Coloring Graphs with Forbidden Minors

Martin Rolek
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/etd
University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

STARS Citation

Rolek, Martin, "Coloring Graphs with Forbidden Minors" (2017). Electronic Theses and Dissertations, 2004-2019. 5400.
https://stars.library.ucf.edu/etd/5400

COLORING GRAPHS WITH FORBIDDEN MINORS

by

MARTIN ROLEK

MS University of Central Florida, 2014
BS University of Central Florida, 2012
AA Seminole State College, 2010

A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the Department of Mathematics in the College of Sciences
at the University of Central Florida Orlando, Florida
(c) 2017 Martin Rolek

Abstract

A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges. My research is motivated by the famous Hadwiger's Conjecture from 1943 which states that every graph with no K_{t}-minor is $(t-1)$-colorable. This conjecture has been proved true for $t \leq 6$, but remains open for all $t \geq 7$. For $t=7$, it is not even yet known if a graph with no K_{7}-minor is 7 -colorable. We begin by showing that every graph with no K_{t}-minor is $(2 t-6)$ colorable for $t=7,8,9$, in the process giving a shorter and computer-free proof of the known results for $t=7,8$. We also show that this result extends to larger values of t if Mader's bound for the extremal function for K_{t}-minors is true. Additionally, we show that any graph with no K_{8}^{-}minor is 9 -colorable, and any graph with no $K_{8}^{=}$-minor is 8 -colorable. The Kempe-chain method developed for our proofs of the above results may be of independent interest. We also use Mader's H-Wege theorem to establish some sufficient conditions for a graph to contain a K_{8}-minor.

Another motivation for my research is a well-known conjecture of Erdős and Lovász from 1968, the Double-Critical Graph Conjecture. A connected graph G is double-critical if for all edges $x y \in E(G), \chi(G-x-y)=\chi(G)-2$. Erdős and Lovász conjectured that the only double-critical t-chromatic graph is the complete graph K_{t}. This conjecture has been show to be true for $t \leq 5$ and remains open for $t \geq 6$. It has further been shown that any non-complete, double-critical, t-chromatic graph contains K_{t} as a minor for $t \leq 8$. We give a shorter proof of this result for $t=7$, a computer-free proof for $t=8$, and extend the result to show that G contains a K_{9}-minor for all $t \geq 9$. Finally, we show that the Double-Critical Graph Conjecture is true for double-critical graphs with chromatic number $t \leq 8$ if such graphs are claw-free.

To my fiancée Victoria for being the light in my life, and to my parents for their constant support.

ACKNOWLEDGMENTS

I want to thank my advisor, Zi -Xia Song, for the knowledge and guidance she has given me over my academic career. It was her undergraduate Graph Theory course six years ago which led me down this path, and I thank her for it. I would also like to thank Dr. Joseph Brennan, Dr. Ronald DeMara, Dr. Michael Reid, and Dr. Yue Zhao, for serving on my committee.

TABLE OF CONTENTS

LIST OF FIGURES viii
CHAPTER 1: INTRODUCTION 1
1.1 Basic Definitions 1
1.2 The Double-Critical Graph Conjecture 5
1.3 Hadwiger's Conjecture 8
1.4 The Extremal Functions for K_{t}-minors 12
1.5 Contraction-Critical Graphs 14
1.6 Mader's H-Wege Theorem 17
CHAPTER 2: DOUBLE-CRITICAL GRAPHS 21
2.1 Graphs on a Small Number of Vertices 21
2.2 Properties of Noncomplete, Double Critical Graphs 22
2.3 Minors in Double-Critical Graphs 30
2.4 Claw-Free, Double-Critical Graphs 38
CHAPTER 3: COLORING GRAPHS WITH FORBIDDEN MINORS 44
3.1 Preliminary Lemmas 44
3.2 Proof of Theorem 1.3.7 51
3.3 Proof of Theorem 1.3.8 52
3.4 Proof of Theorem 1.3.9 53
3.5 K_{t}-minor free graphs for $t \geq 10$ 59
CHAPTER 4: FINDING K_{8}-MINORS USING MADER'S H-WEGE THEOREM 64
4.1 Proof of Theorem 1.6.6 64
CHAPTER 5: FUTURE WORK 89
5.1 Double-Critical Graph Conjecture 89
5.2 Hadwiger's Conjecture 90
5.3 On $\mathcal{R}_{\text {min }}\left(K_{3}, \mathcal{T}_{k}\right)$-saturated Graphs 90
LIST OF REFERENCES 94

LIST OF FIGURES

1.1 $\quad K_{5}$, the claw, and $K_{3,3}$ 2
1.2 An example of edge contraction. 4
1.3 Kempe chains with ends in $N_{G}(x)$ 16
1.4 Structure given by Mader's H-Wege Theorem 18
3.1 The graph J. 49
3.2 Finding a $K_{8}^{=}$-minor when z_{1} has exactly two neighbors in W. 56
3.3 Finding a $K_{8}^{=}$-minor when z_{1} has exactly three neighbors in W. 58
3.4 Finding a K_{t}-minor when $\chi\left(G\left[N_{G}(x)\right]\right)=t-1$. 61
4.1 A forbidden set of paths in Y_{i} 68
4.2 Z_{i}, Z_{j}-paths in Y_{1} 76
4.3 A K_{8}-minor in G when $N_{1} \backslash H_{1} \neq \emptyset$ and $s=3$ 77

CHAPTER 1: INTRODUCTION

We begin this dissertation with an overview of basic concepts and definitions in graph theory. We then proceed with a discussion of historical results which have motivated our work and include our own results in these areas.

1.1 Basic Definitions

A graph G consists of a vertex set $V(G)$ and an edge set $E(G)$ such that each edge is associated with two vertices, called its ends. If an edge $e \in E(G)$ has ends $x, y \in V(G)$, we may write $e=x y$ and say that e joins x and y in G, and that x and y are adjacent or neighbors in G. A loop is an edge whose ends are both the same vertex. Multiple edges are distinct edges which share the same two ends. A graph is simple if it contains no loops or multiple edges. All graphs considered in this dissertation are simple graphs.

The complement of a graph G, denoted \bar{G}, is the graph with vertex set $V(G)$ and edge set $\{x y$: $x, y \in V(G)$ and $x y \notin E(G)\}$. Two graphs G_{1} and G_{2} are isomorphic if there exists a bijection $f: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ such that $x y \in E\left(G_{1}\right)$ if and only if $f(x) f(y) \in E\left(G_{2}\right)$. A graph H is a subgraph of a graph G, denoted $H \subseteq G$, if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. If $S \subseteq V(G)$, the subgraph of G induced by S, denoted $G[S]$, is the subgraph of G with vertex set S and edge set $\{x y \in E(G): x, y \in S\}$. Given graphs G and H, we say that G is H-free if G does not contain an induced subgraph isomorphic to H.

A path P in a graph G is a subgraph of G with $V(P)=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ and $E(P)=\left\{v_{i} v_{i+1}\right.$: $1 \leq i \leq k-1\}$, and we may write $P=v_{1}, v_{2}, \ldots, v_{k}$, where the vertices are said to be written in path order or simply order. The vertices v_{1} and v_{k} are the ends of P, and v_{2}, \ldots, v_{k-1} are internal
vertices of P. If a path P has ends v_{1} and v_{k}, we say P is a v_{1}, v_{k}-path or a path from v_{1} to v_{k}. Two paths P_{1} and P_{2} are disjoint if they share no common vertices; and internally disjoint if they share no common internal vertices. We define the length of a path to be its number of edges. We may denote a path of length k by P_{k} when its specific vertex and edge sets are unimportant. A cycle is a path whose first and last vertices are joined by an edge, and we may write $C=v_{1}, v_{2}, \ldots, v_{k}$, where the vertices are said to be written in cyclic order. The length of a cycle is also its number of edges, and we may similarly denote a cycle of length k by C_{k} when details are unimportant.

We define vertex deletion and edge deletion as follows. For a vertex set $S \subseteq V(G)$, the graph obtained from G by deleting S, denoted $G-S$, is the subgraph $G[V(G) \backslash S]$ of G induced by $V(G) \backslash S$. If $S=\{x\}$, we simply write $G-x$ instead of $G-S$. For an edge set $E \subseteq E(G)$, the graph obtained from G by deleting E, denoted $G-E$, is the subgraph of G with vertex set $V(G)$ and edge set $E(G) \backslash E$. If $E=\{e\}$, we simply write $G-e$ instead of $G-E$. We define edge addition as follows. Given two vertices $x, y \in V(G)$ such that $x y \notin E(G)$, we define $G+x y$ to be the graph with vertex set $V(G)$ and edge set $E(G) \cup\{x y\}$.

Figure 1.1: The complete graph K_{5}, the claw $K_{1,3}$, and the complete bipartite graph $K_{3,3}$.

The complete graph K_{t} is a graph with t vertices such that every pair of vertices are adjacent. We denote the graphs obtained from K_{t} by deleting one or two edges by K_{t}^{-}and $K_{t}^{=}$, respectively. A complete k-partite graph G has a partition of its vertex set into k independent sets A_{1}, \ldots, A_{k} such that A_{i} is complete to A_{j} for all $i \neq j$, and if $\left|A_{i}\right|=t_{i}$ for all i we denote this graph by $K_{t_{1}, \ldots, t_{k}}$.

When $k=2, G$ is a complete bipartite graph, and in this case we say that G has a bipartition $\left(A_{1}, A_{2}\right)$. A graph is bipartite if it is a subgraph of a complete bipartite graph. The complete bipartite graph $K_{1, t}$ is called a star, where $t \geq 1$ is an integer. When $t=3, K_{1,3}$ is a claw.

The neighborhood in G of a vertex set $S \subseteq V(G)$, denoted $N_{G}(S)$, is the set of its neighbors in $V(G) \backslash S$, that is, $N_{G}(S)=\{v \in V(G) \backslash S: x v \in E(G)$ for some $x \in S\}$. The closed neighborhood in G of a vertex set $S \subseteq V(G)$, denoted $N_{G}[S]$, is $N_{G}[S]=N_{G}(S) \cup S$. If $S=\{x\}$, we will simply write $N_{G}(x)$ and $N_{G}[x]$. The degree of a vertex $x \in V(G)$, denoted $d_{G}(x)$, is defined to be $\left|N_{G}(x)\right|$. Let $\delta(G):=\min \left\{d_{G}(x): x \in V(G)\right\}$ and $\Delta(G):=\max \left\{d_{G}(x):\right.$ $x \in V(G)\}$. Then $\delta(G)$ and $\Delta(G)$ are the minimum degree and maximum degree G, respectively.

Given two disjoint vertex sets $A, B \subseteq V(G)$, we say that A is complete (resp. anticomplete) to B if for every $a \in A$ and $b \in B$ we have $a b \in E(G)$ (resp. $a b \notin E(G)$), and A is mixed on B if A is neither complete nor anticomplete to B. We use $e_{G}(A, B)$ to denote the number of edges in G with one end in A and the other end in B. If $A=\{x\}$, we simply write $e_{G}(x, B)$ and say that x is complete to, anticomplete to, or mixed on B.

A clique in a graph G is a subgraph of G isomorphic to a complete graph. An independent set in a graph G is a vertex set $S \subseteq V(G)$ such that if $x, y \in S$, then $x y \notin E(G)$. Let $\omega(G):=$ $\max \{|V(H)|: H \subseteq G$ and H is a clique $\}$ and $\alpha(G):=\max \{|S|: S \subseteq V(G)$ and S is an independent set $\}$. Then $\omega(G)$ and $\alpha(G)$ are the clique number and independence number of G, respectively.

A graph G is k-connected if for any set $S \subseteq V(G)$ with $|S|<k$ and any $x, y \in V(G) \backslash S$, there exists an x, y-path in $G-S$. Equivalently, by Menger's Theorem [47], a graph G is k-connected if for any $x, y \in V(G)$ there exist k internally disjoint x, y-paths in G. If G is 1 -connected, we simply say G is connected. If G is not connected, we say G is disconnected. Given a connected graph G, if $G-S$ is disconnected, we say S is a separating set of G, and if $G-x$ is disconnected for some
$x \in V(G)$, then x is a cut-vertex. A vertex set $S \subseteq V(G)$ is connected if $G[S]$ is connected.

A graph G is t-colorable if there exists a function $c: V(G) \rightarrow\{1, \ldots, t\}$ such that for any $x y \in$ $E(G), c(x) \neq c(y)$. For each $i \in\{1,2, \ldots, t\}$, the set of vertices $V_{i}:=\{v \in V(G): c(v)=i\}$ is called a color class (of c). The chromatic number of a graph G, denoted $\chi(G)$, is the minimum integer t such that G is t-colorable. If $\chi(G)=t$, we also say that G is t-chromatic.

A graph G contains a subdivision of a graph H if a subgraph of G can be obtained from H by replacing the edges of H with pairwise internally disjoint paths such that none of these paths has an internal vertex in $V(H)$. In this case, we also say that G contains an H-subdivision. We define edge contraction as follows. Given an edge $x y \in E(G)$, the graph obtained from G by contracting $x y$, denoted $G / x y$, is the graph with vertex set $V(G-\{x, y\}) \cup\{z\}$ and edge set $E(G-\{x, y\}) \cup\left\{z v: v \in N_{G}(\{x, y\})\right\}$. In other words, $G / x y$ is the graph obtained from G by deleting x and y and adding a new vertex z joined to all vertices in $N_{G}(x) \cup N_{G}(y) \backslash\{x, y\}$ (see Figure 1.2). If $S \subseteq V(G)$ is connected, then by G / S we mean the graph with vertex set $V(G-S) \cup\{z\}$ and edge set $E(G-S) \cup\left\{z v: v \in N_{G}(S)\right\}$. In this case, we may also call G / S the graph obtained from G by contracting S to a single vertex. A graph H is a minor of a graph G, denoted $G>H$, if H can be obtained from a subgraph of G by some sequence (possibly empty) of edge contractions. In this case, we may also say that G contains an H-minor. If G does not contain an H-minor, then G is H-minor-free.

G

$G / x y$

Figure 1.2: An example of edge contraction.

1.2 The Double-Critical Graph Conjecture

One of the motivations for this dissertation is the following well-known conjecture of Erdős and Lovász [19] from 1966.

Conjecture 1.2.1 Erdős-Lovász Tihany Conjecture. (Erdős and Lovász [19]) For any integers $s, t \geq 2$ and any graph G with $\omega(G)<\chi(G)=s+t-1$, there exist disjoint subgraphs G_{1} and G_{2} of G such that $\chi\left(G_{1}\right) \geq s$ and $\chi\left(G_{2}\right) \geq t$.

The Erdős-Lovász Tihany Conjecture is hard. To date, the Erdős-Lovász Tihany Conjecture has been shown to be true only for values of $(s, t) \in\{(2,2),(2,3),(2,4),(3,3),(3,4),(3,5)\}$. The case $(2,2)$ is trivial. The case $(2,3)$ was shown by Brown and Jung in 1969 [5]. Mozhan [48] and Stiebitz [68] each independently showed the case $(2,4)$ in 1987. The cases $(3,3),(3,4)$, and $(3,5)$ were also settled by Stiebitz in 1987 [69].

Recent work on the Erdős-Lovász Tihany Conjecture has focused on proving the conjecture for certain classes of graphs. Kostochka and Stiebitz [41] showed the conjecture holds for line graphs. Balogh, Kostochka, Prince, and Stiebitz [4] then showed that the conjecture holds for all quasi-line graphs and all graphs G with $\alpha(G)=2$. More recently, Chudnovsky, Fradkin, and Plumettaz [10] proved the following slight weaking of the Erdős-Lovász Tihany Conjecture for claw-free graphs, the proof of which is long and relies heavily on the structure theorem for claw-free graphs developed by Chudnovsky and Seymour in [12].

Theorem 1.2.2 (Chudnovsky, Fradkin, and Plumettaz [10]) Let G be a claw-free graph with $\chi(G)>\omega(G)$. Then there exists a clique K with $|V(K)| \leq 5$ such that $\chi(G-K)>\chi(G)-$ $|V(K)|$.

The most recent result related to the Erdős-Lovász Tihany Conjecture is another slight weakening due to Stiebitz [70], who showed that for integers $s, t \geq 2$, any graph G with $\omega(G)<\chi(G)=$ $s+t-1$ contains disjoint subgraphs G_{1} and G_{2} of G with either $\chi\left(G_{1}\right) \geq s$ and $\operatorname{col}\left(G_{2}\right) \geq t$, or $\operatorname{col}\left(G_{1}\right) \geq s$ and $\chi\left(G_{2}\right) \geq t$. Here $\operatorname{col}(H)$ denotes the coloring number of a graph H, i.e. the smallest positive integer k such that there is an ordering of the vertices of G in which each vertex is preceded by fewer than k of its neighbors.

If we restrict $s=2$ in the statement of the Erdős-Lovász Tihany Conjecture, then the conjecture states that for any graph G with $\chi(G)>\omega(G) \geq 2$, there exists an edge $x y \in E(G)$ such that $\chi(G-x-y) \geq \chi(G)-1$. If no such edge exists, then $\chi(G-x-y)=\chi(G)-2$ for every edge $x y \in E(G)$. This motivates the following definition of double-critical graphs. A connected graph G is double-critical if for every edge $x y \in E(G), \chi(G-x-y)=\chi(G)-2$. The only known example of a double-critical, t-chromatic graph for any integer $t \geq 2$ is the complete graph K_{t}. Any double-critical, t-chromatic graph $G \neq K_{t}$ would be a counterexample to the Erdős-Lovász Tihany Conjecture, and this motivates the following special case of the conjecture.

Conjecture 1.2.3 Double-Critical Graph Conjecture. (Erdős and Lovász [19]) For any integer $t \geq 2$, the only double-critical, t-chromatic graph is K_{t}.

Since the Double-Critical Graph Conjecture is equivalent to the Erdős-Lovász Tihany Conjecture with $s=2$, we see from the discussion above that the Double-Critical Graph Conjecture has been settled in the affirmative for $t \leq 5[48,68]$, for line graphs [41], and for quasi-line graphs and graphs with independence number two [4]. The Double-Critical Graph Conjecture remains open for all $t \geq 6$.

Theorem 1.2.4 (Brown and Jung [5]; Mozhan [48]; Stiebitz [68]) For $t \in\{1, \ldots, 5\}$, the only double-critical, t-chromatic graph is the complete graph K_{t}.

