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ABSTRACT

In this dissertation, we study a self-adjoint integral operator K̂ which is defined in

terms of finite Hilbert transforms on two adjacent intervals. These types of trans-

forms arise when one studies the interior problem of tomography. The operator K̂

possesses a so-called “integrable kernel” and it is known that the spectral properties

of K̂ are intimately related to a 2×2 matrix function Γ(z;λ) which is the solution to

a particular Riemann-Hilbert problem (in the z plane). We express Γ(z;λ) explicitly

in terms of hypergeometric functions and find the small λ asymptotics of Γ(z;λ).

This asymptotic analysis is necessary for the spectral analysis of the finite Hilbert

transform on multiple adjacent intervals. We show that Γ(z;λ) also has a jump in

the λ plane which allows us to compute the jump of the resolvent of K̂. This jump

is an important step in showing that the finite Hilbert transforms has simple and

purely absolutely continuous spectrum. The well known spectral theory now allows

us to construct unitary operators which diagonalize the finite Hilbert transforms.

Lastly, we mention some future directions which include the many interval scenario

and a bispectral property of K̂.
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CHAPTER 1: BACKGROUND AND INTRODUCTION

One of the great advances of modern technology has been the use of various types

of CT (computed tomography) scanners for medical diagnostics. We briefly mention

how these machines operate and how they are related to this work. An in-depth

introduction of the mathematics involved in medical imaging can be found in [9]. In

Figure 1.1, the light-grey region represents the object to be scanned and L represents

a generic path on which an x-ray will travel. Field of view and region of interest are

abbreviated as FOV and ROI, respectively. The size of the FOV is determined by

the detector size: a larger detector leads to a larger FOV (denoted by the dashed

circle), see the left panel of Figure 1.1. A smaller detector leads to a smaller FOV,

which can be contained strictly inside the object (see the right panel of Figure 1.1).

We denote the function f as the attenuation coefficient of the object being scanned.

In the right panel of Figure 1.1, the intervals [a1, a2] ∪ [a5, a6] =: Ie and [a3, a4] =: Ii

are called exterior and interior intervals, respectively. The interval Ie is outside the

FOV (hence the name exterior intervals) and f is assumed to be known on Ii. CT

scanners operate in the following way: as the source/detector (see Figure 1.1 left

panel) rotates around the object, the data collected is line integrals of f . If the FOV

is large enough to contain the support of f , stable reconstruction of f is possible

(Figure 1.1, left panel). This is not the case in Figure 1.1, right panel.

Any time a patient gets a CT scan, they are exposed to radiation. Reducing the

patients exposure to radiation while maintaining image quality is obviously desirable.
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Figure 1.1: Left panel - a 2D setup for CT. Right panel - the interior problem with
prior data. f is assumed to be known inside the “known subregion”.

If we are only interested in imaging a ROI in the object, the whole object must be

irradiated to produce an image using classical techniques. In order to reduce the

radiation dosage, we shrink the x-ray beam and, hence, the FOV to include only the

ROI, see right panel of Figure 1.1. Thus the goal is to recover f on the ROI from

knowing line integrals of f on all lines intersecting the ROI (incomplete tomographic

data). This is called the interior problem of tomography. A powerful tool when

investigating this interior problem is called the Gelfand-Graev formula, which relates

the tomographic data of an object with its one-dimensional Hilbert transform along

lines (see [11]). With the help of this formula, the interior problem of tomography

can be reduced to the problem of inverting the Hilbert transform from incomplete

data. As we can see in Figure 1.1 right panel, f is supported on [a1, a6] but the data

Hf , where H is the Hilbert transform, is only available on [a2, a5]. So the equation

2



to be solved is

Hf(x) =
1

π

∫ a6

a1

f(y)

y − x
dy = ϕ(x), x ∈ [a2, a5], (1.1)

where ϕ(x) is the data. We want to recover f for x ∈ [a2, a5] (where the data

is available). When inverting operators with truncated data, both stability and

uniqueness of this inversion is of concern. According to [15], unique recovery of f

is impossible because H has a non-trivial kernel. Thus if one wants to recover f ,

some additional information is necessary. One way to guarantee unique recovery of

f from its Hilbert transform is to assume some prior knowledge of f , meaning f is

known on a subset of the ROI (see Figure 1.1, right panel). This is a reasonable

assumption to make because this is often the case in practice. For example, f ≡ 0

inside the lung of a patient. There are also situations when there are several areas

where f is known (e.g. two lungs). The problem is to study the stability of inversion

for different configurations of Ie, Ii. It should be mentioned that the study of the

interior problem of tomography with a known subregion began in [4].

In [3], the authors studied the interior problem of tomography in great detail and

also address the ill-posedness of inverting certain Hilbert transforms. The context

of [3] is nearly identical to this dissertation, so we wish to summarize their results

and compare the differences. Let g ∈ N be fixed and choose real numbers ai, i =

1, 2, . . . , 2g + 2, so that ai < ai+1 for 1 ≤ i ≤ 2g + 1. Define the exterior intervals

(outside of FOV) Ie = [a1, a2] ∪ [a2g+1, a2g+2] and interior intervals (f is known on Ii)

Ii = [a3, a4] ∪ [a5, a6] ∪ · · · ∪ [a2g−1, a2g]. See Figure 1.1, right panel for the scenario
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when g = 2. The authors analyzed the SVD system

H−1
e [hn](y) := −w(y)

π

∫
Ie

hn(x)

w(x)(x− y)
dx = 2λnfn(y), y ∈ Ii

Hi[fn](x) :=
1

π

∫
Ii

fn(y)

y − x
dy = 2λnhn(x), x ∈ Ie

(1.2)

where w(x) =
√

(a2g+2 − x)(x− a1) and H−1
e is just notation. This SVD system is

important because the rate at which λn → 0 as n→∞ is related to the ill-posedness

of inverting H−1
e . They reformulate this SVD system as an eigenvalue problem for

an integral operator K̂ : L2(Ii ∪ Ie)→ L2(Ii ∪ Ie) which has kernel

K(z, x) :=
w1/2(x)w−1/2(z)χe(z)χi(x) + w1/2(z)w−1/2(x)χe(x)χi(z)

2πi(x− z)
, (1.3)

where χe, χi are indicator functions on Ie, Ii, respectively. K̂ is a self-adjoint, Hilbert-

Schmidt operator and thus has a discrete set of eigenvalues that can accumulate only

to λ = 0. Moreover, the eigenvalues of K̂ coincide with the singular values of H−1
e .

The authors define the resolvent integral operator R̂ by the formula

(
I + R̂

)(
I +

1

λ
K̂

)
= I (1.4)

and show that the kernel of R̂, using the method of A. Its et al. [14], is given by

R(x, z;λ) =
~gt(x)Γ−1(x;λ)Γ(z;λ)~f(z)

2πiλ(z − x)
(1.5)
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where

~f(z) =

 iχe(z)√
w(z)√

w(z)χi(x)

 , ~g(x) =

−i√w(x)χi(x)
χe(x)√
w(x)

 , (1.6)

and the 2× 2 matrix Γ(z;λ) is the solution to a particular Riemann-Hilbert problem

(RHP), see RHP 2.2.1 for a specific case. The large n asymptotics of the eigenvalues

and eigenfunctions of K̂ are found via Deift-Zhou steepest descent method. These

results are valid provided that the intervals Ie, Ii are separated.

This dissertation studies the scenario when Ie = [bL, 0] and Ii = [0, bR], where bL <

0 < bR. This was previously investigated in [16] and it was shown that a particular

differential operator L (see (5.1)) corresponding to these two touching intervals has

only continuous spectrum. The authors were also able to construct two isometric

transformations U1, U2 such that U2HLU
∗
1 is a multiplication operator with σ(ω),

ω ≥ (b2
L + b2

R)/8. Here ω is the spectral parameter of L and HL is the finite Hilbert

transform (FHT) mapping L2([bL, 0])→ L2([0, bR]). It was also shown that σ(ω)→ 0

as ω →∞ exponentially fast which implies that the problem of finding f is severely

ill-posed. The leading order asymptotic behavior of the kernels of U1, U2 as ω →

∞ was found asymptotically. These kernels were obtained explicitly only in the

symmetric case where bL = −bR.

In this dissertation we construct U1, U2 explicitly in the non symmetric case, i.e. bL 6=

−bR. We are able to express the kernel ofH∗LHL in terms of the matrix Γ(z;λ), which

is the solution of RHP 2.2.1. The jump of the resolvent (in the spectral variable, λ)

is computed explicitly, thus classical spectral theory (see [2], [19]) describes how to

5



construct U1 and U2. We also obtain the leading order asymptotics of Γ(z;λ) when

λ → 0. The key idea is that this Riemann-Hilbert approach can be generalized to

the scenario where there are multiple intervals with touching endpoints. Even in this

general setting, the results from the two touching interval scenario are necessary, as

we show in section 7.2. It is not known how to generalize the approach of [16], which

relies on a commuting differential operator.

This dissertation is organized as follows: in chapter 2, we introduce a self-adjoint

integral operator K̂ which acts on L2([bL, bR) and describe its relation to the FHTs

HL,HR. We then express the resolvent of K̂ in terms of Γ(z;λ), a solution to a

particular RHP and express Γ(z;λ) explicitly in terms of hypergeometric functions.

Then, in chapter 3, we find the small λ asymptotics of Γ(z;λ). In chapter 4 we

briefly summarize the spectral theorem for self-adjoint operators with simple spec-

trum then diagonalize H∗LHL and H∗RHR. In chapter 5, we obtain the results of

[16] but explicitly, instead of asymptotically. Lastly, in chapter 6, we show that the

diagonalizations obtained in chapters 4 and 5 are equivalent. We conclude with some

future directions in chapter 7. The solution of RHP 2.2.1 is constructed in Appendix

A and some auxiliary results are stated in Appendix B and C.
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CHAPTER 2: INTEGRAL OPERATOR K̂ AND RHP

Let us begin by defining the finite Hilbert transforms HL : L2([bL, 0]) → L2([0, bR])

and HR : L2([0, bR])→ L2([bL, 0]) by

HL[f ](y) :=
1

π

∫ 0

bL

f(x)

x− y
dx, HR[g](x) :=

1

π

∫ bR

0

g(y)

y − x
dy. (2.1)

Notice that the adjoint of HL is −HR.

2.1 Definition and Properties of K̂

We define the integral operator K̂ : L2([bL, bR])→ L2([bL, bR]) by the requirements

K̂
∣∣
L2([bL,0])

=
1

2i
HL, K̂

∣∣
L2([0,bR])

=
1

2i
HR. (2.2)

Explicitly,

K̂[f ](z) :=

∫ bR

bL

K(z, x)f(x) dx, where K(z, x) :=
χL(x)χR(z) + χR(x)χL(z)

2πi(x− z)

(2.3)

and χL, χR are indicator functions on [bL, 0], [0, bR], respectively.

Proposition 2.1.1. The integral operator K̂ : L2([bL, bR]) → L2([bL, bR]) is self-

adjoint and bounded, but not Hilbert-Schmidt.

7



Proof. The boundedness of K̂ follows from the boundedness of the Hilbert transform

on L2(R). We can see that K̂ is self-adjoint because K(z, x) = K(x, z). Lastly, the

operator is not Hilbert-Schmidt because

∫ bR

bL

∫ bR

bL

|K(z, x)|2 dx dz =
1

2π2

∫ bR

0

∫ 0

bL

dx dz

(x− z)2
(2.4)

is not finite.

2.2 Resolvent of K̂ and the Riemann-Hilbert Problem

The operator K̂ falls within the class of “integrable kernels” (see [14]) and it is

known that its spectral properties are intimately related to a suitable Riemann-

Hilbert problem. In particular, the kernel of the resolvent integral operator R̂ =

R̂(λ) : L2([bL, bR])→ L2([bL, bR]), defined by

(I + R̂(λ))

(
I − 1

λ
K̂

)
= I, (2.5)

can be expressed through the solution Γ(z;λ) of the following RHP.

Riemann-Hilbert Problem 2.2.1. Find a 2 × 2 matrix-function Γ(z;λ), λ ∈

8



C \ [−1/2, 1/2], analytic for z ∈ C \ [bL, bR] and satisfying

Γ(z+;λ) =Γ(z−;λ)

[
1 − i

λ

0 1

]
, z ∈ [bL, 0], (2.6)

Γ(z+;λ) =Γ(z−;λ)

[
1 0
i
λ

1

]
, z ∈ [0, bR], (2.7)

Γ(z;λ) =
[
O (1) O (log(z − bL))

]
, z → bL, (2.8)

Γ(z;λ) =
[
O (log(z − bR)) O (1)

]
, z → bR, (2.9)

Γ(z;λ) ∈L2([bL, bR]), (2.10)

Γ(z;λ) =I + O
(
z−1
)
, z →∞. (2.11)

The endpoint behavior of Γ(z;λ) is described column-wise and the intervals (bL, 0)

and (0, bR) are positively oriented.

Introduce function

a(λ) =
1

iπ
ln

(
i+
√

4λ2 − 1

2λ

)
, (2.12)

where the standard branch of the logarithm is taken. All relevant properties of

a(λ) are mentioned in Appendix B and we will often write a in place of a(λ) for

convenience. We are able to construct the solution of RHP 2.2.1 in terms of the

9



hypergeometric functions

h∞(z) := eaπiz−a2F1

(
a, a+ 1

2a+ 2

∣∣∣∣ 1

z

)
=⇒ h′∞(z) = −aeaπiz−a−1

2F1

(
a+ 1, a+ 1

2a+ 2

∣∣∣∣ 1

z

)
,

(2.13)

s∞(z) := −z
a+1

eaπi
2F1

(
−a− 1,−a
−2a

∣∣∣∣ 1

z

)
=⇒ s′∞(z) =

a+ 1

−eaπi
za2F1

(
−a,−a
−2a

∣∣∣∣ 1

z

)
,

(2.14)

where h∞, s∞ are linearly independent solutions of the ODE

z(1− z)w′′(z) + a(λ)(a(λ) + 1)w(z) = 0. (2.15)

Recall that the standard Pauli matrices are

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
. (2.16)

Theorem 2.2.2. For λ ∈ C \ [−1/2, 1/2], the unique solution to RHP 2.2.1 is

Γ(z;λ) = σ2Q
−1(λ)Γ̂−1 (M1(∞))

[
1 bLbR

z(bR−bL)(a+1)

0 1

]
Γ̂ (M1(z))Q(λ)σ2, (2.17)

where M1(z) = bR(z−bL)
z(bR−bL)

and

Q =

[
− tan(aπ) 0

0 42a+1eaπi Γ(a+3/2)Γ(a+1/2)
Γ(a)Γ(a+2)

][
1 eaπi

−eaπi 1

]
, Γ̂(z) =

[
h∞ (z) s∞ (z)

h′∞ (z) s′∞ (z)

]
.

(2.18)

10



Here a := a(λ) which is defined in (2.12) and h∞, s∞ are defined in (2.13),(2.14).

Proof. The matrix Γ(z;λ) was constructed in Appendix A. We will show that this

solution is unique. Assume that Γ1,Γ2, Γ1 6= Γ2 are two solutions of RHP 2.2.1.

Notice that any solution of RHP 2.2.1 has determinant 1, thus Γ1,Γ2 are invertible.

It can now be verified that the matrix Γ−1
2 Γ1 has no jump on [bL, bR], no pole at

z = bL, 0, bR, is analytic in C and tends to identity when z → ∞. By Liouville’s

Theorem, Γ−1
2 Γ1 = I.

Remark 2.2.3. For any λ ∈ C\ [−1/2, 1/2], the function Γ(z;λ) has the symmetries

Γ(z;λ) = Γ(z;λ), σ3Γ(z;−λ)σ3 = Γ(z;λ) (2.19)

which both follow from the observation that σ3Γ(z;−λ)σ3 and Γ(z;λ) also solve RHP

2.2.1.

We now show the relation between K̂ and Γ(z;λ).

Theorem 2.2.4. With the resolvent operator R̂ defined by (2.5), let the kernel of R̂

be denoted by R. Then,

R(z, x;λ) =
~gt1(x)Γ−1(x;λ)Γ(z;λ)~f1(z)

2πiλ(z − x)
where ~f1(z) =

[
iχL(z)

χR(z)

]
, ~g1(x) =

[
−iχR(x)

χL(x)

]
.

(2.20)

The matrix Γ(z;λ) is defined in (2.17) and functions χL, χR are indicator functions

on [bL, 0], [0, bR], respectively.
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The proof is the same as in [3] (Lemma 3.16) so it will be omitted here. An important

ingredient of the proof is the observation that the jump of Γ(z;λ) can be compactly

written as

Γ(z+;λ) = Γ(z−;λ)

(
I − 1

λ
~f1(z)~gt1(z)

)
(2.21)

for z ∈ [bL, bR].
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CHAPTER 3: SMALL λ ASYMPTOTICS OF Γ(z;λ)

In this section we only consider the symmetric scenario when bR = −bL = 1. The

main result of this section is Theorem 3.3.14, which describes the small λ asymptotics

of Γ(z;λ) in various regions of the z−plane. This result follows from the application

of the so-called Deift-Zhou steepest descent method, pioneered by Deift and Zhou in

[6]. During this process, it will be necessary to find the small λ asymptotics of Γ(z;λ)

when z is a small, but fixed, distance from the origin. We address this obstacle by

stating and proving a particular (linear) uniform steepest descent method and then

applying it to the hypergeometric functions that appear in Γ(z;λ).

3.1 A particular uniform steepest descent method

We can see in (2.17) that the hypergeometric functions that are present in Γ(z;λ)

are evaluated at z+1
2z

, thus for convenience we introduce

η =
z + 1

2z
. (3.1)

Recall the definition of h∞(η) (see (2.13)) and apply 15.3.1 of [1] to obtain

h∞(η) := eaπiη−a2F1

(
a, a+ 1

2a+ 2

∣∣∣∣ 1

η

)
= eaπiη−a

Γ(2a+ 2)

Γ(a+ 1)2

∫ 1

0

(
t(1− t)
1− t/η

)a
dt. (3.2)

13



See Appendix B for the definition and properties of the function a(λ). For now we

only consider =λ ≥ 0 and it will be seen towards the end of this subsection that the

results are similar when =λ ≤ 0, see Remark 3.1.10. From Proposition B.0.1, we see

that =[a]→ −∞ as λ→ 0 with =λ ≥ 0. With that in mind, define function

Sη(t) = S (t, η) := −i ln

(
t(1− t)
1− t

η

)
(3.3)

where the branch cuts of Sη(t) in t variable are chosen to be (−∞, 0), (1,∞), and

the ray from t = η to t =∞ with angle arg η. Thus, we have

∫ 1

0

(
t(1− t)
1− t

η

)a(λ)

dt =

∫ 1

0

ei<[a(λ)]Sη(t)e−=[a(λ)]Sη(t) dt, (3.4)

so we can find the small λ asymptotics of this integral in a similar manner to the steep-

est descent method. Since we have four hypergeometric functions (see (2.13),(2.14)),

we consider a slightly more general integrand. Define sets

Ω :=

{
η =

z + 1

2z
: M ≤ η ≤ 2M

}
, (3.5)

Ω+ :=

{
η =

z + 1

2z
: M ≤ η ≤ 2M, 0 ≤ arg(η) ≤ π

}
, (3.6)

where M is a large, positive, fixed number that is to be determined, see Remark

3.1.11. Notice that the set of all z such that z+1
2z
∈ Ω is a small annulus about the

origin. The goal of this subsection is to prove the following theorem.

Theorem 3.1.1. Let ε > 0 be small, fixed and suppose F (t, η, λ) satisfies the follow-

14



ing properties:

1. For every (η, λ) ∈ Ω+ ×B(0, ε), F (t, η, λ) is analytic in t for t ∈ B(1/2, 1/2),

2. For every t ∈ B(1/2, 1/2), F (t, η, λ) is continuous in (η, λ) for (η, λ) ∈ Ω+ ×

B(0, ε),

3. For every (η, λ) ∈ Ω+ ×B(0, ε), F (t, η, λ) = O (tc0) as t→ 0, where c0 > −1,

4. For every (η, λ) ∈ Ω+ × B(0, ε), F (t, η, λ) = O ((1− t)c1) as t → 1, where

c1 > −1,

5. For every (η, λ) ∈ Ω+ ×B(0, ε), |F (t∗−(η), η, λ)| > 0.

Then as λ→ 0, provided that either =λ ≥ 0 or =λ ≤ 0,

∫ 1

0

F (t, η, λ)e−=[a(λ)]Sη(t)dt

= e−=[a(λ)]Sη(t∗−(η))F
(
t∗−(η), η, λ

)√ 2π

=[a(λ)]S ′′η (t∗−(η))

[
1 + O

(
1

=[a(λ)]

)]
, (3.7)

where Sη(t), a(λ),Ω+ are defined in (3.3), (2.12), (3.6), respectively. This approxi-

mation is uniform for η ∈ Ω+.

The idea of the proof is as follows: we deform the contour of integration in (3.7) from

[0, 1] to a path we call γη, which passes through a relevant saddle point of Sη(t). We

then show that the leading order contribution in Theorem 3.1.1 comes from a small

neighborhood in the t plane centered at this previously mentioned saddle point of

Sη(t) and the contribution outside of this neighborhood is of lower order.
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3.1.1 Deformation of [0, 1] to γη

We begin by locating the saddle points of Sη(t).

Proposition 3.1.2. For η ∈ Ω+, the function Sη(t) has exactly two simple saddle

points t∗±(η) defined by S ′η(t
∗
±(η)) = 0. Explicitly,

t∗+(η) = η +
√
η2 − η = 2η + O (1) as η →∞, (3.8)

t∗−(η) = η −
√
η2 − η =

1

2
+ O

(
η−1
)

as η →∞, (3.9)

where the branch for t∗±(η) is [0, 1]. Moreover,

Sη(t
∗
±(η)) = −2i ln

(
t∗±(η)

)
and S ′′η (t∗−(η)) =

2i

t∗−(η) (1− t∗−(η))
. (3.10)

See (3.6), (3.3) for the definitions of Ω+, Sη(t), respectively.

The proof is a simple exercise. For any η ∈ Ω+, we want the path γη to have the

property

<
[
Sη(t)− Sη(t∗−(η))

]
≤ 0 (3.11)

for all t ∈ γη with equality only when t = t∗−(η), so the understanding of the level

curve

<
[
Sη(t)− Sη(t∗−(η))

]
= 0 (3.12)

is paramount.

Lemma 3.1.3. For each η ∈ Ω+ we have the following:
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1. There is exactly one curve l0 emitted from t = 0 so that <
[
Sη(t)− Sη(t∗−(η))

]
=

0 for all t ∈ l0. Moreover, when |t| is sufficiently small, l0 lies in the sector

| arg(t)| ≤ π/4.

2. There is exactly one curve l1 emitted from t = 1 so that <
[
Sη(t)− Sη(t∗−(η))

]
=

0 for all t ∈ l1. Moreover, when |1− t| is sufficiently small, l1 lies in the sector

| arg(1− t)| ≤ π/4.

3. There exists exactly one θ = θu,η ∈ (0, π) such that <
[
Sη(1/2 + 1/2eiθu,η)− Sη(t∗−(η))

]
=

0. Moreover, for M sufficiently large, θu,η ∈ (π/4, 3π/4).

4. There exists exactly one θ = θl,η ∈ (−π, 0) such that <
[
Sη(1/2 + 1/2eiθl,η)− Sη(t∗−(η))

]
=

0. Moreover, for M sufficiently large, θl,η ∈ (−3π/4,−π/4).

See (3.6) for Ω+,M and (3.3) for Sη(t).

Figure 3.1 is a visualization of Lemma 3.1.3. The blue lines are the branch cuts of

Sη(t), the red curves is the level set <
[
Sη(t)− Sη(t∗−(η))

]
= 0 and the black dashed

circle has center and radius 1/2. The + denotes regions where <
[
Sη(t)− Sη(t∗−(η))

]
>

0 and − denotes regions where <
[
Sη(t)− Sη(t∗−(η))

]
< 0.

Proof. For brevity, define

αη(t) := <
[
Sη(t)− Sη(t∗−(η))

]
= arg

(
ηt(1− t)
η − t

)
− 2 arg

(
t∗−(η)

)
. (3.13)

The statements listed above are equivalent to
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t∗−(η)

1
+
− +

−

Figure 3.1: A visualization of Lemma 3.1.3.

1. For any r > 0 sufficiently small, αη(re
iθ) is increasing for −π < θ < π and

∃!θ0,η,r ∈ (−π/4, π/4) such that αη(re
iθ0,η,r) = 0,

2. For any r > 0 sufficiently small, αη(1− reiθ) is increasing for −π < θ < π and

∃!θ1,η,r ∈ (−π/4, π/4) such that αη(1− reiθ1,η,r) = 0,

3. αη
(

1
2

+ 1
2
eiθ
)

is increasing for 0 < θ < π and ∃!θu,η ∈ (π/4, 3π/4) such that

αη
(

1
2

+ 1
2
eiθu,η

)
= 0,

4. αη
(

1
2

+ 1
2
eiθ
)

is increasing for −π < θ < 0 and ∃!θl,η ∈ (−3π/4,−π/4) such

that αη
(

1
2

+ 1
2
eiθl,η

)
= 0.
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The proofs of each of the four claims above are similar so we prove the first.

