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ABSTRACT

A complete lattice is called a frame provided meets distribute over arbitrary joins. The
implication operation in this context plays a central role. Intuitively, it measures the degree
to which one element is less than or equal to another. In this setting, a category is defined
by equipping each set with a T-convergence structure which is defined in terms of T-filters.
This category is shown to be topological, strongly Cartesian closed, and extensional. It is
well known that the category of topological spaces and continuous maps is neither Cartesian

closed nor extensional.

Subcategories of compact and of complete spaces are investigated. It is shown that each
T-convergence space has a compactification with the extension property provided the frame
is a Boolean algebra. T-Cauchy spaces are defined and sufficient conditions for the existence
of a completion are given. T-uniform limit spaces are also defined and their completions
are given in terms of the T-Cauchy spaces they induce. Categorical properties of these
subcategories are also investigated. Further, for a fixed T-convergence space, under suitable
conditions, it is shown that there exists an order preserving bijection between the set of
all strict, regular, Hausdorff compactifications and the set of all totally bounded T-Cauchy

spaces which induce the fixed space.
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CHAPTER 1: INTRODUCTION

The use of filters to study various topological properties has been profoundly successful. It
is natural, then, to use a many-valued version of a filter to adapt classical or crisp properties
in topology to their many-valued or fuzzy counterparts. In this work, one such notion
of a fuzzy or many-valued filter, the T-filter, is used to establish several topological and
categorical properties and structures in the fuzzy setting. The notion of a T-filter is due to

Hohle [10]. The particular version which follows here is due to Fang and Yu [29].

Preliminaries

L-Sets

A lattice (L, A, V) is called a complete Heyting algebra or frame provided it is complete
and obeys a A ( ’\G/J 6j> = '\E/J (aNp;) for all a,8; € L, j € J. The implication operator
—: LxL — Ljis deﬁned]by a— pf=Vv{0eL:and <P} Let L(T) denote the
bottom(top) member of the complete lattice L, respectively. In a bounded lattice, the
pseudo-complement of an element « is an element —« such that a A —a = L. If in
addition, o V -~ = T, then —a is called a complement. If we let ~a = o — L, then
a N —-a = 1L but aV -a does not always equal T. Therefore, ~a = a« — L is a pseudo-
complement and o — [ is sometimes referred to as the relative pseudo-complement of

a with respect to 5. If « — L is a complement for each o € L, then the frame L is called a

complete Boolean Algebra.

Since meets distribute over arbitrary joins, « — = max{d € L : a AJ < S}. Given a set

X, an L-fuzzy subset of X, or an L-set is map a : X — L. Intuitively, an L-set assigns



each member of X a degree of membership, indexed by L. We denote the set of all L-subsets

of X by LX. Then we may identify classical subsets of X with the characteristic functions.

That is, if S C X then we can identify S with the L-set, 1¢(z) = I’ X ; g In this sense,
,

L-sets are a natural generalization of the classical set. The lattice operations on L can be

extended point-wise to LX as follows: ( V aj>(x) =V a;(z), ( N aj> () = M\ a;(z), and
jet jet jeJ jeJ
(a — b)(x) = a(z) — b(z) for each z € X. Then (L¥, A, V) is also a frame, and 145(1x) are

a, T€ES

bottom(top) members of L*, respectively. Also, if a € L we let alg(x) = I ‘s
,

Let f: X — Y be a map. Then f~ : LX — LY and f< : LY — L¥X are defined
respectively by f7(a)(y) = V{a(x) : f(z) =y} for each a € LX, y € Y, and f=(b) =bo f
for all b€ LY.

If L is a frame, X a set, and a,b € L*, define [a,b] = N\ (a(x) — b(x)) Note that if a < b,
zeX
then a(x) — b(x) = T for each x € X and thus [a,b] = T. It follows that we may think of

la, b] as a measure of the degree to which a < b. If the underlying set X is ever unclear, we

may write [a, b]x for clarity.

The following lemma is a collection of properties of the implication operator and can be

found in [29].

Lemma 1.1. Let L be a frame and X a set. Then,

(i) a < Bifand only if « — =TT,
(1) aNB=aAN(a—f),
(iii) (@ =) A (B —0) < (@A B) = (v A D),

(iv) jé\J(oz —Bj) =a— <jé\Jﬁj>7



() plas = B) = (Y,05) > 5
(vi) a < b if and only if [a,b] = T,
(vii) [a,bAd = [a,b] A [a, ],
(viii) [a,b] < [b,c] = [a,d] and [b,d < [a,b] = [a, d],
(ir) [bV c,a] = [b,a] A[c,al,
(x) [c,a] < [b,a] whenever b < ¢, and

(xi) [a,b] < [f7(a), f7(D)] and [c,d] < [f(c), [ (d)] whenever f: X — Y is a map.

T-Filters and Stratified L-Filters
One way we can explore familiar notions of continuity of maps, convergence, compactness
and other properties of interest is to define filters on these non-standard sets.

Definition 1.1. Let L be a frame. A map v : L*X — L is called a stratified L-filter

provided:

(F1) v(14) = L, and v(aly) > «, each a € L,

(F2) a < b implies v(a) < v(b), and

(F3) v(a) Av(b) < v(aAb), for each a,b € L.

Intuitively, each L-set is given a degree of membership in the stratified L-filter v. If v(aly) =

a for each o € L, then v is said to be tight. If L is a complete Boolean algebra, then stratified

L-filters are automatically tight.



Let F7(X) be the set of all stratified L-filters on X. If v; and v, are two stratified L-filters
on X, denote vy < v, whenever v;(a) < v5(a) for each a € LX. Moreover, for z € X, define
i € §7(X) by i(a) = a(x), for each a € L*. A Zorn’s Lemma argument easily shows that
each stratified L-filter on X is contained in a maximal stratified L-filter, called a stratified

L-ultrafilter. Hohle [11] proved the following fundamental results:

Theorem 1.1. [11] Suppose that L is a frame and v is a stratified L-filter on X. Then for

all a € LY,

(i) v is a stratified L-ultrafilter on X if and only if v(a) = v(a — 1g) — L for each

ac L*
(7i) if v is a stratified L-ultrafilter, then v(a — 14) = v(a) — L

(i) N a(z) < v(a) < ( V a(z) = L) N

zeX zeX

Next, if u € F2(X), then the image stratified L-filter of y under f is defined by f(u)(b) =
u(f (b)), for each b € L*. Further, if v € FZ(Y), then the inverse image stratified L-
filter of v under f is defined as f¥(v)(a) = V{v(b) : f=(b) < a} whenever it exists. It is

straightforward to check that §7(X) has a smallest element v| defined by v, (a) = /\ a(x).
rzeX

Stratified L-filters have been well studied. Therefor our attention will turn to a different type
of filter, the so called T-filter. Still, it will often be useful to connect T-filters to stratified
L-filters. The notion of a T-filter is due to Hohle [10]. A particular version which follows

here is due to Fang and Yu [29].

Definition 1.2. [29] Suppose that L is a frame and X a set. A non-empty subset § C LX

is called a T-filter provided:

(TF1) V b(x) =T for each b € F,

zeX



(TF2) ifa,b € §, thena A b € G,

(TF3) if V [b,d] =T, thend € §.

beF
One major difference between stratified L-filters and T-filters is that in the T-filter case,
L-sets are either contained in the T-filter or they are not, unlike in the stratified case were
L-sets have degrees of membership. One way to think about T-filters is to think of taking
the L-sets from the top-level of a stratified L-filter and forming a filter. This notion will be

studied in greater detail in a later chapter.

Let §] (X) denote the set of all T-filters on X. Let x € X, define [z] = {a € L* : a(z) = T}.

If the underlining set is ever unclear, we may write [z]x.

Lemma 1.2. Let x € X, then [x] is a T-filter on X.

Proof. Let a € [z] then a(x) = T and V a(y) > a(x) = T. Hence (TF1) is satisfied. If
yeX
a,b € [x] then (a Ab)(z) = a(x) ANb(x) =T AT =T. Hence a A b € [z] and (TF2) is valid.

Finally, suppose that \/ [a,b] = T. Then using Lemma 1.1 (x), T = V [a,b] < [1{;,0] =

a€lz] a€lx]

_ L —=by), y#x _ T, y#r _
1 b = = = b(x). Therefor
yé{( =3(y) = (3/)) yé\x T ob), y—u yé{ be), y— o (z) erefore

b(x) =T, be [z], (TF3) is satisfied and [z] is a T-filter on X. O

It is often convenient to work with T-filter bases as defined below.

Definition 1.3. A non-empty subset B C L¥ is said to be a T-filter base whenever:

(TB1) foreach b e B, V b(z) =T, and

zeX

(TB2) if aj,as € B then V [b,a; Aas] =T.
beB



According to [29], a T-filter base B generates the T-filter § = {a € L* : b\/B[b, a] = T}; that
is, § is the smallest T-filter containing B. Moreover, if f: X — Y isa msz, then the image
f7(B) = {f7(b) : b € B} is a T-filter base, and the image of a T-filter §, denoted by
7 (%), is defined to be the T-filter on Y having the T-filter base {f~(a) : a € §}. Further,
if & is a T-filter on Y, then the inverse image of &, denoted by f<(®), exists if and only
if \/Xa(f(x)) = T for each a € &. In this case, f<(®) is defined to be the T-filter on X
Wlf(fse T-filter base is {f* (a) : a € B}.

Lemma 1.3. Suppose that L is a frame, X a set and B a T-filter base for the T-filter §.

Then ford € L*, \/ [b,d] = \ [bi Aby,d] = V [a,d].
beBs b1 b2cBB €

Proof. Assume that d € LY, ¢ € B, a € §, then according to Lemma 1.1 (viii), [b,a] <

la,d) — [b,d]. Since a € § T = V[bal < V ([a,d] - [b,d]) < [a,d] = V [b,d]. Then
beB beB beB

since T = [a,d] — V [b,d], by Lemma 1.1 (i), [a,d] < V [b,d]. Consequently, V [a,d] <
beBs beB €

V [b,d], and since BC F, V [a,d] = V [b,d].
beBs acy beB

Next, fix by,by € B; then since B is a T filter base, V [b,01 A by] = T, and it follows
beB
from the definition of § that by A by € §. Then B C {by Aby : by,by € B} C F, so
that \/ [b,d] < V [by Abs,d] < V [a,d] and by the previous part of this proof, we have
beB bi,bocB acF
equality throughout this last expression. O

Lemma 1.4. Let f: X — Y be a map, §,6 € §.(X) and x € X. The following hold:

(i) [7ENG) = f7FN[76,
(i) [~ 1alx = [f(2)ly

(iii) if B is a base for § € FL(X) then B={f~(b) : b € B} is a base for f~F.



Proof. (i) Let a € FN®. A typical base member for f=(FN&) is given by f~(a). But since

(i)

(iii)

a € § and a € &, we have that f7(a) € f7FN f7&. Hence f7(FNBG) C fZFN &

Next if we assume a € {f7(c) : ¢ € F} N{f7(d) : d € &}, then it follows that
a= f7(b) for some b € Fand b e & Thusbe FN& anda € {f7(b) : b e FN S}
Hence f=F N f7& C f7(FN B) and the result follows.

We first show that f~[z]x C [f(x)]y. To do this, it suffices to show that any member
of a base for f7[x]x is contained in [f(z)]y. Let a € {f7(b) : b € [x]x} which is a
base for f=[z]x. Then a = f7(b) for some b € [z]x and thus a(f(x)) = f7(b)(f(x)) =

V  b(z) >b(x) =T. Hence a(f(x)) =T and a € [f(z)]y.
f(@)=f(z)

Next suppose that a € [f(z)]y. In order to show that [f(z)]y C f=[x]x, it suffices
to show that a € {f~(b) : b € [a]x}. That is, it suffices to show that a = f~(b) for
some b € [z]. Consider f<(a) € L¥. Note that < (a)(z) = (a0 f)(z) = a(f(z)) = T.
Therefore f(a) € [a]x. Further, f(f()) = V (@0 /)e) =V alf(2)) =
V a(y) = aly). Hence a = f~(f<(a)) € {f~(b) : b € [2]x} and the result follows.

f(z)=y

First we must show that B is a T-filter base. We have,

V0m =Y o (v vwx))v( Y )b@)

yey yeY f(x yef(X) f(z)=y yeY N f(X

=V \/b )=V b@)=V b)=

yef(X) f(z)=y flx)=y zeX



Next if a1, as € B then

VI ®), 7 (a) A f 7 (a2) =\ [F7 (), f7(a)] Af7(0), f 7 (a2)]  Lemma 1.1 (vii)

beB beB

> \/[b,a1] A [b, as] Lemma 1.1 (1)
beB

= Vb aNa)=T. Lemma 1.1 (vi7)
beB

Hence B is a T-filter base. Let & denote the generated filter. Then clearly B C f=F.
On the other hand if a € § then, again employing Lemma 1.1 (xi), Lemma 1.3 and the

fact that B is a base for § we have, V [¢, f7(a)] = V [f7(b), [7(a)] > V [b,a] = T.
cc® beBs beB

Hence the result follows.

]

Definition 1.4. A T-filter § € §; (X) is called a maximal T-filter on X or a T-ultrafilter
on X if for any T-filter & on X, §F C & implies § = &.

Proposition 1.1. T-filters generated by a point are maximal.

Proof. Let x € X and suppose that [z] is not maximal. Then there exists some T-filter § so

that ] C §. Let @ € § \ [z]. Then 1,3 Aa € §. Since a ¢ [z], a(x) < T, it follows that

(i Na)(t) = a(z) =2 Byt then \ (113 Aa)(t) = a(z) < T, a contradiction. O
1 t#x tex



CHAPTER 2: T-CONVERGENCE SPACES

Now that we have a notion of a filter, we may define filter convergence.

Definitions and Categorical Properties of T-Conv

Definition 2.1. Assume that L is a frame and X a set. A function ¢ : §; (X) — 2% is

called a T-convergence structure on X provided:
(TCS1) [z] % « for all z € X, and

(TCS2) if § 2 2z and § C &, then & 5 7.

Note that § - x is shorthand for z € ¢(F). The pair (X, q) is called a T-convergence

space.

A map f:(X,q) — (Y,p) between two T-convergence spaces is continuous if f=(§) 2

f(z) whenever § <5 . Let T-Conv denote the category whose objects are all the T-
convergence spaces and whose morphisms are all the continuous maps between objects. It
has been shown by Fang and Yu that the category T-Conv is a topological construct and
is Cartesian closed.! Since T-Conv is a topological construct we may say that (X, q) is a
subspace of (Y,p) if X CY and ¢ is the initial structure on X with respect to the natural

injection 7 : X — (Y, p).
The notion of convergence of a stratified L-filter has also been defined.

Definition 2.2. Suppose that L is a frame and X a set. The pair (X, q), where ¢ = (¢a)acL

1See Appendix for definitions of topological constructs, Cartesian closed categories and initial structures.



and q, : §7(X) — 2%, is called a stratified L-convergence space provided it satisfies:

(SL1) & %% 2 and v, > x, for each 2 € X and a € L,
(SL2) p > v 2% x implies p 22 z, and

(SL3) if 4 —2 z and a < 3, then p 22 1.

Again, note that g —2+  is shorthand for z € g,(p). Intuitively, we may think of v 2%
to mean that v converges to x with certainty a. A map f : (X,q) — (Y,p) between two
stratified L-convergence spaces is said to be continuous provided that fT(u) 22 f(2)
whenever 1 2% 2. Let SL-CS denote the category whose objects are all the stratified

L-convergence spaces and whose morphisms are all the continuous maps between objects.
The following results due to Hohle ([11], [10]) provide a connection between T-filters and
stratified L-filters.

Theorem 2.1. (See [11], [10].)

(i) Assume that L is a frame, § € §1(X), and define vz(a) = \ [b,a] for each a € L.
b

S

Then vz € §2(X) and § = {a € LX : 13(a) = T}.

(ii) Suppose that the frame L is also a Boolean algebra, v € §3(X), and define §, = {a €
LX :v(a) = T}. Then the map v v §, is an order preserving bijection from F3(X)

onto FL(X). In particular, a T-filter § is mazimal if and only if vz is maximal.

Throughout this work, if Cat is a category, we let |Cat| denote the objects of the category

Cat and will write A € |Cat| to mean A is an object of Cat.

Theorem 2.2. The construct T-Conv is extensional. 2

2See Appendix for definitions of constructs and extensional constructs.

10



Proof. Let (X,q) € |T-Conv|. Define (X*,¢*) by X* = X U {oox} where coy is not an

element of X, and ¢* is given by the following:

(i) § L5 cox for all § € §J (X
(i) If § D [oo]x then § 2y 2 for all z € X*

(iii) § AN provided j<F -5 z or j<F fails to exist

where j : X — X* is the natural injection. We must show that (X*, ¢*) is a T convergence
space. Note that [ocox] T cox by definition. On the other hand, if z € X then j<[z]|x+ =
[z]x. Indeed, a base for j<[x]x+ is {boj : b € [x|x+}. If b € [x]x~, then b(xz) = T. Then
(boj)(x) =0b(j(x)) =b(x) =T and bo j € [x]x. Thus j<[z]x- C [z]x. On the other hand,
if a € [x] we may define a* € L*" by a*(z) = z, r € X and a*(cox) = T. Then a* € [z]x-
and a = a* o j. Thus a € j<[z]x- and j<[z]x+ = [r]x as desired. Hence we have that

(] x+ 2 2 for any z € X* and (TCS1) is valid.

Next suppose that & DO § L Ifx = ocox then & N oox; if § D [ocox] then & D [oox]
and thus ® - z; and if j<F -4 2, then j<F C j<& and thus j<6 % z so that & - &

also. Hence (TCS2) is verified and we have that (X*,¢*) € | T-Conv|.

Next let (Y,p), (Z,7) € |T-Conv| such that (Y,p) is a subspace of (Z,r). Also let f :

(Y,p) — (X, q) be continuous in T-Conv and define f*: 7 — X* by

f(2), zeY
O x, Z%Y

f1(2) =

We must show that f*: (Z,r) — (X*,¢") is continuous in T-Conv.

Suppose that § — z. If 2 ¢ Y then f*~F <, f(z) = cox.

11



Next, suppose that z € Y and let 2 : Y — Z be the natural injection. Further, suppose

that 1<§ exists.
The following diagram is provided for convenience.

Lz —x g

(Y. p)

By virtue of (Y, p) being a subspace of (Z,7) we have that Y C Z and p : §. (V) — 2V
is given by p(8) = {y € Y : i76 — i(y)}. Hence i7iF = § — 2z = i(z) and thus
i=F 2 2. By the continuity of f, this implies that fZi<F - f(z). We claim that

3715718 =5 f7F. Indeed, if a € §F and x € X then

7T E ()(e) = a(i(w) =V a(w) = a(w)

3(f (w))=j(x) fw)=j(z) [*(w)=j(z)

Since the left hand side and right hand side of the above are base members for 7= < f=i<F
and j< f*=F, respectively, our claim is justified. But j7j<f7i<F = f7i"F = f(z) and

therefore j< f*=§F L f(z). By definition of ¢* this implies that f*=F - f(2).

12



Finally, if ¢ <= § fails to exist, we will show that j< f*=§F also fails to exist. We compute,

Vit(r@(@=\ V a@

zeX zeX f*(t)=j()
teZ
=V V ais)=V V oals)
z€X f(i(s))=j(z) zeX f(i(s))=j(z)
s€Y seY
<V a(i(s))
seY

Now since i<§ fails to exist, there must exist some a € §F such that \/ (z“_a) (s) =
s€Y

V a(i(s)) < T. Hence for this same a € §, V j“(f*%(a)((x) < T and j<f*=F fails

seY zeX

to exist. Therefore f*=§ L= f*(2). Hence f*: (Z,r) — (X*,¢*) is continuous and

we have that T-Conv is extensional. O]

Next we wish to show that the product of quotient maps is a quotient map. Before we can do

so, we must explore the notion of an arbitrary product of T-filters. Let f; : X; — Y, j € J

be a family of maps. Denote X = [[ X;, Y = [] Y; and let f : X — Y be the product
jEJ jeJ

map; that is, f(x) = (fj(xj)), where 7 = (z;) € X. Let mx, : X — Xj and 7y, : Y — Y]

be the natural projections.

Lemma 2.1. Assume that a € L% and b € L** for j # k. Then fﬁ<7r§ja A W)ka) =

my, [ (@) Ay fi (D).

Proof. Fix y = (y;), ¢ € J. Then for j # k, f%(w)?ja/\ﬂ)?kb)(y) =V 7ga(z) A
f(@)=y
TADZ o, N = (o, 2, H0) = (e (f0) ) =
k(T Yk
(74, £7a) () A (5, £70) () = (5 £57 (@) Ay £ (b)) (). Hence the result follows, O

Corollary 2.1. Let S be a finite collection of distinct members of J and a; € L*i for each

13



j€S. Then fﬁ( /\ 7r§jaj> = /\ 7r§7jfj—’(aj).

jes JjeSs

Suppose that §; € §](X;), j € J. Define B = {/\ X0 a; € 5,5 C J|8] < oo}. Note

i€s
that if a € §; and b € §y, j # k, then V (7T§_a A 7r§kb> () =  V  alz;) ANb(zy) =
reX ’ x=(z;)€X
V o a(s)Ab(t) = ( V a(s)> A ( V b(t)) = TAT = T. Further, this is valid for any finite
SGXj SEX]‘ te Xy
teXy

number of terms and so it follows that B is a T-filter base.

Definition 2.3. If §; € §] (X;), j € J, then the product T-filter is defined to be the T-
filter on X having base B = {/\ X0 s a; € 8,8 C J,|S] < oo} and is denoted by IT J;.

i€s jeJ
The following lemma justifies the above definition.

Lemma 2.2. Let §; € §1(X;), j € J. Then [1 §; is the coarsest (smallest) T-filter on X
jeJ
containing W)i&j, for each j € J.

Proof. 1t is clear that 'I;IJ 3§, contains wzgj for each j € J. Indeed, a base member of ﬂi&
is 7r§j a; where a; € &] and, by definition, W)‘?j a; is also in B, a base for jl;[J §;- Next suppose
that & € SE(};} Xj) such that W)i&j C & for each j € J. A general base member of jEIJ S
is given by /\ W)‘?jai where S C J is finite and a; € §;, ¢ € S. But 7%,a; € 75§ € & for each
1€ 8. Henz:eesi/g9 7r§j a; € & as T-filters are closed under finite meets. Thus j];[J §;,€6. U
Lemma 2.3. Let f; : (Xj,q;) — (Y;,p;), J € J be maps and let f be the product map.

Then f= (H &‘) = H f?&w
JjEJ jeJ

Proof. 1t suffices to show that any base member of the left hand side is contained in the

right hand side. Let a; € §; for each i € S C J, |S| < co. Employing Lemma 1.4 (iii), a

14



base member of the left hand side is given by f_>< /\ W)ZGZ). Employing Corollary 2.1 we
€S
have f_>< /\ WZCZZ) /\ my. [ (a;) € H [i7§;, and the result follows. H
€S €S

Lemma 2.4. If § € §] (X) with X = [] X; then § > T[] TV, 5.