The Double-Critical Graph Conjecture is also hard, and some weakenings of it have been studied. In 2010, Kawarabayashi, Pedersen, and Toft [37] proposed the following, which we call Hadwiger's Conjecture for Double-Critical Graphs.

Conjecture 1.2.5 Hadwiger's Conjecture for Double-Critical Graphs. (Kawarabayashi, Pedersen, and Toft [37]) For any integer $t \geq 2$, any double-critical, t-chromatic graph contains a K_{t}-minor.

Hadwiger's Conjecture for Double-Critical Graphs clearly holds for $t \leq 5$ by the above results on the Double-Critical Graph Conjecture. In the same paper as the proposal of the conjecture, Kawarabayashi, Pedersen, and Toft [37] also proved Hadwiger's Conjecture for Double-Critical Graphs for the cases $t=6$ and $t=7$. As a further weakening of the Double-Critical Graph Conjecture, Pedersen [50] showed that any double-critical, 8-chromatic graph contains K_{8}^{-}as a minor. Albar and Gonçalves [1] later proved that any double-critical, 8-chromatic graph contains K_{8} as a minor. We summarize these results as follows.

Theorem 1.2.6 (Kawarabayashi, Pedersen, and Toft [37], Albar and Gonçalves [1]) For any integer $t \in\{6,7,8\}$, every double-critical, t-chromatic graph contains K_{t} as a minor.

We note here that for Theorem 1.2.6, the proof by Kawarabayashi, Pedersen, and Toft [37] of the case $t=7$ is long, and the proof by Albar and Gonçalves [1] of the case $t=8$ is computerassisted. In Chapter 2, we provide a significantly shorter and computer-free proof of Theorem 1.2.6 for the cases $t=7,8$, and we also extend the theorem to the case $t=9$. We note here that while the methods we use in proving the case $t=9$ do not utilize a computer, we do make use of Theorem 1.4.3, whose proof in [67] was computer-assisted. Hence our proof for the case $t=9$ is not strictly computer-free. We will actually prove the following slightly stronger result in Section 2.3.

Theorem 1.2.7 [59] For integers k, t with $k \in\{1, \ldots, 9\}$ and $t \geq k$, every double-critical, t -
chromatic graph contains K_{k} as a minor.

As a different weakening of the Double-Critical Graph Conjecture, the conjecture has been studied for claw-free graphs. We note that Theorem 1.2.2 does not completely settle the Double-Critical Graph Conjecture for claw-free graphs. Recently, Huang and Yu [31] proved that the only doublecritical, 6-chromatic, claw-free graph is K_{6}. We give an alternative, shorter proof of their result, and further prove the following in Section 2.4.

Theorem 1.2.8 [57] If G is a claw-free, double-critical, t-chromatic graph with $t \in\{6,7,8\}$, then G is isomorphic to K_{t}.

Kawarabayashi, Pedersen, and Toft [37] proved that no two vertices of degree $t+1$ can be adjacent in a double-critical, t-chromatic graph for $t \geq 6$. One of the main results of Chapter 2 is the following improvement of their result, and it is crucial in the proof of Theorem 1.2.8.

Theorem 1.2.9 [57] If G is a double-critical, t-chromatic graph with $t \geq 6$, then no vertex of degree $t+1$ is adjacent to a vertex of degree $t+1, t+2$, or $t+3$.

We prove Theorem 1.2.9 in Section 2.2. Since Theorem 1.2.9 applies to all double-critical graphs, not just claw-free graphs, it will be useful in any future work on double-critical graphs.

1.3 Hadwiger's Conjecture

In this section, we introduce the main motivation for my research.

A graph is planar if it can be drawn in the plane in such a way that any two distinct edges do not intersect except possibly at a common end. If no such drawing exists, the graph is nonplanar. One of the earliest motivating questions in the field of graph theory was the 4 -color conjecture,
namely, are planar graphs 4-colorable? In 1890, Heawood [29] gave a short proof showing that five colors suffices. The question proved very difficult, and it was only with the aid of computers that it was able to be answered in the affirmative. In 1977, Appel and Haken [2, 3] first proved the Four Color theorem. A much shorter, but still computer assisted, proof was given by Robertson, Sanders, Seymour, and Thomas in 1997 [54].

Theorem 1.3.1 Four Color Theorem. (Appel and Haken [2,3]) Every planar graph is 4-colorable.

It is well-known that the complete graph K_{5} and complete bipartite graph $K_{3,3}$ are nonplanar. In the 1930s it was shown that, in a sense, these two examples characterize all nonplanar graphs. Kuratowski showed in 1930 [43] that a graph is planar if and only if it does not contain a subdivision of K_{5} or $K_{3,3}$, and Wagner showed in 1937 [73] that excluding minors of K_{5} and $K_{3,3}$ suffices, summarized as follows.

Theorem 1.3.2 Kuratowski’s Theorem. (Kuratowski [43]) A graph is planar if and only if it does not contain K_{5} or $K_{3,3}$ as a subdivision.

Theorem 1.3.3 Wagner's Theorem. (Wagner [73]) A graph is planar if and only if it does not contain K_{5} or $K_{3,3}$ as a minor.

We note now that the graph $K_{3,3}$, and indeed any bipartite graph, is 2 -colorable. Inspired by Wagner's Theorem , in 1943, Hadwiger [25] conjectured the following.

Conjecture 1.3.4 Hadwiger's Conjecture. (Hadwiger [25]) For any integert ≥ 1, every t-chromatic graph contains a K_{t}-minor.

An equivalent formulation of Hadwiger's Conjecture states that any graph with no K_{t}-minor is $(t-1)$-colorable. Hadwiger's Conjecture is trivially true for $t \leq 3$. It is easy for $t=4$ and
was shown by both Hadwiger [25] and Dirac [17]. An alternative and quite short proof for $t=4$ has also been given by Woodall [74]. Wagner [73] proved that the case $t=5$ of Hadwiger's Conjecture is, in fact, equivalent to the Four Color Theorem. The same was shown for the case $t=6$ by Robertson, Seymour, and Thomas [55] in their proof of the following.

Theorem 1.3.5 (Robertson, Seymour, and Thomas [55]) If G does not contain K_{6} as a minor, then G is 5 -colorable.

Hadwiger's Conjecture has also been verified for certain classes of graphs. In 2004, Reed and Seymour [53] proved that Hadwiger's Conjecture holds for line graphs, where such graphs are permitted to have multiple edges. In 2008, Chudnovsky and Fradkin [9] proved that Hadwiger's Conjecture holds for quasi-line graphs. Plummer, Stiebitz, and Toft [51] proved in 2003 that Hadwiger's Conjecture holds for every H-free graph G with $\alpha(G)=2$, where H is any graph with $|V(H)|=4$ and $\alpha(H)=2$. This was strengthened by Kriesell [42] in 2010, who showed that Hadwiger's Conjecture holds for every H-free graph G with $\alpha(G)=2$, where H is any graph with $|V(H)|=5$ and $\alpha(H)=2$. More recently, Song and Thomas [66] showed that Hadwiger's conjecture holds for graphs G with $\alpha(G) \geq 3$ and no induced cycle of length between 4 and $2 \alpha(G)-1$.

Hadwiger's Conjecture remains open for $t \geq 7$, and so the first open case of Hadwiger's Conjecture is proving that graphs with no K_{7}-minor are 6 -colorable. However, it is not yet known if graphs with no K_{7}-minor are even 7 -colorable. In fact, it has only been recently shown by Albar and Goncąlves [1] that K_{7}-minor-free graphs are 8-colorable. There have been several other partial results towards the case $t=7$ of Hadwiger's Conjecture. Kawarabayashi and Toft [39] proved that every graph with neither K_{7} nor $K_{4,4}$ as a minor is 6-colorable. Jakobsen [33,34] proved that every graph with no K_{7}^{-}-minor is 7 -colorable and every graph with no $K_{7}^{\overline{=}}$-minor is 6 -colorable. We note that the result of Kawarabayashi and Toft and the latter result of Jakobsen are best possible since
the complete graph K_{6} is 6 -chromatic and does not contain any of $K_{7}, K_{7}^{\overline{ }}$, or $K_{4,4}$ as a minor.

In addition to showing that K_{7}-minor-free graphs are 8-colorable, Albar and Goncąlves [1] showed K_{8}-minor-free graphs are 10-colorable, which we summarize as follows.

Theorem 1.3.6 (Albar and Goncąlves [1]) If a graph is K_{7}-minor-free, then it is 8 -colorable. If a graph is K_{8}-minor-free, then it is 10-colorable.

The proof of Theorem 1.3.6 given by Albar and Gonçalves in [1] is long and computer-assisted. In Chapter 3 we provide a much shorter and computer-free proof of Theorem 1.3.6 by using our powerful Lemma 1.5.3. We additionally use our Lemma 1.5.3 to extend Theorem 1.3.6 to show that K_{9}-minor-free graphs are 12-colorable, although we note that this result does rely on the extremal function for K_{9}-minors (Theorem 1.4.3) which was proved with computer assistance in [67]. The main result of Chapter 3 is summarized as follows.

Theorem 1.3.7 [58] For all $t \in\{7,8,9\}$, any graph with no K_{t}-minor is $(2 t-6)$ colorable.

Since Theorem 1.3.7 does utilize the extremal function for K_{t}-minors introduced in Section 1.4, extending it to values of $t \geq 10$ is hampered by the fact that the extremal function for K_{t}-minors has not yet been proved for $t \geq 10$. In Section 1.4, we see that the bound on the extremal function from Theorem 1.4.1 with $t \leq 7$ extends to $t \in\{8,9\}$ except for a small number of counterexamples. In Section 3.5 we introduce Conjecture 3.5.2, which claims that this same bound extends to all $t \geq 10$, except for some counterexamples which are all $(t-1)$-colorable. If we assume that Conjecture 3.5.2 is true, then we are able to show with Theorem 3.5.3 that for any integer $t \geq 5$, a graph with no K_{t}-minor is $(2 t-6)$-colorable. The method which we use to prove Theorem 3.5.3 is different from that used in the proof of Theorem 1.3.7, and so this provides an alternate proof of Theorem 1.3.7. Theorem 3.5.3 represents the first result on coloring K_{t}-minor-free graphs for general values of t.

The Kempe Chain method developed in Lemma 1.5.3, which is crucial in the proof of Theorem 1.3.7 presented in Section 3.2, is then used to prove the following two new results.

Theorem 1.3.8 [58] Every graph with no K_{8}^{-}-minor is 9-colorable.

Theorem 1.3.9 [58] Every graph with no $K_{8}^{=-m i n o r ~ i s ~ 8-c o l o r a b l e . ~}$

Our proofs of Theorem 1.3.8 and Theorem 1.3.9 are short and will also appear in Chapter 3.

More information on Hadwiger's Conjecture can be found in an earlier survey by Toft [71] and a very recent informative survey by Seymour [62].

1.4 The Extremal Functions for K_{t}-minors

The extremal function for a graph H, first introduced by Turán in 1941 [72], gives the maximum number of edges in a graph G which does not contain H as a subgraph. Turán studied the extremal function for complete graphs K_{t}, and completely characterized the K_{t}-free graphs with the maximum number of edges, namely, complete $(t-1)$-partite graphs now known as Turán graphs. The extremal function is naturally extended to graph minors as follows. Given a graph H and an integer $n \geq|V(H)|$, the extremal function for H-minors is the minimum integer $p=p(H)$ such that any graph with n vertices and at least p edges contains H as a minor.

The extremal function for K_{t}-minors was first shown in 1964 for $t \leq 5$ by Dirac [15] and then in 1968 for $t \leq 7$ by Mader [44]. The case $t=6$ was also proved by Györi [24] in 1982, independent of Mader.

Theorem 1.4.1 (Dirac [15], Mader [44]) For $t \leq 7$, any graph on $n \geq t$ vertices with at least $(t-2) n-\binom{t-1}{2}+1$ edges has a K_{t}-minor.

While this bound holds for $t \leq 7$, for larger values of t, counterexamples to this bound have been found. To describe some of these counterexamples, we must define an $\left(H_{1}, H_{2}, k\right)$-cockade, which we do recursively. For graphs H_{1}, H_{2} and an integer k, we define any graph isomorphic to either of H_{1} or H_{2} to be an $\left(H_{1}, H_{2}, k\right)$-cockade. Now, given two $\left(H_{1}, H_{2}, k\right)$-cockades G_{1} and G_{2}, any graph G obtained from the disjoint union of G_{1} and G_{2} by identifying a clique of size k in each of G_{1} and G_{2} is an $\left(H_{1}, H_{2}, k\right)$-cockade. Every $\left(H_{1}, H_{2}, k\right)$-cockade can be constructed in this fashion. If $H_{1}=H_{2}=H$, then we simply write (H, k)-cockade.

The extremal function for K_{t}-minors for $t=8$ was shown in 1994 by Jørgensen [35] and for $t=9$ in 2006 by Song and Thomas [67].

Theorem 1.4.2 (Jørgensen [35]) Every graph on $n \geq 8$ vertices with at least $6 n-20$ edges either contains K_{8} as a minor or is isomorphic to a $\left(K_{2,2,2,2,2}, 5\right)$-cockade.

Theorem 1.4.3 (Song and Thomas [67]) Every graph on $n \geq 9$ vertices with at least $7 n-27$ edges either contains K_{9} as a minor, or is isomorphic to $K_{2,2,2,3,3}$, or is isomorphic to a $\left(K_{1,2,2,2,2,2}, 6\right)$ cockade.

The problem remains open for $t \geq 10$, though some partial results for $t=10$ and $t=11$ have been given by Song in [65].

Note that it follows immediately from Theorem 1.4.1, Theorem 1.4.2, Theorem 1.4.3, and Proposition 1.5.1(i) that for any integer $0 \leq t \leq 9$, any graph with no K_{t}-minor is $(2 t-5)$-colorable.

The extremal function for K_{t}^{-}-minors and $K_{t}^{=}$-minors has also been studied.

The extremal function for K_{t}^{-}-minors was found for $t \in\{5,6\}$ in 1964 by Dirac [15]. It was then shown for $t=7$ in 1983 by Jakobsen [33, 34]. Most recently, it was shown in 2005 for $t=8$ by Song [64]. The extremal function problem for K_{t}^{-}-minors remains open for $t \geq 9$.

Theorem 1.4.4 (Dirac [15]) For $t=5,6$, if G is a graph with $n \geq t$ vertices and at least $\left(t-\frac{5}{2}\right) n-\frac{1}{2}(t-3)(t-1)$ edges, then G contains K_{t}^{-}as a minor, or G is a $\left(K_{t-1}, t-3\right)$-cockade.

Theorem 1.4.5 (Jakobsen [33, 34]) If G is a graph with $n \geq 7$ vertices and at least $\frac{9}{2} n-12$ edges, then G contains K_{7}^{-}as a minor, or G is a $\left(K_{2,2,2,2}, K_{6}, 4\right)$-cockade.

Theorem 1.4.6 (Song [64]) If G is a graph with $n \geq 8$ vertices and at least $\frac{1}{2}(11 n-35)$ edges, then G contains K_{8}^{-}as a minor, or G is a $\left(K_{1,2,2,2,2}, K_{7}, 5\right)$-cockade.

The extremal function for $K_{t}^{=}$-minors was found for $t \in\{5,6\}$ in 1964 by Dirac [15]. It was found for $t \in\{7,8\}$ in 1971 and 1972, respectively, by Jakobsen [32, 33]. The extremal function problem for $K_{t}^{=}$-minors remains open for $t \geq 9$.

Theorem 1.4.7 (Dirac [15], Jakobsen [32,33]) For any integer t with $5 \leq t \leq 8$, every graph with $n \geq t$ vertices and at least $(t-3) n-\frac{1}{2}(t-1)(t-4)$ edges either contains a $K_{t}^{=}$-minor or is a $\left(K_{t-1}, t-4\right)$-cockade.

For general graphs H, some extremal function results are known. The extremal function for $K_{3,3^{-}}$ minors has been shown by Hall [26]; for integers $t \geq 2$, Chudnovsky, Reed, and Seymour [11] gave the extremal function for $K_{2, t^{-}}$-minors; Ding [14] has proved the extremal function for $K_{2,2,2^{-}}$ minors; and the extremal function for P-minors has been shown by Hendry and Wood [30], where P is the Petersen graph.

1.5 Contraction-Critical Graphs

A graph G is t-color-critical, or simply t-critical, if G is t-chromatic and $\chi(H)<\chi(G)$ for any proper subgraph H of G. A graph G is t-contraction-critical if G is t-chromatic and $\chi(H)<\chi(G)$ for any proper minor H of G.

The motivation behind studying contraction-critical graphs is that if a minimum counterexample to Hadwiger's Conjecture exists, then it can be taken to be contraction-critical. This is clear, since if a graph G does not contain K_{t} as a minor, then no minor H of G can contain K_{t} as a minor either. The only known examples of contraction-critical graphs are the complete graphs K_{t}. Contraction-critical graphs were first studied by Dirac [18, 16]. The following basic properties of contraction-critical graphs are a result of this initial work.

Proposition 1.5.1 (Dirac [18, 16]) If G is a non-complete k-contraction-critical graph, then the following hold:
(i) $\delta(G) \geq k$,
(ii) for any $x \in V(G), \alpha\left(G\left[N_{G}(x)\right]\right) \leq d(x)-k+2$,
(iii) no minimal separating set S of G can be partitioned into a clique and an independent set, and
(iv) for $k \geq 5, G$ is 5 -connected.

As an improvement of Proposition 1.5.1(iv), in 1968 Mader [46] proved the following deep and long-standing result on the connectivity of contraction-critical graphs.

Theorem 1.5.2 (Mader [46]) If G is a k-contraction-critical graph with $k \geq 6$, then
(i) G is 6-connected for $k=6$, and
(ii) G is 7-connected for $k \geq 7$.

It seems very difficult to improve Theorem 1.5.2 for small values of k. For larger values of k, some better results can be found. Kawarabayashi [36] has shown that any minimal non-complete k -contraction-critical graph with no K_{k}-minor is $\left\lceil\frac{2 k}{27}\right\rceil$-connected, while Kawarabayashi and Yu [40] have improved that by showing that any minimal such graph is $\left\lceil\frac{k}{9}\right\rceil$-connected. Chen, Hu, and

Song [8] recently improved the bound further by showing that any minimal such graph is $\left\lceil\frac{k}{6}\right\rceil$ connected.

