,l)

∗ (Ẑ, K̂)

〉
and Πû,v̂ is defined in (4.63) of Lemma 4.4.1.

Let ũ = ũ(k,l)(Ẑ, K̂), ṽ = ṽ(k,l)(Ẑ, K̂) be the singular vectors of P (k,l)
∗ (Ẑ, K̂) corresponding to the

largest singular value of P (k,l)
∗ (Ẑ, K̂). Then, according to Lemma 4.4.1

Πũ,ṽ

(
P (k,l)
∗ (Ẑ, K̂)

)
= ũ(k,l)(Ẑ, K̂)(ũ(k,l)(Ẑ, K̂))TP (k,l)

∗ (Ẑ, K̂)ṽ(k,l)(Ẑ, K̂)(ṽ(k,l)(Ẑ, K̂))T

(3.30)

Recall that

Πû,v̂(A
(k,l)(Ẑ, K̂)) = Πû,v̂

[
P (k,l)
∗ (Ẑ, K̂) + Ξ(k,l)(Ẑ, K̂)

]
,

Then, ∆(k,l)(Ẑ, K̂) can be partitioned into the sums of three components

∆(k,l)(Ẑ, K̂) = ∆
(k,l)
1 (Ẑ, K̂) + ∆

(k,l)
2 (Ẑ, K̂) + ∆

(k,l)
3 (Ẑ, K̂), k, l = 1, 2, · · · , K, (3.31)
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where

∆
(k,l)
1 (Ẑ, K̂) = 2〈Ξ(k,l)(Ẑ, K̂),Πû,v̂(Ξ

(k,l)(Ẑ, K̂))〉 (3.32)

∆
(k,l)
2 (Ẑ, K̂) = 2〈Ξ(k,l)(Ẑ, K̂),Πũ,ṽ

(
P (k,l)
∗ (Ẑ, K̂)

)
− P (k,l)

∗ (Ẑ, K̂)〉 (3.33)

∆
(k,l)
3 (Ẑ, K̂) = 2〈Ξ(k,l)(Ẑ, K̂),Πû,v̂(P

(k,l)
∗ (Ẑ, K̂))− Πũ,ṽ

(
P (k,l)
∗ (Ẑ, K̂)

)
〉 (3.34)

With some abuse of notations, for any matrix B, let Πũ,ṽ

(
B(Ẑ, K̂)

)
be the matrix with blocks

Πũ,ṽ

(
B(k,l)(Ẑ, K̂)

)
, and Πû,v̂

(
B(Ẑ, K̂)

)
be the matrix with blocks Πû,v̂

(
B(k,l)(Ẑ, K̂)

)
, k, l =

1, 2, · · · , K̂. Then, it follows from (4.34)–(4.37) that

∆(Ẑ, K̂) = ∆1(Ẑ, K̂) + ∆2(Ẑ, K̂) + ∆3(Ẑ, K̂) (3.35)

where

∆1(Ẑ, K̂) = 2〈(Ξ(Ẑ, K̂),Πû,v̂(Ξ(Ẑ, K̂))〉 (3.36)

∆2(Ẑ, K̂) = 2〈Ξ(Ẑ, K̂),Πũ,ṽ

(
P∗(Ẑ, K̂)

)
− P∗(Ẑ, K̂)〉 (3.37)

∆3(Ẑ, K̂) = 2〈Ξ(Ẑ, K̂),Πû,v̂(P∗(Ẑ, K̂))− Πũ,ṽ

(
P∗(Ẑ, K̂)

)
〉 (3.38)

Now, we need to derive an upper bound for each component in (4.34) and (4.38).

Observe that

∆
(k,l)
1 (Ẑ, K̂) = 2〈Ξ(k,l)(Ẑ, K̂),Πû,v̂(Ξ

(k,l)(Ẑ, K̂))〉 = 2
∥∥∥Πû,v̂(Ξ

(k,l)(Ẑ, K̂))
∥∥∥2

F

≤ 2
∥∥∥Ξ(k,l)(Ẑ, K̂)

∥∥∥2

op
.

Now, fix t and let Ω1 be the set where
∥∥∥Ξ(Ẑ, K̂)

∥∥∥2

op
≤ F1(n, K̂)+C3t. According to Lemma 4.4.4,
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P(Ω1) ≥ 1− exp(−t), (3.39)

and, for ω ∈ Ω1, one has

|∆1(Ẑ, K̂)| ≤ 2
K̂∑

k,l=1

∥∥∥Ξ(k,l)(Ẑ, K̂)
∥∥∥2

op
≤ 2F1(n, K̂) + 2C3t (3.40)

Now, consider ∆2(Ẑ, K̂) given by (4.40). Note that

|∆2(Ẑ, K̂)| = 2‖Πũ,ṽ

(
P∗(Ẑ, K̂)

)
− P∗(Ẑ, K̂)‖F |〈Ξ(Ẑ, K̂), Hũ,ṽ(Ẑ, K̂)〉| (3.41)

where

Hũ,ṽ(Ẑ, K̂) =
Πũ,ṽ

(
P∗(Ẑ, K̂)

)
− P∗(Ẑ, K̂)

‖Πũṽ

(
P∗(Ẑ, K̂)

)
− P∗(Ẑ, K̂)‖F

Since for any a, b and α1 > 0, one has 2ab ≤ α1a
2 + b2/α1, obtain

|∆2(Ẑ, K̂)| ≤ α1‖Πũ,ṽ

(
P∗(Ẑ, K̂)

)
− P∗(Ẑ, K̂)‖2

F + 1/α1 |〈Ξ(Ẑ, K̂), Hũ,ṽ(Ẑ, K̂) 〉|2 (3.42)

Observe that if K and Z ∈ Mn,K are fixed, then Hũ,ṽ(Z,K) is fixed and, for any K and Z, one

has ‖Hũ,ṽ(Z,K)‖F = 1. Note also that, for fixed K and Z, permuted matrix Ξ(Z,K) ∈ [0, 1]n×n

contains independent Bernoulli errors. It is well known that if ξ is a vector of independent Bernoulli

errors and h is any fixed vector, then, for any x > 0, Hoeffding’s inequality yields

P(|ξTh|2 > x) ≤ 2 exp(−x/2)
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Since 〈Ξ(Z,K), Hũ,ṽ(Z,K)〉 = [vec(Ξ(Z,K))]Tvec(Hũ,ṽ(Z,K)), obtain for any fixed K and Z:

P
(
|〈Ξ(Z,K), Hũ,ṽ(Z,K)〉|2 − x > 0

)
≤ 2 exp(−x/2)

Now, applying the union bound, derive

P
(
|〈Ξ(Ẑ, K̂), Hũ,ṽ(Ẑ, K̂)〉|2 − F2(n, K̂) > 2t

)
≤P
(

max
1≤K≤n

max
Z∈Mn,k

[|〈Ξ(Z,K), Hũ,ṽ(Z,K)〉|2 − F2(n,K)] > 2t

)
(3.43)

≤2nKn exp
{
−F2(n,K)/2− t

}
= 2 exp(−t),

where F2(n,K) is defined in (4.28). By Lemma 4.4.2, one has

‖Πũ,ṽ

(
P∗(Ẑ, K̂)

)
− P∗(Ẑ, K̂)‖2

F ≤ ‖Πû,v̂

(
P∗(Ẑ, K̂)

)
− P∗(Ẑ, K̂)‖2

F ≤ ‖P̂ − P∗‖2
F .

Denote the set on which (4.45) holds by ΩC
2 , so that

P(Ω2) ≥ 1− 2 exp(−t). (3.44)

Then inequalities (4.44) and (4.45) imply that, for any α1 > 0, t > 0 and any ω ∈ Ω2, one has

|∆2(Ẑ, K̂)| ≤ α1‖P̂ − P∗‖2
F + 1/α1 F2(n, K̂) + 2 t/α1. (3.45)

Now consider ∆3(Ẑ, K̂) defined in (4.41) with components (4.37). Note that matrices Πû,v̂(P
(k,l)
∗ (Ẑ, K̂))−

Πũ,ṽ

(
P

(k,l)
∗ (Ẑ, K̂)

)
have rank at most two. Use the fact that (see, e.g., Giraud (2014), page 123)

〈A,B〉 ≤ ‖A‖(2,r)‖B‖(2,r) ≤ 2‖A‖op‖B‖F , r = min{rank(A), rank(B)}. (3.46)
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Here ‖A‖(2,q) is the Ky-Fan (2, q) norm

‖A‖2
(2,q) =

q∑
j=1

σ2
j (A) ≤ ‖A‖2

F ,

where σj(A) are the singular values of A. Applying inequality (4.48) with r = 2 and taking into

account that for any matrix A one has ‖A‖2
(2,2) ≤ 2‖A‖2

op, derive

|∆(k,l)
3 (Ẑ, K̂)| ≤ 4‖Ξ(k,l)(Ẑ, K̂)‖op‖Πû,v̂(P

(k,l)
∗ (Ẑ, K̂))− Πũ,ṽ

(
P (k,l)
∗ (Ẑ, K̂)

)
‖F .

Then, for any α2 > 0, obtain

|∆3(Ẑ, K̂)| ≤
K̂∑

k,l=1

|∆(k,l)
3 (Ẑ, K̂)| (3.47)

≤ 2

α2

K̂∑
k,l=1

‖Ξ(k,l)(Ẑ, K̂)‖2
op + 2α2

K̂∑
k,l=1

‖Πû,v̂(P
(k,l)
∗ (Ẑ, K̂))− Πũ,ṽ

(
P (k,l)
∗ (Ẑ, K̂)

)
‖2
F .

Note that, by Lemma 4.4.2,

‖Πû,v̂(P
(k,l)
∗ (Ẑ, K̂))− Πũṽ

(
P (k,l)
∗ (Ẑ, K̂)

)
‖2
F

≤2‖Πû,v̂(P
(k,l)
∗ (Ẑ, K̂))− P (k,l)

∗ (Ẑ, K̂)‖2
F + 2‖Πũ,ṽ(P

(k,l)
∗ (Ẑ, K̂))− P (k,l)

∗ (Ẑ, K̂)‖2
F

≤4‖Πû,v̂(P
(k,l)
∗ (Ẑ, K̂))− P (k,l)

∗ (Ẑ, K̂)‖2
F

≤4‖Πû,v̂(A
(k,l)(Ẑ, K̂))− P (k,l)

∗ (Ẑ, K̂)‖2
F = 4‖Θ̂(k,l)(Ẑ, K̂)− P (k,l)

∗ (Ẑ, K̂)‖2
F
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Therefore,

K̂∑
k,l=1

‖Πû,v̂(P
(k,l)
∗ (Ẑ, K̂))− Πũṽ

(
P (k,l)
∗ (Ẑ, K̂)

)
‖2
F ≤

4
∥∥∥Θ̂(Ẑ, K̂)− P∗(Ẑ, K̂)

∥∥∥2

F
= 4‖P̂ − P∗‖2

F (3.48)

Combine inequalities (4.49) and (3.48) and recall that
∥∥∥Ξ(Ẑ, K̂)

∥∥∥2

op
≤ F1(n, K̂)+C3 t for ω ∈ Ω1.

Then, for any α2 > 0 and ω ∈ Ω1, one has

|∆3(Ẑ, K̂)| ≤ 8α2‖P̂ − P∗‖2
F + 2/α2F1(n, K̂) + 2C3 t/α2. (3.49)

Now, let Ω = Ω1 ∩ Ω2. Then, (4.42) and (4.46) imply that P(Ω) ≥ 1− 3 exp(−t) and, for ω ∈ Ω,

inequalities (4.43), (4.47) and (4.50) simultaneously hold. Hence, by (4.38), derive that, for any

ω ∈ Ω,

|∆(Ẑ, K̂)| ≤ (2+2/α2)F1(n, K̂))+1/α1 F2(n, K̂)+(α1+8α2)‖P̂−P∗‖2
F+2(C3+1/α1+C3/α2) t.

Combination of the last inequality and (3.27) yields that, for α1 + 8α2 < 1 and any ω ∈ Ω,

(1−α1−8α2)
∥∥∥P̂ − P∗∥∥∥2

F
≤
(

2 +
2

α2

)
F1(n, K̂)+

1

α1

F2(n, K̂)+Pen(n,K∗)−Pen(n, K̂)+2(C3+1/α1+C3/α2) t

Setting Pen(n,K) = (2 + 2/α2)F1(n,K) + 1/α1F2(n,K) and dividing by (1−α1− 8α2), obtain

that

P
{
‖P̂ − P∗‖2

F ≤ (1− α1 − 8α2)−1 Pen(n,K∗) + C̃ t
}
≥ 1− 3e−t (3.50)

where

C̃ = 2 (1− α1 − 8α2)−1 (C3 + 1/α1 + C3/α2) (3.51)
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In order to derive (4.20), set β1 = 8α2 and β2 = α1. In order to obtain the upper bound (4.21)

note that for ξ = ‖P̂ − P∗‖2
F − (1 − β1 − β2)−1 Pen(n,K∗), one has E‖P̂ − P∗‖2

F = (1 − β1 −

β2)−1 Pen(n,K∗) + Eξ, where

Eξ ≤
∫ ∞

0

P(ξ > z)dz = C̃

∫ ∞
0

P(ξ > C̃t)dt ≤ C̃

∫ ∞
0

3 e−t dt = 3C̃,

which yields (4.21).