Jj€J Jj€J

Proof. Note that if a € § and r = (z;) € X then 7§ 7a(z) = V  a(z) > a(z). Using
7x, (2)=w;

Lemma 1.4 (iii), if « € § and S is a finite subset of J, a base member of the right hand side

is given by

Ariri(a)> Na=aegF.

i€S =

The result follows. O
Lemma 2.5. Let (X,q) € |T-Conv| and f : (X,q) — Y be a surjection. Then the
final structure with respect to this sink is given by p(®) = {y € Y : IF € §F.(X),6 >
78 and § Sz e f7H(y)}

Proof. We must show that p : §; (V) — 2¥ is a T-convergence structure on Y and that a

map ¢ : (Y,p) — (Z,r) is continuous if and only if go f : (X, q) — (Z,r) is continuous.

First to show that p is a T-convergence structure, note that if § C & then clearly p(§) C p(®)
and so (TCS2) is valid. Also, since f=[z] = [f(z)] = [y] for any = € f~(y), (TCS1) is also
valid and (Y, p) € | T-Conv].

Next let g : (Y,p) — (Z,r) be amap. If g is continuous then clearly go f is also continuous.
On the other hand, if go f is continuous, let & £+ 3. Then there exists § € § (X) such that
G > f7Fand § = a € f(y). Then g7& > g7 f=F = (9o /)7F — (g0 f)(x) = g(y).

Hence g is continuous. [

The following lemma is a direct result of Lemma 2.5.
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Lemma 2.6. A surjection f: (X,q) — (Y,p) is a quotient map iff for all & =5 vy, there

exists § = x € f~(y) such that & > f=F.

Theorem 2.3. In T-Conv, the product of quotient maps are quotient maps.

Proof. Let f; : X; — Y;, j € J be a family of surjections. Denote X = 'HJ X;, Y = -HJYj

and let f : X — Y be the product map; that is, f(z) = (fj(xj)>, Whejree r = (xj) ]Ee X.

Let 7y, : Y — Y} be the natural projection. Assume that & sy = (y;); let &; = 7r§;®,

j € J. Then by Lemma 2.4, & > 1;[JQ5]~. Since f; : (Xj,q;) — (Y},p;) is a quotient

map and &; LN yj, there exists §; E—> fj_l(yj) such that f7§; < &;, j € J. It follows

from Corollary 2.1 and Lemma 2.3 that fé( I1 Sj) = ];[Jff& < 16, < &. Since
j

jeT jes
35y = (fj_l(yj)>, it follows that f : (X, q) — (Y, p) is a quotient map. O
jed

Theorem 2.4. The category T-Conv is a strongly topological universe. 3

Proof. 1t was shown by Fang and Yu [29] that T-Conv is both a topological construct and
is Cartesian closed. Theorems 2.2 and 2.3 show T-Conv is extensional and the product of

quotient maps are quotient maps. ]

Embedding T-Conv in SL-CS

It is shown in this section that the category T-Conv can be embedded in SL-CS.

Lemma 2.7. Let L be a frame, f: X — Y a map, and § € F(X); then fT(vz) = vp=(5).

Proof. Let ¢ € L*. By definition, fT(v3)(c) = v3(f(c)) = V[d, fT(c)]. According to
de§
Lemma 11 (xi), [d, (9] < [f~(d), f(F~(c))]. Since f~(F()) < c and [o, o] is in-

3See Appendix for the definition of a strong topological universe.
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creasing in the second component, we have fM(vz)(c) < V [f7(d),c]. Since {f7(d) : d € F}
deg
is a T-filter base for f=(5§), it follows from Lemma 1.3 that \ [f7(d),c] = V e, =

des e€f=(3)
Vfé(@)(c)' Hence fﬁ(VS) < Vi=(3)-

Conversely, vp= g (c) = b\g/g[f_)(b), c] and by Lemma 1.1 (xi), [f7(b),c] < [f<(f7 (D)), f~(c)]-
Since b < f<(f7(b)), it follows that vs= ) (c) < b\/ b, f<(c)] = v5(f(c)), and thus vy= (5 <
€S

fM(vg). Therefore fT(vg) = vp=(5).

U

Definition 2.4. Given (X, ¢q) € | T-Conv|, we define (X,q,), ¢, = (¢x.a)acr as follows:

(i) p =15 2 if and only if there exists § —» = such that yu > vz, and
(i) for o < T, p =5 2 if and only if p > v, .

Lemma 2.8. If (X, q) € |T-Conv|, then (X,q,) € |SL-CS|.

Proof. Note that & = v,). Indeed, vy)(a) = V [ba] = 1,0l = A\ (1{:,3}(2) — a(z) =
be(x zeX

T—a@), 2=z _ a(z), z=z _ a(z) = @(a). Since [z] %5 x, we have that

zex | L—=a(z), z#x  zex |T, 24T
i % gz for each # € X and a € L. Also, condition (ii) in Definition 2.4 assures that

v, —=2, z for all 2 € X and thus (SL1) is valid.

Next assume p > v 22y 2. Then if @ < T then there is nothing to prove. If & = T, then

for some § -5 z, v > vz, But then yu > v > vz implies 1 — z also. Hence (SL2) is valid.

Finally suppose that u Py pand a < B. If « = 3, there is nothing to prove. If a < 5 < T,
then condition (i) in Definition 2.4 assures that pu —>+ z and (SL3) is verified. Hence the
result holds. O

Definition 2.5. Further, given (X, q) € | T-Conv|, define ¢° = (¢})acr as follows:
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(a) 1 —= z if and only if & > v, and
(b) fora > 1, u 2y 2 if and only if there exists § — 2 such that p > vg.

Lemma 2.9. If (X, q) € |T-Conv|, then (X,q") € |SL-CS.

Proof. Clearly v, i) x is satisfied for all z € X. Also, as verified in the proof of Lemma

2.8, v;) = 4@ and hence & 42 2 for each z € X and « € L. Thus (SL1) is valid.

Next assume p > v —= . Then if o = L then there is nothing to prove. If a > L, then

for some § N x, v > vz. But then p > v > vz implies p i) x also. Hence (SL2) is valid.

Finally suppose that u %, ¢ and @ < 8. If @« = L there is nothing to prove. If & > 1 then
> L and thus there exists some § — z such that p > vz. Hence p 42, ¢ and (SL3) is

valid. Hence the result holds. O

Observe that for each a € L, ¢} > q., and thus ¢* > q,. Let E, and E* denote the
full subcategories of SL-CS whose objects are of the form (X,q,) and (X, q"), respectively,

where (X, q) € | T-Conv]|.

Lemma 2.10. The categories T-Conv, E, and E* are isomorphic.

Proof. Let the functor § : T-Conv— FE, be defined by 0(X,q) = (X,q,) and 0(f) = f.
Suppose that f: (X, q) — (Y, p) is continuous in T-Conv; it is shown that f : (X,q,) —
(Y,p,) is continuous in E,. If g — s 2, then by definition there exists § — z with
1> vg. By Lemma 2.7, f(u) > f1(v5) = v4=(3), and since f7(F) = f(z), it follows that
M (s) 2255 f(z) and hence fT(u) =255 f(z). Next, if g —+ 2, v < T, then p > v, on X
and thus fT(p) > fM(r) 2% f(x) and fM(u) 225 f(z). Therefore f : (X,q,) — (Y.7,)

is continuous and 6 is a functor.
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By definition, 6 is a surjection onto the objects of E,; next we show 6 is an injection. Assume
that 0(X,q) = 0(X,p) and § -5 2. We must show that § = 2. We have that vz —
and thus vz — 2. Thus there exists & 25 z such that vz > vg. If ¢ € &, then vg(c) = T
and thus vz(c) = T. By Theorem 2.1 (i) this implies that ¢ € §. Hence § > & and § % z,

and thus p = q.

Finally, suppose that f : (X,q,) — (Y,p,) is continuous in F,; it is shown that f :
(X,q) — (Y, p) is continuous in T-Conv. Assume that § - z; then vz — z and thus
M) = vi=3) 2T, f(z) by the continuity of f. It follows that there exists & 2 f(z)
such that - > ve, and thus as before f7(§) > &. Then f~(§) = f(z) and thus f :

(X,q) — (Y, p) is continuous in T-Conv. Therefore 0 : T-Conv — E, is an isomorphism.

Next, we show in a similar fashion that T-Conv and E* are isomorphic. Let ¢ : T-Conv —
E* be defined by ¢(X,q) = (X,q") and ¢(f) = f. Suppose that f : (X,q) — (Y,p) is
continuous in T-Conv; it is shown that f : (X,¢") — (Y, p") is continuous in E*. If y Aoy x,
o > L, then by definition there exists § — z such that p > vz. Then by Lemma 2.7,
f(w) > fM(v5) = vp=(5), and since f7(F) = f(x), it follows that fT(u) Pa, f(z). Next,
if p 4, & then p> vy on X and thus fM(u) > fM(vy) LN f(x) and thus fT(u) L f(x).

Therefore f: (X,q") — (Y,p") is continuous and ¢ is a functor.

By definition ¢ is a surjection onto the objects of E*; next we show it is an injection. Assume
that ¢(X,q) = ¢(X,p) and § = 2. We must show that § 2+ z. We have that for each
a>1, vg 42, 2 and thus for each o > 1, we also have v; P2y 7. Thus there exists & 2> x
such that vz > vg. If ¢ € &, then vg(c) = T and thus vz(c) = T. By Theorem 2.1 (i), this

implies that ¢ € §. Hence § > & and § = x, and thus p = q.

Finally, suppose that f : (X,q") — (Y,p") is continuous; it is shown that f : (X,q) —

(Y, p) is continuous. Assume that § - z; then vz 2 2 and thus fMvg) = vi=(3) Pa, f(x)
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by the continuity of f. Therefore, there exists & £+ f(z) with Vr=(§) = Ve, and thus as before
f7(§) > &. Then f7(F) = f(x) and so f : (X,q) — (Y,p) is continuous. Therefore

¢ : T-Conv— E* is an isomorphism. ]

Lemma 2.11. Assume that the frame L is also a Boolean algebra, and let (X,q) be a

stratified L-convergence space. Then there exists (X, Q) € |T-Conv| such that (X,Q,) € E.

with qr = Q*,T-

Proof. Given (X,q), where ¢ = (¢a)acr, define @ as follows: § 2, zifand only if vy I .
Then [z] 2, 1 since Vg = 4 and if & > § <, z, it follows that vg > vz and thus v — .
Hence & -2+ x and (X, Q) is a T-convergence space. As defined above, (X, 5*) € FE,, where
1 Q—T> x if and only if there exists § 5 2 such that 1> vz and for o < T, p oy if

and only if u > v, .

It remains to show that ¢t = Q. 1. Assume that v 2Ty 2. Since L is a Boolean algebra,
by Theorem 2.1 (ii), vz, = v. Since vz, = v 5 x, it follows that §, 2, 7 and thus

Qx,
v =Ug, —~=T, x. Hence ¢r > Q.-

Conversely, suppose that pu Q—T> x; then there exists § 9, 2 such that > vz. It follows

that vz —» 2 and thus g = z. Hence Q.1 > ¢t and g1 = Q. . O

Theorem 2.5. Assume that L is a frame. Then, *

(i) T-Conv is embedded as a bicoreflective subcategory of SL-CS, and

(ii) provided that L is also a Boolean algebra, T-Conv is embedded as a bireflective subcat-

egory of SL-CS.

4See Appendix for definitions of bicoreflective and bireflective categories.
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Proof. (i) Using Lemma 2.10, it suffices to show that E* is bicoreflective in SL-CS. Let

(X,q) € |SL-CS|, where ¢ = (¢u)acr- Define @ as follows: § 9, 2 if and only if
vs s 2. Then (X,Q) € |T-Conv| and define Q* = (Q*)acr as in Definition 2.5.
Then (X,Q*) € |E*|. It is shown that idy : (X, Q%) — (X, ¢a) is continuous, L < .
Suppose [ 2N x; then there exists § 2, ¢ with i > vz. Since vg A, Vg Aoy r and
thus = 2. Hence Q¥ > ¢,, L < o, and also Q% = ¢,. Thenidy : (X,&) — (X,79q)
Is continuous.

Let ¢ : T-Conv— E* be as in Lemma 2.10. Consider the diagram below; where

f:(, F) — (X, q) is continuous.

(X,9)

It is shown that f : (Y, P*) — (X, Q") is continuous in E*. Since ¢ : T-Conv —» E*
is an isomorphism, it is sufficient to show that f : (Y, P) — (X, Q) is continuous in

T-Conv.

Suppose that & N y; then for 1 < «, vg fa, y and thus by the continuity of
f o (Y,P*) — (X,q) in SL-CS, vj=¢) = fM(vs) = f(y). It follows from the
definition of Q) that f=(®) N f(y), and thus f : (Y, P) — (X, Q) is continuous in T-
Conv. Hence f : (Y, P*) — (X, Q") is continuous in E*, and thus E* is bicoreflective

in SL-CS.

Assume that (X,q) € |[SL-CS| and define @) as above; then p 9T, 1 if and only if
there exists § i> x such that pu > vg; otherwise p &) x if and only if u > v, for

a < T. Then by Lemma 2.11, ¢t = Q.7 and so idy : (X,q) — (X,@*) is continuous.
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Suppose that f : (X,q) — (Y, F*) is continuous and consider the diagram; where

f:(X,q) — (Y, P,) is continuous.

(X.0) — > (X, Q)
\, K
(v, P,)

It remains to show that f : (X,Q,) — (Y, P,) is continuous in E,. Let 6 : T-
Conv — F, be as in Lemma 2.10. Since 6 is an isomorphism, it suffices to show that

f:(X,Q) — (Y, P) is continuous in T-Conv.

Assume that § 2 z; then vz < z and thus vi-(5 = fM(v3) RAIIN f(x). Hence
there exists ® — f(z) such that V=5 > Vs, and it follows that f=(§) > &. Then
7@ 2 f(z) and thus f : (X,Q,) — (Y, P,) is continuous. Therefore E, is
bireflective in SL-CS whenever L is a Boolean algebra. By Lemma 2.10, E, and

T-Conv are isomorphic and so T-Conv is bireflective in SL-CS.

Regularity in T-Conv

Regularity for lattice-valued convergence spaces has been studied; for example, see Jager
[16] and Li and Jin [21]. Regularity has also been studied in the context of T-convergence
spaces by Fang and Yue [5], but only in terms of a diagonal condition. In this chapter the

notion of closure of a T-filter is defined and related to regularity as defined by [5].
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Closure and Regularity

The following connection between a T-filter base and a T-filter is useful. Using Lemma 1.3
and Lemma 1.1 (xi), it is straightforward to verify that if f : X — Y is a map and B is a
T-filter base for § on X, then {f7(b) : b € B} is a T-filter base for f=(§) on Y.

Definition 2.6. Assume that (X,q) € |T-Conv| and a € L*. The closure of a is defined

by a(z) = V{ve(a) : & L z}, for each x € X.

Some basic properties of the closure operation are listed below.

Lemma 2.12. Let (X,q) € |T-Conv|, a,b € L* and o € L. Then

(/[/) I@ — 1@,
(i) a <a,
(iii) a < b implies @ < b,

(iv) aNalx =aAaly,

(v) if L is a Boolean algebra, it follows that a NV b=a\V b.

Proof. (i)—(iv) These follow easily from the properties of stratified L-filters.

(v) Clearly @V b < a V b. Employing Corollary 2.1.6 [10], u(a V b) = u(a) V u(b) for each
stratified L-ultrafilter 1 on X. Since closures are determined by T-ultrafilters, a V b(z) =

V{vs(aVvb) : § 5 2,3 a T-ultrafilter} = V{vz(a) vV v5(0) : § — 2, a T-ultrafilter} <

a(z) V b(z) and thus a Vb =a V b.
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Definition 2.7. Given (X,q) € |T-Conv| and § € §](X), the closure of §, denoted by
. is defined to be the T-filter whose T-filter base is {a : a € §}. Further, if B is a T-filter

base, define B = {b: b e B}.

Lemma 2.13. Let (X,q) € |T-Conv| and b,c € LX. Then [b,c] < [b,].

Proof. Since [b,c] = /\ (b(z) — ¢(z)), it suffices to show that for fixed z € X, [b,¢] <

rzeX
b(z) — ¢(x). According to Lemma 1.1 (viii), [b,¢] < [a,b] — [a,c] for any a € L¥. Recall
that ve(c) = V [h,c]. Further fix & <5 2 and let g € &. Then
he®

lg,c] < \/ [h,c] =vg(c) < \/{l/y)(c) 5 L oa} =¢(x).

he®

Now since the implication operation is increasing in the second component, we have [b, ] <
[g,0] = [g,¢] < [g,b] — ¢(x). It follows from the distributive property in Lemma 1.1 (v)

that

[b,c] < Allg:b] = c(z) 1 g € &} = (\/ [Q,b]) — ¢c(x) = v (b) = c(x).

ged

Thus we have,

bd< A (Vo) =) ( \/ %(b)) — ¢(x) = b(x) — ¢(x).
Q5L>z (6}

As this holds for any z € X, [b,d < A (b(x) = ¢(x)) = [b,2. 0

zeX

Lemma 2.14. Let B be a T-filter base for the T-filter § on (X, q). Then B is a base for 3.

Proof. Note that by Lemma 2.12 (iii), Lemma 2.13 and the fact that [e, e] is increasing in

the second component, if by, by € B, then V [E,EA E] >\ [E, by ANbgl > V [b,by ANbo] =TT,
beB beB beB

as B is a T-filter base for §. Also \/ b(x) > V b(z) = T and thus B is a T-filter base.
reX reX

24



Let ¢ € §; then by Lemma 2.13, as B is a base for §, V [B, c] > V [b,¢] = T. Thus ¢ belongs
beB beB
to the T-filter generated by B; that is, the T-filter generated by B includes {c : ¢ € §}.

Therefore B generates § 0

Kowalsky [18] introduced a diagonal axiom which characterizes when a convergence space
is topological. The dual of the diagonal axiom was shown by Cook and Fischer [2] to
characterize when a convergence space, or topological space, is regular. An appropriate

diagonal axiom is used by Fang and Yue [5] to define regularity in T-Conv.

Let (X,q) be a T-convergence space, J a non-empty set and let ¢ : J — X and o :
J — §1(X) be maps such that o(j) - ¢(j) for each j € J. For each b € LX, define
ey 1 §1(X) — L by €,(8) = vg(b). Then, given $ € §](J) we define ko$) = {b € L~ :
ey 00 € H}. The definition of ko$) is due to Fang and Yue [5]. It is shown in Lemma 3.6 of
[5] that ko$) is a T-filter on X, and it is referred to as the T-diagonal filter of $. They use

the diagonal filter to define regularity.

The following definition is given by Fang and Yue [5]. The notation “(TR)” is used in [5] to

denote the diagonal condition.

Definition 2.8. Suppose that L is a frame and (X ¢) is a T-convergence space. We say that
(X, q) is regular in T-Conv, provided that for any non-empty set J and maps ¢ : J — X
and o : J — ] (X) such that o(j) = ¢ (j) for all j € J, ¥~ ($) > x whenever $ € F/ (J)

and ko $ L .

Lemma 2.15. Assume that L is a frame and (X,q) is a T-convergence space. Denote
J={(&,y) € F(X)x X : 6 L y} and define ¥ - J — X by (&, y) = y and define
o:J— FL(X) by o(&,y) = &. Then for each § € F1(X) there exists § € F;(J) such

that § C /m@ )
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Proof. Suppose that a € LX; define a : J — L by a(®,y) = vg(a). Then a € L’ and note

that if a,b € L*, m)(ﬁ,y) = ve(a A b) = vgla) Avg(b) = a(®,y) Ab(,y) and thus

(a Ab) = aAb. Observe that if a € §, then V a(z) = T and thus
reX

V{a(6,y): 6 5y} >\ alla], 2) =\ vpw(a)

reX zeX
=V Vbd=\[1d
z€X be[x] zeX
=\ a(z)=T.
zeX

Thus V{a(®,y) : & L y} = T. It follows that D = {a : a € T} is a T-filter base on .J

which is closed under finite infima. Let § be the T-filter with base D.

Next it is shown that § C /{0@ . Assume that a € §; then @ € D and it remains to show that
eq00 € F. Indeed, (e, 00)(B,y) = e,(B) = vg(a) = (G, y) and so e,00 =a € D C §.

Thus according to the definition, a € /m@ and § C /m@. O
Theorem 2.6. Suppose that L is a frame and (X, q) is a T-convergence space. Then (X, q)

is reqular if and only zf§ L5 © whenever § - x.

Proof. Assume that (X, q) is such that § L 2 whenever § -4 z. Suppose that J # & is
aset, ¢ :J — X and o : J — §F; (X) are such that o(j) - 1(j) for each j € J. Let

$ € FL(J) such that ko -1 z. It suffices to show that ko$ C ¥~ (5).

Recall that By = {b € LY : ¢, 00 € 9} is a T-filter base for ko) and By, is closed under
finite infima. It follows from Lemma 2.14 that Biﬁ = {E b € By} is a T-filter base for ko $

on X and it suffices to show that BTa C Y= (9).
Let b € Bg; then ey 00 € $ and 7 (ey 0 0)(y) = V{(er 0 0)(j) : ¥(j) = y} = V{vo) (D) :

26



»(j) = y}. Since a(j) = ¥(5), it follows that ¢~ (e, 0 0)(y) = V{vo((b) : ¥(j) = y} <
V{vs(b) : & L y} = b(y) and thus ¢~ (e, 0 o) < b. It follows that b € = () and thus
By, € 47 ($). Hence (X, q) is regular.

Conversely, suppose that (X, ¢) is regular and assume that § 45 2. It must be shown that
§ L 2 Let J, ¢, o0 and § € F.(J) be as in Lemma 2.15. According to Lemma 2.15,
3 C ko and thus ko§ - 2 and since (X, q) is regular, Qﬂi({%) 2y 2. Tt remains to show

that () C 3.

Recall that D = {& : a € §} is a T-filter base for § which is closed under finite infima. Then

U (a)(y) = V{a(R, 2) : ¥(R,2) = y} = V{vsla) : & 5 y} = a(y), and thus ¢ (a) = a.
Hence ¢~ (D) C § and it follows that § - . O

Regular Subcategory of T-Conv

Let f:(X,q) — (Y,p) be a continuous map in T-Conv. If § - z, it easily follows that
§ C [a] and £ (3) € /7 ().

Let T-RConv denote the full subcategory of T-Conv consisting of all of the regular objects
in T-Conv. Fang and Yu [29] have shown that T-Conv is a topological construct that is also

Cartesian-closed. The proof of the next result uses a standard argument.

Theorem 2.7. The category T-RConv is a concretely bireflective subcategory of T-Conv.?

Proof. Note that the indiscrete T-convergence structure p on X is regular. Since initial

structures exist in T-Conv, let ¢ denote the initial structure on X determined by f; :

®See Appendix for definitions concrete and bireflective.
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X — (Y;,p;), j € J, where each (Y;,p;) € |T-RConv|. Then § - z if and only if

[ (S) L2y fi(x), for each j € J, and thus f; : (X,0) — (Y;,p;) is continuous for each

j €J. Then for a € §, f;7(a”) C fﬁ(a)pj and thus ff@g) B) f?(%)pj 2, fi(x), for each

j€J. Hence § -2+ z and thus (X, o) is regular.