αη(re
iθ) = arg(reiθ) + arg(1− reiθ)− arg(η − reiθ) + arg(η)− 2 arg

(
t∗−(η)

)
(3.14)

≡ θ + tan−1

(
r sin θ

r cos θ − 1

)
− tan−1

(
r sin θ −=η
r cos θ −<η

)
+ arg(η)− 2 arg

(
t∗−(η)

)
(mod π) (3.15)

Differentiating with respect to θ, we have

d

dθ

[
αη(re

iθ)
]

= 1 +
r2 − r cos θ

(r cos θ − 1)2 + r2 sin2 θ
− r2 − r(<(η) cos θ + =(η) sin θ)

(r cos θ −<η)2 + (r sin θ −=η)2
→ 1

(3.16)

as r → 0. So with r small enough, d
dθ

[
αη(re

iθ)
]
> 0 for any θ and for any η ∈ Ω+.

Take M sufficiently large so that

| arg
(
t∗−(η)

)
| < π/8 (3.17)

for all η ∈ Ω+. Thus when r is sufficiently small,

αη(re
iπ/4) =

π

4
+ tan−1

(
r/
√

2

r/
√

2− 1

)
− arg

(
1− reiπ/4

η

)
− 2 arg

(
t∗−(η)

)
> 0

(3.18)

and similarly it can be shown that αη(re
−iπ/4) < 0. Intermediate Value Theorem

can now be applied to show ∃!θ0,η,r ∈ (−π/4, π/4) such that αη(re
iθ0,η,r) = 0.
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−
−
+

0 t∗−(η)

1

Figure 3.2: The path γη (black).

Remark 3.1.4. According to Lemma 3.1.3, for every η ∈ Ω+, the set t ∈ B(1/2, 1/2)

is split into 4 sectors by the level curve <
[
Sη(t)− Sη(t∗−(η))

]
= 0, see Figure 3.1.

We have now proven that we can deform [0, 1] to an ‘appropriate’ path γη, as de-

scribed in the following Theorem.

Theorem 3.1.5. For each η ∈ Ω+, the path [0, 1] can be continuously deformed to a

path γη which begins at t = 0 (with arg(t) < −π/4 for small |t|), passes through t =

t∗−(η), ends at t = 1 (with arg(t−1) > 3π/4 for small |t−1|), and γη ⊂ B(1/2, 1/2).

Moreover, <
[
Sη(t)− Sη(t∗−(η))

]
≤ 0 for all t ∈ γη with equality only when t = t∗−(η).

See (3.6), (3.3) for Ω+, Sη(t), respectively.

The new path of integration, γη, is the black curve in Figure 3.2.
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3.1.2 Estimates

Here we will split γη into 3 pieces (see Figure 3.3) and show that the leading order

contribution in Theorem 3.1.1 comes from the piece containing t∗−(η). Define radius

r := rM = max
η∈Ω+

∣∣∣∣12 − t∗−(η)

∣∣∣∣ (3.19)

so we have that t∗−(η) ∈ B(1/2, r) for all η ∈ Ω+ where Ω+ is defined in (3.6). Also

define function

vη(t) := v (t, η) =
√
Sη(t∗−(η))− Sη(t) (3.20)

where Sη(t) was defined in (3.3) and the square root is defined so that

vη(t) =
(
t− t∗−(η)

)√
−1

2
S ′′η (t∗−(η)) + O (t− t∗−(η)) as t→ t∗−(η). (3.21)

The function vη(t) will be an essential change of variables in the integral (3.7) so we

mention its important properties.

Lemma 3.1.6. The function vη(t), defined in (3.20), has the following properties:

1. For every η ∈ Ω+, v′η(t
∗
−(η)) =

√
−1

2
S ′′η (t∗−(η)) and 2 ≤

∣∣S ′′η (t∗−(η))
∣∣ ≤ 32, (here

′ denotes differentiation with respect to t)

2. For every η ∈ Ω+, vη(t) is biholomorphic for t ∈ B(1/2, 2r),

3. For every η ∈ Ω+ and any t1, t2 ∈ B(1/2, 2r), vη(t) satisfies the bi-Lipschitz
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condition

2

9
|t1 − t2| ≤ |vη(t1)− vη(t2)| ≤ 9

2
|t1 − t2| , (3.22)

4. Let Iη be the image of B(1/2, 2r) under the map vη(t). Then there exists a

δ∗ > 0 such that B(0, δ∗) ⊂
⋂
η∈Ω+

Iη.

See (3.6), (3.3), (3.19) for Ω+, Sη(t), r, respectively.

Both the statement and proof of item 4 are based on Lemma 2.2 in [17].

Proof. 1. The evaluation of v′η(t) when t = t∗−(η) is a simple calculation. From

Proposition 3.1.2 we have that

S ′′η (t∗−(η)) =
2i

t∗−(η)(1− t∗−(η))
(3.23)

and

32 ≥
∣∣∣∣ 2i

t∗−(η)(1− t∗−(η))

∣∣∣∣ ≥ 2 (3.24)

because M can be made sufficiently large so that

1/4 ≤ |t∗−(η)| ≤ 1 and 1/4 ≤ |1− t∗−(η)| ≤ 1 (3.25)

for all η ∈ Ω+.

2. For any fixed η ∈ Ω+, the number min
{
|t∗−(η)|, |t∗−(η)− 1|

}
is the distance
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from t = t∗−(η) to the nearest singularity of vη(t). Define d as

d := dM =
1

2
min
η∈Ω+

min
{
|t∗−(η)|, |t∗−(η)− 1|

}
. (3.26)

Notice that dM → 1/4 as M →∞. Thus, vη(t) is analytic in B(1/2, d) for all

η ∈ Ω+ and we can write

vη(t) =
∞∑
n=1

cn(η)
(
t− t∗−(η)

)n
, (3.27)

where

c1(η) =

√
−1

2
S ′′η (t∗−(η)), |cn(η)| ≤ N

dn
with N := NM = max

η∈Ω+

max
t∈∂B(1/2,dM )

|vη(t)|,

(3.28)

by use of Cauchy’s estimate. Notice that NM tends to a finite, non-zero con-

stant as M →∞. Choose M sufficiently large so that

rM ≤
dM
3

(
1−

√
2NM

2NM + dM

)
. (3.29)

Notice that this implies that rM < dM
3

. Now to show that vη(t) is one-to-one
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in B(1/2, 2r), let t1, t2 ∈ B(1/2, 2r).

∣∣∣∣vη(t1)− vη(t2)

t1 − t2

∣∣∣∣ =

∣∣∣∣∣
∑∞

n=1 cn(η)
[
(t1 − t∗−(η))n − (t2 − t∗−(η))n

]
t1 − t2

∣∣∣∣∣
=

∣∣∣∣∣c1(η) +
∞∑
n=2

cn(η)
n−1∑
j=0

(t1 − t∗−(η))j(t2 − t∗−(η))n−1−j

∣∣∣∣∣
≥ |c1(η)| −

∣∣∣∣∣
∞∑
n=2

n−1∑
j=0

cn(η)(t1 − t∗−(η))j(t2 − t∗−(η))n−1−j

∣∣∣∣∣
≥ 1−

∞∑
n=2

n−1∑
j=0

N

dn
(3r)n−1

= 1− N

d

[
−1 +

∞∑
n=1

n

(
3r

d

)n−1
]

= 1− N

d

[
d2

(d− 3r)2
− 1

]
≥ 1

2

where in the last inequality we have used (3.29). So we have shown that vη(t)

is one-to-one and v′η(t) 6= 0 (since |v′η(t)| ≥ 1/2 ) for t ∈ B(1/2, 2r).

3. We have immediately from part 2 that 2
9
|t1 − t2| ≤ |vη(t1)− vη(t2)|. We can

show |vη(t1)− vη(t2)| ≤ 9
2
|t1 − t2| in a similar fashion to part 2.

4. Lastly, notice that 0 ∈
⋂
η∈Ω+

Iη since t∗−(η) ∈ B(1/2, 2r) for every η ∈ Ω+ and

vη(t
∗
−(η)) = 0. We show that 0 is an interior point of

⋂
η∈Ω+

Iη so via contra-

diction, assume 0 is not an interior point. Then we can find a sequence {wn}

such that wn /∈
⋂
η∈Ω+

Iη and wn → 0. Also we can find a sequence {ηn} so

that wn 6∈ Iηn . Let w̃n be the point on the line connecting 0 and wn so that
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w̃n ∈ ∂Iηn . Since wn → 0, w̃n → 0 as well. Since w̃n ∈ ∂Iηn , there exists

tn ∈ ∂B(1/2, 2r) so that vηn(tn) = w̃n. For any n ∈ N,

|w̃n| =
∣∣vηn(tn)− vηn(t∗−(ηn))

∣∣ (3.30)

≥ 1

2

∣∣tn − t∗−(ηn)
∣∣ (3.31)

≥ 1

2

(∣∣∣∣tn − 1

2

∣∣∣∣− ∣∣∣∣t∗−(ηn)− 1

2

∣∣∣∣) (3.32)

≥ 1

2
(2r − r) =

r

2
(3.33)

which contradicts our observation that w̃n → 0, thus 0 is an interior point.

Therefore, there exists a δ∗ > 0 so that B(0, δ∗) ⊂
⋂
η∈Ω+

Iη.

Let δ > 0 be fixed so that δ∗ > δ and define

t∗L(η) := v−1
η (−δ), t∗R(η) := v−1

η (δ). (3.34)

With the previous Lemma in mind, we now write γη = γL,η + γC,η + γR,η, where γC,η

is the image of [−δ, δ] under the map v−1
η , γL,η is the portion of γ beginning at t = 0

and ending at t = t∗L(η), and γL,η is the portion of γ beginning at t = t∗R(η) and

ending at t = 1. The curves γL,η, γC,η, γR,η are pictured in Figure 3.3.

Remark 3.1.7. Notice that

∣∣t∗−(η)− t∗R(η)
∣∣ =

∣∣v−1
η (0)− v−1

η (δ)
∣∣ ≥ 2

9
|δ − 0| > 0 (3.35)
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t∗R(η)

t∗L(η)

Figure 3.3: γη = γL,η + γC,η + γR,η

for all η ∈ Ω+ by use of (3.22). An identical statement holds for t∗L(η).

Lemma 3.1.8. Assume F (t, η, λ) satisfies the hypothesis of Theorem 3.1.1. Then

as λ→ 0, provided =λ ≥ 0,

∫
γC,η

F (t, η, λ)e−=[a(λ)]Sη(t)dt

= e−=[a(λ)]Sη(t∗−(η))F
(
t∗−(η), η, λ

)√ 2π

=[a(λ)]S ′′η (t∗−(η))

[
1 + O

(
1

=[a(λ)]

)]
, (3.36)

where a(λ), Sη(t) are defined in (2.12), (3.3), respectively. This approximation is

uniform for η ∈ Ω+.

Proof. Recall that γC,η is the image of [−δ, δ] under the map v−1
η , where vη is defined

in (3.20). In other words, γC,η is the path of steepest descent for Sη(t) − Sη(t∗−(η))

and thus =[Sη(t)−Sη(t∗−(η))] = 0 and <[Sη(t)−Sη(t∗−(η))] ≤ 0 on γC,η with equality
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only when t = t∗−(η). Using change of variables

v = vη(t) =
√
Sη(t∗−(η))− Sη(t), (3.37)

we see that the new bounds of integration are

v|t=t∗L(η) = vη(t
∗
L(η)) = −δ, v|t=t∗R(η) = vη(t

∗
R(η)) = δ (3.38)

and

dt =
−2vη(t)

S ′η(t)
dv =: fη(v)dv. (3.39)

So we have

∫
γC,η

F (t, η, λ)e−=[a]Sη(t)dt = e−=[a]Sη(t∗−)

∫
γC,η

F (t, η, λ)e−=[a][Sη(t)−Sη(t∗−)]dt (3.40)

= e−=[a]Sη(t∗−)

∫ δ

0

e=[a]v2F (t(v), η, λ) [fη(v) + fη(−v)] dv

(3.41)

because t is an even function of v. Since vη(t) is biholomorphic in B(1/2, 2r) for

every η ∈ Ω+, both fη(v) = dt
dv

and F (t(v), η, λ) are analytic for v ∈ B(0, δ∗) by

Lemma 3.1.6. So we have

F (t(v), η, λ) [fη(v) + fη(−v)] =
∞∑
n=0

b2n(η,<[a])v2n =: b0(η, λ) + v2R2(v, η, λ) (3.42)
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where

b0(η, λ) = 2F (t∗−(η), η, λ)

√
2

−S ′′η (t∗−(η))
, (3.43)

b2n(η, λ) =
1

2πi

∫
|w|=δ

F (t(w), η, λ) [fη(w) + fη(−w)]

w2n+1
dw (3.44)

for n ≥ 1, where δ < δ∗. Define

K = max
η∈Ω+

max
v∈∂B(0,δ∗)

|F (t(v), η, λ)fη(v)| (3.45)

and notice that K is finite since both F, f are analytic in B(1/2, 2r) and the preimage

of B(0, δ∗) is a subset of B(1/2, 2r) for all (η, λ) ∈ Ω+×B(0, ε). By Cauchy’s estimate

we now have

|b2n(η, λ)| ≤ 2K

δ2n
∗

(3.46)

and also for v ∈ [0, δ],

|R2(v, η, λ)| =

∣∣∣∣∣
∞∑
n=1

b2n(η, λ)v2(n−1)

∣∣∣∣∣ ≤ 2K

δ2
∗

∞∑
n=1

(
δ

δ∗

)2(n−1)

≤ 2K

δ2
∗ − δ2

=: R. (3.47)

Returning to (3.41), using a second change of variable −τ = =[a]v2, we have

e−=[a]Sη(t∗−)

∫ δ

0

e=[a]v2F (t(v), η, λ) [fη(v) + fη(−v)] dv (3.48)

= e−=[a]Sη(t∗−)

∫ δ

0

e=[a]v2
[
b0(η, λ) + v2R2(v, η, λ)

]
dv (3.49)

=
e−=[a]Sη(t∗−)

2
√
−=[a]

∫ −=[a]δ2

0

e−τ
[
b0(η, λ)√

τ
−
√
τ

=[a]
R2

(
t

(√
−τ
=[a]

)
, η, λ

)]
dτ (3.50)
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Using the definition and asymptotics of the Incomplete Gamma function (see [7]

8.2.2, 8.2.11), we have

∫ −=[a]δ2

0

e−ττ 1/2−1dτ = Γ(1/2)−Γ(1/2,−=[a]δ2) =
√
π+O

(√
−=[a]e=[a]δ2

)
(3.51)

and

∣∣∣∣∣
∫ −=[a]δ2

0

e−ττ 3/2−1R2

(
t

(√
−τ
=[a]

)
, η, λ

)
dτ

∣∣∣∣∣ (3.52)

≤ R

∫ −=[a]δ2

0

e−ττ 3/2−1dτ (3.53)

= R · Γ(3/2) + O
(

(−=[a])3/2 e=[a]δ2
)

(3.54)

with the error term being uniform with respect to η, λ. Now we have

∫
γC,η

F (t, η, λ)e−=[a(λ)]Sη(t)dt =
e−=[a]Sη(t∗−)

2
√
−=[a]

[
b0(η, λ)

√
π + O

(
1

=[a]

)]
, (3.55)

which is equivalent to the statement of the Lemma since b0(η, λ) is uniformly bounded

away from 0, due to the assumptions on F (t∗−(η), η, λ).

Next we show that the contribution away from the saddle point is negligible.

Lemma 3.1.9. Assume F (t, η, λ) satisfies the hypothesis of Theorem 3.1.1. Then,

29



as λ→ 0 with =λ ≥ 0, we have the bound

∣∣∣∣∣
∫
γL+R,η

F (t, η, λ)e−=[a(λ)]Sη(t) dt

∣∣∣∣∣ ≤ e−=[a(λ)]<[Sη(t∗−(η))] · e−=[a(λ)]c∗KL+R, (3.56)

where Sη(t) is defined in (3.3) and constants c∗, KL+R are η, λ independent, finite,

and c∗ < 0.

Proof. The constant c∗ is defined as

c∗ = max
η∈Ω+

max
t∈γL+R,η

<
[
Sη(t)− Sη(t∗−(η))

]
. (3.57)

For any fixed η ∈ Ω+, max
t∈γL+R,η

<
[
Sη(t)− Sη(t∗−(η))

]
< 0 because this was how the

path γL+R,η was constructed. Since Ω+ is a compact set, c∗ < 0. Now to prove the

inequality,

∣∣∣∣∣
∫
γL+R,η

F (t, η, λ)e−=[a(λ)]Sη(t) dt

∣∣∣∣∣ (3.58)

≤ e−=[a(λ)]<[Sη(t∗−(η))]

∫
γL+R,η

|F (t, η, λ)| e−=[a(λ)]<[Sη(t)−Sη(t∗−(η))] dt (3.59)

≤ e−=[a(λ)]<[Sη(t∗−(η))]e−=[a(λ)]c∗

∫
γL+R,η

|F (t, η, λ)| dt (3.60)

≤ e−=[a(λ)]<[Sη(t∗−(η))] · e−=[a(λ)]c∗KL+R (3.61)

where

KL+R := max
η∈Ω+

max
λ∈B(0,ε)

∫
γL+R,η

|F (t, η, λ)| dt. (3.62)

This constant is finite since for every (η, λ) ∈ Ω+ × B(0, ε), F (t, η, λ) is analytic for
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t ∈ B(1/2, 1/2), has L1 behavior at endpoints t = 0, 1, and γL+R,η has finite arc

length.

The combination of Lemmas 3.1.8 and 3.1.9 proves Theorem 3.1.1 provided that λ

is in the upper half plane.

Remark 3.1.10. When λ → 0 in the lower half plane, the key difference is that

=[a(λ)] → ∞ (see Proposition B.0.1). With that in mind, rewrite the integrand of

(3.7) as

F (t, η, λ)e−=[a(λ)]Sη(t) = F (t, η, λ)e=[a(λ)][−Sη(t)]. (3.63)

We can replace S with −S and carry out the same analysis as before. The only

difference will be that the regions in the t plane where <[Sη(t)− Sη(t∗−(η))] < 0 and

<[Sη(t) − Sη(t
∗
−(η))] > 0 will swap, so we deform [0, 1] to a different contour, see

Figure 3.4. All previous ideas from this section can now be applied using the new

contour γ.

Remark 3.1.11. Throughout this subsection we have placed a number of restrictions

on the constant M , which is used to describe the region Ω,Ω+, see (3.5), (3.6). We

fix M <∞ so that (3.17), (3.25), (3.29), and Lemma 3.1.3 are satisfied.
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−
+

+

−
0

t∗−(η) 1

t∗R(η)

t∗L(η)

Figure 3.4: Path of integration when λ is in the lower half plane.

3.2 Small λ asymptotics of Γ(z;λ) for z ∈ Ω̃

Using our steepest descent method (Theorem 3.1.1), we can now calculate the leading

order asymptotics of Γ(z;λ). We will calculate the leading order behavior of each

factor of Γ(z;λ) (see (2.17)) and state the small λ leading order behavior of Γ(z;λ)

for z+1
2z
∈ Ω, see (3.5) for Ω. Define sets

Ω̃ :=

{
z :

z + 1

2z
∈ Ω

}
, (3.64)

Ω̃+ :=

{
z :

z + 1

2z
∈ Ω+

}
, (3.65)

where Ω,Ω+ are defined in (3.5), (3.6). Notice that Ω̃ is a small annulus about the

origin. We begin with applying Theorem 3.1.1 to the hypergeometric functions which

are present in Γ(z;λ). We will frequently use the change of variables

κ = − lnλ. (3.66)
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Corollary 3.2.1. As λ = e−κ → 0, provided that either =λ ≥ 0 or =λ ≤ 0,

h∞

(
z + 1

2z

)
= i4a

√
2z(1− z2)1/4

1 +
√

1− z2
e∓κg(z)±

κ
2

(
1 + O

(
κ−1

))
, (3.67)

h′∞

(
z + 1

2z

)
= i4a

√
2z(1− z2)1/4

1 +
√

1− z2
e∓κg(z)±

κ
2
∓2zκ

iπ
√

1− z2

(
1 + O

(
κ−1

))
, (3.68)

s∞

(
z + 1

2z

)
= i4−a

1 +
√

1− z2

√
2z

(1− z2)1/4

2z
e±κg(z)∓

κ
2

(
1 + O

(
κ−1

))
, (3.69)

s′∞

(
z + 1

2z

)
= i4−a

1 +
√

1− z2

√
2z

(1− z2)1/4

2z
e±κg(z)∓

κ
2
±2zκ

iπ
√

1− z2

(
1 + O

(
κ−1

))
,

(3.70)

where a := a(λ), see (2.12), sgn(=κ) = ∓1 and each approximation is uniform for

z ∈ Ω̃+. The functions h∞, h
′
∞ and s∞, s

′
∞ are defined in (2.13),(2.14), respectively.

See (3.65), (3.106) for Ω̃+, g(z), respectively. The functions
√

1− z2 and (1− z2)1/4

have a branch cuts on [−1, 1] and (−∞, 1), respectively.

Proof. The result is a consequence of Theorem 3.1.1 with particular selections of the

function F (t, η, λ) and the following calculations. Using the integral representation

of hypergeometric functions in [1] 15.3.1, we see that

h∞(η) = eaπiη−a2F1

(
a, a+ 1

2a+ 2

∣∣∣∣ 1

η

)
(3.71)

= eaπiη−a
Γ(2a+ 2)

Γ(a+ 1)2

∫ 1

0

(
t(1− t)
1− t/η

)a
dt (3.72)

= eaπiη−a
Γ(2a+ 2)

Γ(a+ 1)2

√
π

a(λ)

(
1− 1

η

)1/4(
1 +

√
1− 1

η

)−1−2a(λ) [
1 + O

(
1

a(λ)

)]
,

(3.73)
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where we have used Theorem 3.1.1 with F (t, η, λ) = ei<[a(λ)]Sη(t). Taking η = z+1
2z

,

we have

h∞

(
z + 1

2z

)
=
eaπiΓ(2a+ 2)

Γ(a+ 1)2

√
π

a

(
1− z
1 + z

) 1
4
(

2z

z + 1

)a(
1 +

√
1− z
1 + z

)−1−2a [
1 + O

(
1

a

)]
.

(3.74)

We calculate that

(
z + 1

2z

)−a(
1 +

√
1− z
1 + z

)−2a

= exp

[
−aπig(z)− aπi

2

]
(3.75)

=

√
z(1 + z)√

2(1 +
√

1− z2)
e−κg(z)−κ/2

(
1 + O

(
λ2
))

(3.76)

as λ→ 0 with =λ ≥ 0 and z ∈ Ω̃+, where we have used Proposition B.0.1 and g(z)

is defined in (3.106). From [7] 5.5.5 and 5.11.13, we have

Γ(2a+ 2)

Γ(a+ 1)2
=

4a+1/2

√
π
·

Γ
(
a+ 3

2

)
Γ(a+ 1)

= 4a+1/2

√
a

π

(
1 + O

(
1

a

))
. (3.77)

Combining the previous two equations gives the result for h∞
(
z+1
2z

)
when =λ ≥ 0.

The approximation when =λ ≤ 0 can be found in an similar manner. Now for

h′∞(η) (see (2.13) for definition), we use [1] 15.3.1 to obtain the following integral

representation.

h′∞(η) = −eaπi aΓ(2a+ 2)

ηa+1Γ(a+ 1)2

∫ 1

0

1

1− t/η

(
t(1− t)
1− t/η

)a
dt (3.78)

= −2aeaπi4aη−a−1

(
1− 1

η

)−1/4(
1 +

√
1− 1

η

)−1−2a(λ){
1 + O

(
1

a

)}
(3.79)
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We have used Theorem 3.1.1 with F (t, η, λ) = ei<[a(λ)]Sη(t)

1−t/η . Notice that h∞(η)
∣∣
a→−a−1

= s∞(η).

The functions s∞(η), s′∞(η), as written, only have the integral representation [1]

15.3.1 for −1/2 ≤ <[a(λ)] < 0. To remedy this, use [7] 15.5.19 with z → 1/η,

a→ −a, b→ −a− 1, and c→ −2a to obtain

a(a− 1)

η

(
1− 1

η

)
2F1

(
−a+ 2,−a+ 1

−2a+ 2

∣∣∣∣ 1

η

)
+ 2a(2a− 1)

(
1− 1

η

)
2F1

(
−a+ 1,−a
−2a+ 1

∣∣∣∣ 1

η

)
= 2a(2a− 1)2F1

(
−a,−a− 1

−2a

∣∣∣∣ 1

η

)
. (3.80)

Now with z → 1/η, a→ −a+ 1, b→ −a, and c→ −2a+ 1, we have

a(a− 2)

η

(
1− 1

η

)
2F1

(
−a+ 3,−a+ 2

−2a+ 3

∣∣∣∣ 1

η

)
+ 2(1− a)

(
1− 2a+

2(a− 1)

η

)
2F1

(
−a+ 2,−a+ 1

−2a+ 2

∣∣∣∣ 1

η

)
= 2(1− a)(1− 2a)2F1

(
−a+ 1,−a
−2a+ 1

∣∣∣∣ 1

η

)
. (3.81)

Combining the two previous equations, we see that

2F1

(
−a,−a− 1

−2a

∣∣∣∣ 1

η

)
=

a(a− 2)

2η(a− 1)(2a− 1)

(
1− 1

η

)2

2F1

(
−a+ 3,−a+ 2

−2a+ 3

∣∣∣∣ 1

η

)
+ a

(
1− 1

η

)[
2(2a− 1) +

3(1− a)

η

]
2F1

(
−a+ 2,−a+ 1

−2a+ 2

∣∣∣∣ 1

η

)
.