3.7.2 Proof of Theorem 3.6.2.

Since we have

ẐK ∈ argmin
Z∈Mn,K


K∑

k,l=1

∥∥∥∥A(k,l)(Z,K)− Πû,v̂

(
A(k,l)(Z,K)

)∥∥∥∥2

F


so that

K∑
k,l=1

∥∥∥∥A(k,l)(Ẑ)− Πû,v̂

(
A(k,l)(Ẑ)

)∥∥∥∥2

F

≤
K∑

k,l=1

∥∥∥∥A(k,l)(Z∗)− Πû,v̂

(
A(k,l)(Z∗)

)∥∥∥∥2

F

(3.52)

Observe that for any Z ∈Mn,K , one has

K∑
k,l=1

∥∥∥∥A(k,l)(Z)− Πû,v̂

(
A(k,l)(Z)

)∥∥∥∥2

F

=
K∑

k,l=1

{∥∥∥A(k,l)(Z)
∥∥∥2

F
−
∥∥∥∥Πû,v̂

(
A(k,l)(Z)

)∥∥∥∥2

F

}
,

so that, due to
K∑

k,l=1

∥∥∥A(k,l)(Z)
∥∥∥2

F
=‖A‖2

F , (4.53) can be re-written as

K∑
k,l=1

∥∥∥∥Πû,v̂

(
A(k,l)(Ẑ)

)∥∥∥∥2

F

≥
K∑

k,l=1

∥∥∥∥Πû,v̂

(
A(k,l)(Z∗)

)∥∥∥∥2

F

(3.53)
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Applying Proposition 6.2 of Giraud (2015), obtain

‖Πû,v̂(A
(k,l)(Z))− P (k,l)

∗ (Z)‖2
F ≤

(2 + θ)2

θ2

min{nk,nl}∑
r=2

σ2
rP

(k,l)
∗ (Z)+

2(1 + θ)(2 + θ)

θ
‖Ξ(k,l)(Z)‖2

op,

where θ > 0 is an arbitrary constant, P∗ is the true matrix of probabilities, Ξ(k,l)(Z) = A(k,l)(Z)−

P
(k,l)
∗ (Z), and σr(B) is the r−th largest singular value of B. Since matrix P (k,l)

∗ (Z∗) has rank one,

the previous inequality yields for θ =
√

2

‖Πû,v̂

(
A(k,l)(Z∗)

)
− P (k,l)

∗ (Z∗)‖2
F ≤ 2(1 +

√
2)2‖Ξ(k,l)(Z∗)‖2

op (3.54)

Using Lemma 4.4.3, derive for any t > 0 that

P


K∑

k,l=1

∥∥∥Ξ(k,l)(Z∗)
∥∥∥2

op
≤ C1nK + C2K

2 ln(ne) + C3 t

 ≥ 1− exp(−t). (3.55)

Also, since card(Mn,K) = Kn , replacing t by n lnK + t and applying union bound, obtain

P


K∑

k,l=1

‖Ξ(k,l)(Ẑ)‖2
op ≤ C1nK + C2K

2 ln(ne) + C3(n lnK + t)

 ≥ 1− exp(−t). (3.56)

Note that for any α1 ∈ (0, 1), using the inequality (a+ b)2 ≥ (1− α1)a2 + (1− α−1
1 )b2, obtain

∥∥∥∥Πû,v̂

(
A(k,l)(Z∗)

)∥∥∥∥2

F

=

∥∥∥∥Πû,v̂

(
A(k,l)(Z∗)

)
− P (k,l)

∗ (Z∗) + P (k,l)
∗ (Z∗)

∥∥∥∥2

F

≥

(1− α1)
∥∥∥P (k,l)
∗ (Z∗)

∥∥∥2

F
−
(
α−1

1 − 1
)∥∥∥∥Πû,v̂

(
A(k,l)(Z∗)

)
− P (k,l)

∗ (Z∗)

∥∥∥∥2

F
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Combining the last inequality with (3.54) and taking a sum, obtain

K∑
k,l=1

∥∥∥∥Πû,v̂

(
A(k,l)(Z∗)

)∥∥∥∥2

F

≥ (1−α1)‖P∗‖2
F−2(1+

√
2)2

(
1

α1

− 1

) K∑
k,l=1

∥∥∥Ξ(k,l)(Z∗)
∥∥∥2

op
, (3.57)

where we used the fact that
∥∥P∗(Z∗)∥∥F = ‖P∗‖F . On the other hand, for any Z ∈ Mn,K and any

α2 > 0, using the inequality (a+ b)2 ≤ (1 + α2)a2 + (1 + α−1
2 )b2, obtain

∥∥∥∥Πû,v̂

(
A(k,l)(Z)

)∥∥∥∥2

F

≤ (1 + α2)

∥∥∥∥Πû,v̂

(
P (k,l)
∗ (Z)

)∥∥∥∥2

F

+
(
1 + α−1

2

)∥∥∥∥Πû,v̂

(
Ξ(k,l)(Z)

)∥∥∥∥2

F

,

so that

∥∥∥∥Πû,v̂

(
A(k,l)(Z)

)∥∥∥∥2

F

≤ (1 + α2)
∥∥∥P (k,l)
∗ (Z)

∥∥∥2

op
+
(
1 + α−1

2

)∥∥∥Ξ(k,l)(Z)
∥∥∥2

op
(3.58)

Now, we prove the theorem by contradiction. Assume that Ẑ ∈ Υ(Z∗, ρn) is the solution of

optimization problem (4.8). Then, inequality (3.53) holds. Combining (3.53), (3.57) and (3.58),

obtain that

(1− α1)‖P∗‖2
F − 2(1 +

√
2)2

(
1

α1

− 1

) K∑
k,l=1

∥∥∥Ξ(k,l)(Z∗)
∥∥∥2

op
≤

(1 + α2)
K∑

k,l=1

∥∥∥P (k,l)
∗ (Ẑ)

∥∥∥2

op
+
(
1 + α−1

2

) K∑
k,l=1

∥∥∥Ξ(k,l)(Ẑ)
∥∥∥2

op

Due to (4.55) and (3.56), with probability at least 1− 2 exp(−t), the last inequality yields

(1−α1) ‖P∗‖2
F−(1+α2)

K∑
k,l=1

‖P (k,l)
∗ (Ẑ)‖2

op ≤ (1−α1)H[C1nK+C2K
2 ln(ne)+C3(n lnK+t)],
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where

H ≡ H(α1, α2) =
2(1 +

√
2)2

α1

+
1 + α2

α2(1− α1)
. (3.59)

The latter contradicts (3.24), since Ẑ ∈ Υ(Z∗, ρn), which completes the proof.

3.7.3 Supplementary Lemmas and Proofs

Lemma 3.7.1. For any matrices A,B ∈ Rm×n and any unit vectors u ∈ Rm and v ∈ Rn, let

Πu,v(A) = (uuT )A(vvT ) (3.60)

denote the projection of matrix A on the vectors (u, v). Then,

〈Πu,v(B), A− Πu,v(A)〉 = 0. (3.61)

Furthermore, if we let û and v̂ be the singular vectors of matrix A corresponding to its largest

singular value σ, the best rank one approximation of A is given by

Πû,v̂(A) = (ûûT )A(v̂v̂T ) = σûv̂T . (3.62)

Lemma 3.7.2. LetA = P+Ξ. Denote by (û, v̂) and (u, v) the pairs of singular vectors of matrices

A and P , respectively, corresponding to the largest singular values. Then,

‖Πu,v(P )− P‖F ≤ ‖Πû,v̂(P )− P‖F ≤ ‖Πû,v̂(A)− P‖F (3.63)

where Πu,v(·) is defined in (4.63).
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Proof. The first inequality in (4.64) is true because Πu,v(P ) is the best rank one approximation of

P . Validity of the second inequality in (4.64) follows from

‖Πû,v̂(A)− P‖2
F = ‖Πû,v̂(P )− P + Πû,v̂(Ξ)‖2

F = ‖Πû,v̂(P )− P‖2
F + ‖Πû,v̂(Ξ)‖2

F

Lemma 3.7.3. , Let elements of matrix Ξ ∈ (−1, 1)n×n be independent Bernoulli errors. Let

matrix Ξ be partitioned into K2 sub-matrices Ξ(k,l), k, l = 1, · · · , K. Then, for any x > 0

P


K∑

k,l=1

∥∥∥Ξ(k,l)
∥∥∥2

op
≤ C1nK + C2K

2 ln(ne) + C3x

 ≥ 1− exp(−x), (3.64)

where C1, C2 and C3 are absolute constants independent of n and K.

Proof. Consider vectors ξ and µ with elements ξk,l = ‖Ξ(k,l)‖op and µk,l = E‖Ξ(k,l)‖op, k, l =

1, · · · , K, and let η = ξ − µ. Then,

∆ =
K∑

k,l=1

∥∥∥Ξ(k,l)
∥∥∥2

op
= ‖ξ‖2 ≤ 2‖η‖2 + 2‖µ‖2 (3.65)

Hence, we need to construct the upper bounds for ‖η‖2 and ‖µ‖2.

We start with constructing upper bounds for ‖µ‖2. Let Ξ
(k,l)
i,j be elements of the (nk × nl)-

dimensional matrix Ξ(k,l). Then, E(Ξ
(k,l)
i,j ) = 0 and, by Hoeffding’s inequality, E

{
exp(λΞ

(k,l)
i,j )

}
≤

exp
(
λ2/8

)
. Taking into account that Bernoulli errors are bounded by one in absolute value and ap-

plying Corollary 3.3 of Bandeira and van Handel (2016) with m = nk, n = nl, σ∗ = 1, σ1 =
√
nl

and σ2 =
√
nk, obtain

µk,l ≤ C0(
√
nk +

√
nl +

√
ln(nk ∧ nl))
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where C0 is an absolute constant independent of nk and nl. Therefore,

‖µ‖2 ≤ 3C2
0

K∑
k,l=1

(nk + nl + ln(nk ∧ nl)) ≤ 6C2
0nK + 3C2

0K
2 lnn. (3.66)

Next, we show that, for any fixed partition, ηk,l = ξk,l − µk,l are independent sub-gaussian random

variables when 1 ≤ k ≤ l ≤ K. Independence follows from the conditions of Lemma 4.4.3.

To prove the sub-gaussian property, use Talagrand’s concentration inequality (Theorem 6.10 of

Boucheron et al. (2013)): if Ξ1,Ξ2,Ξ3, · · · ,Ξn are independent random variables taking values in

the interval [0, 1] and f : [0, 1]n → R is a separately convex function such that |f(x) − f(y)| ≤

‖x− y‖ for all x, y ∈ [0, 1]n, then, for Z = f(Ξ1,Ξ2,Ξ3, · · · ,Ξn) and any t > 0, one has

P(Z > EZ + t) ≤ exp(−t2/2). (3.67)

Apply this theorem to vectors ζk,l = vec(Ξ(k,l)) ∈ [0, 1]nk×nl and f(Ξ(k,l)) = f(ζk,l) =
∥∥∥Ξ(k,l)

∥∥∥
op

.

Note that, for any two matrices Ξ and Ξ̃ of the same size, one has ‖Ξ − Ξ̃‖2
op ≤ ‖Ξ− Ξ̃‖2

F =

‖vec(Ξ)−vec(Ξ̃)‖2. Then, applying Talagrand’s inequality withZ = ‖Ξ(k,l)‖op andZ = −‖Ξ(k,l)‖op,

obtain

P
(∣∣∣‖Ξ(k,l)‖op − E‖Ξ(k,l)‖op

∣∣∣ > t

)
≤ 2 exp(−t2/2).

Now, use the Lemma 5.5 of Vershynin (2012) which states that the latter implies that for any t > 0

and some absolute constant C4 > 0,

E
[
exp(tηk,l)

]
= E

[
exp(t(ξk,l − µk,l))

]
≤ exp(C4t

2/2), C4 > 0. (3.68)

Hence, ηk,l are independent sub-gaussian random variables when 1 ≤ k ≤ l ≤ K.

Now, we obtain an upper bound for ‖η‖2. Use Theorem 2.1 of Hsu et al. (2012) which states that
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for any matrix A, if for some σ > 0 and any vector h one has E[exp(hT η̃)] ≤ exp(‖h‖2σ2/2),

then, for any x > 0,

P
{
‖Aη̃‖2 ≥ σ2(Tr(ATA) + 2

√
Tr((ATA)2)x+ 2‖ATA‖op x)

}
≤ exp(−x). (3.69)

Applying (3.69) with A = IK(K+1)/2 and σ2 = C4 to a sub-vector η̃ of η which contains compo-

nents ηk,l with 1 ≤ k ≤ l ≤ K, obtain

P
{
‖η̃‖2 ≥ C4

(
K(K + 1)/2 +

√
2K(K + 1)x+ 2x

)}
≤ exp(−x).

