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ABSTRACT

A complete lattice is called a frame provided meets distribute over arbitrary joins. The

implication operation in this context plays a central role. Intuitively, it measures the degree

to which one element is less than or equal to another. In this setting, a category is defined

by equipping each set with a T-convergence structure which is defined in terms of T-filters.

This category is shown to be topological, strongly Cartesian closed, and extensional. It is

well known that the category of topological spaces and continuous maps is neither Cartesian

closed nor extensional.

Subcategories of compact and of complete spaces are investigated. It is shown that each

T-convergence space has a compactification with the extension property provided the frame

is a Boolean algebra. T-Cauchy spaces are defined and sufficient conditions for the existence

of a completion are given. T-uniform limit spaces are also defined and their completions

are given in terms of the T-Cauchy spaces they induce. Categorical properties of these

subcategories are also investigated. Further, for a fixed T-convergence space, under suitable

conditions, it is shown that there exists an order preserving bijection between the set of

all strict, regular, Hausdorff compactifications and the set of all totally bounded T-Cauchy

spaces which induce the fixed space.
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LIST OF NOTATIONS

α→ β = ∨{δ ∈ L : α ∧ δ ≤ β}

[a, b] =
∧
x∈X

(
a(x)→ b(x)

)

1S(x) =

>, x ∈ S
⊥, x /∈ S

α1S(x) =

α, x ∈ S
⊥, x /∈ S

f→(a)(y) = ∨{a(x) : f(x) = y}

f←(b) = b ◦ f

f⇑(ν)(b) = ν(f→(b))

f⇓(ν)(a) = ∨{ν(b) : f←(b) ≤ a}

ẋ(a) = a(x),

Strat. filter gen. by x

FSL(X) Strat.-L-filters on X

f⇒F >-filter gen. by {f→(a) : a ∈ F}

f⇐G >-filter gen. by {f←(b) : b ∈ G}

[x] = {a ∈ LX : a(x) = >},

>-filter gen. by x

F>L(X) >-filters on X

νF(a) =
∨
b∈F

[b, a]

Fν = {a ∈ LX : ν(a) = >}

a(x) = ∨{νF(a) : F q−→ x}

eG(b) = νG(b)

κσH = {b ∈ LX : eb ◦ σ ∈ H}

(a× b)(x, y) = a(x) ∧ b(y)

(a ◦ b)(x, y) =
∨
z∈x

(
a(x, z) ∧ b(z, y)

)
a−1(x, y) = a(y, x)
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CHAPTER 1: INTRODUCTION

The use of filters to study various topological properties has been profoundly successful. It

is natural, then, to use a many-valued version of a filter to adapt classical or crisp properties

in topology to their many-valued or fuzzy counterparts. In this work, one such notion

of a fuzzy or many-valued filter, the >-filter, is used to establish several topological and

categorical properties and structures in the fuzzy setting. The notion of a >-filter is due to

Höhle [10]. The particular version which follows here is due to Fang and Yu [29].

Preliminaries

L-Sets

A lattice (L,∧,∨) is called a complete Heyting algebra or frame provided it is complete

and obeys α ∧
( ∨
j∈J

βj

)
= ∨

j∈J
(α ∧ βj) for all α, βj ∈ L, j ∈ J . The implication operator

→ : L × L → L is defined by α → β = ∨{δ ∈ L : α ∧ δ ≤ β}. Let ⊥(>) denote the

bottom(top) member of the complete lattice L, respectively. In a bounded lattice, the

pseudo-complement of an element α is an element ¬α such that α ∧ ¬α = ⊥. If, in

addition, α ∨ ¬α = >, then ¬a is called a complement. If we let ¬α = α → ⊥, then

α ∧ ¬α = ⊥ but α ∨ ¬α does not always equal >. Therefore, ¬α = α → ⊥ is a pseudo-

complement and α → β is sometimes referred to as the relative pseudo-complement of

α with respect to β. If α→ ⊥ is a complement for each α ∈ L, then the frame L is called a

complete Boolean Algebra.

Since meets distribute over arbitrary joins, α → β = max{δ ∈ L : α ∧ δ ≤ β}. Given a set

X, an L-fuzzy subset of X, or an L-set is map a : X −→ L. Intuitively, an L-set assigns
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each member of X a degree of membership, indexed by L. We denote the set of all L-subsets

of X by LX . Then we may identify classical subsets of X with the characteristic functions.

That is, if S ⊆ X then we can identify S with the L-set, 1S(x) =

>, x ∈ S
⊥, x /∈ S

. In this sense,

L-sets are a natural generalization of the classical set. The lattice operations on L can be

extended point-wise to LX as follows:
( ∨
j∈J

aj

)
(x) = ∨

j∈J
aj(x),

( ∧
j∈J

aj

)
(x) =

∧
j∈J

aj(x), and

(a→ b)(x) = a(x)→ b(x) for each x ∈ X. Then (LX ,∧,∨) is also a frame, and 1∅(1X) are

bottom(top) members of LX , respectively. Also, if α ∈ L we let α1S(x) =

α, x ∈ S
⊥, x /∈ S

.

Let f : X −→ Y be a map. Then f→ : LX −→ LY and f← : LY −→ LX are defined

respectively by f→(a)(y) = ∨{a(x) : f(x) = y} for each a ∈ LX , y ∈ Y , and f←(b) = b ◦ f

for all b ∈ LY .

If L is a frame, X a set, and a, b ∈ LX , define [a, b] =
∧
x∈X

(
a(x)→ b(x)

)
. Note that if a ≤ b,

then a(x) → b(x) = > for each x ∈ X and thus [a, b] = >. It follows that we may think of

[a, b] as a measure of the degree to which a ≤ b. If the underlying set X is ever unclear, we

may write [a, b]X for clarity.

The following lemma is a collection of properties of the implication operator and can be

found in [29].

Lemma 1.1. Let L be a frame and X a set. Then,

(i) α ≤ β if and only if α→ β = >,

(ii) α ∧ β = α ∧ (α→ β),

(iii) (α→ γ) ∧ (β → δ) ≤ (α ∧ β)→ (γ ∧ δ),

(iv) ∧
j∈J

(α→ βj) = α→
(
∧
j∈J

βj
)
,

2



(v) ∧
j∈J

(αj → β) =
(
∨
j∈J

αj
)
→ β,

(vi) a ≤ b if and only if [a, b] = >,

(vii) [a, b ∧ c] = [a, b] ∧ [a, c],

(viii) [a, b] ≤ [b, c]→ [a, c] and [b, c] ≤ [a, b]→ [a, c],

(ix) [b ∨ c, a] = [b, a] ∧ [c, a],

(x) [c, a] ≤ [b, a] whenever b ≤ c, and

(xi) [a, b] ≤ [f→(a), f→(b)] and [c, d] ≤ [f←(c), f←(d)] whenever f : X → Y is a map.

>-Filters and Stratified L-Filters

One way we can explore familiar notions of continuity of maps, convergence, compactness

and other properties of interest is to define filters on these non-standard sets.

Definition 1.1. Let L be a frame. A map ν : LX → L is called a stratified L-filter

provided:

(F1) ν(1∅) = ⊥, and ν(α1X) ≥ α, each α ∈ L,

(F2) a ≤ b implies ν(a) ≤ ν(b), and

(F3) ν(a) ∧ ν(b) ≤ ν(a ∧ b), for each a, b ∈ LX .

Intuitively, each L-set is given a degree of membership in the stratified L-filter ν. If ν(α1X) =

α for each α ∈ L, then ν is said to be tight. If L is a complete Boolean algebra, then stratified

L-filters are automatically tight.
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Let FSL(X) be the set of all stratified L-filters on X. If ν1 and ν2 are two stratified L-filters

on X, denote ν1 ≤ ν2 whenever ν1(a) ≤ ν2(a) for each a ∈ LX . Moreover, for x ∈ X, define

ẋ ∈ FSL(X) by ẋ(a) = a(x), for each a ∈ LX . A Zorn’s Lemma argument easily shows that

each stratified L-filter on X is contained in a maximal stratified L-filter, called a stratified

L-ultrafilter. Höhle [11] proved the following fundamental results:

Theorem 1.1. [11] Suppose that L is a frame and ν is a stratified L-filter on X. Then for

all a ∈ LX ,

(i) ν is a stratified L-ultrafilter on X if and only if ν(a) = ν(a → 1∅) → ⊥ for each

a ∈ LX

(ii) if ν is a stratified L-ultrafilter, then ν(a→ 1∅) = ν(a)→ ⊥

(iii)
∧
x∈X

a(x) ≤ ν(a) ≤
( ∨
x∈X

a(x)→ ⊥
)
→ ⊥.

Next, if µ ∈ FSL(X), then the image stratified L-filter of µ under f is defined by f⇑(µ)(b) =

µ(f→(b)), for each b ∈ LX . Further, if ν ∈ FSL(Y ), then the inverse image stratified L-

filter of ν under f is defined as f⇓(ν)(a) = ∨{ν(b) : f←(b) ≤ a} whenever it exists. It is

straightforward to check that FSL(X) has a smallest element ν⊥ defined by ν⊥(a) =
∧
x∈X

a(x).

Stratified L-filters have been well studied. Therefor our attention will turn to a different type

of filter, the so called >-filter. Still, it will often be useful to connect >-filters to stratified

L-filters. The notion of a >-filter is due to Höhle [10]. A particular version which follows

here is due to Fang and Yu [29].

Definition 1.2. [29] Suppose that L is a frame and X a set. A non-empty subset F ⊆ LX

is called a >-filter provided:

(>F1) ∨
x∈X

b(x) = > for each b ∈ F,

4



(>F2) if a, b ∈ F, then a ∧ b ∈ F,

(>F3) if ∨
b∈F

[b, d] = >, then d ∈ F.

One major difference between stratified L-filters and >-filters is that in the >-filter case,

L-sets are either contained in the >-filter or they are not, unlike in the stratified case were

L-sets have degrees of membership. One way to think about >-filters is to think of taking

the L-sets from the top-level of a stratified L-filter and forming a filter. This notion will be

studied in greater detail in a later chapter.

Let F>L(X) denote the set of all >-filters on X. Let x ∈ X, define [x] = {a ∈ LX : a(x) = >}.

If the underlining set is ever unclear, we may write [x]X .

Lemma 1.2. Let x ∈ X, then [x] is a >-filter on X.

Proof. Let a ∈ [x] then a(x) = > and ∨
y∈X

a(y) ≥ a(x) = >. Hence (>F1) is satisfied. If

a, b ∈ [x] then (a ∧ b)(x) = a(x) ∧ b(x) = > ∧ > = >. Hence a ∧ b ∈ [x] and (>F2) is valid.

Finally, suppose that ∨
a∈[x]

[a, b] = >. Then using Lemma 1.1 (x), > = ∨
a∈[x]

[a, b] ≤ [1{x}, b] =

∧
y∈X

(
1{x}(y) → b(y)

)
=

∧
y∈X

⊥ → b(y), y 6= x

> → b(x), y = x
=

∧
y∈X

>, y 6= x

b(x), y = x
= b(x). Therefore

b(x) = >, b ∈ [x], (>F3) is satisfied and [x] is a >-filter on X.

It is often convenient to work with >-filter bases as defined below.

Definition 1.3. A non-empty subset B ⊆ LX is said to be a >-filter base whenever:

(>B1) for each b ∈ B, ∨
x∈X

b(x) = >, and

(>B2) if a1, a2 ∈ B then ∨
b∈B

[b, a1 ∧ a2] = >.

5



According to [29], a >-filter base B generates the >-filter F = {a ∈ LX : ∨
b∈B

[b, a] = >}; that

is, F is the smallest >-filter containing B. Moreover, if f : X −→ Y is a map, then the image

f⇒(B) = {f→(b) : b ∈ B} is a >-filter base, and the image of a >-filter F, denoted by

f⇒(F), is defined to be the >-filter on Y having the >-filter base {f→(a) : a ∈ F}. Further,

if G is a >-filter on Y , then the inverse image of G, denoted by f⇐(G), exists if and only

if ∨
x∈X

a(f(x)) = > for each a ∈ G. In this case, f⇐(G) is defined to be the >-filter on X

whose >-filter base is {f←(a) : a ∈ G}.

Lemma 1.3. Suppose that L is a frame, X a set and B a >-filter base for the >-filter F.

Then for d ∈ LX , ∨
b∈B

[b, d] = ∨
b1,b2∈B

[b1 ∧ b2, d] = ∨
a∈F

[a, d].

Proof. Assume that d ∈ LX , c ∈ B, a ∈ F, then according to Lemma 1.1 (viii), [b, a] ≤

[a, d] → [b, d]. Since a ∈ F, > = ∨
b∈B

[b, a] ≤ ∨
b∈B

(
[a, d] → [b, d]

)
≤ [a, d] → ∨

b∈B
[b, d]. Then

since > = [a, d] → ∨
b∈B

[b, d], by Lemma 1.1 (i), [a, d] ≤ ∨
b∈B

[b, d]. Consequently, ∨
a∈F

[a, d] ≤∨
b∈B

[b, d], and since B ⊆ F, ∨
a∈F

[a, d] = ∨
b∈B

[b, d].

Next, fix b1, b2 ∈ B; then since B is a > filter base, ∨
b∈B

[b, b1 ∧ b2] = >, and it follows

from the definition of F that b1 ∧ b2 ∈ F. Then B ⊆ {b1 ∧ b2 : b1, b2 ∈ B} ⊆ F, so

that ∨
b∈B

[b, d] ≤ ∨
b1,b2∈B

[b1 ∧ b2, d] ≤ ∨
a∈F

[a, d] and by the previous part of this proof, we have

equality throughout this last expression.

Lemma 1.4. Let f : X −→ Y be a map, F,G ∈ F>L(X) and x ∈ X. The following hold:

(i) f⇒(F ∩G) = f⇒F ∩ f⇒G,

(ii) f⇒[x]X = [f(x)]Y

(iii) if B is a base for F ∈ F>L(X) then B̂ = {f→(b) : b ∈ B} is a base for f⇒F.
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Proof. (i) Let a ∈ F∩G. A typical base member for f⇒(F∩G) is given by f→(a). But since

a ∈ F and a ∈ G, we have that f→(a) ∈ f⇒F∩ f⇒G. Hence f⇒(F∩G) ⊆ f⇒F∩ f⇒G

Next if we assume a ∈ {f→(c) : c ∈ F} ∩ {f→(d) : d ∈ G}, then it follows that

a = f→(b) for some b ∈ F and b ∈ G. Thus b ∈ F ∩ G and a ∈ {f→(b) : b ∈ F ∩ G}.

Hence f⇒F ∩ f⇒G ⊆ f⇒(F ∩G) and the result follows.

(ii) We first show that f⇒[x]X ⊆ [f(x)]Y . To do this, it suffices to show that any member

of a base for f⇒[x]X is contained in [f(x)]Y . Let a ∈ {f→(b) : b ∈ [x]X} which is a

base for f⇒[x]X . Then a = f→(b) for some b ∈ [x]X and thus a(f(x)) = f→(b)(f(x)) =∨
f(z)=f(x)

b(z) ≥ b(x) = >. Hence a(f(x)) = > and a ∈ [f(x)]Y .

Next suppose that a ∈ [f(x)]Y . In order to show that [f(x)]Y ⊆ f⇒[x]X , it suffices

to show that a ∈ {f→(b) : b ∈ [x]X}. That is, it suffices to show that a = f→(b) for

some b ∈ [x]. Consider f←(a) ∈ LX . Note that f←(a)(x) = (a ◦ f)(x) = a(f(x)) = >.

Therefore f←(a) ∈ [x]X . Further, f→(f←(a))(y) = ∨
f(z)=y

(a ◦ f)(z) = ∨
f(z)=y

a(f(z)) =∨
f(z)=y

a(y) = a(y). Hence a = f→(f←(a)) ∈ {f→(b) : b ∈ [x]X} and the result follows.

(iii) First we must show that B̂ is a >-filter base. We have,

∨
y∈Y

f→(b)(y) =
∨
y∈Y

∨
f(x)=y

b(x) =
 ∨
y∈f(X)

∨
f(x)=y

b(x)
 ∨

 ∨
y∈Y rf(X)

b(x)


=
∨

y∈f(X)

∨
f(x)=y

b(x) ∨ ⊥ =
∨

f(x)=y
b(x) =

∨
x∈X

b(x) = >.

7



Next if a1, a2 ∈ B then

∨
b∈B

[f→(b), f→(a1) ∧ f→(a2) =
∨
b∈B

[f→(b), f→(a1)] ∧ [f→(b), f→(a2)] Lemma 1.1 (vii)

≥
∨
b∈B

[b, a1] ∧ [b, a2] Lemma 1.1 (xi)

=
∨
b∈B

[b, a1 ∧ a2] = >. Lemma 1.1 (vii)

Hence B̂ is a >-filter base. Let G denote the generated filter. Then clearly B ⊆ f⇒F.

On the other hand if a ∈ F then, again employing Lemma 1.1 (xi), Lemma 1.3 and the

fact that B is a base for F we have, ∨
c∈G

[c, f→(a)] = ∨
b∈B

[f→(b), f→(a)] ≥ ∨
b∈B

[b, a] = >.

Hence the result follows.

Definition 1.4. A >-filter F ∈ F>L(X) is called a maximal >-filter on X or a >-ultrafilter

on X if for any >-filter G on X, F ⊆ G implies F = G.

Proposition 1.1. >-filters generated by a point are maximal.

Proof. Let x ∈ X and suppose that [x] is not maximal. Then there exists some >-filter F so

that [x] ( F. Let a ∈ F r [x]. Then 1{x} ∧ a ∈ F. Since a /∈ [x], a(x) < >, it follows that

(1{x} ∧ a)(t) =

a(x) t = x
⊥ t 6= x

. But then ∨
t∈X

(1{x} ∧ a)(t) = a(x) < >, a contradiction.
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CHAPTER 2: >-CONVERGENCE SPACES

Now that we have a notion of a filter, we may define filter convergence.

Definitions and Categorical Properties of >-Conv

Definition 2.1. Assume that L is a frame and X a set. A function q : F>L(X) −→ 2X is

called a >-convergence structure on X provided:

(>CS1) [x] q−→ x for all x ∈ X, and

(>CS2) if F q−→ x and F ⊆ G, then G
q−→ x.

Note that F
q−→ x is shorthand for x ∈ q(F). The pair (X, q) is called a >-convergence

space.

A map f : (X, q) −→ (Y, p) between two >-convergence spaces is continuous if f⇒(F) p−→

f(x) whenever F
q−→ x. Let >-Conv denote the category whose objects are all the >-

convergence spaces and whose morphisms are all the continuous maps between objects. It

has been shown by Fang and Yu that the category >-Conv is a topological construct and

is Cartesian closed.1 Since >-Conv is a topological construct we may say that (X, q) is a

subspace of (Y, p) if X ⊆ Y and q is the initial structure on X with respect to the natural

injection j : X −→ (Y, p).

The notion of convergence of a stratified L-filter has also been defined.

Definition 2.2. Suppose that L is a frame and X a set. The pair (X, q), where q = (qα)α∈L

1See Appendix for definitions of topological constructs, Cartesian closed categories and initial structures.
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and qα : FSL(X) −→ 2X , is called a stratified L-convergence space provided it satisfies:

(SL1) ẋ
qα−−→ x and ν⊥

q⊥−−→ x, for each x ∈ X and α ∈ L,

(SL2) µ ≥ ν
qα−−→ x implies µ qα−−→ x, and

(SL3) if µ qβ−−→ x and α ≤ β, then µ
qα−−→ x.

Again, note that µ qα−−→ x is shorthand for x ∈ qα(µ). Intuitively, we may think of ν qα−−→ x

to mean that ν converges to x with certainty α. A map f : (X, q) −→ (Y, p) between two

stratified L-convergence spaces is said to be continuous provided that f⇑(µ) pα−−→ f(x)

whenever µ qα−−→ x. Let SL-CS denote the category whose objects are all the stratified

L-convergence spaces and whose morphisms are all the continuous maps between objects.

The following results due to Höhle ([11], [10]) provide a connection between >-filters and

stratified L-filters.

Theorem 2.1. (See [11], [10].)

(i) Assume that L is a frame, F ∈ F>L(X), and define νF(a) = ∨
b∈F

[b, a] for each a ∈ LX .

Then νF ∈ FSL(X) and F = {a ∈ LX : νF(a) = >}.

(ii) Suppose that the frame L is also a Boolean algebra, ν ∈ FSL(X), and define Fν = {a ∈

LX : ν(a) = >}. Then the map ν 7→ Fν is an order preserving bijection from FSL(X)

onto F>L(X). In particular, a >-filter F is maximal if and only if νF is maximal.

Throughout this work, if Cat is a category, we let |Cat| denote the objects of the category

Cat and will write A ∈ |Cat| to mean A is an object of Cat.

Theorem 2.2. The construct >-Conv is extensional. 2

2See Appendix for definitions of constructs and extensional constructs.
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Proof. Let (X, q) ∈ |>-Conv|. Define (X∗, q∗) by X∗ = X ∪ {∞X} where ∞X is not an

element of X, and q∗ is given by the following:

(i) F
q∗−−→∞X for all F ∈ F>L(X∗)

(ii) If F ⊇ [∞]X then F
q∗−−→ x for all x ∈ X∗

(iii) F
q∗−−→ x provided j⇐F

q−→ x or j⇐F fails to exist

where j : X −→ X∗ is the natural injection. We must show that (X∗, q∗) is a > convergence

space. Note that [∞X ] q∗−−→∞X by definition. On the other hand, if x ∈ X then j⇐[x]X∗ =

[x]X . Indeed, a base for j⇐[x]X∗ is {b ◦ j : b ∈ [x]X∗}. If b ∈ [x]X∗ , then b(x) = >. Then

(b ◦ j)(x) = b(j(x)) = b(x) = > and b ◦ j ∈ [x]X . Thus j⇐[x]X∗ ⊆ [x]X . On the other hand,

if a ∈ [x] we may define a∗ ∈ LX∗ by a∗(x) = x, x ∈ X and a∗(∞X) = >. Then a∗ ∈ [x]X∗

and a = a∗ ◦ j. Thus a ∈ j⇐[x]X∗ and j⇐[x]X∗ = [x]X as desired. Hence we have that

[x]X∗
q∗−−→ x for any x ∈ X∗ and (>CS1) is valid.

Next suppose that G ⊇ F
q∗−−→ x. If x =∞X then G

q∗−−→ ∞X ; if F ⊇ [∞X ] then G ⊇ [∞X ]

and thus G q∗−−→ x; and if j⇐F q−→ x, then j⇐F ⊆ j⇐G and thus j⇐G q−→ x so that G q∗−−→ x

also. Hence (>CS2) is verified and we have that (X∗, q∗) ∈ |>-Conv|.

Next let (Y, p), (Z, r) ∈ |>-Conv| such that (Y, p) is a subspace of (Z, r). Also let f :

(Y, p) −→ (X, q) be continuous in >-Conv and define f ∗ : Z −→ X∗ by

f ∗(z) =

f(z), z ∈ Y
∞X , z /∈ Y

.

We must show that f ∗ : (Z, r) −→ (X∗, q∗) is continuous in >-Conv.

Suppose that F
r−→ z. If z /∈ Y then f ∗⇒F

q∗−−→ f(z) =∞X .
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Next, suppose that z ∈ Y and let i : Y −→ Z be the natural injection. Further, suppose

that i⇐F exists.

The following diagram is provided for convenience.

(Y, p) (Z, r) (X∗, q∗)

(X, q)

i f ∗

f j

By virtue of (Y, p) being a subspace of (Z, r) we have that Y ⊆ Z and p : F>L(Y ) −→ 2Y

is given by p(G) = {y ∈ Y : i⇒G r−→ i(y)}. Hence i⇒i⇐F = F
r−→ z = i(z) and thus

i⇐F
p−→ z. By the continuity of f , this implies that f⇒i⇐F q−→ f(z). We claim that

j⇒j⇐f⇒i⇐F = j⇐f ∗⇒F. Indeed, if a ∈ F and x ∈ X then

j←(j→(f→(i←(a))))(x) =
∨

j(f(w))=j(x)
a(i(w)) =

∨
f(w)=j(x)

a(w) =
∨

f∗(w)=j(x)
a(w)

= j←(f ∗→(a))(x).

Since the left hand side and right hand side of the above are base members for j⇒j⇐f⇒i⇐F

and j⇐f ∗⇒F, respectively, our claim is justified. But j⇒j⇐f⇒i⇐F = f⇒i⇐F
q−→ f(z) and

therefore j⇐f ∗⇒F q−→ f(z). By definition of q∗ this implies that f ∗⇒F q−→ f(z).
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Finally, if i⇐ F fails to exist, we will show that j⇐f ∗⇒F also fails to exist. We compute,

∨
x∈X

j←
(
f ∗→(a)

(
(x) =

∨
x∈X

∨
f∗(t)=j(x)

t∈Z

a(t)

=
∨
x∈X

∨
f(i(s))=j(x)

s∈Y

a(i(s)) =
∨
x∈X

∨
f(i(s))=j(x)

s∈Y

a(s)

≤
∨
s∈Y

a(i(s)).

Now since i⇐F fails to exist, there must exist some a ∈ F such that ∨
s∈Y

(
i←a

)
(s) =∨

s∈Y
a(i(s)) < >. Hence for this same a ∈ F, ∨

x∈X
j←
(
f ∗→(a)

(
(x) < > and j⇐f ∗⇒F fails

to exist. Therefore f ∗⇒F q∗−−→ z = f ∗(z). Hence f ∗ : (Z, r) −→ (X∗, q∗) is continuous and

we have that >-Conv is extensional.

Next we wish to show that the product of quotient maps is a quotient map. Before we can do

so, we must explore the notion of an arbitrary product of >-filters. Let fj : Xj −→ Yj, j ∈ J

be a family of maps. Denote X = ∏
j∈J

Xj, Y = ∏
j∈J

Yj and let f : X −→ Y be the product

map; that is, f(x) =
(
fj(xj)

)
, where x = (xj) ∈ X. Let πXj : X −→ Xj and πYj : Y −→ Yj

be the natural projections.

Lemma 2.1. Assume that a ∈ LXj and b ∈ LXk for j 6= k. Then f→
(
π←Xja ∧ π

←
Xk
b
)

=

π←Yjf
→
j (a) ∧ π←Ykf

→
k (b).

Proof. Fix y = (yi), i ∈ J . Then for j 6= k, f→
(
π←Xja ∧ π

←
Xk
b
)
(y) = ∨

f(x)=y
π←Xja(x) ∧

π←Xkb(x) = ∨
fj(xj)=yj
fk(xk)=yk

a(xj)∧b(xk) =
( ∨
fj(s)=yj

a(s)
)
∧
( ∨
fk(t)=yk

b(t)
)

=
(
f→j a

)
(yj)∧

(
f→k b

)
(yk) =

(
π←Yjf

→
j a

)
(y) ∧

(
π←Ykf

→
k b
)
(y) =

(
π←yj f

→
j (a) ∧ π←Ykf

→
k (b)

)
(y). Hence the result follows.

Corollary 2.1. Let S be a finite collection of distinct members of J and aj ∈ LXj for each
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j ∈ S. Then f→
( ∧
j∈S

π←Xjaj

)
=
∧
j∈S

π←Yjf
→
j (aj).

Suppose that Fi ∈ F>L(Xj), j ∈ J . Define B =
{∧
i∈S

π←Xiai : ai ∈ Fi, S ⊆ J, |S| <∞
}

. Note

that if a ∈ Fj and b ∈ Fk, j 6= k, then ∨
x∈X

(
π←Xja ∧ π

←
Xk
b
)
(x) = ∨

x=(xi)∈X
a(xj) ∧ b(xk) =

∨
s∈Xj
t∈Xk

a(s)∧ b(t) =
( ∨
s∈Xj

a(s)
)
∧
( ∨
t∈Xk

b(t)
)

= >∧> = >. Further, this is valid for any finite

number of terms and so it follows that B is a >-filter base.

Definition 2.3. If Fj ∈ F>L(Xj), j ∈ J , then the product >-filter is defined to be the >-

filter on X having base B =
{∧
i∈S

π←Xiai : ai ∈ Fi, S ⊆ J, |S| <∞
}

and is denoted by ∏
j∈J

Fj.

The following lemma justifies the above definition.

Lemma 2.2. Let Fj ∈ F>L(Xj), j ∈ J . Then ∏
j∈J

Fj is the coarsest (smallest) >-filter on X

containing π⇐XjFj, for each j ∈ J .

Proof. It is clear that ∏
j∈J

Fj contains π⇐XjFj for each j ∈ J . Indeed, a base member of π⇐XjFj

is π←Xjaj where aj ∈ Fj and, by definition, π←Xjaj is also in B, a base for ∏
j∈J

Fj. Next suppose

that G ∈ F>L
( ∏
j∈J

Xj

)
such that π⇐XjFj ⊆ G for each j ∈ J . A general base member of ∏

j∈J
Fj

is given by
∧
i∈S

π←Xjai where S ⊆ J is finite and ai ∈ Fi, i ∈ S. But π←Xiai ∈ π
⇐
Xi
Fi ⊆ G for each

i ∈ S. Hence
∧
i∈S

π←Xjai ∈ G as >-filters are closed under finite meets. Thus ∏
j∈J

Fj ⊆ G.

Lemma 2.3. Let fj : (Xj, qj) −→ (Yj, pj), j ∈ J be maps and let f be the product map.