(3.82)

The perk of this equation is that the right hand side has an integral representation for
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−1/2 ≤ <[a] ≤ 1/2. Thus we can apply Theorem 3.1.1 twice and obtain the leading

order asymptotics. So we have shown

s∞(η) = −e−aπiηa+1
2F1

(
−a− 1,−a
−2a

∣∣∣∣ 1

η

)
(3.83)

= −1

2
e−aπi4−aηa+1

(
1 +

√
1− 1

η

)1+2a(
1− 1

η

)1/4 [
1 + O

(
1

a

)]
. (3.84)

A similar process can be repeated for s′∞(η) and we obtain

s′∞(η) =
a+ 1

−eaπi
ηa2F1

(
−a,−a
−2a

∣∣∣∣ 1

η

)
(3.85)

= −2(a+ 1)e−aπi4−a−1ηa
(

1− 1

η

)−1/4(
1 +

√
1− 1

η

)1+2a(λ) [
1 + O

(
1

a

)]
.

(3.86)

We have an immediate Corollary.

Corollary 3.2.2. As λ = e−κ → 0, provided that either =λ ≥ 0 or =λ ≤ 0,

Γ̂

(
z + 1

2z

)
= i(1− z2)σ3/4

[
1 0

0 ±2zκ
iπ

]
(I + iσ2)

( √
2z

1 +
√

1− z2

)σ3 [
1 0

0 1
2z

]
×

×
(
I + O

(
κ−1

))
4aσ3e∓κg(z)σ3e±

κ
2
σ3 , sgn[=κ] = ∓1 (3.87)

which is uniform for z ∈ Ω̃+. See (3.65), (2.18), (3.106) for Ω̃+, Γ̂, g, respectively.

It remains to find the small λ leading order asymptotics of the remaining factors of
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Γ(z;λ), see (2.17). This is a tedious, but straightforward exercise.

Lemma 3.2.3. We are able to evaluate Γ̂
(

1
2

)
(see (2.18) for definition of Γ̂) explicitly

in terms of Gamma functions as

Γ̂−1

(
1

2

)
= e−

aπi
2
σ34−aσ3

 Γ(−a2 )Γ(− 1
2
−a)

4Γ( 1
2
−a

2 )Γ(−1−a)

iΓ( 1
2
−a

2 )Γ(− 1
2
−a)

8Γ(1−a
2 )Γ(−a)

iΓ(a
2

+ 1
2

)Γ(a+ 1
2

)

Γ(a
2

+1)Γ(a)

−Γ(a2 +1)Γ(a+ 1
2)

Γ(a2 + 1
2)Γ(a+2)

 , (3.88)

where a(λ) is defined in (2.12). Moreover, as λ = e−κ → 0, provided that either

=λ ≥ 0 or =λ ≤ 0,

Γ̂−1

(
1

2

)
=

√
2

i
e∓

κ
2
σ34−aσ3

(
I + O

(
κ−1

)) [1
4

0

0 1

]
(I + iσ2)

[
1 0

0 ± π
2κ

]
, sgn[=κ] = ∓1.

(3.89)

Proof. Recall, from (2.13), that

h∞

(
z + 1

2z

)
= eaπi

(
z + 1

2z

)−a
2F1

(
a, a+ 1

2a+ 2

∣∣∣∣ 2z

z + 1

)
. (3.90)

Using [1] 15.3.15 then 15.1.20,

2F1

(
a, a+ 1

2a+ 2

∣∣∣∣ 2

)
= (−1)−a/22F1

( a
2
, a

2
+ 1

a+ 3
2

∣∣∣∣ 1

)
= e−aπi/2

√
πΓ
(
a+ 3

2

)
Γ
(
a
2

+ 3
2

)
Γ
(
a
2

+ 1
2

) ,
(3.91)

where we have taken (−1)−a/2 = e−aπi/2. Repeating this process for h′∞, s∞, s
′
∞, we

obtain our explicit result. The asymptotics directly follow from the use of Stirling’s

formula and Proposition B.0.1.
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Recall from (2.17) that Q(λ) is defined as

Q(λ) = D(I + ieaπiσ2), (3.92)

where

D :=

[
− tan(aπ) 0

0 42a+1eaπi Γ(a+3/2)Γ(a+1/2)
Γ(a)Γ(a+2)

]
. (3.93)

Lemma 3.2.4. As λ = e−κ → 0 provided that either =λ ≥ 0 or =λ ≤ 0,

D = i

[
±1 0

0 42a+1e±κ

] (
I + O

(
κ−1

))
, sgn[=κ] = ∓1. (3.94)

Proof. Asymptotics of ratios of Gamma functions can be found in [7] 5.11.13. This

fact combined Proposition B.0.1 gives the result.

We are ready to put the pieces from this section together and obtain the asymptotics

of Γ(z;λ) as λ→ 0 for z ∈ Ω̃. Define the matrix

Φ(z) :=
1

2
√
z(z2 − 1)1/4

[
i+ z +

√
z2 − 1 −i− z +

√
z2 − 1

i− z +
√
z2 − 1 −i+ z +

√
z2 − 1

]
(3.95)

=

(
I +

i

2z
(σ3 − iσ2)

)(
z2 − 1

z2

)σ1/4
(3.96)

which is a solution to the so-called model RHP (see RHP 3.3.4 and take x = y = i/2).
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Lemma 3.2.5. As λ = e−κ → 0, provided that either =λ ≥ 0 or =λ ≤ 0,

D−1Γ̂−1

(
1

2

)[
1 −1

2z(a+1)

0 1

]
Γ̂

(
z + 1

2z

)
eκg(z)σ3D =


Φ(z) (I + O (κ−1)) , =λ ≥ 0

σ3Φ(z)σ3 (I + O (κ−1)) , =λ ≤ 0

(3.97)

which is uniform for z ∈ Ω̃+. See (3.65), (3.26), (2.18), (3.95), (3.106) for definitions

of Ω̃+, D, Γ̂, Φ, g(z), respectively.

Proof. First take =λ ≥ 0; we begin with a few observations and preparatory calcu-

lations:

( √
2z

1 +
√

1− z2

)σ3 [
1 0

0 2
z

]
=

√
2

z3/2

[
1−
√

1− z2 0

0 1 +
√

1− z2

]
=

√
2

z3/2

[
I − σ3

√
1− z2

]
,

(3.98)

(I + iσ2)

[
1 −1

0 −iz

]
(1− z2)σ3/4 (I + iσ2) =

(I − σ1) + iz (σ3 − iσ2) +
√

1− z2 (σ3 + iσ2)

(1− z2)1/4
.

(3.99)

Recall that the radicals were defined so that
√

1− z2 = i
√
z2 − 1 and (1− z2)1/4 =

√
i(z2−1)1/4. Now, taking the leading order term ofD−1Γ̂−1

(
1
2

) [1 −1
2z(a+1)

0 1

]
Γ̂
(
z+1
2z

)
eκgσ3D
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from Lemmas and Corollaries 3.2.4, 3.2.3, 3.2.2, we have

√
2i

4
(I + iσ2)

[
1 −1

0 −iz

]
(1− z2)σ3/4(I + iσ2)

( √
2z

1 +
√

1− z2

)σ3 [
1 0

0 2
z

]

=
(z2 − 1)−1/4

2z3/2

[
(I − σ1) + iz (σ3 − iσ2) +

√
1− z2 (σ3 + iσ2)

]
·
[
I − σ3

√
1− z2

]
=

(z2 − 1)−1/4

2z3/2

[
(I − σ1)−

√
1− z2 (σ3 + iσ2) iz (σ3 − iσ2)− iz

√
1− z2 (I + σ1)

+
√

1− z2 (σ3 + iσ2)−
(
1− z2

)
(I − σ1)

]
=

(z2 − 1)−1/4

2
√
z

[
(iσ3 + σ2) + z (I − σ1) +

√
z2 − 1 (I + σ1)

]
= Φ(z).

When =λ ≤ 0, observe that the leading order term ofD−1Γ̂−1
(

1
2

) [1 −1
2z(a+1)

0 1

]
Γ̂
(
z+1
2z

)
eκgσ3D

is now

σ3 ·
√

2i

4
(I+iσ2)

[
1 −1

0 −iz

]
(1−z2)σ3/4(I+iσ2)

( √
2z

1 +
√

1− z2

)σ3 [
1 0

0 2
z

]
·σ3 (3.100)

and thus we have the leading order term. Now adding in the lower order terms, we

obtain the result with careful calculation.
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Define matrix

Ψ(z;κ) =


Φ(z), for =[κ] ≤ 0,

σ1Φ(z)σ1, for =[κ] ≥ 0.

(3.101)

where Φ(z) was defined in (3.95). The matrix σ1Φ(z)σ1 is also a solution to RHP

3.3.4, take x = y = −i/2. Now we are ready to prove one of the main results of this

chapter.

Theorem 3.2.6. We have the following approximation

Γ(z;λ) =



Ψ(z;κ) (I + O (κ−1)) e−κg(z)σ3 , z ∈ Ω̃ \ L(±)
L,R,

Ψ(z;κ) (I + O (κ−1))

 1 0

±ieκ(2g(z)−1) 1

 e−κg(z)σ3 , z ∈ Ω̃ ∩ L(±)
L ,

Ψ(z;κ) (I + O (κ−1))

1 ∓ie−κ(2g(z)+1)

0 1

 e−κg(z)σ3 , z ∈ Ω̃ ∩ L(±)
R ,

as λ = e−κ → 0, provided that either =λ ≥ 0 or =λ ≤ 0, which is uniform for z ∈ Ω̃.

See (3.64), (3.101), (3.106), (2.17) for Ω̃,Ψ, g,Γ, respectively and Figure 3.5 for the

sets L(±)
L and L(±)

R .

Proof. First assume =λ ≥ 0 and z ∈ Ω̃+. The following calculation

e−κgσ3Q = e−κgσ3D
(
I + ieaπiσ2

)
e−κgσ3eκgσ3 = D

(
e−2κgσ3 + ieaπiσ2

)
eκgσ3 (3.102)
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and use of Lemma 3.2.5 gives us

Γ(z;λ) = σ2Q
−1Γ̂−1(∞)

[
1 −1

2z(a+1)

0 1

]
Γ̂

(
z + 1

2z

)
Qσ2

=
σ2

1 + e2aπi
(I − ieaπiσ2)D−1Γ̂−1(∞)

[
1 −1

2z(a+1)

0 1

]
Γ̂

(
z + 1

2z

)
eκgσ3D×

× (σ2e
2κgσ3 + ieaπiI)e−κgσ3

=
σ2

1 + e2aπi
(I − ieaπiσ2)Φ(z)

(
I + O

(
κ−1

))
(σ2e

2κgσ3 + ieaπiI)e−κgσ3

=
Φ(z)

1 + e2aπi
(Φ−1(z)σ2Φ(z)− ieaπiI)

(
I + O

(
κ−1

))
(σ2e

2κgσ3 + ieaπiI)e−κgσ3

=
Φ(z)

1 + e2aπi

(
I + O

(
κ−1

))
(Φ−1(z)σ2Φ(z)− ieaπiI)(σ2e

2κgσ3 + ieaπiI)e−κgσ3

= Φ(z)
(
I + O

(
κ−1

))
(I − iσ2

eaπi
e2κgσ3)e−κgσ3

= Φ(z)
(
I + O

(
κ−1

)) [ 1 ie−κ(2g+1)

−ieκ(2g−1) 1

]
e−κgσ3 , (3.103)

as desired. Now take =λ ≤ 0 and proceed similar to above. We use the calculation

eκgσ3Q = eκgσ3D(I + ieaπiσ2)e−κgσ3eκgσ3 = D(I + ieaπie2κgσ3σ2)eκgσ3 (3.104)
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and Lemma 3.2.5 to obtain

Γ(z;λ) = σ2Q
−1Γ̂−1(∞)

[
1 −1

2z(a+1)

0 1

]
Γ̂(z)Qσ2

=
σ2

1 + e2aπi
(I − ieaπiσ2)D−1Γ̂−1(∞)

[
1 −1

2z(a+1)

0 1

]
Γ̂(z)e−κgσ3×

×D(σ2 + ieaπie2κgσ3)e−κgσ3

=
σ2

1 + e2aπi
(I − ieaπiσ2)σ3Φ(z)σ3

(
I + O

(
κ−1

))
(σ2 + ieaπie2κgσ3)e−κgσ3

= iσ1Φ(z)(I + eaπiΦ−1(z)σ2Φ(z))σ3

(
I + O

(
κ−1

))
(σ2 + ieaπie2κgσ3)e−κgσ3

= iσ1Φ(z)
(
I + O

(
κ−1

))
(I + eaπiΦ−1(z)σ2Φ(z))σ3(σ2 + ieaπie2κgσ3)e−κgσ3

= iσ1Φ(z)
(
I + O

(
κ−1

))
(−iσ1 + ieaπiσ3e

2κgσ3)e−κgσ3

= σ1Φ(z)σ1

(
I + O

(
κ−1

)) [ 1 ie−κ(2g+1)

−ieκ(2g−1) 1

]
e−κgσ3 . (3.105)

The results for =z ≥ 0 are immediate via use of the symmetry Γ(z̄; λ̄) = Γ(z;λ).

Recall that Φ(z̄) = σ1Φ(z)σ1 from Remark 3.3.6, g(z̄) = g(z) and κ(λ) = κ(λ̄).

3.3 Deift-Zhou steepest descent method

Let us begin with the definition of the g-function

g(z) =
1

iπ
ln

(
1 +
√

1− z2

z

)
− 1

2
, (3.106)
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where the branch cut of
√

1− z2 is [−1, 1],
√

1− z2 = iz + O (1) as z →∞ and the

principle branch of the logarithm is taken. This g-function will play an important

role so we list its relevant properties, all of which are simple calculations.

Proposition 3.3.1. g(z) has the following properties:

1. g(z) is analytic on C \ [−1, 1],

2. g+(z) + g−(z) = 1 for z ∈ [−1, 0],

3. g+(z) + g−(z) = −1 for z ∈ [0, 1],

4. <(2g(z)− 1) = 0 for z ∈ [−1, 0] and <(2g(z)− 1) < 0 for z ∈ C \ [−1, 0],

5. <(2g(z) + 1) = 0 for z ∈ [0, 1] and <(2g(z) + 1) > 0 for z ∈ C \ [0, 1],

6. g(∞) = 0,

7. g(z) is Schwarz symmetric.

As in the previous section, we wish to work with a large parameter when λ → 0 so

define

κ := − lnλ. (3.107)

3.3.1 Transformation Γ(z;λ)→ Z(z;κ)

Our first transformation will be

Y (z;κ) := Γ(z; e−κ)eκg(z)σ3 , (3.108)

44



where Γ(z;λ) was defined in (2.17). Since Γ(z;λ) is the solution of RHP 2.2.1, it is

easy to show that Y (z;κ) solves the following RHP.

Riemann-Hilbert Problem 3.3.2. Find a matrix Y (z;κ), e−κ = λ ∈ C \ {0},

analytic for z ∈ C̄ \ [−1, 1] and satisfying the following conditions:

Y (z+;κ) =Y (z−;κ)

[
eκ(g+−g−) −ie−κ(g++g−−1)

0 e−κ(g+−g−)

]
, z ∈ (−1, 0) (3.109)

Y (z+;κ) =Y (z−;κ)

[
eκ(g+−g−) 0

ieκ(g++g−+1) e−κ(g+−g−)

]
, z ∈ (0, 1) (3.110)

Y (z;κ) =1 + O
(
z−1
)

as z →∞, (3.111)

Y (z;κ) =
[
O (1) O (log(z + 1))

]
as z → −1, (3.112)

Y (z;κ) =
[
O (log(z − 1)) O (1)

]
as z → 1, (3.113)

Y (z;κ) ∈L2
loc as z → 0. (3.114)

The endpoint behavior is listed column-wise.

The jumps for Y (z;κ) on (−1, 0) and (0, 1) can be written as

Y (z+;κ) = Y (z−;κ)

[
1 0

ieκ(2g−(z)−1) 1

]
(−iσ1)

[
1 0

ieκ(2g+(z)−1) 1

]
, z ∈ (−1, 0)

(3.115)

Y (z+;κ) = Y (z−;κ)

[
1 1

i
e−κ(2g−(z)+1)

0 1

]
(iσ1)

[
1 1

i
e−κ(2g+(z)+1)

0 1

]
, z ∈ (0, 1).

(3.116)

This decomposition can be verified by direct matrix multiplication and by using the
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Figure 3.5: Lense regions L(±)
L,R.

jump properties of g(z) in Proposition 3.3.1. We define the ‘lense’ regions L(±)
L,R as in

Figure 3.5.

Recall, from Proposition 3.3.1, that <[2g(z) + 1] ≥ 0 with equality only for z ∈ (0, 1)

and <[2g(z) − 1] ≤ 0 with equality only for z ∈ (−1, 0). Our second and final

transformation is

Z(z;κ) :=



Y (z;κ), z outside the lenses

Y (z;κ)

 1 0

∓ieκ(2g(z)−1) 1

 , z ∈ L(±)
L

Y (z;κ)

1 ∓1
i
e−κ(2g(z)+1)

0 1

 , z ∈ L(±)
R .

(3.117)
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Since Y (z;κ) solves RHP 3.3.2, it is a direct calculation to show Z(z;κ) solves the

following RHP.

Riemann-Hilbert Problem 3.3.3. Find a matrix Z(z;κ), analytic on the com-

plement of the arcs of Figure 3.5, satisfying the jump conditions

Z(z+;κ) = Z(z−;κ)



 1 0

ieκ(2g−1) 1

 z ∈ ∂L(±)
L \ R,

1 1
i
e−κ(2g+1)

0 1

 z ∈ ∂L(±)
R \ R,

−iσ1 z ∈ (−1, 0),

iσ1 z ∈ (0, 1),

(3.118)

normalized by

Z(z;κ) = 1 + O
(
z−1
)
, as z →∞, (3.119)

and with the same endpoint behavior as Y (z;κ) near the endpoints z = 0,±1, see

(3.112).

The jumps for Z(z;κ) on ∂L(±)
L,R will be exponentially small as long as z is a fixed

distance away from 0,±1 due to Proposition 3.3.1. If we ‘ignore’ the jumps on the

lenses of the RHP for Z(z;κ), we obtain the so-called model RHP.

Riemann-Hilbert Problem 3.3.4. Find a matrix Ψ(z), analytic on C \ [−1, 1],
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and satisfying

Ψ+(z) = Ψ−(z)(−iσ1), for z ∈ [−1, 0],

Ψ+(z) = Ψ−(z)(iσ1), for z ∈ [0, 1],

Ψ(z) = O
(
|z ∓ 1|−

1
4

)
, as z → ±1,

Ψ(z) = O
(
|z|−

1
2

)
, as z → 0,

Ψ(z) = 1 + O
(
z−1
)

as z →∞.

We can see that RHP 3.3.4 will not have a unique solution because of the non-L2

behavior at z = 0 but we can classify the ‘degree’ of non-uniqueness.

Theorem 3.3.5. If Ψ(z) is a solution to RHP 3.3.4, then there exists x, y ∈ C so

that

Ψ(z) =

(
I +

1

z

[
x −x
y −y

])(
z2 − 1

z2

)σ1/4
. (3.120)

Proof. The Sokhotski-Plemelj formula (see [12]) can be applied to this problem to

obtain the solution

Ψ1(z) = β(z)σ1 , where β(z) =

(
z2 − 1

z2

)1/4

. (3.121)

Take any solution to RHP 3.3.4 (different from Ψ1(z)) and call it Ψ2(z). Then

it can be seen that the matrix Ψ2(z)Ψ−1
1 (z) has no jumps in the complex plane,

Ψ2(z)Ψ−1
1 (z) = I + O (z−1) as z → ∞ and Ψ2(z)Ψ−1

1 (z) = O (z−1) as z → 0. Then
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it must be that

Ψ2(z)Ψ−1
1 (z) = I +

A

z
, (3.122)

where A is a constant matrix. Notice that

Ψ1(z) =
β(z)

2

[
1 1

1 1

]
+

1

2β(z)

[
1 −1

−1 1

]
, (3.123)

so we have

Ψ2(z) =

(
I +

A

z

)
Ψ1(z) =

(
I +

A

z

)(
β(z)

2

[
1 1

1 1

]
+

1

2β(z)

[
1 −1

−1 1

])
. (3.124)

Since Ψ2(z) is a solution of RHP 3.3.4, it must be true that Ψ2(z) = O
(
z−1/2

)
as

z → 0. Thus the matrix A must satisfy

A ·

[
1 1

1 1

]
=

[
0 0

0 0

]
=⇒ A =

[
x −x
y −y

]
(3.125)

where x, y ∈ C, as desired.

Remark 3.3.6. For any x ∈ C so that <[x] = 0, then

Ψ(z) =

(
I +

1

z

[
x −x
x −x

])(
z2 − 1

z2

)σ1/4
(3.126)

has the symmetry

Ψ(z) = σ1Ψ(z)σ1. (3.127)
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This follows from the fact that

[
x −x
x −x

]
=

[
−x x

−x x

]
= σ1

[
x −x
x −x

]
σ1 (3.128)

and
(
z2−1
z2

)σ1/4
commutes with σ1.

3.3.2 Approximation of Z(z;κ) and Main Result

We will construct a piecewise (in z) approximation of Z(z;κ) when κ → ∞. Our

approach is very similar to that in [3]. Define sets Dj = B(j, l), (the disc with center

j and radius l) j = 0,±1, and l is chosen so that ∂D0 ⊂ Ω̃, see (3.64) for definition

of Ω̃. The idea is as follows: on the lenses L(±)
L,R (see Figure 3.5) outside the sets

Dj, j = 0,±1, the jumps of Z(z;κ) are uniformly close to the identity matrix thus

Ψ(z;κ) (a solution to model RHP, see (3.101)) is a ‘good’ approximation of Z(z;κ).

Inside Dj, j = 0,±1, we construct local approximations that are commonly called

‘parametrices’. The solution of the so-called Bessel RHP is necessary.

Riemann-Hilbert Problem 3.3.7. Let ν ∈ (0, π) be any fixed number. Find a

matrix Bν(ζ) that is analytic off the rays R−, e±iθR+ and satisfies the following
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conditions.

Bν+(ζ) = Bν−(ζ)

[
1 0

e−4
√
ζ±iπν 1

]
, ζ ∈ e±iθR+ (3.129)

Bν+(ζ) = Bν−(ζ)

[
0 1

−1 0

]
, ζ ∈ R− (3.130)

Bν(ζ) = O
(
ζ−
|ν|
2

)
for ν 6= 0 or O (log ζ) for ν = 0 as ζ → 0, (3.131)

Bν(ζ) = F (ζ)

(
1 + O

(
1√
ζ

))
as ζ →∞, F (ζ) = (2π)−σ3/2ζ−

σ3
4

1√
2

[
1 −i
−i 1

]
.

(3.132)

This RHP has an explicit solution in terms of Bessel functions and can be found in

[18]. Define local coordinates at points z = ±1 as

−4
√
ξ−1(z) =κ(2g(z)− 1), for z ∈ D−1, (3.133)

4
√
ξ1(z) =κ(2g(z) + 1), for z ∈ D1. (3.134)

We call Z̃(z;κ) our approximation of Z(z;κ) and define

Z̃(z;κ) :=



Ψ(z;κ), z ∈ C \
1⋃

j=−1

Dj,

Ψ(z;κ)i−
σ3
2 F−1(ξ−1)B0(ξ−1)i

σ3
2 , z ∈ D−1,

Z(z;κ), z ∈ D0,

Ψ(z;κ)i−
σ3
2 σ1F

−1(ξ1)B0(ξ1)σ1i
σ3
2 , z ∈ D1,

(3.135)
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where Z(z;κ) is the solution of RHP 3.3.3, B0(ξj) is the solution of RHP 3.3.7, and

Ψ(z;κ) is a solution of the model RHP 3.3.4 defined in (3.101).

Remark 3.3.8. The matrix Z̃(z;κ) was constructed to have the same jumps (exact)

as Z(z;κ) when z ∈ D0,±1∪ [−1, 1]. For an in depth construction, we refer the reader

to [3], section 4.3.