Since ‖η‖2 ≤ 2‖η̃‖2, derive

P
{
‖η‖2 ≥ 2C4K(K + 1) + 6C4x

}
≤ exp (−x) (3.70)

Combination of formulas (4.66) and (4.69) yield

P
{
‖ξ‖2 ≤ 2‖µ‖2 + 4C4K(K + 1) + 12C4x

}
≥ 1− exp (−x)

Plugging in‖µ‖2 from (4.67) into the last inequality, derive for any x > 0 that

P
{
‖ξ‖2 ≤ 12C2

0nK + 6C2
0K

2 lnn+ 4C4K(K + 1) + 12C4x
}
≥ 1− exp (−x) . (3.71)

Since K(K + 1) ≤ 2K2 and 6C2
0K

2 lnn+ 8C4K
2 ≤ max(6C2

0 , 8C4)K2 ln(ne), inequality (4.65)

holds with C1 = 12C2
0 , C2 = max(6C2

0 , 8C4) and C3 = 12C4.
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Lemma 3.7.4. For any t > 0,

P


K̂∑

k,l=1

∥∥∥Ξ(k,l)(Ẑ, K̂)
∥∥∥2

op
− F1(n, K̂) ≤ C3t

 ≥ 1− exp (−t). (3.72)

where F1(n,K) is given by (4.26).

Proof. Using Lemma 4.4.3, for any fixed K and Z ∈Mn,K , obtain

P


K∑

k,l=1

‖Ξ(k,l)(Z,K)‖2
op − C1nK − C2K

2 ln(ne)− C3x ≥ 0

 ≤ exp (−x).

Application of the union bound over Z ∈Mn,K and K ∈ [1, n] and setting x = t+ lnn+ n lnK

yields

P


K̂∑

k,l=1

‖Ξ(k,l)(Ẑ, K̂)‖2
op − C1nK̂ − C2K̂

2 ln(ne)− C3t− C3 lnn− C3n ln K̂ ≥ 0


≤P

 max
1≤K≤n

max
Z∈Mn,K

 K∑
k,l=1

‖Ξ(k,l)(Z,K)‖2
op − F1(n,K)

 ≥ C3t


≤

n∑
k=1

∑
Z∈Mn,K

P


K∑

k,l=1

∥∥∥Ξ(k,l)(Z,K)
∥∥∥2

op
− F1(n,K) ≥ C3t


≤nKn exp{−t− lnn− n lnK} = exp (−t),

which completes the proof.

90



CHAPTER 4: ESTIMATION AND CLUSTERING IN SPARSE PABM

4.1 Sparsity in Block Models

The real life networks are usually sparse in a sense that a large number of nodes have small degrees.

One of the shortcomings of both the SBM and the DCBM is that they do not allow to efficiently

model sparsity in networks. Indeed, for the SBM, it is not realistic to assume that all nodes in a pair

of communities have no connections, hence, in the SBM setting, one does not assume that the block

probabilitiesBk,l = 0 for some k and l. The DCBM is not very different in this respect since setting

any node-specific weight to zero will force the respective node to be totally disconnected from the

network. For this reason, unlike in other numerous statistical settings, sparsity in block models is

defined as a low maximum probability of connections between the nodes: max
i,j

Pi,j ≤ ρ(n) where

ρ(n) → 0 as n → ∞ (see, e.g., Klopp, Lounici and Tsybakov (2017), Lei and Rinaldo (2015)).

As a result, high degree nodes become very unlikely. In addition to being unrealistic, the above

definition of sparsity has other drawbacks. In particular, one has to estimate every probability of

connections Bk,l, no matter how small it is, and, in many settings (see, e.g., Klopp, Lounici and

Tsybakov (2017)), in order to take advantage of the fact that Pi,j are bounded above by ρ(n), one

needs to incorporate this unknown value into the estimation process.

On the contrary, the PABM setting allows some connection probabilities to be zero while keeping

average connection probabilities between classes above certain level and the network connected.

This is possible only in the PABM context due to the flexible modeling of connection probabil-

ities. The idea of setting some infinitesimally small probabilities of connections to zero is quite

attractive. Indeed, it is well known that, when many of the elements of a vector or a matrix are

identical zeros, identifying those zeros and estimating the rest of the elements leads to a smaller

error than when this information is ignored. Similarly, allowing structural sparsity (i.e., setting
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connection probabilities to zero rather than to a very small positive number) not only leads to

better understanding of network topology but leads to more precise estimation of the probability

matrix P∗.

In the context of PABM, setting Λ
(k,l)
i = 0 simply means that that node i in class k is not active

(“popular") in class l. This, nevertheless, does not prevent this node from having high probability

of connection with nodes in another class. Setting some elements of vectors Λ(k,l) to zero will

merely lead to some of the rows (columns) of sub-matrices P (k,l)(Z,K) being zero. Moreover,

since Ai,j are Bernoulli variables with the means Pi,j , those zeros are fairly easy to identify since

Pi,j = 0 leads to Ai,j = 0.

4.2 Estimation and Clustering in Sparse PABM

In this section, we consider the problem of estimation and clustering of the true matrix P∗ of the

probabilities of the connection between the nodes.

4.2.1 The Structure of the Probability Matrix

Consider block P (k,l)
∗ (Z∗, K∗) of the rearranged version P∗(Z∗, K∗) of P∗. Let Λ∗ ≡ Λ(Z∗, K∗) ∈

[0, 1]n×K∗ be a block matrix with each column l partitioned into K∗ blocks Λ
(k,l)
∗ ≡ Λ

(k,l)
∗ (Z∗, K∗).

Here, Λ
(k,l)
∗ ∈ [0, 1]nk and Λ

(l,k)
∗ ∈ [0, 1]nl are the column vectors and P

(k,l)
∗ (Z∗, K∗) follows

(3.2), i.e., P (k,l)
∗ (Z∗, K∗) = Λ

(k,l)
∗ [Λ

(l,k)
∗ ]T . Hence, P (k,l)

∗ (Z∗, K∗) are rank-one matrices such that

P
(k,l)
∗ (Z∗, K∗) = [P

(l,k)
∗ (Z∗, K∗)]

T and that each pair of blocks P (k,l)
∗ and P (l,k)

∗ , involves a unique

combination of vectors Λ
(k,l)
∗ and Λ

(l,k)
∗ , k, l = 1, . . . , K∗.

Vectors Λ
(k,l)
∗ and Λ

(l,k)
∗ describe the heterogeneity of the connections of nodes in the pair of com-
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munities (k, l). While, on the average, those communities can be connected, some nodes in com-

munity k may have no interaction with nodes in community l or vice versa, so that some of the ele-

ments of vectors Λ
(k,l)
∗ and Λ

(l,k)
∗ can be identical zeros. Denote by J∗ ≡ J∗(Z∗, K∗) =

K⋃
k,l=1

(J∗)k,l

the set of indices of all nonzero elements of matrix Λ∗, where

(J∗)k,l ≡ (J∗)k,l(Z∗, K∗) = {i : (Λ∗)
(k,l)
i 6= 0}, J (k,l)

∗ = (J∗)k,l × (J∗)l,k, (4.1)

are, respectively, the true support of vector Λ
(k,l)
∗ and the set of all ordered pairs of indices (posi-

tions) of non-zero elements of sub-matrix P (k,l)
∗ (Z∗, K∗). Here, the elements of (J∗)k,l are enumer-

ated by their corresponding rows in matrix Λ∗. Then,

(P∗)
(k,l)
i,j (Z∗, K∗) > 0 iff (i, j) ∈ J (k,l)

∗

and row i and column j of P (k,l)
∗ (Z∗, K∗) are equal to zero if i /∈ (J∗)k,l or j /∈ (J∗)l,k.

Note that the set J∗ ≡ J∗(Z∗, K∗) relies upon the true clustering defined by K∗ and Z∗. One can

also consider sparsity sets (J̆∗)k,l ≡ (J̆∗)k,l(Z,K) and J̆k,l ≡ J̆k,l(Z,K) for an arbitrary K and

matrix Z ∈Mn,K

(J̆∗)k,l = {i : (P∗)
(k,l)
i,j (Z,K) 6= 0, j = 1, . . . , nl}, J̆k,l = {i : A

(k,l)
i,j (Z,K) 6= 0, j = 1, . . . , nl},

(4.2)

where the elements of (J̆∗)k,l and J̆k,l are enumerated by their corresponding rows in matrices P∗

and A, respectively. Examples of the sets (J∗)k,l, (J∗)
(k,l), (J̆∗)k,l and (J̆∗)

k,l are considered in

Section 4.2.3.
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For any sparsity sets Jk,l ≡ Jk,l(Z,K), define, similarly to (4.1),

J =
K⋃

k,l=1

Jk,l with J (k,l) = Jk,l × Jl,k (4.3)

It follows from the definitions (4.2) and (4.3) that for any K, Z ∈Mn,K and k, l = 1, . . . , K

J̆k,l(Z,K) ⊆ (J̆∗)k,l(Z,K) and J̆(Z,K) ⊆ J̆∗(Z,K). (4.4)

4.2.2 Optimization Procedure for Estimation and Clustering

Observe that although matrices P (k,l)
∗ (Z∗, K∗) and the sets J (k,l)

∗ are well defined, vectors Λ
(k,l)
∗ and

Λ
(l,k)
∗ can be determined only up to a multiplicative constant. In order to avoid this ambiguity, de-

note Θ
(k,l)
∗ = Λ

(k,l)
∗ [Λ

(l,k)
∗ ]T and recover matrix Θ∗ with the uniquely defined rank one blocks Θ

(k,l)
∗

and their supports J (k,l)
∗ , k, l = 1, . . . , K∗. Then, one needs to solve the following optimization

problem

(Θ̂, Ẑ, Ĵ , K̂) ∈ argmin
Θ,Z,J,K


K∑

k,l=1

∥∥∥A(k,l)(Z,K)−Θ(k,l)(Z, J,K)
∥∥∥2

F
+ Pen(n, J,K)


s.t. A(Z,K) = PT

Z,KAPZ,K , Z ∈Mn,K ,

supp(Θ(k,l)) = J (k,l) = Jk,l × Jl,k, rank(Θ(k,l)) = 1, k, l = 1, 2, · · · , K.
(4.5)

Here, Θ̂ is the block matrix with blocks Θ̂(k,l), k, l = 1, . . . , K.

Observe that, if Ẑ, Ĵ and K̂ were known, the best solution of problem (4.5) would be given by the

best rank one approximations Θ̂(k,l) of matrices A(k,l)(Ẑ, K̂) restricted to the sets Ĵ (k,l) of indices

94



of nonzero elements:

Θ̂(k,l)(Ẑ, Ĵ , K̂) = Π(1)

(
ΠĴ(k,l)(A

(k,l)(Ẑ, K̂))
)
, (4.6)

where ΠJ(k,l)

(
A(k,l)

)
is the projection of matrix A(k,l) onto the set of matrices with the support

J (k,l) and Π(1) is the best rank one approximation of a matrix. Plugging (4.6) into (4.5), we rewrite

optimization problem (4.5) as

(Ẑ, Ĵ , K̂) ∈ argmin
Z,J,K


K∑

k,l=1

‖A(k,l)(Z,K)− Π(1)[ΠJ(k,l)(A(k,l)(Z,K))]‖2
F + Pen(n, J,K)


(4.7)

s.t. A(Z,K) = PT
Z,KAPZ,K , Z ∈Mn,K ,

J (k,l) ≡ J (k,l)(Z,K) = Jk,l(Z,K)× Jl,k(Z,K).

In practice, in order to obtain (Ẑ, Ĵ , K̂), one needs to solve optimization problem (4.7) for every

K, obtaining

(ẐK , ĴK) ∈ argmin
Z,J


K∑

k,l=1

∥∥∥∥A(k,l)(Z,K)− Π(1)

(
ΠJ(k,l)(A(k,l)(Z,K))

)∥∥∥∥2

F

+ Pen(n, J,K)


(4.8)

s.t. A(Z,K) = PT
Z,KAPZ,K , ZK ∈Mn,K ,

J (k,l) ≡ J (k,l)(Z,K) = Jk,l(Z,K)× Jl,k(Z,K).

and then find K̂ as

K̂ ∈ argmin
K


K∑

k,l=1

∥∥∥∥∥A(k,l)(ẐK , K)− Π(1)

(
Π
Ĵ
(k,l)
K

(
A(k,l)(ẐK , K)

))∥∥∥∥∥
2

F

+ Pen(n, ĴK , K)

 .

(4.9)
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4.2.3 The Support of the Probability Matrix and the Penalty

Consider solution of optimization problem (4.8) for a fixed value ofK. If ẐK ∈Mn,K is a solution

of (4.7), then

ĴK ∈ argmin
J


K∑

k,l=1

∥∥∥∥∥A(k,l)(ẐK , K)− Π(1)

(
ΠJ(k,l)

(
A(k,l)(ẐK , K)

))∥∥∥∥∥
2

F

+ Pen(n, J,K)


s.t. A(ẐK , K) = PT

ẐK ,K
APẐK ,K

, J (k,l) = Jk,l × Jl,k, Jk,l ≡ Jk,l(ẐK , K).