Then f⇒
( ∏
j∈J

Fj

)
= ∏

j∈J
f⇒j Fj.

Proof. It suffices to show that any base member of the left hand side is contained in the

right hand side. Let ai ∈ Fi for each i ∈ S ⊆ J , |S| < ∞. Employing Lemma 1.4 (iii), a
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base member of the left hand side is given by f→
( ∧
i∈S

π←Xiai

)
. Employing Corollary 2.1 we

have f→
( ∧
i∈S

π←Xiai

)
=
∧
i∈S

π←Yi f
→
i (ai) ∈

∏
j∈J

f⇒j Fj, and the result follows.

Lemma 2.4. If F ∈ F>L(X) with X = ∏
j∈J

Xj then F ≥ ∏
j∈J

π⇒XjF.

Proof. Note that if a ∈ F and x = (xi) ∈ X then π←Xiπ
→
Xi
a(x) = ∨

πXi (z)=xi
a(z) ≥ a(x). Using

Lemma 1.4 (iii), if a ∈ F and S is a finite subset of J , a base member of the right hand side

is given by ∧
i∈S

π←Xiπ
→
Xi

(a) ≥
∧
i∈S

a = a ∈ F.

The result follows.

Lemma 2.5. Let (X, q) ∈ |>-Conv| and f : (X, q) −→ Y be a surjection. Then the

final structure with respect to this sink is given by p(G) = {y ∈ Y : ∃F ∈ F>L(X),G ≥

f⇒F and F
q−→ x ∈ f−1(y)}.

Proof. We must show that p : F>L(Y ) −→ 2Y is a >-convergence structure on Y and that a

map g : (Y, p) −→ (Z, r) is continuous if and only if g ◦ f : (X, q) −→ (Z, r) is continuous.

First to show that p is a>-convergence structure, note that if F ⊆ G then clearly p(F) ⊆ p(G)

and so (>CS2) is valid. Also, since f⇒[x] = [f(x)] = [y] for any x ∈ f−1(y), (>CS1) is also

valid and (Y, p) ∈ |>-Conv|.

Next let g : (Y, p) −→ (Z, r) be a map. If g is continuous then clearly g◦f is also continuous.

On the other hand, if g◦f is continuous, let G p−→ y. Then there exists F ∈ F>L(X) such that

G ≥ f⇒F and F
q−→ x ∈ f−1(y). Then g⇒G ≥ g⇒f⇒F = (g ◦ f)⇒F r−−→ (g ◦ f)(x) = g(y).

Hence g is continuous.

The following lemma is a direct result of Lemma 2.5.
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Lemma 2.6. A surjection f : (X, q) −→ (Y, p) is a quotient map iff for all G p−→ y, there

exists F
q−→ x ∈ f−1(y) such that G ≥ f⇒F.

Theorem 2.3. In >-Conv, the product of quotient maps are quotient maps.

Proof. Let fj : Xj −→ Yj, j ∈ J be a family of surjections. Denote X = ∏
j∈J

Xj, Y = ∏
j∈J

Yj

and let f : X −→ Y be the product map; that is, f(x) =
(
fj(xj)

)
, where x = (xj) ∈ X.

Let πYj : Y −→ Yj be the natural projection. Assume that G
p−→ y = (yj); let Gj = π⇒YjG,

j ∈ J . Then by Lemma 2.4, G ≥ ∏
j∈J

Gj. Since fj : (Xj, qj) −→ (Yj, pj) is a quotient

map and Gj
pj−−→ yj, there exists Fj

qj−−→ f−1
j (yj) such that f⇒j Fj ≤ Gj, j ∈ J . It follows

from Corollary 2.1 and Lemma 2.3 that f⇒
( ∏
j∈J

Fj

)
= ∏

j∈J
f⇒j Fj ≤

∏
j∈J

Gj ≤ G. Since∏
j∈J

Fj
q−→ f−1(y) =

(
f−1
j (yj)

)
, it follows that f : (X, q) −→ (Y, p) is a quotient map.

Theorem 2.4. The category >-Conv is a strongly topological universe. 3

Proof. It was shown by Fang and Yu [29] that >-Conv is both a topological construct and

is Cartesian closed. Theorems 2.2 and 2.3 show >-Conv is extensional and the product of

quotient maps are quotient maps.

Embedding >-Conv in SL-CS

It is shown in this section that the category >-Conv can be embedded in SL-CS.

Lemma 2.7. Let L be a frame, f : X −→ Y a map, and F ∈ F>L(X); then f⇑(νF) = νf⇒(F).

Proof. Let c ∈ LX . By definition, f⇑(νF)(c) = νF(f←(c)) = ∨
d∈F

[d, f←(c)]. According to

Lemma 1.1 (xi), [d, f←(c)] ≤ [f→(d), f→(f←(c))]. Since f→(f←(c)) ≤ c and [ • , • ] is in-

3See Appendix for the definition of a strong topological universe.
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creasing in the second component, we have f⇑(νF)(c) ≤ ∨
d∈F

[f→(d), c]. Since {f→(d) : d ∈ F}

is a >-filter base for f⇒(F), it follows from Lemma 1.3 that ∨
d∈F

[f→(d), c] = ∨
e∈f⇒(F)

[e, c] =

νf⇒(F)(c). Hence f⇑(νF) ≤ νf⇒(F).

Conversely, νf⇒(F)(c) = ∨
b∈F

[f→(b), c] and by Lemma 1.1 (xi), [f→(b), c] ≤ [f←(f→(b)), f←(c)].

Since b ≤ f←(f→(b)), it follows that νf⇒(F)(c) ≤
∨
b∈F

[b, f←(c)] = νF(f←(c)), and thus νf⇒(F) ≤

f⇑(νF). Therefore f⇑(νF) = νf⇒(F).

Definition 2.4. Given (X, q) ∈ |>-Conv|, we define (X, q∗), q∗ = (q∗,α)α∈L as follows:

(i) µ
q∗,>−−−→ x if and only if there exists F

q−→ x such that µ ≥ νF, and

(ii) for α < >, µ q∗,α−−−→ x if and only if µ ≥ ν⊥.

Lemma 2.8. If (X, q) ∈ |>-Conv|, then (X, q∗) ∈ |SL-CS|.

Proof. Note that ẋ = ν[x]. Indeed, ν[x](a) = ∨
b∈[x]

[b, a] = [1{x}, a] =
∧
z∈X

(
1{x}(z) → a(z) =

∧
z∈X

> → a(x), z = x

⊥ → a(z), z 6= x
=

∧
z∈X

a(x), z = x

>, z 6= x
= a(x) = ẋ(a). Since [x] q−→ x, we have that

ẋ
q∗,α−−−→ x for each x ∈ X and α ∈ L. Also, condition (ii) in Definition 2.4 assures that

ν⊥
q∗,⊥−−−→ x for all x ∈ X and thus (SL1) is valid.

Next assume µ ≥ ν
q∗,α−−−→ x. Then if α < > then there is nothing to prove. If α = >, then

for some F
q−→ x, ν ≥ νF. But then µ ≥ ν ≥ νF implies µ q∗,>−−−→ x also. Hence (SL2) is valid.

Finally suppose that µ q∗,β−−−→ x and α ≤ β. If α = β, there is nothing to prove. If α < β ≤ >,

then condition (ii) in Definition 2.4 assures that µ q∗,α−−−→ x and (SL3) is verified. Hence the

result holds.

Definition 2.5. Further, given (X, q) ∈ |>-Conv|, define q∗ = (q∗α)α∈L as follows:
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(a) µ
q∗⊥−−→ x if and only if µ ≥ ν⊥, and

(b) for α > ⊥, µ q∗α−−→ x if and only if there exists F
q−→ x such that µ ≥ νF.

Lemma 2.9. If (X, q) ∈ |>-Conv|, then (X, q∗) ∈ |SL-CS|.

Proof. Clearly ν⊥
q∗⊥−−→ x is satisfied for all x ∈ X. Also, as verified in the proof of Lemma

2.8, ν[x] = ẋ and hence ẋ q∗α−→ x for each x ∈ X and α ∈ L. Thus (SL1) is valid.

Next assume µ ≥ ν
q∗α−−→ x. Then if α = ⊥ then there is nothing to prove. If α > ⊥, then

for some F
q−→ x, ν ≥ νF. But then µ ≥ ν ≥ νF implies µ q∗α−−→ x also. Hence (SL2) is valid.

Finally suppose that µ
q∗β−−→ x and α ≤ β. If α = ⊥ there is nothing to prove. If α > ⊥ then

β > ⊥ and thus there exists some F
q−→ x such that µ ≥ νF. Hence µ q∗α−−→ x and (SL3) is

valid. Hence the result holds.

Observe that for each α ∈ L, q∗α ≥ q∗,α and thus q∗ ≥ q∗. Let E∗ and E∗ denote the

full subcategories of SL-CS whose objects are of the form (X, q∗) and (X, q∗), respectively,

where (X, q) ∈ |>-Conv|.

Lemma 2.10. The categories >-Conv, E∗ and E∗ are isomorphic.

Proof. Let the functor θ : >-Conv−→ E∗ be defined by θ(X, q) = (X, q∗) and θ(f) = f .

Suppose that f : (X, q) −→ (Y, p) is continuous in >-Conv; it is shown that f : (X, q∗) −→

(Y, p∗) is continuous in E∗. If µ q∗,>−−−→ x, then by definition there exists F
q−→ x with

µ ≥ νF. By Lemma 2.7, f⇑(µ) ≥ f⇑(νF) = νf⇒(F), and since f⇒(F) p−−→ f(x), it follows that

f⇑(νF) p∗,>−−−→ f(x) and hence f⇑(µ) p∗,>−−−→ f(x). Next, if µ q∗,α−−−→ x, α < >, then µ ≥ ν⊥ on X

and thus f⇑(µ) ≥ f⇑(ν⊥) p∗,α−−−→ f(x) and f⇑(µ) p∗,α−−−→ f(x). Therefore f : (X, q∗) −→ (Y, p∗)

is continuous and θ is a functor.
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By definition, θ is a surjection onto the objects of E∗; next we show θ is an injection. Assume

that θ(X, q) = θ(X, p) and F
q−→ x. We must show that F

p−→ x. We have that νF
q∗,>−−−→ x

and thus νF
p∗,>−−−→ x. Thus there exists G

p−→ x such that νF ≥ νG. If c ∈ G, then νG(c) = >

and thus νF(c) = >. By Theorem 2.1 (i) this implies that c ∈ F. Hence F ≥ G and F
p−→ x,

and thus p = q.

Finally, suppose that f : (X, q∗) −→ (Y, p∗) is continuous in E∗; it is shown that f :

(X, q) −→ (Y, p) is continuous in >-Conv. Assume that F
q−→ x; then νF

q∗,>−−−→ x and thus

f⇑(νF) = νf⇒(F)
p∗,>−−−→ f(x) by the continuity of f . It follows that there exists G

p−→ f(x)

such that νf⇒(F) ≥ νG, and thus as before f⇒(F) ≥ G. Then f⇒(F) p−→ f(x) and thus f :

(X, q) −→ (Y, p) is continuous in >-Conv. Therefore θ : >-Conv−→ E∗ is an isomorphism.

Next, we show in a similar fashion that >-Conv and E∗ are isomorphic. Let φ : >-Conv−→

E∗ be defined by φ(X, q) = (X, q∗) and φ(f) = f . Suppose that f : (X, q) −→ (Y, p) is

continuous in >-Conv; it is shown that f : (X, q∗) −→ (Y, p∗) is continuous in E∗. If µ q∗α−→ x,

α > ⊥, then by definition there exists F
q−→ x such that µ ≥ νF. Then by Lemma 2.7,

f⇑(µ) ≥ f⇑(νF) = νf⇒(F), and since f⇒(F) p−→ f(x), it follows that f⇑(µ) p∗α−−→ f(x). Next,

if µ
q∗⊥−−→ x then µ ≥ ν⊥ on X and thus f⇑(µ) ≥ f⇑(ν⊥)

p∗⊥−−→ f(x) and thus f⇑(µ)
p∗⊥−−→ f(x).

Therefore f : (X, q∗) −→ (Y, p∗) is continuous and φ is a functor.

By definition φ is a surjection onto the objects of E∗; next we show it is an injection. Assume

that φ(X, q) = φ(X, p) and F
q−→ x. We must show that F

p−→ x. We have that for each

α > ⊥, νF
q∗α−→ x and thus for each α > ⊥, we also have νF

p∗α−−→ x. Thus there exists G
p−→ x

such that νF ≥ νG. If c ∈ G, then νG(c) = > and thus νF(c) = >. By Theorem 2.1 (i), this

implies that c ∈ F. Hence F ≥ G and F
p−→ x, and thus p = q.

Finally, suppose that f : (X, q∗) −→ (Y, p∗) is continuous; it is shown that f : (X, q) −→

(Y, p) is continuous. Assume that F
q−→ x; then νF

q∗α−→ x and thus f⇑(νF) = νf⇒(F)
p∗α−−→ f(x)
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by the continuity of f . Therefore, there exists G p−→ f(x) with νf⇒(F) ≥ νG, and thus as before

f⇒(F) ≥ G. Then f⇒(F) p−→ f(x) and so f : (X, q) −→ (Y, p) is continuous. Therefore

φ : >-Conv−→ E∗ is an isomorphism.

Lemma 2.11. Assume that the frame L is also a Boolean algebra, and let (X, q) be a

stratified L-convergence space. Then there exists (X,Q) ∈ |>-Conv| such that (X,Q∗) ∈ E∗

with q> = Q∗,>.

Proof. Given (X, q), where q = (qα)α∈L, define Q as follows: F Q−−→ x if and only if νF
q>−−→ x.

Then [x] Q−−→ x since ν[x] = ẋ and if G ≥ F
Q−−→ x, it follows that νG ≥ νF and thus νG

q>−−→ x.

Hence G
Q−−→ x and (X,Q) is a >-convergence space. As defined above, (X,Q∗) ∈ E∗, where

µ
Q∗,>−−−→ x if and only if there exists F

Q−−→ x such that µ ≥ νF and for α < >, µ Q∗,α−−−→ x if

and only if µ ≥ ν⊥.

It remains to show that q> = Q∗,>. Assume that ν q>−−→ x. Since L is a Boolean algebra,

by Theorem 2.1 (ii), νFν = ν. Since νFν = ν
q>−−→ x, it follows that Fν

Q−−→ x and thus

ν = νFν
Q∗,>−−−→ x. Hence q> ≥ Q∗,>.

Conversely, suppose that µ Q∗,>−−−→ x; then there exists F
Q−−→ x such that µ ≥ νF. It follows

that νF
q>−−→ x and thus µ q>−−→ x. Hence Q∗,> ≥ q> and q> = Q∗,>.

Theorem 2.5. Assume that L is a frame. Then, 4

(i) >-Conv is embedded as a bicoreflective subcategory of SL-CS, and

(ii) provided that L is also a Boolean algebra, >-Conv is embedded as a bireflective subcat-

egory of SL-CS.

4See Appendix for definitions of bicoreflective and bireflective categories.
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Proof. (i) Using Lemma 2.10, it suffices to show that E∗ is bicoreflective in SL-CS. Let

(X, q) ∈ |SL-CS|, where q = (qα)α∈L. Define Q as follows: F
Q−−→ x if and only if

νF
q>−−→ x. Then (X,Q) ∈ |>-Conv| and define Q∗ = (Q∗α)α∈L as in Definition 2.5.

Then (X,Q∗) ∈ |E∗|. It is shown that idX : (X,Q∗α) −→ (X, qα) is continuous, ⊥ < α.

Suppose µ Q∗α−−→ x; then there exists F Q−−→ x with µ ≥ νF. Since νF
q>−−→ x, νF

qα−→ x and

thus µ qα−→ x. Hence Q∗α ≥ qα, ⊥ < α, and also Q∗⊥ = q⊥. Then idX : (X,Q∗) −→ (X, q)

is continuous.

Let φ : >-Conv−→ E∗ be as in Lemma 2.10. Consider the diagram below; where

f : (Y, P ∗) −→ (X, q) is continuous.

(X, q) (X,Q∗)

(Y, P ∗)
f

f

idX

It is shown that f : (Y, P ∗) −→ (X,Q∗) is continuous in E∗. Since φ : >-Conv−→ E∗

is an isomorphism, it is sufficient to show that f : (Y, P ) −→ (X,Q) is continuous in

>-Conv.

Suppose that G
P−−→ y; then for ⊥ < α, νG

P ∗α−−→ y and thus by the continuity of

f : (Y, P ∗) −→ (X, q) in SL-CS, νf⇒(G) = f⇑(νG) qα−→ f(y). It follows from the

definition of Q that f⇒(G) Q−−→ f(y), and thus f : (Y, P ) −→ (X,Q) is continuous in >-

Conv. Hence f : (Y, P ∗) −→ (X,Q∗) is continuous in E∗, and thus E∗ is bicoreflective

in SL-CS.

(ii) Assume that (X, q) ∈ |SL-CS| and define Q as above; then µ
Q∗,>−−−→ x if and only if

there exists F
Q−−→ x such that µ ≥ νF; otherwise µ Q∗α−−→ x if and only if µ ≥ ν⊥ for

α < >. Then by Lemma 2.11, q> = Q∗,> and so idX : (X, q) −→ (X,Q∗) is continuous.

21



Suppose that f : (X, q) −→ (Y, P ∗) is continuous and consider the diagram; where

f : (X, q) −→ (Y, P∗) is continuous.

(X, q) (X,Q∗)

(Y, P∗)
f

f

idX

It remains to show that f : (X,Q∗) −→ (Y, P ∗) is continuous in E∗. Let θ : >-

Conv−→ E∗ be as in Lemma 2.10. Since θ is an isomorphism, it suffices to show that

f : (X,Q) −→ (Y, P ) is continuous in >-Conv.

Assume that F
Q−−→ x; then νF

q>−−→ x and thus νf⇒(F) = f⇑(νF) P∗,>−−−→ f(x). Hence

there exists G
P−−→ f(x) such that νf⇒(F) ≥ νG, and it follows that f⇒(F) ≥ G. Then

f⇒(F) P−−→ f(x) and thus f : (X,Q∗) −→ (Y, P ∗) is continuous. Therefore E∗ is

bireflective in SL-CS whenever L is a Boolean algebra. By Lemma 2.10, E∗ and

>-Conv are isomorphic and so >-Conv is bireflective in SL-CS.

Regularity in >-Conv

Regularity for lattice-valued convergence spaces has been studied; for example, see Jäger

[16] and Li and Jin [21]. Regularity has also been studied in the context of >-convergence

spaces by Fang and Yue [5], but only in terms of a diagonal condition. In this chapter the

notion of closure of a >-filter is defined and related to regularity as defined by [5].
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Closure and Regularity

The following connection between a >-filter base and a >-filter is useful. Using Lemma 1.3

and Lemma 1.1 (xi), it is straightforward to verify that if f : X −→ Y is a map and B is a

>-filter base for F on X, then {f→(b) : b ∈ B} is a >-filter base for f⇒(F) on Y .

Definition 2.6. Assume that (X, q) ∈ |>-Conv| and a ∈ LX . The closure of a is defined

by a(x) = ∨{νG(a) : G q−→ x}, for each x ∈ X.

Some basic properties of the closure operation are listed below.

Lemma 2.12. Let (X, q) ∈ |>-Conv|, a, b ∈ LX and α ∈ L. Then

(i) 1∅ = 1∅,

(ii) a ≤ a,

(iii) a ≤ b implies a ≤ b,

(iv) a ∧ α1X = a ∧ α1X ,

(v) if L is a Boolean algebra, it follows that a ∨ b = a ∨ b.

Proof. (i)–(iv) These follow easily from the properties of stratified L-filters.

(v) Clearly a ∨ b ≤ a ∨ b. Employing Corollary 2.1.6 [10], µ(a ∨ b) = µ(a) ∨ µ(b) for each

stratified L-ultrafilter µ on X. Since closures are determined by >-ultrafilters, a ∨ b(x) =∨{νF(a ∨ b) : F q−→ x,F a >-ultrafilter} = ∨{νF(a) ∨ νF(b) : F q−→ x,F a >-ultrafilter} ≤

a(x) ∨ b(x) and thus a ∨ b = a ∨ b.
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Definition 2.7. Given (X, q) ∈ |>-Conv| and F ∈ F>L(X), the closure of F, denoted by

F, is defined to be the >-filter whose >-filter base is {a : a ∈ F}. Further, if B is a >-filter

base, define B = {b : b ∈ B}.

Lemma 2.13. Let (X, q) ∈ |>-Conv| and b, c ∈ LX . Then [b, c] ≤ [b, c].

Proof. Since [b, c] =
∧
x∈X

(b(x) → c(x)), it suffices to show that for fixed x ∈ X, [b, c] ≤

b(x) → c(x). According to Lemma 1.1 (viii), [b, c] ≤ [a, b] → [a, c] for any a ∈ LX . Recall

that νG(c) = ∨
h∈G

[h, c]. Further fix G
q−→ x and let g ∈ G. Then

[g, c] ≤
∨
h∈G

[h, c] = νG(c) ≤
∨
{νH(c) : H q−→ x} = c(x).

Now since the implication operation is increasing in the second component, we have [b, c] ≤

[g, b] → [g, c] ≤ [g, b] → c(x). It follows from the distributive property in Lemma 1.1 (v)

that

[b, c] ≤
∧
{[g, b]→ c(x) : g ∈ G} =

∨
g∈G

[g, b]
→ c(x) = νG(b)→ c(x).

Thus we have,

[b, c] ≤
∧

G
q−→x

(
νG(b)→ c(x)

)
=

 ∨
G

q−→x

νG(b)

→ c(x) = b(x)→ c(x).

As this holds for any x ∈ X, [b, c] ≤
∧
x∈X

(
b(x)→ c(x)

)
= [b, c].

Lemma 2.14. Let B be a >-filter base for the >-filter F on (X, q). Then B is a base for F.

Proof. Note that by Lemma 2.12 (iii), Lemma 2.13 and the fact that [ • , • ] is increasing in

the second component, if b1, b2 ∈ B, then ∨
b∈B

[b, b1 ∧ b2] ≥ ∨
b∈B

[b, b1 ∧ b2] ≥ ∨
b∈B

[b, b1 ∧ b2] = >,

as B is a >-filter base for F. Also ∨
x∈X

b(x) ≥ ∨
x∈X

b(x) = > and thus B is a >-filter base.
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Let c ∈ F; then by Lemma 2.13, as B is a base for F, ∨
b∈B

[b, c] ≥ ∨
b∈B

[b, c] = >. Thus c belongs

to the >-filter generated by B; that is, the >-filter generated by B includes {c : c ∈ F}.

Therefore B generates F.

Kowalsky [18] introduced a diagonal axiom which characterizes when a convergence space

is topological. The dual of the diagonal axiom was shown by Cook and Fischer [2] to

characterize when a convergence space, or topological space, is regular. An appropriate

diagonal axiom is used by Fang and Yue [5] to define regularity in >-Conv.

Let (X, q) be a >-convergence space, J a non-empty set and let ψ : J −→ X and σ :

J −→ F>L(X) be maps such that σ(j) q−→ ψ(j) for each j ∈ J . For each b ∈ LX , define

eb : F>L(X) −→ L by eb(G) = νG(b). Then, given H ∈ F>L(J) we define κσH = {b ∈ LX :

eb ◦ σ ∈ H}. The definition of κσH is due to Fang and Yue [5]. It is shown in Lemma 3.6 of

[5] that κσH is a >-filter on X, and it is referred to as the >-diagonal filter of H. They use

the diagonal filter to define regularity.

The following definition is given by Fang and Yue [5]. The notation “(TR)” is used in [5] to

denote the diagonal condition.

Definition 2.8. Suppose that L is a frame and (X, q) is a >-convergence space. We say that

(X, q) is regular in >-Conv, provided that for any non-empty set J and maps ψ : J −→ X

and σ : J −→ F>L(X) such that σ(j) q−→ ψ(j) for all j ∈ J , ψ⇒(H) q−→ x whenever H ∈ F>L(J)

and κσH
q−→ x.

Lemma 2.15. Assume that L is a frame and (X, q) is a >-convergence space. Denote

J = {(G, y) ∈ F>L(X) × X : G q−→ y} and define ψ : J −→ X by ψ(G, y) = y and define

σ : J −→ F>L(X) by σ(G, y) = G. Then for each F ∈ F>L(X) there exists F̂ ∈ F>L(J) such

that F ⊆ κσF̂.
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Proof. Suppose that a ∈ LX ; define â : J −→ L by â(G, y) = νG(a). Then â ∈ LJ and note

that if a, b ∈ LX , (̂a ∧ b)(G, y) = νG(a ∧ b) = νG(a) ∧ νG(b) = â(G, y) ∧ b̂(G, y) and thus

(̂a ∧ b) = â ∧ b̂. Observe that if a ∈ F, then ∨
x∈X

a(x) = > and thus

∨
{â(G, y) : G q−→ y} ≥

∨
x∈X

â([x], x) =
∨
x∈X

ν[x](a)

=
∨
x∈X

∨
b∈[x]

[b, a] =
∨
x∈X

[1{x}, a]

=
∨
x∈X

a(x) = >.

Thus ∨{â(G, y) : G q−→ y} = >. It follows that D = {â : a ∈ F} is a >-filter base on J

which is closed under finite infima. Let F̂ be the >-filter with base D.

Next it is shown that F ⊆ κσF̂. Assume that a ∈ F; then â ∈ D and it remains to show that

ea ◦ σ ∈ F̂. Indeed, (ea ◦ σ)(G, y) = ea(G) = νG(a) = â(G, y) and so ea ◦ σ = â ∈ D ⊆ F̂.

Thus according to the definition, a ∈ κσF̂ and F ⊆ κσF̂.

Theorem 2.6. Suppose that L is a frame and (X, q) is a >-convergence space. Then (X, q)

is regular if and only if F q−→ x whenever F
q−→ x.

Proof. Assume that (X, q) is such that F
q−→ x whenever F

q−→ x. Suppose that J 6= ∅ is

a set, ψ : J −→ X and σ : J −→ F>L(X) are such that σ(j) q−→ ψ(j) for each j ∈ J . Let

H ∈ F>L(J) such that κσH q−→ x. It suffices to show that κσH ⊆ ψ⇒(H).

Recall that BH = {b ∈ LX : eb ◦ σ ∈ H} is a >-filter base for κσH and BH is closed under

finite infima. It follows from Lemma 2.14 that BH = {b : b ∈ BH} is a >-filter base for κσH

on X and it suffices to show that BH ⊆ ψ⇒(H).

Let b ∈ BH; then eb ◦ σ ∈ H and ψ→(eb ◦ σ)(y) = ∨{(eb ◦ σ)(j) : ψ(j) = y} = ∨{νσ(j)(b) :

26



ψ(j) = y}. Since σ(j) q−→ ψ(j), it follows that ψ→(eb ◦ σ)(y) = ∨{νσ(j)(b) : ψ(j) = y} ≤∨{νG(b) : G q−→ y} = b(y) and thus ψ→(eb ◦ σ) ≤ b. It follows that b ∈ ψ⇒(H) and thus

BH ⊆ ψ⇒(H). Hence (X, q) is regular.

Conversely, suppose that (X, q) is regular and assume that F
q−→ x. It must be shown that

F
q−→ x. Let J , ψ, σ and F̂ ∈ F>L(J) be as in Lemma 2.15. According to Lemma 2.15,

F ⊆ κσF̂ and thus κσF̂ q−→ x and since (X, q) is regular, ψ⇒(F̂) q−→ x. It remains to show

that ψ⇒(F̂) ⊆ F.

Recall that D = {â : a ∈ F} is a >-filter base for F̂ which is closed under finite infima. Then

ψ→(â)(y) = ∨{â(K, z) : ψ(K, z) = y} = ∨{νG(a) : G q−→ y} = a(y), and thus ψ→(â) = a.

Hence ψ⇒(D) ⊆ F and it follows that F
q−→ x.

Regular Subcategory of >-Conv

Let f : (X, q) −→ (Y, p) be a continuous map in >-Conv. If F q−→ x, it easily follows that

F ⊆ [x] and f⇒(F) ⊆ f⇒(F).

Let >-RConv denote the full subcategory of >-Conv consisting of all of the regular objects

in >-Conv. Fang and Yu [29] have shown that >-Conv is a topological construct that is also

Cartesian-closed. The proof of the next result uses a standard argument.

Theorem 2.7. The category >-RConv is a concretely bireflective subcategory of >-Conv.5

Proof. Note that the indiscrete >-convergence structure ρ on X is regular. Since initial

structures exist in >-Conv, let σ denote the initial structure on X determined by fj :

5See Appendix for definitions concrete and bireflective.
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X −→ (Yj, pj), j ∈ J , where each (Yj, pj) ∈ |>-RConv|. Then F
σ−→ x if and only if

f⇒j (F) pj−−→ fj(x), for each j ∈ J , and thus fj : (X, σ) −→ (Yj, pj) is continuous for each

j ∈ J . Then for a ∈ F, f→j (aσ) ⊆ f→j (a)
pj

and thus f⇒j (F
σ
) ⊇ f⇒j (F)

pj pj−−→ fj(x), for each

j ∈ J . Hence F
σ σ−→ x and thus (X, σ) is regular.

Let rq denote the largest regular >-convergence structure on X such that rq ≤ q. Then

idX : (X, q) −→ (X, rq) is a continuous map.