Define the error matrix as

E(z;κ) := Z(z;κ)Z̃−1(z;κ), (3.136)

where Z(z;κ) is the solution of RHP 3.3.3 and Z̃(z;κ) was defined in (3.135). It

is clear that E(z;κ) = I + O (z−1) as z → ∞ since both Z(z;κ), Z̃(z;κ) have this

behavior. E(z;κ) has no jumps inside D−1,0,1 because Z̃(z;κ) was constructed to

have the same jumps as Z(z;κ) inside D−1,0,1, see Remark 3.3.8. Thus E(z;κ) will
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-1 0 1

Figure 3.6: The contour Σ, where E(z;κ) has jumps.

have jumps on ∂D−1,0,1, ∂L(±)
L,R \ D0,±1, and be analytic elsewhere. Explicitly,

E(z+;κ) = E(z−;κ)



Ψ(z;κ)i−
σ3
2 F−1(ξ−1)B0(ξ−1)i

σ3
2 Ψ−1(z;κ), z ∈ ∂D−1,

I + Ψ(z;κ)

 0 0

ieκ(2g(z)−1) 0

Ψ−1(z;κ), z ∈ ∂L(±)
L \ D−1,0,

Z(z;κ)Ψ−1(z;κ), z ∈ ∂D0,

I + Ψ(z;κ)

0 −ie−κ(2g(z)+1)

0 0

Ψ−1(z;κ), z ∈ ∂L(±)
R \ D0,1,

Ψ(z;κ)i−
σ3
2 σ1F

−1(ξ1)B0(ξ1)σ1i
σ3
2 Ψ−1(z;κ), z ∈ ∂D1.

(3.137)

The matrix Ψ(z;κ) was defined in (3.101) and F−1, B0 can be found in RHP 3.3.7.

Call Σ the collection of arcs where E(z;κ) has a jump, as described in Figure 3.6.

Remark 3.3.9. In Theorem 3.2.6, we obtained the leading order behavior of Γ(z;λ)

for z ∈ Ω̃ as λ→ 0. This Theorem can easily be written in terms of Z(z;κ) instead
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of Γ(z;λ) by applying the transformations (see section 3.3.1) Γ→ Y → Z.

We have now proven the following corollary.

Corollary 3.3.10. As κ →∞, provided that either =κ ≥ 0 or =κ ≤ 0,

Z(z;κ) = Ψ(z;κ)
(
I + O

(
κ−1

))
, (3.138)

which is uniform for z ∈ Ω̃. Z(z;κ) is the solution of RHP 3.3.3 and Ψ(z;κ) is

defined in (3.101).

Now revisiting the jumps of E(z;κ) in (3.137), we have another Corollary.

Corollary 3.3.11. As κ →∞, provided that =κ ≥ 0 or =κ ≤ 0,

E(z+;κ) = E(z−;κ)


I + O (κ−1) , z ∈ ∂D−1,0,1,

I + O
(
eκ(2g(z)−1)

)
, z ∈ ∂L(±)

L \ D−1,0,

I + O
(
e−κ(2g(z)+1)

)
, z ∈ ∂L(±)

R \ D0,1,

(3.139)

which is uniform for z ∈ Σ, see Figure 3.6 for Σ. Functions E(z;κ), g(z) are defined

in (3.136), (3.106), respectively.

Remark 3.3.12. The factors e−κ(2g(z)+1) and eκ(2g(z)−1) in (3.139) are exponentially

small for all z in the corresponding set, in light of Proposition 3.3.1.

Proof. The behavior for z ∈ ∂D±1, ∂D0 is a direct consequence of (3.132), Corollary

3.3.10, respectively. The behavior on the lenses is clear via inspection of (3.137).

54



Corollary 3.3.13. Let κ → ∞, provided that =κ ≥ 0 or =κ ≤ 0. Then for z in

simply connected compact subsets of C\{0,±1}, we have the uniform approximation

Z(z;κ) = Ψ(z;κ)
(
I + O

(
κ−1

))
. (3.140)

See RHP 3.3.3 for Z(z;κ) and (3.101) for Ψ(z;κ).

Proof. Choose any simply connected (informally this means that the set consists of

one ‘piece’ has no ‘holes’) compact subset of C \ {0,±1} and call it J ; then the disks

D0,±1 can be taken sufficiently small in order to not intersect J and lenses L(±)
L,R can be

formed while still retaining all of their necessary properties. Corollaries 3.3.10, 3.3.11

and the so-called small norm theorem, see [5] (Theorem 7.171) can now be applied

to conclude that E(z;κ) = I + O (κ−1) uniformly for z ∈ J . This is equivalent to

the stated result.

We are now ready to prove the main result of this chapter.

Theorem 3.3.14. Let λ = e−κ → 0, provided that either =λ ≥ 0 or =λ ≤ 0. Then,

1. For z in compact subsets of C \ [−1, 1] we have the uniform approximation

Γ(z;λ) = Ψ(z;κ)
(
I + O

(
κ−1

))
e−κg(z)σ3 . (3.141)
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2. For z in compact subsets of (−1, 0)∪ (0, 1) we have the uniform approximation

Γ(z±;λ) =



Ψ(z±;κ) (I + O (κ−1))

 1 0

±ieκ(2g±(z)−1) 1

 e−κg±(z)σ3 , z ∈ (−1, 0),

Ψ(z±;κ) (I + O (κ−1))

1 ∓ie−κ(2g±(z)+1)

0 1

 e−κg±(z)σ3 , z ∈ (0, 1),

(3.142)

where ± denotes the upper/lower shore of the real axis in the z-plane. See (2.17),

(3.101), (3.106) for the definitions of Γ,Ψ, g, respectively.

Proof. This Theorem is a direct consequence of Corollary 3.3.13. We simply need to

revert the transforms that took Γ→ Z. Doing so, we find that

Γ(z;λ) =



Z(z;κ)e−κg(z)σ3 , z outside lenses

Z(z;κ)

 1 0

±ieκ(2g(z)−1) 1

 e−κg(z)σ3 , z ∈ L(±)
L

Z(z;κ)

1 ∓ie−κ(2g(z)+1)

0 1

 e−κg(z)σ3 , z ∈ L(±)
R .

(3.143)

If z is in a compact subset of C \ [−1, 1] or (−1, 0) ∪ (0, 1), we can construct the

lenses L(±)
L,R so that they do not intersect this compact set, so simply connected is
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not necessary here. Applying Corollary 3.3.13 gives the result.
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CHAPTER 4: SPECTRAL PROPERTIES AND

DIAGONALIZATION OF H∗RHR AND H∗LHL

The goal of this chapter is to construct unitary operators UR : L2([0, bR])→ L2(J, σR)

and UL : L2([0, bR])→ L2(J, σL) such that

U∗RH∗RHRUR = λ2, U∗LH∗LHLUL = λ2 (4.1)

where λ2 is a multiplication operator (the space is clear by context) and the spectral

measure σL, σR are to be determined. This is to be understood in the sense of

operator equality on L2(J, σR), L2(J, σL), respectively. We will begin this section

with a brief summary of the spectral theory for a self-adjoint operator with simple

spectrum.

4.1 Basic Facts About Diagonalizing a Self-Adjoint Operator with

Simple Spectrum

For an in-depth review of the spectral theorem for self-adjoint operators, see [2], [19],

[8]. We present a short summary of this topic which is directly related to the needs

of this dissertation. Let K be a Hilbert space and let A be a self-adjoint operator

with simple spectrum acting on K. Recall from [2], that a self-adjoint operator has

simple spectrum if there is a vector g ∈ K so that the span of Ê∆[g], where ∆ runs

through the set of all subintervals of the real line, is dense in K. Here the operator
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Êt denotes the so-called resolution of the identity for the operator A, which we will

define shortly. Define R̂, the resolvent of A, via the formula

R̂(t) = (tI − A)−1. (4.2)

Then, according to [8] p.921, the resolution of the identity is defined by the formula

Ê(α,β) := Êβ − Êα = lim
ε→0+

lim
δ→0+

∫ β−δ

α+δ

−1

2πi

[
R̂(t+ iε)− R̂(t− iε)

]
dt, (4.3)

where α < β. Once we obtain Êt, we can construct the unitary operators which will

diagonalize A, as described in the following Theorem from [2] p.279.

Theorem 4.1.1. If A is a self-adjoint operator with simple spectrum, if g is any

generating element, and if σ(t) = 〈Êt[g], g〉, then the formula

f =

∫
R
f(t) dÊt[g] (4.4)

associates with each function f(t) ∈ L2(R, σ) a vector f ∈ K, and this correspon-

dence is an isometric mapping of L2(R, σ) onto K. It maps the domain D(Q) of the

multiplication operator Q in L2(R, σ) into the domain D(A) of the operator A, and if

the element f ∈ D(A) corresponds to the function f(t) ∈ L2(R, σ), then the element

Af corresponds to the function tf(t).

Thus our immediate goal moving forward is to construct the resolution of the identity

for H∗RHR and H∗LHL.
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Remark 4.1.2. In the remaining chapters and sections of this dissertation we will

frequently encounter the following Möbius transforms:

M1(x) =
bR(x− bL)

x(bR − bL)
, M2(x) =

bRbLx

x(bR + bL)− bRbL
, (4.5)

M3(x) = M1(M2(x)) =
−bL(x− bR)

x(bR − bL)
, M4(x) =

x(bR − bL)

x(bR + bL)− 2bRbL
. (4.6)

4.2 Resolution of the Identity for H∗RHR and H∗LHL

From (4.3), knowledge of the resolvent operator is paramount. We are able to express

the resolvents of H∗RHR,H∗LHL in terms of the resolvent of K̂.

Proposition 4.2.1. The resolvent of H∗RHR and H∗LHL is

RR(λ2) :=

(
I − 1

λ2
H∗RHR

)−1

= I + πRR̂(λ/2)πR, (4.7)

RL(λ2) :=

(
I − 1

λ2
H∗LHL

)−1

= I + πLR̂(λ/2)πL, (4.8)

where πR : L2(R) → L2([0, bR]), πL : L2(R) → L2([bL, 0]) are orthogonal projections

(i.e. restrictions), R̂(λ) is defined by the relation (2.5) and the kernel of R̂(λ) is

computed in Theorem 2.2.4.

Remark 4.2.2. The resolvents of H∗RHR and H∗LHL, defined in (4.7), (4.8), are not

in the same form of the resolvent defined in (4.3) in the previous subsection. Some
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elementary algebra shows that

RR(λ2)

λ2
=
(
λ2I −H∗RHR

)−1
, (4.9)

which is of the form (4.3). An identical statement can be made for the resolvent of

H∗LHL.

Proof. In the direct sum decomposition L2([bL, bR]) = L2([bL, 0])⊕L2([0, bR]), K̂ has

the block structure

K̂ =

[
0 − i

2
HL

− i
2
HR 0

]
=

[
0 i

2
H∗R

− i
2
HR 0

]
=

[
0 − i

2
HL

i
2
H∗L 0

]
. (4.10)

We can write (recall that K̂ is bounded, see Proposition 2.1.1)

I + R̂(λ) =

(
I − 1

λ
K̂

)−1

=
∞∑
n=0

(
K̂

λ

)n

(4.11)

where all the even powers in the right hand side of (4.11) are block diagonal and all

the odd powers in (4.11) are block off-diagonal. Similarly, we can write

(
I − 1

λ2
H∗RHR

)−1

=
∞∑
n=0

(
H∗RHR

λ2

)n
(4.12)

and comparing with the series in (4.11) gives our result for the resolvent of H∗RHR.

The proof for the resolvent of H∗LHL is nearly identical.
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To construct the resolution of the identity (see (4.3)), we need to compute the jump

of the resolvent of H∗RHR and H∗LHL. The kernel of the resolvent is expressed in

terms of Γ(z;λ) (see Theorem 2.2.4), so we need to compute the jump of Γ(z;λ) in

the λ−plane. We begin with an auxiliary Proposition.

Proposition 4.2.3. For λ ∈ (−1/2, 0),

Γ̂ (z, λ+) = Γ̂ (z, λ−)σ1, (4.13)

Q+(λ) =

[
− tan(aπ)Γ(a)Γ(a+ 2)

e2πia42a+1Γ(a+ 3/2)Γ(a+ 1/2)

]
−
σ1Q−(λ). (4.14)

The matrices Γ̂, Q are defined in (2.18).

Proof. Recall from Proposition B.0.1 that a+(λ)+a−(λ) = −1 for λ ∈ (−1/2, 0) and

h∞, s∞ are defined in (2.13),(2.14), respectively. Then by inspection, we see that

h∞(z, a+(λ)) = h∞(z,−1− a−(λ)) = s∞(z, a−(λ)) (4.15)

so the jump of Γ̂ follows. Computing the jump of Q is a straightforward, perhaps

tedious, exercise.

We are now ready to compute the jump of Γ(z;λ) in the λ−plane.
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Theorem 4.2.4. For λ ∈ (−1/2, 0) ∪ (0, 1/2),

Γ(z;λ+) = Γ(z;λ−)

[
I − 1

z
~f(z, λ−)~gt(z, λ−)

]
, (4.16)

where

~f(z, λ) :=
−2bRbL|λ|(2a(−|λ|) + 1)

bR − bL

[
dR(z;−|λ|)

sgn(λ)dL(z;−|λ|)

]
, ~g(z, λ) :=

[
−sgn(λ)dL(z;−|λ|)

dR(z;−|λ|)

]
.

(4.17)

Functions dR(z;λ), dL(z;λ) are defined as

dR(z;λ) := α(λ)h′∞ (M1(z)) + β(λ)s′∞ (M1(z)) , (4.18)

dL(z;λ) := −eaπiα(λ)h′∞ (M1(z)) + e−aπiβ(λ)s′∞ (M1(z)) , (4.19)

where M1(z), h′∞, s
′
∞ are defined in Remark 4.1.2, (2.13), (2.14), respectively, a :=

a(λ) is defined in Appendix B, and coefficients α(λ), β(λ) are

α(λ) :=
e−aπi tan(aπ)Γ(a)

4a+1Γ(a+ 3/2)
, β(λ) :=

4aeaπiΓ(a+ 1/2)

Γ(a+ 2)
. (4.20)

In (4.16), we understand that when λ is on the lower shore of (0, 1/2), −λ is on the

lower shore of (−1/2, 0).
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Proof. The proof is straightforward; we have

Γ(z;λ+) = Γ(z;λ−)Γ(z;λ−)−1Γ(z;λ+) (4.21)

and thus we compute Γ−1(z;λ−)Γ(z;λ+) to obtain the stated result. We begin with

λ ∈ (−1/2, 0). Using the definition of Γ(z;λ) (eq. (2.17)) and Proposition 4.2.3 we

obtain

Γ−1(z;λ−)Γ(z;λ+) = I − bLbR
z(bR − bL)

(
2a+ 1

a(a+ 1)

)
−
M−1(z, λ−)

[
0 1

0 0

]
M(z, λ−)

(4.22)

where M(z, λ) = Γ̂ (M1(z))Qσ2. Let m21,m22 denote the (2,1), (2,2) elements of the

matrix M , respectively. Then,

M−1

[
0 1

0 0

]
M = |M |−1

[
m22m21 m2

22

−m2
21 −m21m22

]
= |M |−1

[
m22

−m21

] [
m21 m22

]
(4.23)
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and, explicitly,

m21(z;λ) =
ieaπiΓ(a+ 3/2)

4−a−1Γ(a)

[
− tan(aπ)Γ(a)

4a+1Γ(a+ 3/2)
h′∞ (M1(z)) +

4aΓ(a+ 1/2)

Γ(a+ 2)
s′∞ (M1(z))

]
(4.24)

=:
ieaπiΓ(a+ 3/2)

4−a−1Γ(a)
dL(z;λ), (4.25)

m22(z;λ) =
ieiπaΓ(a+ 3/2)

4−a−1Γ(a)

[
tan(aπ)Γ(a)

eaπi4a+1Γ(a+ 3/2)
h′∞ (M1(z)) +

4aeaπiΓ(a+ 1/2)

Γ(a+ 2)
s′∞ (M1(z))

]
(4.26)

=:
ieaπiΓ(a+ 3/2)

4−a−1Γ(a)
dR(z;λ), (4.27)

|M(z;λ)| = −
2e2πia42a+1Γ2

(
a+ 3

2

)
λa(a+ 1)Γ2(a)

. (4.28)

To compute |M | we have used (A.15). Finally, we calculate

(
2a+ 1

a(a+ 1)

)
−
M−1(z, λ−)

[
0 1

0 0

]
M(z, λ−) =

(
2a+ 1

a(a+ 1)|M |

)
−

[
m22

−m21

]
−

[
m21 m22

]
−

(4.29)

=

(
2a+ 1

a(a+ 1)|M |

)
−

(
ieaπiΓ(a+ 3

2
)

4−a−1Γ(a)

)2

+

[
dR(z;λ)

−dL(z;λ)

]
+

[
dL(z;λ) dR(z;λ)

]
−

(4.30)

= 2λ (2a− + 1)

[
dR(z;λ)

−dL(z;λ)

]
−

[
dL(z;λ) dR(z;λ)

]
−

(4.31)

which can be used to obtain the desired result. To calculate the jump of Γ(z;λ)

when λ ∈ (0, 1/2), we take advantage of the symmetry Γ(z;λ) = σ3Γ(z;−λ)σ3, see
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Remark 2.2.3. For brevity, let

J(z;λ) := I − 1

z
~f(z;λ)~gt(z;λ). (4.32)

So we have proven that

Γ(z;λ+) = Γ(z;λ−)J(z;λ−) (4.33)

only for λ ∈ (−1/2, 0). For λ ∈ (0, 1/2),

Γ(z;λ+) = σ3Γ(z, (−λ)−)σ3 (4.34)

= σ3Γ(z, (−λ)+)J−1(z; (−λ)−)σ3 (4.35)

= Γ(z;λ−)σ3J
−1(z; (−λ)−)σ3. (4.36)

It can now be verified that

σ3J
−1(z; (−λ)−)σ3 = I − 1

z
~f(z;λ−)~gt(z;λ−) (4.37)

for λ ∈ (0, 1/2).

Recall from Proposition 4.2.1 and Theorem 2.2.4 that the resolvent of H∗LHL, H∗RHR

is expressed in terms of Γ(z;λ). In light of the previous Theorem, we can now

compute the jump of the resolvent of H∗LHL, H∗RHR in the λ plane, which is required
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to construct the resolution of the identity, see (4.3).

Theorem 4.2.5. The kernel of R̂(x;λ) is single valued for λ ∈ C \ [−1/2, 1/2] and

satisfies the jump property

R(z, x;λ+)−R(z, x;λ−) =

[
−iχR(x) χL(x)

]
~f(x;λ−)~gt(z;λ−)

[
iχL(z)

χR(z)

]
2πiλxz

(4.38)

for λ ∈ (−1/2, 0)∪(0, 1/2), where χL, χR are characteristic functions on (bL, 0), (0, bR)

and R(z, x;λ), ~f(x;λ), ~g(z;λ) are defined in (2.20),(4.17), respectively. When x, z ∈

(0, bR),

R(z, x;λ+)−R(z, x;λ−) =
bLbR(2a−(−|λ|) + 1)

sgn(λ)πxz(bR − bL)
dR(x;−|λ|)dR(z;−|λ|) (4.39)

and when x, z ∈ (bL, 0),

R(z, x;λ+)−R(z, x;λ−) =
bLbR(2a−(−|λ|) + 1)

sgn(λ)πxz(bR − bL)
dL(x;−|λ|)dL(z;−|λ|), (4.40)

where dR, dL are defined in (4.18).

Proof. Since Γ(z;λ) is single valued for λ ∈ C \ [−1/2, 1/2], the same is true for

R(x, z;λ). Recall, from (2.2.4), that

R(z, x;λ) =
~gt1(x)Γ−1(x;λ)Γ(z;λ)~f1(z)

2πiλ(z − x)
(4.41)

and let ∆λF (λ) := F (λ+)−F (λ−) for any F . To prove the result we need to compute
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∆λ[Γ
−1(x;λ)Γ(z;λ)]. For λ ∈ (−1/2, 0), we calculate (see proof of Theorem 4.2.4)

Γ−1(x;λ−)Γ(z;λ−) = M−1(x, λ−)

[
1 bLbR(x−z)

xz(bR−bL)(a+1)

0 1

]
−

M(z, λ−) (4.42)

and

Γ−1(x;λ+)Γ(z;λ+) = M−1(x, λ+)

[
1 bLbR(x−z)

xz(bR−bL)(a+1)

0 1

]
+

M(z, λ+) (4.43)

= M−1(x, λ−)

[
1 −bLbR(x−z)

axz(bR−bL)

0 1

]
−

M(z, λ−) (4.44)

so we have that

∆λ[Γ
−1(x;λ)Γ(z;λ)] =

(
−bLbR(x− z)(2a+ 1)

xza(a+ 1)(bR − bL)

)
−
M−1(x, λ−)

[
0 1

0 0

]
M(z, λ−)

(4.45)

=
z − x
xz

~f(x;λ−)~gt(z;λ−) (4.46)

Now for λ ∈ (0, 1/2), we again take advantage of the symmetry Γ(z;λ) = σ3Γ(z;−λ)σ3,

see Remark 2.2.3. The process is the same as in the proof of Theorem 4.16. Directly

from (2.20) we have

∆λR(z, x;λ) =
~gt1(x)∆λΓ

−1(x;λ)Γ(z;λ)~f1(z)

2πiλ(z − x)
(4.47)

and plugging in our calculation of ∆λΓ
−1(x;λ)Γ(z;λ) gives the result.
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For convenience we define

DR(z;λ) := dR(z;−|λ|/2), DL(z;λ) := dL(z;−|λ|/2), (4.48)

where dL, dR are defined in (4.18). With (4.3) in mind, we can now prove the following

theorem.

Theorem 4.2.6. For 0 ≤ λ2 ≤ 1, g ∈ L2([bL, 0]), f ∈ L2([0, bR]), the operators

ÊR,λ2 [f ](x) =

∫ λ2

0

∫ bR

0

ϕR(x, µ2)ϕR(z, µ2)f(z) dzdµ2, (4.49)

ÊL,λ2 [g](x) =

∫ λ2

0

∫ 0

bL

ϕL(x, µ2)ϕL(z, µ2)g(z) dzdµ2, (4.50)

where a := a−(−|µ|/2), are the resolution of the identity for H∗RHR, H∗LHL, respec-

tively. The kernels ϕL, ϕR are

ϕR(x, λ2) :=
DR(x;λ)

xπ|λ|

√
|bL|bR(2a+ 1)

2i(bR − bL)
, ϕL(x, λ2) :=

DL(x;λ)

xπ|λ|

√
|bL|bR(2a+ 1)

2i(bR − bL)
,

(4.51)

where DL, DR are defined in (4.48).

Proof. We construct ÊR,λ2 only; ÊL,λ2 can be constructed in an identical manner.

The definition of the resolution of the identity can be found in (4.3). From the proof

of Theorem 4.3.2, we can see that there are no eigenvalues and thus by [2] (see sec.

82), ÊR,λ2 has no points of discontinuity so we can take δ = 0. Moreover, we can

move the ε limit inside the integral as the kernel of R̂ has analytic continuation above
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and below the interval (0, 1). It is clear that the spectrum of H∗RHR is λ2 ∈ [0, 1] in

view of Theorem 4.2.5, which shows that

RR+(λ2)−RR−(λ2)


= 0, λ2 ∈ R \ [0, 1]

6= 0, λ2 ∈ (0, 1),

(4.52)

where RR is the resolvent of H∗RHR, see (4.7). So from (4.3), (4.7), and Remark

4.2.2 we know that

ÊR,λ2 =
−1

2πi

∫ λ2

0

1

µ2

[
R+(µ2)−R−(µ2)

]
dµ2 (4.53)

=

∫ λ2

0

−sgn(µ)

2πiµ2
πR

[
R̂+(µ/2)− R̂−(µ/2)

]
πR dµ

2, (4.54)

and now plugging in (4.39) gives the result. Note that ∆λ2R(λ2) = sgn(λ)∆λR̂(λ/2)

(here ∆F := F+−F−), because when λ is on the upper shore of (−1, 0), λ2 is on the

lower shore of (0, 1).

4.3 Nature of the Spectrum of H∗RHR and H∗LHL

In this section, we show that the spectrum of H∗RHR and H∗LHL is simple and purely

absolutely continuous. We will prove statements in this section for H∗RHR only

because the statements and ideas for proofs are nearly identical for H∗LHL. Notice

that the resolution of the identity of H∗RHR (see (4.49)) can be compactly written
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as

ÊR,λ2 [f ](x) =

∫ λ2

0

ϕR(x, µ2)f̃(µ2) dµ2, (4.55)

where the operator f 7→ f̃ is defined as

f̃(µ2) :=

∫ bR

0

ϕR(z, µ2)f(z) dz (4.56)

and the kernel ϕR is defined in (4.51). We begin with an important Lemma.

Lemma 4.3.1. The map f 7→ f̃ , where f̃ is defined in (4.56), is an isometry from

L2([0, bR]) to L2([0, 1], λ2).