(4.10)

Observe that if the penalty term Pen(n, J,K) were not present in (4.10) or did not depend on set

J , then one would have ĴK = J̆K and Ĵ (k,l)
K = J̆

(k,l)
K where, by (4.2), J̆ (k,l)

K is the set of indices of

nonzero rows and columns in A(k,l)(ẐK , K). It is easy to see that

ΠJ̆(k,l)

(
A(k,l)(ẐK , K)

)
= A(k,l)(ẐK , K), Π(1)

(
ΠJ̆(k,l)

(
A(k,l)(ẐK , K)

))
= Π(1)

(
A(k,l)(ẐK , K)

)
.

Hence, even if sparsity is not specifically enforced (as it happens in Noroozi et al. (2019a) where

the penalty depends on n and K only), one still obtains a sparse estimator P̂ with the support

ĴK = J̆K .

If the true number of clusters K∗ and the true clustering matrix Z∗ ∈ Mn,K∗ were available,

then the statement below shows that, under certain conditions, with high probability, sets J∗ ≡

J∗(Z∗, K∗) and J̆(Z∗, K∗) would coincide.

Lemma 4.2.1. Let K2
∗ ≤ n and the true matrix P∗ be such that (P∗)i,j = 0 or (P∗)i,j > $(n,K∗).

If the community sizes are balanced, i.e., the sizes of the true communities are no less than C̃0n/K∗

for some C̃0 ∈ (0, 1], and

$(n,K∗) ≥ K∗

(√
lnn+

√
t
)/(

C̃0

√
2n
)
,
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Figure 4.1: Zeros of the probability matrix with n = 5 and K∗ = 2. Star symbols correspond
to nonzero elements, the thick lines correspond to clustering assignments. Left panel: matrix Λ
with (J∗)1,1 = {1, 2, 3}, (J∗)2,1 = {5}, (J∗)1,2 = {1, 2} and (J∗)2,2 = {4, 5}. Middle panel:
matrix P∗(Z∗, K∗) with true clustering, (J̆∗)

c
2,1(Z∗) = {4} and (J̆∗)

c
1,2(Z∗) = {3}, P̂i,j(Z∗, K∗) =

0 for (i, j) ∈ {(1, 4), (2, 4), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (5, 3)}, so that, zero entries of the
probability matrix are estimated by zeros. Right panel: matrix P∗(Ẑ,K∗) with node 3 erroneously
placed into community 2. The value of (P∗)3,3 is nonzero. If A3,3 = 0, then J̆ c2,2(Ẑ) = {3} and
P̂i,j(Ẑ,K∗) = 0 for (i, j) ∈ {(1, 4), (2, 4), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (5, 3)}, hence, zero
entries of P∗ are still estimated by the identical zeros. However, if A3,3 = 1, then zero elements
(P∗)3,4, (P∗)3,5, (P∗)4,3 and (P∗)5,3 are estimated by positive values.

then, with probability at least 1− e−t, one has J∗(Z∗, K∗) = J̆(Z∗, K∗).

Unfortunately, K∗ and Z∗ are unknown and, hence, ĴK(Z,K) = J̆K(Z,K) may not always be the

best estimator.

Consider, for example, the situation displayed in Figure 1 where n = 5, K∗ = 2 and, under the

true clustering, one has n1 = 3 and n2 = 2. Vectors Λ2,1 and Λ1,2 have one zero element each,

so that (J∗)1,1 = {1, 2, 3}, (J∗)2,1 = {5}, (J∗)1,2 = {1, 2} and (J∗)2,2 = {4, 5} (left panel)

leading to (J∗)
(1,1) = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}, (J∗)

(2,1) =

{(5, 1), (5, 2)}, (J∗)
(1,2) = {(1, 5), (2, 5)} and (J∗)

(2,2) = {(4, 4), (4, 5), (5, 4), (5.5)} (middle
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panel). With the true clustering (middle panel), (J̆∗)
c
2,1(Z∗) = {4} and (J̆∗)

c
1,2(Z∗) = {3}, so that

P̂i,j(Z∗, K∗) = 0 for (i, j) ∈ {(1, 4), (2, 4), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (5, 3)}. Hence, zero

entries of the probability matrix are estimated by zeros. Consider now the situation where the third

node has been erroneously placed into community 2 by clustering matrix Ẑ (right panel). Then,

we still have (J̆∗)
c
2,1(Ẑ) = {4}, but (J̆∗)

c
1,2(Ẑ) is an empty set. If A3,3 = 0, then J̆ c2,2(Ẑ) = {3}

and P̂i,j(Ẑ,K∗) = 0 for (i, j) ∈ {(1, 4), (2, 4), (3, 4), (3, 5), (4, 1),

(4, 2), (4, 3), (5, 3)}, so that the zero entries of P∗ are still estimated by the identical zeros. How-

ever, if A3,3 = 1, then zero elements (P∗)3,4, (P∗)3,5, (P∗)4,3 and (P∗)5,3 will be estimated by

positive values.

For this reason, it is reasonable to introduce a penalty that will lead to trimming the support of

P̂ (Z,K).

We say that a penalty Pen(n, J,K) is separable if for any K and any clustering matrix Z that

partitions n nodes into K communities of sizes nk, k = 1, . . . , K, one can write

Pen(n, J,K) = Pen(0)(n, J,K) + Pen(1)(n,K) with Pen(0)(n, J,K) =
K∑
l=1

K∑
k=1

F (|Jk,l|, nk),

(4.11)

where Jk,l ≡ Jk,l(Z,K). Otherwise, the penalty is non-separable.

Lemma 4.2.2. Let (ẐK , ĴK) be the solution of the optimization problem (4.8). If Pen(n, J,K) is

separable and function F (j,m) in (4.11) is an increasing function of j for 0 ≤ j ≤ m, then, for

any K < n and k, l = 1, . . . , K, one has

Ĵk,l(ẐK , K) ⊆ J̆k,l(ẐK , K) ⊆ (J̆∗)k,l(ẐK , K), Ĵ(ẐK , K) ⊆ J̆(ẐK , K) ⊆ J̆∗(ẐK , K). (4.12)
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4.3 The Errors of Estimation and Clustering

We produce upper bounds on the estimation and clustering errors in this section.

4.3.1 The penalty

In what follows, we consider the separable and the non-separable penalties of the form (4.11) with

the common Pen(1)(n,K), i.e.

Pen(a)(n, J,K) = Pen(0,a)(n, J,K) + Pen(1)(n,K), (4.13)

where a =s for the separable penalty and a = ns for the nonseparable one, and

Pen(0,s)(n, J,K) = β1

K∑
k,l=1

|Jk,l| ln(nke/|Jk,l|) + β2K
K∑
k=1

lnnk (4.14)

Pen(0,ns)(n, J,K) = β1|J | ln(nKe/|J |) + 2β2 lnn (4.15)

Pen(1)(n,K) = β2[n lnK + lnn]. (4.16)

Here, the separable penalty corresponds to F (|Jk,l|, nk) = β1|Jk,l| ln(nke/|Jk,l|) + β2 lnnk and

the exact expressions for β1 and β2 are given in Theorem 3.6.1 below.

In the next two sections, we shall provide upper bounds for the errors of the solution of optimization

problem (4.5) with the separable or the non-separable penalty as well as upper bounds for the

clustering error in the case of the separable penalty. While the separable penalty has some valuable

properties (see Lemma 4.2.2), the non-separable penalty is much easier to interpret. Fortunately, as

the statement below shows, under very nonrestrictive conditions, the penalties are within a constant

factor of each other.
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Lemma 4.3.1. If n ≥ 8 and K ≤
√
n/ lnn, then

Pen(ns)(n, J,K) < (2 + β1/β2) Pen(s)(n, J,K) < 2 (2 + β1/β2) Pen(ns)(n, J,K). (4.17)

4.3.2 The Estimation Errors

Theorem 4.3.1. Let (Θ̂, Ẑ, Ĵ , K̂) be a solution of optimization problem (4.5) with the separable

or non-separable penalty defined in (4.13). Construct the estimator P̂ of P∗ of the form

P̂ = PẐ,K̂Θ̂(Ẑ, Ĵ , K̂)PT
Ẑ,K̂

(4.18)

where PẐ,K̂ is the permutation matrix corresponding to (Ẑ, K̂). Let positive γ1, γ2 be such that

γ1 + γ2 < 1 and β1 and β2 in (4.14)–(4.16) be given by

β1 =
2(C1 + C2)(8 + γ1)

γ1

+
2

γ2

, β2 =
2C2(8 + γ1)

γ1

+
2

γ2

, (4.19)

where C1 and C2 are absolute constants in Lemma 4.4.3. Then, for any t > 0, one has

P

{
1

n2

∥∥∥P̂ − P∗∥∥∥2

F
≤ Pen(n, J∗, K∗)

n2 (1− γ1 − γ2)
+
C̃t

n2

}
≥ 1− 3e−t, (4.20)

and,
1

n2
E
∥∥∥P̂ − P∗∥∥∥2

F
≤ Pen(n, J∗, K∗)

n2 (1− γ1 − γ2)
+

3C̃

n2
(4.21)

where

C̃ = 2 γ1
−1γ2

−1(1− γ1 − 8γ2)−1 (C2γ1γ2 + γ1 + 8C2γ2) (4.22)

Observe that, due to Lemma 4.3.1, the separable and non-separable penalties are within a constant
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factor of each other, so that Theorem 4.3.1 implies that the estimation error is proportional to

Pen(n, J∗, K∗) where

Pen(n, J,K) � Pen(ns)(n, J,K) � n lnK + |J | ln(nKe/|J |) + lnn. (4.23)

The first term in (4.23) is due to the clustering errors, the second term quantifies the difficulty of

finding and estimating |J | nonzero elements among nK elements of matrix Λ ∈ [0, 1]n×K while

the lnn � ln(nK) term stands for the difficulty of finding the cardinality of the set |J |, and it is

always dominated by the first two terms in (4.23).

Since each node has at least one community to which it is connected with a nonzero probability,

one has n ≤ |J | ≤ nK. In the (non-sparse) PABM, |J | = nK and the second term in (4.23) is

always asymptotically larger, as n→∞, than the other two terms. In SPABM, the second term in

(4.23) dominates the first term only if K = 1 or |J |/n → ∞ as n → ∞. However, if K > 1 and

|J | � n, then both terms are of the equal asymptotic order. If K → ∞ and |J | � n as n → ∞,

then SPABM has the errorO(n lnK) which is asymptotically smaller thanO(nK) error of PABM.

4.3.3 The Clustering Errors

In order to evaluate the clustering error, we assume that the true number of classes K = K∗ is

known. Let Z∗ ∈ Mn,K∗ be the true clustering matrix. Then Ẑ ≡ ẐK is a solution of the opti-

mization problem (4.8). Note that if Z∗ is the true clustering matrix and Z is any other clustering

matrix, then the proportion of misclustered nodes can be evaluated as

Err(Z,Z∗) = (2n)−1 min
PK∈PK

‖ZPK − Z∗‖1 = (2n)−1 min
PK∈PK

‖ZPK − Z∗‖2
F (4.24)

where PK is the set of permutation matrices PK : {1, 2, · · · , K} −→ {1, 2, · · · , K}.
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Theorem 4.3.2. LetK = K∗ be the true number of clusters and Z∗ ∈Mn,K∗ be the true clustering

matrix and nk be the true number of nodes in cluster k = 1, . . . , K. Denote by γ(Z∗, ρn) the set

of clustering matrices with the proportion of at most ρn of the mis-clustered nodes. Let P∗ and

J∗ = J∗(P∗, Z∗) be, respectively, the true probability matrix and the true set J∗. If for some

γ1, γ2 > 0 such that γ1 + γ2 < 1 and some τ ∈ (0, 1), one has

max
Ẑ∈γ(Z∗,ρn)


K∑

k,l=1

‖P (k,l)
∗ (Ẑ)‖2

op −
2C1(β1 − C1 − C2)

(C1 + C2)β1γ2

K
K∑
k=1

ln(n̂k)


≤ (1− τ)(β1 − C1 − C2)

β1

[
‖P∗‖2

F − 2(1 +
√

2)2τ−1 (C1|J∗|+ C2t)
]

(4.25)

− (β1 − C1 − C2)

[
C2

C1 + C2

(n lnK + t) +
K∑

k,l=1

|(J∗)k,l| ln

(
nk e

|(J∗)k,l|

)
+
β2

β1

K
K∑
k=1

ln(nk)


where β1 and β2 are defined in (4.19), then with probability at least 1− 2 exp(−t), the proportion

of mis-clustered nodes does not exceed ρn.