Let rq denote the largest regular T-convergence structure on X such that rq < ¢. Then

idy : (X, q) — (X, rq) is a continuous map.

Suppose that f : (X,q) — (Y,p) is any continuous map and (Y,p) € |T-RConv|. Let
0 denote the initial T-convergence structure on X defined by f : X — (Y,p). Then
f:(X,9) — (Y,p) is continuous, § < ¢, and (X,d) € |T-RConv|. It follows that rq¢ > ¢

and thus f: (X,rq) — (Y, p) is continuous. The following diagram commutes:

idx

(X,q)

(X,rq)

\lf

(Y. p)

and thus T-RConv is concretely bireflective in T-Conv. O]

Regularity in SL-CS

Let (X,q) € |[SL-CS|, a € L, J an non-empty set and let ¢ : J — X and ¥ : J — F7(X)
be maps such that X(j) -2 (j) for each j € J. Fix b € LX and define B, : §3(X) — L
by Ey(v) = v(b), for each v € §F;(X). Let p € F7(J) and let KXu € F7(X) be defined by
KXu(b) = u(Ey oY), for b € LX.

Definition 2.9. Assume that L is a frame and (X,q) € |[SL-CS|. Then (X,q) is said to be
regular in SL-CS provided that for each o € L, ¢ : J — X, ¥ : J — §7(X) such that
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Y(5) 225 ¢(5) and for p € FF(J), we have that ¢y 22+  whenever K¥u 2 2.

Lemma 2.16. Let L be a frame, X a set, & € §,(X) and p € F3(X). Then

(1) Tve = B, and

(ii) p = vy, whenever L is a Boolean algebra.

Proof. Parts (i) and (ii) follow from Theorem 2.1 (i) and (ii), respectively. O

Theorem 2.8. Assume that the frame L is a Boolean algebra, (X,q) € |T-Conv|, and let
(X,q,) € |SL-CS| be as given in Definition 2.4. Then (X,q,) is reqular in SL-CS if and

only if (X, q) is reqular in T-Conv.

Proof. Suppose that (X,q,) is regular in SL-CS and assume that ¢ : J — X, 0 : J —
F1(X) is such that o(j) - 9(j) for each j € J. Let & € F] (J) be such that ko® - z;
it is shown that ¥ =& - 2. Define X(j) = v,(; and since o(j) —= ¥(j), it follows that

2(5) =15 4h(j) for each j € J.

First it is shown that ko® = Fxw,,. Assume that b € Fxw,s; observe that (Ej, o X)(j) =
Ey(Vs(j)) = Vo) (b) = (ep 0 0)(j) and thus Ej o X = e, 0 0. Moreover, using Theorem 2.1 we
have T = K¥vg(b) = ve(EpoX) = vg(ey 0 o) and hence ¢, 00 € &. It follows that b € ko®

and thus §xxy, C ko®.

Conversely, if b € B, where B is a base for ko®, then e, o o € &. If follows that KXvg(b) =
ve(EyoX) =vg(ep00) =T since e, 00 € &. Then using Theorem 2.1, b € Fxxy,, and thus
ko® = 3’1{2”@-

According to Lemma 2.16, since ko® -5 z, KXvg = T T, 2. However, (X,q,) is

q%,T

regular in SL-CS and it follows that ¢¥vg —— z and by Lemma 2.7, V= = VT (vg) ——
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z. Then 9= & % 2 and hence (X, ¢) is regular in T-Conv.

Conversely, assume that (X, ¢) is regular in T-Conv; it is shown that (X, g,) is regular in
SL-CS. Suppose that ¢ : J — X and ¥ : J — F5(X) are such that $(j) — ()
for each j € J, and p € F3(X) for which KXy —"s z. Define o(j) = Sx(j); then
X(7) SN () implies there exists & =+ 1)(j) such that ¥(j) > ve and thus by Lemma 2.16

(i), Fx() = Sve = &. Hence o(j) L3 9(j) for each j € J. It is shown that KOS = Srsu-

Suppose that b € B, where B is the base for kog,; then e, 0 0 € §F,. Hence KXu(b) =
w(Ey oY) = pu(eyo0) =T, and thus b € gy, implies that ko§, C Fxx,. Conversely, if
b € Sksu, then T = K¥pu(b) = p(ep 0 o) and thus e, 0 0 € §,. Therefore b € ko§, and
hence ko§, = Skxu. Since KX BN z, it follows ko§, 2y 2 and thus (et 2y g
However, 1 = vg,, implying ¥ = " (v5,) = vy=g, —— =, and thus (X,q,) is regular in

SL-CS. O

The Dual of Regularity: Topological

The next definition is the dual of Definition 2.8 and is given in [5]. The notation “(TF)” is

used in [5] to denote the diagonal condition.

Definition 2.10. Suppose that L is a frame. Then (X, q) € |T-Conv| is called topological
in T-Conv provided that for each ¢ : J — X, 0 : J — F+(X) such that o(j) < ¥ (4) for

each j € J, we have ko$) - x whenever =6 %z, $ € §, (J).

The definition of a strong L-topological space used here can be found in Fang and Yue [29].
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Definition 2.11. Let L be a frame and 7 C L¥. Then the pair (X, 7) is called a strong

L-topological space provided it satisfies:

(ST1) aly € 7 for each a € L,
(ST2) a,b € 7 impliesa Ab € T,

(ST3) a; € 7 for each j € J implies V a; € 7, and
jeJ

(ST4) a € 7 implies aly — a € 7 for each a € L.

The following result appears as Theorem 3.11 in [5].

Theorem 2.9. [5] Suppose that (X, q) € |T-Conv|. Then (X, q) is topological if and only if

it is a strong L-topological space.

Theorem 2.10. Assume that the frame L is a Boolean algebra, (X,q) € | T-Conv|, and let
(X,q,) € |SL-CS| be as given in Definition 2.4. Then (X, q) is topological in T-Conv if
and only if (X,q,) is topological in SL-CS.

Proof. Suppose that (X,q,) is topological in SL-CS. Assume that ¢ : J — X and o :
J — FL(X) are such that o(j) < ¢(j) for each j € J, and & € F](J) is such that
Y7 ® L5 2. Define Y(j) = vy(;) for each j € J, and note that X(j) 2T (). According
to Lemma 2.7, ¥ (vg) = vy=s 22Ty 2 and it follows that KXvg —s 2. Tt is shown in the
proof of Theorem 2.8 that ko ® = Fxyy,. Since KXvg BN x, according to Definition 2.4

we have that KXvs > vy for some $ AN r, and thus §xxus > Tvy = H. Then Fxxy, s

and thus ko® -5 2. Tt follows that (X, ¢) is topological in T-Conv.

Conversely, assume that (X, q) is topological in T-Conv, ¢ : J — X and ¥ : X — F7(X)

are such that X(j) — () for each j € J, and that u € F(.J) is such that ¢y —1s 2.
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Define o(j) = §x(j); then o(j) = 1(j) for each j € J. It is straightforward to show that
Y=, = Syn, and hence Y7 F, 2 2. Since (X, q) is topological in T-Conv, KOS, Lz Tt
is shown in Theorem 2.8 that ko§, = Fxx,. It follows from Lemma 2.16 that KXy = 1z

and thus KXy —" 7. Hence (X,q,) is topological in SL-CS. O

Remark 2.1. Theorems 2.8 and 2.10 remain valid whenever (X, g,) is replaced by (X, E)

Compactifications in T-Conv

Whenever L is a frame, Jager [14] showed that every lattice-valued convergence space pos-
sesses a compactification. The same ideas used by Jéager are employed in our construction.
In order to show that our extension space is compact, the assumption that L is a Boolean
algebra is needed. Hence the bijection between the stratified L-ultrafilters and T-ultrafilters
is used to show compactness of our extension space. The object (X, q) € |T-Conv| is said to

be compact if every maximal T-filter, or T-ultrafilter, converges.

Definition 2.12. Assume that (X, ¢) € | T-Conv| is not compact. Then ((Y, D), f) is called

a compactification of (X, ¢) provided:

(i) (Y,p) is compact,

(i) £ (X.) — (.|

) and f~! are continuous, and
F(X)

(iii) for each y € Y, there exists § € F} (X) such that f7F 2 y.

Whenever L is a complete Boolean algebra, a compactification of each non-compact (X, q) €
| T-Conv| is constructed. Further, each continuous map from (X, ¢) into a compact regular

object in T-Conv has a continuous extension to the compactification.
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Assume that L is a complete Boolean algebra and let (X, ¢) € | T-Conv| which is not compact.
Let 7 denote the set of all T-ultrafilters on X which fail to converge. Define X* = X U{(®) :
® € n} and let j : X — X* denote the natural injection j(z) = z, x € X. Recall from
Theorem 2.1, that § — v defines an order preserving bijection from the set of all T —filters
on X onto the set of all stratified L-filters on X, where vz(a) = f\e/s[ f,al, a € LY, and

F=1{be LX () =T}

Given a € L*, define a* € LX" as a*(z) = a(z), = :j(x). Observe that (L1x)* =
Vﬁ(a)v z = <Q5>
11x+ and (alx)* > alx- since (alx)*((B)) = vg(alyx) > a = (alx+)((B)). Moreover,

(@A b)*((8)) = vs(a A b) = ve(a) Ave(b) = a*((&)) Ab*((6)) = (a” A b7)({6)) and thus
(aAD)* = a* ANb*. Observe that if B is a T-filter base on X that is closed under finite infima,
then B* = {b* : b € B} is a T-filter base on X* that is also closed under finite infima. Note
that if b € B, then V 0*(z) > V b(z) = T. In particular, if § is a T-filter on X, then

zeX* zeX
{f*: f €§}is a T-filter base on X*; let §* denote the T-filter on X* that it generates.

Using the notation above, define a structure ¢* on X* as follows:

H N j(x) if and only if $ > F* for some § g,

oL (&) if and only if $ > &*.

Note that [j(x)] > [z]* 2 7 and thus [7(2)] <, j(x) for each x € X. Also, observe that
[(&)] > &*. Indeed, if g € B, then ¢*((B)) = vs(g) = T and thus g* € [(&)]. It follows that
the T-filter base {g* : g € &} C [(&)] and thus the T-filter * C [(&)]. Clearly, if ANy

and & > 9, then & - ~ and hence (X*,q*) € | T-Conv].

Theorem 2.11. Assume that the frame L is a Boolean algebra and suppose that (X, q) € |T-

Conv| is not compact. Then ((X*, q*),j), as defined above, is a compactification of (X, q) in

33



T-Conv. Moreover, if 6 : (X,q) — (Y, p) is continuous and (Y,p) is compact and regular,

then 6 has a continuous extension 0* : (X*,¢*) — (Y, p) such that 6* o j = 0.

Proof. 1t was shown in the above that (X*, ¢*) € |T-Conv|. We show that j is contin-

uous. Observe that if § - , then j7(§) 2 §°. Indeed, if f € F, then j7(f)(2) =

f(z), z=j(z) and thus j7(f) < f*. Then f* € j=(F) for each f € F and thus
L, 2=(%)

77 (F) 2 §*, and this implies that j7(F) <, j(x). Hence j is continuous.

Conversely, if § is any T-filter on X such that ;7= (g) <, j(x), then j=(§) > K* for
some 8 — x. Hence § = j<(7(3)) > j<(R") = & and thus § = . It follows that
j:(X,q) — (X*,¢*) is an embedding. Further, if & € A/, then j7 (&) D &* implies that
J7(8) z, (&) and thus j : (X,q) — (X, ¢") is a dense embedding.

It is shown that (X*,¢*) is compact. Assume that §) is a T-ultrafilter on X*. According

to Theorem 2.1, vy is a stratified L-ultrafilter on X* and, moreover, d € $ if and only if

vs(d) = T. Define ug : LX — L by pg(a) = vg(a*) for each a € L¥.

Observe that pg(Lllx) = vg(Llxs) = L, uglaly) = vg((alx)*) > vg(alx<) > a and
pg(a Ab) = vg((a Ab)*) = vg(a*) Avg(b*) = ug(a) A pg(b), for a,b € LY and o € L. Tt
follows that pug is a stratified L-filter on X. According to Theorem 1.1 (i), ug is a stratified
L-ultrafilter if and only if for each a € L¥, ug(a) = pg(a — 15) — L. Employing Theorem
1.1 (ii), for any & € n, (a = 15)*((®)) = ve(a — 1z) = vg(a) - L = a*((&)) - L =

(a* — 14)((®)). Hence (a — 15)* = a* — 1.

Then pg(a) = vg(a*) = vg(a* — 15) = L =vg((a — 15)*) = L = pgla - 15) — L, and
thus pg is a stratified L-ultrafilter on X. It follows from Theorem 2.1 (ii) that §4 = {a €

L¥ : pg(a) = T}is a T-ultrafilter on X. Moreover, a € §y if and only if vg(a*) = T if and
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only if a* € $. That is, a € Fy if and only if a* € $. Observe that B = {a* : a € Ty} is
a T-filter base on X* which is closed under finite infima. Let §§ denote the T-filter on X~

that it generates; then §g C .

Assume that §s —= z; then 9 <, j(z). If §y € N, then T, (§5) and it follows that

(X*, q*) is compact and therefore ((X*, q*),j) is a compactification of (X, q) in T-Conv.

Next, suppose that 6 : (X,q) — (Y, p) is a continuous map. Define 0* : (X*, ¢*) — (Y, p)
by 6*(j(z)) = 0(x) for x € X, and 6*((®)) = y where y is one of the limits of 7 (&) in
(Y,p). First, for a € LY, 2 € X and & € 7, it is shown that v (0~ (a)) > a(z) and

Vo= (&) (07 (a)) = a*((8)).

Note that

Vo) (07 (a)) = \/ [0,07(a)] > Loy}, 07 (a)] > T = a(z) = a(x),
be(0()]

and thus Vg, (67 (a)) > a(z). Further, if & € NV, then using Lemma 1.1 (xi),

Vo= (e)(0 )> VI (g 1>\ lg,a] = vs(a) = a*((®)),

ges ged

and hence vp= () (07 (a)) > a*((8)).

If a € LY it is shown that 0*7(a*) < 07 (a). First, assume that y = 6*(j(z)) = 0(z) € Y

Then 67 (a)(y) = V{va(07(a) : & 25 y} > vy (07 (a)) > a(z) = a*(j(z)). Next, suppose
that 60*((®)) = y, where 67 (&) 2+ y. Then 67 (a)(0*((&)) = V{vs(07(a)) : & 2 y} >

Vo= () (07 (a)) > a*((&)). Combining these two results, 07 (a)(y) > V{a*(2) : 0*(2) = y} =
0*7(a*)(y) and thus 0*7(a*) < 07 (a).

Assume § is a T-filter on X; then By = {07 (a) : a € §} and By = {0*7(a*) : a € F} are
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T-filter bases on Y. Then 67 (F) and 6*7(§F*) denote the T-filters generated by By and B,

respectively. Since for each a € §, 0*7(a*) < 07 (a), it follows that 6*= (F*) > 67 (F).

Finally, suppose that $ = j(z). Then $ > F* for some § — z, and thus 6*7($) >

0= (F*) > 07(F). Since (Y,q) is regular, it follows that 6*=($) = 0(z) = 6*(j(z)).

Similarly, if § - (®), then $ > &* and thus 0*7($) > 6*=(&*) > 07 (&) and 6*7(H) —
y = 0*((8)), where = () £+ 3. Hence #* : (X*,¢*) — (Y, p) is continuous and j o §* =

0. ]

Connections between the compactification constructed in Theorem 2.11 and that given by
Jager [14] are made below. Assume that (X, q) € |T-Conv| is not compact. In order to
simplify the notation, let ((X *s), j) denote the compactification of (X, ¢) given in Theorem
2.11. According to Theorem 4.1 [6], there is an isomorphism between the full subcategory
SL-LC-CS of “left-continuous” objects in SL-CS and the category SL-GCS of stratified L-

generalized convergence spaces.

Let (X,q") € |SL-CS| denote the object given in Definition 2.5; it easily follows that

(X,q") € |SL-LC-CS| but, in general, (X,q,) is not left-continuous.

Jager’s [14] compactification ((X*,ﬁ),j) of (X,q") in SL-CS is described below. If u €
F2(X™), define i € F7(X) by fi(a) = u(a*), for each a € L*. Then p = (pa)acr, is defined

as follows: for o > L

~

w2 j(x) = 1w
p= (8) = [i=ve

pEs s = p>v, ze X"
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It is shown in Theorem 2.12 below that p = s.
Lemma 2.17. Suppose that (X, q) € | T-Conv| is not compact and let X* = X U{(B) : & €
n}t. Then for a,be L*, R € FL(X), and J € F](X*):

(i) [b*,a"] = [b, d]

(ii) Dge = vg

(iii) vy > vg implies J > R*.

Proof. (i) Observe that [b*,a*] = /\X (b*(i(x)) = a*(j(x))) A /\N( — a*((8))) =
b, a] A /\N (V@(b) — u@(a)) According to Corollary 3.3 [4], vs(b) — vg(a) > [b,a] and it

follows that [b*,a*] = [b, al.

(ii) Fix a € L¥; then using (i), vg«(a) = va(a*) = V [b*a*] = V [b,a] = vg(a). Hence

ﬁﬁ* = Ug.

(iii) Assume that a € &; then T = vg(a) < v3(a) = v3(a*) and thus a* € J. Hence

R CJ. [l

Theorem 2.12. Assume that L is a complete Boolean algebra, (X,q) € |T-Conv| is not
compagct, ((X*,s),j) is the compactification of (X,q) given in Theorem 2.11, (X,q") and
(X*, s*) are as defined in Definition 2.5. If ((X*,To,j) denotes the compactification of (X, q")

given by Jager [14], then s* = D.

Proof. Fix o > L. First, suppose that p 22+ j(x); then fi %y 4 and thus [t > vz for some
§ L 2. Since p = vy for some $ € F| (X*), Uy > v5, and by Lemma 2.17 (iii), $ > F*

Then j = vy > vg- and §* = j(x) implies that p BN j(x). Next, assume that p 22 (&);
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then p = vy and 1 = vg. Since Uy = vg, it follows by Lemma 2.17 (iii) that $ > &* and

thus u = vy > vg-. Hence p S (®) and thus p > s".

Conversely, suppose that a > 1 and p N j(x); then p > vz« for some § <5 z. Tt follows
from Lemma 2.17 (ii) that g > Uz = vz and thus 2, 2. Hence 1 22 j(z). Next, assume
that N (B); then pu > vg+ implies that i > vg. Since vg is a stratified L-ultrafilter on

X, [i = vg and thus g 22+ (&). Then 5* > p and thus 5* = p. ]
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CHAPTER 3: T-CAUCHY SPACES

The study of completions using Cauchy filters dated back to Kowalsky [18]. Later Cook and
Fischer [3] introduced uniform convergence spaces which also gave a framework for the study
of completions in terms of Cauchy filters. Keller [17] gave a set of axioms which characterize
the Cauchy filters of a uniform convergence spaces. Spaces satisfying these axioms are now
called Cauchy spaces, and has led to the study of completions from the context of Cauchy
spaces. Fundamental results in this area can be found in the works of Reed [25], Lowen
[20], and Preuss [24]. Jager [14] defined a Cauchy space in the lattice-valued setting and

developed a completion theory in this context.

Definitions and Categorical Properties of T-Chy

If §,8 € §](X), then FV & denotes the smallest T-filter on X containing both § and &,

provided it exists.

Lemma 3.1. If §, & € §,(X) then FV & ezists if and only if for each f € F and g € &,

V (f(x) Ag(z)) = T. In particular, for any §,®,9 € FL(X), (§NH) V(B NH) exists.

rzeX

Proof. Assume that §V & exists, f € §F and g € &. It follows that f A g € §V & and thus

V (f(z) A g(z)) = T. Conversely, suppose that for each f € §,g € &, V (f(z) A g(z)) =
zeX

zeX
T. Define B={fAg: f€F, g€ &} Then B is closed under finite infima and thus

Ve, fAg]=T. Since V (f(z) /\g(z)) = T, it follows that B is a base for §V &. Further,
zeB

ceB

ifaegnHand b e BNH, then a A b € $H implies that \/ <a(x) A b(x)) = T and thus

zeX

(FNH) V(G NH) exists. O
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Definition 3.1. The pair (X,C) is called a T-Cauchy space and C is called a T-Cauchy

structure on X provided that C C §] (X) obeys:

(TC1) [z] € C for each x € X,
(TC2) § > & € C implies § € C, and

(TC3) §F,6 € C and § V & exists implies that FN & € C.

The axioms of a T-Cauchy space coincide with those in the classical case provided T-filters
on X replace set filters. A map 6 : (X,C) — (Y, D) between two T-Cauchy spaces is said
to be Cauchy-continuous provided that 6§ € D whenever § € C. Let T-Chy denote
the category whose objects consist of all T-Cauchy spaces and whose morphisms are all the

Cauchy-continuous maps.

Definition 3.2. The pair (X, ¢) is called a T-limit space provided that (X, q) € |T-Cony|
and, additionally, §, & — z implies that FN& - z. Let T-Lim denote the full subcategory

of T-Conv consisting of all the T-limit spaces

For each (X,C) € | T-Chy]|, define (X, ¢¢) as follows: § < z iff N [z] € C.

Lemma 3.2. If (X,C) € | T-Chy|, then (X,qc) € |T-Lim|.

Proof. First observe that if € X, then by (TC1), [z] € C and thus [z] N [z] € C and
[2] X 2. Next if § 2 2 and § C &, then & N [z] D F N [x] € C. By (TC2) this implies
® N [z] € C and thus & 2 z. Finally, if §, & % 2 then § N [z],® N [z] € C. Further, by

Lemma 3.1, (§N[z]) V (B N[z]) exists and thus by (TC3) we have that (FN[z]) N (SN [z]) =
(FN®)N[x] €C. Hence FNS L . Hence (X, qc) € |T-Lim|. O

40



Next, using Keller’s [17] argument, we characterize precisely when a T-limit structure is

induced by a T-Cauchy structure.

Lemma 3.3. An object (X, q) € |T-Lim| is induced by some (X,C) € | T-Chy| if and only if
for each x # y in X, either q-convergence to x and y coincides or x and y have no common

q-convergent filters.

Proof. First suppose that (X, q) € |T-Lim| is induced by some (X,C) € |T-Chy|. That is
q = qc. Let x,y € X be distinct. To show that either g-convergence to x and y coincides or
have no common g¢-convergent filters, we suppose that there is a § € F, (X) which converges
to x and not to y and then show that have no common ¢-convergent filters. Suppose by way
of contradiction that = and y do have a convergent filter in common, say & — z,y. Then
since §, & -5 z, it follows from Definition 3.2 of a T-limit space that § N & - z. Hence
FN& e C. Also, since & % y and g = ¢ it follows that & N [y] € C. Employing Lemma
3.1 we have that (N &)V (&N [y]) exists and thus (FNS)N(BN[y]) = (FNS)NJy] €C.