Suppose that f : (X, q) −→ (Y, p) is any continuous map and (Y, p) ∈ |>-RConv|. Let

δ denote the initial >-convergence structure on X defined by f : X −→ (Y, p). Then

f : (X, δ) −→ (Y, p) is continuous, δ ≤ q, and (X, δ) ∈ |>-RConv|. It follows that rq ≥ δ

and thus f : (X, rq) −→ (Y, p) is continuous. The following diagram commutes:

(X, q) (X, rq)

(Y, p)
f

f

idX

and thus >-RConv is concretely bireflective in >-Conv.

Regularity in SL-CS

Let (X, q) ∈ |SL-CS|, α ∈ L, J an non-empty set and let ψ : J −→ X and Σ : J −→ FSL(X)

be maps such that Σ(j) qα−−→ ψ(j) for each j ∈ J . Fix b ∈ LX and define Eb : FSL(X) −→ L

by Eb(ν) = ν(b), for each ν ∈ FSL(X). Let µ ∈ FSL(J) and let KΣµ ∈ FSL(X) be defined by

KΣµ(b) = µ(Eb ◦ Σ), for b ∈ LX .

Definition 2.9. Assume that L is a frame and (X, q) ∈ |SL-CS|. Then (X, q) is said to be

regular in SL-CS provided that for each α ∈ L, ψ : J −→ X, Σ : J −→ FSL(X) such that
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Σ(j) qα−−→ ψ(j) and for µ ∈ FSL(J), we have that ψ⇑µ qα−−→ x whenever KΣµ qα−−→ x.

Lemma 2.16. Let L be a frame, X a set, G ∈ F>L(X) and µ ∈ FSL(X). Then

(i) FνG = G, and

(ii) µ = νFµ whenever L is a Boolean algebra.

Proof. Parts (i) and (ii) follow from Theorem 2.1 (i) and (ii), respectively.

Theorem 2.8. Assume that the frame L is a Boolean algebra, (X, q) ∈ |>-Conv|, and let

(X, q∗) ∈ |SL-CS| be as given in Definition 2.4. Then (X, q∗) is regular in SL-CS if and

only if (X, q) is regular in >-Conv.

Proof. Suppose that (X, q∗) is regular in SL-CS and assume that ψ : J −→ X, σ : J −→

F>L(X) is such that σ(j) q−→ ψ(j) for each j ∈ J . Let G ∈ F>L(J) be such that κσG q−→ x;

it is shown that ψ⇒G q−→ x. Define Σ(j) = νσ(j) and since σ(j) q−→ ψ(j), it follows that

Σ(j) q∗,>−−−→ ψ(j) for each j ∈ J .

First it is shown that κσG = FKΣνG . Assume that b ∈ FKΣνG ; observe that (Eb ◦ Σ)(j) =

Eb(νσ(j)) = νσ(j)(b) = (eb ◦ σ)(j) and thus Eb ◦ Σ = eb ◦ σ. Moreover, using Theorem 2.1 we

have > = KΣνG(b) = νG(Eb ◦Σ) = νG(eb ◦ σ) and hence eb ◦ σ ∈ G. It follows that b ∈ κσG

and thus FKΣνG ⊆ κσG.

Conversely, if b ∈ B, where B is a base for κσG, then eb ◦ σ ∈ G. If follows that KΣνG(b) =

νG(Eb ◦Σ) = νG(eb ◦ σ) = > since eb ◦ σ ∈ G. Then using Theorem 2.1, b ∈ FKΣνG and thus

κσG = FKΣνG .

According to Lemma 2.16, since κσG q−→ x, KΣνG = νFKΣνG

q∗,>−−−→ x. However, (X, q∗) is

regular in SL-CS and it follows that ψ⇑νG
q∗,>−−−→ x and by Lemma 2.7, νψ⇒G = ψ⇑(νG) q∗,>−−−→

29



x. Then ψ⇒G
q−→ x and hence (X, q) is regular in >-Conv.

Conversely, assume that (X, q) is regular in >-Conv; it is shown that (X, q∗) is regular in

SL-CS. Suppose that ψ : J −→ X and Σ : J −→ FSL(X) are such that Σ(j) q∗,>−−−→ ψ(j)

for each j ∈ J , and µ ∈ FSL(X) for which KΣµ q∗,>−−−→ x. Define σ(j) = FΣ(j); then

Σ(j) q∗,>−−−→ ψ(j) implies there exists G q−→ ψ(j) such that Σ(j) ≥ νG and thus by Lemma 2.16

(i), FΣ(j) ≥ FνG = G. Hence σ(j) q−→ ψ(j) for each j ∈ J . It is shown that κσFµ = FKΣµ.

Suppose that b ∈ B, where B is the base for κσFµ; then eb ◦ σ ∈ Fµ. Hence KΣµ(b) =

µ(Eb ◦ Σ) = µ(eb ◦ σ) = >, and thus b ∈ FKΣµ implies that κσFµ ⊆ FKΣµ. Conversely, if

b ∈ FKΣµ, then > = KΣµ(b) = µ(eb ◦ σ) and thus eb ◦ σ ∈ Fµ. Therefore b ∈ κσFµ and

hence κσFµ = FKΣµ. Since KΣµ q∗,>−−−→ x, it follows κσFµ
q−→ x and thus ψ⇒Fµ

q−→ x.

However, µ = νFµ , implying ψ⇑µ = ψ⇑(νFµ) = νψ⇒Fµ

q∗,>−−−→ x, and thus (X, q∗) is regular in

SL-CS.

The Dual of Regularity: Topological

The next definition is the dual of Definition 2.8 and is given in [5]. The notation “(TF)” is

used in [5] to denote the diagonal condition.

Definition 2.10. Suppose that L is a frame. Then (X, q) ∈ |>-Conv| is called topological

in >-Conv provided that for each ψ : J −→ X, σ : J −→ FTL(X) such that σ(j) q−→ ψ(j) for

each j ∈ J , we have κσH q−→ x whenever ψ⇒H q−→ x, H ∈ F>L(J).

The definition of a strong L-topological space used here can be found in Fang and Yue [29].
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Definition 2.11. Let L be a frame and τ ⊆ LX . Then the pair (X, τ) is called a strong

L-topological space provided it satisfies:

(ST1) α1X ∈ τ for each α ∈ L,

(ST2) a, b ∈ τ implies a ∧ b ∈ τ ,

(ST3) aj ∈ τ for each j ∈ J implies ∨
j∈J

aj ∈ τ , and

(ST4) a ∈ τ implies α1X → a ∈ τ for each α ∈ L.

The following result appears as Theorem 3.11 in [5].

Theorem 2.9. [5] Suppose that (X, q) ∈ |>-Conv|. Then (X, q) is topological if and only if

it is a strong L-topological space.

Theorem 2.10. Assume that the frame L is a Boolean algebra, (X, q) ∈ |>-Conv|, and let

(X, q∗) ∈ |SL-CS| be as given in Definition 2.4. Then (X, q) is topological in >-Conv if

and only if (X, q∗) is topological in SL-CS.

Proof. Suppose that (X, q∗) is topological in SL-CS. Assume that ψ : J −→ X and σ :

J −→ F>L(X) are such that σ(j) q−→ ψ(j) for each j ∈ J , and G ∈ F>L(J) is such that

ψ⇒G
q−→ x. Define Σ(j) = νσ(j) for each j ∈ J , and note that Σ(j) q∗,>−−−→ ψ(j). According

to Lemma 2.7, ψ⇑(νG) = νψ⇒G
q∗,>−−−→ x and it follows that KΣνG

q∗,>−−−→ x. It is shown in the

proof of Theorem 2.8 that κσG = FKΣνG . Since KΣνG
q∗,>−−−→ x, according to Definition 2.4

we have that KΣνG ≥ νH for some H
q−→ x, and thus FKΣνG ≥ FνH = H. Then FKΣνG

q−→ x

and thus κσG q−→ x. It follows that (X, q) is topological in >-Conv.

Conversely, assume that (X, q) is topological in >-Conv, ψ : J −→ X and Σ : X −→ FSL(X)

are such that Σ(j) q∗,>−−−→ ψ(j) for each j ∈ J , and that µ ∈ FSL(J) is such that ψ⇑µ q∗,>−−−→ x.
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Define σ(j) = FΣ(j); then σ(j) q−→ ψ(j) for each j ∈ J . It is straightforward to show that

ψ⇒Fµ = Fψ⇑µ and hence ψ⇒Fµ
q−→ x. Since (X, q) is topological in >-Conv, κσFµ

q−→ x. It

is shown in Theorem 2.8 that κσFµ = FKΣµ. It follows from Lemma 2.16 that KΣµ = νFKΣµ

and thus KΣµ q∗,>−−−→ x. Hence (X, q∗) is topological in SL-CS.

Remark 2.1. Theorems 2.8 and 2.10 remain valid whenever (X, q∗) is replaced by (X, q∗).

Compactifications in >-Conv

Whenever L is a frame, Jäger [14] showed that every lattice-valued convergence space pos-

sesses a compactification. The same ideas used by Jäger are employed in our construction.

In order to show that our extension space is compact, the assumption that L is a Boolean

algebra is needed. Hence the bijection between the stratified L-ultrafilters and >-ultrafilters

is used to show compactness of our extension space. The object (X, q) ∈ |>-Conv| is said to

be compact if every maximal >-filter, or >-ultrafilter, converges.

Definition 2.12. Assume that (X, q) ∈ |>-Conv| is not compact. Then
(
(Y, p), f

)
is called

a compactification of (X, q) provided:

(i) (Y, p) is compact,

(ii) f : (X, q)←−
(
f(X), p

∣∣∣
f(X)

)
and f−1 are continuous, and

(iii) for each y ∈ Y , there exists F ∈ F>L(X) such that f⇒F p−→ y.

Whenever L is a complete Boolean algebra, a compactification of each non-compact (X, q) ∈

|>-Conv| is constructed. Further, each continuous map from (X, q) into a compact regular

object in >-Conv has a continuous extension to the compactification.
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Assume that L is a complete Boolean algebra and let (X, q) ∈ |>-Conv| which is not compact.

Let η denote the set of all >-ultrafilters on X which fail to converge. Define X∗ = X∪{〈G〉 :

G ∈ η} and let j : X −→ X∗ denote the natural injection j(x) = x, x ∈ X. Recall from

Theorem 2.1, that F 7→ νF defines an order preserving bijection from the set of all >−filters

on X onto the set of all stratified L-filters on X, where νF(a) = ∨
f∈F

[f, a], a ∈ LX , and

F = {b ∈ LX : νF(b) = >}.

Given a ∈ LX , define a∗ ∈ LX
∗ as a∗(z) =

a(x), z = j(x)
νG(a), z = 〈G〉

. Observe that (⊥1X)∗ =

⊥1X∗ and (α1X)∗ ≥ α1X∗ since (α1X)∗(〈G〉) = νG(α1X) ≥ α = (α1X∗)(〈G〉). Moreover,

(a ∧ b)∗(〈G〉) = νG(a ∧ b) = νG(a) ∧ νG(b) = a∗(〈G〉) ∧ b∗(〈G〉) = (a∗ ∧ b∗)(〈G〉) and thus

(a∧ b)∗ = a∗∧ b∗. Observe that if B is a >-filter base on X that is closed under finite infima,

then B∗ = {b∗ : b ∈ B} is a >-filter base on X∗ that is also closed under finite infima. Note

that if b ∈ B, then ∨
z∈X∗

b∗(z) ≥ ∨
z∈X

b(x) = >. In particular, if F is a >-filter on X, then

{f ∗ : f ∈ F} is a >-filter base on X∗; let F∗ denote the >-filter on X∗ that it generates.

Using the notation above, define a structure q∗ on X∗ as follows:

H
q∗−−→ j(x) if and only if H ≥ F∗ for some F

q−→ x,

H
q∗−−→ 〈G〉 if and only if H ≥ G∗.

Note that [j(x)] ≥ [x]∗ q∗−−→ x and thus [j(x)] q∗−−→ j(x) for each x ∈ X. Also, observe that

[〈G〉] ≥ G∗. Indeed, if g ∈ G, then g∗(〈G〉) = νG(g) = > and thus g∗ ∈ [〈G〉]. It follows that

the >-filter base {g∗ : g ∈ G} ⊆ [〈G〉] and thus the >-filter G∗ ⊆ [〈G〉]. Clearly, if H q∗−−→ z

and K ≥ H, then K
q∗−−→ z and hence (X∗, q∗) ∈ |>-Conv|.

Theorem 2.11. Assume that the frame L is a Boolean algebra and suppose that (X, q) ∈ |>-

Conv| is not compact. Then
(
(X∗, q∗), j

)
, as defined above, is a compactification of (X, q) in
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>-Conv. Moreover, if θ : (X, q) −→ (Y, p) is continuous and (Y, p) is compact and regular,

then θ has a continuous extension θ∗ : (X∗, q∗) −→ (Y, p) such that θ∗ ◦ j = θ.

Proof. It was shown in the above that (X∗, q∗) ∈ |>-Conv|. We show that j is contin-

uous. Observe that if F
q−→ x, then j⇒(F) ⊇ F∗. Indeed, if f ∈ F, then j→(f)(z) =f(x), z = j(x)

⊥, z = 〈G〉
and thus j→(f) ≤ f ∗. Then f ∗ ∈ j⇒(F) for each f ∈ F and thus

j⇒(F) ⊇ F∗, and this implies that j⇒(F) q∗−−→ j(x). Hence j is continuous.

Conversely, if F is any >-filter on X such that j⇒(F) q∗−−→ j(x), then j⇒(F) ≥ K∗ for

some K
q−→ x. Hence F = j⇐(j⇒(F)) ≥ j⇐(K∗) = K and thus F

q−→ x. It follows that

j : (X, q) −→ (X∗, q∗) is an embedding. Further, if G ∈ N , then j⇒(G) ⊇ G∗ implies that

j⇒(G) q∗−−→ 〈G〉 and thus j : (X, q) −→ (X∗, q∗) is a dense embedding.

It is shown that (X∗, q∗) is compact. Assume that H is a >-ultrafilter on X∗. According

to Theorem 2.1, νH is a stratified L-ultrafilter on X∗ and, moreover, d ∈ H if and only if

νH(d) = >. Define µH : LX → L by µH(a) = νH(a∗) for each a ∈ LX .

Observe that µH(⊥1X) = νH(⊥1X∗) = ⊥, µH(α1X) = νH((α1X)∗) ≥ νH(α1X∗) ≥ α and

µH(a ∧ b) = νH((a ∧ b)∗) = νH(a∗) ∧ νH(b∗) = µH(a) ∧ µH(b), for a, b ∈ LX and α ∈ L. It

follows that µH is a stratified L-filter on X. According to Theorem 1.1 (i), µH is a stratified

L-ultrafilter if and only if for each a ∈ LX , µH(a) = µH(a→ 1∅)→ ⊥. Employing Theorem

1.1 (ii), for any G ∈ η, (a → 1∅)∗(〈G〉) = νG(a → 1∅) = νG(a) → ⊥ = a∗(〈G〉) → ⊥ =

(a∗ → 1∅)(〈G〉). Hence (a→ 1∅)∗ = a∗ → 1∅.

Then µH(a) = νH(a∗) = νH(a∗ → 1∅) → ⊥ = νH((a → 1∅)∗) → ⊥ = µH(a → 1∅) → ⊥, and

thus µH is a stratified L-ultrafilter on X. It follows from Theorem 2.1 (ii) that FH = {a ∈

LX : µH(a) = >} is a >-ultrafilter on X. Moreover, a ∈ FH if and only if νH(a∗) = > if and
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only if a∗ ∈ H. That is, a ∈ FH if and only if a∗ ∈ H. Observe that B = {a∗ : a ∈ FH} is

a >-filter base on X∗ which is closed under finite infima. Let F∗H denote the >-filter on X∗

that it generates; then F∗H ⊆ H.

Assume that FH
q−→ x; then H

q∗−−→ j(x). If FH ∈ N , then H
q∗−−→ 〈FH〉 and it follows that

(X∗, q∗) is compact and therefore
(
(X∗, q∗), j

)
is a compactification of (X, q) in >-Conv.

Next, suppose that θ : (X, q) −→ (Y, p) is a continuous map. Define θ∗ : (X∗, q∗) −→ (Y, p)

by θ∗(j(x)) = θ(x) for x ∈ X, and θ∗(〈G〉) = y where y is one of the limits of θ⇒(G) in

(Y, p). First, for a ∈ LX , x ∈ X and G ∈ η, it is shown that ν[θ(x)](θ→(a)) ≥ a(x) and

νθ⇒(G)(θ→(a)) ≥ a∗(〈G〉).

Note that

ν[θ(x)](θ→(a)) =
∨

b∈[θ(x)]
[b, θ→(a)] ≥ [1{θ(x)}, θ

→(a)] ≥ > → a(x) = a(x),

and thus ν[θ(x)](θ→(a)) ≥ a(x). Further, if G ∈ N , then using Lemma 1.1 (xi),

νθ⇒(G)(θ→(a)) ≥
∨
g∈G

[θ→(g), θ→(a)] ≥
∨
g∈G

[g, a] = νG(a) = a∗(〈G〉),

and hence νθ⇒(G)(θ→(a)) ≥ a∗(〈G〉).

If a ∈ LX , it is shown that θ∗→(a∗) ≤ θ→(a). First, assume that y = θ∗(j(z)) = θ(z) ∈ Y .

Then θ→(a)(y) = ∨{νK(θ→(a) : K p−→ y} ≥ ν[θ(z)](θ→(a)) ≥ a(z) = a∗(j(z)). Next, suppose

that θ∗(〈G〉) = y, where θ⇒(G) p−→ y. Then θ→(a)(θ∗(〈G〉) = ∨{νK(θ→(a)) : K p−→ y} ≥

νθ⇒(G)(θ→(a)) ≥ a∗(〈G〉). Combining these two results, θ→(a)(y) ≥ ∨{a∗(z) : θ∗(z) = y} =

θ∗→(a∗)(y) and thus θ∗→(a∗) ≤ θ→(a).

Assume F is a >-filter on X; then B1 = {θ→(a) : a ∈ F} and B2 = {θ∗→(a∗) : a ∈ F} are
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>-filter bases on Y . Then θ⇒(F) and θ∗⇒(F∗) denote the >-filters generated by B1 and B2,

respectively. Since for each a ∈ F, θ∗→(a∗) ≤ θ→(a), it follows that θ∗⇒(F∗) ≥ θ⇒(F).

Finally, suppose that H
q∗−−→ j(x). Then H ≥ F∗ for some F

q−→ x, and thus θ∗⇒(H) ≥

θ∗⇒(F∗) ≥ θ⇒(F). Since (Y, q) is regular, it follows that θ∗⇒(H) p−→ θ(x) = θ∗(j(x)).

Similarly, if H q∗−−→ 〈G〉, then H ≥ G∗ and thus θ∗⇒(H) ≥ θ∗⇒(G∗) ≥ θ⇒(G) and θ∗⇒(H) p−→

y = θ∗(〈G〉), where θ⇒(G) p−→ y. Hence θ∗ : (X∗, q∗) −→ (Y, p) is continuous and j ◦ θ∗ =

θ.

Connections between the compactification constructed in Theorem 2.11 and that given by

Jäger [14] are made below. Assume that (X, q) ∈ |>-Conv| is not compact. In order to

simplify the notation, let
(
(X∗, s), j

)
denote the compactification of (X, q) given in Theorem

2.11. According to Theorem 4.1 [6], there is an isomorphism between the full subcategory

SL-LC-CS of “left-continuous” objects in SL-CS and the category SL-GCS of stratified L-

generalized convergence spaces.

Let (X, q∗) ∈ |SL-CS| denote the object given in Definition 2.5; it easily follows that

(X, q∗) ∈ |SL-LC-CS| but, in general, (X, q∗) is not left-continuous.

Jäger’s [14] compactification
(
(X∗, p), j

)
of (X, q∗) in SL-CS is described below. If µ ∈

FSL(X∗), define µ̃ ∈ FSL(X) by µ̃(a) = µ(a∗), for each a ∈ LX . Then p = (pα)α∈L is defined

as follows: for α > ⊥

µ
pα−−→ j(x) ⇐⇒ µ̃

q∗α−−→ x

µ
pα−−→ 〈G〉 ⇐⇒ µ̃ = νG

µ
p⊥−−→ z ⇐⇒ µ ≥ ν⊥, z ∈ X∗.
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It is shown in Theorem 2.12 below that p = s.

Lemma 2.17. Suppose that (X, q) ∈ |>-Conv| is not compact and let X∗ = X ∪{〈G〉 : G ∈

η}. Then for a, b ∈ LX , K ∈ F>L(X), and J ∈ F>L(X∗):

(i) [b∗, a∗] = [b, a]

(ii) ν̃K∗ = νK

(iii) ν̃J ≥ νK implies J ≥ K∗.

Proof. (i) Observe that [b∗, a∗] =
∧
x∈X

(
b∗(j(x)) → a∗(j(x))

)
∧
∧

G∈N

(
b∗(〈G〉) → a∗(〈G〉)

)
=

[b, a] ∧
∧

G∈N

(
νG(b) → νG(a)

)
. According to Corollary 3.3 [4], νG(b) → νG(a) ≥ [b, a] and it

follows that [b∗, a∗] = [b, a].

(ii) Fix a ∈ LX ; then using (i), ν̃K∗(a) = νK∗(a∗) = ∨
b∈K

[b∗a∗] = ∨
b∈K

[b, a] = νK(a). Hence

ν̃K∗ = νK.

(iii) Assume that a ∈ K; then > = νK(a) ≤ ν̃J(a) = νJ(a∗) and thus a∗ ∈ J. Hence

K∗ ⊆ J.

Theorem 2.12. Assume that L is a complete Boolean algebra, (X, q) ∈ |>-Conv| is not

compact,
(
(X∗, s), j

)
is the compactification of (X, q) given in Theorem 2.11, (X, q∗) and

(X∗, s∗) are as defined in Definition 2.5. If
(
(X∗, p, j

)
denotes the compactification of (X, q∗)

given by Jäger [14], then s∗ = p.

Proof. Fix α > ⊥. First, suppose that µ pα−−→ j(x); then µ̃
q∗α−−→ x and thus µ̃ ≥ νF for some

F
q−→ x. Since µ = νH for some H ∈ F>L(X∗), ν̃H ≥ νF, and by Lemma 2.17 (iii), H ≥ F∗.

Then µ = νH ≥ νF∗ and F∗
s−→ j(x) implies that µ s∗α−−→ j(x). Next, assume that µ pα−−→ 〈G〉;
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then µ = νH and µ̃ = νG. Since ν̃H = νG, it follows by Lemma 2.17 (iii) that H ≥ G∗ and

thus µ = νH ≥ νG∗ . Hence µ s∗α−−→ 〈G〉 and thus p ≥ s∗.

Conversely, suppose that α > ⊥ and µ
s∗α−−→ j(x); then µ ≥ νF∗ for some F

q−→ x. It follows

from Lemma 2.17 (ii) that µ̃ ≥ ν̃F∗ = νF and thus µ̃ q∗α−−→ x. Hence µ pα−−→ j(x). Next, assume

that µ s∗α−−→ 〈G〉; then µ ≥ νG∗ implies that µ̃ ≥ νG. Since νG is a stratified L-ultrafilter on

X, µ̃ = νG and thus µ pα−−→ 〈G〉. Then s∗ ≥ p and thus s∗ = p.
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CHAPTER 3: >-CAUCHY SPACES

The study of completions using Cauchy filters dated back to Kowalsky [18]. Later Cook and

Fischer [3] introduced uniform convergence spaces which also gave a framework for the study

of completions in terms of Cauchy filters. Keller [17] gave a set of axioms which characterize

the Cauchy filters of a uniform convergence spaces. Spaces satisfying these axioms are now

called Cauchy spaces, and has led to the study of completions from the context of Cauchy

spaces. Fundamental results in this area can be found in the works of Reed [25], Lowen

[20], and Preuss [24]. Jäger [14] defined a Cauchy space in the lattice-valued setting and

developed a completion theory in this context.

Definitions and Categorical Properties of >-Chy

If F,G ∈ F>L(X), then F ∨ G denotes the smallest >-filter on X containing both F and G,

provided it exists.

Lemma 3.1. If F,G ∈ F>L(X) then F ∨ G exists if and only if for each f ∈ F and g ∈ G,∨
x∈X

(f(x) ∧ g(x)) = >. In particular, for any F,G,H ∈ F>L(X), (F ∩ H) ∨ (G ∩ H) exists.

Proof. Assume that F ∨G exists, f ∈ F and g ∈ G. It follows that f ∧ g ∈ F ∨G and thus∨
z∈X

(
f(z) ∧ g(z)

)
= >. Conversely, suppose that for each f ∈ F, g ∈ G,

∨
z∈X

(
f(z) ∧ g(z)

)
=

>. Define B = {f ∧ g : f ∈ F, g ∈ G}. Then B is closed under finite infima and thus∨
c∈B

[c, f ∧ g] = >. Since ∨
z∈B

(
f(z)∧ g(z)

)
= >, it follows that B is a base for F∨G. Further,

if a ∈ F ∩ H and b ∈ G ∩ H, then a ∧ b ∈ H implies that ∨
x∈X

(
a(x) ∧ b(x)

)
= > and thus

(F ∩ H) ∨ (G ∩ H) exists.
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Definition 3.1. The pair (X, C) is called a >-Cauchy space and C is called a >-Cauchy

structure on X provided that C ⊆ F>L(X) obeys:

(>C1) [x] ∈ C for each x ∈ X,

(>C2) F ≥ G ∈ C implies F ∈ C, and

(>C3) F,G ∈ C and F ∨G exists implies that F ∩G ∈ C.

The axioms of a >-Cauchy space coincide with those in the classical case provided >-filters

on X replace set filters. A map θ : (X, C) −→ (Y,D) between two >-Cauchy spaces is said

to be Cauchy-continuous provided that θ⇒F ∈ D whenever F ∈ C. Let >-Chy denote

the category whose objects consist of all >-Cauchy spaces and whose morphisms are all the

Cauchy-continuous maps.

Definition 3.2. The pair (X, q) is called a >-limit space provided that (X, q) ∈ |>-Conv|

and, additionally, F,G q−→ x implies that F∩G q−→ x. Let >-Lim denote the full subcategory

of >-Conv consisting of all the >-limit spaces

For each (X, C) ∈ |>-Chy|, define (X, qC) as follows: F
qC−−→ x iff F ∩ [x] ∈ C.

Lemma 3.2. If (X, C) ∈ |>-Chy|, then (X, qC) ∈ |>-Lim|.

Proof. First observe that if x ∈ X, then by (>C1), [x] ∈ C and thus [x] ∩ [x] ∈ C and

[x] qC−−→ x. Next if F qC−−→ x and F ⊆ G, then G ∩ [x] ⊇ F ∩ [x] ∈ C. By (>C2) this implies

G ∩ [x] ∈ C and thus G
qC−−→ x. Finally, if F,G qC−−→ x then F ∩ [x],G ∩ [x] ∈ C. Further, by

Lemma 3.1, (F∩ [x])∨ (G∩ [x]) exists and thus by (>C3) we have that (F∩ [x])∩ (G∩ [x]) =

(F ∩G) ∩ [x] ∈ C. Hence F ∩G
qC−−→ x. Hence (X, qC) ∈ |>-Lim|.
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Next, using Keller’s [17] argument, we characterize precisely when a >-limit structure is

induced by a >-Cauchy structure.

Lemma 3.3. An object (X, q) ∈ |>-Lim| is induced by some (X, C) ∈ |>-Chy| if and only if

for each x 6= y in X, either q-convergence to x and y coincides or x and y have no common

q-convergent filters.

Proof. First suppose that (X, q) ∈ |>-Lim| is induced by some (X, C) ∈ |>-Chy|. That is

q = qC. Let x, y ∈ X be distinct. To show that either q-convergence to x and y coincides or

have no common q-convergent filters, we suppose that there is a F ∈ F>L(X) which converges

to x and not to y and then show that have no common q-convergent filters. Suppose by way

of contradiction that x and y do have a convergent filter in common, say G
q−→ x, y. Then

since F,G
q−→ x, it follows from Definition 3.2 of a >-limit space that F ∩ G

q−→ x. Hence

F ∩ G ∈ C. Also, since G
q−→ y and q = qC it follows that G ∩ [y] ∈ C. Employing Lemma

3.1 we have that (F ∩G) ∨ (G ∩ [y]) exists and thus (F ∩G) ∩ (G ∩ [y]) = (F ∩G) ∩ [y] ∈ C.

Hence F ∩G
qC−−→ y and thus F

q−→ y, a contradiction.

Next, suppose that (X, q) ∈ |>-Lim| is such that for each x 6= y in X, either q-convergence

to x and y coincides or have no common q-convergent filters. Define Cq = {F ∈ F>L(X) :

F q-converges}. Then by Definition 2.1 (>CS1), since [x] q−→ x for each x ∈ X, we have

that [x] ∈ Cq. Also if G ⊇ F
q−→ x then by Definition 2.1 (>CS2) it follows that G

q−→ x

and hence that G ∈ Cq. Assume that F,G ∈ Cq such that F ∨ G exists. Then F
q−→ x,

G
q−→ y for some x, y ∈ X. By assumption, convergence to x and y either coincides or share

no filters. Since F,G ⊆ F ∨G, it follows that F ∨G
q−→ x, y. Hence x and y must have the

same q-convergent filters. In particular F,G
q−→ x and thus by Definition 3.2 of a >-limit

space, it follows that F ∩G
q−→ x. Thus F ∩G ∈ Cq. Therefore Cq is a >-Cauchy structure

on X. It follows that q = qCq .
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An object (X, C) ∈ |>-Chy| called Hausdorff, or T2 if no two distinct points share convergent

>-filters in (X, qC). It follows that each T2 object (X, q) ∈ |>-Lim| is induced by some

(X, C) ∈ |>-Chy|.