4.4 Proofs

This section consists of the detailed proofs of the results in the SPABM starting from the proofs of

the main results and then the supplementary lemmas.
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4.4.1 Proof of Theorem 4.3.1

In what follows, Fj(n, J,K) will stand for F (s)
j (n, J,K) or F (ns)

j (n, J,K), j = 1, 2, where

F
(ns)
1 (n, J,K) = (C1 + C2)|J | ln(nKe/|J |) + C2(3 lnn+ n lnK) (4.26)

F
(s)
1 (n, J,K) = (C1 + C2)

K∑
k,l=1

|Jk,l| ln(nke/|Jk,l|) + C2

lnn+ n lnK +K
K∑
k=1

lnnk


(4.27)

F
(ns)
2 (n, J,K) = 2 lnn+ 2(n+ 2) lnK + 2|J | ln(nKe/|J |) (4.28)

F
(s)
2 (n, J,K) = 2

K∑
k,l=1

|Jk,l| ln(nke/|Jk,l|) + 2

lnn+ n lnK +K
K∑
k=1

lnnk

 (4.29)

Denote Ξ = A − P∗ and recall that, given matrix P∗, entries Ξi,j = Ai,j − (P∗)ij of Ξ are the

independent Bernoulli errors for 1 ≤ i ≤ j ≤ n and Ξi,j = Ξj,i.

Let (Θ̂, Ẑ, Ĵ , K̂) be a solution of optimization problem (4.5). We construct the estimator P̂ ≡

P̂ (Ẑ, Ĵ , K̂) of P∗ of the form (4.18). SinceA(Z,K) = PT
Z,KAPZ,K , thenA = PZ,KA(Z,K)PT

Z,K ,

and Θ̂(Ẑ, Ĵ , K̂) is the block matrix of optimal rank one approximations for every block of ΠĴ(A(Ẑ, K̂)).

Then (4.5) yields

∥∥∥PT
Ẑ,K̂

APẐ,K̂ − Θ̂(Ẑ, Ĵ , K̂)
∥∥∥2

F
+Pen(n, Ĵ, K̂) ≤

∥∥∥PT
Z∗APT

Z∗ −PT
Z∗P∗P

T
Z∗

∥∥∥2

F
+Pen(n, J∗, K∗)

Using orthogonality of permutation matrices, obtain

∥∥∥A−PẐ,K̂Θ̂(Ẑ, Ĵ , K̂)PT
Ẑ,K̂

∥∥∥2

F
≤‖A− P∗‖2

F + Pen(n, J∗, K∗)− Pen(n, Ĵ, K̂) (4.30)
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Hence (4.30) and (4.18) yield

∥∥∥A− P̂∥∥∥2

F
≤‖A− P∗‖2

F + Pen(n, J∗, K∗)− Pen(n, Ĵ, K̂) (4.31)

Now adding and subtracting P∗ in the norm on the left side of (4.31), we rewrite (4.31) as

∥∥∥P̂ − P∗∥∥∥2

F
≤ ∆(Ẑ, Ĵ , K̂) + Pen(n, J∗, K∗)− Pen(n, Ĵ, K̂) (4.32)

where

∆(Ẑ, Ĵ , K̂) = 2Tr
[
(A− P∗)T (P̂ (Ẑ, Ĵ , K̂)− P∗)

]
.

Again using orthogonality of permutation matrices, we can rewrite

∆(Ẑ, Ĵ , K̂) = 2〈Ξ(Ẑ, K̂), (Θ̂(Ẑ, Ĵ , K̂)− P∗(Ẑ, K̂))〉

where 〈A,B〉 = Tr(ATB).

Let

Then, in the block form, ∆(Ẑ, Ĵ , K̂) appears as

∆(Ẑ, Ĵ , K̂) =
K̂∑

k,l=1

∆(k,l)(Ẑ, Ĵ , K̂) (4.33)

with

∆(k,l)(Ẑ, Ĵ , K̂) = 2

〈
Ξ(k,l)(Ẑ, K̂),Πû,v̂

(
ΠĴ(k,l)

(
A(k,l)(Ẑ, K̂)

))
− P (k,l)

∗ (Ẑ, K̂)

〉
.

Here, û ≡ û(k,l)(Ẑ, Ĵ , K̂) and v̂ ≡ v̂(k,l)(Ẑ, Ĵ , K̂) are the singular vectors of ΠĴ(k,l)(A(k,l)(Ẑ, K̂))
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corresponding to the largest singular values of ΠĴ(k,l)(A(k,l)(Ẑ, K̂)), and Πû,v̂ is defined in (3.5).

Recall that

Πû,v̂(ΠĴ(k,l)(A
(k,l)(Ẑ, K̂))) = Πû,v̂(ΠĴ(k,l)(P

(k,l)
∗ (Ẑ, K̂)) + ΠĴ(k,l)(Ξ

(k,l)(Ẑ, K̂)))

Hence, ∆(k,l)(Ẑ, Ĵ , K̂) can be partitioned into the sums of three components

∆(k,l)(Ẑ, Ĵ , K̂) = ∆
(k,l)
1 (Ẑ, Ĵ , K̂) + ∆

(k,l)
2 (Ẑ, Ĵ , K̂) + ∆

(k,l)
3 (Ẑ, Ĵ , K̂), k, l = 1, 2, · · · , K,

(4.34)

where

∆
(k,l)
1 (Ẑ, Ĵ , K̂) = 2

〈
Ξ(k,l)(Ẑ, K̂),Πû,v̂(ΠĴ(k,l)(Ξ

(k,l)(Ẑ, K̂)))
〉

(4.35)

∆
(k,l)
2 (Ẑ, Ĵ , K̂) = 2

〈
Ξ(k,l)(Ẑ, K̂),Πũ,ṽ(ΠĴ(k,l)(P∗

(k,l)(Ẑ, K̂)))− P (k,l)
∗ (Ẑ, K̂)

〉
(4.36)

∆
(k,l)
3 (Ẑ, Ĵ , K̂) = 2

〈
Ξ(k,l)(Ẑ, K̂),Πû,v̂(ΠĴ(k,l)(P∗

(k,l)(Ẑ, K̂)))− Πũ,ṽ(ΠĴ(k,l)(P
(k,l)
∗ (Ẑ, K̂)))

〉
.

(4.37)

Here ũ = ũ(k,l)(Ẑ, Ĵ , K̂) and ṽ = ṽ(k,l)(Ẑ, Ĵ , K̂) are the singular vectors of ΠĴ(k,l)(P∗
(k,l)(Ẑ, K̂))

corresponding to the largest singular values of ΠĴ(k,l)(P∗
(k,l)(Ẑ, K̂)) and Πũ,ṽ(ΠĴ(k,l)(P∗

(k,l)(Ẑ, K̂)))

is defined in (3.5). With some abuse of notations, for any matrix B and any vectors u, v, let

Πu,v

(
ΠĴ(B(Ẑ, K̂))

)
be the matrix with blocks Πu,v

(
ΠĴ(k,l)(B(k,l)(Ẑ, K̂))

)
, k, l = 1, 2, · · · , K̂.

Then, it follows from (4.34)–(4.37) that

∆(Ẑ, Ĵ , K̂) = ∆1(Ẑ, Ĵ , K̂) + ∆2(Ẑ, Ĵ , K̂) + ∆3(Ẑ, Ĵ , K̂) (4.38)
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where

∆1(Ẑ, Ĵ , K̂) = 2

〈
Ξ(Ẑ, K̂),Πû,v̂

(
ΠĴ(Ξ(Ẑ, K̂))

)〉
(4.39)

∆2(Ẑ, Ĵ , K̂) = 2

〈
Ξ(Ẑ, K̂),Πũ,ṽ

(
ΠĴ(P∗(Ẑ, K̂))

)
− P∗(Ẑ, K̂)

〉
(4.40)

∆3(Ẑ, Ĵ , K̂) = 2

〈
Ξ(Ẑ, K̂),Πû,v̂

(
ΠĴ(P∗(Ẑ, K̂))

)
− Πũ,ṽ

(
ΠĴ(P∗(Ẑ, K̂))

)〉
(4.41)

Now, we need to derive an upper bound for each component in (4.38).

Observe that

|∆(k,l)
1 (Ẑ, Ĵ , K̂)| = 2

∥∥∥Πû,v̂(ΠĴ(k,l)(Ξ
(k,l)(Ẑ, K̂)))

∥∥∥2

F
≤ 2

∥∥∥ΠĴ(k,l)(Ξ
(k,l)(Ẑ, K̂))

∥∥∥2

F

Fix t > 0 and let Ω1 be the set such that ‖ΠĴ

(
Ξ(Ẑ, K̂)

)
‖2
op ≤ F1(n, Ĵ, K̂) + C2t. According to

Lemma 4.4.4,

P(Ω1) ≥ 1− exp(−t), (4.42)

and, for ω ∈ Ω1, one has

|∆1(Ẑ, Ĵ , K̂)| ≤ 2
K̂∑

k,l=1

‖ΠĴ(k,l)(Ξ
(k,l)(Ẑ, K̂))‖2

op ≤ 2F1(n, Ĵ, K̂) + 2C2t (4.43)

where F1(n, J,K) is defined by either (4.26) or (4.27) and C2 is given in Lemma 4.4.3.

Now, derive an upper bound for ∆2(Ẑ, Ĵ , K̂) given by (4.40). Note that

|∆2(Ẑ, Ĵ , K̂)| = 2‖Πũ,ṽ

(
ΠĴ(P∗(Ẑ, K̂))

)
− P∗(Ẑ, K̂)‖F |〈Ξ(Ẑ, K̂), Hũ,ṽ(Ẑ, Ĵ , K̂)〉|,
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where

Hũ,ṽ(Ẑ, Ĵ , K̂) =
Πũ,ṽ

(
ΠĴ(P∗(Ẑ, K̂))

)
− P∗(Ẑ, K̂)

‖Πũ,ṽ

(
ΠĴ(P∗(Ẑ, K̂))

)
− P∗(Ẑ, K̂)‖F

Since for any a, b and α1 > 0, one has 2ab ≤ α1a
2 + b2/α1, obtain

|∆2(Ẑ, Ĵ , K̂)| ≤ α1‖Πũ,ṽ

(
ΠĴ(P∗(Ẑ, K̂))

)
− P∗(Ẑ, K̂)‖2

F +
1

α1

|〈Ξ(Ẑ, K̂), Hũ,ṽ(Ẑ, Ĵ , K̂)〉|2

(4.44)

Observe that if K, J and Z ∈Mn,K are fixed, then Hũ,ṽ(Z, J,K) is fixed and, for any K, J and Z,

one has ‖Hũ,ṽ(Z, J,K)‖F = 1. Note also that, for fixed K, J and Z, matrix Ξ(Z,K) ∈ [0, 1]n×n

contains independent Bernoulli errors. It is well known that if ξ is a vector of independent Bernoulli

errors and h is any fixed vector, then, for any x > 0, by Hoeffding’s inequality P(|ξTh|2 > x) ≤

2 exp(−x/2). Since 〈Ξ(Z,K), Hũ,ṽ(Z, J,K)〉 = [vec(Ξ(Z,K))]Tvec(Hũ,ṽ(Z, J,K)), obtain for

any fixed K, J and Z

P
(
|〈Ξ(Z,K), Hũ,ṽ(Z, J,K)〉|2 − x > 0

)
≤ 2 exp(−x/2).

Hence, application of the union bound yields

P
(
|〈Ξ(Ẑ, K̂), Hũ,ṽ(Ẑ, Ĵ , K̂)〉|2 − F2(n, Ĵ, K̂) > 2t

)
(4.45)

≤ P
(

max
1≤K≤n

max
J

max
Z∈Mn,k

[|〈Ξ(Z,K), Hũ,ṽ(Z, J,K)〉|2 − F2(n, J,K)] > 2 t

)
≤ 2 exp(−t),

where F2(n, Ĵ, K̂) is defined by (4.28) or (4.29). Using Lemma 4.4.2, obtain that

‖Πũ,ṽ

(
ΠĴ(P∗(Ẑ, K̂))

)
−P∗(Ẑ, K̂)‖2

F ≤ ‖Πû,v̂

(
ΠĴ(P∗(Ẑ, K̂))

)
−P∗(Ẑ, K̂)‖2

F ≤ ‖P̂ (Ẑ, Ĵ , K̂)−P∗‖2
F .
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Denote the set on which (4.45) holds by Ωc
2, so that

P(Ω2) ≥ 1− 2 exp(−t). (4.46)

Then inequalities (4.44) and (4.45) imply that, for any α1 > 0 and any ω ∈ Ω2, one has

|∆2(Ẑ, Ĵ , K̂)| ≤ α1‖P̂ (Ẑ, Ĵ , K̂)− P∗‖2
F + 1/α1 F2(n, Ĵ, K̂) + 2 t/α1. (4.47)

Now consider ∆3(Ẑ, Ĵ , K̂) defined in (4.41) with components (4.37). Note that matrices Xk,l =

Πû,v̂(ΠĴ(k,l)(P∗
(k,l)(Ẑ, K̂)))−Πũ,ṽ(ΠĴ(k,l)(P

(k,l)
∗ (Ẑ, K̂))) have ranks at most two. Use the fact that

(see, e.g., Giraud (2014), page 123)

〈A,B〉 ≤ ‖A‖(2,r)‖B‖(2,r) ≤ r ‖A‖op‖B‖F , r = min{rank(A), rank(B)}, (4.48)

where, for any matrix X , ‖X‖(2,q) is the Ky-Fan (2, q) norm such that ‖X‖2
(2,q) ≤ rank(X) ‖X‖2

op.