Hence §N & 5 y and thus § -5 y, a contradiction.

Next, suppose that (X, q) € | T-Lim| is such that for each z # y in X, either g-convergence
to x and y coincides or have no common g-convergent filters. Define C¢ = {§ € §} (X) :
§ g-converges}. Then by Definition 2.1 (TCS1), since [#] - z for each z € X, we have
that [2] € C?. Also if & D § & x then by Definition 2.1 (TCS2) it follows that & % z
and hence that & € C9. Assume that §,& € C? such that § V & exists. Then § AN x,
& L y for some z,y € X. By assumption, convergence to = and y either coincides or share
no filters. Since §,® C § V &, it follows that §V & N x,y. Hence z and y must have the
same g-convergent filters. In particular §, & - z and thus by Definition 3.2 of a T-limit
space, it follows that §N & - 2. Thus § N & € C9. Therefore C? is a T-Cauchy structure

on X. It follows that ¢ = gca. n
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An object (X,C) € | T-Chy| called Hausdorff, or T if no two distinct points share convergent
T-filters in (X, qc). It follows that each Ty object (X,q) € |T-Lim| is induced by some
(X,C) € |T-Chy|.

Lemma 3.4. If f: (X,C) — (Y, D) is Cauchy-continuous in T-Chy, then f: (X, q) —

(Y, qp) is continuous in T-Conv.

Proof. Suppose that f : (X,C) — (Y, D) is Cauchy-continuous in T-Chy and assume
that § <+ 2. We need to show that f=F 2 f(z). That is, we need to show that
f73N[f(x)] € D. Since § ~<+ z this implies that § N [z] € C. The Cauchy-continuity of f

implies that f=(FN[z]) = f7FN fT[z] = [FFN[f(x)] € D, as desired. O

It is shown by Fang and Yu in [29] that T-Conv is a topological construct which is also
Cartesian closed. Making only minor modifications, the theorems below shows that T-Chy

is also a topological construct and is Cartesian-closed. We begin with the following lemma.
Lemma 3.5. Let [ : (X,q) — (Y,p) be a map between two T-Cauchy spaces and let

5,6 €3 (X). If§V & exists then f7FV f7& also exists.

Proof. By Lemma 3.1, we must show that (fﬁa)(y) A (fﬁb) (y) =T for each a € § and
yey

b € &. We compute,

V (o)A (F)m - ( V a@n V b<t>)

yey yeY \f(z)=y ft)=y
>\ V al@)Abx) =\ alz)Ab(z).
yeY f(x)=y reX

Since § V & exists, Lemma 3.1 implies that \/ a(z) A b(x) = T and the result follows. [
rzeX
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Theorem 3.1. The category T-Chy is a topological construct.!

Proof. Consider the source f; : X — (Y;,D;), j € J. Define C = {§ € §,(X) : f7"F €
D;, ¥Vj € J}. Since for each x € X, f7[z] = [fj(x)] € D; for all j € J, [z] € C. Next if
& 2§ €C, then for each j € J, [776 2 f7§ € D;j and hence 776 € Dj and & € C. Finally
if §& € C and § V & exists, then by Lemma 3.5, 7§ V f;7& exists for each j € J and

using Lemma 1.4 (i), 778N f;76 = f;(FNS) € D; for each j € J. Thus (X,C) € [T-Chy|.

Assume that g : (Z,€) — (X,C) is a map such that f;og:(Z,€) — (Y}, D;) is Cauchy-
continuous for each j € J. If & € £, then f7(97®) = (fj 0 9)7& € D; for each j € J and
thus g7 ® € C. It follows that g : (Z,€) — (X,C) is also Cauchy-continuous. Conversely,
if g is Cauchy-continuous, then clearly the composition f; o g is Cauchy-continuous for each

7 € J. Thus T-Chy possesses initial structures.

Suppose that X is any fixed set. Then the class of all T-Cauchy structures on X is a subset
of 250X and is thus a set. Next, assume that |X| = 1, that is, X = {z}. Note that if
a € L, then a = aly for some a € L. Since X = {x}, [z] = 1x for each § € F|(X) and
thus C = {F € §.(X) : § = [z]} is the only structure on X such that (X,C) € |T-Chy|.
If X = &, then C = @ and thus there is exactly one object in T-Chy whenever X = & or

X = {x}. Hence T-Chy is a topological construct. O

Let X, X, be two sets. If a; € L%, i = 1,2, then we define a; x ay € L***2 by (a; x

as)(w1,9) = ai(zy) A as(zp). If m; is the i projection, note that w7 (a; X ag)(z;) =
Vo (a1 X az)(s,t) = V (a1(x1) A az(xe)) = ar(z) A ( V ag(xQ)) < ay(zq). Hence
w1 (s,t)=z1 T2€X2 T2€X2

71 (a1 X ag) < ay. Similarly, 757 (a; X az) < as.

'See Appendix for the definition of topological constructs.
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Let §; € §.(X;), i =1,2; then B = {a; X ag : a; € §;} is shown in [29] to be a T-filter base,
and the generated T-filter is denoted by §; X Fo. Further, assume that B; is a T-filter base
for §;, i = 1,2. It is shown in [29] that {b; x by : b; € B;,i = 1,2} is a T-filter base which

generates the filter §; X F2. The following lemma is also found in [29].

Lemma 3.6. Let 0; : X; — Y; and let §; € F1(X;), i = 1,2. Also let m; : X1 x Xy — X;

denote the i projection map. The following hold:
(1) (61 x 02)7 (i x 2) = 07 (F1) x 077 (S2),

(it) w7 (F1 X §2) =i, i = 1,2.

Let (X,C), (Y, D) € | T-Chy|, and let C'(X,Y") denote the set of all Cauchy-continuous maps.
Define ev : C(X,Y) x X — Y by ev(f,z) = f(x). Note that since T-Chy possesses initial
structures, it has product structures. In particular, if § € F/ (X x Y), then € C x D
(product structure) iff 7775 € C and 757§ € D. Define ¥ C §] (C(X,Y)) as follows: ® € ¥
iff for each § € C, ev™(® x §) € D.

Theorem 3.2. The category T-Chy is Cartesian closed.

Proof. First, we show that ¥ as defined above is a T-Cauchy structure on C(X,Y). Fix
¢ € C(X,Y). It is shown that if § € C, then ev™([f] x §) € D. Since By = {1yp}
is a T-filter base for [0], B = {149y x a : a € §} is a T-filter base for [§] x § and thus

B={ev?(1gg x a):a € §} is a T-filter base for ev=([0] x §). Observe that for y € Y,

ev ' (1ggy X a)(y) = \/ (Lipy x a)(¥, 2)

ev(y,2)=y

=V 1a@)Aa(z)
ev(y,z)=y

=\ a(z) =607 (a)(y)
0(z)=y



Hence ev™ (149 X a) = 67 (a) for each a € §. Since B is a T-filter base for ev=([0] x §) and

{607 (a) : a € §} is a T-filter base for 07§, we have ev™ ([0] x F) = 67 F € D. Hence [0] € X.
Clearly, if U > & € ¥, then ¥ € X.

Next, assume that W, ® € 3 such that UV & exists. If § € C, then & x F C (VV P) x §
and ¥ x § C (U V &) x F and hence (¢ x §) V (¥ x §) exists. It follows from Lemma 3.5
that ev™ (P x F) V ev™ (¥ x §) exists. Since ev™ (P x §),ev™ (¥ x §) € D, we have that
evT (P xF)Nev™ (¥ x §) € D. Observe that ev™ ((PNW) X F) =ev™ (P x F) Nev™ (¥ X F),
and thus ¥ is a T-Cauchy structure and (C’(X, Y), Z) € | T-Chy].

Note that if I' € ¥ x C, then I' > n77 (") x 737 (I'), where 777 (I") € ¥ and 757 (I") € C. Since
ev=I > ev™ (n7(I') x 737 () € D, it follows that ev : (C’(X, Y),Z) x (X,C) — (Y, D) is

Cauchy-continuous.

Next, assume that f: (Z,€) x (X,C) — (Y, D) is Cauchy-continuous. Fix z € Z and define
f.: X — Y by f.(x) = f(z,x). Itisshown that f, € C(X,Y). Indeed, let § € C; it is shown
that f7§ = f7([2] xF). A T-filter base for [2] xF is {13 xa : a € §}. Observe thatify € Y
ada € [Pl xay) = V (gxasd= V at)= V alt) = [7(@)).
flst)=y flzt)=y f=(t)=y
Hence 7 (1) xa) = f.7(a) and 7§ = f7([2] x§) since their T-filter bases coincide. Since
7 (2] x&) € D, f.: (X,C) — (Y, D) is Cauchy-continuous and thus f, € C(X,Y). Define
[ Z — C(X,Y) by f*(2) = f. for z € X. It is shown that f*: (Z,€) — (C(X,Y), %)

is Cauchy-continuous.

In [29] it was shown that ev o (f* x idy) = f. Indeed, if (s,t) € Z x X, then (ev o
(f* x idX))(s,t) = ev(f*(s),t) = ev(fs,t) = fs(t) = f(s,t). Observe that if & € £ and
§ € C, then f7(& x §) € D since f is Cauchy-continuous. Then f=(& x §) = (evﬁ(f* X
idx))ﬁ((ﬁ XF) =ev7 (f*7(8) xF) € D for each § € D. It follows that f*7& € ¥ and thus
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f*:(Z,€) — (C’(X, Y),E) is Cauchy-continuous. That is, if f : (Z,€) x (X,C) — (Y, D) is
Cauchy-continuous, then f*: (Z,&) — (C’(X YY), E) is Cauchy-continuous. Hence T-Chy

is Cartesian closed. 0

Cauchy Completions

An object (X,C) € |T-Chy]| is called complete provided each § € C converges in (X, qc).
Moreover, ((Y, D), ng) is called a completion of (X, C) in T-Chy provided that ¢ : (X,D) —
(Y, D) is a dense T-Cauchy embedding and (Y, D) is complete. Here denseness means that
for each y € Y, there exists § € &1 (X) such that ¢7F —= y. It is shown below that
each T-Cauchy space has a finest completion in T-Chy, and also each Cauchy-continuous
map into a complete T-Cauchy space can be extended to a Cauchy-continuous map on the

completion.

Let (X,C) € |T-Chy|; then § ~ & iff § N B € C defines an equivalence relation on C.
Denote Ne= {F € C : § fails to ge-converge} and let (&)e = {F € Ne : § ~ &}. When
the structure is clear, we will write NV ((&)) instead of N¢ ((&)¢), respectively. Define

X*=XU{(&): & e N} and let j : X — X* be the natural injection.

Definition 3.3. A completion ((Y, D), qb) of (X,C) in T-Chy is said to be in standard

form provided that Y = X*, ¢ = j, and j7$ -2+ (&) in (Y, ¢p) whenever §) ~ &.

Definition 3.4. Assume that ((Y, D),gb) and ((Z,E),@/J) are two completions of (X,C) in
T-Chy. Then ((Y, D),¢) > ((Z,S),w) is defined to mean that there exists a Cauchy-
continuous map h : (Y,D) — (Z,&) such that h o ¢ = 1. That is, the diagram below

commutes:

46



As in the classical setting, > is a partial order on the set of all completions of (X,C).
Moreover, if ((Y, D), gb) > ((Z, &), @D) and vice versa, then the two completions are said to
be equivalent and in this case h is a T-Cauchy isomorphism. Verification of the following

lemma follows the proof in the classical setting of Theorem 5 given by Reed in [25].

Lemma 3.7. Every Ty completion of (X,C) in T-Chy is equivalent to one in standard form.

Assume that (X,C) € |T-Chy| and let X* = X U{(&) : & € N} and j : X — X* be the

natural injection. Define

C={9n¢ F1(X™) : either § > j7F for some ge-convergent § or

$H>5776N[(6)] for some & € N'}.

Theorem 3.3. Suppose that (X,C) € |T-Chy|. Then

(i) ((X*,C*),j) is the finest completion of (X,C) in T-Chy which is in standard form,

(i) if f:(X,C) — (Y,D) is a Cauchy-continuous map and (Y, D) is complete, then f

has a Cauchy-continuous extension f*: (X* C*) — (Y, D) such that f*oj = f, and

(iii) (X*,C*) is Ty iff (X,C) is T.

Proof. (i) First, it is shown that C* is a T-Cauchy structure on X*. Since j= ([z]) = [j(x)],

it follows that [j(x)] and [(®)] are in C*. Clearly R > $ € C* implies that & € C*. Suppose
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that j7§1 V j= &2 exists where §1, §2 are gc-convergent. Fix f; € §;, i = 1,2; then

T=V i7hE) AT fa(2)

=<\/Xﬁf1( D) A~ i ) (@VNﬁfl )Aﬁf2(<®>)>

= (\/ (VARG GG =eh) A (VARG ) = ﬂ))

zeX

v ( V (V{AGE) () = 6)}) A (V{kGz)6z) = <®>}))

SeN

zeX SeN

(\/ Fule) A fuf >)v(\/ <v@>A<v@>)

(\/f1 YA faof ))v(\/ L/\L)

zeX SeN

=\ AL@)A folz

rzeX

and thus § V §» exists. Since §; and §y are ge-convergent, it is simple to show that §; N Jo
is also ge-convergent. Since §; N Fo is ge-convergent and j=F N j7Fe = j7(F1 N F2) € C*,

we have that j=§; N j~F € C*.

Observe that if § ge-converges and & € N, then j7F V (jéﬁ N [(@}]) fails to exist. Indeed,
SV & fails to exist since & fails to ge-converge. Therefore there exists a € § and b € & such
that \/X(a(x) Ab(z)) # T. A base member for j7& N [(&)] is ¢ = 77 (b) V 1ywsy;. It follows
that Z\g{ (j_*(a)(z) A c(z)) = mé/X a(x) ANb(z) # T, and thus j7F V (77& N [(B)]) fails to

exist. This argument also shows that j=&; N [(G1)] V 7B, N [(By)] exists iff (&) = (B,),

and it follows that C* is a T-Cauchy structure on X*.

The definition of C* implies that j : (X,C) — (X*,C*) is Cauchy-continuous. Conversely,

assume that £ € ] (X) such that j= £ € C*. If j7£ > j7F for some ge-convergent §, then
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since j is one-to-one, £ = 777 £ > § and thus £ € C.

Next, suppose that j7£ > j=& N [(B)] for some & € N. It is shown that £ > &. Indeed,
if g € &; then b = j7g V 1{e)} is a base member of j77& N [(&)] and b € j7 L. Hence
Jjo(b) € j5j7& = £. However, for each x € X, j(b)(x) = (bo j)(x) = g(x). Then
j<(b) = g € £ and thus £ > &. It follows that j : (X,C) — (X*,C*) is a Cauchy embed-
ding. Since j7& X (&), j(X) is dense in X*. Tt follows from the definition of C* that

(X*,C*) is complete. Hence ((X*,C*),j) is a completion of (X,C) in T-Chy.

Finally, assume that ((X D), j) is another completion of (X,C) in standard form. If
§ € C, then j77F € D. Moreover, if & € N, then since ((X*,D),j) is in standard form,
776 25 (B). Hence j7& N[(®)] € D and thus C* C D. It follows that ((X*,C*),j) is the

finest completion in T-Chy which is in standard form.

(i) Suppose that f : (X,C) —s (Y, D) is Cauchy-continuous. Define f*(j(z)) = f(z) and
F*((&)) =y, where y is one of the limits of f~® in (Y, D). Then f*oj = f. If § € F](X)
is gc-convergent, then f*7(j<F) = f=F € D.

Next, suppose that & € A; then j7& N [(B)] € C* and f*~ (7S N [(B)]) = 76N
(@) = fen[f(8))] = [F&N[y] where f7F =2+ y. It follows that f~&N[y] € D

and thus f*: (X*,C*) — (Y, D) is a Cauchy-continuous extension of f.

(iii) Since j is a Cauchy-embedding, if (X* C*) is Ty, then (X,C) is T». Next, suppose that
(X,C) is T and $ A ez I 2 = j(x;), then $ > j=F; for some F; s and 2 = Xo.
If 21 = j(x1) and 2, € X* ~ j(X), then $ > j7F for some § < 2; and H > j76& N [(B)]
for some & € N with 2o = (&). It follows that j7F V j7& exists and thus §V & exists,

which implies that & is ge-convergent. Hence this case is impossible. Moreover, if z; = (&;),
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then $ > j7&; N [(B;)] for some K; € (B;), i = 1,2. It follows that (&) = (B,); otherwise,
J7R1V 7 Ry exists and thus R; V Ry exists, which implies that (&) = (&,). Hence (X*,C*)

is Tg. L]

Selection Maps and Completions

In this section we give a general approach for obtaining a completion using selection maps.

Definition 3.5. Let (X,C) € |[T-Chy|. A map a : X* — C is called a selection map for
(X,C) € |T-Chy|, or simply a selection map if the context is clear, if a(z) = [z| whenever

r € X and a((®)) € (&) whenever & € N. Given a € L* we define a® € L*" by

a(z), reX
Va)(a), € X"\ X

Notationally, instead of writing «/((®)), which is quite cumbersome, we write &,. It is easily
shown that (a A b)* = a® A b* and hence if § € §} (X) then {a® : a € F} is a T-filter base

for some T-filter on X*, denoted by §*. The following properties are needed.

Lemma 3.8. Assume that (X,C) is a T-Cauchy space, a,b € L~ and let B denote a T-filter

base for § € §(X). Then

(i) v(a Ab) <V (a(x) Ab(2)),
(ii) [a®,0%] = [a, ],
(iii) j=(a) < a® and j<(a®) = a,
(iv) B> = {b° : b € B} is a T-filter base for 3,
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(v) RV £ exists on X iff RYV £* exists on X*.

Proof. (i) First, observe that if € L and § € §] (X), then v5(81x) = 3. Indeed, if a € F,
then it follows from Lemma 1.1 (v) that [a, f1x] = A (a(z) — B) = ( V a(x)) — f =
reX

zeX

T — = p and thus v3(flx) = V[a,flx] = V 8 =05. Let 8 = V (a(x) Ab(z)); then
aEF a€eF

zeX
vz(a ANb) < vz(flx) = f and thus the result follows.
(ii) According to Corollary 3.3 [4], vz(a) — v3(b) > [a,b] is valid for each § € FL(X). Then
@) = [l A A (a°(8) > 02(@)) = a.bl A A (ve,(a) = ve, (1) > [o.8) and
BeN BeN
thus [a%,b%] = [a, b].
(ili) j7(a)(z) = a(z) if x € X and j7(a)(x) = L if ¢ X. Hence j7(a) < a®*. Next

a(x) as needed.

<
T
—~
S
R
~—
—~
8
~—
I
S
R
—~
.
—~
8
~—
~—
I
S
Q
—~
8
~—
I

(iv) If b € B, then V b*(z) > V b(z) =T and thus \ b%(z) = T. Next, suppose that

zeX™ zeX zeX*
b1, by € B; then by (ii) above, V [b%, b ADS] = V [b%, (b1 Ab2)¥] = V [b,by Abs] = T. Hence
beB beB beB
B“ is a T-filter base for some T-filter $ C §“. Moreover, assume that a € §; then a® belongs
to the T-filter base {f“ : f € §} for the T-filter denoted by F. It suffices to show that

a® € $. According to (ii) above, V [b%,a%] = V [b,a] = T and thus B is a T-filter base for
beBs

beB
8‘0{

(v) Fix a € &, b € £ and suppose that K* V £* exists. Then,

51



zeX*
=V (a(x) )v ( (®)) A b ((®)))
rzeX
= (a ) \/ ( (a) A Va(<@>)(b)>
reX
= (a ) v ua( (a N\ D)
zeX
(a(x) A b(x)) by (i)
zeX
Hence V (a(a:) A b(x)) = T and thus RV £ exists. The other direction is clear. O

rzeX

Now given any (X,C) € |T-Chy| and a selection map «, define C* = {§ € F](X*) : $ >
§* for some § € C}.

Theorem 3.4. Let (X,C) be a T-Cauchy space which is not complete and « a selection

map. Then ((X*7Ca),j) is a completion in T-Chy which is in standard form.

Proof. First we must show that C* is a T-Cauchy structure on X*. Let x € X then [j(z)] D
[z]*. Indeed, if a € [z] then a base member of [z]* is a® and a®(j(x)) = a(x) = T. Hence
a® € [j(x)] and [j(z)] D [z]*. Therefore [j(z)] € C* for each z € X. Next we show that
[(B)] > (&,)*. Let g € B, then g*((B)) = vp,(g9) = T and so g* € [(&)] and [(&)] D (&,)*.
Since &, € C, it follows that [(&)] € C*.

Clearly 8 > $ € C® implies R € C*. Next, assume that $, 8 € C* such that  V K exists,
where £ > §* and K > 6 for some §, ® € C. Then §*V B exists, and by Lemma 3.8 (v),
§V & exists also. Thus FN G € C and since F*NG* > (FNG)*, HN KR € C*. Therefore C*

is a T-Cauchy structure on X* as desired.
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Suppose that § € C. According to Lemma 3.8 (iii), j7(a) < a* for each ¢ € § and
thus 77§ > §“. Hence j : (X,C) — (X*,C?) is Cauchy-continuous. Next, assume that
$ €} (X) such that j7§ > F for some § € C. Since j<(F*) exists, it follows from Lemma
3.8 (iii) that H =5<(7H) > j(F*) =F €C. Then HeC and j: (X,C) — (X*,C?) is a

T-Cauchy embedding.

Fix & € N; it is shown that j=(&,) N [(B)] > (&,)*. A base member of (&,)* is g*
where g € &,. Since g* > j~7g, we have g* € j76,. Also, g*((8)) = ve,(g9) = T so that

g* € [(&)]. Hence g* € j7(6,) N [(B)] and j is a dense embedding.

Finally, we must show that (X* C®) is complete. Assume that £ € C*. Then $ > §* with
& € C. There are two possibilities: § — x for some z € X or § € Np. If § %5 z, then
FN[z] € C implies that HN[j(z)] > F*N[j(z)] > F*N[z]* > (FN[z])*. Hence HN[j(x)] € C
and $ X% j(z). Next, if § € Ng, note that §* N (Fo)* < [(F)]. Indeed if a € §F,b € Fa
then (a® VvV b*)((3)) = v3.(a) V 15, (b) = v5,(b) = T. Hence N [(F)] = F* N (Fa)* N [(F)] =
TN (Fa)* > (FNFa)®. Since §F ~ Fa, we have that FNF, € C and thus H N [(F)] € C* and

H 225 (F). Hence (X*,C%) is complete and the result follows. O

Given any (X,C) € | T-Chy| and selection map «, Theorem 3.3 (i) implies C* C C*. However,
even in the classical case where L = {0, 1}, examples exist where C* # C* for any selection

map o.

Pretopological Completions

In this section we look at a particular selection map. Assume that (X,C) € | T-Chy| is not
complete. Then (X,C) is called relatively full if for each & € N, (&) contains a smallest

member, denoted as &,,;,. If in addition, each x € X has a coarsest gc-convergent T-filter,
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denoted by Ue(x), then (X, C) is said to be full.