The following Lemma 1.5.3 represents the linchpin of our arguments proving Theorem 1.3.7, Theorem 1.3.8, and Theorem 1.3.9. Lemma 1.5.3 turns out to be incredibly powerful, as it provides a way to circumvent the connectivity restriction of Theorem 1.5.2 for small values of k. A path consisting of vertices of only two (alternating) colors is a Kempe chain. Given a graph G, any $e \notin E(G)$ is a missing edge of G. Lemma 1.5.3 turns out to be very powerfule, as it provides us with many paths, specifically Kempe chains, connecting ends of missing edges without requiring the graph G to have high connectivity. We prove Lemma 1.5.3 in Chapter 3.

Figure 1.3: Kempe chains given by Lemma 1.5 .3 with ends in $N_{G}(x)$. Here, $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $M=\left\{\left\{a_{1} b_{11}, a_{1} b_{12}, a_{1} b_{13}\right\},\left\{a_{2} b_{21}, a_{2} b_{22}\right\},\left\{a_{3} b_{31}\right\}\right\}$.

Lemma 1.5.3 [58] Let G be any k-contraction-critical graph. Let $x \in V(G)$ be a vertex of degree $k+s$ with $\alpha\left(G\left[N_{G}(x)\right]\right)=s+2$ and let $S \subset N_{G}(x)$ with $|S|=s+2$ be any independent
set, where $k \geq 4$ and $s \geq 0$ are integers. If $N_{G}(x) \backslash S$ is not a clique, then for any $M=$ $\left\{\left\{a_{1} b_{11}, \ldots, a_{1} b_{1 r_{1}}\right\},\left\{a_{2} b_{21}, \ldots, a_{2} b_{2 r_{2}}\right\}, \ldots,\left\{a_{m} b_{m 1}, \ldots, a_{m} b_{m r_{m}}\right\}\right\}$, where $m, r_{i} \geq 1, r_{1}+r_{2}+$ $\cdots+r_{m}+m \leq k-2$, the vertices $a_{1}, \ldots, a_{m}, b_{11}, \ldots, b_{m r_{m}} \in N_{G}(x) \backslash S$ are all distinct, and for any $i \in\{1,2, \ldots, m\}$, the set $\left\{a_{i} b_{i 1}, \ldots, a_{i} b_{i r_{i}}\right\}$ consists of r_{i} missing edges of $G\left[N_{G}(x) \backslash S\right]$ with a_{i} as a common end, then for each $i \in\{1,2, \ldots, m\}$ there exist paths $P_{i 1}, \ldots, P_{i r_{i}}$ in G such that each $P_{i j}$ has ends $a_{i}, b_{i j}$ and all its internal vertices in $V(G) \backslash N_{G}[x]$ for all $j=1,2, \ldots, r_{i}$. Moreover, for any $1 \leq i<\ell \leq m$, the paths $P_{i 1}, \ldots, P_{i r_{i}}$ are vertex-disjoint from the paths $P_{\ell 1}, \ldots, P_{\ell r_{\ell}}$.

1.6 Mader's H-Wege Theorem

In addition to Lemma 1.5.3, another important tool that can be used to help find minors in graphs of low connectivity is a deep result of Mader [45], referred to as Mader's H-Wege Theorem, which states the following.

Theorem 1.6.1 Mader's H-Wege Theorem. (Mader [45]) Let G be a graph, let $S \subseteq V(G)$ be an independent set, and let $k \geq 0$ be an integer. Then exactly one of the following holds:
(i) There are k paths of G, each with distinct ends both in S, such that each $v \in V(G) \backslash S$ is in at most one of the paths.
(ii) There exist $W \subseteq V(G) \backslash S$ and a partition Y_{1}, \ldots, Y_{n} of $V(G) \backslash(S \cup W)$, and for $1 \leq i \leq n$ a subset $X_{i} \subseteq Y_{i}$, such that
(a) $|W|+\sum_{i=1}^{n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor<k$,
(b) no vertex in $Y_{i} \backslash X_{i}$ has a neighbor in $V(G) \backslash\left(W \cup Y_{i}\right)$, and
(c) every path of $G \backslash W$ with distinct ends both in S has an edge with both ends in Y_{i} for some i.

Theorem 1.6.1 is often referred to in the literature as Mader's S-Paths Theorem. An alternative and much shorter proof of Theorem 1.6.1 has been given by Schrijver [63]. Given a graph G, let H_{1}, \ldots, H_{t} be subsets of $V(G)$. We say a path in G with ends u, v is good if there exist distinct $i, j \in\{1, \ldots, n\}$ such that $u \in H_{i}$ and $v \in H_{j}$. Note that any vertex in $H_{i} \cap H_{j}$ with $i \neq j$ is considered to be a good path consisting of only a single vertex. In 1993, Robertson, Seymour, and Thomas [55] gave a slight modification of Mader's H-Wege Theorem (1.6.1) which allowed for slightly easier application (see Figure 1.4).

Figure 1.4: The sets $W, X_{1}, Y_{1}, \ldots, X_{n}, Y_{n}$ and some edges allowed by Theorem 1.6.2(ii).

Theorem 1.6.2 (Robertson, Seymour, and Thomas [55]) Let G be a graph, let H_{1}, \ldots, H_{t} be subsets of $V(G)$, and let $k \geq 0$ be an integer. Then exactly one of the following holds:
(i) There are k good paths of G, mutually vertex-disjoint.
(ii) There exists $W \subseteq V(G)$ and a partition Y_{1}, \ldots, Y_{n} of $V(G) \backslash W$, and for $1 \leq i \leq n$ a subset $X_{i} \subseteq Y_{i}$, such that
(a) $|W|+\sum_{i=1}^{n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor<k$,
(b) for $1 \leq i \leq n$, no vertex in $Y_{i} \backslash X_{i}$ has a neighbor in $V(G) \backslash\left(W \cup Y_{i}\right)$, and $Y_{i} \cap H_{j} \subseteq X_{i}$ for $1 \leq j \leq t$, and
(c) every good path P in G with $V(P) \cap W=\emptyset$ has an edge with both ends in Y_{i} for some $1 \leq i \leq n$.

Using Theorem 1.6.2, Robertson, Seymour, and Thomas [55] were able to prove the following theorem utilized in their paper on the case $t=6$ of Hadwiger's Conjecture.

Theorem 1.6.3 (Robertson, Seymour, and Thomas [55]) Let G be a 6-connected graph such that $G-x$ is nonplanar for all $x \in V(G)$. If G contains three different subgraphs isomorphic to K_{4}, say L_{1}, L_{2}, and L_{3}, such that $\left|L_{i} \cap L_{j}\right| \leq 2$ for $1 \leq i<j \leq 3$, then G contains a K_{6}-minor.

The application of Theorem 1.6.2 in [55] is complex and long. Kawarabayashi and Toft [39] used Theorem 1.6.2 in the same manner to prove a result extending Theorem 1.6.3 in their proof that every graph with no K_{7}-minor or $K_{4,4}$-minor is 6 -colorable.

Theorem 1.6.4 (Kawarabayashi and Toft [39]) Let G be a 7-connected graph with at least 19 vertices. If G contains three different subgraphs isomorphic to K_{5}, say L_{1}, L_{2}, and L_{3}, such that $\left|L_{1} \cup L_{2} \cup L_{3}\right| \geq 12$, then G contains a K_{7}-minor.

Kawarabayashi, Luo, Niu, and Zhang [38] then extended Theorem 1.6.3 and Theorem 1.6.4 to find a K_{t}-minor for $t \geq 5$, again using Theorem 1.6.2.

Theorem 1.6.5 (Kawarabayashi, Luo, Niu, and Zhang [38]) Let G be a $(t+2)$-connected graph, where $t \geq 5$. If G contains three different subgraphs isomorphic to K_{t}, say L_{1}, L_{2}, and L_{3}, such that $\left|L_{1} \cup L_{2} \cup L_{3}\right| \geq 3 t-3$, then G contains a K_{t+2}-minor.

Both Theorem 1.6.3 and Theorem 1.6.4 have had application in results related to Hadwiger's Conjecture. The first new case given by Theorem 1.6.5 is that when $t=6$. In this case, we require a
graph to be 8 -connected to be able to find a K_{8}-minor. As discussed in Section 1.5, t-contractioncritical graphs have not yet been shown to be 8 -connected for any small values of t. The best result for small values of t is given by Theorem 1.5.2, namely that t-contraction-critical graphs are 7 -connected for $t \geq 7$. In Section 4.1, we prove Theorem 1.6 .6 which can be used to find a K_{8}-minor in a 7-connected graph, albeit with additional restrictions.

Theorem 1.6.6 [56] Let G be a 7 -connected graph with $\delta(G) \geq 8$, and let $H_{1}, H_{2}, H_{3} \subseteq V(G)$ be such that $G\left[H_{1}\right], G\left[H_{2}\right]$, and $G\left[H_{3}\right]$ are three different subgraphs of G isomorphic to K_{6}. Then G contains a K_{8}-minor if all of the following conditions are satisfied:
(A) for any minimum separating set S of $G, G-S$ has at most two components, $\Delta(G[S]) \leq 4$, and S cannot be partitioned into two sets such that one induces a clique in G and the other induces an independent set in G,
(B) $\left|H_{1} \cap H_{2}\right|=1$, and the vertex in $H_{1} \cap H_{2}$ has at most 11 neighbors in G, and
(C) $H_{1} \cap H_{2} \cap H_{3}=\emptyset$, and $\left|\left(H_{1} \cap H_{2}\right) \cup\left(H_{2} \cap H_{3}\right) \cup\left(H_{3} \cap H_{1}\right)\right| \leq 4$.

While the conditions required for Theorem 1.6.6 may initially seem restrictive, most of them follow from the properties of contraction-critical graphs. If G is k-contraction-critical for $k \geq 8$, then G is 7-connected by Theorem 1.5.2(ii) and has $\delta(G) \geq k$ by Proposition 1.5.1. It is also possible in k-contraction-critical graphs that vertices of minimum degree can have two disjoint cliques in their neighborhood. Suppose S is a minimum separating set of a k-contraction-critical graph G. If we can select two vertices x and y of minimum degree from distinct components of $G-S$ such that $G\left[N_{G}(x)\right]$ and $G\left[N_{G}(y)\right]$ each contain two disjoint cliques, then from this, (B) and (C) should follow. Only condition (A) may be difficult to verify in general.

CHAPTER 2: DOUBLE-CRITICAL GRAPHS

2.1 Graphs on a Small Number of Vertices

We begin this chapter by introducing several Lemmas that will be necessary in Section 2.3. The first Lemma is a result of Jørgensen [35].

Lemma 2.1.1 (Jørgensen [35]) Let G be a graph with $n \leq 11$ vertices and $\delta(G) \geq 6$ such that for every vertex x in $G, G-x$ does not contain K_{6} as a minor. Then G is one of the graphs $K_{2,2,2,2}$, $K_{3,3,3}$ or the complement of the Petersen graph.

Given two graphs G_{1} and G_{2}, the union $G_{1} \cup G_{2}$ is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. From Lemma 2.1.1, we deduce the following lemma which we will apply in a manner similar to that of Lemma 3.1.2.

Lemma 2.1.2 [59] For $t \in\{1,2, \ldots, 5\}$, let G be a graph with $n \leq 2 t$ vertices and $\delta(G) \geq t$. Then $G>K_{t} \cup K_{1}$.

Proof. Let G and t be given as in the statement. Consider the graph G^{\prime} obtained from G by adding $6-t$ vertices, each adjacent to all other vertices in the graph. Then G^{\prime} has at most $2 t+6-t=t+6 \leq$ 11 vertices and has $\delta\left(G^{\prime}\right) \geq t+6-t=6$. Since none of $K_{2,2,2,2}, K_{3,3,3}$, or the complement of the Petersen graph has a vertex adjacent to all other vertices in the graph, it follows from Lemma 2.1.1 that G^{\prime} contains some vertex x such that $G^{\prime}-x>K_{6}$. If $x \in V(G)$, then $G-x>K_{t}$, and if $x \in V\left(G^{\prime}\right)$, then $G>K_{t+1}$, so in either case it follows that $G>K_{t} \cup K_{1}$.

We will also need the following technical Lemma of Song and Thomas [67]. We note here that the proof of Lemma 2.1.3 is computer-assisted.

Lemma 2.1.3 (Song and Thomas [67]) Let $n \in\{9,10, \ldots, 13\}$ and let G be a graph on n vertices with $\delta(G) \geq 7$. Then either $G>K_{7} \cup K_{1}$, or G satisfies the following two properties.
(A) Either G is isomorphic to $K_{1,2,2,2,2}$, or G has four distinct vertices $a_{1}, b_{1}, a_{2}, b_{2}$ such that $a_{1} a_{2}, b_{1} b_{2} \notin E(G)$ and for $i \in\{1,2\}$, the vertex a_{i} is adjacent to b_{i}, the vertices a_{i} and b_{i} have at most four common neighbors, and $G+a_{1} a_{2}+b_{1} b_{2}>K_{8}$.
(B) For any two sets $A, B \subseteq V(G)$ of cardinality at least five such that neither is complete and $A \cup B$ includes all vertices of G of degree at most $|G|-2$, either
(B1) there exist $a \in A$ and $b \in B$ such that $G^{\prime}>K_{8}$, where G^{\prime} is obtained from G by adding all edges $a a^{\prime}$ and $b b^{\prime}$ for $a^{\prime} \in A-\{a\}$ and $b^{\prime} \in B-\{b\}$, or
(B2) there exist $a \in A-B$ and $b \in B-A$ such that $a b \in E(G)$ and the vertices a and b have at most five common neighbors in G, or
(B3) one of A and B contains the other and $G+a b>K_{7} \cup K_{1}$ for all distinct nonadjacent vertices $a, b \in A \cap B$.

2.2 Properties of Noncomplete, Double Critical Graphs

In this section we introduce several known properties of noncomplete, double-critical t-chromatic graphs. We also prove some new results, including our main result of this chapter, Theorem 1.2.9 which follows as an immediate corollary of Theorem 2.2.6. We begin with some properties first developed by Kawarabayashi, Pedersen, and Toft in [37], the first paper to explore these graphs. Note that if G is a noncomplete, double-critical, t-chromatic graph, then it follows from Theorem 1.2.4 that $t \geq 6$.

Proposition 2.2.1 (Kawarabayashi, Pedersen, and Toft [37]) If G is a non-complete, doublecritical, t-chromatic graph, then all of the following are true:
(i) G does not contain K_{t-1} as a subgraph.
(ii) for all edges $x y$, every proper coloring $c: V(G) \backslash\{x, y\} \rightarrow\{1,2, \ldots, t-2\}$ of $G-\{x, y\}$, and any non-empty sequence $j_{1}, j_{2}, \ldots, j_{i}$ of i different colors from $\{1,2, \ldots, t-2\}$, there is a path of order $i+2$ with vertices $x, v_{1}, v_{2}, \ldots, v_{i}, y$ in order such that v_{k} is colored j_{k} for all $k \in\{1,2, \ldots, i\}$.
(iii) for any edge $x y \in E(G), x$ and y have at least one common neighbor in every color class of any $(t-2)$-coloring of $G-\{x, y\}$, in particular, every edge $x y \in E(G)$ belongs to at least $t-2$ triangles.
(iv) there exists at least one edge $x y \in E(G)$ such that x and y share a common non-neighbor in G.
(v) for any edge $x y \in E(G)$, the subgraph of G induced by $N_{G}(x) \backslash N_{G}[y]$ contains no isolated vertices. In particular, no vertex can have degree one in $\overline{G\left[N_{G}(x)\right]}$.
(vi) $\delta(G) \geq t+1$.
(vii) for any vertex $x \in V(G), \alpha\left(G\left[N_{G}(x)\right]\right) \leq d_{G}(x)-t+1$. Furthermore, for any vertex y in a maximum independent set $A \subseteq N_{G}(x)$, we have $\left|N_{G}(x) \cap N_{G}(y)\right| \leq d_{G}(x)-$ $\alpha\left(N_{G}(x)\right)-1$.
(viii) for any vertex x with at least one non-neighbor in G, $\chi\left(G\left[N_{G}(x)\right]\right) \leq t-3$.
(ix) for any $x \in V(G)$ with $d_{G}(x)=t+1, \overline{G\left[N_{G}(x)\right]}$ consists of isolated vertices and cycles of length at least five.
(x) no two vertices of degree $t+1$ are adjacent in G.
(xi) G is 6 -connected and no minimal separating set of G can be partitioned into two sets A and B such that A is an independent set and $G[B]$ is complete.

We will first give a slight improvement of Proposition 2.2.1(xi). It seems hard to use the main idea in the proof of Proposition 2.2.1(xi) to prove that any non-complete, double-critical, t-chromatic
graph is 7 -connected. Instead, we can say a bit more about minimal separating sets of size 6 in such graphs. We say two proper vertex-colorings c_{1} and c_{2} of a graph G are equivalent if, for all $x, y \in V(G), c_{1}(x)=c_{1}(y)$ if and only if $c_{2}(x)=c_{2}(y)$. For any $A \subseteq V(G)$, we say that two vertex-colorings c_{1} and c_{2} of G are equivalent on A if the restrictions $\left.c_{1}\right|_{A}$ and $\left.c_{2}\right|_{A}$ to A are equivalent on the subgraph $G[A]$. Let S be a separating set of G, and let G_{1}, G_{2} be connected subgraphs of G such that $G_{1} \cup G_{2}=G$ and $G_{1} \cap G_{2}=G[S]$. If c_{1} is a t-coloring of G_{1} and c_{2} is a t-coloring of G_{2} such that c_{1} and c_{2} are equivalent on S, then it is clear that c_{1} and c_{2} can be combined to give a t-coloring of G by a suitable permutation of the color classes of, say c_{2}.

Lemma 2.2.2 [59] Suppose G is a non-complete, double-critical, t-chromatic graph. If S is a minimal separating set of G with $|S|=6$, then either $G[S] \subseteq K_{3,3}$ or $G[S] \subseteq K_{2,2,2}$.