Applying inequality (4.48) with r = 2 to Xk,l above, derive that

|∆(k,l)
3 (Ẑ, Ĵ , K̂)| ≤ 4 ‖ΠĴ(k,l)(Ξ

(k,l)(Ẑ, K̂))‖op
∥∥∥Πû,v̂(ΠĴ(k,l)(P∗

(k,l)(Ẑ, K̂)))− Πũ,ṽ(ΠĴ(k,l)(P
(k,l)
∗ (Ẑ, K̂)))

∥∥∥
F

Then, for any α2 > 0, obtain

|∆3(Ẑ, Ĵ , K̂)| =
K̂∑

k,l=1

|∆(k,l)
3 (Ẑ, Ĵ , K̂)| ≤ 2

α2

K̂∑
k,l=1

‖Ξ(k,l)(Ẑ, K̂)‖2
op (4.49)

+ 2α2

K̂∑
k,l=1

‖Πû,v̂(ΠĴ(k,l)(P∗
(k,l)(Ẑ, K̂)))− Πũ,ṽ(ΠĴ(k,l)(P

(k,l)
∗ (Ẑ, K̂)))‖2

F
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Note that, by Lemma 4.4.2,

‖ Πû,v̂(ΠĴ(k,l)(P∗
(k,l)(Ẑ, K̂)))− Πũ,ṽ(ΠĴ(k,l)(P

(k,l)
∗ (Ẑ, K̂)))‖2

F ≤

2 ‖Πû,v̂(ΠĴ(k,l)(P∗
(k,l)(Ẑ, K̂)))− P (k,l)

∗ (Ẑ, K̂)‖2
F + 2 ‖Πũ,ṽ(ΠĴ(k,l)(P

(k,l)
∗ (Ẑ, K̂)))− P (k,l)

∗ (Ẑ, K̂)‖2
F ≤

4‖Πû,v̂

(
ΠĴ(k,l)(A

(k,l)(Ẑ, K̂))
)
− P (k,l)

∗ (Ẑ, K̂)‖2
F = 4‖P̂ − P∗‖2

F

Combining the last inequality with (4.43) and (4.49), obtain that for any α2 > 0, t > 0 and ω ∈ Ω1,

one has

|∆3(Ẑ, Ĵ , K̂)| ≤ 8α2‖P̂ − P∗‖2
F + 2/α2F1(n, Ĵ, K̂) + 2C2 t/α2. (4.50)

Let Ω = Ω1 ∩ Ω2. Then, (4.42) and (4.46) imply that P(Ω) ≥ 1 − 3 exp(−t) and, for ω ∈ Ω,

inequalities (4.43), (4.47) and (4.50) simultaneously hold. Hence, (4.38) implies that, for any

ω ∈ Ω,

|∆(Ẑ, Ĵ , K̂)| ≤ (2+2/α2)F1(n, Ĵ, K̂)+1/α1 F2(n, Ĵ, K̂)+(α1+8α2)‖P̂−P∗‖2
F+2(C2+1/α1+C2/α2) t.

Combination of the last inequality and (4.32) yields that, for α1 + 8α2 < 1 and any ω ∈ Ω,

(1− α1 − 8α2)
∥∥∥P̂ − P∗∥∥∥2

F
≤ (2 + 2/α2)F1(n, Ĵ, K̂) + 1/α1 F2(n, Ĵ, K̂) (4.51)

+ Pen(n, J∗, K∗)− Pen(n, Ĵ, K̂) + 2(C2 + 1/α1 + C2/α2) t.

Set γ1 = 8α2 and γ2 = α1 and Pen(n, Ĵ, K̂) = (2+16/γ1)F1(n, Ĵ, K̂)+1/γ2F2(n, Ĵ, K̂). Obtain

the penalty as defined in (4.13)–(4.16), with the expressions for β1 and β2 given in (4.19). Dividing

both sides of (4.51) by (1− γ1 − γ2), obtain that

P
{
‖P̂ − P∗‖2

F ≤ (1− γ1 − γ2)−1 Pen(n, J∗, K∗) + C̃ t
}
≥ 1− 3e−t (4.52)
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where C̃ is defined in (4.22).

In order to obtain the upper bound (4.21) note that for ξ = ‖P̂ − P∗‖2
F−(1−γ1−γ2)−1 Pen(n,K∗),

one has E‖P̂ − P∗‖2
F = (1− γ1 − γ2)−1 Pen(n,K∗) + Eξ, where

Eξ ≤
∫ ∞

0

P(ξ > z)dz = C̃

∫ ∞
0

P(ξ > C̃t)dt ≤ C̃

∫ ∞
0

3 e−t dt = 3C̃,

which yields (4.21).

4.4.2 Proof of Theorem 4.3.2.

Let K be fixed, and known so that K = K∗ and, hence, A(Ẑ,K) ≡ A(Ẑ) and so on. Let Z∗ be

the true clustering matrix and J∗ be the set of indices such that Pi,j(Z∗, K∗) = 0 if (i, j) /∈ J∗. It

follows from (4.8) that

K∑
k,l=1

∥∥∥A(k,l)(Ẑ)− Π(1)(ΠĴ(k,l)(A
(k,l)(Ẑ)))

∥∥∥2

F
+ Pen(n, Ĵ,K)

≤
K∑

k,l=1

∥∥∥A(k,l)(Z∗)− Π(1)(ΠJ
(k,l)
∗

(A(k,l)(Z∗)))
∥∥∥2

F
+ Pen(n, J∗, K)

Since for any Z ∈Mn,K and any J , one has

K∑
k,l=1

∥∥∥A(k,l)(Z)
∥∥∥2

F
=‖A‖2

F ,
〈
A(k,l)(Z),Π(1)(ΠJ(k,l)(A(k,l)(Z)))

〉
= ‖Π(1)(ΠJ(k,l)(A(k,l)(Z)))‖2

F

and Pen(1)(n,K) does not depend on sparsity, obtain

K∑
k,l=1

∥∥∥∥∥Π(1)

(
ΠĴ(k,l)

(
A(k,l)(Ẑ)

))∥∥∥∥∥
2

F

≥
K∑

k,l=1

∥∥∥∥∥Π(1)

(
Π
J
(k,l)
∗

(
A(k,l)(Z∗)

))∥∥∥∥∥
2

F

(4.53)

+ Pen(0,s)(n, Ĵ,K)− Pen(0,s)(n, J∗, K).
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Recall that P (k,l)
∗ (Z∗) are rank one matrices, while for Z 6= Z∗, some P (k,l)

∗ (Z) may have ranks

higher than one. Note that for any Z ∈Mn,K and any J (k,l)

‖Π(1)(ΠJ(k,l)(A(k,l)(Z)))‖F ≥ ‖P (k,l)
∗ (Z)‖F − ‖Π(1)(ΠJ(k,l)(A(k,l)(Z)))− P (k,l)

∗ (Z)‖F . (4.54)

Denote, as before, Ξ(k,l)(Z) = A(k,l)(Z) − P (k,l)
∗ (Z). Applying Proposition 6.2 of Giraud (2015)

with θ =
√

2 and Z = Z∗ and recalling that matrices P (k,l)
∗ (Z∗) are of rank one, derive

‖Π(1)[ΠJ(k,l)(A(k,l)(Z∗))]− P (k,l)
∗ (Z∗)‖2

F ≤ 2(1 +
√

2)2‖ΠJ(k,l)(Ξ(k,l)(Z∗))‖2
op

Note that, for (i, j) /∈ J (k,l)
∗ , one has Ξ

(k,l)
i,j (Z∗) = 0, so, for any set J (k,l), the matrix ΠJ(k,l)(Ξ(k,l)(Z∗))

has (J∗)k,l ∩ Jk,l nonzero rows and (J∗)l,k ∩ Jl,k nonzero columns. Therefore, for any t > 0, by

Lemma 4.4.3

P


K∑

k,l=1

‖
(

ΠJ(k,l)(Ξ(k,l)(Z∗))
)
‖2
op ≤ C1|J∗ ∩ J |+ C2 t

 ≥ 1− exp(−t). (4.55)

Observe that, by (4.54), for any τ ∈ (0, 1), one has

‖Π(1)[ΠJ
(k,l)
∗

(A(k,l)(Z∗))]‖2
F = ‖Π(1)(ΠJ

(k,l)
∗

(A(k,l)(Z∗)))− P (k,l)
∗ (Z∗) + P

(k,l)
∗ (Z∗)‖2

F

≥ (1− τ)‖P (k,l)
∗ (Z∗)‖2

F + (1− 1/τ)‖Π(1)[ΠJ
(k,l)
∗

(A(k,l)(Z∗))]− P (k,l)
∗ (Z∗)‖2

F

≥ (1− τ)‖P (k,l)
∗ (Z∗)‖2

F + 2(1 +
√

2)2(1− 1/τ) ‖
(

ΠJ(k,l)(Ξ(k,l)(Z∗))
)
‖2
op.

(4.56)

Hence, it follows from (4.55) and (4.56), that, for any τ ∈ (0, 1), any t > 0 and C(τ) = 2(1 +
√

2)2(1− 1/τ)

P


K∑

k,l=1

‖Π(1)[ΠJ∗(k,l)
(A(k,l)(Z∗))]‖2

F ≥ (1− τ)‖P∗‖2
F + C(τ) [C1|J∗|+ C2 t]

 ≥ 1− e−t.

(4.57)
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On the other hand, for any τ0 ∈ (0, 1), derive

‖Π(1)[ΠĴ(k,l)(A
(k,l)(Ẑ))]‖2

F ≤ (1 + τ0)‖ΠĴ(k,l)P
(k,l)
∗ (Ẑ)‖2

op + (1 + 1/τ0)‖ΠĴ(k,l)Ξ
(k,l)(Ẑ)‖2

op.

Taking a union bound similarly to Lemma 4.4.4 and recalling that K is fixed, obtain for any t > 0

P


K∑

k,l=1

‖ΠĴ(k,l)(Ξ
(k,l)(Ẑ))‖2

op ≤ [F
(s)
1 (n, Ĵ,K)− C2 lnn] + C2t

 ≥ 1− e−t

where F (s)
1 (n, J,K) is defined in (4.27). Therefore, for any τ0 ∈ (0, 1) and any t > 0, derive

P


K∑

k,l=1

‖Π(1)[ΠĴ(k,l)(A
(k,l)(Ẑ))]‖2

F ≤ (1 + τ0)
K∑

k,l=1

‖ΠĴ(k,l)P
(k,l)
∗ (Ẑ)‖2

op (4.58)

+ (1 + 1/τ0)

(C1 + C2)
K∑

k,l=1

|Ĵk,l| ln(n̂ke/|Ĵk,l|) + C2n lnK + C2K
K∑
k=1

ln(n̂k) + C2t

 ≥ 1− e−t,

where n̂k is the estimated number of elements in cluster k under clustering matrix Ẑ. Combining

(4.53), (4.57) and (4.58), and plugging expressions for Pen(0,s)(n, Ĵ,K) and Pen(0,s)(n, J∗, K),

derive that, for any τ, τ0 ∈ (0, 1) and any t > 0 one has with probability at least 1− 2e−t

(1 + τ0)
K∑

k,l=1

‖ΠĴ(k,l)P
(k,l)
∗ (Ẑ)‖2

op ≥ (1− τ)‖P∗‖2
F + C(τ) [C1|J∗|+ C2 t]

− (1 + 1/τ0)

(C1 + C2)
K∑

k,l=1

|Ĵk,l| ln(n̂ke/|Ĵk,l|) + C2n lnK + C2K
K∑
k=1

ln(n̂k) + C2t


+ β1

K∑
k,l=1

|Ĵk,l| ln(n̂ke/|Ĵk,l|) + β2K

K∑
k=1

ln(n̂k)− β1

K∑
k,l=1

|(J∗)k,l| ln(nke/|(J∗)k,l|)− β2K

K∑
k=1

ln(nk).
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Recall that, by Lemma 4.2.2, Ĵk,l(ẐK , K) ⊆ (J̆∗)
k,l(ẐK , K) for any (k, l), so that

‖ΠĴ(k,l)P
(k,l)
∗ (Ẑ)‖2

op ≤ ‖Π(J̆∗)(k,l)
P (k,l)
∗ (Ẑ)‖2

op = ‖P (k,l)
∗ (Ẑ)‖2

op.