Definition 3.6. A completion ((Y, D),qb) of (X,C) in T-Chy is said to be remainder-
pretopological if each y € Y \ ¢(X) has a coarsest gp-convergent T-filter. The completion

is called pretopological if the above holds for each y € Y.

Suppose that (X,C) is relatively full, then we may choose the selection map « which sends
z i+ [z], x € X and (&) — B, & € N. For this special selection map we will denote

a®, §% and C%, respectively, by a, § and C.

Theorem 3.5. Suppose that (X, C) is relatively full (full). Then ((X*, C), j) is a remainder-

pretopological (pretopological) completion in T-Chy, respectively.

Proof. Assume that (X,C) is relatively full. Then by Theorem 3.4 ((X *.C), j) is a com-
pletion. It must be shown that ((X *,5), j) is remainder-pretopological. Fix & € N and
assume that  — (&) in (X*,¢z). It is shown that £ > G — (&) in (X7, qz). Since
H — (8) in (X*,qz), HN[(B)] > & for some R € C, and it follows that RN [(&)] € C. Hence
J76 — (&) in (X*, qz) implies that j7 (AN &) — (&) in (X*,C), and hence RN & € C.
Therefore (R) = (&) and thus $ > & > Gt — (&) in (X*,C). It follows that ((X*,@),j)
is a remainder-pretopological completion of (X,C) in T-Chy.

Next, assume that (X,C) is full and fix z € X. Let Uc(z) denote the coarsest T-filter which
ge-converges to [z]. It is shown that @x/) is the coarsest gz-convergent T-filter to converge
to j(x). Suppose that $ N [j(z)] € C; then H N [j(z)] > § for some F € C. Note that

SV (HN[j(x)) exists and thus N [j(x)] € C. Since = (F N [z]) > FN[j(x)], it follows that

FN[z] € C and thus § > Ue(x). Hence $ > § > Ue(z) and thus (X*,C) is pretopological. [

Corollary 3.1. Assume that (X,C) € |T-Chy|. Then (X,C) has a remainder-pretopological

(pretopological) completion in T-Chy which is in standard form if and only if (X,C) is
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relatively full (full), respectively.

Proof. Suppose that (X, C) is relatively full (full). Then by Theorem 3.5 we have that (X, C)

has a remainder-pretopological (pretopological) completion in standard form, respectively.

Conversely, suppose that ((X * D), j) is a remainder-pretopological completion of (X, C) in

standard form. Then if y € X* \ j(X), then by definition of X*, y = (&) for some & € N.

It follows that j= ( N 5’_)) = (N 779 € D and since j is a T-Cauchy embedding, (&)
HE(®) He(®)

contains a smallest member. Hence (X,C) is relatively full. A similar argument holds

whenever ((X * D), j) is a pretopological completion in standard form. O

Corollary 3.2. Suppose that (X, C) is relatively full. Then (X*,C) is Ty if and only if (X,C)
18 TQ.

Topological Completion

Fang and Yu [29] defined when a object in T-Conv is topological. Further, Fang and Yue [5]
showed that this definition characterizes when a T-convergence space is strong L-topological
as defined in [29]. The following definition of topological is a version suited for the category

T-Chy.

Definition 3.7. An object (X,C) € |T-Chy| is said to be topological in T-Chy provided
the following conditions are satisfied. Let J be any set, v : J — X*, 0 : J — C such
that if ¢¥(y) € X then o(y) —= ¥(y), and otherwise if ¥(y) = (&), then o(y) € (&). If
9 € F1(J) and 7§ > j7F for some ge-convergent F or 7 H > ;76 N [(F)] for some
& € Ne, then ko) € C. Here ko) ={be LX :ey00 € H} and ¢, : §} (X) — L is defined
as ep(®) = vg(b), for each & € §} (X). It was shown by Fang and Yue in [5] that xo$) is a
T-filter on X.
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The notion of being topological has been defined in previous chapters in the context of T-
convergence structures. The following two results connect the definition in the T-convergence

space setting to our discussion here.

Lemma 3.9. Suppose that (X,C) € |T-Chy| is complete. Then (X,C) is topological in

T-Chy if and only if (X, qc) is topological in T-Conv.

Proof. Let J be any set, 1 : J — X, 0 : J — FL(X) such that o(y) =< ¥ (y) for each
y € J. Suppose that H € F/(J) and ¥~ <+ 2. Using Theorem 3.11 in [5] it must be
shown that ko$) =< z; equivalently; ko$) N [z] € C. Since a(y) <+ (y) for each y € J, it
suffices to assume that o(y) < [¢0(y)] for each y € J. Otherwise, o can be replaced by o*,

where 0*(y) = o(y) N [Y(y)], y € J. Hence assume that o(y) < [¢(y)] for each y € J.

It is shown that =9 > ko). Fix b € ko). Since o(y) < [¥(y)] for each y € J, for
z€ X, Y7 (epo0)(z) = V{(ero0)(y) : ¥(y) = 2z} = V{vo(b) : ¥(y) = 2} < V{vy)y(0) :
Y(y) = 2z} = v(b) = b(2). Then 7 (e, 00) < b and e, 00 € § implies that b € =6,
Therefore ko) < ¢=§H. Since (X,C) is topological, ko$ € C, and hence v~ N [z] € C
implies that ko V (= $ N [z]) exists. Then xko$H N [z] € C and ko$H <+ x. Therefore

(X, qc) is topological in T-Conv.

Conversely, assume that (X,C) is complete and (X, qc) is topological in T-Conv. Given
v:J— X,0:J— Csuch that o(y) € C satisfies [¢(y)] > o(y) for each y € J. It follows
that o(y) N [¢(y)] € C and thus o(y) —<+ ¥(y). Suppose that H € F; (J) and = $ € C;
Then since (X,C) is complete, 1= 2y 2 for some z € X. Tt follows that ko$) —< z as

(X, qc) is topological, and thus ko$) € C. Hence (X, C) is topological in T-Chy. ]

Porism 3.1. Assume that (X,C) € |T-Chy| is topological in T-Chy; then (X, qc) is topo-

logical in T-Conv.
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Proof. Note that the first half of the proof of Lemma 3.9 did not use completeness. [

Lemma 3.10. If (X,C) is topological in T-Chy then it is full.

Proof. Let & € N and let J = {y: &, € (&)} be an index for the elements in (&). Define
¢ J — X* by (y) = (6) and o(y) = &, € C for each y € J. Let § = {1,} € FL(J);

then 4= 6 = [(®)]. Tndeed, ¥~ (1,)(2) = V{L(y) : b(y) =z} = 4 Z7 (& —1 002,
T, 2z=(6)

and thus ¥7(1;) = 1ye)y. It follows that 7§ = [(8)] > 77 N [(&)] and since (X,C)
is topological in T-Chy, ko$ € C. It remains to show that ko) = ﬂJ &,. Recall that
ko) ={be LX : e, 00 € H}. Observe that b € ko) iff e,00 = 1. E(jsivalently, be ko$
iff for each y € J, vy, (b) = T, or iff for each y € J, b € o(y) = &,. Hence b € ko iff

be N &,. It follows that ko$) = N &,. Since koH € C, (B) contains a minimum member.
yeJ yeJ

Likewise, fix * € X and let J = {y : §, — z} be an index set for all of the T-filters which
ge-converge to x. Define ¢ : J — X* as¢(y) =z and o(y) = 3§, € C, y € J. The argument

used above shows that Uq(z) = N T, € C. Since [z] > Ue(x), it follows that Ue(z) - 2.
yeJ

Hence Uq(z) is the coarsest T-filter which ge-converges to x. ]

The next result appears within the proof of Theorem 3.5, where Ue(z) = N{F : § - 2},
r e X.

Lemma 3.11. Assume that (X,C) is full and $ € F}(X*). Then

(i) $ — j(x) in (X*,C) iff H > Ue(x), z € X, and
(ii) $— (&) in (X*,C) iff § > G, & €N

Note that Lemma 3.11 shows that if (X,C) is topological in T-Chy, then the completion

((X *.C), j) is pretopological, that is, (X*, qz) is a pretopological space.
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Theorem 3.6. Suppose that (X,C) is topological in T-Chy. Then (X*,C) is also topological
in T-Chy.

Proof. Define ¢ : X — X* by ¢(x) = j(z) and 0 : X — C by o(z) = Ue(z), z € X.
Since (X, C) is topological in T-Chy, it follows that kol (z) = Ue(z) and Ko G = Gpin,
for each 2 € X and & € N. Define 6 : X* — C by

Ue(z), =z=j(x)

Since (X*, qz) is pretopological, it suffices to show that xdlUe(r) > Ue(x) and k0B min > B

for each z € X and &, € N.

First, it is shown that xkéUe(z) > Ue(z), v € X. Recall that kolle(z) = {b € L* : eyo0} =

Ue(x). Assume that b € kole(x); it is shown that b € kle(z). Observe that

=V [a.b] = v () = (e 0 0)(x) = & 00 (j(2)),

a€Uc(x)

where Lemma 3.8 (ii) is used from the first to second line.
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Further,

—_—~— ~

(e500)(8)) = e(Gumin) =\ [G.0)]

c€Bmin

= \/ [07 b] = Vﬁmin(b) > V@min(eb © O-) = e/b_gg(<6>)7

cESmin

where again Lemma 3.8 (ii) was used.

Hence e; 04 > €, 00 and since ¢y 00 € Ue(r), ey 06 € Ue(w). Therefore be KkOUe(x) and

—_— —_— —_— ~

kOUc(x) > Ue(z); hence kdlc(x) T, j(z), z € X.

It remains to verify that /458;; > % whenever &,,;, € N. As above ko B, = {b € Lx .

€00 € Buint. Let b € ko®y; it follows as shown above that €5 0 o> @/a € 65;; and

9

thus e;o06 € gvmm Thence b € k6B i, fﬁdg\/mm > Bmin, and thus /fégr\n; — (®). Therefore

(X*,C) is topological in T-Chy. O

Let T-TopChy denote the full subcategory of T-Chy consisting of all the objects that are

topological in the sense of Definition 3.7.

Lemma 3.12. The subcategory T-TopChy of T-Chy possesses initial structures. In partic-

ular, T-TopChy is a concretely bireflective subcategory of T-Chy. 2

Proof. Let X be any set and consider any indexed family f; : X — (Y;,D;), ¢ € I, where
(Y;,D;) € |T-TopChy|. Then C = {F € §.(X) : f7F € D; for each i € I} is the initial

structure in T-Chy. It is shown that (X,C) € |T-TopChy].

Suppose that ¢ : J — X* o : J — C such that o(y) —<+ 1 (y) whenever 1(y) € X and

o(y) € (&) provided ¢(y) = (&). For each i € I define 0; : X* — Y* by 0,(t) = fi(¢)

2See Appendix for definitions concrete and bireflective.
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. = aD;
whenever t € X, and Qi((éﬁ)c) ={* it fi7® Z’, where z is a selected limit of
<fi:>Q5>Di7 if fzé® S NDi

76, Let of = 0,01 : J — Y and define o} by o} (y) = f7(c(y)). Since f; : (X,C) —

7

(Y;, D;) is Cauchy-continuous, o : J — D;.

Fix y € J. If ¢(y) =t € X, then o(y) % t and o} (y) = f?(a(y)) LN fi(t) = ¥i(y).

7

Next, suppose that ¥ (y) = (&), & € Ne. If 9¢(<(’5>c) = z, then ¢} (y) = z € Y;. Note that

(2

where f;7®& € Np,, then ¢ (y) = (f77®)p, and o (y) = 7 (c(y)) € (f7B)p, = Vi (y).

o(y) € (B)c and thus o} (y) iy = ¥¥(y). Further, assume that 9,-((6)(;) = (f7&)p,,

Let $ € §.(J); first assume that ¢=§ > j¥§ for some § —<+ 2. It must be shown that
ko € C. Since (Y, D;) € | T-TopChy| and ;=5 = 67 (4= 9) > 67 (j3§) = i7 /7§ 2
Jy,(fi(x)), it follows that ko;$) € D;. Recall that ko = {b* € LY : e 0 0% € H}.
Fix b* € ko $; it is shown that b* € f7(ko$). Define b = f7(b*). Observe that

it y € J, (e 007)(®) = e (07(1)) = Voriy(0") = vp=(oay®) =V [£7(c),b1] <

cea(y)
v )[ff(ff(C)),ff(b*)] S )[07 b] = o) (b) = (e © 0)(y), and thus ey 0 07 < ¢ 0 0.
ceo(y ceo(y
Since b* € ko9, ey o of € H and thus e, 00 € $H. Then b = f(b*) € ko$H and hence

b* € f7 (ko) implies that ko!$H C f7(ko$). In this case, 7 (ko$H) € D;.

Next, suppose that v=§ > j¥H N [(&)¢] for some & € Ne. Then ;76 > 0,(jTS) N
9?([(@)(3]) = Jjy (fi7®)N 9?([((’5)5]) First, assume that f;7& Py 2 then VITH >
Iy, (f7®) N [jy,(2)]. Then as in the case above, f;”(k0$) € D;. Finally, suppose that
[7® € Np,; then 779 > jy (f76) N [(f7B)p,]. It follows that ko € D; and thus
7 (ko$) € D;. Since f7(ko$) € D; for each i € I, it follows that ko$ € C and thus
(X,C) € |T-TopChy|. Hence T-TopChy possesses initial structures, and it follows from
Corollary 2.2.6 [24] that T-TopChy is concretely bireflective in T-Chy. O
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Lemma 3.12 implies, in particular, that if (X,C) € |T-TopChy|, then each subspace (A,Cax)
of (X, C) formed in T-Chy also belongs to T-TopChy. Combining Lemma 3.12 and Theorem

3.6 gives the next result.

Corollary 3.3. An object (X,C) € |T-Chy| has a topological completion in standard form

in T-Chy iff it is topological.

Next we explore the question of whether the completion which takes (X,C) to ((X *CY), j)

preserves the property of being topological.

Lemma 3.13. Let (X,C) € |T-Chy| be full and not be complete and let ((X*,C*),j) denote
the completion given in Theorem 3.3. Defineo : X — C by o(x) =Ue(z) and § : X* — C*
by 0(j(z)) = j7Uc(z) and §({(B)) = j7 B N [(B)], whenever & € Ne. If a € L¥ and

be LY, then

(i) 7 (ca00) = €400

(71) 7 (ep0d) =ejepo0o0.

Proof. (i) Fix x € X. Then (ej~400)(j(2)) = €j-a(i7Uc()) = Vj=te() (I~ @) = Ye(@) (@) =
(ea 0 0)(z) = j7(ea 0 0)(j(z)). Moreover j~7(e, 0 0)((&)) = L and (ej-, 0 0)((&)) =
€j~a(J7 Gmin N [(B)]) = Vjzennie)((7a) = Vj=e,.(i7a) A vyey(i~a). Observe that
vey(i7a) = V [e,i7al = [lyeysi~a = T — j7a((8) = T — L = L. Then

ce[(®)]

(€j-409)((®)) = L. and hence (i) is valid.

(ii) Let € X and denote a = j75b. Then j5 (e, 00)(z) = (e 09)(j(x)) = er(j7Uc(z)) =

Viruex)(0) =V [J7¢ b=V [ca] =vy@(a) = (eg00)(z). Therefore (ii) is satisfied.
c€Uc (x) c€EUc (x)

0
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Theorem 3.7. Assume that (X,C) is topological in but not complete in T-Chy and let
((X*,C*),j) denote the completion given in Theorem 3.3. Then (X*,C*) is also topological
in T-Chy.

Proof. Again, Uc(z) denotes the T-neighborhood filter at z. Let o and ¢ be as defined
in Lemma 3.13. First, it is shown that kdj7Uc(x) = j7Ue(x), x € X. Since (X,C) is
topological, Ue(x) = kolle(z) = {a € L : e, 00 € Ue(x)}. Assume that a € Ue(z), then
e, 00 € Ue(x) and thus j7 (e, 0 0) € j7Uc(x). Since (X, C) is topological, it is also full and
hence by Lemma 3.13 (i) it follows that e;-,00 € j7Uc(x) and therefore j7a € Kdj7Ue ().
Then j7Uc(z) C kdj~7Ue(x). Conversely, if b € k077 Uc(x), then eyod € j7Ue(x). According
to Lemma 3.13 (ii), ejep 00 = j (e 00) = j<j7Uc(z) = Ue(x) and thus jTb € kol (z)

implies that kdf7Uc(z) = j7Uc(x) for each z € X.

It remains to show that for & € N, KI(J7 Bpin N [(B)]) = 77 Gpmin N [(&)]. Suppose that
b€ 77 6min N[(B)]. Then j5b € jS717Bnin = Gupin = kKOBpiy. It follows that ejp 00 €
®nin and thus by Lemma 3.13 (ii), 75 (e, 0 ) € Spin. Then e, 05 > j7j (e 00) €
J7 S min and hence e, 0§ € j7 B, Moreover, ¢, 00 € j7 &, and b € [(B)] implies that
(er 0 0)((B)) = ep(J7Bmin N [(B)]) = Vjme, (D) A vyey(b) = T and thus e, 0§ € [(&)].
Then €, 06 € 77 Bpin N [(B)] and hence b € K0(§7 Bmin N [(B)]). Conversely, assume that
b € KO(J7Bmin N [(B)]); then e, 06 € 77 B N [(B)]. Denote a = j<b and by Lemma
3.13 (ii), e 00 = j5(ep09) € jS77Bnim = Gnin = k0B It follows that a € Gy,
and thus b > j7j5b € j7 &, implies that b € j7& ;. Further, ¢, 0 0 € [(B)] gives
T = (e 06)((B)) = €(17Gmin N [(B)]) = Vjme,: () A Ve (D) < vyey(b). It follows that
b € [(8)] and hence b € j7 By N [(B)]. Then KI(j7Smn N [(B)]) = j7 G mim N [(B)] and
thus (X*,C*) is topological in T-Chy. O
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CHAPTER 4: T-UNIFORM LIMIT SPACES

In terms of set filters, Cook and Fischer [3] introduced the notion of a uniform convergence
space in order to study completions and various convergences in function spaces. Several
authors have extended these concepts to the lattice context. A T-uniform limit space is in-
troduced and investigated here; our main thrust is toward completions, but first we establish

some categorical properties.

Definitions and Categorical Properties of T-ULS

If a; € LX) i = 1,2, then the product a; X a; € L****2 is defined by (a1 x az)(z,y) =
ar(x)Nax(y), (r,y) € X1 x Xo. If§; € FL(Xy), i = 1,2, then the product T-filter on X; x X,
denoted by §1 x Fo, is defined to be the T-filter whose base is {a; X as : a; € F1,a2 € §a}.
It is shown in [29] that if B; is any T-filter base for §;, ¢ = 1,2, then By x By is a T-filter
base for §; X §o.

Let X2 = X x X and let a,b € LX”. The composition of a and b is defined by (a0 b)(x,y) =

é/X (a(a;,z) A b(z,y)), where (z,y) € X2 If ®1,®y € FL(X?),let B={a10ay:0a; € ;, i =

;, 2} and observe that for aj; o as, by oby € B, (aj0az) A(byoby) > (a3 Aby)o(agAby) € B. It

follows that B is a base for a T-filter on X? iff for each a;cay € B, ( §/€X2(a1 oas)(xz,y) =T.
@,y

Whenever B is a base, we say that ®; o &, exists and define ®; o 5 to be the T-filter it

generated by B.

Lemma 4.1. Let a;,b; € LX" and let ©; be any T-filter base for ®; € SL(X?), i =1,2.

Assume that ®; o @y exists. Then

(i) a1, bi] A lag, be] < a1 0 ag, by o by
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(i1) © ={byoby:b; € D;,i=1,2} is a T-filter base for ®; o Ds.
Proof.

(i) Employing Lemma 1.1 (iii) and (v), [a1,b1] A [a2, 0] = A (al(x,y) — bl(ac,y)) A
z,yeX

A (ax(st) = ba(si)) = A {(al(x,y) = bi(e,y) A (as(s,t) — bg(s,t)ﬂ < A

s,teX z,Y z,y

st R4

(al(xay) /\a2<57t)) — (bl(xay) /\b2<37t)) S /\ ((11(.%,2) /\a2(zat) - bl(SC,Z) A
z,t,z€X

bz(z,t)}é ARA (al(x,z)/\a2(z,t)—>(blon)(x,t)): A [(

rteX ze X z,teX

V. (ai(z, 2) /\az(z,t)>

zeX

z,teX

—>(b10b2)(x,t)>] = A ((a10a2)(x,t) = (b 0 by)(x,1)) = [a1 0 a, by 0 b,

(i) First, ® is a T-filter base on X?. Indeed, if b; € D;, then by 0 by € ®; o ®5 and thus

V (byoby)(x,y) = T. Next, if ¢;0cy,dyody € D, it is shown that \/ [byoby, (¢10¢9) A

z,yeX b; €D,
(dyody)] = T. Since ®; are T-filter bases, T = '\ [b;, c;Ad;], 1 =1,2. According to (i)
b, €D;
above, T = \/ [b1,c1 Adi|A[by,caNds] <\ [b1oby, (¢ Ady)o(caAdg)]. Observe that
b, €D, b, €9D;
(cp Ady)o(caNdy) < (coca) A(dyody) and hence T = '/ [by oby, (c10¢2) A(dy ody)).
biEQi

Therefore ® is a T-filter base on X?2.

In order to show that ® generates ®; o ®,, it suffices to show that for any a; € ®;,

V [b1oby, a3 0as] = T,i=1,2. Since ®; is a T-filter base for ®;, T = \ [b;,a;],

b, €D; b, €D;
i = 1,2. Applying (i) above, T = V ([bl,al] A [bQ,GQ]) <V [by 0 by, aq 0 as], and
b, €D; b, €D;
hence \/ [byoby,a;0ay] =T, i=1,2. Therefore ® is a T-filter base for ®; o ¥s.
b ED;

Let a € LX"; then o' € LX’ is defined by a~'(z,y) = a(y, z) for (z,y) € X2 Further, if

P € §1(X?), then ®~! denotes the T-filter ! = {a~!: a € O}.
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The axioms listed below are similar to those used by Jager and Burton [13] in the definition

of a stratified L-uniform convergence space.

Definition 4.1. Given a pair (X, A), where A C §] (X?), is called a
T-uniform limit space provided it satisfies:

(UL1) [(z,x)] € A, for each z € X,

(UL2) U > ® € A implies ¥ € A,

(UL3) @ € A implies @' € A,

(UL4) ® oW € A whenever &, ¥ € A and ® o VU exists, and

(UL5) @, ¥ € A implies NV € A.

Moreover, A above is said to be a T-uniform limit structure on X.

A map k : (X,A) — (Y,X) between two T-uniform limit spaces is called uniformly
continuous if (k x k)7® € ¥ whenever ® € A. Let T-ULS denote the category of all

T-uniform limit spaces and uniformly continuous maps between them.

Lemma 4.2. Let §, 6,9, 8 € §(X).

(i) (FNG) X (FNG)=FxF)N(GXF)N(FxG)N (6 x6)

(ii) If & V §) exists, then Fx K = (F X &) o (H x K).