Proof. Suppose G is a non-complete, double-critical, t-chromatic graph. By Proposition 2.2.1(xi), G is 6-connected. Let $S=\left\{v_{1}, \ldots, v_{6}\right\} \subset V(G)$ be a minimal separating set of G such that neither $G[S] \subseteq K_{3,3}$ nor $G[S] \subseteq K_{2,2,2}$. Let H be a component of $G-S$, and let $G_{1}=G[V(H) \cup S]$ and $G_{2}=G-V(H)$. Then $G_{1} \cup G_{2}=G$ and $G_{1} \cap G_{2}=S$. Since $t \geq 6$ by Theorem 1.2.4, we have $\delta(G) \geq 7$ by Proposition 2.2.1(vi). In particular, since $|S|=6$, there must exist at least one edge in each of $G_{1}-S$ and $G_{2}-S$. It follows then that both G_{1} and G_{2} are $(t-2)$-colorable. Let c_{1} and c_{2} be $(t-2)$-colorings of G_{1} and G_{2}, respectively. For any set $A \subseteq V(G)$ and $i \in\{1,2\}$, define $\left|c_{i}(A)\right|$ to be the number of distinct colors assigned to the vertices of A by c_{i}. Utilizing a new color, say α, we will redefine the colorings c_{1} and c_{2} so that c_{1} and c_{2} are $(t-1)$-colorings of G_{1} and G_{2}, respectively, and are equivalent on S. This yields a contradiction, as c_{1} and c_{2}, after a suitable permutation of the colors of c_{2}, can be combined to give a $(t-1)$-coloring of G.

By Proposition 2.2.1(xi), $\alpha(G[S]) \leq 4$ and so neither c_{1} nor c_{2} applies the same color to more than four vertices of S. Suppose that one of the colorings c_{1} and c_{2}, say c_{1}, assigns the same color to four vertices of S, say $c_{1}\left(v_{3}\right)=c_{1}\left(v_{4}\right)=c_{1}\left(v_{5}\right)=c_{1}\left(v_{6}\right)$. Then $\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$ is an independent
set in G. Since $G[S] \nsubseteq K_{2,2,2}$, we have $c_{2}\left(v_{1}\right) \neq c_{2}\left(v_{2}\right)$. Now redefining $c_{2}\left(v_{3}\right)=c_{2}\left(v_{4}\right)=$ $c_{2}\left(v_{5}\right)=c_{2}\left(v_{6}\right)=\alpha$ and $c_{1}\left(v_{1}\right)=\alpha$ will, after a suitable permutation of the colors of c_{2}, make c_{1} and c_{2} equivalent on S using $t-1$ colors. Hence neither c_{1} nor c_{2} assigns the same color to four distinct vertices of S.

Next suppose that one of the colorings c_{1} and c_{2}, say c_{1}, assigns the same color to three vertices of S, say $c_{1}\left(v_{4}\right)=c_{1}\left(v_{5}\right)=c_{1}\left(v_{6}\right)$. Then $\left\{v_{4}, v_{5}, v_{6}\right\}$ is an independent set in G. Since $G[S] \nsubseteq K_{3,3}$, we have $\left|c_{2}\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)\right| \geq 2$. If $\left|c_{2}\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)\right|=2$, we may assume that $c_{2}\left(v_{2}\right)=c_{2}\left(v_{3}\right)$. Then $\left\{v_{2}, v_{3}\right\}$ is an independent set. Then redefining $c_{2}\left(v_{4}\right)=c_{2}\left(v_{5}\right)=c_{2}\left(v_{6}\right)=\alpha$ and $c_{1}\left(v_{2}\right)=$ $c_{1}\left(v_{3}\right)=\alpha$ will, after a suitable permutation of the colors of c_{2}, make c_{1} and c_{2} equivalent on S using $t-1$ colors, a contradiction. Thus $\left|c_{2}\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)\right|=3$ and so c_{2} assigns distinct colors to each of v_{1}, v_{2}, and v_{3}. We redefine $c_{2}\left(v_{4}\right)=c_{2}\left(v_{5}\right)=c_{2}\left(v_{6}\right)=\alpha$. Clearly c_{1} and c_{2} are equivalent on S if c_{1} assigns distinct colors to each of v_{1}, v_{2}, v_{3}. Thus $\left|c_{1}\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)\right| \leq 2$. Since $G[S] \nsubseteq K_{3,3}$, we have $\left|c_{1}\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)\right|=2$. We may assume that $c_{1}\left(v_{2}\right)=c_{1}\left(v_{3}\right)$. Now redefining $c_{1}\left(v_{3}\right)=\alpha$ yields, after a suitable permutation of the colors of c_{2}, that c_{1} and c_{2} are equivalent on S. This proves that neither c_{1} nor c_{2} assigns the same color to three distinct vertices of S. Thus $\left|c_{i}(S)\right| \geq 3$ for $i \in\{1,2\}$. Since $G[S] \nsubseteq K_{2,2,2}$ and neither c_{1} nor c_{2} assigns the same color to more than two vertices of S, we have $\left|c_{i}(S)\right| \geq 4$ for $i \in\{1,2\}$.

Now by symmetry we may assume that $\left|c_{1}(S)\right| \geq\left|c_{2}(S)\right|$. Clearly c_{1} and c_{2} are not equivalent on S, for otherwise c_{1} and c_{2}, after a suitable permutation of the colors of c_{2}, can be combined to give a $(t-2)$-coloring of G, a contradiction. Thus $\left|c_{2}(S)\right| \leq 5$. Suppose that $\left|c_{2}(S)\right|=5$. Then either $\left|c_{1}(S)\right|=5$ or $\left|c_{1}(S)\right|=6$. Then we can make c_{1} and c_{2} equivalent on S by assigning the color α to one of the two vertices of S that are colored the same color by c_{2} and, if $\left|c_{1}(S)\right|=5$, similarly assigning the color α to one of the two vertices of S that are colored the same color by c_{1}. Thus $\left|c_{2}(S)\right|=4$. Since neither c_{1} nor c_{2} assigns the same color to more than two distinct vertices of S, we may assume that $c_{2}\left(v_{3}\right)=c_{2}\left(v_{4}\right)$ and $c_{2}\left(v_{5}\right)=c_{2}\left(v_{6}\right)$. Then $v_{3} v_{4}, v_{5} v_{6} \notin E(G)$. Since
$G[S] \nsubseteq K_{2,2,2}$, we have $v_{1} v_{2} \in E(G)$. Thus $c_{1}\left(v_{1}\right) \neq c_{1}\left(v_{2}\right)$. We may assume that $c_{1}\left(v_{3}\right) \neq c_{1}\left(v_{4}\right)$ as c_{1} and c_{2} are not equivalent on S. If $\left|c_{1}(S)\right|=6$, then redefining $c_{1}\left(v_{5}\right)=c_{1}\left(v_{6}\right)=\alpha$ and $c_{2}\left(v_{3}\right)=\alpha$ will, after a suitable permutation of the colors of c_{2}, make c_{1} and c_{2} equivalent on S using $t-1$ colors, a contradiction. Suppose now $\left|c_{1}(S)\right|=5$ and that, say, v_{5} is one of the two vertices of S assigned the same color by S. If $c_{1}\left(v_{5}\right)=c_{1}\left(v_{6}\right)$, then we redefine $c_{2}\left(v_{3}\right)=\alpha$; if $c_{1}\left(v_{5}\right)=c_{1}\left(v_{3}\right)$, say, then we redefine $c_{2}\left(v_{3}\right)=c_{2}\left(v_{5}\right)=\alpha$; and if $c_{1}\left(v_{5}\right)=c_{1}\left(v_{1}\right)$, say, then we redefine $c_{1}\left(v_{3}\right)=c_{1}\left(v_{4}\right)=\alpha$ and $c_{2}\left(v_{2}\right)=c_{2}\left(v_{5}\right)=\alpha$. In each case we see, after a suitable permutation of the colors of c_{2}, that c_{1} and c_{2} are equivalent on S using $t-1$ colors, a contradiction. Hence we may assume that, say, v_{1} and v_{3} are the two vertices of S assigned the same color by c_{1}. Now redfining $c_{1}\left(v_{5}\right)=c_{1}\left(v_{6}\right)=\alpha$ and $c_{2}\left(v_{1}\right)=c_{2}\left(v_{3}\right)=\alpha$ yields that c_{1} and c_{2} are $(t-1)$ colorings equivalent on S, a contradiction. Thus $\left|c_{1}(S)\right|=4$. Suppose $c_{1}\left(v_{5}\right)=c_{1}\left(v_{6}\right)$. Since $v_{1} v_{2} \in E(G)$, we may assume that $c_{1}\left(v_{1}\right)=c_{1}\left(v_{3}\right)$. Now redefining $c_{1}\left(v_{3}\right)=c_{1}\left(v_{4}\right)=\alpha$ will make c_{1} and c_{2} equivalent on S. Thus $c_{1}\left(v_{5}\right) \neq c_{1}\left(v_{6}\right)$. Let A and B be the two color classes of c_{1} on S with $|A|=|B|=2$. Suppose $v_{1} \in A$ and $v_{2} \in B$. Since $G[S] \nsubseteq K_{2,2,2}$, we cannot have either $\left\{v_{3}, v_{4}\right\} \subseteq A \cup B$ or $\left\{v_{5}, v_{6}\right\} \subseteq A \cup B$. Hence we may assume that, say, $v_{3} \in A$ and $v_{5} \in B$. Redefining $c_{1}\left(v_{5}\right)=c_{1}\left(v_{6}\right)=\alpha$ and $c_{2}\left(v_{1}\right)=c_{2}\left(v_{3}\right)=\alpha$ will make c_{1} and c_{2} equivalent on S. Thus $\left\{v_{1}, v_{2}\right\} \nsubseteq A \cup B$. Suppose $v_{1} \in A$. By symmetry, we may assume $B=\left\{v_{3}, v_{5}\right\}$. If $v_{4} \in A$, then we redefine $c_{1}\left(v_{5}\right)=c_{1}\left(v_{6}\right)=\alpha$ and $c_{2}\left(v_{1}\right)=c_{2}\left(v_{4}\right)=\alpha$; and if $v_{6} \in A$, then we redefine $c_{1}\left(v_{5}\right)=c_{1}\left(v_{6}\right)=\alpha$ and $c_{2}\left(v_{3}\right)=\alpha$. In either case we see, after a suitable permutation of the colors of c_{2}, that c_{1} and c_{2} are equivalent on S using $t-1$ colors, a contradiction. Hence we may assume by symmetry that $A=\left\{v_{4}, v_{6}\right\}$ and $B=\left\{v_{3}, v_{5}\right\}$. Now redefining $c_{1}\left(v_{5}\right)=c_{1}\left(v_{6}\right)=\alpha$ and $c_{2}\left(v_{3}\right)=\alpha$ will make c_{1} and c_{2} equivalent on S. This completes the proof of Lemma 2.2.2.

Lemma 2.2.3 [57] Let G be a double-critical, t-chromatic graph and let $x \in V(G)$. If $d_{G}(x)=$ $|V(G)|-1$, then $G-x$ is a double-critical, $(t-1)$-chromatic graph.

Proof. Let $u v$ be any edge of $G-x$. Clearly, $\chi(G-x)=t-1$. Since G is double-critical, $\chi(G-\{u, v\})=t-2$ and so $\chi(G-\{u, v, x\})=t-3$ because x is adjacent to all the other vertices in $G-\{u, v\}$. Hence $G-x$ is double-critical and $(t-1)$-chromatic.

Lemma 2.2.4 [57] If G is a non-complete, double-critical, t-chromatic graph, then for any $x \in$ $V(G)$ with at least one non-neighbor in $G, \chi\left(G-N_{G}[x]\right) \geq 3$. In particular, $G-N_{G}[x]$ must contain an odd cycle, and so $d_{G}(x) \leq|V(G)|-4$.

Proof. Let x be any vertex in G with $d_{G}(x)<|V(G)|-1$ and let $H=G-N_{G}[x]$. Suppose that $\chi(H) \leq 2$. Since $d_{G}(x)<|V(G)|-1, H$ contains at least one vertex. Let $y \in V(H)$ be adjacent to a vertex $z \in N_{G}(x)$. This is possible because G is connected. If H has no edge, then $G-(V(H) \cup\{z\})$ has a $(t-2)$-coloring c, which can be extended to a $(t-1)$-coloring of G by assigning all vertices in $V(H)$ the color $c(x)$ and assigning a new color to the vertex z, a contradiction. Thus H must contain at least one edge, and so $\chi(H)=2$. Let (A, B) be a bipartition of H. Now $G-H$ has a $(t-2)$-coloring c^{\prime}, which again can be extended to a $(t-1)$ coloring of G by assigning all vertices in A the color $c^{\prime}(x)$ and all vertices in B the same new color, a contradiction. This proves that $\chi(H) \geq 3$, and so H must contain an odd cycle. Therefore $d_{G}(x) \leq|V(G)|-4$.

Lemma 2.2.5 [57] Let G be a double-critical, t-chromatic graph. For any edge $x y \in E(G)$, let c be any $(t-2)$-coloring of $G-\{x, y\}$ with color classes $V_{1}, V_{2}, \ldots, V_{t-2}$. Then the following two statements are true.
(i) For any $i, j \in\{1,2, \ldots, t-2\}$ with $i \neq j$, if $N_{G}(x) \cap N_{G}(y) \cap V_{i}$ is anti-complete to $N_{G}(x) \cap V_{j}$, then there exists at least one edge between $\left(N_{G}(y) \backslash N_{G}(x)\right) \cap V_{i}$ and $N_{G}(x) \cap V_{j}$ in G. In particular, $\left(N_{G}(y) \backslash N_{G}(x)\right) \cap V_{i} \neq \emptyset$.
(ii) Assume that $d_{G}(x)=t+1$ and y belongs to a cycle of length $k \geq 5$ in $\overline{G\left[N_{G}(x)\right]}$.
(a) If $k \geq 7$, then $d_{G}(y) \geq t+e\left(\overline{G\left[N_{G}(x)\right]}\right)-4$;
(b) If $k=6$, then $d_{G}(y) \geq \max \left\{t+2, t+e\left(\overline{G\left[N_{G}(x)\right]}\right)-5\right\}$; and
(c) If $k=5$, then $d_{G}(y) \geq \max \left\{t+2, t+e\left(\overline{G\left[N_{G}(x)\right]}\right)-6\right\}$.

Proof. Let G, x, y, and c be as given in the statement. For any $i, j \in\{1,2, \ldots, t-2\}$ with $i \neq j$, if $N_{G}(x) \cap N_{G}(y) \cap V_{i}$ is anti-complete to $N_{G}(x) \cap V_{j}$, then G is non-complete. By Proposition 2.2.1(ii), there must exist a path x, u_{j}, u_{i}, y in G such that $c\left(u_{j}\right)=j$ and $c\left(u_{i}\right)=i$. Clearly, $u_{j} u_{i} \in E(G)$ and $u_{j} \in N_{G}(x) \cap V_{j}$. Since $N_{G}(x) \cap N_{G}(y) \cap V_{i}$ is anti-complete to $N_{G}(x) \cap V_{j}$, we see that $u_{i} \in\left(N_{G}(y) \backslash N_{G}(x)\right) \cap V_{i}$. This proves Lemma 2.2.5(i).

To prove Lemma 2.2.5(ii), let $H=\overline{G\left[N_{G}(x)\right]}$. Assume that $d_{G}(x)=t+1$ and that y belongs to a cycle, say C_{k}, of H, where $k \geq 5$. By Proposition 2.2.1(x), $d_{G}(y) \geq t+2$, and by Proposition 2.2.1(ix), H is the union of isolated vertices and cycles of length at least five. Clearly, $\left|N_{G}(x) \cap N_{G}(y)\right|=t-2$. By Proposition 2.2.1(iii), we may assume that $V_{i} \cap\left(N_{G}(x) \cap N_{G}(y)\right)=$ $\left\{v_{i}\right\}$ for all $i \in\{1, \ldots, t-2\}$. Then $N_{G}(x) \cap N_{G}(y)=\left\{v_{1}, \ldots, v_{t-2}\right\}$. Let $\{a, b\}=N_{G}(x) \backslash N_{G}[y]$. Since a and b are neighbors of y in a cycle of length at least 5 in $H, a b \in E(G)$. We may further assume that $a \in V_{1}$ and $b \in V_{2}$. Then v_{1}, a, y, b, v_{2} forms a path on five vertices of C_{k}, since $v_{1}, a \in V_{1}$ and $v_{2}, b \in V_{2}$. If $k \geq 6$, then $v_{1} v_{2} \in E(G)$ and both v_{1} and v_{2} have precisely one non-neighbor in $\left\{v_{3}, v_{4}, \ldots, v_{t-2}\right\}$. We may assume that $v_{1} v_{3} \notin E(G)$ and $v_{2} v_{\ell} \notin E(G)$, where $\ell=3$ if $k=6$, and $\ell=4$ if $k \geq 7$. For any $i, j \in\{3,4, \ldots, t-2\}$ with $i \neq j$, if $v_{i} v_{j} \notin E(G)$, then by Lemma 2.2.5(i), there exists $v_{j}^{\prime} \in V_{j} \backslash\left\{v_{j}\right\}$ such that $v_{j}^{\prime} y \in E(G)$. By symmetry, there exists $v_{i}^{\prime} \in V_{i} \backslash\left\{v_{i}\right\}$ such that $v_{i}^{\prime} y \in E(G)$. Therefore, if C is any cycle in $H-V\left(C_{k}\right)$ and $V_{m} \cap V(C) \neq \emptyset$ for some $m \in\{3,4, \ldots, t-2\}$, then y is adjacent to a vertex from $V_{m} \backslash\left\{v_{m}\right\}$.