Proof. Let f ∈ C∞0 ((0, bR)), ∆ = (α, β) where 0 < α < β < 1 and denote

f∆(x) :=

∫
∆

dÊR,λ2 [f ](x) =

∫
∆

ϕ(x, λ2)f̃(λ2) dλ2, (4.57)

where ÊR,λ2 , defined in (4.49), is the resolution of the identity of H∗RHR. Notice that

ϕ(x, λ2) (defined in (4.51)) is smooth and real-valued for (x, λ2) ∈ (0, bR) × (0, 1)

(see Appendix C for properties of DR). Since ÊR,λ2 is the resolution of the identity,

f∆ → f in L2([0, bR]) as ∆→ [0, 1], so

〈f, f∆〉 → 〈f, f〉 = ‖f‖L2([0,bR]). (4.58)

Also,

〈f, f∆〉 =

∫ bR

0

f(x)

∫
∆

ϕ(x, λ2)f̃(λ2) dλ2dx =

∫
∆

∣∣∣f̃(λ)
∣∣∣2 dλ2 (4.59)
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which is clearly increasing as ∆ → [0, 1]. So we have an isometry provided f ∈

C∞0 ((0, bR)). But C∞0 ((0, bR)) is dense in L2([0, bR]) so this isometry extends to all

of L2([0, bR]) by continuity.

We are now ready to conclude this section.

Theorem 4.3.2. The spectrum of H∗RHR, H∗LHL is λ2 ∈ [0, 1] and is simple and

purely absolutely continuous.

Proof. We have shown previously in (4.52) that the spectrum in [0, 1].

Now for simple spectrum. According to [2], the spectrum of H∗RHR is simple if there

is a vector g ∈ L2([0, bR]) so that the span of ÊR,∆[g](x), where ∆ runs through

the set of all intervals of [0, 1], is dense in L2([0, bR]). Such a vector g is called a

generating vector ; we will show that

g(x) := χ[0,bR](x), (4.60)

the characteristic function on [0, bR], is a generating vector. So for any f ∈ L2([0, bR])

we want to show ∥∥∥∥f − n∑
j=1

αjnÊR,Ijn [g](x)

∥∥∥∥
L2([0,bR])

→ 0 (4.61)

as n → ∞, where αjn and Ijn are to be determined. Using the properties of ÊR,λ2 ,
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we calculate

f(x)−
n∑
j=1

αjnÊR,Ijn [g](x) =

∫ 1

0

ϕ(x, µ2)
{
f̃(µ2)− φ̃n(µ2)g̃(µ2)

}
dµ2 (4.62)

where ϕ(x, µ2), f̃ are defined in (4.51), (4.56), respectively, and φ̃n is the simple

function

φ̃n(µ2) =
n∑
j=1

αjnχIjn(µ2). (4.63)

Let ∆ be any interval subset of [0, 1]; then for any f ∈ L2([0, bR]),

〈ÊR,∆[f ](·), ÊR,∆[f ](·)〉 = 〈Ê2
R,∆[f ](·), f〉 = 〈ÊR,∆[f ](·), f〉 =

∥∥f̃∥∥2

L2(∆,λ2)
, (4.64)

where we have used the fact that ÊR,λ2 is a projection operator, see [2] p.214. Using

the properties of ÊR,λ2 , we can write the left hand side of (4.62) as

n∑
j=1

ÊR,Ijn [f − αjng](x). (4.65)

Now using (4.64), (4.65), and the fact that ÊR,∆j
ÊR,∆k

= 0 whenever ∆j ∩∆k = ∅
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(see [2]), we see that

∥∥∥∥f − n∑
j=1

αjnÊR,Ijn [g](x)

∥∥∥∥2

L2([0,bR])

=

∥∥∥∥ n∑
j=1

ÊR,Ijn [f − αjng](x)

∥∥∥∥2

L2([0,bR])

(4.66)

=
n∑
j=1

∥∥ÊR,Ijn [f − αjng](x)
∥∥2

L2([0,bR])
(4.67)

=
n∑
j=1

∥∥f̃ − αjng̃∥∥2

L2(Ijn,λ2)
(4.68)

=
∥∥f̃ − φ̃ng̃∥∥2

L2([0,1],λ2)
, (4.69)

since the intervals Ijn are disjoint and φ̃n was defined in (4.63). Now our goal is to

show that any f̃ ∈ L2([0, 1], λ2) can be approximated by φ̃ng̃. Using the properties

of DL, DR in Appendix C, it can be shown that

g̃(λ2) =

∫ bR

0

ϕ(x, λ2)g(x) dx = −DL(∞;λ)

√
|bL|bR(2a+ 1)

2i(bR − bL)
(4.70)

and g̃(λ2) is real analytic for λ2 ∈ (0, 1). It is clear that any f̃ can be approximated

by pieces of the smooth function g̃, so we have

∥∥∥∥f − n∑
j=1

αjnÊR,Ijn [g](x)

∥∥∥∥2

L2([0,bR])

=
∥∥f̃ − φ̃ng̃∥∥2

L2([0,1],λ2)
→ 0, (4.71)

as desired. Thus, the spectrum of H∗RH is simple and g = χ[0,bR] is a generating

vector.

Lastly, to show that the spectrum ofH∗RHR is purely absolutely continuous, we begin
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by showing that the resolvent of H∗RHR (see Proposition 4.2.1 and Theorem 2.2.4)

does not have any poles in the λ plane (thus H∗RHR has no eigenvalues). Recall from

Proposition 4.2.1 that the resolvent of H∗RHR is

RR(λ2) :=

(
I − 1

λ2
H∗RHR

)−1

= I + πRR̂(λ/2)πR (4.72)

and the kernel (see (2.20)) of R̂(λ) is

R(z, x;λ) =
~gt1(x)Γ−1(x;λ)Γ(z;λ)~f1(z)

2πiλ(z − x)
. (4.73)

Since Γ(z;λ) is the solution of RHP 2.2.1, it does not have any poles in the λ plane

and is singled valued for λ ∈ C \ [−1/2, 1/2]. so it is left to verify that λ = 0 is

not a pole of R̂(λ). But this is the case since if f ∈ L2([0, bR]) and H∗RHR[f ] = 0 it

must be true that f ≡ 0 because the null space of HR is {0}. Thus, H∗RHR has no

eigenvalues and its spectrum is continuous. To show that the spectrum of H∗RHR is

purely absolutely continuous, we need to show that

σf (λ
2) := 〈ÊR,λ2 [f ], f〉, (4.74)

where ÊR,λ2 is the resolution of the identity of H∗RHR, is absolutely continuous func-

tion for all f ∈ L2([0, bR]) which are real-valued, smooth and vanish at 0, bR (the set

of all such f form a dense set in L2([0, bR])). The kernel of dÊR,λ2/dλ
2 is computed
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in (4.79), then it is a simple calculation to show that

σ′f (λ
2) =

−bLbR(2a+ 1)

2π2iλ2(bR − bL)

(∫ bR

0

DR(ξ;λ)

ξ
f(ξ) dξ

)2

, (4.75)

where ′ denotes differentiation with respect to λ2. The integral in σ′f (λ
2) is real

analytic because the integrand is smooth for ξ ∈ (0, bR) and DR(ξ, λ) is real analytic

for λ2 ∈ (0, 1), so σ′f (λ
2) is real analytic for λ2 ∈ (0, 1) and thus σf (λ

2) is also real

analytic for λ2 ∈ (0, 1). Since ÊR,λ2 is the resolution of the identity, it must be true

that σf (0) = 0 and σf (1) = ||f ||2. Thus σf (λ
2) is absolutely continuous for λ2 ∈ [0, 1]

for any f which is a real-valued, smooth function vanishing at 0, bR, so the spectrum

of H∗RHR is purely absolutely continuous.

4.4 Diagonalization of H∗RHR and H∗LHL

We are now ready to use Theorem 4.1.1 and build the unitary operators which

will diagonalize H∗RHR and H∗LHL. Recall from Theorem 4.3.2 that χ[0,bR], χ[bL,0]

are generating vectors for H∗RHR,H∗LHL, respectively. Following Theorem 4.1.1, we

define UL : L2([bL, 0]) → L2([0, 1], σL) and UR : L2([0, bR])→ L2([0, 1], σR) by (here
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f̃ , g̃ are generic L2 functions, not to be confused with (4.56))

U∗L[g̃](y) :=

∫ 1

0

g̃(λ2) dÊL,λ2 [χ[bL,0]](y), (4.76)

U∗R[f̃ ](x) :=

∫ 1

0

f̃(λ2) dÊR,λ2 [χ[0,bR]](x), (4.77)

where ÊL,λ2 , ÊR,λ2 are the resolutions of the identity for H∗LHL,H∗RHR, respectively

and are defined in (4.50), (4.49), respectively. The spectral measures σL, σR are

defined as

σL(λ2) := 〈ÊL,λ2 [χ[bL,0]](x), χ[bL,0](x)〉, σR(λ2) := 〈ÊR,λ2 [χ[0,bR]](x), χ[0,bR](x)〉.

(4.78)

We are able to compute U∗L, U
∗
R, σ

′
L, σ

′
R explicitly (here ′ denotes differentitation with

respect to λ2) by using property 6 of Proposition C.0.1. We find that

dÊR,λ2

dλ2
[χ[0,bR]](x) =

bLbR(2a+ 1)

2πix|λ|(bR − bL)
DR(x;λ)DL(∞;λ), (4.79)

dÊL,λ2

dλ2
[χ[bL,0]](y) =

−bLbR(2a+ 1)

2πiy|λ|(bR − bL)
DL(y;λ)DR(∞;λ), (4.80)

and the derivatives of the spectral measures σR(λ2), σL(λ2) (defined in (4.78)) are

dσR(λ2)

dλ2
=
|bL|bR(a+ 1/2)

i(bR − bL)
D2
L(∞;λ), (4.81)

dσL(λ2)

dλ2
=
|bL|bR(a+ 1/2)

i(bR − bL)
D2
R(∞;λ). (4.82)
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Notice that both quantities above are non-negative a.e. since a + 1/2 has zero real

part and non-negative imaginary part for λ2 ∈ (0, 1), and DR(∞;λ) is real analytic

for λ2 ∈ (0, 1), see Appendix C. From the definitions of U∗L, U
∗
R in (4.76), (4.77), we

plug in our calculations in (4.81), (4.82), (4.79), (4.80). Now some simple algebra

shows that

U∗L[g̃](y) =

∫ 1

0

φL(y, λ)g̃(λ2) dσL(λ2), U∗R[f̃ ](x) =

∫ 1

0

φR(x, λ)f̃(λ2) dσR(λ2).

(4.83)

where σL, σR were defined in (4.82), (4.81), respectively, and the kernels φL, φR are

φL(y, λ) :=
DL(y;λ)

πy|λ|DR(∞;λ)
, φR(x, λ) :=

−DR(x;λ)

πx|λ|DL(∞;λ)
. (4.84)

So for any g ∈ L2([bL, 0]), g̃ ∈ L2([0, 1], σL), f ∈ L2([0, bR]), f̃ ∈ L2([0, 1], σR) we have

UL[g](λ2) =

∫ 0

bL

φL(y, λ)g(y) dy, U∗L[g̃](y) =

∫ 1

0

φL(y, λ)g̃(λ2) dσL(λ2), (4.85)

UR[f ](λ2) =

∫ bR

0

φR(x, λ)f(x) dx, U∗R[f̃ ](x) =

∫ 1

0

φR(x, λ)f̃(λ2) dσR(λ2), (4.86)

We have now proven the main result of this chapter.

Theorem 4.4.1. The operators UR : L2([0, bR]) → L2([0, 1], σR), UL : L2([bL, 0]) →

L2([0, 1], σL), defined in (4.86), (4.85), respectively, are unitary and

URH∗RHRU
∗
R = λ2, ULH∗LHLU

∗
L = λ2 (4.87)

in the sense of operator equality on L2([0, 1], σR), L2([0, 1], σL), respectively, where
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λ2 is to be understood as a multiplication operator.

Remark 4.4.2. The kernel of UR and U∗R is related to the kernel of the operator

f → f̃ , defined in (4.56), by

ϕ(x, λ2) = φR(x, λ)
√
σ′R(λ2), (4.88)

where ϕ, φR, σ
′
R are defined in (4.51), (4.84), (4.81), respectively. From this relation

we can immediately see that (here Tf = f̃ and T ∗ is the adjoint of T )

∥∥T ∗f∥∥
L2([0,bR])

=

∥∥∥∥U∗R f√
σ′R

∥∥∥∥
L2([0,bR])

=

∥∥∥∥ f√
σ′R

∥∥∥∥
L2([0,1],σR)

=
∥∥f∥∥

L2([0,1],λ2)
(4.89)

for any f ∈ L2([0, 1], λ2), since UR is unitary, by Theorem 4.4.1.
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CHAPTER 5: DIAGONALIZATION OF HR,HL VIA

TITCHMARSH-WEYL THEORY

Using recent developments in the Titchmarsh-Weyl theory obtained in [10], it was

shown in [16] that the operator

Lf(x) := [P (x)f ′(x)]
′
+ 2

(
x− bR + bL

4

)2

f(x), P (x) := x2(x− bL)(x− bR) (5.1)

has only continuous spectrum and commutes with the FHTs HL,HR, defined in

(2.1). We now state the main result of [16] and refer the reader to this paper for

more details.

Theorem 5.0.1. The operators U1 : L2([bL, 0]) → L2(J, ρ1) and U2 : L2([0, bR]) →

L2(J, ρ2), where J = [(b2
L + b2

R)/8,∞), are isometric transformations. Moreover, in

the sense of operator equality on L2(J, ρ2) one has

U2HLU
∗
1 = σ(ω), (5.2)

where

σ(ω) =
−bR

bL cosh(µ(ω)π)

(
1 + O

(
ε
1
2
−δ
))

, ω →∞ (5.3)

ε = ω−1/2, µ(ω) =
√

ω−(bL+bR)2/8
−bLbR

− 1
4
, and 0 < δ << 1 is fixed.

There is a minor typo in this theorem in [16]; when describing σ(λ), the factor
a32
a1

is incorrect and has been fixed here. The operators U1, U2 in Theorem 5.0.1 were

80



obtained asymptotically when ω → ∞. Here we obtain these operators explicitly.

Throughout this dissertation the spectral parameter of operators H∗RHR,H∗LHL is

λ2, but in [16] the spectral parameter (also named λ) is for the differential operator L

so we rename the spectral parameter of L to ω. Thus it is important to establish the

relation between λ and ω. It is shown below in Remark 5.1.2 that, for λ ∈ [−1, 1],

the relation is

ω(λ) =
(bL + bR)2

8
+ bLbR · a−(−|λ|/2)(a−(−|λ|/2) + 1), (5.4)

where a(λ) is defined in Appendix B, which implies ω ∈ [(b2
L + b2

R)/8,∞). This

relation between ω and λ also immediately implies

λ2 = sech2(µ(ω)π) ⇐⇒ iµ(ω) = a−(−|λ|/2) +
1

2
(5.5)

for λ ∈ [−1, 1], where

µ(ω) =

√
ω − (bL+bR)2

8

−bLbR
− 1

4
. (5.6)

First we construct explicit solutions of the equation Lf = ωf in terms of the hy-

pergeometric functions that appear in Γ(z;λ). Then we follow the same process as

described in [16] to create the unitary operators U1, U2 which will diagonalizeHL,HR.
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5.1 Explicit solutions to Lf = ωf

In this section we construct a particular linearly independent solution set of Lf = ωf

on [bL, 0] and [0, bR] which satisfy the properties required in [10]. Once these pairs

of solutions are obtained, [10] tells us how to construct the spectral measure and

unitary operators which will diagonalize HL,HR (this will be done in section 5.2).

5.1.1 Right Interval

The goal of this subsection is to construct functions ϕ2, ϑ2 that have the following

properties:

1. For x ∈ [0, bR] and ω ∈ [(b2
L + b2

R)/8,∞), ϕ2(x, ω), ϑ2(x, ω) are linearly inde-

pendent solutions of the ODE

ωg(x) = [P (x)g′(x)]
′
+ 2

(
x− bR + bL

4

)2

g(x), (5.7)

where P (x) := x2(x− bL)(x− bR),

2. ϕ2(x, ω), ϑ2(x, ω) ∈ R, for all x ∈ [0, bR], ω ∈ R,

3. P (x)ϕ′2(x, ω)→ 0 as x→ b−R,

4. P (x)Wx(ϑ2(x, ω), ϕ2(x, ω)) = 1 for all x ∈ [0, bR], ω ∈ C,

5. lim
x→b−R

P (x)Wx(ϑ2(x, ω), ϕ2(x, ω′)) = 1 for all ω, ω′ ∈ C,
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which are necessary in order to use the results of [10]. We will build ϕ2, ϑ2 from

the functions x−1h′∞ and x−1s′∞, where h′∞, s
′
∞ are defined in (2.13), (2.14). We

know from [16] that the kernel of the unitary operator which will diagonalize HR

is expressed in terms of ϕ2. But from Theorem 4.4.1 we know that the kernel of

the unitary operator which diagonalizes H∗RHR is expressed in terms of x−1DR(x;λ),

which is a linear combination of x−1h′∞ and x−1s′∞. Thus it is reasonable to think

that both ϕ2 and x−1h′∞, x
−1s′∞ are solutions of the same ODE.

Theorem 5.1.1. The functions

gh,R(x, λ) :=
1

x
h′∞ (M1(x)) , gs,R(x, λ) :=

1

x
s′∞ (M1(x)) , (5.8)

where M1(x), h′∞, s
′
∞ are defined in Remark 4.1.2, (2.13), (2.14), respectively, are

linearly independent solutions of

L[g](x) =

[
(bL + bR)2

8
+ bLbR · a−(−|λ|/2)(a−(−|λ|/2) + 1)

]
g(x), (5.9)

where L is defined in (5.1). Moreover,

Wx[gh,R, gs,R] =
a(a+ 1)(2a+ 1)(bR − bL)

P (x)
, (5.10)

where a := a−(−|λ|/2) is defined in Appendix B.

Proof. We understand that h′∞ and s′∞ are functions of −|λ|/2, as in (4.48). Recall
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from (A.1) that h∞(η), s∞(η) are linearly independent solutions to the ODE

η(1− η)w′′(η) + a(a+ 1)w(η) = 0, (5.11)

thus h′∞(η), s′∞(η) are linearly independent solutions to the ODE

η(1− η)w′′′(η) + (1− 2η)w′′(η) + a(a+ 1)w′(η) = 0. (5.12)

Since

gh,R(x) =
1

x
h′∞ (M1(x)) , (5.13)

it is easy to verify that

g′h,R(x) =
bRbL

x3(bR − bL)
h′′∞ (M1(x))− 1

x2
h′∞ (M1(x)) , (5.14)

g′′h,R(x) =
b2
Rb

2
L

x5(bR − bL)2
h′′′∞ (M1(x))− 4bRbL

x4(bR − bL)
h′′∞ (M1(x)) +

2

x3
h′∞ (M1(x)) .

(5.15)

Solving for h∞ in terms of g, we have

h′∞ (M1(x)) = xgh,R(x), (5.16)

h′′∞ (M1(x)) =
x3(bR − bL)

bRbL

(
g′h,R(x) +

gh,R(x)

x

)
, (5.17)

h′′′∞ (M1(x)) =
x5(bR − bL)2

b2
Rb

2
L

(
g′′h,R(x) +

4

x
g′h,R(x) +

2

x2
gh,R(x)

)
. (5.18)
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So taking η = M1(x) in (5.12), we have

0 =
−bRbL(x− bR)(x− bL)

x2(bR − bL)2
h′′′∞ (M1(x))− x(bR + bL)− 2bRbL

x(bR − bL)
h′′∞ (M1(x))

+ a(a+ 1)h′∞ (M1(x)) . (5.19)

Now writing h∞ in terms of gh,R, we obtain our result. To show linear indepen-

dence, we compute the Wronskian. The Wronskian matrix is (here h∞, s∞ are to be

evaluated at M1(x))

[
h′∞
x

s′∞
x

bRbLh
′′
∞

x3(bR−bL)
− h′∞

x2
bRbLs

′′
∞

x3(bR−bL)
− s′∞

x2

]
=

1

x

[
1 0
−1
x

bRbL
x2(bR−bL)

][
h′∞ s′∞

h′′∞ s′′∞

]
(5.20)

=
1

x

[
1 0
−1
x

bRbL
x2(bR−bL)

][
1 0

0 − a(a+1)
M1(1−M1)

]
σ1Γ̂(M1(x)),

(5.21)

where Γ̂ was defined in (2.18). It is easy to show thatM1(x)(1−M1(x)) = −bRbL(x−bL)(x−bR)
x2(bR−bL)2

.

Recall, from (A.15), that det Γ̂ = −2a− 1. So we have

Wx[gh,R, gs,R] =
1

x2
· bRbL
x2(bR − bL)

· −a(a+ 1)(2a+ 1)

M1(1−M1)
=
a(a+ 1)(2a+ 1)(bR − bL)

x2(x− bR)(x− bL)
.

(5.22)

Remark 5.1.2. Since we are interested in solutions of Lf = ωf (see (5.1) for L),
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Theorem 5.1.1 shows that the relation between ω and λ is

ω(λ) =
(bL + bR)2

8
+ bLbR · a−(−|λ|/2)(a−(−|λ|/2) + 1) (5.23)

for λ ∈ [−1, 1], see Appendix B for a(λ).

Define the function

fR(x, ω) :=
bR(bR − bL)

x(bR + bL)− 2bRbL
M4(x)−

1
2

+iµ
2F1

(
1
4

+ iµ
2
, 3

4
+ iµ

2

1 + iµ

∣∣∣∣M2
4 (x)

)
, (5.24)

where M4(x) is defined in Remark 4.1.2. If we take bR = −bL = a, where a is a

constant, we obtain (4.9) of [16]. We now describe the relation of fR(x, ω) to h′∞,

s′∞.

Proposition 5.1.3. For λ ∈ [−1, 1], the functions fR(x, ω), fR(x, ω), defined in

(5.24), are linearly independent solutions to ODE (5.7) and

−bRα(λ)

x
√
π

h′∞ (M1(x)) = kfR(x, ω),
−bRβ(λ)

x
√
π

s′∞ (M1(x)) = kfR(x, ω) (5.25)

where M1(x) is defined in Remark 4.1.2, α, β and h′∞, s
′
∞ are defined in (4.20) and

(2.13),(2.14), respectively and

k =
Γ(−iµ)

Γ(1
4
− iµ

2
)Γ(3

4
− iµ

2
)
. (5.26)

See (5.4) for the relation between ω and λ and (5.6) for µ.

86



Proof. We prove the identities (5.25) first, then it is clear that fR, fR solve ODE

(5.7) since x−1h′∞, x
−1s′∞ solve that ODE. First, we have

α(λ) =
tan(aπ)Γ(a)

eaπi4a+1Γ(a+ 3/2)
=

√
πΓ(−a− 1

2
)

aeaπi2a+1Γ
(
−a

2

)
Γ
(

1
2
− a

2

) =
k
√
π

aeaπi2a+1
(5.27)

and, from [1] 15.3.16,

2F1

(
a+ 1, a+ 1

2a+ 2

∣∣∣∣ 1

M1(x)

)
= 2a+1

[
x(bR + bL)− 2bRbL

bR(x− bL)

]−a−1

2F1

( a
2

+ 1
2
, a

2
+ 1

a+ 3
2

∣∣∣∣M2
4 (x)

)
.

(5.28)

Now putting the previous two equations together,

−bRα(λ)

x
√
π

h′∞ (M1(x)) =
bRΓ(−a− 1

2
)

xΓ
(
−a

2

)
Γ
(

1
2
− a

2

)M4(x)a+1
2F1

( a
2

+ 1
2
, a

2
+ 1

a+ 3
2

∣∣∣∣M2
4 (x)

)
(5.29)

=
kbR(bR − bL)

x(bR + bL)− 2bRbL
M4(x)−

1
2

+iµ
2F1

(
1
4

+ iµ
2
, 3

4
+ iµ

2

1 + iµ

∣∣∣∣M2
4 (x)

)
(5.30)

= kfR(x, ω) (5.31)

where we have used iµ = a+ 1
2
. Similarly, we have

β(λ) =

√
πeaπi2aΓ(a+ 1

2
)

(a+ 1)Γ(a
2

+ 1
2
)Γ(a

2
+ 1)

=

√
πeaπi2ak

a+ 1
(5.32)

87



and, from [1] 15.3.16,

s′∞ (M1(x)) = −a+ 1

eaπi

[
x(bR + bL)− 2bRbL

2bR(x− bL)

]a
2F1

(
−a

2
,−a

2
+ 1

2

−a+ 1
2

∣∣∣∣M2
4 (x)

)
. (5.33)

Now putting the previous two equations together,

−bRβ(λ)

x
√
π

s′∞ (M1(x)) =
bRk

x
M4(x)−a2F1

(
−a

2
,−a

2
+ 1

2

−a+ 1
2

∣∣∣∣M2
4 (x)

)
(5.34)

=
kbR(bR − bL)

x(bR + bL)− 2bRbL
M4(x)−

1
2
−iµ

2F1

(
1
4
− iµ

2
, 3

4
− iµ

2

1− iµ

∣∣∣∣M2
4 (x)

)
(5.35)

= kfR(x, ω). (5.36)

Remark 5.1.4. Using properties of the Gamma functions, see [1] 6.1.30, it can be

shown that

|k|2 =
coth(µπ)

2πµ
, (5.37)

provided that µ ≥ 0.