Lemma 3.4. If f : (X, C) −→ (Y,D) is Cauchy-continuous in >-Chy, then f : (X, qC) −→

(Y, qD) is continuous in >-Conv.

Proof. Suppose that f : (X, C) −→ (Y,D) is Cauchy-continuous in >-Chy and assume

that F
qC−−→ x. We need to show that f⇒F qD−−→ f(x). That is, we need to show that

f⇒F ∩ [f(x)] ∈ D. Since F
qC−−→ x this implies that F ∩ [x] ∈ C. The Cauchy-continuity of f

implies that f⇒(F ∩ [x]) = f⇒F ∩ f⇒[x] = f⇒F ∩ [f(x)] ∈ D, as desired.

It is shown by Fang and Yu in [29] that >-Conv is a topological construct which is also

Cartesian closed. Making only minor modifications, the theorems below shows that >-Chy

is also a topological construct and is Cartesian-closed. We begin with the following lemma.

Lemma 3.5. Let f : (X, q) −→ (Y, p) be a map between two >-Cauchy spaces and let

F,G ∈ F>L(X). If F ∨G exists then f⇒F ∨ f⇒G also exists.

Proof. By Lemma 3.1, we must show that ∨
y∈Y

(
f→a

)
(y)∧

(
f→b

)
(y) = > for each a ∈ F and

b ∈ G. We compute,

∨
y∈Y

(
f→a

)
(y) ∧

(
f→b

)
(y) =

∨
y∈Y

 ∨
f(x)=y

a(x) ∧
∨

f(t)=y
b(t)


≥
∨
y∈Y

∨
f(x)=y

a(x) ∧ b(x) =
∨
x∈X

a(x) ∧ b(x).

Since F ∨G exists, Lemma 3.1 implies that ∨
x∈X

a(x) ∧ b(x) = > and the result follows.
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Theorem 3.1. The category >-Chy is a topological construct.1

Proof. Consider the source fj : X −→ (Yj,Dj), j ∈ J . Define C = {F ∈ F>L(X) : f⇒j F ∈

Dj, ∀ j ∈ J}. Since for each x ∈ X, f⇒j [x] = [fj(x)] ∈ Dj for all j ∈ J , [x] ∈ C. Next if

G ⊇ F ∈ C, then for each j ∈ J , f⇒j G ⊇ f⇒j F ∈ Dj and hence f⇒j G ∈ Dj and G ∈ C. Finally

if F,G ∈ C and F ∨ G exists, then by Lemma 3.5, f⇒j F ∨ f⇒j G exists for each j ∈ J and

using Lemma 1.4 (i), f⇒j F ∩ f⇒j G = fj(F ∩G) ∈ Dj for each j ∈ J . Thus (X, C) ∈ |>-Chy|.

Assume that g : (Z, E) −→ (X, C) is a map such that fj ◦ g : (Z, E) −→ (Yj,Dj) is Cauchy-

continuous for each j ∈ J . If G ∈ E , then f⇒j (g⇒G) = (fj ◦ g)⇒G ∈ Dj for each j ∈ J and

thus g⇒G ∈ C. It follows that g : (Z, E) −→ (X, C) is also Cauchy-continuous. Conversely,

if g is Cauchy-continuous, then clearly the composition fj ◦ g is Cauchy-continuous for each

j ∈ J . Thus >-Chy possesses initial structures.

Suppose that X is any fixed set. Then the class of all >-Cauchy structures on X is a subset

of 2F>L (X) and is thus a set. Next, assume that |X| = 1, that is, X = {x}. Note that if

a ∈ LX , then a = α1X for some α ∈ L. Since X = {x}, [x] = 1X for each F ∈ F>L(X) and

thus C = {F ∈ F>L(X) : F = [x]} is the only structure on X such that (X, C) ∈ |>-Chy|.

If X = ∅, then C = ∅ and thus there is exactly one object in >-Chy whenever X = ∅ or

X = {x}. Hence >-Chy is a topological construct.

Let X1, X2 be two sets. If ai ∈ LXi , i = 1, 2, then we define a1 × a2 ∈ LX1×X2 by (a1 ×

a2)(x1, x2) = a1(x1) ∧ a2(x2). If πi is the ith projection, note that π→1 (a1 × a2)(x1) =∨
π1(s,t)=x1

(a1 × a2)(s, t) = ∨
x2∈X2

(a1(x1) ∧ a2(x2)) = a1(x) ∧
( ∨
x2∈X2

a2(x2)
)
≤ a1(x1). Hence

π→1 (a1 × a2) ≤ a1. Similarly, π→2 (a1 × a2) ≤ a2.

1See Appendix for the definition of topological constructs.
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Let Fi ∈ F>L(Xi), i = 1, 2; then B = {a1× a2 : ai ∈ Fi} is shown in [29] to be a >-filter base,

and the generated >-filter is denoted by F1 × F2. Further, assume that Bi is a >-filter base

for Fi, i = 1, 2. It is shown in [29] that {b1 × b2 : bi ∈ Bi, i = 1, 2} is a >-filter base which

generates the filter F1 × F2. The following lemma is also found in [29].

Lemma 3.6. Let θi : Xi −→ Yi and let Fi ∈ F>L(Xi), i = 1, 2. Also let πi : X1 ×X2 −→ Xi

denote the ith projection map. The following hold:

(i) (θ1 × θ2)⇒(Fi × F2) = θ⇒1 (F1)× θ⇒2 (F2),

(ii) π⇒i (F1 × F2) = Fi, i = 1, 2.

Let (X, C), (Y,D) ∈ |>-Chy|, and let C(X, Y ) denote the set of all Cauchy-continuous maps.

Define ev : C(X, Y ) ×X → Y by ev(f, x) = f(x). Note that since >-Chy possesses initial

structures, it has product structures. In particular, if H ∈ F>L(X × Y ), then H ∈ C × D

(product structure) iff π⇒1 H ∈ C and π⇒2 H ∈ D. Define Σ ⊆ F>L(C(X, Y )) as follows: Φ ∈ Σ

iff for each F ∈ C, ev⇒(Φ× F) ∈ D.

Theorem 3.2. The category >-Chy is Cartesian closed.

Proof. First, we show that Σ as defined above is a >-Cauchy structure on C(X, Y ). Fix

θ ∈ C(X, Y ). It is shown that if F ∈ C, then ev⇒([θ] × F) ∈ D. Since B1 = {1{θ}}

is a >-filter base for [θ], B = {1{θ} × a : a ∈ F} is a >-filter base for [θ] × F and thus

B̂ = {ev→(1{θ} × a) : a ∈ F} is a >-filter base for ev⇒([θ]× F). Observe that for y ∈ Y ,

ev→(1{θ} × a)(y) =
∨

ev(ψ,z)=y
(1{θ} × a)(ψ, z)

=
∨

ev(ψ,z)=y
1{θ}(ψ) ∧ a(z)

=
∨

θ(z)=y
a(z) = θ→(a)(y).
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Hence ev→(1{θ} × a) = θ→(a) for each a ∈ F. Since B̂ is a >-filter base for ev⇒([θ]× F) and

{θ→(a) : a ∈ F} is a >-filter base for θ⇒F, we have ev⇒([θ]×F) = θ⇒F ∈ D. Hence [θ] ∈ Σ.

Clearly, if Ψ ≥ Φ ∈ Σ, then Ψ ∈ Σ.

Next, assume that Ψ,Φ ∈ Σ such that Ψ ∨ Φ exists. If F ∈ C, then Φ × F ⊆ (Ψ ∨ Φ) × F

and Ψ × F ⊆ (Ψ ∨ Φ) × F and hence (Φ × F) ∨ (Ψ × F) exists. It follows from Lemma 3.5

that ev⇒(Φ × F) ∨ ev⇒(Ψ × F) exists. Since ev⇒(Φ × F), ev⇒(Ψ × F) ∈ D, we have that

ev⇒(Φ×F)∩ ev⇒(Ψ×F) ∈ D. Observe that ev⇒((Φ∩Ψ)×F) = ev⇒(Φ×F)∩ ev⇒(Ψ×F),

and thus Σ is a >-Cauchy structure and
(
C(X, Y ),Σ

)
∈ |>-Chy|.

Note that if Γ ∈ Σ× C, then Γ ≥ π⇒1 (Γ)× π⇒2 (Γ), where π⇒1 (Γ) ∈ Σ and π⇒2 (Γ) ∈ C. Since

ev⇒Γ ≥ ev⇒(π⇒1 (Γ)× π⇒2 (Γ)) ∈ D, it follows that ev :
(
C(X, Y ),Σ

)
× (X, C) −→ (Y,D) is

Cauchy-continuous.

Next, assume that f : (Z, E)× (X, C) −→ (Y,D) is Cauchy-continuous. Fix z ∈ Z and define

fz : X −→ Y by fz(x) = f(z, x). It is shown that fz ∈ C(X, Y ). Indeed, let F ∈ C; it is shown

that f⇒z F = f⇒([z]×F). A >-filter base for [z]×F is {1{z}×a : a ∈ F}. Observe that if y ∈ Y

and a ∈ F, f→(1{z} × a)(y) = ∨
f(s,t)=y

(1{z} × a)(s, t) = ∨
f(z,t)=y

a(t) = ∨
fz(t)=y

a(t) = f→z (a)(y).

Hence f→(1{z}×a) = f→z (a) and f⇒z F = f⇒([z]×F) since their >-filter bases coincide. Since

f⇒([z]×F) ∈ D, fz : (X, C) −→ (Y,D) is Cauchy-continuous and thus fz ∈ C(X, Y ). Define

f ∗ : Z −→ C(X, Y ) by f ∗(z) = fz for z ∈ X. It is shown that f ∗ : (Z, E) −→
(
C(X, Y ),Σ

)
is Cauchy-continuous.

In [29] it was shown that ev ◦ (f ∗ × idX) = f . Indeed, if (s, t) ∈ Z × X, then
(
ev ◦

(f ∗ × idX)
)
(s, t) = ev(f ∗(s), t) = ev(fs, t) = fs(t) = f(s, t). Observe that if G ∈ E and

F ∈ C, then f⇒(G × F) ∈ D since f is Cauchy-continuous. Then f⇒(G × F) =
(
ev→(f ∗ ×

idX)
)⇒

(G×F) = ev⇒(f ∗⇒(G)×F) ∈ D for each F ∈ D. It follows that f ∗⇒G ∈ Σ and thus
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f ∗ : (Z, E) −→
(
C(X, Y ),Σ

)
is Cauchy-continuous. That is, if f : (Z, E)×(X, C)→ (Y,D) is

Cauchy-continuous, then f ∗ : (Z, E) −→
(
C(X, Y ),Σ

)
is Cauchy-continuous. Hence >-Chy

is Cartesian closed.

Cauchy Completions

An object (X, C) ∈ |>-Chy| is called complete provided each F ∈ C converges in (X, qC).

Moreover,
(
(Y,D), φ

)
is called a completion of (X, C) in>-Chy provided that φ : (X,D) −→

(Y,D) is a dense >-Cauchy embedding and (Y,D) is complete. Here denseness means that

for each y ∈ Y , there exists F ∈ F>L(X) such that φ⇒F qD−−→ y. It is shown below that

each >-Cauchy space has a finest completion in >-Chy, and also each Cauchy-continuous

map into a complete >-Cauchy space can be extended to a Cauchy-continuous map on the

completion.

Let (X, C) ∈ |>-Chy|; then F ∼ G iff F ∩ G ∈ C defines an equivalence relation on C.

Denote NC= {F ∈ C : F fails to qC-converge} and let 〈G〉C = {F ∈ NC : F ∼ G}. When

the structure is clear, we will write N (〈G〉) instead of NC (〈G〉C), respectively. Define

X∗ = X ∪ {〈G〉 : G ∈ N} and let j : X −→ X∗ be the natural injection.

Definition 3.3. A completion
(
(Y,D), φ

)
of (X, C) in >-Chy is said to be in standard

form provided that Y = X∗, φ = j, and j⇒H
qD−−→ 〈G〉 in (Y, qD) whenever H ∼ G.

Definition 3.4. Assume that
(
(Y,D), φ

)
and

(
(Z, E), ψ

)
are two completions of (X, C) in

>-Chy. Then
(
(Y,D), φ

)
≥
(
(Z, E), ψ

)
is defined to mean that there exists a Cauchy-

continuous map h : (Y,D) −→ (Z, E) such that h ◦ φ = ψ. That is, the diagram below

commutes:
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(X, C)

(Y,D)

(Z, E)

φ

ψ

∃h

As in the classical setting, ≥ is a partial order on the set of all completions of (X, C).

Moreover, if
(
(Y,D), φ

)
≥
(
(Z, E), ψ

)
and vice versa, then the two completions are said to

be equivalent and in this case h is a >-Cauchy isomorphism. Verification of the following

lemma follows the proof in the classical setting of Theorem 5 given by Reed in [25].

Lemma 3.7. Every T2 completion of (X, C) in >-Chy is equivalent to one in standard form.

Assume that (X, C) ∈ |>-Chy| and let X∗ = X ∪ {〈G〉 : G ∈ N} and j : X −→ X∗ be the

natural injection. Define

C∗ = {H ∈ F>L(X∗) : either H ≥ j⇒F for some qC-convergent F or

H ≥ j⇒G ∩ [〈G〉] for some G ∈ N}.

Theorem 3.3. Suppose that (X, C) ∈ |>-Chy|. Then

(i)
(
(X∗, C∗), j

)
is the finest completion of (X, C) in >-Chy which is in standard form,

(ii) if f : (X, C) −→ (Y,D) is a Cauchy-continuous map and (Y,D) is complete, then f

has a Cauchy-continuous extension f ∗ : (X∗, C∗) −→ (Y,D) such that f ∗ ◦ j = f , and

(iii) (X∗, C∗) is T2 iff (X, C) is T2.

Proof. (i) First, it is shown that C∗ is a >-Cauchy structure on X∗. Since j⇒([x]) = [j(x)],

it follows that [j(x)] and [〈G〉] are in C∗. Clearly K ≥ H ∈ C∗ implies that K ∈ C∗. Suppose
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that j⇒F1 ∨ j⇒F2 exists where F1,F2 are qC-convergent. Fix fi ∈ Fi, i = 1, 2; then

> =
∨
z∈X∗

j→f1(z) ∧ j→f2(z)

=
( ∨
x∈X

j→f1(j(x)) ∧ j→f2(j(x))
)
∨

 ∨
G∈N

j→f1(〈G〉) ∧ j→f2(〈G〉)


=
( ∨
x∈X

(
∨ {f1(z) : j(z) = x}

)
∧
(
∨ {f2(z) : j(z) = x}

))

∨

 ∨
G∈N

(
∨ {f1(z) : j(z) = 〈G〉}

)
∧
(
∨ {f2(z) : j(z) = 〈G〉}

)
=
( ∨
x∈X

f1(x) ∧ f2(x)
)
∨

 ∨
G∈N

(∨∅) ∧ (∨∅)


=
( ∨
x∈X

f1(x) ∧ f2(x)
)
∨

 ∨
G∈N
⊥ ∧⊥


=

∨
x∈X

f1(x) ∧ f2(x),

and thus F1 ∨F2 exists. Since F1 and F2 are qC-convergent, it is simple to show that F1 ∩F2

is also qC-convergent. Since F1 ∩ F2 is qC-convergent and j⇒F1 ∩ j⇒F2 = j⇒(F1 ∩ F2) ∈ C∗,

we have that j⇒F1 ∩ j⇒F2 ∈ C∗.

Observe that if F qC-converges and G ∈ N , then j⇒F∨
(
j⇒G∩ [〈G〉]

)
fails to exist. Indeed,

F∨G fails to exist since G fails to qC-converge. Therefore there exists a ∈ F and b ∈ G such

that ∨
x∈X

(a(x) ∧ b(x)) 6= >. A base member for j⇒G ∩ [〈G〉] is c = j→(b) ∨ 1{〈G〉}. It follows

that ∨
z∈X∗

(
j→(a)(z) ∧ c(z)

)
= ∨

x∈X
a(x) ∧ b(x) 6= >, and thus j⇒F ∨ (j⇒G ∩ [〈G〉]) fails to

exist. This argument also shows that j⇒G1 ∩ [〈G1〉] ∨ j⇒G2 ∩ [〈G2〉] exists iff 〈G1〉 = 〈G2〉,

and it follows that C∗ is a >-Cauchy structure on X∗.

The definition of C∗ implies that j : (X, C) −→ (X∗, C∗) is Cauchy-continuous. Conversely,

assume that L ∈ F>L(X) such that j⇒L ∈ C∗. If j⇒L ≥ j⇒F for some qC-convergent F, then
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since j is one-to-one, L = j⇐j⇒L ≥ F and thus L ∈ C.

Next, suppose that j⇒L ≥ j⇒G ∩ [〈G〉] for some G ∈ N . It is shown that L ≥ G. Indeed,

if g ∈ G; then b = j→g ∨ 1{〈G〉} is a base member of j⇒G ∩ [〈G〉] and b ∈ j⇒L. Hence

j←(b) ∈ j⇐j⇒L = L. However, for each x ∈ X, j←(b)(x) = (b ◦ j)(x) = g(x). Then

j←(b) = g ∈ L and thus L ≥ G. It follows that j : (X, C) −→ (X∗, C∗) is a Cauchy embed-

ding. Since j⇒G qC∗−−→ 〈G〉, j(X) is dense in X∗. It follows from the definition of C∗ that

(X∗, C∗) is complete. Hence
(
(X∗, C∗), j

)
is a completion of (X, C) in >-Chy.

Finally, assume that
(
(X∗,D), j

)
is another completion of (X, C) in standard form. If

F ∈ C, then j⇒F ∈ D. Moreover, if G ∈ N , then since
(
(X∗,D), j

)
is in standard form,

j⇒G
qD−−→ 〈G〉. Hence j⇒G∩ [〈G〉] ∈ D and thus C∗ ⊆ D. It follows that

(
(X∗, C∗), j

)
is the

finest completion in >-Chy which is in standard form.

(ii) Suppose that f : (X, C) −→ (Y,D) is Cauchy-continuous. Define f ∗(j(x)) = f(x) and

f ∗(〈G〉) = y, where y is one of the limits of f⇒G in (Y,D). Then f ∗ ◦ j = f . If F ∈ F>L(X)

is qC-convergent, then f ∗⇒(j⇐F) = f⇒F ∈ D.

Next, suppose that G ∈ N ; then j⇒G ∩ [〈G〉] ∈ C∗ and f ∗⇒(j⇒G ∩ [〈G〉]) = f⇒G ∩

f ∗⇒([〈G〉]) = f⇒G∩ [f ∗(〈G〉)] = f⇒G∩ [y] where f⇒F qD−−→ y. It follows that f⇒G∩ [y] ∈ D

and thus f ∗ : (X∗, C∗) −→ (Y,D) is a Cauchy-continuous extension of f .

(iii) Since j is a Cauchy-embedding, if (X∗, C∗) is T2, then (X, C) is T2. Next, suppose that

(X, C) is T2 and H
qC∗−−→ z1, z2. If zi = j(xi), then H ≥ j⇒Fi for some Fi

qC−−→ xi and x1 = x2.

If z1 = j(x1) and z2 ∈ X∗ r j(X), then H ≥ j⇒F for some F
qC−−→ x1 and H ≥ j⇒G ∩ [〈G〉]

for some G ∈ N with z2 = 〈G〉. It follows that j⇒F ∨ j⇒G exists and thus F ∨ G exists,

which implies that G is qC-convergent. Hence this case is impossible. Moreover, if zi = 〈Gi〉,
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then H ≥ j⇒Ki ∩ [〈Gi〉] for some Ki ∈ 〈Gi〉, i = 1, 2. It follows that 〈G1〉 = 〈G2〉; otherwise,

j⇒K1∨ j⇒K2 exists and thus K1∨K2 exists, which implies that 〈G1〉 = 〈G2〉. Hence (X∗, C∗)

is T2.

Selection Maps and Completions

In this section we give a general approach for obtaining a completion using selection maps.

Definition 3.5. Let (X, C) ∈ |>-Chy|. A map α : X∗ −→ C is called a selection map for

(X, C) ∈ |>-Chy|, or simply a selection map if the context is clear, if α(x) = [x] whenever

x ∈ X and α(〈G〉) ∈ 〈G〉 whenever G ∈ N . Given a ∈ LX we define aα ∈ LX∗ by

aα(x) = να(x)(a) =

a(x), x ∈ X
να(x)(a), x ∈ X∗ rX

Notationally, instead of writing α(〈G〉), which is quite cumbersome, we write Gα. It is easily

shown that (a ∧ b)α = aα ∧ bα and hence if F ∈ F>L(X) then {aα : a ∈ F} is a >-filter base

for some >-filter on X∗, denoted by Fα. The following properties are needed.

Lemma 3.8. Assume that (X, C) is a >-Cauchy space, a, b ∈ LX and let B denote a >-filter

base for F ∈ F>L(X). Then

(i) νF(a ∧ b) ≤ ∨
x∈X

(a(x) ∧ b(x)),

(ii) [aα, bα] = [a, b],

(iii) j→(a) ≤ aα and j←(aα) = a,

(iv) Bα = {bα : b ∈ B} is a >-filter base for Fα,
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(v) K ∨ L exists on X iff Kα ∨ Lα exists on X∗.

Proof. (i) First, observe that if β ∈ L and F ∈ F>L(X), then νF(β1X) = β. Indeed, if a ∈ F,

then it follows from Lemma 1.1 (v) that [a, β1X ] =
∧
x∈X

(a(x) → β) =
( ∨
x∈X

a(x)
)
→ β =

> → β = β and thus νF(β1X) = ∨
a∈F

[a, β1X ] = ∨
a∈F

β = β. Let β = ∨
x∈X

(a(x) ∧ b(x)); then

νF(a ∧ b) ≤ νF(β1X) = β and thus the result follows.

(ii) According to Corollary 3.3 [4], νF(a)→ νF(b) ≥ [a, b] is valid for each F ∈ F>L(X). Then

[aα, bα] = [a, b] ∧
∧

G∈N

(
aα(〈G〉) → bα(〈G〉)

)
= [a, b] ∧

∧
G∈N

(
νGα(a) → νGα(b)

)
≥ [a, b], and

thus [aα, bα] = [a, b].

(iii) j→(a)(x) = a(x) if x ∈ X and j→(a)(x) = ⊥ if x /∈ X. Hence j→(a) ≤ aα. Next

j←(aα)(x) = aα(j(x)) = aα(x) = a(x) as needed.

(iv) If b ∈ B, then ∨
z∈X∗

bα(z) ≥ ∨
x∈X

b(x) = > and thus ∨
z∈X∗

bα(z) = >. Next, suppose that

b1, b2 ∈ B; then by (ii) above, ∨
b∈B

[bα, bα1 ∧ bα2 ] = ∨
b∈B

[bα, (b1 ∧ b2)α] = ∨
b∈B

[b, b1 ∧ b2] = >. Hence

Bα is a >-filter base for some >-filter H ⊆ Fα. Moreover, assume that a ∈ F; then aα belongs

to the >-filter base {fα : f ∈ F} for the >-filter denoted by Fα. It suffices to show that

aα ∈ H. According to (ii) above, ∨
b∈B

[bα, aα] = ∨
b∈B

[b, a] = > and thus Bα is a >-filter base for

Fα.

(v) Fix a ∈ K, b ∈ L and suppose that Kα ∨ Lα exists. Then,
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> =
∨
z∈X∗

(
aα(z) ∧ bα(z)

)
=

∨
x∈X

(
a(x) ∧ b(x)

)
∨
∨

G∈N

(
aα(〈G〉) ∧ bα(〈G〉)

)
=

∨
x∈X

(
a(x) ∧ b(x)

)
∨
∨

G∈N

(
να(〈G〉)(a) ∧ να(〈G〉)(b)

)
=

∨
x∈X

(
a(x) ∧ b(x)

)
∨
∨

G∈N
να(〈G〉)(a ∧ b)

=
∨
x∈X

(
a(x) ∧ b(x)

)
by (i).

Hence ∨
x∈X

(
a(x) ∧ b(x)

)
= > and thus K ∨ L exists. The other direction is clear.

Now given any (X, C) ∈ |>-Chy| and a selection map α, define Cα = {H ∈ F>L(X∗) : H ≥

Fα for some F ∈ C}.

Theorem 3.4. Let (X, C) be a >-Cauchy space which is not complete and α a selection

map. Then
(
(X∗, Cα), j

)
is a completion in >-Chy which is in standard form.

Proof. First we must show that Cα is a >-Cauchy structure on X∗. Let x ∈ X then [j(x)] ⊇

[x]α. Indeed, if a ∈ [x] then a base member of [x]α is aα and aα(j(x)) = a(x) = >. Hence

aα ∈ [j(x)] and [j(x)] ⊇ [x]α. Therefore [j(x)] ∈ Cα for each x ∈ X. Next we show that

[〈G〉] ≥ (Gα)α. Let g ∈ Gα then gα(〈G〉) = νGα(g) = > and so gα ∈ [〈G〉] and [〈G〉] ⊇ (Gα)α.

Since Gα ∈ C, it follows that [〈G〉] ∈ Cα.

Clearly K ≥ H ∈ Cα implies K ∈ Cα. Next, assume that H,K ∈ Cα such that H ∨ K exists,

where H ≥ Fα and K ≥ Gα for some F,G ∈ C. Then Fα ∨Gα exists, and by Lemma 3.8 (v),

F∨G exists also. Thus F∩G ∈ C and since Fα ∩Gα ≥ (F∩G)α, H∩K ∈ Cα. Therefore Cα

is a >-Cauchy structure on X∗ as desired.
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Suppose that F ∈ C. According to Lemma 3.8 (iii), j→(a) ≤ aα for each a ∈ F and

thus j⇒F ≥ Fα. Hence j : (X, C) −→ (X∗, Cα) is Cauchy-continuous. Next, assume that

H ∈ F>L(X) such that j⇒H ≥ Fα for some F ∈ C. Since j⇐(Fα) exists, it follows from Lemma

3.8 (iii) that H = j⇐(j⇒H) ≥ j⇐(Fα) = F ∈ C. Then H ∈ C and j : (X, C) −→ (X∗, Cα) is a

>-Cauchy embedding.

Fix G ∈ N ; it is shown that j⇒(Gα) ∩ [〈G〉] ≥ (Gα)α. A base member of (Gα)α is gα

where g ∈ Gα. Since gα ≥ j→g, we have gα ∈ j⇒Gα. Also, gα(〈G〉) = νGα(g) = > so that

gα ∈ [〈G〉]. Hence gα ∈ j⇒(Gα) ∩ [〈G〉] and j is a dense embedding.

Finally, we must show that (X∗, Cα) is complete. Assume that H ∈ Cα. Then H ≥ Fα with

F ∈ C. There are two possibilities: F
qC−−→ x for some x ∈ X or F ∈ NC. If F qC−−→ x, then

F∩ [x] ∈ C implies that H∩ [j(x)] ≥ Fα∩ [j(x)] ≥ Fα∩ [x]α ≥ (F∩ [x])α. Hence H∩ [j(x)] ∈ Cα

and H
qCα−−−→ j(x). Next, if F ∈ NC, note that Fα ∩ (Fα)α ≤ [〈F〉]. Indeed if a ∈ F, b ∈ Fα

then (aα ∨ bα)(〈F〉) = νFα(a) ∨ νFα(b) ≥ νFα(b) = >. Hence H ∩ [〈F〉] ≥ Fα ∩ (Fα)α ∩ [〈F〉] =

Fα ∩ (Fα)α ≥ (F∩Fα)α. Since F ∼ Fα, we have that F∩Fα ∈ C and thus H∩ [〈F〉] ∈ Cα and

H
qCα−−−→ 〈F〉. Hence (X∗, Cα) is complete and the result follows.

Given any (X, C) ∈ |>-Chy| and selection map α, Theorem 3.3 (i) implies C∗ ⊆ Cα. However,

even in the classical case where L = {0, 1}, examples exist where C∗ 6= Cα for any selection

map α.

Pretopological Completions

In this section we look at a particular selection map. Assume that (X, C) ∈ |>-Chy| is not

complete. Then (X, C) is called relatively full if for each G ∈ N , 〈G〉 contains a smallest

member, denoted as Gmin. If in addition, each x ∈ X has a coarsest qC-convergent >-filter,
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denoted by UC(x), then (X, C) is said to be full.

Definition 3.6. A completion
(
(Y,D), φ

)
of (X, C) in >-Chy is said to be remainder-

pretopological if each y ∈ Y rφ(X) has a coarsest qD-convergent >-filter. The completion

is called pretopological if the above holds for each y ∈ Y .

Suppose that (X, C) is relatively full, then we may choose the selection map α which sends

x 7→ [x], x ∈ X and 〈G〉 7→ Gmin, G ∈ N . For this special selection map we will denote

aα,Fα and Cα, respectively, by ã, F̃ and C̃.