Assume that $k=5$. Then $v_{1} v_{2} \notin E(G)$, and so $d_{G}(y) \geq\left|N_{G}(x) \cap N_{G}(y)\right|+|\{x\}|+\mid E(H-$ $\left.V\left(C_{k}\right)\right) \mid=(t-2)+1+(e(H)-5)=t+e(H)-6$. Next assume that $k=6$. Then $v_{\ell}=v_{3}$. Since both $N_{G}(x) \cap N_{G}(y) \cap V_{1}$ and $N_{G}(x) \cap N_{G}(y) \cap V_{2}$ are anti-complete to $N_{G}(x) \cap V_{3}$, by Lemma 2.2.5(i), $N_{G}(y) \cap\left(V_{1} \backslash\left\{a, v_{1}\right\}\right) \neq \emptyset$ and $N_{G}(y) \cap\left(V_{2} \backslash\left\{b, v_{2}\right\}\right) \neq \emptyset$. Then $d_{G}(y) \geq$
$\left|N_{G}(x) \cap N_{G}(y)\right|+|\{x\}|+\left|N_{G}(y) \cap\left(V_{1} \backslash\left\{a, v_{1}\right\}\right)\right|+\left|N_{G}(y) \cap\left(V_{2} \backslash\left\{b, v_{2}\right\}\right)\right|+\left|E\left(H-V\left(C_{k}\right)\right)\right| \geq$ $(t-2)+1+1+1+(|E(H)|-6)=t+|E(H)|-5$. Finally assume that $k \geq 7$. Then $v_{\ell}=v_{4}$. Since $N_{G}(x) \cap N_{G}(y) \cap V_{1}$ is anti-complete to $N_{G}(x) \cap V_{3}$ and $N_{G}(x) \cap N_{G}(y) \cap V_{2}$ is anti-complete to $N_{G}(x) \cap V_{4}$, by Lemma 2.2.5(i), $N_{G}(y) \cap\left(V_{1} \backslash\left\{a, v_{1}\right\}\right) \neq \emptyset$ and $N_{G}(y) \cap\left(V_{2} \backslash\left\{b, v_{2}\right\}\right) \neq \emptyset$. As observed earlier, for any $i, j \in\{3,4, \ldots, t-2\}$ with $i \neq j$ and $v_{i} v_{j} \notin E(G), y$ has at least one neighbor in each of $V_{i} \backslash\left\{v_{i}\right\}$ and $V_{j} \backslash\left\{v_{j}\right\}$ in G. Hence $d_{G}(y) \geq\left|N_{G}(x) \cap N_{G}(y)\right|+|\{x\}|+$ $\left|N_{G}(y) \cap\left(V_{1} \backslash\left\{a, v_{1}\right\}\right)\right|+\left|N_{G}(y) \cap\left(V_{2} \backslash\left\{b, v_{2}\right\}\right)\right|+\left|V\left(C_{k}\right) \backslash\left\{a, b, v_{1}, v_{2}, y\right\}\right|+\left|E\left(H-V\left(C_{k}\right)\right)\right| \geq$ $(t-2)+1+1+1+(k-5)+(|E(H)|-k)=t+e(H)-4$. Note that since $k \geq 7,|E(H)| \geq 7$, and so $d_{G}(y) \geq t+|E(H)|-4>t+2$. This completes the proof of Lemma 2.2.5(ii).

We now conclude this section with the following result. It is clear that Theorem 2.2.6 immediately implies Theorem 1.2.9.

Theorem 2.2.6 [57] If G is a non-complete, double-critical, t-chromatic graph with $t \geq 6$, then for any vertex $x \in V(G)$ with $d_{G}(x)=t+1$, the following hold:
(i) $e\left(\overline{G\left[N_{G}(x)\right]}\right) \geq 8$; and
(ii) for any vertex $y \in N_{G}(x), d_{G}(y) \geq t+4$. Furthermore, if $d_{G}(y)=t+4$ then $\mid N_{G}(x) \cap$ $N_{G}(y) \mid=t-2$ and $\overline{G\left[N_{G}(x)\right]}$ contains either only one cycle, which is isomorphic to C_{8}, or exactly two cycles, each of which is isomorphic to C_{5}.

Proof. Let G and x be as given in the statement. Let $H=\overline{G\left[N_{G}(x)\right]}$. Then $|V(H)|=t+1$. Note that if $d_{G}(x)=|V(G)|-1$, then it follows from Proposition 2.2.1(vi) that G is isomorphic to K_{t+1}, a contradiction. Thus $d_{G}(x)<|V(G)|-1$. Now by Proposition 2.2.1(vii) and Proposition 2.2.1(viii) applied to the vertex $x, \alpha(\bar{H}) \leq 2$ and $\chi(\bar{H}) \leq t-3$. Let c^{\prime} be any $(t-3)$-coloring of \bar{H}. Then each color class of c^{\prime} contains at most two vertices. Since $|V(H)|=t+1$, we see that at least four color classes of c^{\prime} must each contain two vertices. By Proposition 2.2.1(v), \bar{H} has at least eight vertices of degree two in H and so $e(H) \geq 8$. This proves Theorem 2.2.6(i).

To prove Theorem 2.2.6(ii), let $y \in N_{G}(x)$. Since $d_{G}(x)=t+1$, by Proposition 2.2.1(ix), either $\left|N_{G}(x) \cap N_{G}(y)\right|=t$ or $\left|N_{G}(x) \cap N_{G}(y)\right|=t-2$. Assume that $\left|N_{G}(x) \cap N_{G}(y)\right|=t-2$. Then y belongs to a cycle of length $k \geq 5$ in H because H is a disjoint union of isolated vertices and cycles by Proposition 2.2.1(ix). By Theorem 2.2.6(i), $e(H) \geq 8$. Note that if $5 \leq k \leq 7$, then by Proposition 2.2.1(ix), H has at least two cycles of length at least 5 , and so $e(H) \geq k+5 \geq 10$. Thus by Lemma 2.2.5(ii), $d_{G}(y) \geq t+4$. If $d_{G}(y)=t+4$, then it follows from Lemma 2.2.5(ii) that either $k=8$ and H is isomorphic to $C_{8} \cup \overline{K_{t-7}}$ or $k=5$ and H is isomorphic to $C_{5} \cup C_{5} \cup \overline{K_{t-9}}$. So we may assume that $\left|N_{G}(x) \cap N_{G}(y)\right|=t$. Let c be any $(t-2)$-coloring of $G-\{x, y\}$ with color classes $V_{1}, V_{2}, \ldots, V_{t-2}$. Since $\alpha(\bar{H}) \leq 2$, we may further assume that $N_{G}(x) \cap V_{1}=\left\{v_{1}, v_{1}^{\prime}\right\}$, $N_{G}(x) \cap V_{2}=\left\{v_{2}, v_{2}^{\prime}\right\}$ and $N_{G}(x) \cap V_{i}=\left\{v_{i}\right\}$ for all $i \in\{3,4, \ldots, t-2\}$. Then $v_{1} v_{1}^{\prime}, v_{2} v_{2}^{\prime} \in E(H)$. By Proposition 2.2.1(i) applied to the vertex $x, e_{H}\left(\left\{v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\},\left\{v_{3}, v_{4}, \ldots, v_{t-2}\right\}\right) \leq 4$. By Theorem 2.2.6(i), $e(H) \geq 8$. Thus there must exist at least four vertices in $\left\{v_{3}, v_{4}, \ldots, v_{t-2}\right\}$, say $v_{3}, v_{4}, v_{5}, v_{6}$, such that $d_{H}\left(v_{j}\right)=2$ and y is adjacent to at least one vertex of $V_{j} \backslash\left\{v_{j}\right\}$ in G for all $j \in\{3,4,5,6\}$. Therefore $\left|N_{G}(y) \backslash N_{G}[x]\right| \geq 4$ and so $d_{G}(y)=\left|N_{G}[x] \cap N_{G}(y)\right|+\mid N_{G}(y) \backslash$ $N_{G}[x] \mid \geq(t+1)+4=t+5$. This completes the proof of Theorem 2.2.6.

2.3 Minors in Double-Critical Graphs

In this section, we will prove Theorem 1.2.7. To accomplish this, we will actually prove the following much stronger result, from which Theorem 1.2.7 follows.

Theorem 2.3.1 [59] For $t \in\{6,7,8,9\}$, let G be a $(t-3)$-connected graph with $t+1 \leq \delta(G)$. If every edge of G is contained in at least $t-2$ triangles and for any minimal separating set S of G and any $x \in S, G[S \backslash\{x\}]$ is not a clique, then $G>K_{t}$.

Proof. Let G be a graph as in the statement with n vertices. By assumption, we have
(1) $t+1 \leq \delta(G)$ and $\delta\left(N_{G}(x)\right) \geq t-2$ for any x in G; and
(2) G is $(t-3)$-connected and for any minimal separating set S of G and any $x \in S, G[S \backslash\{x\}]$ is not complete.

By Theorem 1.4.1, Theorem 1.4.2, Theorem 1.4.3, (1), and (2), it follows that
(3) $t+1 \leq \delta(G) \leq 2 t-5$.

We first show that the statement is true for $t=6$. Assume $t=6$. Then G is 3 -connected with $\delta(G)=7$. The statement is trivially true if G is complete, so we may assume G is not complete. Let $x \in V(G)$ be a vertex with $d_{G}(x)=7$. By (1), $\delta\left(N_{G}(x)\right) \geq 4$, and so $\left|E\left(G\left[N_{G}(x)\right]\right)\right| \geq 14$. If $\left|E\left(G\left[N_{G}(x)\right]\right)\right| \geq 16$, then by Theorem 1.4.1, $N_{G}(x)>K_{5}$, and so $G>G\left[N_{G}[x]\right]>K_{6}$. If $\left|E\left(G\left[N_{G}(x)\right]\right)\right|=15$, then let K be a component of $G-N_{G}[x]$. By (2), $\left|N_{G}(K)\right| \geq 3$ and $G\left[N_{G}(K)\right]$ is not complete. Let $x, y \in N_{G}(K)$ be non-adjacent in $G\left[N_{G}(x)\right]$ and let P be an x, y path with interior vertices in K. We see that $G>K_{6}$ by contracting all but one of the edges of P. So we may assume that $\left|E\left(G\left[N_{G}(x)\right]\right)\right|=14$, and so $G\left[N_{G}(x)\right]$ is 4-regular and $\overline{G\left[N_{G}(x)\right]}$ is 2-regular. Thus $\overline{G\left[N_{G}(x)\right]}$ is then either isomorphic to C_{7} or to $C_{4} \cup C_{3}$, and in both cases it is easy to see that $G\left[N_{G}(x)\right]>K_{5}$, and thus $G>K_{6}$, as desired. Hence we may assume $t \in\{7,8,9\}$.

Suppose for a contradiction that G does not contain K_{t} as a minor. We next prove the following.
(4) Let $x \in V(G)$ be such that $t+1 \leq d_{G}(x) \leq 2 t-5$. Then there is no component K of $G-N_{G}[x]$ such that $N_{G}\left(K^{\prime}\right) \cap M \subseteq N_{G}(K)$ for every component K^{\prime} of $G-N_{G}[x]$, where M is the set of vertices of $N_{G}(x)$ not adjacent to all other vertices of $N_{G}(x)$.

Suppose such a component K exists. Among all vertices x with $t+1 \leq d_{G}(x) \leq 2 t-5$ for which such a component exists, choose x to be of minimal degree. We first prove that $M \subseteq N_{G}(K)$.

Suppose for a contradiction that $M \backslash N_{G}(K) \neq \emptyset$, and let $y \in M \backslash N_{G}(K)$ be such that $d_{G}(y)$ is minimum. Clearly, $d_{G}(y)<d_{G}(x)$ since y has no neighbor outside $N_{G}[x]$. Let J be the component of $G-N_{G}[y]$ containing K. We claim that $N_{G}(x) \backslash N_{G}[y] \nsubseteq V(J)$. Suppose to the contrary that $N_{G}(x) \backslash N_{G}[y] \subseteq V(J)$. Let K^{\prime} be any other component of $G-N_{G}[x]$, and let J^{\prime} be the component of $G-N_{G}[y]$ containing K^{\prime}. If $G-N_{G}[y]$ contains only one component, then J is a component which trivially satisfies that $N_{G}\left(J^{\prime}\right) \cap M_{y} \subseteq N_{G}(J)$ for every component J^{\prime} of $G-N_{G}[y]$, where M_{y} is the set of vertices of $N_{G}(y)$ not adjacent to all other vertices of $N_{G}(y)$, contradicting the choice of x since $d_{G}(y)<d_{G}(x)$. Hence we may assume $J^{\prime} \neq J$. Then $J^{\prime} \cap\left(N_{G}(x) \backslash N_{G}[y]\right)=\emptyset$, and so it follows that $N_{G}\left(J^{\prime}\right)=N_{G}\left(K^{\prime}\right) \subseteq N_{G}(y)$. Since $\left(N_{G}(x) \backslash N_{G}[y]\right) \subseteq M$, we see $\left(N_{G}\left(K^{\prime}\right) \cap M\right) \subseteq\left(N_{G}(K) \cap N_{G}(y)\right)$. Thus $N_{G}\left(J^{\prime}\right) \cap M_{y} \subseteq N_{G}(J)$, where M_{y} is the set of vertices of $N_{G}(y)$ not adjacent to all other vertices of $N_{G}(y)$, again contradicting the choice of x. Our claim that $N_{G}(x) \backslash N_{G}[y] \nsubseteq V(J)$ follows.

Now let $H=G\left[N_{G}(x) \backslash\left(N_{G}[y] \cup N_{G}(K)\right)\right]$. Clearly, $V(H) \subseteq M$. We have $d_{G}(z) \geq d_{G}(y)$ for all $z \in V(H)$ by the choice of y. Let $k=|V(H)|$. If $k=1$, then $V(H)$ is complete to $N_{G}(y)$, since no vertex $z \in V(H)$ has a neighbor outside $N_{G}[x]$ by the choice of x and K. But then the vertex y and component H contradict the choice of x, and so $k \geq 2$. On the other hand $k \leq d_{G}(x)-d_{G}(y) \leq(2 t-5)-(t+1)=t-6 \leq 3$ and so $t \geq 8$. Notice that $k=2$ when $t=8$. From (1) applied to y, we deduce that $N_{G}(x) \cap N_{G}(y)$ has minimum degree at least $t-3$. Let $L=G\left[\left(N_{G}(x) \cap N_{G}[y]\right) \cup V(H)\right]$. Then $E(L)$ consists of edges of $N_{G}(x) \cap N_{G}(y)$, edges incident to y, and edges incident to vertices in $V(H)$. Clearly, $e_{G}(L-H, H)=\sum_{z \in V(H)}\left(d_{G}(z)-\right.$

1) $-2|E(H)| \geq k\left(d_{G}(y)-1\right)-2|E(H)|$. Thus

$$
\begin{aligned}
|E(L)| & \geq\left|E\left(G\left[N_{G}(x) \cap N_{G}(y)\right]\right)\right|+d_{G}(y)-1+e_{G}(L-H, H)+|E(H)| \\
& \geq \frac{(t-3)\left(d_{G}(y)-1\right)}{2}+d_{G}(y)-1+k\left(d_{G}(y)-1\right)-|E(H)| \\
& \geq \frac{(t-3)\left(d_{G}(y)-1\right)}{2}+d_{G}(y)-1+k\left(d_{G}(y)-1\right)-\frac{1}{2} k(k-1) \\
& \geq\left\{\begin{array}{cc}
5\left(d_{G}(y)+2\right)+\frac{d_{G}(y)}{2}-\frac{33}{2}, & \text { if } t=8 \\
6\left(d_{G}(y)+k\right)+(k-2) d_{G}(y)-4-7 k-\frac{1}{2} k(k-1), & \text { if } \quad t=9
\end{array}\right. \\
& \geq(t-3)|V(L)|-\binom{t-2}{2}+1,
\end{aligned}
$$

because $d_{G}(y) \geq t+1$ and $2 \leq k \leq t-6$. If $t=9$, since $12 \leq|V(L)| \leq 13$ the graph L is not a $\left(K_{2,2,2,2,2}, 5\right)$-cockade. By Theorem 1.4.1 and Theorem 1.4.2, $G\left[N_{G}(x)\right]>L>K_{t-1}$. Thus $G>G\left[N_{G}[x]\right]>K_{t}$, a contradiction. This proves that $M \subseteq N_{G}(K)$.

If $N_{G}(x)>K_{t-2} \cup K_{1}$, then $N_{G}(x)$ has a vertex y such that $G\left[N_{G}(x) \backslash\{y\}\right]>K_{t-2}$. If $y \notin M$, then $G\left[N_{G}(x)\right]>K_{t-1}$. Otherwise, by contracting the connected set $V(K) \cup\{y\}$ we can contract K_{t-1} onto $N_{G}(x)$ since $M \subseteq N_{G}(K)$. Thus in either case $G>K_{t}$, a contradiction. Thus $G\left[N_{G}(x)\right] \ngtr$ $K_{t-2} \cup K_{1}$. If $t \leq 8$, then by Lemma 2.1.1 and Lemma 2.1.2, we have $t=8$ and $G\left[N_{G}(x)\right]$ is either isomorphic to $K_{3,3,3}$ or \bar{P}, where \bar{P} is the complement of the Petersen graph. It can be easily checked that $\bar{P}+x y>K_{7}$ for any $x y \in E(P)$. By (2), $\left|N_{G}(K)\right| \geq 5$ and $N_{G}(K)$ is not complete. Let $x, y \in N_{G}(K)$ be non-adjacent vertices in $N_{G}(x)$ and let Q be an x, y-path with interior vertices in K. We see that $G>K_{8}$ by contracting all but one of the edges of Q, a contradiction. Thus $G\left[N_{G}(x)\right]$ is isomorphic to $K_{3,3,3}$, and so $M=N_{G}(x)$. Let $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ be the vertex sets of two disjoint triangles of $\overline{G\left[N_{G}(x)\right]}$. Suppose $G-N_{G}[x]$ is either 2-connected or has at most two vertices. Clearly, the vertices a_{i} and b_{i} have at least two common neighbors in $G-N_{G}[x]$ for $i \in\{1,2\}$, since every edge of G belongs to at least $t-2$ triangles. Let u and u^{\prime} (resp. w and w^{\prime}) be two distinct common neighbors of a_{1} and b_{1} (resp. a_{2} and b_{2}) in $G-N_{G}[x]$.

By Menger's Theorem, $G-N_{G}[x]$ contains two disjoint paths from $\left\{u, u^{\prime}\right\}$ to $\left\{w, w^{\prime}\right\}$ and so $G>G\left[N_{G}[x]\right]+a_{1} a_{2}+b_{1} b_{2}>K_{8}$, a contradiction. Thus $G-N_{G}[x]$ has at least three vertices and is not 2-connected. If $G-N_{G}[x]$ is disconnected, let $H_{1}=K$, and let H_{2} be another connected component of $G-N_{G}[x]$. If $G-N_{G}[x]$ has a cut-vertex, say w, let H_{1} be a connected component of $G-N_{G}[x]-w$, and let $H_{2}=G-N_{G}[x]-V\left(H_{1}\right)$. In either case, H_{1} and H_{2} are disjoint connected subgraphs of $G-N_{G}[x]$ such that $M \subseteq N_{G}\left(H_{1}\right) \cup N_{G}\left(H_{2}\right)$, since $M \subseteq N_{G}(K)$. By (2), $G\left[N_{G}\left(H_{i}\right) \cap N_{G}(x)\right]$ is not complete and $\left|N_{G}\left(H_{i}\right) \cap N(x)\right| \geq 4$. By the pigeonhole principle, we see that each of $N_{G}\left(H_{1}\right)$ and $N_{G}\left(H_{2}\right)$ must contain a missing edge of $G\left[N_{G}(x)\right]$. If, say, H_{2} only contains one missing edge e of $G\left[N_{G}(x)\right]$, then $\left|N_{G}\left(H_{2}\right) \cap N_{G}(x)\right|=4$ and $\left|N_{G}\left(H_{1}\right) \cap N_{G}(x)\right| \geq 5$, and so $G\left[N_{G}\left(H_{1}\right)\right]$ contains at least two missing edges of $G\left[N_{G}(x)\right]$, at least one of which is disjoint from e. Hence we may assume that $a_{1} a_{2} \in E\left(\overline{G\left[N_{G}\left(H_{1}\right)\right]}\right)$ and $b_{1} b_{2} \in E\left(\overline{G\left[N_{G}\left(H_{2}\right)\right]}\right)$. By contracting H_{1} onto a_{1} and H_{2} onto b_{1} we see that $G>G\left[N_{G}[x]\right]+a_{1} a_{2}+b_{1} b_{2}>K_{8}$, a contradiction. This proves that $t=9$, and so by Lemma 2.1.3, we may assume that $G\left[N_{G}(x)\right]$ satisfies properties (A) and (B).