Proposition 5.1.5. The Wronskian of fR(x, ω), fR(x, ω) is

Wx[fR(x, ω), fR(x, ω)] =
iµb2

R(bR − bL)

P (x)
, (5.38)

where fR is defined in (5.24) and P (x) = x2(x− bL)(x− bR).
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Proof. We have already computed the Wronskian of h′∞(M1)
x

, s
′
∞(M1)
x

, see (5.10). Using

the relation between h′∞, s
′
∞ and fR, fR

Wx[fR(x, ω), fR(x, ω)] = Wx

[
−bRα
kx
√
π
h′∞(M1),

−bRβ
kx
√
π
s′∞(M1)

]
(5.39)

=
b2
Rαβ

π|k|2
Wx[x

−1h′∞(M1), x−1s′∞(M1)] (5.40)

=
µb2

R tan(aπ) tanh(µπ)

2a(a+ 1)(a+ 1/2)
· a(a+ 1)(2a+ 1)(bR − bL)

P (x)
(5.41)

=
iµb2

R(bR − bL)

P (x)
. (5.42)

Define

ϕ2(x, ω) := kfR(x, ω) + kfR(x, ω), (5.43)

where k, fR are defined in (5.26), (5.24), respectively.

Proposition 5.1.6. The function ϕ2(x, ω), defined in (5.43), solves ODE (5.7) and

ϕ2(x, ω) =
−bRDR(x;λ)

x
√
π

=
bR(bR − bL)

x(bR + bL)− 2bRbL
M4(x)−

1
2

+iµ
2F1

( iµ
2

+ 1
4
, iµ

2
+ 3

4

1

∣∣∣∣ 1−M2
4 (x)

)
(5.44)

where M4(x) is defined in Remark 4.1.2 and DR(x;λ) was defined in (4.48). More-

over, ϕ2(x, ω) is analytic in a neighborhood of x = bR and ϕ2(bR, ω) = 1.

Remark 5.1.7. If we take bR = −bL = a (here a is a positive constant) in (5.44),

we obtain (4.25) in [16].
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Proof. It is obvious that ϕ2 is a solution of ODE (5.7) since both fR, fR are solutions

of ODE (5.7). The relationship with DR is clear in view of (5.25), since

ϕ2(x, ω) = kfR(x, ω)+kfR(x, ω) =
−bR
x
√
π

(αh′∞ (M1(x)) + βs′∞ (M1(x))) =
−bR
x
√
π
DR(x;λ),

(5.45)

and we know DR(x;λ) is analytic at x = bR, see Appendix C. To express ϕ2 as a

single hypergeometric function,

DR(x;λ) = α(λ)h′∞ (M1(x)) + β(λ)s′∞ (M1(x)) (5.46)

= −
√
π

Γ(1)Γ(−a− 1/2)

Γ
(
−a

2

)
Γ
(

1
2
− a

2

) ·M4(x)a+1
2F1

( a
2

+ 1
2
, a

2
+ 1

a+ 3
2

∣∣∣∣M2
4 (x)

)
(5.47)

−
√
πΓ(1)Γ(a+ 1

2
)

Γ(a
2

+ 1)Γ(a
2

+ 1
2
)
·M4(x)−a2F1

(
−a

2
,−a

2
+ 1

2

−a+ 1
2

∣∣∣∣M2
4 (x)

)
(5.48)

= −
√
πM4(x)a+1

{
Γ(1)Γ(−a− 1/2)

Γ
(
−a

2

)
Γ
(

1
2
− a

2

)2F1

( a
2

+ 1
2
, a

2
+ 1

a+ 3
2

∣∣∣∣M2
4 (x)

)
(5.49)

+
Γ(1)Γ(a+ 1

2
)

Γ(a
2

+ 1)Γ(a
2

+ 1
2
)
·M4(x)2(−a−1/2)

2F1

(
−a

2
,−a

2
+ 1

2

−a+ 1
2

∣∣∣∣M2
4 (x)

)}
(5.50)

= −
√
πM4(x)a+1

2F1

(
a
2

+ 1
2
, a

2
+ 1

1

∣∣∣∣ 1−M2
4 (x)

)
(5.51)

where we have used [1] 15.3.6. Making the substitution iµ = a+ 1
2

gives the result.

Define another solution of ODE (5.7)

ϑ2(x, ω) = l2fR(x, ω) + l2fR(x, ω) (5.52)
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where fR is defined in (5.24) and the constant l2 ∈ C is to be determined.

Lemma 5.1.8. Let x ∈ [0, bR], µ ∈ R, and l2 ∈ C be such that

=[l2k] =
−1

2µb2
R(bR − bL)

(5.53)

where k is defined in (5.26). Then,

P (x)Wx[ϑ2(x, ω), ϕ2(x, ω)] = 1, (5.54)

where P (x) = x2(x−bR)(x−bL) and ϑ2, ϕ2 are defined in (5.52), (5.43), respectively.

Proof. This statement is a consequence of Proposition 5.1.5, which states that

Wx[fR(x, ω), fR(x, ω)] =
iµb2

R(bR − bL)

P (x)
. (5.55)

Thus,

Wx[ϑ2, ϕ2] = Wx[l2fR + l2fR, kfR + kfR] (5.56)

= Wx[l2fR, kfR] +Wx[l2fR, kfR] (5.57)

= 2i=[l2k]Wx[fR(x, ω), fR(x, ω)] (5.58)

=
−2µb2

R(bR − bL)

P (x)
=[l2k] (5.59)

and the result follows.
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Remark 5.1.9. To uniquely define the constant l2, we choose l2 so that the order 1

term as x→ bR of ϕ2 is 0. According to [1] 15.3.10,

ϑ2(x, ω) = −2<[iµl2k] ln(bR − x)− 2<
[
iµl2k

{
2γ + 2Ψ

(
1

2
+ iµ

)
+ ln

(
|bL|

bR(bR − bL)

)}]
+ o(1) as x→ b−R, (5.60)

where γ is Euler’s constant, Ψ is the Digamma function, and k, ϑ2 are defined in

(5.26), (5.52), respectively. Some elementary algebra shows that choosing l2 ∈ C so

that

<[l2k] =
2γ + 2<

[
Ψ
(

1
2

+ iµ
)]

+ ln
(

|bL|
bR(bR−bL)

)
−π tanh(µπ)

· =[l2k] (5.61)

=
2γ + 2<

[
Ψ
(

1
2

+ iµ
)]

+ ln
(

|bL|
bR(bR−bL)

)
2µπb2

R(bR − bL) tanh(µπ)
(5.62)

guarantees

<
[
iµl2k

{
2γ + 2Ψ

(
1

2
+ iµ

)
+ ln

(
|bL|

bR(bR − bL)

)}]
= 0. (5.63)

Moreover, we solve for l2 explicitly and find

l2 =
k

b2
R(bR − bL)

[
2γ + 2Ψ

(
1

2
− iµ

)
+ ln

(
|bL|

bR(bR − bL)

)]
. (5.64)

We have now gathered the necessary ingredients to prove the main result of this

subsection.
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Theorem 5.1.10. The functions ϕ2(x, ω), ϑ2(x, ω), defined in (5.43),(5.52), respec-

tively, satisfy properties (1)-(5) listed at the beginning of section 5.1.1.

Proof. This statement is a collection of the results of this subsection.

1. Both ϕ2, ϑ2 are a linear combination of functions fR, fR which are solutions

of ODE (5.7), due to Proposition 5.1.3. From Lemma 5.1.8, we can see that

ϕ2, ϑ2 are linearly independent.

2. This is obvious due to definitions of ϑ2, ϕ2, which can be found in (5.52),(5.43),

respectively.

3. This follows since ϕ2(x, ω) is analytic at x = bR, see Proposition 5.1.6.

4. For x ∈ [0, bR] and µ ∈ R, Lemma 5.1.8 tells us that P (x)Wx[ϑ2(x, ω), ϕ2(x, ω)] =

1. For any fixed x ∈ [0, bR], P (x)Wx[ϑ2(x, ω), ϕ2(x, ω)] is real analytic for

µ ∈ R and thus can be extended analytically into the complex µ−plane. But

P (x)Wx[ϑ2(x, ω), ϕ2(x, ω)] = 1 for µ ∈ R so P (x)Wx[ϑ2(x, ω), ϕ2(x, ω)] = 1 for

µ ∈ C as well.

5. We know from Proposition 5.1.6 that ϕ2(bR, ω) = 1 and from Remark 5.1.9

ϑ2(x, ω) has log type behavior when x→ b−R, so

ϕ2(x, ω) = 1 + O (x− bR) (5.65)

ϑ2(x, ω) = −2<[iµl2k] ln(bR − x) + o(1) (5.66)
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as x→ b−R and −2<[iµl2k] = −1
b2R(bR−bL)

for µ ∈ R, from Lemma 5.1.8. Thus,

Wx [ϑ2(x, ω), ϕ2(x, ω′)] = ϑ2(x, ω)ϕ′2(x, ω′)− ϑ′2(x, ω)ϕ2(x, ω′) (5.67)

=
2<[iµl2k]

bR − x
− 2<[iµl2k]ϕ′2(bR, ω

′) ln(bR − x) + O (1)

(5.68)

so it is clear that

lim
x→b−R

P (x)Wx [ϑ2(x, ω), ϕ2(x, ω′)] = 1 (5.69)

as x → b−R for any ω′ ∈ C and ω ∈ ((b2
L + b2

R)/8,∞) (this implies µ ∈ R).

But as before, limx→b−R
P (x)Wx [ϑ2(x, ω), ϕ2(x, ω′)] is a real analytic function

of ω for ω ∈ ((b2
L + b2

R)/8,∞) and any ω′ ∈ C. So again we can extend to the

complex ω−plane and see that

lim
x→b−R

P (x)Wx [ϑ2(x, ω), ϕ2(x, ω′)] = 1 (5.70)

for any ω, ω′ ∈ C.

Now we repeat this process on [bL, 0], where there are many similarities.
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5.1.2 Left Interval

This subsection will be very similar to the last; we will construct functions ϕ1, ϑ1 on

[bL, 0] that satisfy the following properties:

1. For x ∈ [bL, 0] and ω ∈ [(b2
L + b2

R)/8,∞), ϕ1(x, ω), ϑ1(x, ω) ∈ R are linearly

independent solutions of the ODE

ωg(x) = [P (x)g′(x)]
′
+ 2

(
x− bR + bL

4

)2

g(x), (5.71)

2. ϕ1(x, ω), ϑ1(x, ω) ∈ R, for all x ∈ [bL, 0], ω ∈ R,

3. P (x)ϕ′1(x, ω)→ 0 as x→ b+
L ,

4. −P (x)Wx(ϑ1(x, ω), ϕ1(x, ω)) = 1 for all ω ∈ C,

5. lim
x→b+L

−P (x)Wx(ϑ1(x, ω), ϕ1(x, ω′)) = 1 for all ω, ω′ ∈ C,

which are necessary in order to use the results of [10]. As before, we will build ϕ1, ϑ1

from the functions x−1h′∞ and x−1s′∞.

Theorem 5.1.11. The functions

gh,L(x, λ) :=
1

x
h′∞ (M3(x)) , gs,L(x, λ) :=

1

x
s′∞ (M3(x)) , (5.72)

where M3(x), h′∞, s
′
∞ are defined in Remark 4.1.2, (2.13), (2.14), respectively, are
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linearly independent solutions of ODE (5.71) and

Wx[gh,L, gs,L] =
a(a+ 1)(2a+ 1)(bR − bL)

−P (x)
, (5.73)

where a := a−(−|λ|/2) (see Appendix B).

Proof. This immediately follows from Theorem 5.1.1 by switching bR, bL.

Define function

fL(x, ω) :=
−bL(bR − bL)

x(bR + bL)− 2bRbL
(−M4(x))−

1
2

+iµ
2F1

(
1
4

+ iµ
2
, 3

4
+ iµ

2

1 + iµ

∣∣∣∣M2
4 (x)

)
,

(5.74)

where M4(x) is defined in Remark 4.1.2.

Proposition 5.1.12. For x ∈ [bL, 0], the functions fR, fL, defined in (5.24), (5.74),

respectively, have the relation

b2
LfR (M2(x), ω)

x(bR + bL)− bLbR
= fL(x, ω), (5.75)

where M2(x) is defined in Remark 4.1.2.
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Proof. This statement is easy to prove because −M4(x) = M4(M2(x)). Thus,

fR(M2(x), ω) =
bR

M2(x)
M4(M2(x))

1
2

+iµ
2F1

(
1
4

+ iµ
2
, 3

4
+ iµ

2

1 + iµ

∣∣∣∣M2
4 (M2(x))

)
(5.76)

=
bR

M2(x)
(−M4(x))

1
2

+iµ
2F1

(
1
4

+ iµ
2
, 3

4
+ iµ

2

1 + iµ

∣∣∣∣M2
4 (x)

)
(5.77)

=
bR

M2(x)
· −x(bR − bL)

x(bR + bL)− 2bLbR
(−M4(x))−

1
2

+iµ
2F1

(
1
4

+ iµ
2
, 3

4
+ iµ

2

1 + iµ

∣∣∣∣M2
4 (x)

)
(5.78)

=
bRx

bLM2(x)
fL(x, ω) (5.79)

which is equivalent to the result.

Simply put, we have obtained fL(x, ω) by interchanging bR and bL in fR(x, ω), see

(5.24). Thus the following Proposition immediately follows.

Proposition 5.1.13. For x ∈ [bL, 0] and λ ∈ [−1, 1], the functions fL(x, ω), fL(x, ω),

defined in (5.74), are linearly independent solutions to ODE (5.71) and

−bLα(λ)

x
√
π

h′∞ (M3(x)) = kfL(x, ω),
−bLβ(λ)

x
√
π

s′∞ (M3(x)) = kfL(x, ω) (5.80)

where α, β and k, h′∞, s
′
∞, are defined in (4.20) and (5.26), (2.13), (2.14), respectively.

See (5.4) for the relation between ω and λ.

Proof. This follows immediately from the relation in Proposition 5.1.12, (5.25) and
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Proposition 5.1.11.

Proposition 5.1.14. The Wronskian of fL(x, ω), fL(x, ω) is

Wx[fL(x, ω), fL(x, ω)] =
iµb2

L(bR − bL)

−P (x)
, (5.81)

where fL was defined in (5.74).

Proof. This follows by switching bR and bL in Proposition 5.1.5.

Define another two solutions of ODE (5.71)

ϕ1(x, ω) := kfL(x, ω) + kfL(x, ω), (5.82)

ϑ1(x, ω) := l1fL(x, ω) + l1fL(x, ω), (5.83)

where k, fL are defined in (5.26), (5.74), respectively, and the constant l1 ∈ C is to

be determined.

Remark 5.1.15. Combining Proposition 5.1.12, Appendix C and Proposition 5.1.13,

we can see that

ϕ1(x, ω) =
bLM2(x)

bRx
ϕ2(M2(x), ω) =

−bL
x
√
π
DL(x;λ), (5.84)

ϕ1(x, ω) is analytic in a neighborhood of x = bL and ϕ1(bL, ω) = 1. See Remark

4.1.2 for M2(x), and ϕ1, ϕ2, DL are defined in (5.82), (5.43), (4.48), respectively.
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Remark 5.1.16. If we take bR = −bL in Remark 5.1.15, we obtain

ϕ1(x, ω) = ϕ2(−x, ω), (5.85)

which was previously obtained in [16].

Lemma 5.1.17. Let x ∈ [bL, 0], µ ∈ R, and l1 ∈ C be such that

=[l1k] =
−1

2µb2
L(bR − bL)

, (5.86)

where k was defined in (5.26). Then,

−P (x)Wx[ϑ1, ϕ1] = 1, (5.87)

where ϕ1, ϑ1 are defined in (5.82), (5.83), respectively.

Proof. From Proposition 5.1.14, we have the Wronskian of fL, fL.

Wx[ϑ1, ϕ1] = Wx[l1fL + l1fL, kfL + kfL] (5.88)

= 2i=[l1k]Wx[fL, fL] (5.89)

=
−2µb2

L(bR − bL)

−P (x)
=[l1k] (5.90)

which is our result.
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We have now gathered the necessary ingredients to prove the main result of this

subsection.

Theorem 5.1.18. The functions ϕ1(x, ω), ϑ1(x, ω), defined in (5.82),(5.83), respec-

tively, satisfy properties (1)-(5) listed at the beginning of section 5.1.2.

Proof. This statement is a collection of the previous results of this section.

1. Both ϕ1, ϑ1 are a linear combination of functions fL, fL which are solutions of

ODE (5.71), due to Proposition 5.1.13. From Lemma 5.1.17, we can see that

ϕ1, ϑ1 are linearly independent.

2. This is obvious due to definitions of ϑ1, ϕ1, which can be found in (5.83),(5.82),

respectively.

3. This follows since ϕ1(x, ω) is analytic at x = bL, see Proposition 5.1.15.

4. Same idea as in Theorem 5.1.10.

5. Same idea as in Theorem 5.1.10.

5.2 Diagonalization of HL,HR

According to the spectral theory developed in [10], we have gathered nearly all nec-

essary ingredients to diagonalize HL,HR. The last step is to construct two functions

100



m1(ω) and m2(ω) so that

ϑ1(x, ω) +m1(ω)ϕ1(x, ω) ∈ L2([bL, 0]), ϑ2(x, ω) +m2(ω)ϕ2(x, ω) ∈ L2([0, bR])

(5.91)

whenever =ω > 0. The spectral measures ρ1, ρ2 are constructed via the formula

ρj(ω2)− ρj(ω1) = lim
ε→0+

1

π

∫ ω2

ω1

=mj(s+ iε) ds, (5.92)

for j = 1, 2 (see [10] for more details). Recall from (5.74) that when =ω > 0(⇐⇒ =µ > 0),

fL 6∈ L2([bL, 0]) due to x−1/2+iµ behavior at x = 0 (see (5.74) for the definition of

fL). This implies that fL ∈ L2([bL, 0]). Inspecting ϑ1 +m1ϕ1, we see that

ϑ1 +m1ϕ1 = fL(l1 +m1k) + fL(l1 +m1k) =⇒ m1 = − l1
k

(5.93)

guarantees that ϑ1 +m1ϕ1 ∈ L2([bL, 0]). So using Lemma 5.1.17 and Remark 5.1.4,

we have that

m1(ω) = − l1
k

= − l1k
|k|2

=⇒ =[m1(ω)] = −=[l1k]

|k|2
=
π tanh(µπ)

b2
L(bR − bL)

, (5.94)

where we have used Lemma 5.1.17, Remark 5.1.4, and µ was defined in (5.6). So

according to (5.92), we have

ρ′1(ω) =
=[m1(ω)]

π
=

tanh(µπ)

b2
L(bR − bL)

. (5.95)
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Repeating this process for m2, we find that ϑ2 + m2ϕ2 ∈ L2([0, bR]) for =ω > 0

implies that

m2(ω) = − l2
k

= − l2k
|k|2

=⇒ =[m2(ω)] = −=[l2k]

|k|2
=
π tanh(µπ)

b2
R(bR − bL)

, (5.96)

where we have used Lemma 5.1.8 and Remark 5.1.4. Thus, by (5.92),

ρ′2(ω) =
=[m2(ω)]

π
=

tanh(µπ)

b2
R(bR − bL)

. (5.97)

According to [10], the operators U1 : L2([bL, 0]) → L2(J, ρ1) and U2 : L2([0, bR]) →

L2(J, ρ2), where J =
(
b2R+b2L

8
,∞
)

, defined by

U1[f ](ω) :=

∫ 0

bL

ϕ1(x, ω)f(x) dx, U∗1 [f ](ω) :=

∫
J

ϕ1(x, ω)f̃(ω) dρ1(ω) (5.98)

U2[f ](ω) :=

∫ bR

0

ϕ2(x, ω)f(x) dx, U∗2 [f̃ ](ω) :=

∫
J

ϕ2(x, ω)f̃(ω) dρ2(ω) (5.99)

are unitary, where ϕ1, ϕ2 and ρ′1, ρ
′
2 are defined in (5.82),(5.43) and (5.95),(5.97),

respectively. According to Appendix C and Remark 5.1.15,

HL[ϕ1](y, ω) = HL

[
−bLDL(x;λ)

x
√
π

]
(y, ω) =

−|λ|bL
bR

· −bRDR(x;λ)

x
√
π

=
−bL
bR

sech(µπ)ϕ2(x, ω).

(5.100)
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Following [16], eq. (3.41), we have that

HLU
∗
1 [f̃ ](x) =

∫
J

HL[ϕ1](x, ω)f̃(ω) dρ1(ω) (5.101)

=

∫
J

− bL
bR

sech(µπ)
ρ′1(ω)

ρ′2(ω)
ϕ2(x, ω)f̃(ω) dρ2(ω) (5.102)

= U∗2

[
−bLρ′1(ω)

bRρ′2(ω)
sech(µπ)f̃(ω)

]
(x) (5.103)

which is equivalent to

U2HLU
∗
1 = −bR

bL
sech(µπ). (5.104)

Thus we have proven the following:

Theorem 5.2.1. The operators Uj, j = 1, 2, defined in (5.98), are unitary and in

the sense of operator equality on L2(J, ρ2) one has

U2HLU
∗
1 = −bR

bL
sech(µπ), (5.105)

where ρ′2 is defined in (5.97).

Remark 5.2.2. This result was previously obtained in [16] (Theorem 3.1) but only

asymptotically for large ω. The factor
a32
a1

in Theorem 3.1 of [16] is a typo and should

be −a2
a1

.

Since the adjoint of HL is −HR, we have an immediate Corollary.

Corollary 5.2.3. In the sense of operator equality on L2(J, ρ1) one has

U1H∗LU∗2 = − bL
bR

sech(µπ), U1H∗LHLU
∗
1 = sech2(µπ), (5.106)
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and in the sense of operator equality on L2(J, ρ2) one has

U2H∗RHRU
∗
2 = sech2(µπ), (5.107)

where ρ′1, ρ
′
2 are defined in (5.95), (5.97), respectively.

Proof. The proof follows quickly from Theorem 5.2.1 because

(U2HLU
∗
1 )∗ = U1H∗LU∗2 (5.108)

and (what follows is the multiplication operator)

(
−bR
bL

sech(µπ)

)∗
= −bR

bL
sech(µπ) · ρ

′
2(ω)

ρ′1(ω)
= − bL

bR
sech(µπ). (5.109)
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CHAPTER 6: MATCHING RESULTS FROM CHAPTERS

4 AND 5

In chapters 4 and 5, we obtained two (seemingly) different diagonalizations of H∗RHR

and H∗LHL. We show that the diagonalizations of H∗LHL and H∗RHR obtained in

chapters 4 and 5 are equivalent, in the sense of change of spectral variable. See (5.4)

for the relation between λ and ω.

Theorem 6.0.1. The two diagonalizations of H∗LHL obtained in Theorem 4.4.1 and

Corollary 5.2.3 are equivalent; that is,

U∗1 sech2(µπ)U1 = U∗Lλ
2UL (6.1)

in the sense of operator equality on L2([bL, 0]). The operators U1, UL are defined

in (5.98),(4.85), respectively and sech2(µπ), λ2 are to be understood as multiplica-

tion operators. An identical statement about U2 and UR, defined in (5.98), (4.86),

respectively, can be made.

Proof. We will relate the operators UL, U1 by using the change of variable λ→ ω in

(5.4), which implies

sech2(µ(ω)π) = λ2 ⇐⇒ iµ = a−(−|λ|/2) + 1/2 (6.2)
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and

bR(a+ 1/2)

iπλ2bL(bR − bL)
dλ2 = dρ1(ω). (6.3)

Now using this change of variable,

U∗L[f̃ ](x) =

∫ 1

0

φL(x, λ)f̃(λ2) dσL(λ2) (6.4)

=

∫ 1

0

DL(x;λ)

πx|λ|DR(∞;λ)
f̃(λ2)

−bLbR(a+ 1/2)

i(bR − bL)
D2
R(∞;λ) dλ2 (6.5)

=

∫ 1

0

−bLDL(x;λ)√
πx

· f̃(λ2)bL
√
π|λ|DR(∞;λ) · bR(a+ 1/2)

iπλ2bL(bR − bL)
dλ2 (6.6)

=

∫
J

ϕ1(x, ω)f̃(sech2(µπ))c(ω) dρ1(ω) (6.7)

= U∗1 [c(ω)f̃(sech2(µπ)](x), (6.8)

where c(ω) = −bL
√
π|λ|DR(∞;λ) (c has a negative sign because λ = 0 implies

ω =∞) and J = [(b2
L + b2

R)/8,∞). Similarly,

UL[f ](λ2) =

∫ 0

bL

φL(x, λ)f(x) dx (6.9)

=

∫ 0

bL

DL(x;λ)

πx|λ|DR(∞;λ)
f(x) dx (6.10)

=

∫ 0

bL

−bLDL(x;λ)

x
√
π

· −1

bL
√
π|λ|DR(∞;λ)

f(x) dx (6.11)

=
1

c(ω)

∫ 0

bL

ϕ1(x, ω)f(x) dx (6.12)

=
1

c(ω)
U1[f ](ω). (6.13)
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So we have

U∗Lλ
2UL[f ](x) = U∗L

[
λ2UL[f ](λ2)

]
(x) (6.14)

= U∗1
[
c(ω)sech2(µπ)UL[f ](sech2(µπ))

]
(x) (6.15)

= U∗1
[
sech2(µπ)U1[f ](ω)

]
(x) (6.16)

= U∗1 sech2(µπ)U1[f ](x) (6.17)

as desired.
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CHAPTER 7: FUTURE WORK

This chapter will focus on unfinished and unpolished future work. In section 7.1 we

will discuss a so-called bispectral property that the operator K̂ (see (2.3)) possesses.