Proof. (i) A base member for (F X F N (B XF)NFxS)N(Bx&)isa=(f x f)V
(gx fYV(fxg)V(gxg) where f € F, g € &. It is shown that a > (f V g) x (f V g).

According to Jéger and Burton [16] page 14, a1 X ¢ < ¢ and b X ¢2 < ¢ is equivalent to
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(a1Vbi)xcy < c. Note that fx (fVg) < a. Indeed, (fx(fVg))(z,y) = f@)A(f(y)Vy(y)) =
(f@)N fy)V (f(x)Ag(y)) < a(x,y). Similarly, it is clear that g X (f V ¢g) < a. Therefore
it follows that (fV ¢) x (fV ¢) < a. Hence a € (N &) x (N &) and it follows that
FEFXFNBXFNEFXxB)N (B xBG)C(FNB) x (FNB). The other direction is clear.

(ii) Let feF, g€ B, heHand k€ K. We have (f x g)o (hx k)(z,y) = \/X (f(:p)/\g(z)/\

zE

h(z) Nk(y)) = f(x)/\k:(y)/\zé/x (9(z) Ah(2)). But V_g(z) Nh(z) = T because & V § exists.

zeX

Hence ((f x g)o (hx k))(:c,y) = f(z) Nk(y) = (f x k)(z,y), and the result follows. O

Lemma 4.3. Let (X,A) € |[T-ULS| and ® € A, then @ 1o ® and ® o (P~ o ) emist.

Proof. First to show that ®! o ® exists we let f,g € ®. Then V (f'og)(z,y) =
z,yeX

V U@ 2)Ag(zy) = NV f(z2)Ag(z,y) > V f(z,2) Ag(z,x) = T since fAg € .
z,y,2EX z,y,z]inX T,z

Thus &' o ® exists.

Next, if f,g,h € ®, then (f o(gto h))(x,y) =V Xf(x,z) A g(w,z) A h(w,y) >
Yy T,Y,2,WE
LY TN A y) = V(A w2 ARz y) = Y ((fAg)oh)(w.y) =

T since (fAg) tohedtod.
[

Lemma 4.4. Suppose that ®,V € §F] (X?), ®o VU exists and k : X — Y is any map, then
(kx k)P o (kx k)= exists and (k x k)T (PoW) > (kx k)TPo (kx k)7W.
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Proof. Assume that ® o ¥ exists, a € ®, b € ¥, and (y1,y2) € Y2 Then

((k x k) ao (k x k)70) (g1 2) = <((k x k) a) (y1, 2) A ((k x k)7D) (z,y2)>

=V V (v A{als, ) : (k x k)@, 8) = (g, 2)}) A (VAb(E @) = (B x k) (E2) = (2,10)}))
= zey(v {a(z1, 5) Nb(t,22) : (k x k) (21, 5) = (1, 2), (k % B)(t,22) = (2,32)})
Zey( a(wy, 8) Ab(s,22) : (k x k) (21, 8) = (41, 2), (k X k)(s,22) = (2,92)})
s!({a 1,8) Ab(s, ) : (k x k)(z1,22) = (y1,92)}

= (kx k)7 (aob)(y1,y2)

Hence (kx k)7ao(kxk)7b > (kxk)7(aob). Observe that \/  (kxk)7(aob)(yi,y2) =

(y1,y2)€Y?

V  (aob)(zy,29) =T since ® o U exists.
(z1,22)€X?

Then V  ((kxk)Zao (kxk)7b)(y1,42) = T and thus (k x k) ® o (k x k) exists.
(y1,y2)€Y?
The above inequality shows that (k x k)7ao (kx k)7b € (kx k)™ (P o V), where a € ® and

be W

The desired result follows from Lemma 4.1 (ii). O

Theorem 4.1. The category T-ULS is a topological construct.*

Proof. Consider the source k; : X — (Y;,A;), j € J. Define A = {® € ] (X?) : (k; x
ki)7® € A V5 € J} Since (ky x k)7 ([, 2]) = [(k; x ky)(2,2))] = [(k;(2), kj(2))] € A
for each j € J, we have that [(z,z)] € A for each x € X. Thus (UL1) is satisfied. Clearly
if W > & e A then (k; x ;)W > (k; x kj)7® € Aj for each j € J and hence ¥ € A and
(UL2) is valid.

'See Appendix for the definition of a topological construct.
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Next, assume that ® € A. Let y;,y, € Y; and a € ®; then ((k:] X k:j)ﬁ(cfl)>(y1,y2) =
-1

" \/) a(z,20) = ( \/) a(xe,x1) = ((kj X kj)%(G/))(y%yl) = ((k’g X kj>_><a)) (Y1, 2)-
i (T1)=Y1 T1)=Y1
k‘j(l‘z):yg . ($2):y2

kj

k;
Hence (k; X k;)7(a™') = (k; x k;)7(a) for each a € ® and therefore (k; x k;)7® = (k; x
k)= (®~1) € A;. This implies @' € A and (UL3) is valid.

To show (UL4), suppose that ®, ¥ € A and ® o ¥ exists. According to Lemma 4.4, (k; x
kj)=(®oW) > (k; x kj)7®o (kj x kj)=WV € A; for each j € J. Hence ® oW € A and (UL4)

is satisfied.

Finally, suppose that ®,¥ € A. Then employing Lemma 1.4 (i), (k; X k;)T(® N ¥) =
(kj x kj)7® N (kj x k;)7W € Aj for all j € J. Hence @ N € A and (UL5) is valid. Hence
(X,A) € |T-ULS|.

Let £:(Z,X) — (X, A) be a map and assume that k; o ¢ : (Z,X) — (Y}, A;) is uniformly
continuous for each j € J. If & € X, then (k; xkj):}((éx@:}@) = ((k‘] xkj)0(€x€)>éq> €A
for each 7 € J. Then by definition of A, (¢ x £)7® € A and thus ¢ : (Z,X) — (X,A) is
uniformly continuous. Conversely, if ¢ is uniformly continuous, then clearly the composition
k; o £ is also uniformly continuous for each j € J. Moreover, A is the unique such structure

having this property and hence T-ULS contains initial structures.

For any set X, the class of all T-uniform limit structures on X is a subset of 252 (X*) and
hence is also a set. Further if X = {z} is a singleton, then §, (X x X) = {(z,7)} and
A = {[(z,z)]} is the only T-uniform limit structure on X; if X = @ then A = &. Hence

T-ULS is a topological construct. O]

Let (X,A), (Y,T') € |T-ULS|, and let UC(X,Y’) denote the set of all uniformly continuous
maps in T-ULS from X to Y. Define ev : UC(X,Y) x X — Y by ev(f,z) = f(z). Note
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that since T-ULS possesses initial structures, it has product structures. In particular, if ® €
SE((X X Y)Z), then ® € A xT" (product structure) iff (7 X m1)7® € A and (my x mp)~ P € T
Letn: (UC(X,Y)xUC(X,Y)) x (X x X) — (UC(X,Y)x X ) x (UC(X,Y) x X) be given
by n((¢,9), (x1,72)) = ((6,71), (1, 22) ). Define © C FL(UC(X,Y)?) as follows: ¥ € ¥ iff
for each ® € A, (ev x ev):‘(n:‘(\IJ X CID)) el.

Theorem 4.2. The category T-ULS is Cartesian closed.

Proof. First we show that ¥ as defined above is a T-uniform limit structure on UC(X,Y).
Fix § € UC(X,Y), it is shown that if ® € A, then (ev x ev)™ (n7([(0,0)] x ®)) € T.
Since {1y@,0)} is a T-filter base for [(6,0)], {(1{p,0); X a : a € @} is a T-filter base for
[(6,0)] x & and thus B = {(ev X eV)H(T]ﬁ(l{(g’g)} X a)) :a € d} is a T-filter base for
(ev x ev)™ (7 ([(6,6)] x ®)). Observe that

(ev x ev)"(n_}(l{(e,e)} X a))(yl,y2)

— \/ \V (1(9,9) X a) ((577)7 (2’1722))

(evXev) <(¢7$1)7(¢7$2)) =(y1,92) 1 ((577)1(«21,22)) = ((¢,$1)1(w7$2))

= \/ \/ (1(979) X CL) ((g’ '7)7 (21’ ZQ))

d(z1)=y1 (§,21)=(¢,z1)
p(x2)=y2 (,x2)=(7,22)

=V (Len xa)((6,9), (21, 72))

#(z1)=y1
P(x2)=y2

= \/ a(xy, o)

0(z1)=y1
0(z2)=y2

= (0 x0)"(a)(y1, 42)

Hence (ev x eV>_>(7]_><1{(979)} X a)) = (0 x 0)7(a) for each a € ®. Since B is a T-filter base
for (ev x ev):(n:}([(ﬁ, )] x (IJ)) and {(6 x )7 (a) : a € ®} is a T-filter base for (6 x 0)7 P,
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(ev X ev):>(77:>([(9,0)] X <I>)> = (0 x 0)7® € T". Hence [(#,0)] € ¥ and (UL1) is satisfied by
.

Clearly, if ¥ > @ € 3, then ¥ € ¥ and therefore (UL2) is satisfied by X.

A straightforward computation confirms that if p € ® € X, f € § € A and y1,y2 € Y, then

1

(ev x en) (7 (67 F ) anse) = ((ev x ev) (@ 1)) (.m0

Hence if ® € X, then ®! € ¥ and (UL3) is valid.

Next assume that &, ¥ € ¥ and ® o ¥ exists. We must show that o ¥ € X. Let § € A.

Lemma C from [13] implies that
(ev x &)™ (N7 (P o W) x F)) = (ev x ev)™ (1™ (@ x §)) o (ev x ev)™ (17 (¥ x (§ ' 0 3))).

Note that by Lemma 4.3, if § € A then § ! oF exists. Hence it suffices to show that if ® o ¥
exists and § € A, then (ev x ev):><77:>(¢> X %’)) o (ev x ev):(n:(\If X (§71 o%’))) exists. Let
pedY eV, fieFand f, € F 1oF. We have,

V. ((ev xen) 0 (@ x fi) o (ev x ev) (" (0 x £2))) (1. 32)

Y1,Y2€Y

=\ (evxev)T(n7(dx f1))(y1,2) Aev x ev) " (7 (v x f2))(z,52)  (4.1)

2,91,92€Y

and,
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(ev x ev) (1~ (& x f1)(y1, 2) = \ Vo x )((6,6), (wr,w))
(evxen) ((02,00).02.2)) n(862).(w1,02))

=(y1,2) :((91@1)’(92@20
=V (@x f)((01,02), (z1,72)) =\ 6(01,602) A falwr, 22).
01 (z1)=y1 01 (z1)=y1
02(z2)=2 02(z2)=2
Similarly, (ev x ev)7(n7(¢¥ x f2))(z,y2) = V(0,05 A fa(x), 2f). Therefore, picking
0 (z])==
05 (z5)=v2

up from Equation (4.1),

Y ro
(4-1) = \/ \/ ¢(91792>/\f1<x17x2)/\w(91762)/\f2(x17x2)
2,91,92€Y 01 (x1)=y1
02(xz2)=2
0 (z))==
9%(1"2)::[/2

\/ \/ &(01,0) Np(0,05) A fr(xy, ) A folw, )
2,91,42€Y 01 (z1)=11
O(x)==2
05 (x5)=y2

=\  0(01,0) AY(0,05) A fr(wr,2) A fola, xh)

2,Y1,Y2€Y

01 (z1)=y1
O(z)==2

05 (x5)=y2

_ \/ G(01,0) Nb(0,05) A fr(xr,x) A folw, )

01,0,,0eUC(X,Y)

v

z1,2h,x€X
01,0,eUC(X,Y) \#eUC(X)Y) z1,25€X \z€X

=\ (@ow)0,0) A\ (frofo)(zr,ah)

61,0,€UC(X,Y) x1 xzeX

=TAT=T. (Lemma 4.3)
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Where on the penultimate line above, Lemma 4.3 is used on § o (§ ! o F). Therefore
(ev X ev)™ (né(q) X S)) o(ev x ev):’(n:’(\ll X (F! og))) exists, PoW € ¥ and (UL4) verified.

To prove (UL5), assume that &, U € ¥ and let §F € A. We must show ® N € X. For this,
we must show (ev x ev)™(n7((PNY) x§)) € I'. Note that (PNY) xF = (& xF)N (¥ xF)
and therefore, using Lemma 1.4 (i), (evxev)T (=7 ((2NTY) x F)) = (evxev)T(nT (2 x F))N
(ev x ev)T(n™ (¥ x §)) € I' as desired. Hence (UL5) holds.

Since (UL1) — (UL5) have been verified, we have that (UC(X, Y), E) € | T-ULS|.

Next, we show that if = € ¥ x A then = > n~ ((m X )7 E X (mg X 7T2):>E). Let ¢, € =.
For convienience we will abreviate UC(X,Y) with UC; it is also helpful to recall that

= C LWEX)? Also let f,g € UC and z,y € X. We compute,

( —>[7T1><7T1 ¢>< (772><7T2)—>¢]><(f,1‘),(g,y)>
\/ [(7?1 X 1) 7 ¢ X (mg X 7T2>_>’¢} ((h7 k), (Z7w))

((h.k), (2,

w))eUC?x X?
(R, (20))=((f2),(9.9))
=V \V o ((4,v), (m,u)) A V ¢((p.s). (¢.1))
((h,k),(z,w))EUC?x X? ((£,0),(m,u))e(UCx X)? ((£,v),(m,u))e(UCx X)?
n((hvk)7(Z=w)):((fax)7(gvy)) (7r1X7r1)((£7v)7(mvu)):(hvk) (7r2XW?)((qu)v(‘Lt)):(va)
> \ ((€0), (m,u)) A V u((p.s), (g.1))
((€,v),(m,u))E(UCx X)? ((£,v),(m,u))E(UCx X)?
(m1xm1)((€,0),(mu))=(f.9) (m2xm2)((g,8),(q,t))=(z,y)
=V o((fv), (g,0)) A v((p,2), (a,9))
u,vEX pquC
> o((f,2), ) v((£,2),(9.))
= ($ 1) ( 9.v))

Hence n™ [(7?1 X 1) 7P X (g X Wg)_)@b} > ¢ A1) € Z. Therefore it follows that = > 77:((7?1 X
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m)TE X (mg X 7T2>:>E). Next, since (m; X )72 € ¥ and (my X m)~ = € A, by definition of
Y. this implies (ev X ev)T=Z > (ev X ev):‘('rﬁ((m X )72 X (my X 7T2>:>E)) e I'. Tt follows

that ev : (UC’(X, Y), Z) x (X,A) — (Y, I') is uniformly continuous in T-ULS.

Next, assume that f : (Z,T) x (X,A) —s (Y,T) is uniformly continuous. Fix z € Z
and define f. : X — Y by f.(z) = f(z,z). It is shown that f, € UC(X,Y). To do
this, it is shown that if ® € A, then (f, x f.)7® = (f x f)7(C7([(z, 2)] x ®)), where
¢ (ZxZ)x(XxX) — (ZxX)x(ZxX) maps ((21, 2), (21,72)) = ((21,21), (2, 22) ). Let
¢ € ®. Bases for (f.x f.)7®, and (fx f)7(C7([(z,2)]x®)) are given by {(f:x f.) "¢ : ¢ € ®}
and {(f X f)7(C7 (L)) X 0)) - & € @}, respectively. Let ¢ € ® and yy,y, € Y; then,

(f X )7 My XN wye) =V Lz, 22) A d(x, x2)

f(z1,21)=31
f(z2,22)=y2

= \V oz,1) = V o1, 22)

f(zx1)=11 (fzX f2)(z1,22)=(y1,y2)
f(z@2)=y2

= (f2 % f2) 7oy, 12)-

Hence (f, x f.)7® = (f x f)7(C7([(z,2)] x ®)). Now it must be shown that (f x
)7 (T ([(z,2)]xP)) € T. Since f is uniformly continuous, it suffices to show that (= ([(z, z)] x
®) € T x A. That is, we must show that (m; x 7)™ (¢7([(2,2)] x ®)) € T(A) if i = 1(2),

respectively. Let ¢ € ® and yy,y, € Z(X) when ¢ = 1(2) respectively. Then,

(m X 1) 7 (T (Ao X O) Wi m2) =V Lo (21, 22) A @21, 22)

i (21,%1)=Y1
i (22,T2)=Yy2

Vo Loy, ve) Ad(zr,m2), i=1 Loy ) AT i=1

= { z1,22€X

V , Lo (21, 22) Ay, y2), 0 =2 TAO(y1,y2),i=2

21,%22€
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Since 1¢..) € [(2,2)] and ¢ € ® € A, it follows that (7 ([(2,2)] x ®) € T x A. Therefore
(fox f.)70=(fx[f)7(CT([(z,2)] x @) €I and f, is uniformly continuous.

Define f* : Z — UC(X,Y) by f*(2) = f, for z € X. It is shown that f*: (Z,T) —
(UC’(X, Y), E) is uniformly continuous. It was shown in [29] that evo (f* x idx) = f (Here,
o is traditional function composition). Indeed, if (s,t) € Z x X, then (eVO(f* X idX)) (s,t) =
ev(f*(s),t) = ev(fs,t) = fs(t) = f(s,t). Let & € T, we must show that (f* x f*)7® € X.
It suffices to show that for any & € A, we have (ev x ev)©<n:‘([(f* X f*)7 ] x QS)) erl.

Let ¢ € ¢, g € & and y;,y2 € Y. We have,

(ev sen) (7 (5 < £70 % 9) Juw) = V) Vo 6(ez) | Aglara)
O1(z1)=y1 | (f*xf*)(21,22)
02(x2)=y2 =(61,02)

=V V oz, 2) | Aglay, )=/ \ (21, 22) | Agla, 20)
01(z1)=y1 | f1=01 01(z1)=y1 \ f1=01
O2(z2)=y2 \fzy=02 O2(z2)=y2 \fzy=02

=\ oz z)Agla,za) =\ (21, 22) Aglar, 2)
Jz1 (z1)=y1 f(z1,21)=91
fzo (z2)=Y2 f(z2,22)=y2

= (I x [)7(C7 (0 % 9)) (. 0)

Thus (ev x ev):><n:>([(f* x )7 ®] x @)) = (f x )7 (¢ (® x 8)). Now we must show
that (f x f)™ (Cé(cb X (’5)) € I'. Since f is uniformly continuous, it suffices to show that

(T (®x®B) €Y xA. That is, we must show that (m; x ;)7 (T (P x 8)) € T(A) if i =1(2),
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respectively. Let ¢ € ®, g € & and y; € Z(X) when i = 1(2), respectively. Then,

(M xm) 7 (o xg)yye) =\ (21, 22) Aglar,x2)

mi(21,21)=y1
;i (22,02)=y2

Vo oy, y2) A gz, a2), i=1 _Joly ) AT, i=1

= { z1,x2€X

Vo oz, 22) AN g(ya, v2), =2 TAG(,y2), =2

z1,22€7Z

Since ¢ € ® € T and g € & € A, it follows that (7 (® x &) € T x A. Therefore (f x
7T (P x B)) € I'. Hence f*: (Z,7) — (UC’(X, Y),E) is uniformly continuous and

T-ULS is a Cartesian closed category. O

Selection Maps and Completions

Suppose that (X,A) € |T-ULS|: define Cy = {F € FL(X) : Fx F € A}. If §,6 € Cx such
that § V & exists, then using Lemma 4.2 (i) and (ii), (3N &) x (FNS) = (F x §) N [(& x
B)o(FxF)N[FxT)o(Bx6)N(GxG) € A, and thus it follows that FNG € Cy. Hence
(X,Cy) € | T-Chyl|.

An object (X, A) € | T-ULS| is called complete if (X,Cy) is complete in T-Chy. Moreover,
((Y, Y), ¢> is called a completion of (X,C) in T-ULS provided that ¢ : (X,A) — (Y, X)

is a dense T-uniform embedding and (Y, Y) is complete.

Much as was done in the T-Chy setting, we take advantage of selection maps to achieve

completions. Given (X, A) € |[T-ULS|, let X* = X U{(8): & € N, } and let o : X* — Cy
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be a selection map. For each a € LXZ, define a® € LX? ags follows:

ao‘(x,y) = Va(x)xa(y) (a)

If ® € §](X?), then let ®* be the T-filter on (X*)? generated by the T-filter base {a® : a €
®}. Indeed, this is a T-filter base as it can easily be shown that (a A b)* = a® A b® for each

a,b € LX°. Further, if a € ® then Vo a*(z,y) > Vo oalx,y)=T.
(zy)€(X*)? (z,y)eX?

Lemma 4.5. Assume that a,b € LX°, §,& € §(X), ®,¥ € §(X?) and a is a selection
map for (X,C) € |T-Chy|. Then
(i) [a,0] = [a=", b7"]
(i) va(a) = vans (a)
(iii) (a®)™! = (a=1)* and therefore (®*)~! = (1)
(iv) if ® o U exists then ve(a) A vy(b) < veoy(a o b)
(v) a®ob* < (aob)®
(vi) a® x b* < (a x b)* and therefore (§F x B)* C F* x B«
(vii) if ®* o U* exists, then ® o U exists and * o U* > (P o V)~

(viii) BT > (DN D)

Proof. (i) Note that [a,b] = /\ (a(m,y) — b(:r;,y)) = A (a_l(y,x) — b‘l(y,x)) =

(zy)eX? (zy)eX?

A (a7 (s,t) = b7 (s, 1)) = [a"! b1,

(s,t)eX?
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(ii) Using (i), [b,a] = [b~',a7!], and thus ve(a) = V [b,al = Vb Ya']= V [cal] =

bed bed ced-1
ve-1(at).

(iil) Fix 21,20 € X*; then using (ii), (a71)*(21, 22) = Va(z1)xa(z)(@ ) = Vage)xa(n)(a) =

a®(z2,21) = (a®)7Y(z1, 29). Hence (a™1)* = (a®)~.

(iv) Applying Lemma 4.1 (i), since ® o U exists, vg(a) A vg(b) = V ([c, al A [d, b]) <

ced
dev
V [cod,aob] = veoy(aob). Hence the result follows.
ced
dev

(v) Fix 21, 22 € X*; it follows from (iv) that (a®ob®)(z1,22) = V (ao‘(zl, w) A b (w, 22)) =
weX*

we\é(* (ua(zl)m(w)(a)/\l/a(w)m(ZQ)(b)) < Va(z)xa(z0)(a0b) since (a(z1) x a(w))o(a(w) X a(22)) =

a(z1) X a(zg) by Lemma 4.2 (ii). Thus a® o b* < (a o b)*.

(vi) Let z,y € X*. Then employing Lemma 1.1 (iii), (a X b)*(2,¥) = Va(z)xay)(a x b) =
Vofexdaxtl= V A ((c(w)rd(z)) = (a(w) Ab2))) >

cea(x) c€a(x) oy e X+
dea(y) dea(y)

VoA ((cw) = a(w)) A (dz) = b(2))) =

cea(x) w,zE X

dea(y)
V o leal AV [d b = Vamy(a) A Vag (b) = (a® X b%)(z,y).
cEa(x) dea(y)

(vii) Recall that ® o U exists iff for each a € &, b€ ¥, \ (aob)(x,y) = T. Employing
(z,y)eX?