Theorem 3.5. Suppose that (X, C) is relatively full (full). Then
(
(X∗, C̃), j

)
is a remainder-

pretopological (pretopological) completion in >-Chy, respectively.

Proof. Assume that (X, C) is relatively full. Then by Theorem 3.4
(
(X∗, C̃), j

)
is a com-

pletion. It must be shown that
(
(X∗, C̃), j

)
is remainder-pretopological. Fix G ∈ N and

assume that H −→ 〈G〉 in (X∗, qC̃). It is shown that H ≥ G̃min −→ 〈G〉 in (X∗, qC̃). Since

H −→ 〈G〉 in (X∗, qC̃), H∩ [〈G〉] ≥ K̃ for some K ∈ C, and it follows that K̃∩ [〈G〉] ∈ C̃. Hence

j⇒G −→ 〈G〉 in (X∗, qC̃) implies that j⇒(K ∩G) −→ 〈G〉 in (X∗, C̃), and hence K ∩G ∈ C.

Therefore 〈K〉 = 〈G〉 and thus H ≥ K̃ ≥ G̃min −→ 〈G〉 in (X∗, C̃). It follows that
(
(X∗, C̃), j

)
is a remainder-pretopological completion of (X, C) in >-Chy.

Next, assume that (X, C) is full and fix x ∈ X. Let UC(x) denote the coarsest >-filter which

qC-converges to [x]. It is shown that ŨC(x) is the coarsest qC̃-convergent >-filter to converge

to j(x). Suppose that H ∩ [j(x)] ∈ C̃; then H ∩ [j(x)] ≥ F̃ for some F ∈ C. Note that

F̃∨ (H∩ [j(x)]) exists and thus F̃∩ [j(x)] ∈ C̃. Since j⇒(F∩ [x]) ≥ F̃∩ [j(x)], it follows that

F∩[x] ∈ C and thus F ≥ UC(x). Hence H ≥ F̃ ≥ ŨC(x) and thus (X∗, C̃) is pretopological.

Corollary 3.1. Assume that (X, C) ∈ |>-Chy|. Then (X, C) has a remainder-pretopological

(pretopological) completion in >-Chy which is in standard form if and only if (X, C) is
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relatively full (full), respectively.

Proof. Suppose that (X, C) is relatively full (full). Then by Theorem 3.5 we have that (X, C)

has a remainder-pretopological (pretopological) completion in standard form, respectively.

Conversely, suppose that
(
(X∗,D), j

)
is a remainder-pretopological completion of (X, C) in

standard form. Then if y ∈ X∗ r j(X), then by definition of X∗, y = 〈G〉 for some G ∈ N .

It follows that j⇒
( ⋂
H∈〈G〉

H

)
= ⋂

H∈〈G〉
j⇒H ∈ D and since j is a >-Cauchy embedding, 〈G〉

contains a smallest member. Hence (X, C) is relatively full. A similar argument holds

whenever
(
(X∗,D), j

)
is a pretopological completion in standard form.

Corollary 3.2. Suppose that (X, C) is relatively full. Then (X∗, C̃) is T2 if and only if (X, C)

is T2.

Topological Completion

Fang and Yu [29] defined when a object in >-Conv is topological. Further, Fang and Yue [5]

showed that this definition characterizes when a >-convergence space is strong L-topological

as defined in [29]. The following definition of topological is a version suited for the category

>-Chy.

Definition 3.7. An object (X, C) ∈ |>-Chy| is said to be topological in >-Chy provided

the following conditions are satisfied. Let J be any set, ψ : J −→ X∗, σ : J −→ C such

that if ψ(y) ∈ X then σ(y) qC−−→ ψ(y), and otherwise if ψ(y) = 〈G〉, then σ(y) ∈ 〈G〉. If

H ∈ F>L(J) and ψ⇒H ≥ j⇒F for some qC-convergent F or ψ⇒H ≥ j⇒G ∩ [〈F〉] for some

G ∈ NC, then κσH ∈ C. Here κσH = {b ∈ LX : eb ◦ σ ∈ H} and eb : F>L(X) −→ L is defined

as eb(G) = νG(b), for each G ∈ F>L(X). It was shown by Fang and Yue in [5] that κσH is a

>-filter on X.
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The notion of being topological has been defined in previous chapters in the context of >-

convergence structures. The following two results connect the definition in the>-convergence

space setting to our discussion here.

Lemma 3.9. Suppose that (X, C) ∈ |>-Chy| is complete. Then (X, C) is topological in

>-Chy if and only if (X, qC) is topological in >-Conv.

Proof. Let J be any set, ψ : J −→ X, σ : J −→ F>L(X) such that σ(y) qC−−→ ψ(y) for each

y ∈ J . Suppose that H ∈ F>L(J) and ψ⇒H
qC−−→ x. Using Theorem 3.11 in [5] it must be

shown that κσH qC−−→ x; equivalently; κσH ∩ [x] ∈ C. Since σ(y) qC−−→ ψ(y) for each y ∈ J , it

suffices to assume that σ(y) ≤ [ψ(y)] for each y ∈ J . Otherwise, σ can be replaced by σ∗,

where σ∗(y) = σ(y) ∩ [ψ(y)], y ∈ J . Hence assume that σ(y) ≤ [ψ(y)] for each y ∈ J .

It is shown that ψ⇒H ≥ κσH. Fix b ∈ κσH. Since σ(y) ≤ [ψ(y)] for each y ∈ J , for

z ∈ X, ψ⇒(eb ◦ σ)(z) = ∨{(eb ◦ σ)(y) : ψ(y) = z} = ∨{νσ(y)(b) : ψ(y) = z} ≤ ∨{ν[ψ(y)](b) :

ψ(y) = z} = ν[z](b) = b(z). Then ψ→(eb ◦ σ) ≤ b and eb ◦ σ ∈ H implies that b ∈ ψ⇒H.

Therefore κσH ≤ ψ⇒H. Since (X, C) is topological, κσH ∈ C, and hence ψ⇒H ∩ [x] ∈ C

implies that κσH ∨ (ψ⇒H ∩ [x]) exists. Then κσH ∩ [x] ∈ C and κσH
qC−−→ x. Therefore

(X, qC) is topological in >-Conv.

Conversely, assume that (X, C) is complete and (X, qC) is topological in >-Conv. Given

ψ : J −→ X, σ : J −→ C such that σ(y) ∈ C satisfies [ψ(y)] ≥ σ(y) for each y ∈ J . It follows

that σ(y) ∩ [ψ(y)] ∈ C and thus σ(y) qC−−→ ψ(y). Suppose that H ∈ F>L(J) and ψ⇒H ∈ C;

Then since (X, C) is complete, ψ⇒H qC−−→ x for some x ∈ X. It follows that κσH qC−−→ x as

(X, qC) is topological, and thus κσH ∈ C. Hence (X, C) is topological in >-Chy.

Porism 3.1. Assume that (X, C) ∈ |>-Chy| is topological in >-Chy; then (X, qC) is topo-

logical in >-Conv.
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Proof. Note that the first half of the proof of Lemma 3.9 did not use completeness.

Lemma 3.10. If (X, C) is topological in >-Chy then it is full.

Proof. Let G ∈ N and let J = {y : Gy ∈ 〈G〉} be an index for the elements in 〈G〉. Define

ψ : J −→ X∗ by ψ(y) = 〈G〉 and σ(y) = Gy ∈ C for each y ∈ J . Let H = {1J} ∈ F>L(J);

then ψ⇒H = [〈G〉]. Indeed, ψ→(1J)(z) = ∨{1J(y) : ψ(y) = z} =

⊥, z 6= 〈G〉
>, z = 〈G〉

= 1{〈G〉}(z),

and thus ψ→(1J) = 1{〈G〉}. It follows that ψ⇒H = [〈G〉] ≥ j⇒G ∩ [〈G〉] and since (X, C)

is topological in >-Chy, κσH ∈ C. It remains to show that κσH = ⋂
y∈J

Gy. Recall that

κσH = {b ∈ LX : eb ◦ σ ∈ H}. Observe that b ∈ κσH iff eb ◦ σ = 1J . Equivalently, b ∈ κσH

iff for each y ∈ J , νσ(y)(b) = >, or iff for each y ∈ J , b ∈ σ(y) = Gy. Hence b ∈ κσH iff

b ∈ ⋂
y∈J

Gy. It follows that κσH = ⋂
y∈J

Gy. Since κσH ∈ C, 〈G〉 contains a minimum member.

Likewise, fix x ∈ X and let J = {y : Fy
qC−−→ x} be an index set for all of the >-filters which

qC-converge to x. Define ψ : J −→ X∗ as ψ(y) = x and σ(y) = Fy ∈ C, y ∈ J . The argument

used above shows that UC(x) = ⋂
y∈J

Fy ∈ C. Since [x] ≥ UC(x), it follows that UC(x) qC−−→ x.

Hence UC(x) is the coarsest >-filter which qC-converges to x.

The next result appears within the proof of Theorem 3.5, where UC(x) = ∩{F : F qC−−→ x},

x ∈ X.

Lemma 3.11. Assume that (X, C) is full and H ∈ F>L(X∗). Then

(i) H −→ j(x) in (X∗, C̃) iff H ≥ ŨC(x), x ∈ X, and

(ii) H −→ 〈G〉 in (X∗, C̃) iff H ≥ G̃min, G ∈ N .

Note that Lemma 3.11 shows that if (X, C) is topological in >-Chy, then the completion(
(X∗, C̃), j

)
is pretopological, that is, (X∗, qC̃) is a pretopological space.
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Theorem 3.6. Suppose that (X, C) is topological in >-Chy. Then (X∗, C̃) is also topological

in >-Chy.

Proof. Define ψ : X −→ X∗ by ψ(x) = j(x) and σ : X −→ C by σ(x) = UC(x), x ∈ X.

Since (X, C) is topological in >-Chy, it follows that κσUC(x) = UC(x) and κσGmin = Gmin,

for each x ∈ X and G ∈ N . Define δ : X∗ −→ C̃ by

δ(z) =


ŨC(x), z = j(x)

G̃min, z = 〈G〉
.

Since (X∗, qC̃) is pretopological, it suffices to show that κδŨC(x) ≥ ŨC(x) and κδG̃min ≥ G̃min

for each x ∈ X and Gmin ∈ N .

First, it is shown that κδŨC(x) ≥ ŨC(x), x ∈ X. Recall that κσUC(x) = {b ∈ LX : eb ◦ σ} =

UC(x). Assume that b ∈ κσUC(x); it is shown that b̃ ∈ κδŨC(x). Observe that

(ẽ
b
◦ δ)(j(x)) = ẽ

b

(
ŨC(x)

)
= νŨC(x)(b̃) =

∨
a∈UC(x)

[ã, b̃]

=
∨

a∈UC(x)
[a, b] = νUC(x)(b) = (eb ◦ σ)(x) = ẽb ◦ σ(j(x)),

where Lemma 3.8 (ii) is used from the first to second line.
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Further,

(ẽ
b
◦ δ)(〈G〉) = ẽ

b
(G̃min) =

∨
c∈Gmin

[c̃, b̃]

=
∨

c∈Gmin

[c, b] = νGmin(b) ≥ νGmin(eb ◦ σ) = ẽb ◦ σ(〈G〉),

where again Lemma 3.8 (ii) was used.

Hence ẽ
b
◦ δ ≥ ẽb ◦ σ and since ẽb ◦ σ ∈ ŨC(x), ẽ

b
◦ δ ∈ ŨC(x). Therefore b̃ ∈ κδŨC(x) and

κδŨC(x) ≥ ŨC(x); hence κδŨC(x)
q
C̃−−→ j(x), x ∈ X.

It remains to verify that κδG̃min ≥ G̃min whenever Gmin ∈ N . As above κσGmin = {b ∈ LX :

eb ◦ σ ∈ Gmin}. Let b ∈ κσGmin; it follows as shown above that ẽ
b
◦ δ ≥ ẽb ◦ σ ∈ G̃min and

thus ẽ
b
◦δ ∈ G̃min. Thence b̃ ∈ κδG̃min, κδG̃min ≥ G̃min, and thus κδG̃min

q
C̃−−→ 〈G〉. Therefore

(X∗, C̃) is topological in >-Chy.

Let >-TopChy denote the full subcategory of >-Chy consisting of all the objects that are

topological in the sense of Definition 3.7.

Lemma 3.12. The subcategory >-TopChy of >-Chy possesses initial structures. In partic-

ular, >-TopChy is a concretely bireflective subcategory of >-Chy. 2

Proof. Let X be any set and consider any indexed family fi : X −→ (Yi,Di), i ∈ I, where

(Yi,Di) ∈ |>-TopChy|. Then C = {F ∈ F>L(X) : f⇒i F ∈ Di for each i ∈ I} is the initial

structure in >-Chy. It is shown that (X, C) ∈ |>-TopChy|.

Suppose that ψ : J −→ X∗, σ : J −→ C such that σ(y) qC−−→ ψ(y) whenever ψ(y) ∈ X and

σ(y) ∈ 〈G〉 provided ψ(y) = 〈G〉. For each i ∈ I define θi : X∗ −→ Y ∗i by θi(t) = fi(t)

2See Appendix for definitions concrete and bireflective.
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whenever t ∈ X, and θi
(
〈G〉C

)
=

z if f⇒i G
qDi−−−→ z,

〈f⇒i G〉Di , if f⇒i G ∈ NDi
, where z is a selected limit of

f⇒i G. Let ψ∗i = θi ◦ ψ : J −→ Y ∗i and define σ∗i by σ∗i (y) = f⇒i (σ(y)). Since fi : (X, C) −→

(Yi,Di) is Cauchy-continuous, σ∗i : J −→ Di.

Fix y ∈ J . If ψ(y) = t ∈ X, then σ(y) qC−−→ t and σ∗i (y) = f⇒i
(
σ(y)

) qDi−−−→ fi(t) = ψ∗i (y).

Next, suppose that ψ(y) = 〈G〉C, G ∈ NC. If θi
(
〈G〉C

)
= z, then ψ∗i (y) = z ∈ Yi. Note that

σ(y) ∈ 〈G〉C and thus σ∗i (y)
qDi−−−→ z = ψ∗i (y). Further, assume that θi

(
〈G〉C

)
= 〈f⇒i G〉Di ,

where f⇒i G ∈ NDi , then ψ∗i (y) = 〈f⇒i G〉Di and σ∗i (y) = f⇒i (σ(y)) ∈ 〈f⇒i G〉Di = ψ∗i (y).

Let H ∈ F>L(J); first assume that ψ⇒H ≥ j⇒X F for some F
qC−−→ x. It must be shown that

κσH ∈ C. Since (Yi,Di) ∈ |>-TopChy| and ψ∗i
⇒H = θ⇒i (ψ⇒H) ≥ θ⇒i

(
j⇒X F

)
= j⇒Yi f

⇒
i F

qDi−−−→

jYi(fi(x)), it follows that κσ∗iH ∈ Di. Recall that κσ∗iH = {b∗ ∈ LYi : eb∗ ◦ σ∗ ∈ H}.

Fix b∗ ∈ κσ∗iH; it is shown that b∗ ∈ f⇒i (κσH). Define b = f←i (b∗). Observe that

if y ∈ J ,
(
eb∗ ◦ σ∗i

)
(y) = eb∗

(
σ∗i (y)

)
= νσ∗i (y)(b∗) = νf⇒i (σ(y))(b∗) = ∨

c∈σ(y)
[f→i (c), b∗] ≤∨

c∈σ(y)
[f←i (f→i (c)), f←i (b∗)] ≤ ∨

c∈σ(y)
[c, b] = νσ(y)(b) = (eb ◦ σ)(y), and thus eb∗ ◦ σ∗i ≤ eb ◦ σ.

Since b∗ ∈ κσ∗iH, eb∗ ◦ σ∗i ∈ H and thus eb ◦ σ ∈ H. Then b = f←i (b∗) ∈ κσH and hence

b∗ ∈ f⇒i (κσH) implies that κσ∗iH ⊆ f⇒i (κσH). In this case, f⇒i (κσH) ∈ Di.

Next, suppose that ψ⇒H ≥ j⇒X H ∩ [〈G〉C] for some G ∈ NC. Then ψ∗i
⇒H ≥ θi(j⇒XG) ∩

θ⇒i
(
[〈G〉C]

)
= j⇒Yi (f

⇒
i G) ∩ θ⇒i

(
[〈G〉C]

)
. First, assume that f⇒i G

qDi−−−→ z; then ψ∗i
⇒H ≥

j⇒Yi (f
⇒
i G) ∩ [jYi(z)]. Then as in the case above, f⇒i (κσH) ∈ Di. Finally, suppose that

f⇒i G ∈ NDi ; then ψ∗i
⇒H ≥ j⇒Yi (f

⇒
i G) ∩ [〈f⇒i G〉Di ]. It follows that κσ∗iH ∈ Di and thus

f⇒i (κσH) ∈ Di. Since f⇒i (κσH) ∈ Di for each i ∈ I, it follows that κσH ∈ C and thus

(X, C) ∈ |>-TopChy|. Hence >-TopChy possesses initial structures, and it follows from

Corollary 2.2.6 [24] that >-TopChy is concretely bireflective in >-Chy.
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Lemma 3.12 implies, in particular, that if (X, C) ∈ |>-TopChy|, then each subspace (A, CA)

of (X, C) formed in >-Chy also belongs to >-TopChy. Combining Lemma 3.12 and Theorem

3.6 gives the next result.

Corollary 3.3. An object (X, C) ∈ |>-Chy| has a topological completion in standard form

in >-Chy iff it is topological.

Next we explore the question of whether the completion which takes (X, C) to
(
(X∗, C∗), j

)
preserves the property of being topological.

Lemma 3.13. Let (X, C) ∈ |>-Chy| be full and not be complete and let
(
(X∗, C∗), j

)
denote

the completion given in Theorem 3.3. Define σ : X −→ C by σ(x) = UC(x) and δ : X∗ −→ C∗

by δ(j(x)) = j⇒UC(x) and δ(〈G〉) = j⇒Gmin ∩ [〈G〉], whenever G ∈ NC. If a ∈ LX and

b ∈ LX∗, then

(i) j→(ea ◦ σ) = ej→a ◦ δ

(ii) j←(eb ◦ δ) = ej←b ◦ σ.

Proof. (i) Fix x ∈ X. Then (ej→a ◦ δ)(j(x)) = ej→a(j⇒UC(x)) = νj⇒UC(x)(j→a) = νUC(x)(a) =

(ea ◦ σ)(x) = j→(ea ◦ σ)(j(x)). Moreover j→(ea ◦ σ)(〈G〉) = ⊥ and (ej→a ◦ δ)(〈G〉) =

ej→a(j⇒Gmin ∩ [〈G〉]) = νj⇒Gmin∩[〈G〉](j→a) = νj⇒Gmin(j→a) ∧ ν[〈G〉](j→a). Observe that

ν[〈G〉](j→a) = ∨
c∈[〈G〉]

[c, j→a] = [1{〈G〉}, j→a] = > → j→a(〈G〉) = > → ⊥ = ⊥. Then

(ej→a ◦ δ)(〈G〉) = ⊥. and hence (i) is valid.

(ii) Let x ∈ X and denote a = j←b. Then j←(eb ◦ δ)(x) = (eb ◦ δ)(j(x)) = eb(j⇒UC(x)) =

νj⇒UC(x)(b) = ∨
c∈UC(x)

[j→c, b] = ∨
c∈UC(x)

[c, a] = νUC(x)(a) = (ea ◦σ)(x). Therefore (ii) is satisfied.
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Theorem 3.7. Assume that (X, C) is topological in but not complete in >-Chy and let(
(X∗, C∗), j

)
denote the completion given in Theorem 3.3. Then (X∗, C∗) is also topological

in >-Chy.

Proof. Again, UC(x) denotes the >-neighborhood filter at x. Let σ and δ be as defined

in Lemma 3.13. First, it is shown that κδj⇒UC(x) = j⇒UC(x), x ∈ X. Since (X, C) is

topological, UC(x) = κσUC(x) = {a ∈ LX : ea ◦ σ ∈ UC(x)}. Assume that a ∈ UC(x), then

ea ◦ σ ∈ UC(x) and thus j→(ea ◦ σ) ∈ j⇒UC(x). Since (X, C) is topological, it is also full and

hence by Lemma 3.13 (i) it follows that ej→a ◦ δ ∈ j⇒UC(x) and therefore j→a ∈ κδj⇒UC(x).

Then j⇒UC(x) ⊆ κδj⇒UC(x). Conversely, if b ∈ κδj⇒UC(x), then eb◦δ ∈ j⇒UC(x). According

to Lemma 3.13 (ii), ej←b ◦ σ = j←(eb ◦ δ) = j⇐j⇒UC(x) = UC(x) and thus j←b ∈ κσUC(x)

implies that κδf⇒UC(x) = j⇒UC(x) for each x ∈ X.

It remains to show that for G ∈ N , κδ(j⇒Gmin ∩ [〈G〉]) = j⇒Gmin ∩ [〈G〉]. Suppose that

b ∈ j⇒Gmin ∩ [〈G〉]. Then j←b ∈ j⇐j⇒Gmin = Gmin = κσGmin. It follows that ej←b ◦ σ ∈

Gmin and thus by Lemma 3.13 (ii), j←(eb ◦ δ) ∈ Gmin. Then eb ◦ δ ≥ j→j←(eb ◦ δ) ∈

j⇒Gmin and hence eb ◦ δ ∈ j⇒Gmin. Moreover, eb ◦ δ ∈ j⇒Gmin and b ∈ [〈G〉] implies that

(eb ◦ δ)(〈G〉) = eb(j⇒Gmin ∩ [〈G〉]) = νj⇒Gmin(b) ∧ ν[〈G〉](b) = > and thus eb ◦ δ ∈ [〈G〉].

Then eb ◦ δ ∈ j⇒Gmin ∩ [〈G〉] and hence b ∈ κδ(j⇒Gmin ∩ [〈G〉]). Conversely, assume that

b ∈ κδ(j⇒Gmin ∩ [〈G〉]); then eb ◦ δ ∈ j⇒Gmin ∩ [〈G〉]. Denote a = j←b and by Lemma

3.13 (ii), ea ◦ σ = j←(eb ◦ δ) ∈ j⇐j⇒Gmin = Gmin = κσGmin. It follows that a ∈ Gmin

and thus b ≥ j→j←b ∈ j⇒Gmin implies that b ∈ j⇒Gmin. Further, eb ◦ δ ∈ [〈G〉] gives

> = (eb ◦ δ)(〈G〉) = eb(j⇒Gmin ∩ [〈G〉]) = νj⇒Gmin(b) ∧ ν[〈G〉](b) ≤ ν[〈G〉](b). It follows that

b ∈ [〈G〉] and hence b ∈ j⇒Gmin ∩ [〈G〉]. Then κδ(j⇒Gmin ∩ [〈G〉]) = j⇒Gmin ∩ [〈G〉] and

thus (X∗, C∗) is topological in >-Chy.
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CHAPTER 4: >-UNIFORM LIMIT SPACES

In terms of set filters, Cook and Fischer [3] introduced the notion of a uniform convergence

space in order to study completions and various convergences in function spaces. Several

authors have extended these concepts to the lattice context. A >-uniform limit space is in-

troduced and investigated here; our main thrust is toward completions, but first we establish

some categorical properties.

Definitions and Categorical Properties of >-ULS

If ai ∈ LXi , i = 1, 2, then the product a1 × a2 ∈ LX1×X2 is defined by (a1 × a2)(x, y) =

a1(x)∧a2(y), (x, y) ∈ X1×X2. If Fi ∈ F>L(Xi), i = 1, 2, then the product >-filter on X1×X2,

denoted by F1 × F2, is defined to be the >-filter whose base is {a1 × a2 : a1 ∈ F1, a2 ∈ F2}.

It is shown in [29] that if Bi is any >-filter base for Fi, i = 1, 2, then B1 × B2 is a >-filter

base for F1 × F2.

Let X2 = X ×X and let a, b ∈ LX2 . The composition of a and b is defined by (a ◦ b)(x, y) =∨
z∈X

(
a(x, z) ∧ b(z, y)

)
, where (x, y) ∈ X2. If Φ1,Φ2 ∈ F>L(X2), let B = {a1 ◦ a2 : ai ∈ Φi, i =

1, 2} and observe that for a1 ◦ a2, b1 ◦ b2 ∈ B, (a1 ◦ a2)∧ (b1 ◦ b2) ≥ (a1 ∧ b1) ◦ (a2 ∧ b2) ∈ B. It

follows that B is a base for a >-filter on X2 iff for each a1 ◦a2 ∈ B, ∨
(x,y)∈X2

(a1 ◦a2)(x, y) = >.

Whenever B is a base, we say that Φ1 ◦ Φ2 exists and define Φ1 ◦ Φ2 to be the >-filter it

generated by B.

Lemma 4.1. Let ai, bi ∈ LX
2 and let Di be any >-filter base for Φi ∈ F>L(X2), i = 1, 2.

Assume that Φ1 ◦ Φ2 exists. Then

(i) [a1, b1] ∧ [a2, b2] ≤ [a1 ◦ a2, b1 ◦ b2]

63



(ii) D = {b1 ◦ b2 : bi ∈ Di, i = 1, 2} is a >-filter base for Φ1 ◦ Φ2.

Proof.

(i) Employing Lemma 1.1 (iii) and (v), [a1, b1] ∧ [a2, b2] =
∧

x,y∈X

(
a1(x, y) → b1(x, y)

)
∧

∧
s,t∈X

(
a2(s, t) → b2(s, t)

)
=
∧
x,y
s,t

[(
a1(x, y) → b1(x, y)

)
∧
(
a2(s, t) → b2(s, t)

)]
≤
∧
x,y
s,t(

a1(x, y) ∧ a2(s, t)
)
→

(
b1(x, y) ∧ b2(s, t)

)
≤

∧
x,t,z∈X

(
a1(x, z) ∧ a2(z, t) → b1(x, z) ∧

b2(z, t)
]
≤

∧
x,t∈X

∧
z∈X

(
a1(x, z)∧a2(z, t)→ (b1◦b2)(x, t)

)
=

∧
x,t∈X

( ∨
z∈X

(
a1(x, z) ∧ a2(z, t)

)

→ (b1 ◦ b2)(x, t)
) =

∧
x,t∈X

(
(a1 ◦ a2)(x, t)→ (b1 ◦ b2)(x, t)

)
= [a1 ◦ a2, b1 ◦ b2].

(ii) First, D is a >-filter base on X2. Indeed, if bi ∈ Di, then b1 ◦ b2 ∈ Φ1 ◦ Φ2 and thus∨
x,y∈X

(b1◦b2)(x, y) = >. Next, if c1◦c2, d1◦d2 ∈ D, it is shown that ∨
bi∈Di

[b1◦b2, (c1◦c2)∧

(d1◦d2)] = >. Since Di are >-filter bases, > = ∨
bi∈Di

[bi, ci∧di], i = 1, 2. According to (i)

above, > = ∨
bi∈Di

[b1, c1∧d1]∧ [b2, c2∧d2] ≤ ∨
bi∈Di

[b1 ◦b2, (c1∧d1)◦(c2∧d2)]. Observe that

(c1 ∧ d1) ◦ (c2 ∧ d2) ≤ (c1 ◦ c2)∧ (d1 ◦ d2) and hence > = ∨
bi∈Di

[b1 ◦ b2, (c1 ◦ c2)∧ (d1 ◦ d2)].

Therefore D is a >-filter base on X2.

In order to show that D generates Φ1 ◦ Φ2, it suffices to show that for any ai ∈ Φi,∨
bi∈Di

[b1 ◦ b2, a1 ◦ a2] = >, i = 1, 2. Since Di is a >-filter base for Φi, > = ∨
bi∈Di

[bi, ai],

i = 1, 2. Applying (i) above, > = ∨
bi∈Di

(
[b1, a1] ∧ [b2, a2]

)
≤ ∨

bi∈Di
[b1 ◦ b2, a1 ◦ a2], and

hence ∨
bi∈Di

[b1 ◦ b2, a1 ◦ a2] = >, i = 1, 2. Therefore D is a >-filter base for Φ1 ◦ Φ2.

Let a ∈ LX2 ; then a−1 ∈ LX2 is defined by a−1(x, y) = a(y, x) for (x, y) ∈ X2. Further, if

Φ ∈ F>L(X2), then Φ−1 denotes the >-filter Φ−1 = {a−1 : a ∈ Φ}.
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The axioms listed below are similar to those used by Jäger and Burton [13] in the definition

of a stratified L-uniform convergence space.

Definition 4.1. Given a pair (X,Λ), where Λ ⊆ F>L(X2), is called a

>-uniform limit space provided it satisfies:

(UL1) [(x, x)] ∈ Λ, for each x ∈ X,

(UL2) Ψ ≥ Φ ∈ Λ implies Ψ ∈ Λ,

(UL3) Φ ∈ Λ implies Φ−1 ∈ Λ,

(UL4) Φ ◦Ψ ∈ Λ whenever Φ,Ψ ∈ Λ and Φ ◦Ψ exists, and

(UL5) Φ,Ψ ∈ Λ implies Φ ∩Ψ ∈ Λ.

Moreover, Λ above is said to be a >-uniform limit structure on X.

A map k : (X,Λ) −→ (Y,Σ) between two >-uniform limit spaces is called uniformly

continuous if (k × k)⇒Φ ∈ Σ whenever Φ ∈ Λ. Let >-ULS denote the category of all

>-uniform limit spaces and uniformly continuous maps between them.