Then we conclude this dissertation with section 7.2 where we see the importance of

the asymptotics of Γ(z;λ) (obtained in Theorem 3.3.14) in the general setting, where

there are g+ 1 intervals with n double points (in chapters 2 through 6 we considered

only 1 interval [bL, bR] with 1 double point at 0).

7.1 A Bispectral Problem

What is a bispectral problem? Given an operator Lx with variable x and spectral

parameter λ, find a second operator Jλ with variable λ and spectral parameter x and

‘nice’ function φ(x, λ) so that

Lxφ(x, λ) = f(λ)φ(x, λ), Jλφ(x, λ) = g(x)φ(x, λ), (7.1)

where f, g are typically polynomials. We refer the reader to [13] for a more refined and

in-depth explanation. As an example, consider Airy’s differential operator, defined

by

Lxf = 0, where Lxf :=
d2f

dx2
− xf. (7.2)
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If we seek functions F (x, λ) so that

LxF (x, λ) = λF (x, λ) (7.3)

then it must be so that

d2

dx2
F (x, λ)− (x+ λ)F (x, λ) = 0. (7.4)

It is clear that F (x, λ) = f(x+ λ), where f is any function satisfying Lxf = 0. But

switching x and λ, we see that F (x, λ) is also a solution of

LλF (x, λ) = xF (x, λ). (7.5)

Thus the pair of operators Lx, Lλ and function F (x, λ) solve a bispectral problem,

as described in (7.1). Moving forward, the bispectral problem we wish to study is

given operator K̂ in (2.3), construct an operator ˆ̃K and function ϕ(x, λ) so that

K̂[ϕ(·, λ)](x) = λϕ(x, λ), ˆ̃K[ϕ(x, ·)](λ) = xϕ(x, λ). (7.6)

We begin with a summary of K̂ and then construct ˆ̃K.
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7.1.1 A Summary of the Operator K̂

Recall that K̂ was defined in (2.3), which can be rewritten as

K̂[f ](z) :=

∫ bR

bL

K(z, x)f(x) dx, where K(z, x) :=
~f t1(z)~g1(x)

2πi(x− z)
, (7.7)

vectors ~f1, ~g1 are defined as

~f1(z) =

[
iχL(z)

χR(z)

]
, ~g1(x) =

[
−iχR(x)

χL(x)

]
, (7.8)

and χL, χR are indicator functions on [bL, 0], [0, bR], respectively. The resolvent of K̂

is defined via the relation

(I + R̂(λ))

(
I − 1

λ
K̂

)
= I, (7.9)

and according to Theorem 2.2.4, the kernel of R̂ is given by

R(z, x;λ) =
~gt1(x)Γ−1(x;λ)Γ(z;λ)~f1(z)

2πiλ(z − x)
, (7.10)

where Γ(z;λ) is the solution to RHP 2.2.1. Observe that the jumps of Γ(z;λ) can

be compactly expressed in terms of ~f1, ~g1 as

Γ(z+, λ) = Γ(z−, λ)

(
I − 1

λ
~f1(z)~gt1(z)

)
, z ∈ [bL, bR]. (7.11)
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7.1.2 Construction of Operator ˆ̃K

Notice that the last subsection could be read backwards; meaning if one was given

a matrix Γ(z;λ) with the jump structure (7.11), then the operator K̂ could be re-

covered. The kernel of K̂ (see (7.7)) and the kernel of the resolvent of K̂ (see (7.9))

are defined explicitly in terms of Γ(z;λ) and the vectors ~f1, ~g1 which appear in the

jump of Γ(z;λ). With that in mind, lets turn our attention to Theorem 4.2.4 where

it was shown that

Γ(z;λ+) = Γ(z;λ−)

[
I − 1

z
~f(z, λ−)~gt(z, λ−)

]
, (7.12)

for λ ∈ (−1/2, 0) ∪ (0, 1/2) and vectors ~f,~g are defined in (4.17).

Corollary 7.1.1. For λ ∈ (−1/2, 0) ∪ (0, 1/2),

Γ(z;λ+) =

[
I − 1

z
~f(∞, λ−)~gt(∞, λ−)

]
Γ(z;λ−), (7.13)

where Γ(z;λ) is defined in (2.17) and vectors ~f,~g are defined in (4.17).

The proof of this corollary shares many similarities with the proof of Theorem 4.2.4

so we omit the details. Notice that the structure of the jumps in (7.11) and (7.13)

is identical. We are now ready to define ˆ̃K : L2([−1/2, 1/2])→ L2([−1/2, 1/2]) as

ˆ̃K[f̃ ](λ) :=

∫ 1
2

− 1
2

K̃(µ, λ)f̃(µ) dµ, where K̃(µ, λ) :=
~f t(∞;µ−)~g(∞;λ−)

2πi(λ− µ)
, (7.14)
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and vectors ~f,~g are defined in (4.17). It can be shown that ˆ̃K is self-adjoint because

K̃(µ, λ) = K̃(λ, µ). As in (7.9), we define the resolvent of ˆ̃K via the relation

(
I + ˆ̃R(z)

)(
I − 1

z
ˆ̃K

)
= I. (7.15)

Comparing with Theorem 2.2.4, we have an analogous result.

Theorem 7.1.2. With the resolvent operator ˆ̃R defined by (7.15), let the kernel of

ˆ̃R be denoted by R̃. Then,

R̃(µ, λ; z) =
~gt(∞;λ−)Γ(z;λ−)Γ−1(z;µ−)~f(∞;µ−)

2πiz(λ− µ)
, (7.16)

where Γ(z;λ) is defined in (2.17) and vectors ~f,~g are defined in (4.17).

The proof mirrors that of Theorem 2.2.4 so it is omitted here.

7.1.3 Solution of Bispectral Problem

In the previous two subsections we have constructed the pair of operators K̂ (see

(7.7)) and ˆ̃K (see (7.14)). It is left to find a function ϕ(x, λ) so that

K̂[ϕ(·, λ)](x) = λϕ(x, λ), ˆ̃K[ϕ(x, ·)](λ) = xϕ(x, λ). (7.17)

The author wildly speculates that the function ϕ(x, λ) is expressed in terms of the

kernels of the unitary operators U1, U2, defined in (5.98), which diagonalize the op-
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erators HR,HL (see Theorem 5.2.1 and Corollary 5.2.3).

7.2 General Setting with n Double Points

The goal of this section is to (loosely) describe how one can use the knowledge of

the solution of RHP 2.2.1 (and asymptotics) in the general scenario where there are

multiple intervals with touching endpoints. We show that the parametrix near a

‘double’ point can be built using hypergeometric functions. In this section only, we

will refer to Γ4(z;λ) as the solution of RHP 2.2.1, where 4 is indicative of the number

of endpoints. Similarly, we call g4,Ψ4 the g4−function defined in (3.106) and Ψ4 the

solution to RHP 3.3.4 defined in (3.101).

7.2.1 Setting and Notation

Let g ∈ N and choose real numbers a1, a2, · · · , a2g+2 so that −∞ < a1 < a2 <

· · · < a2g+2 < ∞. These 2g + 2 points form g + 1 standardly oriented intervals

Ij = [a2j−1, a2j] for 1 ≤ j ≤ g + 1. Let I = ∪g+1
j=1Ij. Define matrices

V (λ) =

[
1 − i

λ

0 1

]
and V ∗(λ) =

[
1 0
i
λ

1

]
. (7.18)

We will frequently refer to V (λ), V ∗(λ) as just V, V ∗ for convenience. For each

interval Ij, 1 ≤ j ≤ g + 1, assign a matrix V or V ∗, with the condition that at

least one interval has been assigned V and V ∗. Let the set of all intervals associated
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a1 a2 a3 a4 a5 a6

[
1 − i

λ
0 1

]
= V

IU

[
1 0
i
λ

1

]
= V ∗

IL

[
1 0
i
λ

1

]
= V ∗

IL

Figure 7.1: One possible IU and IL when g = 2.

a1 b1 b2
a2 a3 a4 a5 b3

a6

V

IU,b

V ∗

IL,b

V

IU,b

V ∗

IL,b

V ∗

IU,b

V

IL,b

Figure 7.2: Introduction of 3 double points.

with V be labeled IU and the set of all intervals associated with V ∗ be labeled IL.

In the Figure 7.1, we display a possible setup with g = 2. Now introduce ‘double’

points b1, b2, · · · , bn with b1 < b2 < · · · < bn and place each bk in the interior of

IU ∪ IL. When a double point is placed into an interval Ij, the matrix associated

with Ij (either V or V ∗) will switch to the right of the double point. For example,

if I1 = [a1, a2] has been assigned V and we introduce one double point b1 to I1, then

the interval [a1, b1] is still assigned V and the interval [b1, a2] is now assigned V ∗.

After placing all double points, we will denote IU,b the set of all intervals which have

been assigned V and IL,b the set of all intervals which have been assigned V ∗. To

illustrate, we show one possible way to add 3 double points to the scenario in Figure

7.2.
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7.2.2 RHP Approach for the Multi Interval Problem

We begin by stating the general RHP.

Riemann-Hilbert Problem 7.2.1. Find a 2 × 2 matrix-function Γ = Γ(z;λ),

λ ∈ C \ {0}, which is analytic in C \ I and satisfies

Γ(z+;λ) =Γ(z−;λ)

[
1 − i

λ

0 1

]
, for z ∈ IU,b, (7.19)

Γ(z+;λ) =Γ(z−;λ)

[
1 0
i
λ

1

]
, for z ∈ IL,b, (7.20)

Γ(z;λ) =
[
O (1) O (log(z − aj))

]
as z → aj for each aj ∈ IU , (7.21)

Γ(z;λ) =
[
O (log(z − aj)) O (1)

]
as z → aj for each aj ∈ IL, (7.22)

Γ(z;λ) ∈L2([a1, a2g+2]), (7.23)

Γ(z;λ) =I + O
(
z−1
)

as z →∞. (7.24)

Remark 7.2.2. As it was shown in Remark 2.2.3, the solution Γ(z;λ) of the RHP

7.2.1 possesses the symmetry Γ(z;λ) = Γ(z̄; λ̄).

Remark 7.2.3. Note that if Γ(z;λ) solve the RHP 7.2.1 (with the piece-wise con-

stant jump matrix V (z)), then σ2Γ(z;λ)σ2 solves the same type RHP with the only

distinction that the jump matrix now is σ2V σ2 = V ∗(z). That is, interchanging

intervals IU,b, IL,b in RHP 7.2.1 is equivalent to the conjugating the solution with σ2.
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7.2.2.1 Reduction to the Model Problem and g-function

Define the g-function g(z) as the solution of the following scalar RHP:

• For z ∈ IL,b, g+(z) + g−(z) = −1,

• For z ∈ IU,b, g+(z) + g−(z) = 1,

• For z ∈ (a2j, a2j+1), g+(z)− g−(z) = iΩj, j = 1, · · · , g where constants Ωj are

to be determined,

• g is analytic in C \ I,

• g ∈ L2([a1, a2g+2]).

The solution of this RHP exists and is given by

g(z) =
R(z)

2πi

(∫
I

χ(z)dζ

(ζ − z)R+(ζ)
+

g∑
j=1

∫ a2j+1

a2j

iΩjdζ

(ζ − z)R(ζ)

)
, (7.25)

where

χ(z) =

{
1, if z ∈ IU,b
−1, if z ∈ IL,b

, R(ζ) =

2g+2∏
j=1

(ζ − aj)
1
2 . (7.26)

with the branch of R satisfying R(z) ∼ zg+1 as z → ∞ and the constants Ωj are

(uniquely) chosen so that g(z) is analytic at z =∞. Note that g(z) has O (ln(z − bk))

behavior near the double points bk. Also note that <g(z) is a Schwarz symmetri-

cal harmonic function in C \ I. Because of the jump conditions and the Schwarz
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symmetry,

<g+(z) = <g−(z) = ±1

2
(7.27)

on IU,b, IL,b respectively. Thus, |<g(z)| < 1
2

on C \ I. The transformation

Y (z;κ) = e−κg(∞)σ3Γ(z; e−κ)eκg(z)σ3 , (7.28)

where κ = − lnλ, reduces the RHP 7.2.1 to the following RHP.

Riemann-Hilbert Problem 7.2.4. Find a 2× 2 matrix-function Y (z;κ) with the

following properties:

(a) Y (z;κ) is analytic in C \ [a1, a2g+2];

(b) Y (z;κ) satisfies the jump conditions

Y+ = Y−

[
eκ(g+−g−) 0

ieκ(g++g−+1) e−κ(g+−g−)

]
, z ∈ IL,b,

Y+ = Y−

[
eκ(g+−g−) −ie−κ(g++g−−1)

0 e−κ(g+−g−)

]
, z ∈ IU,b,

Y+ = Y−e
iκΩjσ3 , z ∈ (a2j, a2j+1), j = 1, . . . , g;

(7.29)

(c) non-tangential boundary values of Y (z,κ) from the upper/lower half-planes

belong to L2
loc(I), and;

(d) Y = 1 +O(z−1) as z →∞.
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The jumps for Y on IU,b and IL,b can be written as

Y+(z;κ) = Y−(z;κ)

[
1 1

i
e−κ(2g−+1)

0 1

]
(iσ1)

[
1 1

i
e−κ(2g++1)

0 1

]
on IL,b, (7.30)

Y+(z;κ) = Y−(z;κ)

[
1 0

ieκ(2g−−1) 1

]
(−iσ1)

[
1 0

ieκ(2g+−1) 1

]
on IU,b, (7.31)

This decomposition can be verified by direct matrix multiplication and by using the

jump properties of g(z). We now follow the standard procedure of opening lenses

around each subinterval of IU,b, IL,b. First we introduce the new unknown matrix

Z(z;κ) =



Y (z;κ) outside the lenses,

Y (z;κ)

[
1 0

∓ieκ(2g−1) 1

]
z ∈ L(±)

U,b ,

Y (z;κ)

[
1 ±ie−κ(2g+1)

0 1

]
z ∈ L(±)

L,b ,

(7.32)

where L(±)
U,b,L,b denote regions inside the lenses around intervals IU,b, IL,b and in the

upper or lower half planes respectively, see Figure 3.5 for the 1 interval scenario.

Riemann-Hilbert Problem 7.2.5. Find a matrix Z(z;κ), analytic on C\
(
L(±)
U,b ∪ L

(±)
L,b

)
,
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satisfying the jump conditions

Z+(z;κ) = Z−(z;κ)



 1 0

ieκ(2g−1) 1

 z ∈ ∂L(±)
U,b \ R,

1 1
i
e−κ(2g+1)

0 1

 z ∈ ∂L(±)
L,b \ R,

−iσ1 z ∈ IU,b,

iσ1 z ∈ IL,b,

eiκΩjσ3 z ∈ (a2j, a2j+1), j = 1, . . . , g

(7.33)

normalized by

Z(z;κ) = 1 + O
(
z−1
)
, as z →∞, (7.34)

with same endpoint behavior as Y (z;κ).

Then the approximation of Z(z,κ) outside small discs around the endpoints and

double points is given by the outer parametrix (solution of the model RHP) Ψ(z;κ).

The approximation of Z(z,κ) near the endpoints and double points is given by local

parametrices. Following [3], the model problem for Ψ(z;κ) is:

Riemann-Hilbert Problem 7.2.6 (Model problem). Find a matrix Ψ = Ψ(z;κ),
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analytic on C \ [a1, a2g+2] and satisfying the following conditions:

Ψ+ = Ψ−(−iσ1), on IU,b (7.35)

Ψ+ = Ψ−(iσ1), on IL,b (7.36)

Ψ+ = Ψ−e
iκΩjσ3 , on (a2j, a2j+1) (7.37)

Ψ(z) = 1 + O
(
z−1
)

as z →∞ (7.38)

Ψ(z) = O
(
|z − bk|−1/2

)
as z → bk (7.39)

Ψ(z) = O
(
|z − aj|−1/4

)
as z → aj (7.40)

and Ψ±(z) ∈ L2
loc(I) except for neighborhoods of the double points bk.

Note that solution of the RHP 7.2.6 is not unique because Ψ(z) 6∈ L2
loc near any

double point bk.

7.2.2.2 Solution of the Model Problem

Let z ∈ Ij, 1 ≤ j ≤ g + 1. Define another g function g̃(z;κ) as the solution of the

following RHP:

g̃(z+;κ) + g̃(z−;κ) =


0, if z ∈ IU ∩ IU,b or z ∈ IL ∩ IL,b,

sgn(=κ)iπ, if z ∈ IL ∩ IU,b,
−sgn(=κ)iπ, if z ∈ IU ∩ IL,b;

(7.41)

g̃(z+;κ)− g̃(z−;κ) = Wj, z ∈ (a2j, a2j+1), where Wj is TBD; (7.42)
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g̃(z;κ) is analytic at C \ [a1, a2g+2] and is an L2
loc function on the jump contour.

R(ζ) =
∏2g+2

j=1 (ζ − aj)
1/2, where we choose the branch of R by R(z) ∼ zg+1 as

z →∞. Then

g̃(z;κ) =
R(z)

2πi

(∫
IU∩IL,b

−sgn(=κ)iπdζ

(ζ − z)R+(ζ)
+

∫
IL∩IU,b

sgn(=κ)iπdζ

(ζ − z)R+(ζ)

+

g∑
j=1

∫ a2j+1

a2j

Wjdζ

(ζ − z)R(ζ)

)
, (7.43)

where the constants Wj ∈ R are (uniquely) chosen (in the standard way), so that

g̃(z;κ) is analytic at z =∞. Let z → bk. Then, according to (7.43),

g̃(z;κ) = ±1

2
sgn(=κ)sgn(=z) ln(z − bk) +O(1) (7.44)

where the sign “-” if we have IL,b to the left of bk and IU,b to the right and the sign is

plus in the opposite case. It is to be understood that if =κ = 0, then sgn(=κ) = ±1

where ± is taken when κ approaches the real axis from above/below. Denote

Ψ̃(z;κ) = e−g̃(∞;κ)σ3Ψ(z;κ)eg̃(z;κ)σ3 . (7.45)

Then Ψ̃(z;κ) satisfies the following RHP.

Riemann-Hilbert Problem 7.2.7. Find a matrix Ψ̃ = Ψ̃(z;κ), analytic on C \
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[a1, a2g+2] and satisfying the following conditions:

Ψ̃+ = Ψ̃−(−iσ1) , for z ∈ IU ;

Ψ̃+ = Ψ̃−(iσ1) , for z ∈ IL;

Ψ̃+ = Ψ̃−e
(iκΩj+Wj)σ3 on (a2j, a2j+1);

Ψ̃(z) = 1 +O(z−1) , z →∞;

Ψ̃±(z) ∈ L2
loc(I).

(7.46)

Lemma 7.2.8. There exist a solution Ψ(z;κ) to RHP 7.2.6 such that the matrix

function Ψ̃(z;κ) given by (7.45) solves the RHP 7.2.7.

Proof. Analyticity of Ψ̃(z;κ) and its asymptotics at z =∞ are clear. We only need

to check the jump conditions. Let z ∈ IL ∩ IL,b. Then we have

Ψ̃+(z;κ) = Ψ+(z;κ)eg̃+(z;κ)σ3 (7.47)

= Ψ−(z;κ)iσ1e
g̃+(z;κ)σ3 (7.48)

= Ψ−(z;κ)e−g̃+(z;κ)σ3iσ1 (7.49)

= Ψ̃−(z;κ)iσ1 (7.50)

since −g̃+(z;κ) = g̃−(z;κ). Consider now the case z ∈ IU ∩ IL,b. Then −g̃+(z;κ) =

g̃−(z;κ) ± sgn(=κ)iπ, so that e−g̃+(z;κ)σ3 = −eg̃−(z;κ)σ3 and, similarly to (7.47), we

obtain

Ψ̃+(z;κ) = Ψ̃−(z;κ)(−iσ1). (7.51)
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Finally, on any gap (a2j, a2j+1) we have

Ψ̃+(z;κ) = Ψ+(z;κ)eg̃+(z;κ)σ3 = Ψ−(z;κ)eiκΩjσ3e(g̃−(z;κ)+Wj)σ3 = Ψ̃−(z;κ)e(iκΩj+Wj)σ3 .

(7.52)

According to the last requirement of (7.46), the RHP 7.2.7 has a unique solution,

which can be constructed using Riemann Theta functions as shown in [3], Section 5.

Thus, we completed the proof.

We fix the solution to the model RHP 7.2.6 as

Ψ(z;κ) = eg̃(∞;κ)σ3Ψ̃(z;κ)e−g̃(z;κ)σ3 . (7.53)

Remark 7.2.9. Note that det Ψ ≡ 1 and Ψ̃(z;κ) is analytic (and invertible) near z =

bk on any shore of the cut I. Therefore, the RHP 7.2.7 has a unique solution Ψ̃(z,κ),

that, in general, can be constructed in terms of the Riemann Theta functions.

7.2.2.3 Parametrix at a Double Point

Construction of the local parametrices at the endpoints aj, j = 1, . . . , 2j + 2 is es-

sentially the same as in [3]. Label this parametrix Paj(z;κ). Here we consider a

parametrix at bk ∈ (a2j−1, a2j). After opening of the lenses, the RHP 7.2.4 was natu-

rally transform to another RHP, satisfied by Z(z;κ). Let us define the approximate

solution to this RHP, called Ẑ(z;κ), as follows:

123



• Ẑ(z;κ) = Ψ(z;κ), where Ψ(z;κ) is given by (7.53), everywhere outside small

discs Daj , Dbk around the branchpoints aj, j = 1, . . . , 2g+ 2 and double points

bk, k = 1, . . . , n;

• inside each Daj the approximate solution Ẑ(z;κ) is given by the standard

Bessel type parametrix, constructed, for example, in [3];

• inside eachDbk the approximate solution Ẑ(z;κ) = Pbk(z;κ), where the parametrix

Pbk(z;κ) will be constructed below.

The requirements for the sectorial analytic parametrix Pbk(z;κ) are:

1. Pbk(z;κ) has to have exactly the same jump matrices in Dbk as Z(z;κ);

2. Pbk(z;κ) has to be in L2
loc on the jump contours;

3. the jump matrix between Ψ(z;κ) and Pbk(z;κ) on ∂Dbk should approach 1 as

κ →∞.

The error matrix E(z;κ) is defined as E = ZẐ−1. If we denote by M , M̂ the jump

matrices of Z, Ẑ respectively, then we have

E+ = Z+Ẑ
−1
+ = Z−MM̂−1Ẑ−1

− = Z−Ẑ
−1
− Ẑ−MM̂−1Ẑ−1

− = E−ME , (7.54)

where the jump matrix ME for E is

ME = Ẑ−MM̂−1Ẑ−1
− . (7.55)
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Since the jump matrices M , M̂ coincide inside the discs Daj ,Dbk , as well as on

the interval (a1, a2g+2) outside these discs, the jump contours for E consists of the

boundaries ∂Daj , ∂Dbk , as well as of the lenses outside the discs, see Figure 3.6 for

the 1 interval scenario. By the standard arguments, ME = 1 +O(κ−1) on the lenses

and on ∂Daj . Since Z has no jump on ∂Dbk , we conclude that

ME = Ẑ−Ẑ
−1
+ = ΨP−1

bk
(7.56)

provided that the contour ∂Dbk is positively (counter clockwise) oriented. We now

construct the parametrix Pbk so that M−1
E = PbkΨ−1 approaches 1 as κ → ∞. Let

Γ4(z;κ) denote the solution RHP 2.2.1 with bL = −a, bR = a, (here a is a positive

constant) b1 = 0 and jump matrices V on (−a, 0) and V ∗ on (0, a). We will call the

RHP for Γ4(z;κ) as the 4 point RHP. Let the double point bk have IU,b subinterval

on the left and IL,b subinterval on the right. Denote by g4 the g-function (3.106),

constructed for the 4 point RHP. Then

Pbk(z;κ) =



Ψ(z;κ)Ψ−1
4 (ζk;κ)Γ4(ζk;κ)eκg4(ζk)σ3

1 ±ie−κ(2g4(ζk)+1)

0 1

 , (1)±,

Ψ(z;κ)Ψ−1
4 (ζk;κ)Γ4(ζk;κ)eκg4(ζk)σ3 , (2)±,

Ψ(z;κ)Ψ−1
4 (ζk;κ)Γ4(ζk;κ)eκg4(ζk)σ3

 1 0

∓ieκ(2g4(ζk)−1) 1

 , (3)±,

(7.57)

where Ψ4 is given by (3.3.5) and see Figure 7.3 for regions (1),(2),(3). The function
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bk

IU,b IL,b

(1)+

(2)+

(3)+

(3)−

(2)−

(1)−

Figure 7.3: The region Dbk with lenses(blue).

ζk(z) is defined by the condition

g(z) = g4(ζk(z)), (7.58)

where g(z) is given by (7.25). The existence of such ζk(z) will be shown in Lemma

7.2.11 below.