Since $d_{G}(x) \geq 10, G\left[N_{G}(x)\right]$ is not isomorphic to $K_{1,2,2,2,2}$. If $G-N_{G}[x]$ is 2-connected or has at most two vertices, then by property (A) and (2), the set $N_{G}(x)$ has four distinct vertices a_{1}, b_{1}, a_{2}, and b_{2} such that $a_{1} a_{2}, b_{1} b_{2} \notin E(G), G\left[N_{G}(x)\right]+a_{1} a_{2}+b_{1} b_{2}>K_{8}$, and for $i \in\{1,2\}$, the vertex a_{i} is adjacent to b_{i}, and the vertices a_{i} and b_{i} have at least two common neighbors in $G-N_{G}[x]$. Let u, u^{\prime} (resp. w, w^{\prime}) be two distinct common neighbors of a_{1} and b_{1} (resp. a_{2} and b_{2}) in $G-N_{G}[x]$. By Menger's Theorem, $G-N_{G}[x]$ contains two disjoint paths from $\left\{u, u^{\prime}\right\}$ to $\left\{w, w^{\prime}\right\}$, and so $G>G\left[N_{G}[x]\right]+a_{1} a_{2}+b_{1} b_{2}>K_{9}$, a contradiction.

Thus $G-N_{G}[x]$ has at least three vertices and is not 2-connected. If $G-N_{G}[x]$ is disconnected, let $H_{1}=K$, and let H_{2} be another connected component of $G-N_{G}[x]$. If $G-N_{G}[x]$ has a cut-vertex, say w, let H_{1} be a connected component of $G-N_{G}[x]-w$, and let $H_{2}=G-N_{G}[x]-V\left(H_{1}\right)$. In either case, H_{1} and H_{2} are disjoint connected subgraphs of $G-N_{G}[x]$ such that $M \subseteq N_{G}\left(H_{1}\right) \cup$
$N_{G}\left(H_{2}\right)$ since $M \subseteq N_{G}(K)$. For $i \in\{1,2\}$, let $A_{i}=N_{G}\left(H_{i}\right) \cap N_{G}(x)$. By (2), $G\left[A_{i}\right]$ is not complete and $\left|A_{i}\right| \geq 5$ for $i \in\{1,2\}$. By property (B), A_{1} and A_{2} satisfy at least one of the properties (B1), (B2), or (B3).

Suppose first that A_{1} and A_{2} satisfy property (B1). Then there exist $a_{i} \in A_{i}$ such that $G\left[N_{G}(x)\right]+$ $\left\{a_{1} a: a \in A_{1} \backslash\left\{a_{1}\right\}\right\}+\left\{a_{2} a: a \in A_{2} \backslash\left\{a_{2}\right\}\right\}>K_{8}$. By contracting the connected sets $V\left(H_{1}\right) \cup\left\{a_{1}\right\}$ and $V\left(H_{2}\right) \cup\left\{a_{2}\right\}$ to single vertices, we see that $G>K_{9}$, a contradiction. Suppose next that A_{1} and A_{2} satisfy property (B2). Then there exist $a_{1} \in A_{1} \backslash A_{2}$ and $a_{2} \in A_{2} \backslash A_{1}$ such that $a_{1} a_{2} \in E(G)$ and the vertices a_{1} and a_{2} have at most five common neighbors in $N_{G}(x)$. Thus $a_{1}, a_{2} \in M$ by (1), and, by another application of (1), there exists a common neighbor $u \in V(G) \backslash N_{G}[x]$ of a_{1} and a_{2}. But $a_{1} \notin A_{2}$ and $a_{2} \notin A_{1}$, and hence $u \notin V\left(H_{1}\right) \cup V\left(H_{2}\right)$. Thus $G-N_{G}[x]$ is disconnected and $H_{1}=K$. But then $a_{2} \in M \subseteq N_{G}(K)=N_{G}\left(H_{1}\right)$, a contradiction. Thus we may assume that A_{1} and A_{2} satisfy (B3), and hence $A_{i} \subseteq A_{3-i}$ for some $i \in\{1,2\}$. As $M \subseteq A_{1} \cup A_{2}$, we have $M \subseteq N_{G}\left(H_{3-i}\right)$. Since A_{i} is not complete, let $a, b \in A_{i}$ be distinct and nonadjacent. By property (B3), $G\left[N_{G}(x)\right]+a b>K_{7} \cup K_{1}$. Let P be an a, b-path with interior in $V_{G}\left(H_{i}\right)$. By contracting all but one of the edges of the path P, and by contracting H_{3-i} similarly as above, we see that $G>K_{9}$, a contradiction. This completes the proof of (4).
(5) $G-N_{G}[x]$ is disconnected for every vertex $x \in V(G)$ of degree at most $2 t-5$.

If $G-N_{G}[x]$ is not null, then it is disconnected by (4). Thus we may assume that x is adjacent to all other vertices of G. Let $H=G-x$. Then $|V(H)|=d_{G}(x)$ and $\delta(H) \geq t$. Thus $|E(H)| \geq \frac{t d_{G}(x)}{2}>(t-3) d_{G}(x)-\binom{t-2}{2}+1$ because $d_{G}(x) \leq 2 t-5$. By Theorem 1.4.1 and Theorem 1.4.2, $G-x$ has a K_{t-1} minor, and so the graph G has a K_{t} minor, a contradiction. This proves (5).
(6) Let $x \in V(G)$ be such that $t+1 \leq d_{G}(x) \leq 2 t-5$. Then there is no component K of $G-N_{G}[x]$ such that $d_{G}(y) \geq 2 t-4$ for every vertex $y \in V(K)$.

Assume that such a component K exists. Let $G_{1}=G-K$ and $G_{2}=G\left[K \cup N_{G}(K)\right]$. Let d_{1} be the maximum number of edges that can be added to G_{2} by contracting edges of G with at least one end in G_{1}. More precisely, let d_{1} be the largest integer so that G_{1} contains disjoint sets of vertices $V_{1}, V_{2}, \ldots, V_{p}$ so that $G_{1}\left[V_{j}\right]$ is connected, $\left|N_{G}(K) \cap V_{j}\right|=1$ for $1 \leq j \leq p=\left|N_{G}(K)\right|$, and so that the graph obtained from G_{1} by contracting $V_{1}, V_{2}, \ldots, V_{p}$ and deleting $V\left(G_{1}\right)-\left(\bigcup_{j} V_{j}\right)$ has $\left|E\left(G\left[N_{G}(K)\right]\right)\right|+d_{1}$ edges. Let G_{2}^{\prime} be the graph with $V\left(G_{2}^{\prime}\right)=V\left(G_{2}\right)$ and $\left|E\left(G_{2}^{\prime}\right)\right|=$ $\left|E\left(G_{2}\right)\right|+d_{1}$ obtained from G by contracting each set $V_{1}, V_{2}, \ldots, V_{p}$ to a single vertex and deleting $V\left(G_{1}\right)-\left(\bigcup_{j} V_{j}\right)$. By (1), $\left|V\left(G_{2}^{\prime}\right)\right| \geq t+2$. If $\left|E\left(G_{2}^{\prime}\right)\right| \geq(t-2)\left|V\left(G_{2}^{\prime}\right)\right|-\binom{t-1}{2}+2$, then by Theorem 1.4.1 and Theorem 1.4.2, $G>G_{2}^{\prime}>K_{t}$, a contradiction. Thus

$$
\begin{aligned}
\left|E\left(G_{2}\right)\right| & =\left|E\left(G_{2}^{\prime}\right)\right|-d_{1} \\
& \leq(t-2)\left|V\left(G_{2}\right)\right|-\binom{t-1}{2}+1-d_{1} \\
& =(t-2)\left|N_{G}(K)\right|+(t-2)|V(K)|-\binom{t-1}{2}+1-d_{1} .
\end{aligned}
$$

By contracting the edge $x z$, where $z \in N_{G}(K)$ has minimum degree δ in $G\left[N_{G}(K)\right]$, we see that $d_{1} \geq\left|N_{G}(K)\right|-\delta-1$, and hence

$$
\begin{equation*}
\left|E\left(G_{2}\right)\right| \leq(t-3)\left|N_{G}(K)\right|+(t-2)|V(K)|-\binom{t-1}{2}+2+\delta . \tag{a}
\end{equation*}
$$

Let $k=e_{G}\left(N_{G}(K), K\right)$. We have $\left|E\left(G_{2}\right)\right|=|E(K)|+k+\left|E\left(N_{G}(K)\right)\right|$ and

$$
\begin{equation*}
2|E(K)| \geq(2 t-4)|V(K)|-k, \tag{b}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left|E\left(G_{2}\right)\right| \geq(t-2)|V(K)|+\frac{k}{2}+\frac{\delta\left|N_{G}(K)\right|}{2} \tag{c}
\end{equation*}
$$

Since $G\left[N_{G}(x)\right]$ has minimum degree at least $t-2$, it follows that the subgraph $G\left[N_{G}(K)\right]$ of $G\left[N_{G}(x)\right]$ has minimum degree at least $(t-2)-\left(d_{G}(x)-\left|N_{G}(K)\right|\right)$. Thus $\delta \geq(t-2)-\left(d_{G}(x)-\right.$ $\left.\left|N_{G}(K)\right|\right) \geq\left|N_{G}(K)\right|-t+3$. From (a) and (c) we get

$$
\frac{k}{2} \leq(t-3)\left|N_{G}(K)\right|-\frac{\delta\left(\left|N_{G}(K)\right|-2\right)}{2}-\binom{t-1}{2}+2 \leq\left\{\begin{array}{cl}
\frac{15}{2} & \text { if } \quad t=7 \tag{d}\\
12 & \text { if } \quad t=8 \\
18 & \text { if } \quad t=9
\end{array}\right.
$$

Since G does not contain K_{t} as a minor, it follows that K does not contain K_{t} as a minor. Hence from (b), Theorem 1.4.1, Theorem 1.4.2, and Theorem 1.4.3, we get

$$
\frac{k}{2} \geq\binom{ t-1}{2}-1= \begin{cases}14 & \text { if } \quad t=7 \\ 20 & \text { if } \quad t=8 \\ 27 & \text { if } \quad t=9\end{cases}
$$

contradicting (d). This proves (6).

By (3) there is a vertex $x \in V(G)$ with $t+1 \leq d_{G}(x) \leq 2 t-5$. Choose such a vertex x so that $G-N_{G}[x]$ has a component K with $|V(K)|$ minimum. Then choose a vertex $y \in V(K)$ of least degree in G. Thus $t+1 \leq d_{G}(y) \leq 2 t-5$ by (1) and (6). Let L be the component of $G-N_{G}[y]$ containing x. We claim that $N_{G}(L)$ contains all vertices of $N_{G}(y)$ that are not adjacent to all other vertices of $N_{G}(y)$. Indeed, let $z \in N_{G}(y)$ be not adjacent to some vertex of $N_{G}(y) \backslash\{z\}$. We may assume that $z \notin N_{G}(x)$, for otherwise $z \in N_{G}(L)$. Thus $z \in V(K)$, and hence $d_{G}(z) \geq d_{G}(y)$ by the choice of y. Thus z has a neighbor $z^{\prime} \in N_{G}[x] \cup V\left(K-N_{G}[y]\right)$. Then $z^{\prime} \in V(L)$, for otherwise the component of $G-N_{G}[y]$ containing z^{\prime} would be a proper subgraph of K, contradicting our choice of x and K. Thus $z \in N_{G}(L)$. This proves our claim that $N_{G}(L)$ contains all vertices z not adjacent to all other vertices of $N_{G}(y)$, contrary to (4). This contradiction completes the proof of Theorem 2.3.1.

We are now ready to prove Theorem 1.2.7.

Proof of Theorem 1.2.7. Let G be a double-critical, t-chromatic graph with $t \geq k$ as in the statement of Theorem 1.2.7. The assertion is trivially true if G is complete, so suppose not. By Theorem 1.2.4, we may assume that $t \geq 6$. By Proposition 2.2.1(vi), $\delta(G) \geq t+1 \geq k+1$. By Proposition 2.2.1(iii), every edge of G is contained in at least $t-2 \geq k-2$ triangles. By Proposition 2.2.1(xi), G is 6 -connected and no minimal separating set of G can be partitioned into a clique and an independent set. In particular, if S is a minimal separating set of G and $x \in S$, then $S \backslash\{x\}$ does not induce a clique in G. By Theorem 2.3.1, $G>K_{k}$, as desired.

2.4 Claw-Free, Double-Critical Graphs

In this section we focus specifically on claw-free, double-critical graphs. Recall that a graph is claw-free if it does not contain the claw, $K_{1,3}$, as an induced subgraph. We first prove two lemmas before proving Theorem 1.2.8.

Lemma 2.4.1 [57] Let G be a double-critical, t-chromatic graph with $t \geq 6$. If G is claw-free, then for any $x \in V(G), d_{G}(x) \leq 2 t-4$. Furthermore, if $d_{G}(x)<|V(G)|-1$, then $d_{G}(x) \leq 2 t-6$.

Proof. Let $x \in V(G)$ be a vertex of maximum degree in G, and let $u v$ be any edge of $G-x$. Let c be any $(t-2)$-coloring of $G-\{u, v\}$ with color classes $V_{1}, V_{2}, \ldots, V_{t-2}$. We may assume that $x \in V_{t-2}$. Since G is claw-free, x can have at most two neighbors in each of V_{1}, \ldots, V_{t-3}. Additionally, x may be adjacent to u and v in G. Therefore $d_{G}(x) \leq 2 t-4$. If $d_{G}(x)<|V(G)|-1$, then $\chi\left(G\left[N_{G}(x)\right]\right) \leq t-3$ by Proposition 2.2.1(viii). Since G is claw-free, each color class in any $(t-3)$-coloring of $G\left[N_{G}(x)\right]$ can contain at most two vertices, and so $d_{G}(x) \leq 2 t-6$.

Lemma 2.4.2 Let G be a double-critical, t-chromatic graph with $t \geq 6$. If G is claw-free, then for
any $x \in V(G), G\left[N_{G}(x)\right]$ is $\left(2 t-1-d_{G}(x)\right)$-connected.

Proof. Let $x \in V(G)$ be any vertex and let S be a minimal separating set of $G\left[N_{G}(x)\right]$. Since G is claw-free, $G\left[N_{G}(x)\right]-S$ has two components, say C_{1} and C_{2}, both of which must be cliques. Since $\delta\left(G\left[N_{G}(x)\right]\right) \geq t-2$ by Proposition 2.2.1(iii), we see that $\left|V\left(C_{i}\right) \cup S\right| \geq t-1$ for each $i \in\{1,2\}$. Then $d_{G}(x)=\left|V\left(C_{1}\right)\right|+\left|V\left(C_{2}\right)\right|+|S|=\left|V\left(C_{1}\right) \cup S\right|+\left|V\left(C_{2}\right) \cup S\right|-|S| \geq 2 t-2-|S|$, and so $|S| \geq 2 t-2-d_{G}(x)$.

Suppose that $|S|=2 t-2-d_{G}(x)$. Then $\left|V\left(C_{1}\right) \cup S\right|=\left|V\left(C_{2}\right) \cup S\right|=t-1$. Since $\delta\left(G\left[N_{G}(x)\right]\right) \geq$ $t-2$, any vertex $v \in V\left(C_{i}\right)$ is complete to $S \cup\left(V\left(C_{i}\right) \backslash\{v\}\right)$ for each $i \in\{1,2\}$. Hence, S is complete to $V\left(C_{1}\right) \cup V\left(C_{2}\right)$. Let $y \in V\left(C_{1}\right)$, and let c be any $(t-2)$-coloring of $G-\{x, y\}$. Then $\left|N_{G}(x) \cap N_{G}(y)\right|=\left|S \cup\left(V\left(C_{1}\right) \backslash\{y\}\right)\right|=t-2$. By Proposition 2.2.1(iii), every vertex of $S \cup\left(V\left(C_{1}\right) \backslash\{y\}\right)$ must be assigned a distinct color by c. Since $V\left(C_{2}\right)$ is complete to S and C_{2} is a clique, every vertex of $V\left(C_{2}\right) \cup S$ must then be assigned a distinct color by c as well. Thus $\left|V\left(C_{2}\right) \cup S\right| \leq t-2$, contrary to the fact that $\left|V\left(C_{2}\right) \cup S\right|=t-1$.

We are now ready to prove Theorem 1.2.8. It is an easy consequence of Proposition 2.2.1 and Lemma 2.4.1 that Theorem 1.2.8 is true for $t=6,7$.

Proof of Theorem 1.2.8. Let G and t be as given in the statement. Suppose that G is not isomorphic to K_{t}. By Proposition 2.2.1(iv), there exists an edge $x y \in E(G)$ such that x and y have a common non-neighbor. By Proposition 2.2.1(vi) and Lemma 2.4.1, $t+1 \leq d_{G}(x) \leq 2 t-6$ and $t+1 \leq d_{G}(y) \leq 2 t-6$. Thus $t \geq 7$. If $t=7$, then $d_{G}(x)=d_{G}(y)=8$, which contradicts Proposition 2.2.1(x). Hence we may assume that $t=8$. We next show that
(1) G is 10-regular.