Lemma 4.2. Let F,G,H,K ∈ F>L(X).

(i) (F ∩G)× (F ∩G) = (F× F) ∩ (G× F) ∩ (F×G) ∩ (G×G)

(ii) If G ∨ H exists, then F× K = (F×G) ◦ (H× K).

Proof. (i) A base member for (F × F) ∩ (G × F) ∩ (F × G) ∩ (G × G) is a = (f × f) ∨

(g × f) ∨ (f × g) ∨ (g × g) where f ∈ F, g ∈ G. It is shown that a ≥ (f ∨ g) × (f ∨ g).

According to Jäger and Burton [16] page 14, a1 × c2 ≤ c and b1 × c2 ≤ c is equivalent to
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(a1∨b1)×c2 ≤ c. Note that f×(f∨g) ≤ a. Indeed, (f×(f∨g))(x, y) = f(x)∧(f(y)∨g(y)) =

(f(x) ∧ f(y)) ∨ (f(x) ∧ g(y)) ≤ a(x, y). Similarly, it is clear that g × (f ∨ g) ≤ a. Therefore

it follows that (f ∨ g) × (f ∨ g) ≤ a. Hence a ∈ (F ∩ G) × (F ∩ G) and it follows that

(F× F) ∩ (G× F) ∩ (F×G) ∩ (G×G) ⊆ (F ∩G)× (F ∩G). The other direction is clear.

(ii) Let f ∈ F, g ∈ G, h ∈ H and k ∈ K. We have (f × g) ◦ (h× k)(x, y) = ∨
z∈X

(
f(x)∧ g(z)∧

h(z)∧k(y)
)

= f(x)∧k(y)∧ ∨
z∈X

(
g(z)∧h(z)

)
. But ∨

z∈X
g(z)∧h(z) = > because G∨H exists.

Hence
(
(f × g) ◦ (h× k)

)
(x, y) = f(x) ∧ k(y) = (f × k)(x, y), and the result follows.

Lemma 4.3. Let (X,Λ) ∈ |>-ULS| and Φ ∈ Λ, then Φ−1 ◦ Φ and Φ ◦ (Φ−1 ◦ Φ) exist.

Proof. First to show that Φ−1 ◦ Φ exists we let f, g ∈ Φ. Then ∨
x,y∈X

(f−1 ◦ g)(x, y) =∨
x,y,z∈X

f−1(x, z)∧g(z, y) = ∨
x,y,z]inX

f(z, x)∧g(z, y) ≥ ∨
x,z
f(z, x)∧g(z, x) = > since f ∧g ∈ Φ.

Thus Φ−1 ◦ Φ exists.

Next, if f, g, h ∈ Φ, then ∨
x,y

(
f ◦ (g−1 ◦ h)

)
(x, y) = ∨

x,y,z,w∈X
f(x, z) ∧ g(w, z) ∧ h(w, y) ≥∨

y,z,w∈X
f(w, z)∧g(w, z)∧h(z, y) = ∨

y,z,w∈X
(f∧g)−1(w, z)∧h(z, y) = ∨

w,y∈X

(
(f∧g)◦h

)
(w, y) =

> since (f ∧ g)−1 ◦ h ∈ Φ−1 ◦ Φ.

Lemma 4.4. Suppose that Φ,Ψ ∈ F>L(X2), Φ ◦Ψ exists and k : X −→ Y is any map, then

(k × k)⇒Φ ◦ (k × k)⇒Ψ exists and (k × k)⇒(Φ ◦Ψ) ≥ (k × k)⇒Φ ◦ (k × k)⇒Ψ.
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Proof. Assume that Φ ◦Ψ exists, a ∈ Φ, b ∈ Ψ, and (y1, y2) ∈ Y 2. Then

(
(k × k)→a ◦ (k × k)→b

)
(y1, y2) =

∨
z∈Y

((
(k × k)→a

)
(y1, z) ∧

(
(k × k)→b

)
(z, y2)

)

=
∨
z∈Y

((
∨ {a(x1, s) : (k × k)(x1, s) = (y1, z)}

)
∧
(
∨ {b(t, x2) : (k × k)(t, x2) = (z, y2)}

))
=
∨
z∈Y

(
∨ {a(x1, s) ∧ b(t, x2) : (k × k)(x1, s) = (y1, z), (k × k)(t, x2) = (z, y2)}

)
≥
∨
z∈Y

(
∨ {a(x1, s) ∧ b(s, x2) : (k × k)(x1, s) = (y1, z), (k × k)(s, x2) = (z, y2)}

)
=
∨
s∈X
{a(x1, s) ∧ b(s, x2) : (k × k)(x1, x2) = (y1, y2)}

= (k × k)→(a ◦ b)(y1, y2).

Hence (k×k)→a◦ (k×k)→b ≥ (k×k)→(a◦b). Observe that ∨
(y1,y2)∈Y 2

(k×k)→(a◦b)(y1, y2) =∨
(x1,x2)∈X2

(a ◦ b)(x1, x2) = > since Φ ◦Ψ exists.

Then ∨
(y1,y2)∈Y 2

(
(k × k)→a ◦ (k × k)→b

)
(y1, y2) = > and thus (k × k)⇒Φ ◦ (k × k)⇒Ψ exists.

The above inequality shows that (k× k)→a ◦ (k× k)→b ∈ (k× k)⇒(Φ ◦Ψ), where a ∈ Φ and

b ∈ Ψ.

The desired result follows from Lemma 4.1 (ii).

Theorem 4.1. The category >-ULS is a topological construct.1

Proof. Consider the source kj : X −→ (Yj,Λj), j ∈ J . Define Λ = {Φ ∈ F>L(X2) : (kj ×

kj)⇒Φ ∈ Λj,∀j ∈ J}. Since (kj × kj)⇒([x, x]) = [(kj × kj)(x, x))] =
[(
kj(x), kj(x)

)]
∈ Λj

for each j ∈ J , we have that [(x, x)] ∈ Λ for each x ∈ X. Thus (UL1) is satisfied. Clearly

if Ψ ≥ Φ ∈ Λ then (kj × kj)⇒Ψ ≥ (kj × kj)⇒Φ ∈ Λj for each j ∈ J and hence Ψ ∈ Λ and

(UL2) is valid.

1See Appendix for the definition of a topological construct.
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Next, assume that Φ ∈ Λ. Let y1, y2 ∈ Yj and a ∈ Φ; then
(
(kj × kj)→(a−1)

)
(y1, y2) =∨

kj(x1)=y1
kj(x2)=y2

a−1(x1, x2) = ∨
kj(x1)=y1
kj(x2)=y2

a(x2, x1) =
(
(kj×kj)→(a)

)
(y2, y1) =

(
(kj×kj)→(a)

)−1
(y1, y2).

Hence (kj × kj)→(a−1) = (kj × kj)→(a) for each a ∈ Φ and therefore (kj × kj)⇒Φ = (kj ×

kj)⇒(Φ−1) ∈ Λj. This implies Φ−1 ∈ Λ and (UL3) is valid.

To show (UL4), suppose that Φ,Ψ ∈ Λ and Φ ◦ Ψ exists. According to Lemma 4.4, (kj ×

kj)⇒(Φ ◦Ψ) ≥ (kj × kj)⇒Φ ◦ (kj × kj)⇒Ψ ∈ Λj for each j ∈ J . Hence Φ ◦Ψ ∈ Λ and (UL4)

is satisfied.

Finally, suppose that Φ,Ψ ∈ Λ. Then employing Lemma 1.4 (i), (kj × kj)⇒(Φ ∩ Ψ) =

(kj × kj)⇒Φ ∩ (kj × kj)⇒Ψ ∈ Λj for all j ∈ J . Hence Φ ∩Ψ ∈ Λ and (UL5) is valid. Hence

(X,Λ) ∈ |>-ULS|.

Let ` : (Z,Σ) −→ (X,Λ) be a map and assume that kj ◦ ` : (Z,Σ) −→ (Yj,Λj) is uniformly

continuous for each j ∈ J . If Φ ∈ Σ, then (kj×kj)⇒
(
(`×`)⇒Φ

)
=
(
(kj×kj)◦(`×`)

)⇒
Φ ∈ Λj

for each j ∈ J . Then by definition of Λ, (` × `)⇒Φ ∈ Λ and thus ` : (Z,Σ) −→ (X,Λ) is

uniformly continuous. Conversely, if ` is uniformly continuous, then clearly the composition

kj ◦ ` is also uniformly continuous for each j ∈ J . Moreover, Λ is the unique such structure

having this property and hence >-ULS contains initial structures.

For any set X, the class of all >-uniform limit structures on X is a subset of 2F>L (X2) and

hence is also a set. Further if X = {x} is a singleton, then F>L(X × X) = {(x, x)} and

Λ = {[(x, x)]} is the only >-uniform limit structure on X; if X = ∅ then Λ = ∅. Hence

>-ULS is a topological construct.

Let (X,Λ), (Y,Γ) ∈ |>-ULS|, and let UC(X, Y ) denote the set of all uniformly continuous

maps in >-ULS from X to Y . Define ev : UC(X, Y ) × X → Y by ev(f, x) = f(x). Note
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that since >-ULS possesses initial structures, it has product structures. In particular, if Φ ∈

F>L
(
(X×Y )2

)
, then Φ ∈ Λ×Γ (product structure) iff (π1×π1)⇒Φ ∈ Λ and (π2×π2)⇒Φ ∈ Γ.

Let η :
(
UC(X, Y )×UC(X, Y )

)
×(X×X) −→

(
UC(X, Y )×X

)
×
(
UC(X, Y )×X

)
be given

by η
(
(φ, ψ), (x1, x2)

)
=
(
(φ, x1), (ψ, x2)

)
. Define Σ ⊆ F>L(UC(X, Y )2) as follows: Ψ ∈ Σ iff

for each Φ ∈ Λ, (ev× ev)⇒
(
η⇒(Ψ× Φ)

)
∈ Γ.

Theorem 4.2. The category >-ULS is Cartesian closed.

Proof. First we show that Σ as defined above is a >-uniform limit structure on UC(X, Y ).

Fix θ ∈ UC(X, Y ), it is shown that if Φ ∈ Λ, then (ev × ev)⇒
(
η⇒([(θ, θ)] × Φ)

)
∈ Γ.

Since {1{(θ,θ)}} is a >-filter base for [(θ, θ)], {(1{(θ,θ)} × a : a ∈ Φ} is a >-filter base for

[(θ, θ)] × Φ and thus B = {(ev × ev)→
(
η→(1{(θ,θ)} × a)

)
: a ∈ Φ} is a >-filter base for

(ev× ev)⇒
(
η⇒([(θ, θ)]× Φ)

)
. Observe that

(ev× ev)→
(
η→(1{(θ,θ)} × a)

)
(y1, y2)

=
∨

(ev×ev)
(

(φ,x1),(ψ,x2)
)

=(y1,y2)

∨
η

(
(ξ,γ),(z1,z2)

)
=
(

(φ,x1),(ψ,x2)
)
(
1(θ,θ) × a

)(
(ξ, γ), (z1, z2)

)

=
∨

φ(x1)=y1
ψ(x2)=y2

∨
(ξ,z1)=(φ,x1)
(ψ,x2)=(γ,z2)

(
1(θ,θ) × a

)(
(ξ, γ), (z1, z2)

)

=
∨

φ(x1)=y1
ψ(x2)=y2

(
1(θ,θ) × a

)(
(φ, ψ), (x1, x2)

)

=
∨

θ(x1)=y1
θ(x2)=y2

a(x1, x2)

= (θ × θ)→(a)(y1, y2)

Hence (ev× ev)→
(
η→(1{(θ,θ)} × a)

)
= (θ × θ)→(a) for each a ∈ Φ. Since B is a >-filter base

for (ev× ev)⇒
(
η⇒([(θ, θ)]× Φ)

)
and {(θ × θ)→(a) : a ∈ Φ} is a >-filter base for (θ × θ)⇒Φ,
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(ev× ev)⇒
(
η⇒([(θ, θ)]× Φ)

)
= (θ × θ)⇒Φ ∈ Γ. Hence [(θ, θ)] ∈ Σ and (UL1) is satisfied by

Σ.

Clearly, if Ψ ≥ Φ ∈ Σ, then Ψ ∈ Σ and therefore (UL2) is satisfied by Σ.

A straightforward computation confirms that if φ ∈ Φ ∈ Σ, f ∈ F ∈ Λ and y1, y2 ∈ Y , then

(ev× ev)→(η→(φ−1 × f−1))(y1, y2) =
(

(ev× ev)→(η→(φ× f))
)−1

(y1, y2).

Hence if Φ ∈ Σ, then Φ−1 ∈ Σ and (UL3) is valid.

Next assume that Φ,Ψ ∈ Σ and Φ ◦ Ψ exists. We must show that Φ ◦ Ψ ∈ Σ. Let F ∈ Λ.

Lemma C from [13] implies that

(ev× ev)⇒
(
η⇒((Φ ◦Ψ)× F)

)
≥ (ev× ev)⇒

(
η⇒(Φ× F)

)
◦ (ev× ev)⇒

(
η⇒(Ψ× (F−1 ◦ F))

)
.

Note that by Lemma 4.3, if F ∈ Λ then F−1 ◦F exists. Hence it suffices to show that if Φ ◦Ψ

exists and F ∈ Λ, then (ev× ev)⇒
(
η⇒(Φ× F)

)
◦ (ev× ev)⇒

(
η⇒(Ψ× (F−1 ◦ F))

)
exists. Let

φ ∈ Φ, ψ ∈ Ψ, f1 ∈ F and f2 ∈ F−1 ◦ F. We have,

∨
y1,y2∈Y

(
(ev× ev)→(η→(φ× f1)) ◦ (ev× ev)→(η→(ψ × f2))

)
(y1, y2)

=
∨

z,y1,y2∈Y
(ev× ev)→(η→(φ× f1))(y1, z) ∧ (ev× ev)→(η→(ψ × f2))(z, y2) (4.1)

and,
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(ev× ev)→(η→(φ× f1))(y1, z) =
∨

(ev×ev)
(

(θ1,x1),(θ2,x2)
)

=(y1,z)

∨
η

(
ξ1,ξ2),(w1,w2)

)
=
(

(θ1,x1),(θ2,x2)
)
(φ× f1)

(
(ξ1, ξ2), (w1, w2)

)

=
∨

θ1(x1)=y1
θ2(x2)=z

(φ× f1)
(
(θ1, θ2), (x1, x2)

)
=

∨
θ1(x1)=y1
θ2(x2)=z

φ(θ1, θ2) ∧ f1(x1, x2).

Similarly, (ev × ev)→(η→(ψ × f2))(z, y2) = ∨
θ′1(x′1)=z
θ′2(x′2)=y2

ψ(θ′1, θ′2) ∧ f2(x′1, x′2). Therefore, picking

up from Equation (4.1),

(4.1) =
∨

z,y1,y2∈Y

∨
θ1(x1)=y1
θ2(x2)=z
θ′1(x′1)=z
θ′2(x′2)=y2

φ(θ1, θ2) ∧ f1(x1, x2) ∧ ψ(θ′1, θ′2) ∧ f2(x′1, x′2)

≥
∨

z,y1,y2∈Y

∨
θ1(x1)=y1
θ(x)=z

θ′2(x′2)=y2

φ(θ1, θ) ∧ ψ(θ, θ′2) ∧ f1(x1, x) ∧ f2(x, x′2)

=
∨

z,y1,y2∈Y
θ1(x1)=y1
θ(x)=z

θ′2(x′2)=y2

φ(θ1, θ) ∧ ψ(θ, θ′2) ∧ f1(x1, x) ∧ f2(x, x′2)

=
∨

θ1,θ′2,θ∈UC(X,Y )
x1,x′2,x∈X

φ(θ1, θ) ∧ ψ(θ, θ′2) ∧ f1(x1, x) ∧ f2(x, x′2)

=
∨

θ1,θ′2∈UC(X,Y )

 ∨
θ∈UC(X,Y )

φ(θ1, θ) ∧ ψ(θ, θ′2)
 ∧ ∨

x1,x′2∈X

( ∨
x∈X

f(x1, x) ∧ f2(x, x′2)
)

=
∨

θ1,θ′2∈UC(X,Y )
(φ ◦ ψ)(θ1, θ

′
2) ∧

∨
x1,x′2∈X

(f1 ◦ f2)(x1, x
′
2)

= > ∧> = >. (Lemma 4.3)
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Where on the penultimate line above, Lemma 4.3 is used on F ◦ (F−1 ◦ F). Therefore

(ev×ev)⇒
(
η⇒(Φ×F)

)
◦ (ev×ev)⇒

(
η⇒(Ψ× (F−1 ◦F))

)
exists, Φ◦Ψ ∈ Σ and (UL4) verified.

To prove (UL5), assume that Φ,Ψ ∈ Σ and let F ∈ Λ. We must show Φ ∩ Ψ ∈ Σ. For this,

we must show (ev× ev)⇒(η⇒((Φ∩Ψ)×F)) ∈ Γ. Note that (Φ∩Ψ)×F = (Φ×F)∩ (Ψ×F)

and therefore, using Lemma 1.4 (i), (ev× ev)⇒(η⇒((Φ∩Ψ)×F)) = (ev× ev)⇒(η⇒(Φ×F))∩

(ev× ev)⇒(η⇒(Ψ× F)) ∈ Γ as desired. Hence (UL5) holds.

Since (UL1) – (UL5) have been verified, we have that
(
UC(X, Y ),Σ

)
∈ |>-ULS|.

Next, we show that if Ξ ∈ Σ× Λ then Ξ ≥ η⇒
(
(π1 × π1)⇒Ξ× (π2 × π2)⇒Ξ

)
. Let φ, ψ ∈ Ξ.

For convienience we will abreviate UC(X, Y ) with UC; it is also helpful to recall that

Ξ ⊆ L(UC×X)2 . Also let f, g ∈ UC and x, y ∈ X. We compute,

(
η→
[
(π1 × π1)→φ× (π2 × π2)→ψ

])(
(f, x), (g, y)

)
=

∨
((h,k),(z,w))∈UC2×X2

η((h,k),(z,w))=((f,x),(g,y))

[
(π1 × π1)→φ× (π2 × π2)→ψ

](
(h, k), (z, w)

)

=
∨

((h,k),(z,w))∈UC2×X2

η((h,k),(z,w))=((f,x),(g,y))

 ∨
((`,v),(m,u))∈(UC×X)2

(π1×π1)((`,v),(m,u))=(h,k)

φ
(
(`, v), (m,u)

)
∧

∨
((`,v),(m,u))∈(UC×X)2

(π2×π2)((q,s),(q,t))=(z,w)

ψ
(
(p, s), (q, t)

)
≥

∨
((`,v),(m,u))∈(UC×X)2

(π1×π1)((`,v),(m,u))=(f,g)

φ
(
(`, v), (m,u)

)
∧

∨
((`,v),(m,u))∈(UC×X)2

(π2×π2)((q,s),(q,t))=(x,y)

ψ
(
(p, s), (q, t)

)

=
∨

u,v∈X
φ
(
(f, v), (g, u)

)
∧

∨
p,q∈UC

ψ
(
(p, x), (q, y)

)

≥ φ
(
(f, x), (g, y)

)
∧ ψ

(
(f, x), (g, y)

)
= (φ ∧ ψ)

(
(f, x), (g, y)

)

Hence η→
[
(π1×π1)→φ× (π2×π2)→ψ

]
≥ φ∧ψ ∈ Ξ. Therefore it follows that Ξ ≥ η⇒

(
(π1×
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π1)⇒Ξ× (π2 × π2)⇒Ξ
)
. Next, since (π1 × π1)⇒Ξ ∈ Σ and (π2 × π2)⇒Ξ ∈ Λ, by definition of

Σ this implies (ev× ev)⇒Ξ ≥ (ev× ev)⇒
(
η⇒
(
(π1 × π1)⇒Ξ× (π2 × π2)⇒Ξ

))
∈ Γ. It follows

that ev :
(
UC(X, Y ),Σ

)
× (X,Λ) −→ (Y,Γ) is uniformly continuous in >-ULS.

Next, assume that f : (Z,Υ) × (X,Λ) −→ (Y,Γ) is uniformly continuous. Fix z ∈ Z

and define fz : X −→ Y by fz(x) = f(z, x). It is shown that fz ∈ UC(X, Y ). To do

this, it is shown that if Φ ∈ Λ, then (fz × fz)⇒Φ = (f × f)⇒(ζ⇒([(z, z)] × Φ)), where

ζ : (Z×Z)×(X×X) −→ (Z×X)×(Z×X) maps
(
(z1, z2), (x1, x2)

)
7→
(
(z1, x1), (z2, x2)

)
. Let

φ ∈ Φ. Bases for (fz×fz)⇒Φ, and (f×f)⇒(ζ⇒([(z, z)]×Φ)) are given by {(fz×fz)→φ : φ ∈ Φ}

and {(f × f)→(ζ→(1{(z,z)} × φ)) : φ ∈ Φ}, respectively. Let φ ∈ Φ and y1, y2 ∈ Y ; then,

(f × f)→(ζ→(1{(z,z)} × φ))(y1, y2) =
∨

f(z1,x1)=y1
f(z2,x2)=y2

1{(z,z)}(z1, z2) ∧ φ(x1, x2)

=
∨

f(z,x1)=y1
f(z,x2)=y2

φ(x1, x2) =
∨

(fz×fz)(x1,x2)=(y1,y2)
φ(x1, x2)

= (fz × fz)→φ(y1, y2).

Hence (fz × fz)⇒Φ = (f × f)⇒(ζ⇒([(z, z)] × Φ)). Now it must be shown that (f ×

f)⇒(ζ⇒([(z, z)]×Φ)) ∈ Γ. Since f is uniformly continuous, it suffices to show that ζ⇒([(z, z)]×

Φ) ∈ Υ × Λ. That is, we must show that (πi × πi)⇒(ζ⇒([(z, z)] × Φ)) ∈ Υ(Λ) if i = 1(2),

respectively. Let φ ∈ Φ and y1, y2 ∈ Z(X) when i = 1(2) respectively. Then,

(πi × πi)→(ζ→(1{(z,z)} × φ))(y1, y2) =
∨

πi(z1,x1)=y1
πi(z2,x2)=y2

1{(z,z)}(z1, z2) ∧ φ(x1, x2)

=


∨

x1,x2∈X
1{(z,z)}(y1, y2) ∧ φ(x1, x2), i = 1∨

z1,z2∈Z
1{(z,z)}(z1, z2) ∧ φ(y1, y2), i = 2

=

1{(z,z)}(y1, y2) ∧ >, i = 1
> ∧ φ(y1, y2), i = 2

.
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Since 1{(z,z)} ∈ [(z, z)] and φ ∈ Φ ∈ Λ, it follows that ζ⇒([(z, z)] × Φ) ∈ Υ × Λ. Therefore

(fz × fz)⇒Φ = (f × f)⇒(ζ⇒([(z, z)]× Φ)) ∈ Γ and fz is uniformly continuous.

Define f ∗ : Z −→ UC(X, Y ) by f ∗(z) = fz for z ∈ X. It is shown that f ∗ : (Z,Υ) −→(
UC(X, Y ),Σ

)
is uniformly continuous. It was shown in [29] that ev◦ (f ∗× idX) = f (Here,

◦ is traditional function composition). Indeed, if (s, t) ∈ Z×X, then
(
ev◦(f ∗× idX)

)
(s, t) =

ev(f ∗(s), t) = ev(fs, t) = fs(t) = f(s, t). Let Φ ∈ Υ, we must show that (f ∗ × f ∗)⇒Φ ∈ Σ.

It suffices to show that for any G ∈ Λ, we have (ev × ev)⇒
(
η⇒
(
[(f ∗ × f ∗)⇒Φ] × G

))
∈ Γ.

Let φ ∈ Φ, g ∈ G and y1, y2 ∈ Y . We have,

(ev× ev)→
(
η→
(
(f ∗ × f ∗)→φ× g

))
(y1, y2) =

∨
θ1(x1)=y1
θ2(x2)=y2

 ∨
(f∗×f∗)(z1,z2)

=(θ1,θ2)

φ(z1, z2)

 ∧ g(x1, x2)

=
∨

θ1(x1)=y1
θ2(x2)=y2

 ∨
fz1=θ1
fz2=θ2

φ(z1, z2)

 ∧ g(x1, x2) =
∨

θ1(x1)=y1
θ2(x2)=y2

 ∨
fz1=θ1
fz2=θ2

φ(z1, z2)

 ∧ g(x1, x2)

=
∨

fz1 (x1)=y1
fz2 (x2)=y2

φ(z1, z2) ∧ g(x1, x2) =
∨

f(z1,x1)=y1
f(z2,x2)=y2

φ(z1, z2) ∧ g(x1, x2)

= (f × f)→
(
ζ→(φ× g)

)
(y1, y2)

Thus (ev × ev)⇒
(
η⇒
(
[(f ∗ × f ∗)⇒Φ] × G

))
= (f × f)⇒

(
ζ⇒(Φ × G)

)
. Now we must show

that (f × f)⇒
(
ζ⇒(Φ × G)

)
∈ Γ. Since f is uniformly continuous, it suffices to show that

ζ⇒(Φ×G) ∈ Υ×Λ. That is, we must show that (πi×πi)⇒(ζ⇒(Φ×G)) ∈ Υ (Λ) if i = 1 (2),
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respectively. Let φ ∈ Φ, g ∈ G and yi ∈ Z(X) when i = 1 (2), respectively. Then,

(πi × πi)→(ζ→(φ× g))(y1, y2) =
∨

πi(z1,x1)=y1
πi(z2,x2)=y2

φ(z1, z2) ∧ g(x1, x2)

=


∨

x1,x2∈X
φ(y1, y2) ∧ g(x1, x2), i = 1∨

z1,z2∈Z
φ(z1, z2) ∧ g(y1, y2), i = 2

=

φ(y1, y2) ∧ >, i = 1
> ∧ g(y1, y2), i = 2

Since φ ∈ Φ ∈ Υ and g ∈ G ∈ Λ, it follows that ζ⇒(Φ × G) ∈ Υ × Λ. Therefore (f ×

f)⇒(ζ⇒(Φ × G)) ∈ Γ. Hence f ∗ : (Z,Υ) −→
(
UC(X, Y ),Σ

)
is uniformly continuous and

>-ULS is a Cartesian closed category.

Selection Maps and Completions

Suppose that (X,Λ) ∈ |>-ULS|; define CΛ = {F ∈ F>L(X) : F × F ∈ Λ}. If F,G ∈ CΛ such

that F ∨G exists, then using Lemma 4.2 (i) and (ii), (F ∩G)× (F ∩G) = (F× F) ∩ [(G×

G) ◦ (F×F)]∩ [(F×F) ◦ (G×G)]∩ (G×G) ∈ Λ, and thus it follows that F∩G ∈ CΛ. Hence

(X, CΛ) ∈ |>-Chy|.

An object (X,Λ) ∈ |>-ULS| is called complete if (X, CΛ) is complete in >-Chy. Moreover,(
(Y,Σ), φ

)
is called a completion of (X, C) in >-ULS provided that φ : (X,Λ) −→ (Y,Σ)

is a dense >-uniform embedding and (Y,Σ) is complete.

Much as was done in the >-Chy setting, we take advantage of selection maps to achieve

completions. Given (X,Λ) ∈ |>-ULS|, let X∗ = X ∪{〈G〉 : G ∈ NCΛ} and let α : X∗ −→ CΛ
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be a selection map. For each a ∈ LX2 , define aα ∈ L(X∗)2 as follows:

aα(x, y) = να(x)×α(y)(a).

If Φ ∈ F>L(X2), then let Φα be the >-filter on (X∗)2 generated by the >-filter base {aα : α ∈

Φ}. Indeed, this is a >-filter base as it can easily be shown that (a ∧ b)α = aα ∧ bα for each

a, b ∈ LX2 . Further, if a ∈ Φ then ∨
(x,y)∈(X∗)2

aα(x, y) ≥ ∨
(x,y)∈X2

a(x, y) = >.

Lemma 4.5. Assume that a, b ∈ LX2, F,G ∈ F>L(X), Φ,Ψ ∈ F>L(X2) and α is a selection

map for (X, C) ∈ |>-Chy|. Then

(i) [a, b] = [a−1, b−1]

(ii) νΦ(a) = νΦ−1(a−1)

(iii) (aα)−1 = (a−1)α and therefore (Φα)−1 = (Φ−1)α

(iv) if Φ ◦Ψ exists then νΦ(a) ∧ νΨ(b) ≤ νΦ◦Ψ(a ◦ b)

(v) aα ◦ bα ≤ (a ◦ b)α

(vi) aα × bα ≤ (a× b)α and therefore (F×G)α ⊆ Fα ×Gα

(vii) if Φα ◦Ψα exists, then Φ ◦Ψ exists and Φα ◦Ψα ≥ (Φ ◦Ψ)α

(viii) Φα ∩Ψα ≥ (Φ ∩Ψ)α

Proof. (i) Note that [a, b] =
∧

(x,y)∈X2

(
a(x, y)→ b(x, y)

)
=

∧
(x,y)∈X2

(
a−1(y, x)→ b−1(y, x)

)
=

∧
(s,t)∈X2

(
a−1(s, t)→ b−1(s, t)

)
= [a−1, b−1].
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(ii) Using (i), [b, a] = [b−1, a−1], and thus νΦ(a) = ∨
b∈Φ

[b, a] = ∨
b∈Φ

[b−1, a−1] = ∨
c∈Φ−1

[c, a−1] =

νΦ−1(a−1).