Then, combining the terms, for any τ, τ0 ∈ (0, 1) and any t > 0, with probability at least 1− 2e−t,

arrive at

(1 + τ0)
K∑

k,l=1

‖ΠĴ(k,l)P
(k,l)
∗ (Ẑ)‖2

op ≥ (1− τ)‖P∗‖2
F + C(τ) [C1|J∗|+ C2 t]− (1 + 1/τ0)[C2n lnK + C2t]

− β̃1

K∑
k,l=1

|Ĵk,l| ln(n̂ke/|Ĵk,l|)− β̃2K
K∑
k=1

ln(n̂k)− β1

K∑
k,l=1

|(J∗)k,l| ln(nke/|(J∗)k,l|)− β2K
K∑
k=1

ln(nk),

where β̃1 = (1 + 1/τ0)(C1 + C2)− β1 and β̃2 = (1 + 1/τ0)C2 − β2. Choose τ0 such that β̃1 = 0,

then

β̃2 = − 2C1

γ2(C1 + C2)
, τ0 =

C1 + C2

β1 − C1 − C2

,

and recall that C(τ) = 2(1 +
√

2)2(1 − 1/τ). Obtain that, for any τ, τ0 ∈ (0, 1) and any t > 0,

with probability at least 1− 2e−t, one has

K∑
k,l=1

‖P (k,l)
∗ (Ẑ)‖2

op −
2C1(β1 − C1 − C2)

(C1 + C2)β1γ2

K
K∑
k=1

ln(n̂k)

≥ (1− τ)(β1 − C1 − C2)

β1

[
‖P∗‖2

F − 2(1 +
√

2)2τ−1 (C1|J∗|+ C2t)
]

− (β1 − C1 − C2)

 C2

C1 + C2

(n lnK + t) +
K∑

k,l=1

|(J∗)k,l| ln

(
nk e

|(J∗)k,l|

)
+
β2

β1

K
K∑
k=1

ln(nk)

 ,
and the proof is completed by the contradiction argument.
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4.4.3 Proofs of Lemmas on Sparsity Sets

Proof of Lemma 4.2.1. Note that index j is incorrectly identified if j ∈ J∗l,k ∩ (J̆l,k)
c or j ∈

J̆l,k ∩ (J∗l,k)
c. Since Bernoulli variable with zero mean is always equal to zero, the second case is

impossible. Observe that for any (k, l), one has P (k,l)
∗ ≡ P

(k,l)
∗ (Z∗, K∗) and

nk∑
i=1

(P∗)
(k,l)
ij ≥ nk$(n,K) ≥ C̃0nK

−1$(n,K) if j ∈ J∗l,k,
nk∑
i=1

(P∗)
(k,l)
ij = 0 if j ∈ (J∗l,k)

c

Therefore, for any (k, l) and j ∈ J∗l,k, by Hoeffding inequality,

P(j ∈ (J̆l,k)
c) = P

 nk∑
i=1

A
(k,l)
ij (Z∗, K∗) = 0

 = P

 nk∑
i=1

[
A

(k,l)
ij (Z∗, K∗)− (P∗)

(k,l)
ij

]
= −

nk∑
i=1

(P∗)
(k,l)
ij

 ≤
P

 nk∑
i=1

[
A

(k,l)
ij (Z∗, K∗)− (P∗)

(k,l)
ij

]
≤ −C̃0nK

−1
∗ $(n,K∗)

 ≤ exp
{
−2C̃0

2
nK−2

∗ $2(n,K∗)
}
.

Hence, applying the lower bound for $2(n,K∗) and the union bound, obtain

P(J∗(Z∗, K∗) 6= J̆(Z∗, K∗)) ≤
K∑

k,l=1

P(j ∈ J∗l,k ∩ (J̆l,k)
c) ≤

K2
∗ exp

{
−2C̃0

2
nK−2

∗ $2(n,K∗)
}
≤ K2

∗n
−1e−t ≤ e−t

which completes the proof.

Proof of Lemma 4.2.2. Let us prove the lemma by contradiction. Assume that (4.12) does not

holds and

J̆k,l(ẐK , K) ⊂ Ĵk,l(ẐK , K) (4.59)

114



Note that, under the condition (4.59), one has

A(k,l)(ẐK , K̂) = ΠJ̆(k,l)

(
A(k,l)(ẐK , K̂)

)
= ΠĴ(k,l)

(
A(k,l)(ẐK , K̂)

)

so that

‖A(k,l)(ẐK , K̂)−Π(1)

(
ΠJ̆(k,l)

(
A(k,l)(ẐK , K̂)

))
‖2
F = ‖A(k,l)(ẐK , K̂)−Π(1)

(
ΠĴ(k,l)

(
A(k,l)(ẐK , K̂)

))
‖2
F

Hence (4.7) and (4.59) imply that Pen(n, Ĵ, K̂) ≤ Pen(n, J̆, K̂). Under assumption (4.11), the

latter leads to

F (|Ĵk,l|, nk) + F (|Ĵl,k|, nl) ≤ F (|J̆k,l|, nk) + F (|J̆l,k|, nl)

which contradicts (4.59). In order to complete the proof, apply inequality (4.4).

Proof of Lemma 4.3.1. Note that the difference between separable and non-separable penalty is

given by

∆n/s = Pen(ns)(n, J,K)− Pen(s)(n, J,K) = β1∆
n/s
1 + β2∆

n/s
2 (4.60)

where

∆
n/s
1 = |J | ln

(
nKe

|J |

)
−

K∑
k,l=1

|Jk,l| ln

(
nke

|Jk,l|

)
, ∆

n/s
2 = 2 lnn−K

K∑
k=1

lnnk.

Note that, due to the log-sum inequality (Theorem 17.1.2 of Cover and Thomas (2006)), ∆
n/s
1 ≤ 0

with ∆
n/s
2 = 0 if and only if nk/|Jk,l| = nK/|J | for every k, l = 1, . . . , K. In the extreme case

where the nodes have nonzero connection probabilities only to the nodes in the same class, one has
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|Jk,l| = nk for k = l and 0 otherwise, so that |J | = n. Then, ∆
n/s
1 = n lnK, so that

0 ≤ ∆
n/s
1 ≤ n lnK. (4.61)

Now, consider ∆
n/s
2 . Note that application of the log-sum inequality (Theorem 17.1.2 of Cover

and Thomas (2006)) yields

2 lnn−K2 ln(n/K) ≤ ∆
n/s
2 ≤ 2 lnn−K ln(n+ 1−K).

It is easy to see that 0 < K2 lnn ≤ n lnK if n ≥ 8 and K ≤
√
n/ lnn, therefore,

2 lnn− n lnK ≤ ∆
n/s
2 ≤ 2 lnn. (4.62)

Combining (4.60)– (4.62), obtain that

β2(2 lnn− n lnK) ≤ ∆n/s ≤ β1n lnK + 2 β2 lnn.

Hence,

Pen(ns)(n, J,K) ≤ Pen(s)(n, J,K) + β1n lnK + 2 β2 lnn < (2 + β1/β2)Pen(s)(n, J,K)

Pen(s)(n, J,K) ≤ Pen(ns)(n, J,K) + β2(2 lnn− n lnK) < 2Pen(ns)(n, J,K),

which leads to (4.17).
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4.4.4 Supplementary Lemmas

Lemma 4.4.1. Let A and B be arbitrary matrices in Rm×n and u ∈ Rn and v ∈ Rm be any unit

vectors. Let ũ, ṽ be the singular vectors of matrix A corresponding to its largest singular value.

Then,

〈Πu,v(B), A− Πu,v(A)〉 = 0 and ‖A− Πũ,ṽ(A)‖ ≤ ‖A− Πu,v(A)‖, (4.63)

so that, the best rank one approximation of A is given by Π(1)(A) = Πũ,ṽ(A). Here, Πu,v(A) is

defined in (3.5).

Lemma 4.4.2. LetA = P+Ξ. Denote by (û, v̂) and (u, v) the pairs of singular vectors of matrices

ΠJ(A) and ΠJ(P ), respectively, corresponding to their largest singular values. Then,

‖Πu,v(ΠJ(P ))− P‖F ≤ ‖Πû,v̂(ΠJ(P ))− P‖F ≤ ‖Πû,v̂(ΠJ(A))− P‖F (4.64)

where, for any matrixX , Πu,v(X) is the projection ofX onto the pair of unit vectors (u, v), given in

(3.5), and ΠJ(X) is the projection of the matrix X onto the set of all matrices with the rectangular

support J .

Proof. Note that

‖Πû,v̂(ΠJ(A))− P‖2
F = ‖Πû,v̂(ΠJ(P + Ξ))− P‖2

F =

‖Πû,v̂(ΠJ(P )) + Πû,v̂(ΠJ(Ξ))− P‖2
F =

‖Πû,v̂(ΠJ(Ξ)) + [Πû,v̂(ΠJ(P ))− ΠJ(P )] + [ΠJ(P )− P ]‖2
F

Since matrices Πû,v̂(ΠJ(Ξ)) and [Πû,v̂(ΠJ(P ))−ΠJ(P )] are supported on the set of indices J and

ΠJ(P ) − P is supported on J c, the latter matrix is orthogonal to the first two. On the other hand,
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Πû,v̂(ΠJ(Ξ)) and [Πû,v̂(ΠJ(P ))− ΠJ(P )] = Π⊥û,v̂(ΠJ(P )) are also orthogonal. Therefore,

‖Πû,v̂(ΠJ(A))− P‖2
F = ‖Πû,v̂(ΠJ(Ξ))‖2

F + ‖Πû,v̂(ΠJ(P ))− ΠJ(P )‖2
F + ‖ΠJ(P )− P‖2

F =

‖Πû,v̂(ΠJ(Ξ))‖2
F + ‖Πû,v̂(ΠJ(P ))− P‖2

F ≥ ‖Πû,v̂(ΠJ(P ))− P‖2
F ≥ ‖Πu,v(ΠJ(P ))− P‖2

F

where the last inequality follows from Lemma 4.4.1.

Lemma 4.4.3. Let elements of matrix Ξ ∈ (−1, 1)n×n be independent Bernoulli errors. Let matrix

Ξ be partitioned into K2 sub-matrices Ξ(k,l) with supports J (k,l) = Jk,l × Jl,k, k, l = 1, · · · , K,

such that Ξ(k,l) = (Ξ(l,k))T . Then, for any x > 0

P


K∑

k,l=1

∥∥∥∥ΠJ(k,l)

(
Ξ(k,l)

)∥∥∥∥2

op

≤ C1|J |+ C2x

 ≥ 1− exp(−x), (4.65)

where C1 and C2 are absolute constants independent of n,K and sets Jk,l, k, l = 1, · · · , K.

Proof. Denote |Jk,l| = nk,l, k, l = 1, · · · , K, and observe that matrices Ξ(k,l) are effectively of

the size nk,l × nl,k. Consider K(K + 1)/2-dimensional vectors ξ and µ with elements ξk,l =

‖ΠJ(k,l)

(
Ξ(k,l)

)
‖op and µk,l = E‖ΠJ(k,l)

(
Ξ(k,l)

)
‖op, 1 ≤ k ≤ l ≤ K, and let η = ξ − µ. Then,

∆ =
K∑

k,l=1

∥∥∥∥ΠJ(k,l)

(
Ξ(k,l)

)∥∥∥∥2

op

≤ ‖ξ‖2 ≤ 2‖η‖2 + 2‖µ‖2 (4.66)

Hence, we need to construct the upper bounds for ‖η‖2 and ‖µ‖2.

We start with constructing upper bounds for ‖µ‖2. Let Ξ
(k,l)
i,j be elements of the (nk,l × nl,k)-

dimensional matrix ΠJ(k,l)

(
Ξ(k,l)

)
. Then, E(Ξ

(k,l)
i,j ) = 0 and, by Hoeffding’s inequality, E

{
exp(λΞ

(k,l)
i,j )

}
≤

exp
(
λ2/8

)
. Taking into account that Bernoulli errors are bounded by one in absolute value and
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applying Corollary 3.3 of Bandeira and van Handel (2016) with m = nk,l, n = nl,k, σ∗ = 1,

σ1 =
√
nl,k and σ2 =

√
nk,l, obtain

µk,l ≤ C0

(
√
nk,l +

√
nl,k +

√
ln(nk,l ∧ nl,k)

)

where C0 is an absolute constant independent of nk,l and nl,k. Therefore,

‖µ‖2 ≤ 3C2
0

K∑
k,l=1

(nk,l + nl,k + ln(nk,l ∧ nl,k)) ≤ 6C2
0 |J |+ 3C2

0

K∑
k,l=1

ln(nk,l). (4.67)

Next, we show that, for any fixed partition, ηk,l = ξk,l − µk,l are independent sub-gaussian random

variables when 1 ≤ k ≤ l ≤ K. Independence follows from the conditions of Lemma 4.4.3.