By Lemma 2.2.3 and Theorem 1.2.8 for the case $t=7$ above, we have $\Delta(G) \leq|V(G)|-2$. By Proposition 2.2.1(vi) and Lemma 2.4.1, we see that $9 \leq d_{G}(x) \leq 10$ for all vertices $x \in V(G)$. By Theorem 1.2.9, G is 10 -regular. This proves (1).
(2) For any $x \in V(G), 2 \leq \delta\left(\overline{G\left[N_{G}(x)\right]}\right) \leq \Delta\left(\overline{G\left[N_{G}(x)\right]}\right) \leq 3$.

Let $x \in V(G)$. Then x has at least one non-neighbor in G, otherwise G is isomorphic to K_{11} by (1), a contradiction. By Proposition 2.2.1(viii), $\chi\left(G\left[N_{G}(x)\right]\right) \leq 5$. Since G is claw-free, we see that $\alpha\left(G\left[N_{G}(x)\right]\right)=2$, and so $\chi\left(G\left[N_{G}(x)\right]\right)=5$ since every color class can contain at most two vertices. Thus every vertex of $N_{G}(x)$ has at least one non-neighbor in $G\left[N_{G}(x)\right]$. By Proposition 2.2.1(v) and Proposition 2.2.1(iii), $2 \leq \delta\left(\overline{G\left[N_{G}(x)\right]}\right) \leq \Delta\left(\overline{G\left[N_{G}(x)\right]}\right) \leq 3$. This proves (2).
(3) For any $x \in V(G), \Delta\left(\overline{G\left[N_{G}(x)\right]}\right)=3$. That is, $\overline{G\left[N_{G}(x)\right]}$ is not 2-regular.

Suppose that there exists a vertex $x \in V(G)$ such that $\overline{G\left[N_{G}(x)\right]}$ is 2-regular. Let $y \in N_{G}(x)$ and let c be any 6 -coloring of $G-\{x, y\}$ with color classes $V_{1}, V_{2}, \ldots, V_{6}$. Let $W=N_{G}(x) \cap N_{G}(y)$. Then $|W|=7$ because $\overline{G\left[N_{G}(x)\right]}$ is 2-regular. By Proposition 2.2.1(iii), we may assume that $\left|V_{1} \cap W\right|=2$ and $\left|V_{i} \cap W\right|=1$ for each $i \in\{2,3,4,5,6\}$. Let $V_{1} \cap W=\left\{v_{1}, u_{1}\right\}$ and $V_{i} \cap W=\left\{v_{i}\right\}$ for each $i \in\{2,3,4,5,6\}$. Since G is claw-free, we may further assume that $N_{G}(x) \cap V_{2}=\left\{v_{2}, u_{2}\right\}$ and $N_{G}(x) \cap V_{3}=\left\{v_{3}, u_{3}\right\}$. Clearly, $y u_{2}, y u_{3} \notin E(G)$ and thus $u_{2} u_{3} \in E(G)$ because G is clawfree. Since $\overline{G\left[N_{G}(x)\right]}$ is 2-regular, we see that $G\left[\left\{v_{4}, v_{5}, v_{6}\right\}\right]$ is not a clique. We may assume that $v_{4} v_{5} \notin E(G)$. By Lemma 2.2.5(i), $N_{G}(y) \cap\left(V_{j} \backslash\left\{v_{j}\right\}\right) \neq \emptyset$ for each $j \in\{4,5\}$. Let $w_{4} \in V_{4} \backslash\left\{v_{4}\right\}$ and $w_{5} \in V_{5} \backslash\left\{v_{5}\right\}$ be two other neighbors of y in G. Then $N_{G}(y) \backslash N_{G}[x]=\left\{w_{4}, w_{5}\right\}$ since G is 10 -regular by (1). By Lemma $2.2 .5(\mathrm{i}), v_{6}$ must be complete to $\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ in G. Notice that v_{6} is complete to $\left\{u_{2}, u_{3}\right\}$ in G since $\overline{G\left[N_{G}(x)\right]}$ is 2-regular. Thus v_{6} must be anti-complete to $\left\{v_{1}, u_{1}\right\}$ in G and so $G\left[\left\{x, v_{1}, u_{1}, v_{6}\right\}\right]$ is isomorphic to $K_{1,3}$, a contradiction. This proves (3).

From now on, we fix an arbitrary vertex $x \in V(G)$. Let $H=\overline{G\left[N_{G}(x)\right]}$. By (3), let $y \in N_{G}(x)$ with $\left|N_{G}(x) \cap N_{G}(y)\right|=6$. We choose such a vertex $y \in N_{G}(x)$ so that $N_{G}(x) \backslash N_{G}[y]$ contains as many vertices of degree two in H as possible. Let c be any 6 -coloring of $G-\{x, y\}$ with color classes $V_{1}, V_{2}, \ldots, V_{6}$. We may assume that $V_{i} \cap N_{G}(x) \cap N_{G}(y)=\left\{v_{i}\right\}$ for all $i \in\{1,2,3,4,5,6\}$. Since G is claw-free, we may further assume that $N_{G}(x) \cap V_{j}=\left\{v_{j}, u_{j}\right\}$ for all $j \in\{1,2,3\}$. Notice that y is anti-complete to $\left\{u_{1}, u_{2}, u_{3}\right\}$ in G and since G is claw-free, $G\left[\left\{u_{1}, u_{2}, u_{3}\right\}\right]$ is isomorphic to K_{3}. Let $A=\left\{u_{1}, u_{2}, u_{3}\right\}, B=\left\{v_{1}, v_{2}, v_{3}\right\}$, and $C=\left\{v_{4}, v_{5}, v_{6}\right\}$.
(4) B is not complete to C in G.

Suppose that B is complete to C in G. Then $e_{H}(C, A)=\sum_{v \in C} d_{H}(v)-2|E(H[C])| \geq 6-$ $2|E(H[C])|$. For each $i \in\{1,2,3\}, u_{i} v_{i}, u_{i} y \notin E(G)$ and $d_{H}\left(u_{i}\right) \leq 3$. Thus $e_{H}(A, C) \leq 3$ and so $|E(H[C])| \geq 2$. Since G is claw-free, we have $|E(H[C])|=2$. We may assume that $v_{4} v_{6} \notin E(H)$. Then $v_{4} v_{6} \in E(G)$ and $v_{4} v_{5}, v_{5} v_{6} \notin E(G)$. Since $d_{H}\left(v_{4}\right) \geq 2, d_{H}\left(v_{6}\right) \geq 2$, and B is complete to C in G, we may assume that $u_{2} v_{4}, u_{3} v_{6} \notin E(G)$. Note that H is not 3-regular since $e_{H}(A, C) \leq 3$ and $e_{H}(B, C)=0$. By the choice of $y, d_{H}\left(u_{1}\right)=2$ and $d_{H}\left(v_{j}\right)=2$ for all $j \in\{4,5,6\}$. Since $d_{H}\left(u_{2}\right)=d_{H}\left(u_{3}\right)=3$, by the choice of y again, $d_{H}\left(v_{2}\right)=d_{H}\left(v_{3}\right)=3$. Thus $G[B]$ is isomorphic to $\overline{K_{3}}$ and so $G[\{x\} \cup B]$ is isomorphic to $K_{1,3}$, a contradiction. This proves (4).
(5) $G[C]$ is isomorphic to K_{3}.

Suppose that $G[C]$ contains a missing edge, say $v_{4} v_{5} \notin E(G)$. By Lemma 2.2.5(i), there exist $w_{4} \in V_{4} \backslash\left\{v_{4}\right\}$ and $w_{5} \in V_{5} \backslash\left\{v_{5}\right\}$ such that $y w_{4}, y w_{5} \in E(G)$. By (4), we may assume that $v_{3} v_{j} \notin E(G)$ for some $j \in\{4,5,6\}$. By Lemma 2.2.5(i), y has another neighbor, say w_{3}, in $V_{3} \backslash\left\{v_{3}\right\}$. Since G is 10 -regular by (1), $\left\{w_{3}, w_{4}, w_{5}\right\}=N_{G}(y) \backslash N_{G}[x]$, so by Lemma 2.2.5(i), $v_{4} v_{5}$ is the only missing edge in $G[C]$ and $\left\{v_{1}, v_{2}\right\}$ is complete to C in G. If $e_{H}(A, C)=3$, then $d_{H}\left(u_{i}\right)=3$ for all $i \in\{1,2,3\}$. By the choice of $y, d_{H}\left(v_{3}\right)=3$, or else we could replace y with u_{3}. Notice that for all $i \in\{4,5,6\}, e_{H}\left(\left\{v_{i}\right\}, A \cup\left\{v_{3}\right\}\right) \geq 1$, and so by the choice of $y, d_{H}\left(v_{i}\right)=3$, or
else we could replace y with v_{3}. Thus $e_{H}(A, C) \geq 5$, which is impossible. Hence $e_{H}(A, C) \leq 2$. Notice that $e_{H}(A, C)=\left(d_{H}\left(v_{4}\right)-1\right)+\left(d_{H}\left(v_{5}\right)-1\right)+d_{H}\left(v_{6}\right)-e_{H}\left(v_{3}, C\right) \geq 2$. It follows that $e_{H}(A, C)=2, e_{H}\left(v_{3}, C\right)=2$ and $d_{H}\left(v_{i}\right)=2$ for all $i \in\{4,5,6\}$. Then $N_{G}(x) \backslash N_{G}[y]$ has at most one vertex of degree two in H, but $N_{G}(x) \backslash N_{G}\left[v_{3}\right]$ has two vertices of degree two in H, contradicting the choice of y. This proves (5).
(6) $v_{1} u_{1}, v_{2} u_{2}$, and $v_{3} u_{3}$ are the only edges in $H[A \cup B]$.

Suppose that $H[A \cup B]$ has at least four edges. By (5) and (2), $e_{H}(A \cup B, C) \geq 6$. On the other hand, $e_{H}(A \cup B, C)=\sum_{v \in A \cup B} d_{H}(v)-2|E(H[A \cup B])|-3 \leq 15-2|E(H[A \cup B])|$. It follows that $|E(H[A \cup B])|=4$ and $A \cup B$ contains at most one vertex of degree two in H. Thus $e_{H}(A \cup B, C) \leq 7$ and so at least two vertices of C, say v_{4} and v_{5}, are of degree two in H. Since $e_{H}(A, C) \leq 3$ and $G[C]$ is isomorphic to K_{3} by (5), we may assume that $v_{4} v_{3} \notin E(G)$. If $d_{H}\left(v_{3}\right)=3$, then since $d_{H}\left(v_{4}\right)=2$ and at most one vertex of $A \cup B$ has degree two in H, by the choice of y, exactly one of u_{1}, u_{2}, u_{3} has degree two in H. Then $e_{H}(A \cup B, C)=6$. Thus $d_{H}\left(v_{j}\right)=2$ for all $j \in\{4,5,6\}$ and by the choice of y, each vertex of B is adjacent to at most one vertex of C in H. Thus $e_{H}(A \cup B, C) \leq 5$, a contradiction. Hence $d_{H}\left(v_{3}\right)=2$. Now $d_{H}\left(u_{i}\right)=3$ for all $i \in\{1,2,3\}$ because at most one vertex of $A \cup B$ has degree two in H. We see that $N_{G}(x) \backslash N_{G}[y]$ has no vertex of degree two in H but $N_{G}(x) \backslash N_{G}\left[u_{3}\right]$ has at least one vertex of degree two in H, contrary to the choice of y. This proves (6).

By (6), we see that for any $i \in\{1,2,3\}, v_{i} v_{j} \notin E(G)$ for some $j \in\{4,5,6\}$. By Lemma 2.2.5(i), let $w_{i} \in V_{i} \backslash\left\{v_{i}\right\}$ be such that $y w_{i} \in E(G)$ for all $i \in\{1,2,3\}$. Let $D=\left\{w_{1}, w_{2}, w_{3}\right\}$. Then $N_{G}(y) \backslash N_{G}[x]=D$ and $G[D]$ is isomorphic to K_{3} because G is claw-free. Clearly, D is not complete to C in G, otherwise $G[\{y\} \cup D \cup C]$ is isomorphic to K_{7}, contrary to Proposition 2.2.1(i). We may assume that $w_{3} v_{4} \notin E(G)$. For each $i \in\{1,2\}, v_{i} v_{3}, v_{i} u_{3} \in E(G)$ by (6). Thus $v_{1} w_{3}, v_{2} w_{3} \notin E(G)$ because G is claw-free. Notice that $w_{3}, x, v_{1}, v_{2}, v_{4} \in N_{G}(y)$ and w_{3} is anti-
complete to $\left\{x, v_{1}, v_{2}, v_{4}\right\}$ in G. Thus $\Delta\left(\overline{G\left[N_{G}(y)\right]}\right) \geq 4$, contrary to (2). This completes the proof of Theorem 1.2.8.

CHAPTER 3: COLORING GRAPHS WITH FORBIDDEN MINORS

3.1 Preliminary Lemmas

In this section, we will prove several lemmas used throughout Chapter 3. Of particular importance is Lemma 1.5.3, which we prove first.

Proof of Lemma 1.5.3. Let G, x, S, and M be as given in the statement. Let H be obtained from G by contracting $S \cup\{x\}$ into a single vertex, say w. Then H is $(k-1)$-colorable. Let $c: V(H) \rightarrow\{1,2, \ldots, k-1\}$ be a $(k-1)$-coloring of H. We may assume that $c(w)=1$. Then each of the colors $2, \ldots, k-1$ must appear in $G\left[N_{G}(x) \backslash S\right]$, or else we could assign x the missing color and assign all vertices in S the color 1 to obtain a proper $(k-1)$-coloring of G, a contradiction. Since $\left|N_{G}(x) \backslash S\right|=k-2$, we have $c(u) \neq c(v)$ for any two distinct vertices $u, v \in N_{G}(x) \backslash S$. We next claim that for each $i \in\{1,2, \ldots, m\}$ and each $j \in\left\{1,2, \ldots, r_{i}\right\}$ there must exist a path between a_{i} and $b_{i j}$ with its internal vertices in $V(G) \backslash N_{G}[x]$. Suppose not. Let $i \in\{1,2, \ldots, m\}$ and $j \in\left\{1,2, \ldots, r_{i}\right\}$ be such that there is no such path between a_{i} and $b_{i j}$. Let H^{\prime} be the subgraph of H induced by all vertices colored either $c\left(a_{i}\right)$ or $c\left(b_{i j}\right)$ by the coloring c. Then $V\left(H^{\prime}\right) \cap N_{G}(x)=\left\{a_{i}, b_{i j}\right\}$. Notice that a_{i} and $b_{i j}$ must belong to different components of H^{\prime} as there is no path between a_{i} and $b_{i j}$ with its internal vertices in $V(G) \backslash N_{G}[x]$. By switching the colors on the component of H^{\prime} containing a_{i}, we obtain a $(k-1)$-coloring of H with the color $c\left(a_{i}\right)$ missing on $G\left[N_{G}(x) \backslash S\right]$, a contradiction. This proves that there must exist a path $P_{i j}$ in H^{\prime} with ends $a_{i}, b_{i j}$ and all its internal vertices in $V\left(H^{\prime}\right) \backslash N_{G}[x] \subseteq V(G) \backslash N_{G}[x]$ for each $i \in\{1,2, \ldots, m\}$ and each $j \in\left\{1,2, \ldots, r_{i}\right\}$. Clearly, for any $1 \leq i<\ell \leq m$, the paths $P_{i 1}, \ldots, P_{i r_{i}}$ are vertex-disjoint from the paths $P_{\ell 1}, \ldots, P_{\ell r_{\ell}}$, because no two vertices of $a_{1}, \ldots, a_{r}, b_{11}, \ldots, b_{m r_{m}}$ are assigned the same color by c.

We note here that if $r_{1}=r_{2}=\cdots=r_{m}=1$ in the statement of Lemma 1.5.3, then we simply write $M=\left\{a_{1} b_{11}, a_{2} b_{21}, \ldots, a_{m} b_{m 1}\right\}$, and so M is a matching of missing edges of $G\left[N_{G}(x) \backslash S\right]$. In this case, the paths $P_{11}, P_{21}, \ldots, P_{m 1}$ are pairwise vertex-disjoint if $m \geq 2$. Similarly, if $m=1$ in the statement of Lemma 1.5.3, then we simply write $M=\left\{a_{1} b_{11}, \ldots, a_{1} b_{1 r_{1}}\right\}$. In this case, the paths $P_{11}, \ldots, P_{1 r_{1}}$ have a_{1} as a common end and are not necessarily pairwise internally vertex-disjoint if $r_{1} \geq 2$.

Furthermore, we also note that if we keep the same set $S \subseteq N_{G}(x)$, we may be able to usefully apply Lemma 1.5 .3 to two different sets M_{1} and M_{2} if we choose the missing edges $a_{i} b_{i j}$ in each set carefully. The paths given by applying Lemma 1.5.3 to M_{1} may intersect the paths given by applying Lemma 1.5.3 to M_{2}. However, since the paths provided by Lemma 1.5.3 are Kempe chains, we are able to specifically control which paths may intersect by our choices of $a_{i} b_{i j}$ in M_{1} and M_{2}.

We will also need the following lemma in the proofs of Theorem 1.3.8 and Theorem 1.3.9.

Lemma 3.1.1 [58] For any 7-connected graph G, if G contains two different subgraphs isomorphic to K_{6}, then $G>K_{8}^{-}$.