Theorem 7.2.10. The parametrix Pbk , defined in (7.57), satisfies the above men-

tioned conditions 1 - 3.

Proof. Indeed, according to (7.58), the jumps matrices of (7.57) coincide with that

of Z(z;κ) inside Dbk so we have proven the first requirement. According to Theorem

3.2.6, when z is on ∂Dbk in sectors (2)±,

Ψ−1
4 (ζk;κ)Γ4(ζk;κ)eκg4(ζk)σ3 = 1 +O(κ−1) as κ →∞ (7.59)
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Then

M−1
E (z;κ) = Pk(z;κ)Ψ−1(z;κ) = Ψ(z;κ)[1 +O(κ−1)]Ψ−1(z;κ) = 1 +O(κ−1)

(7.60)

since Ψ±1(z;κ) are bounded on ∂Dbk when κ is restricted to the horizontal strip

−π/2 < =[κ] < π/2. The idea when z is in any of the remaining sectors is similar.

Thus, we have proven the third requirement for the parametrix.

Finally, to prove the remaining second requirement we notice that

Γ4(ζk;κ)eκg4(ζk)σ3 = eκg4(∞)Y4(z;κ) is an L2
loc

matrix valued function provided that κ 6∈ R. So, it is sufficient show that Ψ(z;κ)Ψ−1
4 (ζk;κ)

is bounded on Dbk . Note that, according to (7.44), g̃(z;κ)− g̃4(ζk;κ) does not have

logarithmic singularity at z = bk, so that eg̃(z;κ)−g̃4(ζk;κ) is bounded in a neighborhood

of bk. Taking into the account the fact that Ψ̃±1 from (7.53) is bounded in Dbk , we

obtain

Ψ(z;κ)Ψ−1
4 (ζk;κ) = eg̃(∞;κ)σ3Ψ̃(z,κ)e−(g̃(z;κ)−g̃4(ζk;κ))σ3

(
ζk + 1

ζk − 1

)−σ1
4

e−g̃4(∞;κ)σ3

(7.61)

is also bounded in Dbk .

The parametrix when the double point bk has IL,b subinterval on the left and IU,b

subinterval on the right can be constructed in a similar manner and will be omitted

here.
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Lemma 7.2.11. Let functions φ̂(z), ψ̂(z) be analytic in a disc D centered at the

origin and let φ(z) = ln z
iπ

+ φ̄(z), ψ(z) = ln z
iπ

+ ψ̄(z). Then, there exist a function

ζ(z) = az(1 + y(z)) analytic in, perhaps, a smaller disk D̃ ⊂ D centered at z = 0,

where a 6= 0 and y(0) = 0, such that

φ(ζ(z)) = ψ(z). (7.62)

Proof. Substituting ζ(z) in (7.62) and taking a = eiπ(ψ̂(0)−φ̂(0)), we obtain equation

F (z, y) =
1

iπ
ln(1 + y) + φ̂(az(1 + y))− ψ̂(z)− ψ̂(0) + φ̂(0) = 0, (7.63)

which is true for (z, y) = (0, 0). Since

∂F

∂y
=

1

iπ(1 + y)
+ azφ̂′(az(1 + y)) 6= 0 (7.64)

at (z, y) = (0, 0), the conclusion follows from the Implicit Function Theorem.
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APPENDIX A: CONSTRUCTION OF Γ(z;λ)

Recall that the Hypergeometric ODE (see [7] 15.10.1) is

η(1− η)
d2w

dη2 + (c− (a+ b+ 1)η)
dw

dη
− abw = 0, (A.1)

which has exactly three regular singular points at η = 0, 1,∞. The idea is to choose

parameters a, b, c so that the monodromy matrices of the fundamental matrix solution

solution of the ODE will match (up to similarity transformation) the jump matrices

of RHP 2.2.1. We orient the real axis of the η−plane as described in Figure A.1.

A.1 Solutions of ODE (A.1) near Regular Singular Points and

Connection Formula

According to [7] 15.10.11 - 15.10.16, three pairs of linearly independent solutions of

ODE (A.1) when η = 0, 1,∞, respectively, are

h0(η) = 2F1

(
a, b

c

∣∣∣∣ η), s0(η) = η1−c
2F1

(
a− c+ 1, b− c+ 1

2− c

∣∣∣∣ η), (A.2)

h1(η) = 2F1

(
a, b

a+ b+ 1− c

∣∣∣∣ 1− η
)
, s1(η) = (1− η)c−a−b2F1

(
c− a, c− b
c− a− b+ 1

∣∣∣∣ 1− η
)
,

(A.3)

h∞(η) = eaπiη−a2F1

(
a, a− c+ 1

a− b+ 1

∣∣∣∣ 1

η

)
, s∞(η) = ebπiη−b2F1

(
b, b− c+ 1

b− a+ 1

∣∣∣∣ 1

η

)
.

(A.4)
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0 1 ∞

Figure A.1: Orientation of the real axis of the η-plane.

From [7] 15.10.7, we have that

Wη [h∞(η), s∞(η)] = e(a+b)πi(a− b)η−c(1− η)c−a−b−1. (A.5)

Kummer’s 20 connection formula are listed in [7] 15.10.17 - 15.10.36. We will list

only what is necessary in this construction. The connection between solutions at

η = 0 and η =∞ is (see [7] 15.10.19, 15.10.20, 15.10.25, 15.10.26)

[
h0(η) s0(η)

]
=
[
h∞(η) s∞(η)

]
C∞0, (A.6)[

h∞(η) s∞(η)
]

=
[
h0(η) s0(η)

]
C0∞, (A.7)

where

C∞0 =

[
Γ(c)Γ(b−a)
Γ(b)Γ(c−a)

e(1−c)πi Γ(2−c)Γ(b−a)
Γ(1−a)Γ(b−c+1)

Γ(c)Γ(a−b)
Γ(a)Γ(c−b) e(1−c)πi Γ(2−c)Γ(a−b)

Γ(1−b)Γ(a−c+1)

]
, (A.8)

C−1
∞0 = C0∞ =

[
Γ(1−c)Γ(a−b+1)
Γ(a−c+1)Γ(1−b)

Γ(1−c)Γ(b−a+1)
Γ(b−c+1)Γ(1−a)

e(c−1)πi Γ(c−1)Γ(a−b+1)
Γ(a)Γ(c−b) e(c−1)πi Γ(c−1)Γ(b−a+1)

Γ(b)Γ(c−a)

]
. (A.9)

The connection between solutions at η = 1 and η =∞ is (see [7] 15.10.23, 15.10.24,
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15.10.27, 15.10.28)

[
h1(η) s1(η)

]
=
[
h∞(η) s∞(η)

]
C∞1, (A.10)[

h∞(η) s∞(η)
]

=
[
h1(η) s1(η)

]
C1∞, (A.11)

where

C∞1 =

[
e−aπi Γ(a+b−c+1)Γ(b−a)

Γ(b)Γ(b−c+1)
e(b−c)πi Γ(c−a−b+1)Γ(b−a)

Γ(1−a)Γ(c−a)

e−bπi Γ(a+b−c+1)Γ(a−b)
Γ(a)Γ(a−c+1)

e(a−c)πi Γ(c−a−b+1)Γ(a−b)
Γ(1−b)Γ(c−b)

]
, (A.12)

C−1
∞1 = C1∞ =

[
eaπi Γ(a−b+1)Γ(c−a−b)

Γ(1−b)Γ(c−b) ebπi Γ(b−a+1)Γ(c−a−b)
Γ(1−a)Γ(c−a)

e(c−b)πi Γ(a−b+1)Γ(a+b−c)
Γ(a)Γ(a−c+1)

e(c−a)πi Γ(b−a+1)Γ(a+b−c)
Γ(b)Γ(b−c+1)

]
. (A.13)

A.2 Selection of Parameters a, b, c

Define

Γ̂(η) := η
c
2 (1− η)

a+b−c+1
2

[
h∞(η) s∞(η)

h′∞(η) s′∞(η)

]
. (A.14)

Notice that for any η ∈ C

det
(

Γ̂(η)
)

= e(a+b)πi(a− b) (A.15)

according to (A.5). Our solution Γ(z;λ) to RHP 2.2.1 has singular points at z =

bL, 0, bR. Notice that the Möbius transform

η = M1(z) :=
bR(z − bL)

z(bR − bL)
(A.16)
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0 bRbL

Figure A.2: Orientation of the real axis of the z-plane.

maps bL → 0, bR → 1, and 0→∞ where the orientation of the z−axis is described

in Figure A.2. Thus we are interested in the matrix

Γ̂ (M1(z)) =

(
bR(z − bL)

|bL|(z − bR)

) c
2
(
|bL|(z − bR)

z(bR − bL)

)a+b+1
2

[
h∞ (M1(z)) s∞ (M1(z))

h′∞ (M1(z)) s′∞ (M1(z))

]
.

(A.17)

We need to determine parameters a, b, c such that Γ̂(M1(z)) is L2
loc at z = bL, 0, bR,

so we are interested in the bi-resonant case, which is

c ∈ Z, c− b− a ∈ Z. (A.18)

When z = bL, to guarantee that Γ̂ is L2
loc we must have that (use the connection

formula of section A.1 to easily inspect the local behavior)

c

2
> −1

2
, − c

2
> −1

2
. (A.19)
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Since c ∈ Z, it must be so that c = 0. Now for z = bR, we must have that

a+ b− c+ 1

2
=
r + 1

2
> −1

2
, (A.20)

1− a− b
2

=
−r − 1

2
> −1

2
(A.21)

where a + b = r ∈ Z. Since r ∈ Z, the only possibility is r = −1. So we have that

b = −1− a and c = 0. Lastly, as z → 0,

h∞ (M1(z)) = O (za) , (A.22)

h′∞ (M1(z)) = O
(
za+1

)
, (A.23)

s∞ (M1(z)) = −e−aπi
(
−bRbL

z(bR − bL)

)a+1

+ O
(
z−a
)
, (A.24)

s′∞ (M1(z)) = −(a+ 1)e−aπi
(
−bRbL

z(bR − bL)

)a
+ O

(
z−a+1

)
, (A.25)

so we see that it is not possible for Γ̂(M1(z)) to have L2 behavior at z = 0. On the

other hand, observe that

s∞

(
bR(z − bL)

z(bR − bL)

)
+

bLbR
z(bR − bL)(a+ 1)

s′∞

(
bR(z − bL)

z(bR − bL)

)
= O

(
z−a
)
, z → 0.

(A.26)

Thus the matrix [
1 bLbR

z(bR−bL)(a+1)

0 1

]
Γ̂(M1(z)) (A.27)

is L2
loc as z → 0 provided that |<(a)| < 1/2. In the next section, we solve for a

explicitly in terms of λ and the condition |<(a)| < 1/2 will be met provided that
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λ /∈ [−1/2, 1/2], see Appendix B.

A.3 Monodromy

The monodromy matrices of Γ̂(z) about the singular points z = 0, 1,∞ are

M0 = C∞0e
iπcσ3C0∞, M1 = C∞1e

iπ(a+b−c+1)σ3C1∞, M∞ = eiπ(b−a−1)σ3 , (A.28)

where C∞0, C0∞, C∞1, C1∞ are defined in (A.8), (A.9), (A.12), (A.13), respectively.

With some effort it can be shown that

M0 =

cosπc
(

1− 2i sinπa sinπb
sinπ(b−a)

)
2πiΓ(b−a)Γ(b−a+1)

Γ(b)Γ(c−a)Γ(b−c+1)Γ(1−a)

2πiΓ(a−b)Γ(a−b+1)
Γ(a)Γ(c−b)Γ(a−c+1)Γ(1−b) cos πc

(
1 + 2i sinπa sinπb

sinπ(b−a)

)+ sin πc
sinπ(a+ b)

sinπ(b− a)

[
1 0

0 1

]
,

(A.29)

M1 = e
iπ
2

(b−a)σ3M0

∣∣
c→a+b−c+1

e−
iπ
2

(b−a)σ3 . (A.30)

From the previous section, we take c = 0 and b = −1 − a. It is important to note

that the connection matrices C∞0, C0∞, C∞1, C1∞ are singular when c = 0 and/or

b = −1− a, but we can see that M0,M1 are not. Taking c = 0 and b = −a− 1, we
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obtain

M0 =

 1− i tan(aπ) tan2(aπ)Γ(a)Γ(a+2)

i42a+1Γ(a+ 1
2

)Γ(a+ 3
2

)

i42a+1Γ(a+ 1
2

)Γ(a+ 3
2

)

Γ(a)Γ(a+2)
1 + i tan(aπ)

 , (A.31)

M1 = σ3e
−iπaσ3M0e

iπaσ3σ3, (A.32)

M∞ = e−2πiaσ3 . (A.33)

Let

Q(λ) =

[
− tan(aπ) 0

0 42a+1eaπi Γ(a+3/2)Γ(a+1/2)
Γ(a)Γ(a+2)

][
1 eaπi

−eaπi 1

]
(A.34)

so then we have

Q−1M0Q =

[
1 0

− e2πia−1
eaπi

1

]
, Q−1M1Q =

[
1 − e2πia−1

eaπi

0 1

]
, (A.35)

Q−1M∞Q =

[
e4πia−e2πia+1

e2πia
1−e2πia
eaπi

1−e2πia
eaπi

1

]
(A.36)

The match requires

e2πia − 1

eaπi
=
i

λ
(A.37)

which implies

a(λ) =
1

iπ
ln

(
i+
√

4λ2 − 1

2λ

)
. (A.38)

In Appendix B we have listed all the important properties of a(λ).
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A.4 RHP 2.2.1 Solution

We will now construct Γ(z;λ) so that it is the solution of RHP 2.2.1. Notice that

the matrix [
1 bLbR

z(bR−bL)(a+1)

0 1

]
Γ̂(M1(z))Q(λ)σ2, (A.39)

where Γ̂,M1, a are defined in (A.14), (A.16), (A.38), respectively, satisfies the follow-

ing properties:

• L2 behavior at z = 0, provided λ 6∈ [−1/2, 1/2], due to (A.27) and properties

of a(λ) (see Appendix B),

• jump matrix

[
1 − i

λ

0 1

]
for z ∈ (bL, 0) with positive orientation, see (A.35) and

Figure A.2 for orientation,

• jump matrix

[
1 0
i
λ

1

]
for z ∈ (0, bR) with positive orientation, see (A.35),

• column-wise behavior
[
O (1) O (ln(z − bL))

]
as z → bL, because the first col-

umn has no jump on (bL, 0) and is analytic for z 6∈ [bL, bR] so the first column

is O (1) as z → bL. The Sokhotski-Plemelj formula can be used to inspect the

behavior of the second column.

• column-wise behavior
[
O (ln(z − bR)) O (1)

]
as z → bR, same idea as above,

• behavior Γ̂(M1(∞))Q(λ)σ2(I + O (z−1)) as z →∞,

• analytic for z ∈ C \ [bL, bR], due to properties of hypergeometric functions.
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Thus, we conclude that the matrix

Γ(z;λ) := σ2Q
−1(λ)Γ̂−1(M1(∞))

[
1 bLbR

z(bR−bL)(a+1)

0 1

]
Γ̂(M1(z))Q(λ)σ2 (A.40)

is a solution of RHP 2.2.1 provided that λ /∈ [−1/2, 1/2].
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APPENDIX B: DEFINITION AND PROPERTIES OF a(λ)
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π

−π

π
2

−π
2

0

0

λ = −1
2

λ = 1
2

Figure B.1: Branch cut and argument of
√

4λ2 − 1 for λ ∈ R.

Define function

a(λ) =
1

iπ
ln

(
i+
√

4λ2 − 1

2λ

)
(B.1)

where the branch cut of
√

4λ2 − 1 is from [−1/2, 1/2] and the principle value of the

logarithm is taken
(
−π < arg

(
i+
√

4λ2−1
2λ

)
< π

)
. In Figure B.1, the branch cut is

the black line, the blue dashed line is the remaining real axis, and the argument of
√

4λ2 − 1 is displayed for each shore of the real axis.

The following proposition lists all relevant properties of a(λ), none of which are

difficult to prove.

Proposition B.0.1. The function a(λ) has the following properties:

1. a(λ) is analytic for λ ∈ C \ [−1/2, 1/2].

2. a(λ) is Schwarz symmetric.

3. a+(λ) + a−(λ) = 1 for λ ∈
(
0, 1

2

)
.

4. a+(λ) + a−(λ) = −1 for λ ∈
(
−1

2
, 0
)
.

5. <[a±(λ)] = 1
2

for λ ∈ (0, 1/2).
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6. <[a±(λ)] = −1
2

for λ ∈ (−1/2, 0).

7. −1
2
< < [a(λ)] < 1

2
for λ ∈ C \

[
−1

2
, 1

2

]
.

8. For λ ∈ (−1/2, 1/2), =[a+(λ)] ≤ 0, =[a−(λ)] ≥ 0, and =[a+(λ)] = −=[a−(λ)].

9. If λ→ 0, then

a(λ) =


− 1
iπ

ln(λ) + 1
2

+ O (λ2) = κ
iπ

+ 1
2

+ O (e−2κ) , =λ ≥ 0,

1
iπ

ln(λ) + 1
2

+ O (λ2) = − κ
iπ

+ 1
2

+ O (e−2κ) , =λ ≤ 0,

(B.2)

where κ = − lnλ.

10. As λ→ 0,

eiπa(λ) =


ieκ(1 + O (e−2κ)), =λ ≥ 0,

ie−κ(1 + O (e−2κ)), =λ ≤ 0,

(B.3)

where κ = − lnλ.
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In this Appendix we compute and list the important properties of the functions

dL(z;λ) and dR(z;λ). Recall that (from eq. (4.18))

dR(z;λ) := α(λ)h′∞

(
bR(z − bL)

z(bR − bL)

)
+ β(λ)s′∞

(
bR(z − bL)

z(bR − bL)

)
, (C.1)

dL(z;λ) := −eaπiα(λ)h′∞

(
bR(z − bL)

z(bR − bL)

)
+ e−aπiβ(λ)s′∞

(
bR(z − bL)

z(bR − bL)

)
, (C.2)

where

α(λ) :=
e−aπi tan(aπ)Γ(a)

4a+1Γ(a+ 3/2)
, β(λ) :=

4aeaπiΓ(a+ 1/2)

Γ(a+ 2)
(C.3)

and h′∞, s
′
∞ are defined in (2.13), (2.14).

Proposition C.0.1. For λ ∈ (−1/2, 0),

1. dR (M2(x);λ) = dL(x;λ), where M2(x) = bRbLx
x(bR+bL)−bRbL

,

2. dL(z;λ) and dR(z;λ) are single-valued in λ,

3. dL(z;λ) is analytic for z ∈ C \ [0, bR], dL(z;λ) = dL(z;λ) for z ∈ C, and

dL(z+;λ)− dL(z−;λ) =
i

λ
dR(z;λ), for z ∈ (0, bR), (C.4)

4. dR(z;λ) is analytic for z ∈ C \ [bL, 0], dR(z;λ) = dR(z;λ) for z ∈ C, and

dR(z+;λ)− dR(z−;λ) = − i
λ
dL(z;λ), for z ∈ (bL, 0), (C.5)
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5. We have the SVD system

HR

[
dR(y;λ)

y

]
(x) = 2λ

dL(x;λ)

x
, HL

[
dL(x;λ)

x

]
(y) = 2λ

dR(y;λ)

y
(C.6)

where x ∈ (bL, 0) and y ∈ (0, bR).

6.

∫ bR

0

dR(x;λ)

x
dx = 2πλdL(∞;λ),

∫ 0

bL

dL(x;λ)

x
dx = −2πλdR(∞;λ)

To obtain the corresponding identities for DR(z;λ) := dR(z,−|λ|/2) and DL(z;λ) :=

dL(z,−|λ|/2) for λ ∈ (−1, 1), replace λ with −|λ|/2.

Proof. 1. Recall from Remark 4.1.2 that

M1(x) :=
bR(x− bL)

x(bR − bL)
, (C.7)

M2(x) :=
bRbLx

x(bR + bL)− bRbL
, (C.8)

M3(x) := M1(M2(x)) =
−bL(x− bR)

x(bR − bL)
. (C.9)

It is easy to show that

1−M3(x) = M1(x), 1− 1

M3(x)
=
−M1(x)

M3(x)
. (C.10)
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From [1] 15.5.7, 15.5.13, (taking a := a−(λ) and −1 = e−iπ)

2F1

(
a+ 1, a+ 1

2a+ 2

∣∣∣∣ 1

M3(x)

)
=

(
1− 1

M3(x)

)−a−1

2F1

(
a+ 1, a+ 1

2a+ 2

∣∣∣∣ 1

1−M3(x)

)
(C.11)

=

(
−M1(x)

M3(x)

)−a−1

2F1

(
a+ 1, a+ 1

2a+ 2

∣∣∣∣ 1

M1(x)

)
(C.12)

= −eaπi
(
M1(x)

M3(x)

)−a−1

2F1

(
a+ 1, a+ 1

2a+ 2

∣∣∣∣ 1

M1(x)

)
(C.13)

Thus we have

h′∞(M3(x)) = −aeaπiM3(x)−a−1
2F1

(
a+ 1, a+ 1

2a+ 2

∣∣∣∣ 1

M3(x)

)
= −eaπih′∞(M1(x))

(C.14)

and taking a→ −a− 1 in the identity above yields

s′∞(M3(x)) = e−aπis′∞(M1(x)), (C.15)

because h∞(η)|a→−a−1 = s∞(η). Since

dR(x;λ) = αh′∞(M1(x)) + βs′∞(M1(x)) (C.16)
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then we have that

dR(M2(x), λ) = αh′∞(M1(M2(x))) + βs′∞(M1(M2(x))) (C.17)

= αh′∞(M3(x)) + βs′∞(M3(x)) (C.18)

= −eaπiαh′∞(M1(x)) + e−aπiβs′∞(M1(x)) (C.19)

= dL(x;λ). (C.20)

2. Notice that h∞(z)
∣∣
a→−a−1

= s∞(z) so we have h′∞(z, λ+) = s′∞(z, λ−). To

compute the jumps of the coefficients α, β, we use [7] 5.5.3.

α+(λ) =
tan(a+π)Γ(a+)

ea+πi4a++1Γ(a+ + 3/2)
(C.21)

=
−ea−πi tan(π(−a− − 1))Γ(−a− − 1)

4−a−Γ(1/2− a−)
(C.22)

=
4a−ea−πi tan(a−π)Γ(−a− − 1)

Γ(1/2− a−)
(C.23)

=
4a−ea−πiΓ(a− + 1/2)

Γ(a− + 2)
(C.24)

= β−(λ) (C.25)

and, similarly, β+(λ) = α−(λ). This can now be used to prove the statement.

3. Recall, from the proof of Theorem 4.2.4, that dL(z;λ), dR(z;λ) was defined in

terms of the (2, 1), (2, 2) element, respectively, of the matrix

M(z, λ) = Γ̂(M1(z), λ)Q(λ)σ2. (C.26)
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Using the definition of Γ(z;λ), see (2.17), some simple algebra shows that

M(z, λ) =

[
1 −bLbR

z(bR−bL)(a+1)

0 1

]
Γ̂−1(M1(∞))Qσ2Γ(z;λ). (C.27)

Since Γ(z;λ) is a solution of RHP 2.2.1, we know M(z, λ) is analytic for z ∈

C \ [bL, bR] and

M+ = M−

[
1 − i

λ

0 1

]
z ∈ (bL, 0), M+ = M−

[
1 0
i
λ

1

]
z ∈ (0, bR), (C.28)

which immediately gives the jumps and analyticity of both dL, dR. For the

symmetry, notice that

dR(z;λ) =
−a tan(aπ)Γ(a)

4a+1Γ(a+ 3
2
)
M1(z)−a−1

2F1

(
a+ 1, a+ 1

2a+ 2

∣∣∣∣ 1

M1(z)

)
−

(a+ 1)4aΓ(a+ 1
2
)

Γ(a+ 2)
M1(z)a2F1

(
−a,−a
−2a

∣∣∣∣ 1

M1(z)

)
, (C.29)

and a = a(λ),M1(z) are Schwarz symmetric. Thus dR(z;λ) = dR(z;λ) and the

symmetry of dL(z;λ) follows from the relation dR(M2(x);λ) = dL(x;λ).

4. This was proven above.
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5. Let γR be the circle with center and radius of bR/2 with negative orientation.

HR

[
dR(y;λ)

y

]
(x) =

2λ

2πi

∫ bR

0

i
λ
dR(y;λ)

y(y − x)
dy (C.30)

=
2λ

2πi

∫ bR

0

∆ydL(y;λ)

y(y − x)
dy (C.31)

=
2λ

2πi

∫
γR

dL(y;λ)

y(y − x)
dy (C.32)

= 2λdL(x;λ) (C.33)

where we have deformed γR through z = ∞ and into the circle of center and

radius bL/2 with positive orientation and then apply residue theorem. The

other computation is nearly identical.

6. The idea is similar to that of the last proof;

∫ bR

0

dR(x;λ)

x
dx =

2πλ

2πi

∫ bR

0

i
λ
dR(x;λ)

x
dx =

2πλ

2πi

∫
γR

dL(x;λ)

x
dx = 2πλdL(∞;λ),

(C.34)

and the remaining identity is proven analogously.
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