To prove the sub-gaussian property, use Talagrand’s concentration inequality (Theorem 6.10 of

Boucheron et al. (2013)): if Ξ1,Ξ2,Ξ3, · · · ,Ξn are independent random variables taking values in

the interval [0, 1] and f : [0, 1]n → R is a separately convex function such that |f(x) − f(y)| ≤

‖x− y‖ for all x, y ∈ [0, 1]n, then, for Z = f(Ξ1,Ξ2,Ξ3, · · · ,Ξn) and any t > 0, one has P(Z >

EZ + t) ≤ exp(−t2/2). Apply this theorem to vectors ζk,l = vec(ΠJ(k,l)

(
Ξ(k,l)

)
) ∈ [0, 1]nk,l×nl,k

and f(ΠJ(k,l)

(
Ξ(k,l)

)
) = f(ζk,l) =

∥∥∥∥ΠJ(k,l)

(
Ξ(k,l)

)∥∥∥∥
op

. Note that, for any two matrices Ξ and Ξ̃ of

the same size, one has ‖Ξ− Ξ̃‖2
op ≤ ‖Ξ− Ξ̃‖2

F = ‖vec(Ξ)−vec(Ξ̃)‖2. Then, applying Talagrand’s

inequality with Z = ‖ΠJ(k,l)

(
Ξ(k,l)

)
‖op and Z = −‖ΠJ(k,l)

(
Ξ(k,l)

)
‖op, obtain

P

(∣∣∣∣‖ΠJ(k,l)

(
Ξ(k,l)

)
‖op − E‖ΠJ(k,l)

(
Ξ(k,l)

)
‖op
∣∣∣∣ > t

)
≤ 2 exp(−t2/2).

Now, use the Lemma 5.5 of Vershynin (2012) which states that the latter implies that, for any t > 0

and some absolute constant C4 > 0,

E
[
exp(tηk,l)

]
= E

[
exp(t(ξk,l − µk,l))

]
≤ exp(C4t

2/2). (4.68)
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Hence, ηk,l are independent sub-gaussian random variables when 1 ≤ k ≤ l ≤ K.

In order to obtain an upper bound for ‖η‖2, use Theorem 2.1 of Hsu et al. (2012). Applying

this theorem with A = IK(K+1)/2, µ = 0 and σ2 = C4 to a sub-vector η̃ of η which contains

components ηk,l with 1 ≤ k ≤ l ≤ K, obtain

P
{
‖η̃‖2 ≥ C4

(
K(K + 1)/2 +

√
2K(K + 1)x+ 2x

)}
≤ exp(−x).

Since ‖η‖2 ≤ 2‖η̃‖2, derive

P
{
‖η‖2 ≥ 2C4K(K + 1) + 6C4x

}
≤ exp (−x) (4.69)

Combination of formulas (4.66) and (4.69) yield

P
{
‖ξ‖2 ≤ 2‖µ‖2 + 4C4K(K + 1) + 12C4x

}
≥ 1− exp (−x)

Plugging in‖µ‖2 from (4.67) into the last inequality, derive for any x > 0 that

P

‖ξ‖2 ≤ 12C2
0 |J |+ 6C2

0

K∑
k,l=1

ln(nk,l) + 4C4K(K + 1) + 12C4x

 ≥ 1− exp (−x) . (4.70)

Since K(K + 1) ≤ 2K2 and

6C2
0

K∑
k,l=1

ln(nk,l) + 8C4K
2 ≤ max(6C2

0 , 8C4)
K∑

k,l=1

ln(nk,le) ≤ max(6C2
0 , 8C4)|J |,

inequality (4.65) holds with C1 = 12C2
0 + max(6C2

0 , 8C4) and C2 = 12C4.
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Lemma 4.4.4. For any t > 0,

P


K̂∑

k,l=1

∥∥∥∥ΠĴ(k,l)

(
Ξ(k,l)(Ẑ, K̂)

)∥∥∥∥2

op

− F1(n, Ĵ, K̂) ≤ C2t

 ≥ 1− exp (−t), (4.71)

with F1(n, J,K) = F
(ns)
1 (n, J,K) given by (4.26), or F1(n, J,K) = F

(s)
1 (n, J,K) given by (4.27).

Proof. Note that |Jk,l| ≤ |Jk,l| ln(nKe/|Jk,l|), |J | ≤ |J | ln(nKe/|J |), and also that |J | =
K∑

k,l=1

|Jk,l|. First, let us prove the statement for F1(n, J,K) = F
(ns)
1 (n, J,K). For this purpose,

set x = t + 3 lnn + n lnK + |J | ln(nKe/|J |) in Lemma 4.4.3 and apply the union bound over

K ∈ [1, n], Z ∈Mn,K and J ⊆ {1, . . . , nK}. Obtain

P


K̂∑

k,l=1

∥∥∥∥ΠĴ(k,l)

(
Ξ(k,l)(Ẑ, K̂)

)∥∥∥∥2

op

− F (ns)
1 (n, Ĵ, K̂)− C2t ≥ 0


≤

n∑
K=1

∑
Z∈Mn,K

nK∑
j=1

∑
|J |=j

P


K∑

k,l=1

‖ΠJ(k,l)

(
Ξ(k,l)(Z,K)

)
‖2
op − F

(ns)
1 (n, J,K) ≥ C2t


≤

n∑
K=1

∑
Z∈Mn,K

nK∑
j=1

∑
|J |=j

exp(−t− 3 lnn− n lnK − j ln(nKe/j))

≤
n∑

K=1

nK∑
j=1

Kn

(
nK

j

)
exp(−t− 3 lnn− n lnK − j ln(nKe/j)) ≤ exp(−t).

In order to prove the statement for F1(n, J,K) = F
(s)
1 (n, J,K), choose

x = t+ lnn+ n lnK +
K∑

k,l=1

[
ln(nk) + |Jk,l| ln(nk e/|Jk,l|)

]

in Lemma 4.4.3 and again apply the union bound over Z ∈ Mn,K , K ∈ [1, n] and |Jkl| ∈
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{1, . . . , nk}, k, l = 1, . . . , K. Obtain

P


K̂∑

k,l=1

∥∥∥∥ΠĴ(k,l)

(
Ξ(k,l)(Ẑ, K̂)

)∥∥∥∥2

op

− F (s)
1 (n, Ĵ, K̂)− C2t ≥ 0


≤

n∑
K=1

∑
Z∈Mn,K

K∏
k,l=1

nk∑
jk,l=1

∑
|Jk,l|=jk,l

P


K∑

k,l=1

‖ΠJ(k,l)

(
Ξ(k,l)(Z,K)

)
‖2
op − F

(s)
1 (n, J,K) ≥ C2t


≤

n∑
K=1

Kn

K∏
k,l=1

nk∑
jk,l=1

(
nk
jk,l

)
exp

−t− lnn− n lnK −
K∑

k,l=1

[
ln(nk) + jk,l ln(nk e/jk,l)

]
≤ exp (−t),

which completes the proof.
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CHAPTER 5: DISCUSSION AND FUTURE WORK

In this dissertation, we studied the statistical network models with community structure. We re-

viewed the SBM, DCBM and PABM model. We carry out the in-depth study of the PABM model.

Since the SBM and the DCBM are the special cases of the PABM model, the PABM model is more

general and flexible model comparison to the existing block models. In the rearranged probability

matrix P (Z,K) of the PABM model given by (3.3), we observe that the probability matrix con-

sists of K2 arbitrary rank one blocks. This demonstrates that rank(P (Z,K)) = rank(P ) can take

any value between K and K2. In comparison, all other block models restrict the rank of P to be

exactly K. This is true not only for the SBM and the DCBM discussed above but also for their

generalizations such as the Mixed Membership models (MMM) (see, e.g., Airoldi et al. (2008)

and Cheng et al. (2017)) and the Degree Corrected Mixed Membership (DCMM) (see, e.g., Jin

et al. (2017)). While the MMM and the DCMM allows more diverse structures of rank K matrices

(those matrices have to be just a product of two rank K matrices with nonnegative components

while the PABM require to be a combination of K2 rank one matrices), meaningful fits of the

MMM and DCMM rely on a variety of conditions (one needs to have pure nodes in the network

and some identifiability conditions need to be satisfied). In addition, while the MMM and DCMM

are extremely useful for analysis of social and society-related networks such as publications net-

works, they may not be appropriate in some other applications where each node can belong to one

and only one class. The butterfly similarity network studied in our paper provides an example of

such application. However, while the PABM model is extremely valuable, the statistical inference

in Sengupta and Chen (2018) has been incomplete. In particular, the authors considered only the

case of a small finite number of communities K; they provided only asymptotic consistency re-

sults as n→∞ without any error bounds when n is finite; their NP-hard clustering procedure was

tailored to the case of a small K. In addition, the relaxation of this NP-hard procedure seems to
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be operational only in the case of K = 2 since all simulations and real data examples in Sengupta

and Chen (2018) only tackled the case of K = 2.

We addressed some of those deficiencies and advance the theory of the PABM. Specifically, the

main achievement of our work lies in the fact that, unlike Sengupta and Chen (2018) who worked

in terms of maximizing the Poisson likelihood and likelihood modularity, we recognize that the

probability matrix of the PABM is formed by a unique collection of rank one matrices. This ob-

servation leads to a variety of breakthroughs. In particular, we are able to carry out estimation and

clustering for the PABM, without imposing any identifiability conditions, similarly to SBM and

unlike the DCBM and mixed membership models. Our understanding of the probability matrix

structure leads to the Frobenius norm minimization as the basis of optimization procedure and to

estimation of probability matrices by rank one approximations of the community matrices. The

latter allows us to deal with the situation when the number of communities is uncertain and is

possibly growing with n. Moreover, we are able to derive non-asymptotic upper bounds for the

estimation error even in the case when the number of communities is unknown. In addition, we

use the accuracy of approximation of the adjacency matrix for various number of communities,

to identify the number of communities in the network. Furthermore, we note that, under simple

conditions, the columns of the probability matrix that correspond to any of the communities lie in

a K-dimensional subspace which is different from subspaces corresponding to all other commu-

nities. The latter conclusion results in the introduction of the Sparse Subspace Clustering (SSC)

approach for partitioning the network into communities.

The real life networks are usually sparse in a sense that a large number of nodes have small degrees.

One of the advantages of the PABM is that it allows flexible modeling of sparsity. Traditionally,

in most statistical models, sparsity of a vector means that a large proportion of its components is

equal to zero. One of the shortcomings of both the SBM and the DCBM is that they do not allow

to impose the condition that some of the connection probabilities are equal to zero. Indeed, for
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the SBM, it is not realistic to assume that all nodes in a pair of communities have no connections.

Neither can one set any of the node-specific weight to zero, since this will force the respective node

to be totally disconnected from the network. For this reason, unlike in other numerous statistical

settings, sparsity in block models is defined as a low maximum probability of connections between

the nodes: : max
i,j

Pi,j ≤ ρ(n) where ρ(n) is small when n is large (see, e.g., Klopp, Tsybakov and

Verzelen (2017), Lei and Rinaldo (2015)). In order take advantage of this definition of sparsity,

even in the simplest model, the SBM, one needs to carry out the estimation under the restriction

that all entries of the matrix P̂ are bounded above by ρ(n) (see Klopp, Tsybakov and Verzelen

(2017)). In addition, this definition prevents nodes from having high degrees. On the contrary, the

PABM setting allows some connection probabilities to be zero while keeping average connection

probabilities between classes above certain level and the network connected. Indeed, in the context

of PABM, setting Λ
(k,l)
i = 0 simply means that that node i in class k is not active (“popular") in

class l. This, nevertheless, does not prevent this node from having high probability of connection

with nodes in another class. Similarly, to other sparse statistical settings, allowing structural spar-

sity (i.e., setting connection probabilities to zero rather than to a very small positive number) not

only leads to better understanding of network topology but leads to more precise estimation of the

probability matrix P∗.

We carry out the in depth investigation of the sparse PABM model. Before starting the estima-

tion procedure, we introduced the sparsity sets J∗ consisting the set of all non zero indices of the

true popularity matrix Λ∗. We imposed the penalty on the sparsity set since the estimator of the

sparsity set J∗ by the support set of the adjacency matrix is not always be best estimator. As we

shown in example, sometimes the zero value in the probability matrix is estimated by the non zero

values. We introduced the penalty that will lead to trimming the support of the estimated proba-

bility matrix. We considered the separable and non separable penalty. The separable penalty has

a property that the support of the adjacency matrix is contained in the support of the probability
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matrix. We further showed that for a network with balanced community if the nonzero entries

in the true probability matrix is above some threshold, then the support of the probability matrix

and adjacency matrix coincide with high probability. The non separable penalty in the other hand

is easy to interpret since it is expressed in terms of the support sets of probability matrix rather

than the supports of the individual blocks in the separable case. We showed that both penalties

are within constant factor of each other. We estimated the probability matrix and it’s true support

using Frobenius norm minimization procedure. This estimator is shown to be better than the one in

regular PABM in the sparse network which is demonstrated by simulation and real data examples

in our paper Noroozi et al. (2019b).

In this dissertation, we worked on the network modeling of static network. There are many net-

works that change in time. For instance, one can consider social networks, such as Facebook or

Twitter, in which the group dynamics changes with time, as users frequently join and leave the

groups. For this reason, we consider the extension of our research to dynamic setting as a matter

of future work.

In addition, in the context of the modern era of big data, there is a need for the analysis of collec-

tions of network data objects. For example: in brain connectomics studies, a sample of networks

is available form multiple populations of interests such as ill patients and healthy controls. These

types of data are growing in the fields of systems biology, neuroscience, etc. This motivates study-

ing of the new class of models consisting of observations of multiple networks. This is another

direction of our future research.
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