Lemma 4.5 (v), since ®* o U® exists, T = \/ (a®0b¥)(21,22) < V (aob)*(z1,29) =

21,20€X* 21,20€X*
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V (aob)(z,y)V V (aob)*(z1,29). Recall that in the proof of Lemma 3.8 (i),

z,yeX 21,22€X*
z1 or z2€(X*\X)

it was established that for any 8 € L and § € §](X) that v3(81x) = 3. Hence taking

§ = alz1) X a(z) and B =\ (aob)(x,y), we have (aob)*(21,29) = Uy, x5, (@ 0 b) <
z,yeX

V (aob)(x,y). It follows that \ (aob)(x,y) =T and thus ® o ¥ exists. According to

z,yeX Ty €X

Lemma 4.5 (v), ®* o ¥* > (® o U)°.

(viii) The verification is clear. O

Assume that (X, A) € |T-ULS| and « is a selection map for (X, C,); define

A ={T € F;((X*)?): T > ®* for some & € A}.

Lemma 4.6. Given (X,A) € |T-ULS|. Then

(i) (X*,A%) € [T-ULS],
(i) 7 (X,N) — (X*,A%) is a dense embedding in T-ULS, and
(iii) $ € FL(X*) implies that ka$) = {b € L* : b* € H} € FL(X).
Proof. (i) If a € [(z,2)], then a(x,z) = T and thus a®(j(x),j(x)) = a(z,z) = T. Hence
[(z,2)]" C [j(x), j(z)] and thus [(j(x),j(z))] € A*. Suppose that & € N¢,; it is shown
that (&, x &,)* C [((B), (&))], where a((B)) = &,. Let a,b € B,; then a x b is

a T-filter base member of &, x &,. Then (a X b)*((&),(#)) = ve xe,(a X b) = T
and hence (a x b)* € [((&), (&))]. Therefore (&, x &,)* < [((&),(B))] implies that
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[((8),(&))] € A* and (UL1) is satisfied. Clearly (UL2) is valid. It follows from Lemma
4.5 (iii) that (UL3) holds. Lemma 4.5 (vii) implies that (UL4) is true. Further, (UL5)

follows from Lemma 4.5 (viii).

(ii) Recall that if @ € LX*, then (j x 5)7(a) < a® and (j x ) (a®) = a. If ® € A, then
(j X 7)7® > &~ and thus 5 : (X,A) — (X*, A?) is uniformly continuous. Moreover,
if U € §FL(X?) such that (j x j)7¥ € A®, then (j x j)7V¥ > & for some & € A.
Hence U > (5 x j)<®* = ® and ¥ € A. Therefore j : (X,A) — (X*, A?) is a uniform
embedding. In order to show that the embedding is dense, it suffices to verify that if
& € Ng,, then j7(8,) x [(B)] > (&, x 6,)*. Let us show that if a,b € &,, then
(@xb)* > j7a x 1yey. Fix 21,20 € X* and note that (j7a x Lyey)(21,22) = L
whenever either z; ¢ j(X) or zo # (&). Assume that z; = j(x) and 2z, = (B); then

(17 axLe))(i(2), (8)) = alz). Also, (a x b)*(j(z), (8)) = Vgxs,(axb) = V [Lizyx

c,ax b > [y x baxb = )\ ((1{x} x b)(s,t) = (a x b)(s,t)) = A (o) =
a(x) A b(t)) > a(x). It follows that (a x b)*(j(z),(®)) > (17a x Lyey)(j(x), (8))
(®). Then (X,A) is

cha

and hence j7(&,) X [(B)] > (&, X &,)* and thus j7&, ——

uniformly embedded in (X*, A%) as a dense subspace.

(iii) Notice that b = e, o @ and hence {b € LX : v* € 9} = ka®. If b € rkaf, then
b* € $ implies that T = \V b*(z) = V b(x)V V ve,(b). Since vg_ (b) < V b(x)
zeX* zeX BeN zeX

(Lemma 3.8 (i) with a = b), it follows that \/ b(z) = T. Also, if by,bs € ka$), then

rxeX
(b1 A by)® = 1" Ab™ € $ and thus by A by € ka$). Finally, assume that ¢ € LX* such
that \/ [b,c] = T. According to Lemma 3.8 (ii), T = V [b,c] = V [b* ] <
bekah berahH bekah

\/ [d,¢*] and hence c* € §) implies that ¢ € ka$). Therefore k) € F} (X).
desH

]

Theorem 4.3. Assume that (X, A) € |T-ULS| and let (X,Cy) denote the induced T-Cauchy
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space. If Cpa and (Cp)® possess the same T -ultrafilters on X* for some selection map o on
(X,Cp), then ((X*,A“),j) is a completion of (X,A) in T-ULS. Moreover, Cpo = (Cp)* iff

) € Cpa implies that ka$) € Cy.

Proof. According to Lemma 4.6 (i, ii), (X*,A%) € |T-ULS| and j : (X,A) — (X*,A%) is
a dense embedding in T-ULS. It must be shown that (X*, A%) is complete in T-ULS. By
Lemma 4.5 (vi) it follows that if & € Cy, then R x £ > (R x R)* € A® and thus R* € Cpe.

Hence (Cp)® C Cpe always holds.

Assume that $ € Cpe and let £ > $ be a T-ultrafilter on X*. Then £ € Cpa, and by
hypothesis, £ € (Cp)®. Since (X*,(Cy)*) is complete, £ N [z] € (Cp)* C Cpo for some
z € X*. It follows that (£ N [z]) V $ exists and hence $ N [z] € Cpa. Therefore (X*, A%) is
complete, and thus <(X*, Aa),j) is a completion of (X,C) in T-ULS.

Finally, if Che = (Cp)* and $) € Cpa = (Cp)%, then $ > R* for some R € Cp. Hence
ra$) > R and thus ka$) € Cy. Conversely, suppose that $ € Cpe and ka$) = R € Cy; then

$H > K> € (Cp)*. Hence (Cp)* = Cpa. O

Definition 4.2. Assume that (X,A) € |T-ULS|; then (X, A) is said to be relatively full
in T-ULS provided that (X,C,) is relatively full in T-Chy.

Whenever (X, A) is relatively full we may choose the selection map « which sends x — [x],
z € X and (B) — B, & € N, . For this special selection map we will denote a®, §*, ka$)

and A%, respectively, by a, §, § and A. The next result follows from Theorem 4.3.

Corollary 4.1. Assume that (X, ) € |T-ULS| is relatively full, and let (X,Cp) denote the
induced T-Cauchy space. Let ((X*,CNA),]) be the completion of (X,Cy) in T-Chy. If Cx
and Cx possess the same T-ultrafilters on X*, then ((X*, /NX),j) is a completion of (X, ) in
T-ULS. Moreover, C; = Ca iff $ € C5 implies that $ € Cy.
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Ezxample

An elementary example of a completion is given below. First, a lemma which may be of

independent interest is presented.

Lemma 4.7. Assume that L is a complete Boolean algebra. Suppose that (X,C) € | T-Chy|
is mot complete, and let o be a selection map which chooses a T -ultrafilter &, from each

(B), 8 e N. If 9 is a T-ultrafilter on X*, then there exists a T-ultrafilter § on X such that
§YCH.

Proof. Since $) is a T-ultrafilter, it follows from results due to Hohle ([10], [11]) that vy
is a stratified L-ultrafilter on X*. Define for each a € L¥, ug(a) = v4(a®). Note that
po(Lly) = vs(Llxe) = L, pe(Blx) = vs((B1x)?) > vy(Blx-) > B and pg(a Ab) =
vi((a AD)?) = vg(a® AbY) = vg(a®) Avg(b) = pg(a) A pg(b), for each a,b € LY and 8 € L.

Hence pg is a stratified L-filter on X.

According to Héhle ([10]), ug is a stratified L-ultrafilter on X iff for each a € LY, pg(a) =
ps(a — 1g) — L. He also shows that vg(a — 1) = vg(a) — L whenever & is a T-
ultrafilter on X. As before, we denote a((®)) = &, for & € N. Then (a — 1,)*((8)) =
ve,(a — 1g) =g, (a) > L =a*((B)) - L = (a® — 15)((®)) and thus (a — 15)* = a® —
15. Then pg(a) = vg(a®) = vy(a® = 1g) — L = Vﬁ((a — 1g)a> = L =pgla—1y) — 1,

and hence pug is a stratified L-ultrafilter on X.

Since L is a complete Boolean algebra, it follows again from Hoéhle ([10], [11]) that § — vg
defines a bijection between the T-ultrafilters and the stratified L-ultrafilters on X. Then
§={a€ L : ug(a) =T} is a T-ultrafilter on X. Further, a € § iff vy(a®) = T iff a® € 9,

and it follows that §¢ C $). O
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A T-uniform limit space (X, A) is said to be totally bounded whenever each T-ultrafilter
on X is A-Cauchy, that is, each T-ultrafilter § € Cy. Also, (X, A) is said to be compact
if every T-ultrafilter on X converges in (X, gc,). Let us conclude this subsection with the

following restricted example.

Example 4.1. Suppose that L is a complete Boolean algebra and (X,A) € |T-ULS| is
totally bounded but not complete. Assume that « is a selection map such that a((®)) = &,
is a T-ultrafilter in (&), for each & € N¢,. Let ((X*, (CA)O‘),j) denote the corresponding
completion of (X,Cs) in T-Chy. Then ((X*,Aa),j) is a completion of (X,A) in T-ULS

which is also compact.

Proof. According to Lemma 4.6 (ii), j : (X,A) — (X*, A%) is a dense embedding in T-ULS.
Since compactness of (X*, A%) implies completeness, it suffices to show (X*, A%) is compact.
Let $ be a T-ultrafilter on X*; then by Lemma 4.7 there exists a T-ultrafilter § on X such
that §* C §. Since (X, A) is totally bounded, § € Cy and thus §* € (Cy)*. It follows that
$ € (Ca)™ and since (X*, (Cp)®) is complete, H N [z] € (Ca)® for some z € X*. As shown
in the proof of Theorem 4.3 (Cp)* C Cae is always valid. It follows that $ converges in

(X*, gcya ), and hence (X*, A®) is both compact and complete. ]

The authors are unsure as to whether or not (Cy)® = Cpo in Example 4.1.

An Alternate Approach to Completions

In the classical case, if (X,V) is a uniform space and F x F >V, then F is a Cauchy filter
and V(F) ={AC X : V(F) C Aforsome F € Fand V € V}, where V(F) = {y € X :
(x,y) € V for some x € F'}, is the smallest Cauchy filter on X contained in F. Our aim in

this subsection is to outline an extension of this technique to the lattice context.
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Fix (X,A) € |T-ULS| and assume that §x§ > ® € A. If a € ® and b € §, define a(b) € L*

as follows:

ab)(y) =\ a(z,y) Ab(z), yeX.

zeX
Denote B = {a(b) : a € ®,b € F}; then B is a T-filter base and let ®(F) denote the
generated T-filter. The following lemma lists some extensions of well-known classical results

to the lattice setting. The proof is omitted.

Lemma 4.8. Assume that (X,A) € |T-ULS| and Fx F> D =d~!' € A. Then,

(i) B is a T-filter base,
(ii) B(F) x B(F) = Do (§ x §) o D, and

(iii) ®(F) V § exists.

listed below is not entirely satisfactory since the characterization is not given completely in
terms of the underlying T-uniform limit space. Here (X*, A%) € | T-ULS| denotes the space

given in Lemma 4.6.

Theorem 4.4. Suppose that (X, A) € |T-ULS| and « is a selection map for (X,Cp). Then
((X*,Aa),j> is a completion of (X, A) in T-ULS iff for each $H x § > &%, for some & =

O~! € A, there exists an £ € Cpo such that £ < PY(H)NH and j<L exists.

Proof. Assume that ((X*,A“),j) is a completion of (X,A) in T-ULS and $ x $ > o
for some ® = &' € A. Then $ 2+ z, for some z € X*, where p = g¢,.. Since j(X)
is dense in X*, choose & € §](X) such that ;78 %+ 2. According to Lemma 4.8 (iii),
P*(H) N H N [z] € Cpre, and it follows that £ = j7RN P¥(H) N H N [2] € Cpa. Then

£<0%H)NH and £ < j7 K implies that j<L exits.
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Conversely, by Lemma 4.6 (ii), j : (X,A) — (X*,A%) is a dense embedding in T-ULS. It
remains to show that (X*, A%) is complete. Suppose that ) x § > & for some ® = &1 € A.
Then there exists £ € Cpa such that £ < ®*(H)N$H and M = j<L exists. Note that I € C,.
If M 2 2, then j7M 2 j(2) and j77M N [j(2)] N O*(H) N $H € Cpe. Then H 2 j(z).
A similar argument shows that if 9t fails to gy-converge, then (%) € X* and § 2 (M).

Hence (X*, A%) is complete. O

Corollary 4.2. Suppose that (X, A) € |T-ULS| is relatively full. Then ((X*,]X),j) is a
completion of (X, A) in T-ULS iff for each $ x $ > ®, for some ® = &1 € A, there exists
an £ € C; such that £ < O(H) N H and j<L exists.
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CHAPTER 5: STRICT T-EMBEDDINGS

For a fixed T-limit space, under suitable conditions, an order preserving injection between
the set of all equivalence classes of all strict T3-compactifications of the T-limit space and
all the totally bounded T-Cauchy spaces which induce the T-limit space and have a strict
T5-completion is given. Unfortunately, the author was unable to determine whether or not
the injection is a bijection. In the case that the underlying lattice is a complete Boolean
algebra, the injection is in fact a bijection. Further, a characterization as to when a totally

bounded T-Cauchy space has a T3 (strict T3)-completion is an open problem.

T3-Embeddings

Suppose that (X, q) €|T-Lim| and a € L¥; recall that the closure of a is defined by a(z) =
Vivs(a) : § 5 2}, 2 € X. It § € FL(X), then $ denotes the T-filter on X whose T-
filter base is {¢ : ¢ € H}. It is shown in Lemma 2.14 that if B is a T-filter base for £
then B = {b : b € B} is also a T-filter base for . Fang and Yue [5] defined regularity
of (X,q) €|T-Lim| in terms of a diagonal axiom. This definition is shown in Theorem 2.6
to be equivalent to § — = whenever § — 2. Further, define (X,C) €|T-Chy| to be
regular provided that § € C whenever § € C. Moreover, (X,C) €|T-Chy| is said to be T3
provided it is 75 and regular. A similar definition holds for objects of T-Lim . Suppose
that 0 : X — (Y,p) €|T-Lim| is a dense injection. Since #(X) is dense in Y, for each
y € Y\ 6(X), choose a T-ultrafilter &, on X such that 67 &, 25 y. Define for each a € LY,
a € LY by

a(r),  y="0(z)

aly) = .
ve,(a), yeY \0(X)
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Observe that & Ab = a A b for each a,b e LY, and if § € §] (X) we let § denote the T-filter

on Y whose T-filter base is {b: b € F}.

Lemma 5.1. Assume that L is a complete Boolean algebra, 0 : X — (Y, p) €| T-Lim| is a
dense injection and $ is a T-ultrafilter on Y. Then there exists a T-ultrafilter § on X such
that 0=F C § C $ and for each b € LX, vz(b) = vy (D).

Proof. The proof is a slight modification of an argument used in the proof of Theorem 2.11.
For each y € Y \ 6(X), choose a T-ultrafilter &, 2+ y and for each b € LX define b as
above. Define 1(b) = vg(b) for each b € LY; the argument given in the proof of Theorem
2.11 shows that pu is a stratified L-ultrafilter on X. Since L is a complete Boolean algebra, it
follows from Theorem 2.1 that y = vz, where § = {b € L* : u(b) = T} is a T-ultrafilter on
X. Note that b € Fiff b € § and thus § C $; further, vg(b) = u(b) = vg(b). Since b < 07b
for each b € LX, 03 C § C 9. O

Assume that 6 : X — (Y, p) €| T-Lim| is a dense injection. Define for each a € L, at € LY

as follows:

a'(y) = V{vs(a) : 67§ Sy}, y e Y.

Observe that af < #~a. Indeed, if 0F - y, then vz(a) = V[ba] < V[07b,07a] =
beF beF

vo=3(07a) < \{rg(07a) : H Ly} = ﬁ(y) Hence af(y) = V{vz(a) : 67F T

0~ a(y) and thus af < 6~ a.

Definition 5.1. Suppose that § : X — (Y, p) €| T-Lim| is a dense injection. Consider the

following axioms:

(S1) a' = 6~a for each a € L¥
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(S2) for each T-filter § 2+ y, there exists a T-filter § on X such that #7F =2+ y and

=FCH

(S3) Same as (S2) with $) and § being T-ultrafilters.

The map 6 is said to be strict whenever (S1) and (S2) are satisfied.

Lemma 5.2. Suppose that L is a complete Boolean algebra and 6 : X — (Y, p) €|T-Lim| is

a dense injection and (Y, p) is compact Ts. Then 0 obeys (S1) and (S3).

Proof. Assume that §) is a T-ultrafilter on Y such that $§ =+ y. Employing Lemma 5.1,
there exists a T-ultrafilter § on X which satisfies 6§ C § € § and vz(a) = vg(a) for
cach a € LX. Since (Y,p) is compact T3, it follows that #7F <+ y and thus (S3) is
valid. Moreover, af(y) = V{va(a) : 678 2 y} > v3(a) = vy(a) >

al(y) > V{vs(07a) : § > y} =
(S1) is satisfied. O

vy(07a). Therefore

~a(y). Since a'(y) < 0~a(y) always holds, it follows that

)

Assume that (X,C) €|T-Chy|; let X* = X U{(&) : & € N} and let j : X — X* denote

the natural injection. Define the following T-limit structure o on X*:

9L j(z) it H>7F for some F Lz

H (&) iff §>;5776N[(6)] for some & € N.

Then (X*,0) €|T-Lim| and j : X — (X*,0) is a dense injection. If a € L*, then define
a'(y) = V{vz(a) : 77F = y}, y € X*. Moreover, suppose that § € §; (X) and denote
B = {a' : a € F}. It is shown that B is a T-filter base on X*. Indeed, if a € §, then

V a'(y) > V a'(j(z)) > V a(z) = T and thus (TB1) is satisfied. Next, assume that

yeX* zeX zeX

bl,bg - %; then (b1 A bg)T(y) = \/{Ug(bl A bz) . ]:>8’ i> y} = \/{I/g(bl) A\ I/g(bg) . jég L>
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y} < V{va(b) Ave(by) 1 778,578 2 yb = Vva(by) : 778 =y} AV{ve(by) : j7£ 2
y} = bi(y) Abh(y) = (b1 A b (y) and thus (by A b))t < bl A bL. Hence, if by,by € F,
V [al, Y ADY] >V [af, (by Aby)T] > [(b1 Abo)T, (b1 Aby)i] = T and thus (TB2) is valid. Thus

acF acy

B is a T-filter base for the T-filter on X* denoted by §'. Define
Cr={HeF (X"):H>F for some § € C}

and note that [j(z)] > g whenever § 2% 2. Also, [(&)] > &' and $ > & € CT implies that
$ € C'. However, if §1,F2 € C such that 3’1 V 3; exists, 3’1 N 3; may fail to belong to CT.
Hence CT may fail to be a T-Cauchy structure on X*. A necessary condition for ((X * C, j)

to be a Ty-completion of (X, C) is given below.

Lemma 5.3. Suppose that § € §1(X), (X,C) €[T-Chy|. Then

(i) 75(FY) exists and equals §

(ii) (X,C) is reqular whenever ((X*,CT),j) is a Ty-completion of (X,C).

Proof. (i) Since j<j7F exists and §' C j7F, it follows that j<(F') exits. Next, it is shown
that j<(F7) = 3. Assume that @ € § and thus 7 (a') is a T-filter base member for j<(F1).
Note that 7 (a)(x) = a(j(x)) = V{s(a) : 776 %5 j(2)} = Vi{ws(a) : & 5 2} = a(a).
Since j* (a') = a € §, it follows that j<(§') C §. Since {a : a € F} is a T-filter base for §,
j=(a) =@ € j5(F') whenever a € §, and thus § € j<(§'). Then j5(F1) = 3.

(ii) Verification here follows directly from (i). O

Lemma 5.4. Assume that ((X*, D),j) is a Ts-completion of (X,C) in standard form. Then

(i) ((X*,CT),j) is a Ty-completion of (X,C) and CT C D

88



(ii) j: (X,C) — (X*,C") satisfies (S2)

(1i7) ((X*,CT),j) is the only possible strict Ts-completion of (X,C) in standard form.

Proof. (i) Suppose that $1, $; € CT such that $; V $), exists. Then there exists §; € C such

that 8’1 C $;, i =1,2. Let p = ¢p; then jé&p C SI C $; and since (X*, D) is regular,

jﬁ&p € D,i=1,2. Hence j:>§,~p \/j:>§2p exists and thus j:>§,~p ﬂj:>§2p € D implies that
F1 NF» € C. Therefore § NFL > (F1NF2)' € CT and hence (X*,CT) €|T-Chy|. Moreover,
if § € C, then ;7§ C &' implies that §' € D and thus C' € D. Since C' C D, ((X*,CT),j)
is a Ty-completion of (X,C).

(ii) Denote r = ge+ and suppose that $ AN y. Then $ € C' and thus $§ > ' for some
§ € C. Hence §' N[yl € C' and j7F — y. It follows that lﬁ*ST C &' C $ and thus
j:(X,C) — (X*,CT) obeys (S2).

(iii) Assume that ((X D), j) is any strict T3-completion of (X,C) in standard form. It
remains to show that C* = D. According to (i), Ct € D. Let $ € D and $ 2, y, where
p = gp. Since j : (X,C) — (X*, D) obeys (S2), there exists a T-filter § on X such that
7% 2 yand 77§ C $H. Note that § € C. Applying (S1), ' = j7=F" C 9 and thus
$ € C. Hence C' = D and ((X*,CU,]’) is the only possible strict T3-completion of (X, C)

in standard form. O

Lemma 5.5. Suppose that (X,C) has a strict Tsz-completion in T-Chy . Assume that ¢ :
(X,C) — (Y, D) is Cauchy-continuous and (Y, D) is T3 and complete. Then there ezists a
Cauchy-continuous map 6 : (X*,CT) — (Y, D) such that 0 o j = . In particular, under

these assumptions, ((X*,CT),j) is the largest Ts-completion of (X,C) in T-Chy .

Proof. Denote p = qet and r = gp. Define 6 : X* — Y by (s) = t, where j7& 25 s

and ¥~ ® - t. Since (X*,C) and (Y,D) are T3 and complete,  is a well-defined map
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and # o j = 9. To show that # is Cauchy-continuous, let § € C; it suffices to show that
Y=F C 67(3"). Choose a € § and y € Y; it is shown that 0~ (a")(y) < ¥~a (y). Recall
that 67 (al)(y) = V{a'(2) : 0(z) = y} and observe that ve(a) = v b, a] < v ()b, a] =
vyrs(7a). Fix 2 € 071 (y); then af(2) = V{ve(a) : 776 L5 2} ?V{Vw%(:;:a) SRl
2} < V{ws(Wa) 1 5 5y} = ¢a (). Hence 07 (al)(y) = Vi{al(2) : 0(2) = y} < v7d (1)

and thus 6 is Cauchy-continuous. O

Let (X,q) €|T-Lim|. Then (X, q) is said to satisfy property Q provided: § - z and
[2] %+ o implies that § -~ 2. Moreover, (X, q) €|T-Lim| is called symmetric provided it is
regular and obeys property Q. Since T-Lim possesses initial structures, it easily follows that
if (X,q) €|T-Lim|, then there exists a finest symmetric T-limit structure which is coarser
that ¢. Let sq < ¢ denote this structure. Observe that if (X,C) €|T-Chy|, then (X, qc)

satisfies property Q. Verification of the following lemma is straightforward.