(iii) Fix z1, z2 ∈ X∗; then using (ii), (a−1)α(z1, z2) = να(z1)×α(z2)(a−1) = να(z2)×α(z1)(a) =

aα(z2, z1) = (aα)−1(z1, z2). Hence (a−1)α = (aα)−1.

(iv) Applying Lemma 4.1 (i), since Φ ◦ Ψ exists, νΦ(a) ∧ νΨ(b) = ∨
c∈Φ
d∈Ψ

(
[c, a] ∧ [d, b]

)
≤

∨
c∈Φ
d∈Ψ

[c ◦ d, a ◦ b] = νΦ◦Ψ(a ◦ b). Hence the result follows.

(v) Fix z1, z2 ∈ X∗; it follows from (iv) that (aα ◦ bα)(z1, z2) = ∨
w∈X∗

(
aα(z1, w)∧ bα(w, z2)

)
=∨

w∈X∗

(
να(z1)×α(w)(a)∧να(w)×α(z2)(b)

)
≤ να(z1)×α(z2)(a◦b) since (α(z1)×α(w))◦(α(w)×α(z2)) =

α(z1)× α(z2) by Lemma 4.2 (ii). Thus aα ◦ bα ≤ (a ◦ b)α.

(vi) Let x, y ∈ X∗. Then employing Lemma 1.1 (iii), (a× b)α(x, y) = να(x)×α(y)(a × b) =∨
c∈α(x)
d∈α(y)

[c× d, a× b] = ∨
c∈α(x)
d∈α(y)

∧
w,z∈X∗

((
c(w) ∧ d(z)

)
→
(
a(w) ∧ b(z)

))
≥

∨
c∈α(x)
d∈α(y)

∧
w,z∈X∗

((
c(w)→ a(w)

)
∧
(
d(z)→ b(z)

))
=

∨
c∈α(x)

[c, a] ∧ ∨
d∈α(y)

[d, b] = να(x)(a) ∧ να(y)(b) = (aα × bα)(x, y).

(vii) Recall that Φ ◦ Ψ exists iff for each a ∈ Φ, b ∈ Ψ, ∨
(x,y)∈X2

(a ◦ b)(x, y) = >. Employing

Lemma 4.5 (v), since Φα ◦Ψα exists, > = ∨
z1,z2∈X∗

(aα ◦ bα)(z1, z2) ≤ ∨
z1,z2∈X∗

(a ◦ b)α(z1, z2) =
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∨
x,y∈X

(a ◦ b)(x, y) ∨ ∨
z1,z2∈X∗

z1 or z2∈(X∗rX)

(a ◦ b)α(z1, z2). Recall that in the proof of Lemma 3.8 (i),

it was established that for any β ∈ L and F ∈ F>L(X) that νF(β1X) = β. Hence taking

F = α(z1) × α(z2) and β = ∨
x,y∈X

(a ◦ b)(x, y), we have (a ◦ b)α(z1, z2) = νHz1×Hz2 (a ◦ b) ≤∨
x,y∈X

(a ◦ b)(x, y). It follows that ∨
x,y ∈X

(a ◦ b)(x, y) = > and thus Φ ◦Ψ exists. According to

Lemma 4.5 (v), Φα ◦Ψα ≥ (Φ ◦Ψ)α.

(viii) The verification is clear.

Assume that (X,Λ) ∈ |>-ULS| and α is a selection map for (X, CΛ); define

Λα = {Γ ∈ F>L((X∗)2) : Γ ≥ Φα for some Φ ∈ Λ}.

Lemma 4.6. Given (X,Λ) ∈ |>-ULS|. Then

(i) (X∗,Λα) ∈ |>-ULS|,

(ii) j : (X,Λ) −→ (X∗,Λα) is a dense embedding in >-ULS, and

(iii) H ∈ F>L(X∗) implies that καH = {b ∈ LX : bα ∈ H} ∈ F>L(X).

Proof. (i) If a ∈ [(x, x)], then a(x, x) = > and thus aα(j(x), j(x)) = a(x, x) = >. Hence

[(x, x)]α ⊆ [j(x), j(x)] and thus [(j(x), j(x))] ∈ Λα. Suppose that G ∈ NCΛ ; it is shown

that (Gα ×Gα)α ⊆ [(〈G〉, 〈G〉)], where α(〈G〉) = Gα. Let a, b ∈ Gα; then a × b is

a >-filter base member of Gα × Gα. Then (a× b)α(〈G〉, 〈G〉) = νGα×Gα(a × b) = >

and hence (a× b)α ∈ [(〈G〉, 〈G〉)]. Therefore (Gα ×Gα)α ≤ [(〈G〉, 〈G〉)] implies that
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[(〈G〉, 〈G〉)] ∈ Λα and (UL1) is satisfied. Clearly (UL2) is valid. It follows from Lemma

4.5 (iii) that (UL3) holds. Lemma 4.5 (vii) implies that (UL4) is true. Further, (UL5)

follows from Lemma 4.5 (viii).

(ii) Recall that if a ∈ LX2 , then (j × j)→(a) ≤ aα and (j × j)←(aα) = a. If Φ ∈ Λ, then

(j × j)⇒Φ ≥ Φα and thus j : (X,Λ) −→ (X∗,Λα) is uniformly continuous. Moreover,

if Ψ ∈ F>L(X2) such that (j × j)⇒Ψ ∈ Λα, then (j × j)⇒Ψ ≥ Φα for some Φ ∈ Λ.

Hence Ψ ≥ (j× j)⇐Φα = Φ and Ψ ∈ Λ. Therefore j : (X,Λ) −→ (X∗,Λα) is a uniform

embedding. In order to show that the embedding is dense, it suffices to verify that if

G ∈ NCΛ , then j⇒(Gα) × [〈G〉] ≥ (Gα ×Gα)α. Let us show that if a, b ∈ Gα, then

(a× b)α ≥ j→a × 1{〈G〉}. Fix z1, z2 ∈ X∗ and note that (j→a × 1{〈G〉})(z1, z2) = ⊥

whenever either z1 /∈ j(X) or z2 6= 〈G〉. Assume that z1 = j(x) and z2 = 〈G〉; then

(j→a×1{〈G〉})(j(x), 〈G〉) = a(x). Also, (a× b)α(j(x), 〈G〉) = ν[x]×Gα(a×b) = ∨
c∈Gα

[1{x}×

c, a × b] ≥ [1{x} × b, a × b] =
∧

s,t∈X

((
1{x} × b

)
(s, t) → (a × b)(s, t)

)
=

∧
t∈X

(
b(t) →

a(x) ∧ b(t)
)
≥ a(x). It follows that (a× b)α(j(x), 〈G〉) ≥ (j→a × 1{〈G〉})(j(x), 〈G〉)

and hence j⇒(Gα) × [〈G〉] ≥ (Gα ×Gα)α and thus j⇒Gα

qCΛα−−−→ 〈G〉. Then (X,Λ) is

uniformly embedded in (X∗,Λα) as a dense subspace.

(iii) Notice that bα = eb ◦ α and hence {b ∈ LX : bα ∈ H} = καH. If b ∈ καH, then

bα ∈ H implies that > = ∨
z∈X∗

bα(z) = ∨
x∈X

b(x) ∨ ∨
G∈N

νGα(b). Since νGα(b) ≤ ∨
x∈X

b(x)

(Lemma 3.8 (i) with a = b), it follows that ∨
x∈X

b(x) = >. Also, if b1, b2 ∈ καH, then

(b1 ∧ b2)α = b1
α ∧ b2

α ∈ H and thus b1 ∧ b2 ∈ καH. Finally, assume that c ∈ LX2 such

that ∨
b∈καH

[b, c] = >. According to Lemma 3.8 (ii), > = ∨
b∈καH

[b, c] = ∨
b∈καH

[bα, cα] ≤∨
d∈H

[d, cα] and hence cα ∈ H implies that c ∈ καH. Therefore καH ∈ F>L(X).

Theorem 4.3. Assume that (X,Λ) ∈ |>-ULS| and let (X, CΛ) denote the induced >-Cauchy
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space. If CΛα and (CΛ)α possess the same >-ultrafilters on X∗ for some selection map α on

(X, CΛ), then
(
(X∗,Λα), j

)
is a completion of (X,Λ) in >-ULS. Moreover, CΛα = (CΛ)α iff

H ∈ CΛα implies that καH ∈ CΛ.

Proof. According to Lemma 4.6 (i, ii), (X∗,Λα) ∈ |>-ULS| and j : (X,Λ) −→ (X∗,Λα) is

a dense embedding in >-ULS. It must be shown that (X∗,Λα) is complete in >-ULS. By

Lemma 4.5 (vi) it follows that if K ∈ CΛ, then Kα×Kα ≥ (K×K)α ∈ Λα and thus Kα ∈ CΛα .

Hence (CΛ)α ⊆ CΛα always holds.

Assume that H ∈ CΛα and let L ≥ H be a >-ultrafilter on X∗. Then L ∈ CΛα , and by

hypothesis, L ∈ (CΛ)α. Since (X∗, (CΛ)α) is complete, L ∩ [z] ∈ (CΛ)α ⊆ CΛα for some

z ∈ X∗. It follows that (L ∩ [z]) ∨ H exists and hence H ∩ [z] ∈ CΛα . Therefore (X∗,Λα) is

complete, and thus
(
(X∗,Λα), j

)
is a completion of (X, C) in >-ULS.

Finally, if CΛα = (CΛ)α and H ∈ CΛα = (CΛ)α, then H ≥ Kα for some K ∈ CΛ. Hence

καH ≥ K and thus καH ∈ CΛ. Conversely, suppose that H ∈ CΛα and καH = K ∈ CΛ; then

H ≥ Kα ∈ (CΛ)α. Hence (CΛ)α = CΛα .

Definition 4.2. Assume that (X,Λ) ∈ |>-ULS|; then (X,Λ) is said to be relatively full

in >-ULS provided that (X, CΛ) is relatively full in >-Chy.

Whenever (X,Λ) is relatively full we may choose the selection map α which sends x 7→ [x],

x ∈ X and 〈G〉 7→ Gmin, G ∈ NCΛ . For this special selection map we will denote aα,Fα, καH

and Λα, respectively, by ã, F̃, Ȟ and Λ̃. The next result follows from Theorem 4.3.

Corollary 4.1. Assume that (X,Λ) ∈ |>-ULS| is relatively full, and let (X, CΛ) denote the

induced >-Cauchy space. Let
(
(X∗, C̃Λ), j

)
be the completion of (X, CΛ) in >-Chy. If CΛ̃

and C̃Λ possess the same >-ultrafilters on X∗, then
(
(X∗, Λ̃), j

)
is a completion of (X,Λ) in

>-ULS. Moreover, CΛ̃ = C̃Λ iff H ∈ CΛ̃ implies that Ȟ ∈ CΛ.
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Example

An elementary example of a completion is given below. First, a lemma which may be of

independent interest is presented.

Lemma 4.7. Assume that L is a complete Boolean algebra. Suppose that (X, C) ∈ |>-Chy|

is not complete, and let α be a selection map which chooses a >-ultrafilter Gα from each

〈G〉, G ∈ N . If H is a >-ultrafilter on X∗, then there exists a >-ultrafilter F on X such that

Fα ⊆ H.

Proof. Since H is a >-ultrafilter, it follows from results due to Höhle ([10], [11]) that νH

is a stratified L-ultrafilter on X∗. Define for each a ∈ LX , µH(a) = νH(aα). Note that

µH(⊥1X) = νH(⊥1X∗) = ⊥, µH(β1X) = νH
(
(β1X)α

)
≥ νH(β1X∗) ≥ β and µH(a ∧ b) =

νH((a∧ b)α) = νH(aα ∧ bα) = νH(aα)∧ νH(bα) = µH(a)∧ µH(b), for each a, b ∈ LX and β ∈ L.

Hence µH is a stratified L-filter on X.

According to Höhle ([10]), µH is a stratified L-ultrafilter on X iff for each a ∈ LX , µH(a) =

µH(a → 1∅) → ⊥. He also shows that νG(a → 1∅) = νG(a) → ⊥ whenever G is a >-

ultrafilter on X. As before, we denote α(〈G〉) = Gα for G ∈ N . Then (a → 1∅)α(〈G〉) =

νGα(a→ 1∅) = νGα(a)→ ⊥ = aα(〈G〉)→ ⊥ = (aα → 1∅)(〈G〉) and thus (a→ 1∅)α = aα →

1∅. Then µH(a) = νH(aα) = νH(aα → 1∅)→ ⊥ = νH
(
(a→ 1∅)α

)
→ ⊥ = µH(a→ 1∅)→ ⊥,

and hence µH is a stratified L-ultrafilter on X.

Since L is a complete Boolean algebra, it follows again from Höhle ([10], [11]) that F 7→ νF

defines a bijection between the >-ultrafilters and the stratified L-ultrafilters on X. Then

F = {a ∈ LX : µH(a) = >} is a >-ultrafilter on X. Further, a ∈ F iff νH(aα) = > iff aα ∈ H,

and it follows that Fα ⊆ H.
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A >-uniform limit space (X,Λ) is said to be totally bounded whenever each >-ultrafilter

on X is Λ-Cauchy, that is, each >-ultrafilter F ∈ CΛ. Also, (X,Λ) is said to be compact

if every >-ultrafilter on X converges in (X, qCΛ). Let us conclude this subsection with the

following restricted example.

Example 4.1. Suppose that L is a complete Boolean algebra and (X,Λ) ∈ |>-ULS| is

totally bounded but not complete. Assume that α is a selection map such that α(〈G〉) = Gα

is a >-ultrafilter in 〈G〉, for each G ∈ NCΛ . Let
(
(X∗, (CΛ)α), j

)
denote the corresponding

completion of (X, CΛ) in >-Chy. Then
(
(X∗,Λα), j

)
is a completion of (X,Λ) in >-ULS

which is also compact.

Proof. According to Lemma 4.6 (ii), j : (X,Λ) −→ (X∗,Λα) is a dense embedding in >-ULS.

Since compactness of (X∗,Λα) implies completeness, it suffices to show (X∗,Λα) is compact.

Let H be a >-ultrafilter on X∗; then by Lemma 4.7 there exists a >-ultrafilter F on X such

that Fα ⊆ H. Since (X,Λ) is totally bounded, F ∈ CΛ and thus Fα ∈ (CΛ)α. It follows that

H ∈ (CΛ)α and since (X∗, (CΛ)α) is complete, H ∩ [z] ∈ (CΛ)α for some z ∈ X∗. As shown

in the proof of Theorem 4.3 (CΛ)α ⊆ CΛα is always valid. It follows that H converges in

(X∗, qCΛα ), and hence (X∗,Λα) is both compact and complete.

The authors are unsure as to whether or not (CΛ)α = CΛα in Example 4.1.

An Alternate Approach to Completions

In the classical case, if (X,V) is a uniform space and F × F ≥ V , then F is a Cauchy filter

and V(F) = {A ⊆ X : V (F ) ⊆ A for some F ∈ F and V ∈ V}, where V (F ) = {y ∈ X :

(x, y) ∈ V for some x ∈ F}, is the smallest Cauchy filter on X contained in F . Our aim in

this subsection is to outline an extension of this technique to the lattice context.
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Fix (X,Λ) ∈ |>-ULS| and assume that F×F ≥ Φ ∈ Λ. If a ∈ Φ and b ∈ F, define a(b) ∈ LX

as follows:

a(b)(y) =
∨
x∈X

a(x, y) ∧ b(x), y ∈ X.

Denote B = {a(b) : a ∈ Φ, b ∈ F}; then B is a >-filter base and let Φ(F) denote the

generated >-filter. The following lemma lists some extensions of well-known classical results

to the lattice setting. The proof is omitted.

Lemma 4.8. Assume that (X,Λ) ∈ |>-ULS| and F× F ≥ Φ = Φ−1 ∈ Λ. Then,

(i) B is a >-filter base,

(ii) Φ(F)× Φ(F) = Φ ◦ (F× F) ◦ Φ, and

(iii) Φ(F) ∨ F exists.

According to Lemma 4.8 (ii, iii), Φ(F) and Φ(F)∩F belong to CΛ. Our final completion result

listed below is not entirely satisfactory since the characterization is not given completely in

terms of the underlying >-uniform limit space. Here (X∗,Λα) ∈ |>-ULS| denotes the space

given in Lemma 4.6.

Theorem 4.4. Suppose that (X,Λ) ∈ |>-ULS| and α is a selection map for (X, CΛ). Then(
(X∗,Λα), j

)
is a completion of (X,Λ) in >-ULS iff for each H × H ≥ Φα, for some Φ =

Φ−1 ∈ Λ, there exists an L ∈ CΛα such that L ≤ Φα(H) ∩ H and j⇐L exists.

Proof. Assume that
(
(X∗,Λα), j

)
is a completion of (X,Λ) in >-ULS and H × H ≥ Φα

for some Φ = Φ−1 ∈ Λ. Then H
p−→ z, for some z ∈ X∗, where p = qCΛα . Since j(X)

is dense in X∗, choose K ∈ F>L(X) such that j⇒K p−→ z. According to Lemma 4.8 (iii),

Φα(H) ∩ H ∩ [z] ∈ CΛα , and it follows that L = j⇒K ∩ Φα(H) ∩ H ∩ [z] ∈ CΛα . Then

L ≤ Φα(H) ∩ H and L ≤ j⇒K implies that j⇐L exits.
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Conversely, by Lemma 4.6 (ii), j : (X,Λ) −→ (X∗,Λα) is a dense embedding in >-ULS. It

remains to show that (X∗,Λα) is complete. Suppose that H×H ≥ Φα for some Φ = Φ−1 ∈ Λ.

Then there exists L ∈ CΛα such that L ≤ Φα(H)∩H and M = j⇐L exists. Note that M ∈ CΛ.

If M qΛ−−→ x, then j⇒M
p−→ j(x) and j⇒M ∩ [j(x)] ∩ Φα(H) ∩ H ∈ CΛα . Then H

p−→ j(x).

A similar argument shows that if M fails to qΛ-converge, then 〈M〉 ∈ X∗ and H
p−→ 〈M〉.

Hence (X∗,Λα) is complete.

Corollary 4.2. Suppose that (X,Λ) ∈ |>-ULS| is relatively full. Then
(
(X∗, Λ̃), j

)
is a

completion of (X,Λ) in >-ULS iff for each H×H ≥ Φ̃, for some Φ = Φ−1 ∈ Λ, there exists

an L ∈ CΛ̃ such that L ≤ Φ̃(H) ∩ H and j⇐L exists.
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CHAPTER 5: STRICT >-EMBEDDINGS

For a fixed >-limit space, under suitable conditions, an order preserving injection between

the set of all equivalence classes of all strict T3-compactifications of the >-limit space and

all the totally bounded >-Cauchy spaces which induce the >-limit space and have a strict

T3-completion is given. Unfortunately, the author was unable to determine whether or not

the injection is a bijection. In the case that the underlying lattice is a complete Boolean

algebra, the injection is in fact a bijection. Further, a characterization as to when a totally

bounded >-Cauchy space has a T3 (strict T3)-completion is an open problem.

T3-Embeddings

Suppose that (X, q) ∈|>-Lim| and a ∈ LX ; recall that the closure of a is defined by a(x) =∨{νF(a) : F
q−→ x}, x ∈ X. If H ∈ F>L(X), then H denotes the >-filter on X whose >-

filter base is {c : c ∈ H}. It is shown in Lemma 2.14 that if B is a >-filter base for H

then B = {b : b ∈ B} is also a >-filter base for H. Fang and Yue [5] defined regularity

of (X, q) ∈|>-Lim| in terms of a diagonal axiom. This definition is shown in Theorem 2.6

to be equivalent to F
q−→ x whenever F

q−→ x. Further, define (X, C) ∈|>-Chy| to be

regular provided that F ∈ C whenever F ∈ C. Moreover, (X, C) ∈|>-Chy| is said to be T3

provided it is T2 and regular. A similar definition holds for objects of >-Lim . Suppose

that θ : X −→ (Y, p) ∈|>-Lim| is a dense injection. Since θ(X) is dense in Y , for each

y ∈ Y rθ(X), choose a >-ultrafilter Gy on X such that θ⇒Gy
p−→ y. Define for each a ∈ LX ,

â ∈ LY by

â(y) =

a(x), y = θ(x)
νGy(a), y ∈ Y r θ(X)

.
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Observe that â∧ b̂ = â ∧ b for each a, b ∈ LX , and if F ∈ F>L(X) we let F̂ denote the >-filter

on Y whose >-filter base is {b̂ : b ∈ F}.

Lemma 5.1. Assume that L is a complete Boolean algebra, θ : X −→ (Y, p) ∈|>-Lim| is a

dense injection and H is a >-ultrafilter on Y . Then there exists a >-ultrafilter F on X such

that θ⇒F ⊆ F̂ ⊆ H and for each b ∈ LX , νF(b) = νH(b̂).

Proof. The proof is a slight modification of an argument used in the proof of Theorem 2.11.

For each y ∈ Y r θ(X), choose a >-ultrafilter Gy
p−→ y and for each b ∈ LX define b̂ as

above. Define µ(b) = νH(b̂) for each b ∈ LX ; the argument given in the proof of Theorem

2.11 shows that µ is a stratified L-ultrafilter on X. Since L is a complete Boolean algebra, it

follows from Theorem 2.1 that µ = νF, where F = {b ∈ LX : µ(b) = >} is a >-ultrafilter on

X. Note that b ∈ F iff b̂ ∈ H and thus F̂ ⊆ H; further, νF(b) = µ(b) = νH(b̂). Since b̂ ≤ θ→b

for each b ∈ LX , θ⇒F ⊆ F̂ ⊆ H.

Assume that θ : X −→ (Y, p) ∈|>-Lim| is a dense injection. Define for each a ∈ LX , a† ∈ LY

as follows:

a†(y) = ∨{νF(a) : θ⇒F p−→ y}, y ∈ Y.

Observe that a† ≤ θ→a. Indeed, if θ⇒F p−→ y, then νF(a) = ∨
b∈F

[b, a] ≤ ∨
b∈F

[θ→b, θ→a] =

νθ⇒F(θ→a) ≤ ∨{νH(θ→a) : H
p−→ y} = θ→a(y). Hence a†(y) = ∨{νF(a) : θ⇒F p−→ y} ≤

θ→a(y) and thus a† ≤ θ→a.

Definition 5.1. Suppose that θ : X −→ (Y, p) ∈|>-Lim| is a dense injection. Consider the

following axioms:

(S1) a† = θ→a for each a ∈ LX
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(S2) for each >-filter H
p−→ y, there exists a >-filter F on X such that θ⇒F p−→ y and

θ⇒F ⊆ H

(S3) Same as (S2) with H and F being >-ultrafilters.

The map θ is said to be strict whenever (S1) and (S2) are satisfied.

Lemma 5.2. Suppose that L is a complete Boolean algebra and θ : X −→ (Y, p) ∈|>-Lim| is

a dense injection and (Y, p) is compact T3. Then θ obeys (S1) and (S3).

Proof. Assume that H is a >-ultrafilter on Y such that H
p−→ y. Employing Lemma 5.1,

there exists a >-ultrafilter F on X which satisfies θ⇒F ⊆ F̂ ⊆ H and νF(a) = νH(â) for

each a ∈ LX . Since (Y, p) is compact T3, it follows that θ⇒F
p−→ y and thus (S3) is

valid. Moreover, a†(y) = ∨{νK(a) : θ⇒K p−→ y} ≥ νF(a) = νH(â) ≥ νH(θ→a). Therefore

a†(y) ≥ ∨{νH(θ→a) : H p−→ y} = θ→a(y). Since a†(y) ≤ θ→a(y) always holds, it follows that

(S1) is satisfied.

Assume that (X, C) ∈|>-Chy| ; let X∗ = X ∪ {〈G〉 : G ∈ N} and let j : X −→ X∗ denote

the natural injection. Define the following >-limit structure σ on X∗:

H
σ−→ j(x) iff H ≥ j⇒F for some F

qC−−→ x

H
σ−→ 〈G〉 iff H ≥ j⇒G ∩ [〈G〉] for some G ∈ N .

Then (X∗, σ) ∈|>-Lim| and j : X −→ (X∗, σ) is a dense injection. If a ∈ LX , then define

a†(y) = ∨{νF(a) : j⇒F σ−→ y}, y ∈ X∗. Moreover, suppose that F ∈ F>L(X) and denote

B = {a† : a ∈ F}. It is shown that B is a >-filter base on X∗. Indeed, if a ∈ F, then∨
y∈X∗

a†(y) ≥ ∨
x∈X

a†(j(x)) ≥ ∨
x∈X

a(x) = > and thus (>B1) is satisfied. Next, assume that

b1, b2 ∈ F; then (b1 ∧ b2)†(y) = ∨{νF(b1 ∧ b2) : j⇒F σ−→ y} = ∨{νF(b1) ∧ νF(b2) : j⇒F σ−→
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y} ≤ ∨{νK(b1) ∧ νL(b2) : j⇒K, j⇒L σ−→ y} = ∨{νK(b1) : j⇒K σ−→ y} ∧ ∨{νL(b2) : j⇒L σ−→

y} = b†1(y) ∧ b†2(y) = (b†1 ∧ b†2)(y) and thus (b1 ∧ b2)† ≤ b†1 ∧ b
†
2. Hence, if b1, b2 ∈ F,∨

a∈F
[a†, b†1 ∧ b†2] ≥ ∨

a∈F
[a†, (b1 ∧ b2)†] ≥ [(b1 ∧ b2)†, (b1 ∧ b2)†] = > and thus (>B2) is valid. Thus

B is a >-filter base for the >-filter on X∗ denoted by F†. Define

C† = {H ∈ F>L(X∗) : H ≥ F†, for some F ∈ C}

and note that [j(x)] ≥ F† whenever F
qC−−→ x. Also, [〈G〉] ≥ G† and H ≥ K ∈ C† implies that

H ∈ C†. However, if F1,F2 ∈ C such that F†1 ∨ F†2 exists, F†1 ∩ F†2 may fail to belong to C†.

Hence C† may fail to be a >-Cauchy structure on X∗. A necessary condition for
(
(X∗, C†), j

)
to be a T2-completion of (X, C) is given below.

Lemma 5.3. Suppose that F ∈ F>L(X), (X, C) ∈|>-Chy| . Then

(i) j⇐(F†) exists and equals F

(ii) (X, C) is regular whenever
(
(X∗, C†), j

)
is a T2-completion of (X, C).

Proof. (i) Since j⇐j⇒F exists and F† ⊆ j⇒F, it follows that j⇐(F†) exits. Next, it is shown

that j⇐(F†) = F. Assume that a ∈ F and thus j←(a†) is a >-filter base member for j⇐(F†).

Note that j←(a†)(x) = a†(j(x)) = ∨{νG(a) : j⇒G σ−→ j(x)} = ∨{νG(a) : G qC−−→ x} = a(x).

Since j←(a†) = a ∈ F, it follows that j⇐(F†) ⊆ F. Since {a : a ∈ F} is a >-filter base for F,

j←(a†) = a ∈ j⇐(F†) whenever a ∈ F, and thus F ⊆ j⇐(F†). Then j⇐(F†) = F.

(ii) Verification here follows directly from (i).

Lemma 5.4. Assume that
(
(X∗,D), j

)
is a T3-completion of (X, C) in standard form. Then

(i)
(
(X∗, C†), j

)
is a T2-completion of (X, C) and C† ⊆ D
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(ii) j : (X, C) −→ (X∗, C†) satisfies (S2)

(iii)
(
(X∗, C†), j

)
is the only possible strict T3-completion of (X, C) in standard form.

Proof. (i) Suppose that H1,H2 ∈ C† such that H1 ∨H2 exists. Then there exists Fi ∈ C such

that F†i ⊆ Hi, i = 1, 2. Let p = qD; then j⇒Fi
p
⊆ F†i ⊆ Hi and since (X∗,D) is regular,

j⇒Fi
p
∈ D, i = 1, 2. Hence j⇒Fi

p
∨ j⇒F2

p
exists and thus j⇒Fi

p
∩ j⇒F2

p
∈ D implies that

F1 ∩ F2 ∈ C. Therefore F†1 ∩ F†2 ≥ (F1 ∩ F2)† ∈ C† and hence (X∗, C†) ∈|>-Chy| . Moreover,

if F ∈ C, then j⇒F
p
⊆ F† implies that F† ∈ D and thus C† ⊆ D. Since C† ⊆ D,

(
(X∗, C†), j

)
is a T2-completion of (X, C).

(ii) Denote r = qC† and suppose that H
r−→ y. Then H ∈ C† and thus H ≥ F† for some

F ∈ C. Hence F† ∩ [y] ∈ C† and j⇒F
r−→ y. It follows that j⇒F

r
⊆ F† ⊆ H and thus

j : (X, C) −→ (X∗, C†) obeys (S2).

(iii) Assume that
(
(X∗,D), j

)
is any strict T3-completion of (X, C) in standard form. It

remains to show that C† = D. According to (i), C† ⊆ D. Let H ∈ D and H
p−→ y, where

p = qD. Since j : (X, C) −→ (X∗,D) obeys (S2), there exists a >-filter F on X such that

j⇒F
p−→ y and j⇒F

p ⊆ H. Note that F ∈ C. Applying (S1), F† = j⇒F
p ⊆ H and thus

H ∈ C†. Hence C† = D and
(
(X∗, C†), j

)
is the only possible strict T3-completion of (X, C)

in standard form.