Lemma 5.6. Assume that (X, q) €|T-Lim| is reqular. Then there exists a (complete) Cauchy

structure C such that qc = q iff (X, q) is symmetric.

Let (X,C) €| T-Chy| and let »C < C denote the finest regular Cauchy structure on X which

is coarser than C. According to Lemma 5.6, g,¢ is symmetric.

Lemma 5.7. Suppose that (X,C) €|T-Chy| is complete and denote ¢ = qc. Define Cyy =

{F € FL(X) : § sq-converges}; then rC = Cs, and, moreover, (X,rC) is complete.

Proof. Since sq is symmetric, it follows from Lemma 5.6 that (X,Cs,) €|T-Chy|. Also,
(X, Cyq) is complete and induces (X, sq). Since (X, Cy,) is regular, it follows that Cs, < rC < C
or C C1C C Cyy. Let § € Cyy; then § 24, 2 for some x € X. Since g¢ is symmetric and
¢rc < g, it follows that ¢ < sq < ¢. Hence § 2%+ 2 and thus § € rC. Therefore rC = C,,

and (X, rC) is complete. O
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As used above, since T-Chy possesses initial structures, it follows that for each (Y, D) €|T-
Chy| there exists a finest regular T-Cauchy structure on Y, which is coarser than D, denoted
by (Y,rD). Moreover, if f : (X,C) — (Y,rD) is Cauchy-continuous in T-Chy , then
[ (X,rC) — (Y,rD) is also Cauchy-continuous. Assume that (X,C) €|T-Chy| is T» and

define C on X* as follows:

C = {9 e F,(X*) : either $ > j~F for some g convergent §, or

H>776N[([6]) for some & € N'}.

The following lemma appears above as Theorem 3.3. It is listed here for convenience.

Lemma 5.8. Suppose that (X,C) €| T-Chy| is Ty. Then

(i) ((X*,a),j) is the finest Ty-completion of (X,C) in T-Chy which is in standard form
(i) If f : (X,C) — (Y. D) is a Cauchy-continuous map and (Y, D) is complete, f has a

Cauchy-continuous extension f : (X*,é) — (Y, D) such that foj=f.

An object (X,C) €| T-Chy]| is said to obey property P provided that for each § ¢ C there
exists a Ts-complete (Y, D) €|T-Chy| and a Cauchy-continuous map f : (X,C) — (Y, D)
such that f=F ¢ D.

Lemma 5.9. Assume that (X,C) €|T-Chy| is T5. Then (X,C) has a T3-completion in

T-Chy iff it satisfies property P.

Proof. Suppose that (X, C) possesses a Ts-completion in T-Chy. Then clearly (X, C) satisfies

property P. Conversely, assume that (X,C) obeys property P. It is shown that ((X *, TCN), j)
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is a Tz-completion of (X,C). Denote § = ¢ 5; then j : (X,C) — (X*,7C) is Cauchy-
continuous and cls(j(X)) = X*. That is, 1j(X)6 = 1x-. Indeed, if x € X then clearly
Tio0 (x) = T and if & € N then T;x) ((8)) = V{vg(Ljx) : H > (B)} = V{vg (L) :

9 > 76N (8]} > v=ea,,, = . Suppose that § € F(X) such that j=F € »C

i)
but § ¢ C. Then there exists a Ts-complete (Y,D) €|T-Chy| and a Cauchy-continuous
map f : (X,C) — (Y,D) such that f§ ¢ D. Since by Lemma 5.8 f has a Cauchy-
continuous extension f : (X*,rC) — (Y, D) such that foj = f, f§ = [7(j~F) € D,
contrary to our assumption. Hence j : (X,C) — (X * rC) is a dense embedding. Further,
(X*,7C) is Ty; otherwise, $ LN y1,y2 for some $ and y; # y2 and hence y; and y, have
the same d-convergent T-filters. In particular, [y1] N [y2] € 7C. If y; = j(2;), @ = 1,2, then
[z1] N [x2] € C, which contradicts (X, C) being Ty. Next if y; = j(22) and yp = (&), & € N,
then ;=& LN j(x1) implies that & 4 21, which violates & € A. Finally, suppose that
y; = (8;), where &; € N, i = 1,2 and (B;) # (&,). This is impossible since (&) and (&,)
must have the same d-convergent T-filters. Therefore (X*,7C) is T. Moreover, since (X *.C)

is complete, it follows from Lemma 5.7 that (X*, 7’C~) is also complete. Hence ( ), J

is a Ts-completion in T-Chy. ]
Lemma 5.10. Assume that (X,C) €|T-Chy| is T3, obeys property P, and let ((X*,r@),j)
denote its Ts-completion in standard form. Then,

(i) ((X*,CT),j) is a Ty-completion of (X,C) and j obeys (S2)

(ii) if L is a complete Boolean algebra and (X, C) is totally bounded, ((X*7 CT),j) is a strict

Ts-completion iff Ct = rC.

Proof. (i) The result follows from Lemma 5.4 (i) and (ii).

(ii) Suppose that ((X*, CU,j) is a strict Ts-completion of (X, C). Since rC < CT < C and rC
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is the finest regular Cauchy structure which is coarser than C, rC = C'. Conversely, assume
that Ct = rC. According to (i), j : (X,C) — (X*,C") obeys (S2). Since L is a complete
Boolean algebra and (X,C) is totally bounded, it follows from Lemma 5.1 that (X*,CT) is
also totally bounded and thus compact. Then according to Lemma 5.2, (X*,CT) obeys (S1)
and hence ((X*, CT),j) is a strict T3-completion of (X,C). ]

Corollary 5.1. Under the assumptions of Lemma 5.10 (ii), both (X*,CT) and (X*,rC) are
compact and hence Ct and rC possess the same T -ultrafilters. Moreover, ((X*,CT),j) s a

strict Ty-completion of (X,C) in this case.

Connecting T3-Completions and T3-Compactifications

Given (X, q) €|T-Lim|, assume that (X, q) possesses a strict T3-compactification. Let A
denote the set of all equivalence classes of strict T3-compactifications of (X, ¢) in T-Lim and
let B denote the set of all totally bounded T-Cauchy spaces (X, C) such that gc = ¢ and which
have a strict Ts3-completion in T-Chy. Define © : A — B by @( <((Y, p), w)>> = (X,C,),

where § € C, iff ™ F p-converges.

Theorem 5.1. The map © : A — B is an order preserving injection. Moreover, © is a

bijection whenever L is a complete Boolean algebra.

Proof. Let @< <((Y, D), w)>> = (X,C,) and note that C, is a T-Cauchy structure. Indeed
Y= ([z]) = [W(z)] 2 ¢(z) and thus [2] € C,. If & > F € C,, then & € C,. Assume
that §1,82 € C, such that § V §2 exists. Then ¢=F; V 7 F, exists and since (Y,p)
is Ty, Y7 (F1 N F2) = ¥7F N Y~ F, p-converges. Hence § N F2 € C, and thus (X,C,)
is a T-Cauchy space. Moreover, (X,C,) is T3 since if § € C,, then 7,0:>§q > ﬁp -

converges since (Y, p) is T3. Therefore §q € C, and (X,C,) is T5. Further, = F p-converges
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for each T-ultrafilter § on X and thus § € C,. Then (X,C,) is also totally bounded.
Denote D = {§ € FL(Y) : H p-converges}, and it follows that ((Y, D),w) is a strict
Ts-completion of the totally bounded 73 space (X,C,) and thus (X,C,) € B. We next
show that © is an injection. Assume that @<<<(Yi,pi),¢i>>> = (X,Cp), i = 1,2. Define
h: (Yi,p1) — (Ya,p2) by h(s) = t, where 77§ 22+ t whenever ¥7F 2 5. Suppose
VT 2 s, ko= 1,2; then o7 (§1 N F2) = s and thus §1 N Fo € Cp. It follows that
57 (§1 N F2) 225 t and thus h is well-defined. Moreover, 97 [z] = [ty (x)] 2 ¢y (x) and

V37 [x] = [Wa()] 2 o(z) implies that ho by = 1.

It remains to show that A is an isomorphism. Since

O((((ip).0)) ) =0({((p)sn)) ) = (X,

C={F €FL(X): 7T pi-converges} = {F € & (X) : 17 & py-converges}. Then for each
a € L, gra’ (s) = al(s) = V{sla) : o7 F 2 s} = V{ve(a) : 76 25 1} = al(t) =
WZ (t), according to (S1). Next, assume that $ <=+ s; then employing (S2), there exits
an § such that 7§ 2  and ﬁpl C 5. Observe that h™ (Wl)(t) = \/{Wl(z) :

h(z) =t} = ¢ra (s) = ¢ya (t). Further, if a € §, then 1~ (Yra’ )(t) = vya’ (1)

implies that h=$ > h™ (@Z)?@ﬂ 1) = ¢2:>3P ®. Then h is continuous and by symmetry, h is an

isomorphism. Therefore <((Y1,p1),w1)> = <((Y2,p2), 1/12>> and O is an injection.

Finally, we must show that the injection © is order preserving. Assume that <<(Y1,p1), ¢1>> >
<((Y2,p2),1/12)> and let k£ : (Y1, p1) — (Y2, p2) be a continuous map such that ko 1) = 1.
Denote Cp, = {F € §.(X) : ¥7F p-converges}, i = 1,2. Suppose that § € C,,; then
Y3 § = (k 0 11)™§ po-converges and hence § € C,,. Therefore C,, > C,,. Conversely, sup-
pose that C; > Cy and © <<((Yi,pi),¢i)>> = (X,C;),i=1,2. Define h : (Y1,p1) — (Y2, p2)

as follows: h(s) = t, where ¥7"§ 2+ s which implies that ¢5’§ —=+ t. Since C; C Co,
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h is well-defined and h o, = 9. If a € LX and s € Yj, then wfam(s) = al(s) =
V{vs(a) : ¥7F 25 s} < V{uela) - v576 25 ¢} = al(t) = ¥ya (t). It follows that
h= (w?SP 1) > 7% 25 ¢ whenever ¥ F 25 s and thus h is continuous. Therefore

<((Y17p1)7¢1)> > <<(Yg,pg),¢2)> and © is order preserving.

Next, assume that L is a complete Boolean algebra and (X,C) € B. Let ((Y, D), w> denote
the strict Ts-completion of (X,C) in T-Chy . Define p = gp and let C, = {§F € F.(X) :
= F p-converges}. It follows from Lemma 5.1 that (Y, p) is compact and thus ((Y, D), ¢> is
a strict T3-compactification of (X, ¢). Moreover, note that C = C,, © (<((Y, D), w>>) = (X,0)

and hence O is a bijection in this case. O]

Whenever L is a complete Boolean algebra, the following example establishes the existence

of a totally bounded T-Cauchy space which has a strict T3-completion.

Example 5.1. Suppose that L is a complete Boolean algebra and X # &. Recall that by
Proposition 1.1, [z] is a T-ultrafilter on X. Let n denote the set of all T-ultrafilters on X
which are not of the form [z], for some z € X, and define C = {[z],& : 2 € X, € n}. Then
(X,C) €|T-Chy| is totally bounded and (®) is a singleton set, for each & € 7. Let ¢ = ¢
and note that § = z iff § = [2]. Fix a € LX and observe that a%(x) = \/{v3(a) : §
2} = v(a) = a(z), v € X. Hence a? = a and thus (X, C) is regular. Moreover, af(j(z)) =
V{vs(a) : 77§ = j(2)} = v (a) = a(z) and o' ((8)) = V{va(a) : j7R = (&)} = ve(a).
As usual CT = {§) € F](X*) : § > F' for some § € C}. Then C' obeys (TC1) and (TC2)
but we must prove (TC3). Suppose that §; V Fo fails to exist, where §1,F2 € C. Then
there exists a; € §; such that \/ ai(x) Aaz(z) = a < T. Recall that for each T-filter 8 and
be LY, vg(b) < V blz). It f(:lii(ws that V al(y)Aal(y) = V (a1(z)Aaz(z))A V (ve(ar)A
zeX yeX* zeX LI
ve(az)) = a A yj\6/77(1/Q5(a1) Ave(as)) = o < T. Tt follows that F v F fails to exist and thus

(X*,C") €|T-Chy| . Let r = qot. It is shown that (X*,CT) is regular. Using the notation

95



prior to Lemma 5.1, since (&) is a singleton, a@ = al for each a € LX and thus § =5 Assume
that $ - y, where § is a T-ultrafilter on X*. According to Lemma 5.1, there exists a T-
ultrafilter § on X such that 77§ C & = § C $ and vg(a) = vg(a) for each a € LX. Since
(X,C) is totally bounded, § € C and thus §' - y and, moreover, vz(a) = v4(a) = vg(al).
Hence al’ (y) = V{vs(ah) : 9 = y} = V{rz(a) : 77F - y} = af(y) and thus of " = al.
Therefore ' = §' and ((X*, CT),j> is a T-completion of (X, C) in standard form. Further,
since (X, C) is totally bounded, Lemma 5.1 implies that (X*,CT) is also totally bounded and
hence compact. According to Lemma 5.2 and Lemma 5.4, j : (X,C) — (X*,CT) obeys (S1)

and (S2). Therefore ((X *.Ch), j) is a strict T3-completion of (X,C) in standard form. [

Continuing with the notation used in Theorem 5.1, denote B = {(X,Cx) : k € J} and
define C = kﬂJCk. Since each (X,Cy) induces (X, q), it follows that ¢ = q. As before,
let X* =X LEJ {(8) : & € Ne} and j : X — X* be the natural injection. Further, let
N, = {6 € C;, : & fails to g-converge}. Since each (X,C.), k € J, is totally bounded, it
follows that (X,C) is also totally bounded. Denote X; = X U {(&); : & € N;} and let
((X;,C,i),j@ denote the strict T3-completion of (X,C) in standard form. Since C and Cj
have the same T-ultrafilters and C C Cy, it follows that (&) C (&), for each T-ultrafilter
& eNcand k € J. Let §; : X* — X} denote the bijection defined by 0 (j(x)) = jir(z) and
0x((8)) = (), z € X and T-ultrafilter & € M. Since T-Chy is a topological category, it
possesses initial structures. Let D denote the initial T-Cauchy structure on X* determined
by the maps §; : X* — (X,’;,C,i), k € J. Define p = gp and p, = Gt k € J. For sake of

convenience, consider the commutative diagram:
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(X,C) (X*,D)
idy O
Jk
(X,Cp) (X7,Ch)

Proposition 5.1. Assume that the frame L is a Boolean algebra for parts (ii) and (iv); fix
(X,q) €|T-Lim|. Using the notation given above, suppose that the assumptions made in

Theorem 5.1 are valid and define C = () C,. Then
kedJ

Proof. (i): Since each (Xj,Cl) is a regular T-Cauchy space and D is the initial T-Cauchy
structure on X* determined by 8, : X* — (X},C)), it follows that (X* D) is a regular
T-Cauchy space and 0y, : (X*,D) — (X,:‘,C,i) is Cauchy-continuous, k € J. If $ 25 2z, 2,
then 0778 22 6,(21), 6x(22) and thus 0x(21) = 0k(22). Then 2, = 2z, and (X*, D) is Ty. If
§ € C, then using the commutative diagram above, 67 (j7F) = jo§ € C} for each k € J,
and thus j7§ € D. Therefore j is Cauchy-continuous. Next, assume that § € § (X) and
j7F € D. Then j7F = (0,0 j)7F € Cl and hence § € C, for each k € J. It follows that
$ € C and thus ((X*, D),j) is a Ts-completion of (X,C) in standard form.

(ii): Suppose that $) is a T-ultrafilter on X*. According to Lemma 5.1 there exists a T-

ultrafilter § on X such that $H > jigp. If § % z, then H 2> j(z). Assume that § € M.
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q,t
Since j=§ € D, it follows that 62 (j=F) = j=F —> 6,((3)) for each k € J. Then j=§F 2

(&) and hence (X*,p) is compact. It follows that ((X D), j) is a Tz-compactification of
(X, q) and by Lemma 5.2, j obeys (S1) and (S3).

(iii): Employing Lemma 5.4, ((X7 CT),j> is a Ty-completion of (X, C) which satisfies (S2).

(iv): Let $ be a T-ultrafilter on X*, and by Lemma 5.1 there exists a T-ultrafilter § on X
such that §' C §. Since (X,C) is totally bounded and (X* C') is complete, it follows that
$) r-converges. Then (X*,r) is compact and ((X*,r),j) is a Ty-compactification of (X, q)
which obeys (52). O

The assumption that the frame L is a Boolean algebra is used in the proof of Theorem 5.1
to show that the strict Ts-completion ((Y, D),w) of the totally bounded T-Cauchy space
is compact. The key step being that each stratified L-ultrafilter on X is the image of a
T-ultrafilter according to the mapping § — vz listed in Theorem 2.1. This property has
been extended from the requirement that L is a Boolean algebra to more general algebraic
structures; for example, see Proposition 4.4.4 [12] and Proposition 9 [9]. These and related
references may prove to be profitable in extending the results of this chapter as well as the

compactification given in Chapter 2 and [26].
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APPENDIX: CATEGORICAL CONSIDERATIONS
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The following definitions and theorems can be found in [24] and [1].

Definition A.1 [24] A category Cat is said to be a construct if its objects are structured
sets, i.e. pairs (X,€) where X is a set and £ a Cat-structure on X, its morphisms f :
(X,&) — (Y, n) are suitable maps between X and Y and its composition law is the usual

composition of maps. A construct Cat is said to be topological if the following hold:

(T1) Ewxistence of initial structures: For any set X, any family ((Xi,fi)>iel of Cat-objects
indexed by a class I and any family (f : X — X;);c; of maps indexed by I there exists
a unique Cat-structure £ on X such that for any Cat-object (Y,n) amap g : (Y,n) —
(X, &) is a Cat-morphism iff for every i € I the composite map fiog: (Y,n) — (X;,€)

is a Cat-morphism.

(T2) For any set X, the class {(Y,7n) € |Cat| : X = Y} of all Cat-objects with underlying

set X is a set.

(T3) For any set X with cardinality at most one, there exists exactly one Cat-object with

underlying set X.

The property of being a topological category is quite useful. For example, suppose the
category Cat is topological, (X,£) € Cat and A C X. The initial structure with respect
to the natural injection j : A — X defines a Cat-structure on A, say £4. The Cat-object

(A, &4) is often called a sub-structure of (X, ¢).

Another example of the use of a topological category is the existence of product structures.

Suppose that Cat is a topological category and ((XZ-, &)) are Cat-objects indexed by a

el

class I. Let [] X; be the product set, and let [] & be the initial structure on [] X; defined
iel iel iel

by the family of maps <7r2- Xy — Xi) where 7; is the i*" projection map. In this way
iel iel
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we may obtain products in the topological category Cat.

Perhaps the greatest benefit to topological constructs is the existence of final structures.

The following theorem appears in [24] as Theorem 1.2.1.1.

Theorem A.1. [24] Let Cat be a construct. Then the following are equivalent:

(a) Cat satisfies (T1) in Definition 5.

(b) For any set X, any family ((Xi,fi)>iel of Cat-objects indexed by some class I and any
family (fi + Xi — X)ier of maps indexed by I there exists a unique Cat-structure &
on X which is final with respect to ((Xl-,fi), fi, X, I), i.e. such that for any Cat-object
(Y,n) a map g : (X,&) — (Y,n) is a Cat-morphism iff for every i € I the composite

map go f; : (X;,&) — (Y,n) is a Cat-morphism.

In Definition A.1 (T1) above, the structure (f; : X — X;);es is often called a source and

in Theorem A.1 (b) above, the structure (f; : X; — X);es is often called a sink.

Definition A.2 [24] A category Cat is called Cartesian closed provided the following

conditions are satisfied:

(CC1) For each pair (A, B) of Cat-objects, there exists a product A x B in Cat.

(CC2) For each Cat-object A, the following holds: For each Cat-object B, there exists some
Cat-object B (called power object) and some Cat-morphism evap : BA x A — B
(called evaluation morphism) such that for each Cat-object C' and each Cat-morphism
f:C x A — B, there exists a unique Cat-morphism f : C — B* such that the

diagram below commutes:
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eva,B

BAx A B
inA

DN

Cx A

Definition A.3 [24] (i) Let (X,¢), (Y, n) be objects of the topological construct Cat. Then
the Cat-morphism f : (X,&) — (Y,7) is said to be a quotient map if f : X — Y is

surjective and 7 is the final Cat-structure with respect to the sink f: (X,{) — Y.

(ii) A topological construct is called strongly Cartesian closed provided it is Cartesian

closed and the product of quotient maps in Cat are quotient maps in Cat.

Definition A.4 [24] (i) In a topological construct Cat, a partial morphism from A to B

is a Cat-morphism f : C' — B whose domain is a subobject of A.

(ii) A topological construct Cat is called extensional provided that every Cat-object B has
a one-point extension B* € |Cat|, i.e. every B € |Cat| can be embedded via the addition
of a single point cop into a Cat-object B* such that, for every partial morphism f : C — B

from A to B, the map f*: A — B*, defined by

f*(a) _ f(a), aeC :
oo, a¢C

is a Cat-morphism.

(iii) A topological construct Cat is called a topological universe if it is Cartesian closed
and extensional. It is called a strong topological universe if it is strongly Cartesian closed

and extensional.
Definition A.5 [24] Let Cat be a category and Subcat be a full subcategory of Cat.
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We say that Subcat is reflective in Cat if for each A € |Cat| there exists an object
B € |Subcat| and morphism f: A — B of Cat such that for each morphism g: A — C
of Cat with C' € |Subcat|, there exists a unique Subcat morphism h : B — C so that

the diagram below commutes:

f

B
\ =

g .

C

Further, if f : A — B can be chosen to be a bijection, then Subcat is said to be a

A

bireflective subcategory of Cat.

Definition A.6 [24] Let Cat be a category and Subcat be a full subcategory of Cat.
We say that Subcat is coreflective in Cat if for each A € |Cat| there exists an object
B € |Subcat| and morphism f : B — A of Cat such that for each morphism g: C' — A
of Cat with C' € |Subcat|, there exists a unique Subcat morphism h : C' — B so that

the diagram below commutes:

f

B
Jh : /
: g
C

Further, if f : B — A can be chosen to be a bijection, then Subcat is said to be a

A

bicoreflective subcategory of Cat.

Definition A.7 [1] Let CAT be a category. A concrete category over CAT is a pair
(Cat, U) such that Cat is a category and U : Cat — CAT is a faithful functor, often

times the forgetful functor.
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