Lemma 5.5. Suppose that (X, C) has a strict T3-completion in >-Chy . Assume that ψ :

(X, C) −→ (Y,D) is Cauchy-continuous and (Y,D) is T3 and complete. Then there exists a

Cauchy-continuous map θ : (X∗, C†) −→ (Y,D) such that θ ◦ j = ψ. In particular, under

these assumptions,
(
(X∗, C†), j

)
is the largest T3-completion of (X, C) in >-Chy .

Proof. Denote p = qC† and r = qD. Define θ : X∗ −→ Y by θ(s) = t, where j⇒G p−→ s

and ψ⇒G
r−→ t. Since (X∗, C) and (Y,D) are T3 and complete, θ is a well-defined map
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and θ ◦ j = ψ. To show that θ is Cauchy-continuous, let F ∈ C; it suffices to show that

ψ⇒F
r
⊆ θ⇒(F†). Choose a ∈ F and y ∈ Y ; it is shown that θ→(a†)(y) ≤ ψ→a

r
(y). Recall

that θ→(a†)(y) = ∨{a†(z) : θ(z) = y} and observe that νG(a) = ∨
b∈G

[b, a] ≤ ∨
b∈G

[ψ→b, ψ→a] =

νψ→G(ψ→a). Fix z ∈ θ−1(y); then a†(z) = ∨{νG(a) : j⇒G p−→ z} ≤ ∨{νψ⇒G(ψ→a) : j⇒G p−→

z} ≤ ∨{νH(ψ→a) : H r−→ y} = ψ→a
r
(y). Hence θ→(a†)(y) = ∨{a†(z) : θ(z) = y} ≤ ψ→a

r
(y)

and thus θ is Cauchy-continuous.

Let (X, q) ∈|>-Lim| . Then (X, q) is said to satisfy property Q provided: F
q−→ z and

[z] q−→ x implies that F q−→ x. Moreover, (X, q) ∈|>-Lim| is called symmetric provided it is

regular and obeys property Q. Since >-Lim possesses initial structures, it easily follows that

if (X, q) ∈|>-Lim| , then there exists a finest symmetric >-limit structure which is coarser

that q. Let sq ≤ q denote this structure. Observe that if (X, C) ∈|>-Chy| , then (X, qC)

satisfies property Q. Verification of the following lemma is straightforward.

Lemma 5.6. Assume that (X, q) ∈|>-Lim| is regular. Then there exists a (complete) Cauchy

structure C such that qC = q iff (X, q) is symmetric.

Let (X, C) ∈|>-Chy| and let rC ≤ C denote the finest regular Cauchy structure on X which

is coarser than C. According to Lemma 5.6, qrC is symmetric.

Lemma 5.7. Suppose that (X, C) ∈|>-Chy| is complete and denote q = qC. Define Csq =

{F ∈ F>L(X) : F sq-converges}; then rC = Csq and, moreover, (X, rC) is complete.

Proof. Since sq is symmetric, it follows from Lemma 5.6 that (X, Csq) ∈|>-Chy| . Also,

(X, Csq) is complete and induces (X, sq). Since (X, Csq) is regular, it follows that Csq ≤ rC ≤ C

or C ⊆ rC ⊆ Csq. Let F ∈ Csq; then F
sq−−→ x for some x ∈ X. Since qrC is symmetric and

qrC ≤ q, it follows that qrC ≤ sq ≤ q. Hence F
qrC−−→ x and thus F ∈ rC. Therefore rC = Csq

and (X, rC) is complete.
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As used above, since >-Chy possesses initial structures, it follows that for each (Y,D) ∈|>-

Chy| there exists a finest regular >-Cauchy structure on Y , which is coarser than D, denoted

by (Y, rD). Moreover, if f : (X, C) −→ (Y, rD) is Cauchy-continuous in >-Chy , then

f : (X, rC) −→ (Y, rD) is also Cauchy-continuous. Assume that (X, C) ∈|>-Chy| is T2 and

define C̃ on X∗ as follows:

C̃ = {H ∈ F>L(X∗) : either H ≥ j⇒F for some qC convergent F, or

H ≥ j⇒G ∩ [〈[G]〉 for some G ∈ N}.

The following lemma appears above as Theorem 3.3. It is listed here for convenience.

Lemma 5.8. Suppose that (X, C) ∈|>-Chy| is T2. Then

(i)
(
(X∗, C̃), j

)
is the finest T2-completion of (X, C) in >-Chy which is in standard form

(ii) If f : (X, C) −→ (Y,D) is a Cauchy-continuous map and (Y,D) is complete, f has a

Cauchy-continuous extension f̃ : (X∗, C̃) −→ (Y,D) such that f̃ ◦ j = f .

An object (X, C) ∈|>-Chy| is said to obey property P provided that for each F /∈ C there

exists a T3-complete (Y,D) ∈|>-Chy| and a Cauchy-continuous map f : (X, C) −→ (Y,D)

such that f⇒F /∈ D.

Lemma 5.9. Assume that (X, C) ∈|>-Chy| is T3. Then (X, C) has a T3-completion in

>-Chy iff it satisfies property P.

Proof. Suppose that (X, C) possesses a T3-completion in >-Chy . Then clearly (X, C) satisfies

property P. Conversely, assume that (X, C) obeys property P. It is shown that
(
(X∗, rC̃), j

)
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is a T3-completion of (X, C). Denote δ = q
rC̃; then j : (X, C) −→ (X∗, rC̃) is Cauchy-

continuous and clδ(j(X)) = X∗. That is, 1j(X)
δ = 1X∗ . Indeed, if x ∈ X then clearly

1j(X)
δ(x) = > and if G ∈ N then 1j(X)

δ(〈G〉) = ∨{νH(1j(X) : H δ−→ 〈G〉} = ∨{νH(1j(X) :

H ≥ j⇒G ∩ 〈G〉]} ≥ νj⇒G(1j(x) = >. Suppose that F ∈ F>L(X) such that j⇒F ∈ rC̃

but F /∈ C. Then there exists a T3-complete (Y,D) ∈|>-Chy| and a Cauchy-continuous

map f : (X, C) −→ (Y,D) such that f⇒F /∈ D. Since by Lemma 5.8 f has a Cauchy-

continuous extension f̃ : (X∗, rC̃) −→ (Y,D) such that f̃ ◦ j = f , f⇒F = f̃⇒(j⇒F) ∈ D,

contrary to our assumption. Hence j : (X, C) −→ (X∗, rC̃) is a dense embedding. Further,

(X∗, rC̃) is T2; otherwise, H
δ−→ y1, y2 for some H and y1 6= y2 and hence y1 and y2 have

the same δ-convergent >-filters. In particular, [y1] ∩ [y2] ∈ rC̃. If yi = j(xi), i = 1, 2, then

[x1] ∩ [x2] ∈ C, which contradicts (X, C) being T2. Next if y1 = j(x2) and y2 = 〈G〉, G ∈ N ,

then j⇒G
δ−→ j(x1) implies that G

qC−−→ x1, which violates G ∈ N . Finally, suppose that

yi = 〈Gi〉, where Gi ∈ N , i = 1, 2 and 〈G1〉 6= 〈G2〉. This is impossible since 〈G1〉 and 〈G2〉

must have the same δ-convergent >-filters. Therefore (X∗, rC̃) is T3. Moreover, since (X∗, C̃)

is complete, it follows from Lemma 5.7 that (X∗, rC̃) is also complete. Hence
(
(X∗, rC̃), j

)
is a T3-completion in >-Chy .

Lemma 5.10. Assume that (X, C) ∈|>-Chy| is T3, obeys property P, and let
(
(X∗, rC̃), j

)
denote its T3-completion in standard form. Then,

(i)
(
(X∗, C†), j

)
is a T2-completion of (X, C) and j obeys (S2)

(ii) if L is a complete Boolean algebra and (X, C) is totally bounded,
(
(X∗, C†), j

)
is a strict

T3-completion iff C† = rC̃.

Proof. (i) The result follows from Lemma 5.4 (i) and (ii).

(ii) Suppose that
(
(X∗, C†), j

)
is a strict T3-completion of (X, C). Since rC̃ ≤ C† ≤ C̃ and rC̃
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is the finest regular Cauchy structure which is coarser than C̃, rC̃ = C†. Conversely, assume

that C† = rC̃. According to (i), j : (X, C) −→ (X∗, C†) obeys (S2). Since L is a complete

Boolean algebra and (X, C) is totally bounded, it follows from Lemma 5.1 that (X∗, C†) is

also totally bounded and thus compact. Then according to Lemma 5.2, (X∗, C†) obeys (S1)

and hence
(
(X∗, C†), j

)
is a strict T3-completion of (X, C).

Corollary 5.1. Under the assumptions of Lemma 5.10 (ii), both (X∗, C†) and (X∗, rC̃) are

compact and hence C† and rC̃ possess the same >-ultrafilters. Moreover,
(
(X∗, C†), j

)
is a

strict T2-completion of (X, C) in this case.

Connecting T3-Completions and T3-Compactifications

Given (X, q) ∈|>-Lim| , assume that (X, q) possesses a strict T3-compactification. Let A

denote the set of all equivalence classes of strict T3-compactifications of (X, q) in >-Lim and

let B denote the set of all totally bounded>-Cauchy spaces (X, C) such that qC = q and which

have a strict T3-completion in >-Chy . Define Θ : A −→ B by Θ
(〈(

(Y, p), ψ
)〉)

= (X, Cp),

where F ∈ Cp iff ψ⇒F p-converges.

Theorem 5.1. The map Θ : A −→ B is an order preserving injection. Moreover, Θ is a

bijection whenever L is a complete Boolean algebra.

Proof. Let Θ
(〈(

(Y, p), ψ
)〉)

= (X, Cp) and note that Cp is a >-Cauchy structure. Indeed

ψ⇒([x]) = [ψ(x)] p−→ ψ(x) and thus [x] ∈ Cp. If G ≥ F ∈ Cp, then G ∈ Cp. Assume

that F1,F2 ∈ Cp such that F1 ∨ F2 exists. Then ψ⇒F1 ∨ ψ⇒F2 exists and since (Y, p)

is T2, ψ⇒(F1 ∩ F2) = ψ⇒F1 ∩ ψ⇒F2 p-converges. Hence F1 ∩ F2 ∈ Cp and thus (X, Cp)

is a >-Cauchy space. Moreover, (X, Cp) is T3 since if F ∈ Cp, then ψ⇒F
q
≥ ψ⇒F

p
p-

converges since (Y, p) is T3. Therefore F
q
∈ Cp and (X, Cp) is T3. Further, ψ⇒F p-converges
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for each >-ultrafilter F on X and thus F ∈ Cp. Then (X, Cp) is also totally bounded.

Denote D = {H ∈ F>L(Y ) : H p-converges}, and it follows that
(
(Y,D), ψ

)
is a strict

T3-completion of the totally bounded T3 space (X, Cp) and thus (X, Cp) ∈ B. We next

show that Θ is an injection. Assume that Θ
(〈(

(Yi, pi), ψi
)〉)

= (X, Cp), i = 1, 2. Define

h : (Y1, p1) −→ (Y2, p2) by h(s) = t, where ψ⇒2 F
p2−−→ t whenever ψ⇒1 F

p1−−→ s. Suppose

ψ⇒1 Fk
p1−−→ s, k = 1, 2; then ψ⇒1 (F1 ∩ F2) p1−−→ s and thus F1 ∩ F2 ∈ Cp. It follows that

ψ⇒2 (F1 ∩ F2) p2−−→ t and thus h is well-defined. Moreover, ψ⇒1 [x] = [ψ1(x)] p1−−→ ψ1(x) and

ψ⇒2 [x] = [ψ2(x)] p2−−→ ψ2(x) implies that h ◦ ψ1 = ψ2.

It remains to show that h is an isomorphism. Since

Θ
(〈(

(Y1, p1), ψ1
)〉)

= Θ
(〈(

(Y2, p2), ψ2
)〉)

= (X, Cp),

C = {F ∈ F>L(X) : ψ⇒1 F p1-converges} = {F ∈ G>L(X) : ψ⇒2 G p2-converges}. Then for each

a ∈ LX , ψ→1 a
p1(s) = a†(s) = ∨{νF(a) : ψ⇒1 F

p1−−→ s} = ∨{νG(a) : ψ⇒2 G
p2−−→ t} = a†(t) =

ψ→2 a
p2(t), according to (S1). Next, assume that H

p1−−→ s; then employing (S2), there exits

an F such that ψ⇒1 F
p1−−→ x and ψ⇒1 F

p1 ⊆ H. Observe that h→
(
ψ→1 a

p1)(t) = ∨{ψ→1 (a)
p1

(z) :

h(z) = t} = ψ→1 a
p1(s) = ψ→2 a

p2(t). Further, if a ∈ F, then h→
(
ψ→1 a

p1)(t) = ψ→2 a
p2(t)

implies that h⇒H ≥ h⇒
(
ψ⇒1 F

p1) = ψ⇒2 F
p2 . Then h is continuous and by symmetry, h is an

isomorphism. Therefore
〈(

(Y1, p1), ψ1
)〉

=
〈(

(Y2, p2), ψ2
)〉

and Θ is an injection.

Finally, we must show that the injection Θ is order preserving. Assume that
〈(

(Y1, p1), ψ1
)〉
≥〈(

(Y2, p2), ψ2
)〉

and let k : (Y1, p1) −→ (Y2, p2) be a continuous map such that k ◦ ψ1 = ψ2.

Denote Cpi = {F ∈ F>L(X) : ψ⇒i F pi-converges}, i = 1, 2. Suppose that F ∈ Cp1 ; then

ψ⇒2 F = (k ◦ ψ1)⇒F p2-converges and hence F ∈ Cp2 . Therefore Cp1 ≥ Cp2 . Conversely, sup-

pose that C1 ≥ C2 and Θ
(〈(

(Yi, pi), ψi
)〉)

= (X, Ci), i = 1, 2. Define h : (Y1, p1) −→ (Y2, p2)

as follows: h(s) = t, where ψ⇒1 F
p1−−→ s which implies that ψ⇒2 F

p2−−→ t. Since C1 ⊆ C2,
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h is well-defined and h ◦ ψ1 = ψ2. If a ∈ LX and s ∈ Y1, then ψ→1 a
p1(s) = a†(s) =∨{νF(a) : ψ⇒1 F

p1−−→ s} ≤ ∨{νG(a) : ψ⇒2 G
p2−−→ t} = a†(t) = ψ→2 a

p2(t). It follows that

h⇒
(
ψ⇒1 F

p1) ≥ ψ⇒2 F
p2 p2−−→ t whenever ψ⇒1 F

p1−−→ s and thus h is continuous. Therefore〈(
(Y1, p1), ψ1

)〉
≥
〈(

(Y2, p2), ψ2
)〉

and Θ is order preserving.

Next, assume that L is a complete Boolean algebra and (X, C) ∈ B. Let
(
(Y,D), ψ

)
denote

the strict T3-completion of (X, C) in >-Chy . Define p = qD and let Cp = {F ∈ F>L(X) :

ψ⇒F p-converges}. It follows from Lemma 5.1 that (Y, p) is compact and thus
(
(Y, p), ψ

)
is

a strict T3-compactification of (X, q). Moreover, note that C = Cp, Θ
(〈(

(Y, p), ψ
)〉)

= (X, C)

and hence Θ is a bijection in this case.

Whenever L is a complete Boolean algebra, the following example establishes the existence

of a totally bounded >-Cauchy space which has a strict T3-completion.

Example 5.1. Suppose that L is a complete Boolean algebra and X 6= ∅. Recall that by

Proposition 1.1, [x] is a >-ultrafilter on X. Let η denote the set of all >-ultrafilters on X

which are not of the form [x], for some x ∈ X, and define C = {[x],G : x ∈ X,G ∈ η}. Then

(X, C) ∈|>-Chy| is totally bounded and 〈G〉 is a singleton set, for each G ∈ η. Let q = qC

and note that F
q−→ x iff F = [x]. Fix a ∈ LX and observe that a q(x) = ∨{νF(a) : F q−→

x} = ν[x](a) = a(x), x ∈ X. Hence a q = a and thus (X, C) is regular. Moreover, a†(j(x)) =∨{νF(a) : j⇒F σ−→ j(x)} = ν[x](a) = a(x) and a†(〈G〉) = ∨{νK(a) : j⇒K σ−→ 〈G〉} = νG(a).

As usual C† = {H ∈ F>L(X∗) : H ≥ F† for some F ∈ C}. Then C† obeys (>C1) and (>C2)

but we must prove (>C3). Suppose that F1 ∨ F2 fails to exist, where F1,F2 ∈ C. Then

there exists ai ∈ Fi such that ∨
x∈X

a1(x)∧ a2(x) = α < >. Recall that for each >-filter K and

b ∈ LX , νK(b) ≤ ∨
x∈X

b(x). It follows that ∨
y∈X∗

a†1(y)∧a†2(y) = ∨
x∈X

(a1(x)∧a2(x))∧ ∨
H∈η

(νG(a1)∧

νG(a2)) = α ∧ ∨
H∈η

(νG(a1) ∧ νG(a2)) = α < >. It follows that F†1 ∨ F†2 fails to exist and thus

(X∗, C†) ∈|>-Chy| . Let r = qC† . It is shown that (X∗, C†) is regular. Using the notation
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prior to Lemma 5.1, since 〈G〉 is a singleton, â = a† for each a ∈ LX and thus F̂ = F†. Assume

that H
r−→ y, where H is a >-ultrafilter on X∗. According to Lemma 5.1, there exists a >-

ultrafilter F on X such that j⇒F r ⊆ F† = F̂ ⊆ H and νF(a) = νH(â) for each a ∈ LX . Since

(X, C) is totally bounded, F ∈ C and thus F†
r−→ y and, moreover, νF(a) = νH(â) = νH(a†).

Hence a† r(y) = ∨{νH(a†) : H r−→ y} = ∨{νF(a) : j⇒F r−→ y} = a†(y) and thus a† r = a†.

Therefore F†
r = F† and

(
(X∗, C†), j

)
is a T3-completion of (X, C) in standard form. Further,

since (X, C) is totally bounded, Lemma 5.1 implies that (X∗, C†) is also totally bounded and

hence compact. According to Lemma 5.2 and Lemma 5.4, j : (X, C) −→ (X∗, C†) obeys (S1)

and (S2). Therefore
(
(X∗, C†), j

)
is a strict T3-completion of (X, C) in standard form.

Continuing with the notation used in Theorem 5.1, denote B = {(X, Ck) : k ∈ J} and

define C = ⋂
k∈J
Ck. Since each (X, Ck) induces (X, q), it follows that qC = q. As before,

let X∗ = X ∪ {〈G〉 : G ∈ NC} and j : X −→ X∗ be the natural injection. Further, let

Nk = {G ∈ Ck : G fails to q-converge}. Since each (X, Ck), k ∈ J , is totally bounded, it

follows that (X, C) is also totally bounded. Denote X∗k = X ∪ {〈G〉k : G ∈ Nk} and let(
(X∗k , C

†
k), jk

)
denote the strict T3-completion of (X, Ck) in standard form. Since C and Ck

have the same >-ultrafilters and C ⊆ Ck, it follows that 〈G〉 ⊆ 〈G〉k, for each >-ultrafilter

G ∈ NC and k ∈ J . Let δk : X∗ −→ X∗k denote the bijection defined by δk(j(x)) = jk(x) and

δk(〈G〉) = 〈G〉k, x ∈ X and >-ultrafilter G ∈ NC. Since >-Chy is a topological category, it

possesses initial structures. Let D denote the initial >-Cauchy structure on X∗ determined

by the maps δk : X∗ −→ (X∗k , C
†
k), k ∈ J . Define p = qD and pk = qC†

k
, k ∈ J . For sake of

convenience, consider the commutative diagram:
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(X, C) (X∗,D)

(X, Ck) (X∗k , C
†
k)

j

idX

jk

δk

Proposition 5.1. Assume that the frame L is a Boolean algebra for parts (ii) and (iv); fix

(X, q) ∈|>-Lim| . Using the notation given above, suppose that the assumptions made in

Theorem 5.1 are valid and define C = ⋂
k∈J
Ck. Then

(i)
(
(X∗,D), j

)
is a T3-completion of (X, C) in standard form

(ii)
(
(X∗, p), j

)
is a T3-compactification of (X, q) and j obeys (S1) and (S3), where p = qD

(iii)
(
(X∗, C†), j

)
is a T2-completion of (X, C) and j satisfies (S2)

(iv)
(
(X∗, r), j

)
is a T2 compactification of (X, q) and j obeys (S2), where r = qC†.

Proof. (i): Since each (X∗k , C
†
k) is a regular >-Cauchy space and D is the initial >-Cauchy

structure on X∗ determined by δk : X∗ −→ (X∗k , C
†
k), it follows that (X∗,D) is a regular

>-Cauchy space and δk : (X∗,D) −→ (X∗k , C
†
k) is Cauchy-continuous, k ∈ J . If H p−→ z1, z2,

then δ⇒k H
pk−−→ δk(z1), δk(z2) and thus δk(z1) = δk(z2). Then z1 = z2 and (X∗,D) is T3. If

F ∈ C, then using the commutative diagram above, δ⇒k (j⇒F) = j⇒k F ∈ C†k for each k ∈ J ,

and thus j⇒F ∈ D. Therefore j is Cauchy-continuous. Next, assume that F ∈ F>L(X) and

j⇒F ∈ D. Then j⇒k F = (δk ◦ j)⇒F ∈ C†k and hence F ∈ Ck for each k ∈ J . It follows that

F ∈ C and thus
(
(X∗,D), j

)
is a T3-completion of (X, C) in standard form.

(ii): Suppose that H is a >-ultrafilter on X∗. According to Lemma 5.1 there exists a >-

ultrafilter F on X such that H ≥ j⇒F
p
. If F q−→ x, then H

p−→ j(x). Assume that F ∈ NC.

97



Since j⇒F ∈ D, it follows that δ⇒k (j⇒F) = j⇒k F
q
C†
k−−→ δk(〈F〉) for each k ∈ J . Then j⇒F

p−→

〈F〉 and hence (X∗, p) is compact. It follows that
(
(X∗, p), j

)
is a T3-compactification of

(X, q) and by Lemma 5.2, j obeys (S1) and (S3).

(iii): Employing Lemma 5.4,
(
(X, C†), j

)
is a T2-completion of (X, C) which satisfies (S2).

(iv): Let H be a >-ultrafilter on X∗, and by Lemma 5.1 there exists a >-ultrafilter F on X

such that F† ⊆ H. Since (X, C) is totally bounded and (X∗, C†) is complete, it follows that

H r-converges. Then (X∗, r) is compact and
(
(X∗, r), j

)
is a T2-compactification of (X, q)

which obeys (S2).

The assumption that the frame L is a Boolean algebra is used in the proof of Theorem 5.1

to show that the strict T3-completion
(
(Y,D), ψ

)
of the totally bounded >-Cauchy space

is compact. The key step being that each stratified L-ultrafilter on X is the image of a

>-ultrafilter according to the mapping F 7→ νF listed in Theorem 2.1. This property has

been extended from the requirement that L is a Boolean algebra to more general algebraic

structures; for example, see Proposition 4.4.4 [12] and Proposition 9 [9]. These and related

references may prove to be profitable in extending the results of this chapter as well as the

compactification given in Chapter 2 and [26].
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APPENDIX: CATEGORICAL CONSIDERATIONS
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The following definitions and theorems can be found in [24] and [1].

Definition A.1 [24] A category Cat is said to be a construct if its objects are structured

sets, i.e. pairs (X, ξ) where X is a set and ξ a Cat-structure on X, its morphisms f :

(X, ξ) −→ (Y, η) are suitable maps between X and Y and its composition law is the usual

composition of maps. A construct Cat is said to be topological if the following hold:

(T1) Existence of initial structures: For any set X, any family
(
(Xi, ξi)

)
i∈I

of Cat-objects

indexed by a class I and any family (f : X −→ Xi)i∈I of maps indexed by I there exists

a unique Cat-structure ξ on X such that for any Cat-object (Y, η) a map g : (Y, η) −→

(X, ξ) is a Cat-morphism iff for every i ∈ I the composite map fi◦g : (Y, η) −→ (Xi, ξ)

is a Cat-morphism.

(T2) For any set X, the class {(Y, η) ∈ |Cat| : X = Y } of all Cat-objects with underlying

set X is a set.

(T3) For any set X with cardinality at most one, there exists exactly one Cat-object with

underlying set X.

The property of being a topological category is quite useful. For example, suppose the

category Cat is topological, (X, ξ) ∈ Cat and A ⊆ X. The initial structure with respect

to the natural injection j : A −→ X defines a Cat-structure on A, say ξA. The Cat-object

(A, ξA) is often called a sub-structure of (X, ξ).

Another example of the use of a topological category is the existence of product structures.

Suppose that Cat is a topological category and
(
(Xi, ξi)

)
i∈I

are Cat-objects indexed by a

class I. Let ∏
i∈I
Xi be the product set, and let ∏

i∈I
ξi be the initial structure on ∏

i∈I
Xi defined

by the family of maps
(
πi : ∏

i∈I
Xi −→ Xi

)
i∈I

where πi is the ith projection map. In this way
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we may obtain products in the topological category Cat.

Perhaps the greatest benefit to topological constructs is the existence of final structures.

The following theorem appears in [24] as Theorem 1.2.1.1.

Theorem A.1. [24] Let Cat be a construct. Then the following are equivalent:

(a) Cat satisfies (T1) in Definition 5.

(b) For any set X, any family
(
(Xi, ξi)

)
i∈I

of Cat-objects indexed by some class I and any

family (fi : Xi −→ X)i∈I of maps indexed by I there exists a unique Cat-structure ξ

on X which is final with respect to
(
(Xi, ξi), fi, X, I

)
, i.e. such that for any Cat-object

(Y, η) a map g : (X, ξ) −→ (Y, η) is a Cat-morphism iff for every i ∈ I the composite

map g ◦ fi : (Xi, ξi) −→ (Y, η) is a Cat-morphism.

In Definition A.1 (T1) above, the structure (fi : X −→ Xi)i∈I is often called a source and

in Theorem A.1 (b) above, the structure (fi : Xi −→ X)i∈I is often called a sink.

Definition A.2 [24] A category Cat is called Cartesian closed provided the following

conditions are satisfied:

(CC1) For each pair (A,B) of Cat-objects, there exists a product A×B in Cat.

(CC2) For each Cat-object A, the following holds: For each Cat-object B, there exists some

Cat-object BA (called power object) and some Cat-morphism evA,B : BA × A −→ B

(called evaluation morphism) such that for each Cat-object C and each Cat-morphism

f : C × A −→ B, there exists a unique Cat-morphism f̂ : C −→ BA such that the

diagram below commutes:
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BA × A B

C × A

evA,B

f̂ × idA f

Definition A.3 [24] (i) Let (X, ξ), (Y, η) be objects of the topological construct Cat. Then

the Cat-morphism f : (X, ξ) −→ (Y, η) is said to be a quotient map if f : X −→ Y is

surjective and η is the final Cat-structure with respect to the sink f : (X, ξ) −→ Y .

(ii) A topological construct is called strongly Cartesian closed provided it is Cartesian

closed and the product of quotient maps in Cat are quotient maps in Cat.

Definition A.4 [24] (i) In a topological construct Cat, a partial morphism from A to B

is a Cat-morphism f : C −→ B whose domain is a subobject of A.

(ii) A topological construct Cat is called extensional provided that every Cat-object B has

a one-point extension B∗ ∈ |Cat|, i.e. every B ∈ |Cat| can be embedded via the addition

of a single point∞B into a Cat-object B∗ such that, for every partial morphism f : C −→ B

from A to B, the map f ∗ : A −→ B∗, defined by

f ∗(a) =

f(a), a ∈ C
∞B, a /∈ C

,

is a Cat-morphism.

(iii) A topological construct Cat is called a topological universe if it is Cartesian closed

and extensional. It is called a strong topological universe if it is strongly Cartesian closed

and extensional.

Definition A.5 [24] Let Cat be a category and Subcat be a full subcategory of Cat.
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We say that Subcat is reflective in Cat if for each A ∈ |Cat| there exists an object

B ∈ |Subcat| and morphism f : A −→ B of Cat such that for each morphism g : A −→ C

of Cat with C ∈ |Subcat|, there exists a unique Subcat morphism h : B −→ C so that

the diagram below commutes:

A B

C

f

g
∃!h

Further, if f : A −→ B can be chosen to be a bijection, then Subcat is said to be a

bireflective subcategory of Cat.

Definition A.6 [24] Let Cat be a category and Subcat be a full subcategory of Cat.

We say that Subcat is coreflective in Cat if for each A ∈ |Cat| there exists an object

B ∈ |Subcat| and morphism f : B −→ A of Cat such that for each morphism g : C −→ A

of Cat with C ∈ |Subcat|, there exists a unique Subcat morphism h : C −→ B so that

the diagram below commutes:

AB

C

f

g
∃!h

Further, if f : B −→ A can be chosen to be a bijection, then Subcat is said to be a

bicoreflective subcategory of Cat.

Definition A.7 [1] Let CAT be a category. A concrete category over CAT is a pair

(Cat, U) such that Cat is a category and U : Cat −→ CAT is a faithful functor, often

times the forgetful functor.
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