Proof. Let H_{1} and H_{2} be two different subgraphs of G such that both are isomorphic to K_{6} with $V\left(H_{1}\right)=\left\{v_{1}, \ldots, v_{6}\right\}$ and $V\left(H_{2}\right)=\left\{w_{1}, \ldots, w_{6}\right\}$. Let $t=\left|V\left(H_{1}\right) \cap V\left(H_{2}\right)\right|$. Then $0 \leq t \leq 5$. We may assume that $v_{i}=w_{i}$ for all $i \leq t$ if $t \neq 0$. Assume first that $t=5$. Then $G\left[V\left(H_{1}\right) \cup V\left(H_{2}\right)\right]$ is a subgraph of G isomorphic to K_{7}^{-}. Since G is 7 -connected, it is easy to see that $G>K_{8}^{-}$by contracting a component of $G-\left(V\left(H_{1}\right) \cup V\left(H_{2}\right)\right)$ into a single vertex. So we may now assume that $t \leq 4$. Then there exist $6-t$ pairwise disjoint paths P_{t+1}, \ldots, P_{6} between $\left\{v_{t+1}, \ldots, v_{6}\right\}$ and $\left\{w_{t+1}, \ldots, w_{6}\right\}$ in $G-\left(V\left(H_{1}\right) \cap V\left(H_{2}\right)\right)$. We may assume that P_{i} has ends v_{i}, w_{i} for all $i \in\{t+1, \ldots, 6\}$. Then $G-\left\{v_{1}, \ldots, v_{5}, w_{6}\right\}$ is connected since G is 7 -connected, so there must
exist a path Q with one end, say x, in $\left(V\left(P_{t+1}\right) \cup \cdots \cup V\left(P_{5}\right)\right) \backslash\left\{v_{t+1}, \ldots v_{5}\right\}$, the other end, say y, in $V\left(P_{6}\right) \backslash\left\{w_{6}\right\}$, and no internal vertices in $\left\{v_{1}, \cdots, v_{t}\right\} \cup V\left(P_{t+1}\right) \cup \cdots \cup V\left(P_{6}\right)$ (possibly $x \in\left\{w_{t+1}, \ldots, w_{6}\right\}$ or $y=v_{6}$). We may assume that x lies on the path $P_{5}-v_{5}$. Let P_{5}^{\prime} be the subpath of P_{5} with ends x and w_{5}, and let P_{6}^{\prime} be the subpath of P_{6} with ends y and v_{6}. Now contracting P_{5}^{\prime} onto $w_{5}, P_{5}-P_{5}^{\prime}$ onto v_{5}, P_{6}^{\prime} and $Q-x$ onto $v_{6}, P_{6}-P_{6}^{\prime}$ onto w_{6}, and each of P_{t+1}, \ldots, P_{4} to a single vertex if $t<4$, together with v_{1}, \ldots, v_{t} if $t>0$, yields a K_{8}^{-}minor in G, as desired.

The following Lemma 3.1.2 will only be used in the proof of Theorem 1.3.7. It can be obtained from the (computer-assisted) proof of Lemma 3.7 in [67]. Here we give a computer-free proof of Lemma 3.1.2 so that the proof of Theorem 1.3 .7 is also computer-free for the cases $t=7,8$.

Lemma 3.1.2 (Song and Thomas [67]) For $7 \leq t \leq 9$, let H be a graph with $2 t-5$ vertices and $\alpha(H)=2$. Then $H>K_{t-2} \cup K_{1}$.

Proof. Suppose that H has no $K_{t-2} \cup K_{1}$-minor. Then $\omega(H) \leq t-3$. We claim that (1) $\omega(H) \leq t-4$.

Suppose $\omega(H)=t-3$. Let $K \subseteq H$ be isomorphic to K_{t-3}. Then $|V(H) \backslash V(K)|=t-2 \geq 5$. If $H-K$ contains an induced path on three vertices, say P, with ends y and z, then every vertex in $V(K)$ is adjacent to either y or z because $\alpha(H)=2$. By contracting the path P into a single vertex, we see that $H[V(K) \cup V(P)]>K_{t-2}$, and so $H>K_{t-2} \cup K_{1}$, a contradiction. Thus $H-K$ does not contain an induced path on three vertices. Since $\alpha(H)=2$, it follows that $H-K$ is a disjoint union of two cliques, say A_{1} and A_{2}. For $i \in\{1,2\}$, let

$$
K_{i}=\left\{v \in V(K): v \text { is not adjacent to some vertex in } V\left(A_{3-i}\right)\right\} .
$$

Since $\alpha(H)=2$ and $V\left(A_{1}\right)$ is anticomplete to $V\left(A_{2}\right), K_{i}$ is complete to $V\left(A_{i}\right)$ for each $i \in\{1,2\}$. Thus $H-\left(K_{i} \cup V\left(A_{i}\right)\right)$ is a clique for each $i \in\{1,2\}$ and so, since K_{1} and K_{2} are disjoint, either $H-\left(K_{1} \cup V\left(A_{1}\right)\right)$ or $H-\left(K_{2} \cup V\left(A_{2}\right)\right)$ is a clique of size at least $t-2$, contrary to the fact that $\omega(H) \leq t-3$. This proves (1).
(2) for any $y \in V(H)$ and any $A \subseteq N_{H}(y)$ with $|A| \geq 6$, either $H[A \cup\{y\}]$ contains two vertex-disjoint, induced paths on three vertices or $H[A]$ is a disjoint union of two cliques.

Suppose $H[A]$ is not a disjoint union of two cliques. Then $H[A]$ is connected because $\alpha(H)=2$. We next show that $H[A \cup\{y\}]$ contains two vertex-disjoint, induced paths on three vertices. By (1), $H[A]$ is not a clique and thus contains an induced path on three vertices, say P, with ends a and c, and $V(P)=\{a, b, c\}$. Let $\left\{d_{1}, d_{2}, \ldots, d_{s}\right\}=A \backslash V(P)$, where $s=|A|-3 \geq 3$. Clearly $H[A \cup\{y\}]$ contains two vertex-disjoint, induced paths on three vertices if $H\left[\left\{d_{1}, d_{2}, \ldots, d_{s}\right\}\right]$ is not a clique, since $y d_{i}$ is an edge for all $i \in\{1,2, \ldots, s\}$. So we may assume that $H\left[\left\{d_{1}, d_{2}, \ldots, d_{s}\right\}\right]$ is isomorphic to K_{s}. First suppose that a is complete to $\left\{d_{1}, d_{2}, \ldots, d_{s}\right\}$. By (1), b is not complete to $\left\{d_{1}, d_{2}, \ldots, d_{s}\right\}$. We may assume that $b d_{1} \notin E(H)$. Clearly $H[\{a, y, c\}]$ and $H\left[\left\{d_{1}, b, d_{i}\right\}\right]$ are two vertex-disjoint, induced paths on three vertices if $b d_{i} \in E(H)$ for some $i \neq 1$. So we may assume that $b d_{i} \notin E(H)$ for all $i \in\{1,2, \ldots, s\}$. Now either $H\left[\left\{b, a, d_{1}\right\}\right]$ and $H\left[\left\{c, y, d_{2}\right\}\right]$ (if $c d_{2} \notin E(H)$) or $H\left[\left\{a, d_{2}, c\right\}\right]$ and $H\left[\left\{b, y, d_{1}\right\}\right]$ (if $c d_{2} \in E(H)$) are two vertex-disjoint, induced paths on three vertices. Next suppose that a is not complete to $\left\{d_{1}, d_{2}, \ldots, d_{s}\right\}$. We may assume that $a d_{1} \notin E(H)$. Then $c d_{1} \in E(H)$ because $\alpha(H)=2$. By symmetry, we may assume that $c d_{2} \notin E(H)$. Then $a d_{2} \in E(H)$. Now either $H\left[\left\{c, d_{1}, d_{2}\right\}\right]$ and $H\left[\left\{a, y, d_{3}\right\}\right]$ (if $a d_{3} \notin E(H)$) or $H\left[\left\{a, d_{3}, d_{1}\right\}\right]$ and $H\left[\left\{c, y, d_{2}\right\}\right]$ (if $a d_{3} \in E(H)$) are two vertex-disjoint, induced paths on three vertices, as desired. This proves (2).

Let $\delta:=\delta(H)$ and let $y \in V(H)$ be a vertex with $d(y)=\delta$. Let $J=H-N_{H}[y]$. Since $\alpha(H)=2$,
J is a clique of size $2 t-\delta-6$. By (1), $|J|=2 t-\delta-6 \leq t-4$ and so $\delta \geq t-2$.
(3) $\delta=t-2$.

Suppose $\delta \geq t-1$. By Theorem 1.4.1, $(t-4)(2 t-6)-\binom{t-3}{2} \geq|E(H-y)| \geq \delta|V(H)| / 2-\delta=$ $\delta(|V(H)|-2) / 2 \geq(t-1)(2 t-7) / 2$, which yields that $t=9$ and $\delta=t-1=8$. Then H is a graph with $|V(H)|=2 t-5=13$. Clearly, J is isomorphic to K_{4}. Let $z \in N_{H}(y)$ be such that $\left|N_{H}(z) \cap V(J)\right|$ is maximum. Since $e_{H}\left(V(J), N_{H}(y)\right) \geq 20$, we have $\left|N_{H}(z) \cap V(J)\right| \geq$ 3. If $\left|N_{H}(z) \cap V(J)\right|=4$, then $H[\{z\} \cup V(J)]$ is isomorphic to K_{5} and $\left|N_{H}(y) \backslash\{z\}\right|=7$. Clearly $H>K_{7} \cup K_{1}$ if $H\left[N_{H}[y] \backslash\{z\}\right]$ has two vertex-disjoint, induced paths on three vertices. By (2), H[$\left.N_{H}[y] \backslash\{z\}\right]$ is thus a disjoint union of two cliques, say A_{1} and A_{2}. By (1), we may assume that A_{1} is isomorphic to K_{3} and A_{2} is isomorphic to K_{4}. Let $a \in V\left(A_{1}\right)$. By (1) again, a is not complete to $\{z\} \cup V(J)$ and thus $d_{H}(a) \leq 7$, contrary to the fact that $\delta=8$. Thus $\left|N_{H}(z) \cap V(J)\right|=3$. Let $z^{\prime} \in V(J)$ be the non-neighbor of z. By the choice of z, every vertex in $N_{H}(y)$ has at least one non-neighbor in $V(J)$ and so $\delta\left(H\left[N_{H}(y)\right]\right) \geq 4$. In particular, since $d(z) \geq 8,\left|N_{H}(z) \cap N_{H}(y)\right| \geq 4$. By (1), $H\left[N_{H}(z) \cap N_{H}(y)\right]$ is not a clique and so z^{\prime} is adjacent to at least one vertex, say w, in $N_{H}(z) \cap N_{H}(y)$, because $\alpha(H)=2$. Now the edge $z w$ is dominating J, that is, every vertex in J is adjacent to either z or w. Notice that $\left|N_{H}(y) \backslash\{z, w\}\right|=6$. If $H\left[N_{H}[y] \backslash\{z, w\}\right]$ contains two vertex-disjoint, induced paths on three vertices, say P_{1} and P_{2}, then $H>K_{7} \cup K_{1}$ by contracting the edge $z w$ and the two paths P_{1} and P_{2} each into a distinct vertex, respectively, a contradiction. Thus $H\left[N_{H}[y] \backslash\{z, w\}\right]$ does not contain two vertex-disjoint, induced paths on three vertices. By (2), $H\left[N_{H}(y) \backslash\{z, w\}\right]$ is thus a disjoint union of two cliques, say B_{1} and B_{2}. Since $\delta\left(H\left[N_{H}(y)\right]\right) \geq 4$, we must have both B_{1} and B_{2} isomorphic to K_{3}. By (1), $H\left[V\left(B_{1}\right) \cup\{z, w, y\}\right]$ is not a clique. Let $w^{\prime} \in V\left(B_{1}\right)$ be such that either $w w^{\prime} \notin E(H)$ or $z w^{\prime} \notin E(H)$. Since w^{\prime} is adjacent to at most three vertices of $V(J)$, we see that $d_{H}\left(w^{\prime}\right) \leq 7$, contrary to the fact that $\delta=8$. This proves (3).

By (3), $\delta=t-2$. If $t=7$, then H is a graph on nine vertices with $\delta(H)=5$. Thus there exists a vertex $z \in V(H)$ such that $d_{H}(z) \geq 6$ and so $N_{H}[z]$ contains a subgraph isomorphic to K_{4} because $\alpha\left(H\left[N_{H}(z)\right]\right)=2$, contrary to (1). Hence $t \geq 8$. Now $H-N_{H}[y]$ is a clique of size $t-4$ and $\left|N_{H}(y)\right|=t-2 \geq 6$. Clearly $H>K_{t-2} \cup K_{1}$ if $H-N_{H}(y)$ contains two vertex-disjoint, induced paths on three vertices, a contradiction. Thus by (2), $N_{H}(y)$ is a disjoint union of two cliques, say A_{1} and A_{2}. For $i=1,2$, let

$$
K_{i}=\left\{v \in V\left(H-N_{H}[y]\right): v \text { is not adjacent to some vertex in } A_{3-i}\right\} .
$$

Since $\alpha(H)=2$ and $V\left(A_{1}\right)$ is anticomplete to $V\left(A_{2}\right), K_{i}$ is complete to $V\left(A_{i}\right)$ for each $i \in\{1,2\}$. Thus, since $H\left[K_{i}\right]$ is a clique, $H-\left(K_{i} \cup V\left(A_{i}\right) \cup\{y\}\right)$ is a clique for each $i \in\{1,2\}$. Therefore, since K_{1} and K_{2} are disjoint, at least one of either $H-\left(K_{1} \cup V\left(A_{1}\right) \cup\{y\}\right)$ or $H-\left(K_{2} \cup V\left(A_{2}\right) \cup\right.$ $\{y\})$ is a clique of size at least $t-3$, contrary to (1). This completes the proof of Lemma 3.1.2.

Given two graphs G_{1} and G_{2}, the join $G_{1}+G_{2}$ is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{x y: x \in V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\}$. For our proof of Theorem 1.3.8, we will need the following lemma from [64].

Figure 3.1: The graph J.

Lemma 3.1.3 (Song [64]) Let G be a graph with $8 \leq|V(G)| \leq 10$ and $\delta(G) \geq 5$. Then either $G>K_{6}^{-} \cup K_{1}$ or G is isomorphic to one of $\overline{C_{8}}, \overline{C_{4}}+\overline{C_{4}}, \overline{K_{3}}+C_{5}, \overline{K_{2}}+\overline{C_{6}}, K_{2,3,3}$, or J, where J is the graph depicted in Figure 3.1. In particular, all of these graphs are edge maximal (subject to not having a $K_{6}^{-} \cup K_{1}$-minor) with maximum degree at most $|V(G)|-2$. Moreover, $\overline{C_{8}}>K_{6}$, $\overline{C_{4}}+\overline{C_{4}}>K_{6}$, and $J>K_{6}$.

Notice that of the counterexamples listed in Lemma 3.1.3, only the graph J has ten vertices, and none has exactly nine vertices. We next prove the following lemma, which we will also need for the proof of Theorem 1.3.8.

Lemma 3.1.4 [58] Let G be a graph with $|V(G)|=10$ and $\alpha(G)=2$. Then either $G>K_{6}^{-} \cup K_{1}$, or G contains a subgraph isomorphic to $K_{5} \cup K_{5}$, or G is isomorphic to the graph J depicted in Figure 3.1.

Proof. If $\delta(G) \geq 5$, then by Lemma 3.1.3, either $G>K_{6}^{-} \cup K_{1}$ or G is isomorphic to J. So we may assume that $\delta(G) \leq 4$. Let $x \in V(G)$ be such that $d_{G}(x)=\delta(G)$. Since $\alpha(G)=2$, one can easily see that $G>K_{6} \cup K_{1}$ if $d_{G}(x) \leq 3$. Hence we may further assume that $d_{G}(x)=4$. Then $G-N_{G}[x]$ must be isomorphic to K_{5} as $\alpha(G)=2$. If $G\left[N_{G}[x]\right]$ is also isomorphic to K_{5}, then G contains a subgraph isomorphic to $K_{5} \cup K_{5}$. Otherwise, some edge is missing from $G\left[N_{G}(x)\right]$, say $y, z \in N_{G}(x)$ with $y z \notin E(G)$. Then since $\alpha(G)=2$, each vertex in $V(G) \backslash N_{G}[x]$ must be adjacent to either y or z. Thus by contracting $\{x, y, z\}$ to a single vertex, we see that $G>K_{6} \cup K_{1}$, as desired. This completes the proof of Lemma 3.1.4.

3.2 Proof of Theorem 1.3.7

Suppose the assertion is false. Let G be a graph with no K_{t}-minor such that G is not $(2 t-6)$ colorable. We may choose such a graph G so that it is $(2 t-5)$-contraction-critical. Let $x \in V(G)$ be a vertex of minimum degree. Since $K_{2,2,2,3,3}$ and each ($K_{2,2,2,2,2}, 5$-cockade are 5-colorable, and every $\left(K_{1,2,2,2,2,2}, 6\right)$-cockade is 6 -colorable, it follows from Theorem 1.4.1, Theorem 1.4.2, and Theorem 1.4.3 that $d_{G}(x) \leq 2 t-5$. On the other hand, since G is $(2 t-5)$-contraction-critical, by Proposition 1.5.1(i), $d_{G}(x) \geq 2 t-5$. Thus $d_{G}(x)=2 t-5 \geq t+2$. By Proposition 1.5.1(ii), we have $\alpha\left(G\left[N_{G}(x)\right]\right)=2$. We next show that
(1) G has no K_{t-1}-subgraph.

Suppose G contains K_{t-1} as a subgraph. Let $H \subseteq G$ be isomorphic to K_{t-1}. Since $\delta(G)=$ $d_{G}(x) \geq t+2$, every vertex in $v(H)$ is adjacent to at least one vertex in $V(G-H)$. Then $G-H$ is disconnected, since otherwise $G>K_{t}$ by contracting $G-H$ into a single vertex, a contradiction. Let G_{1} be a component of $G-H$. Then $N_{G}\left(V\left(G_{1}\right)\right) \subseteq V(H)$ is a minimal separating set of G. In particular, $N_{G}\left(V\left(G_{1}\right)\right)$ induces a clique in G, contrary to Proposition 1.5.1(iii). This proves (1).
(2) For any $u \in N_{G}(x),\left|N_{G}(x) \cap N_{G}(u)\right| \geq t-3$.

Suppose that there exists a vertex $u \in N_{G}(x)$ such that $\left|N_{G}(x) \cap N_{G}(u)\right| \leq t-4$. Since $\alpha\left(G\left[N_{G}(x)\right]\right)=2, N_{G}(x)$ contains a clique of size $\left|N_{G}(x) \backslash N_{G}[u]\right| \geq t-2$ and so $N_{G}[x]$ has a subgraph isomorphic to K_{t-1}, contrary to (1). This proves (2).

By Lemma 3.1.2, $G\left[N_{G}(x)\right]>K_{t-2} \cup K_{1}$. Let $y \in N_{G}(x)$ be such that $G\left[N_{G}(x) \backslash\{y\}\right]>K_{t-2}$. Clearly, y is not complete to $N_{G}(x) \backslash\{y\}$, for otherwise $G>N_{G}[x]>K_{t}$, a contradiction. Let $\left\{y_{1}, \ldots, y_{p}\right\}=N_{G}(x) \backslash N_{G}[y]$, where $p=2 t-5-\left|N_{G}(x) \cap N_{G}[y]\right|$. Then y is anticomplete to $\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$. By (1) and (2), $N_{G}[y] \cap N_{G}(x)$ is not a clique. Let $u w$ be a missing edge
in $G\left[N_{G}(y) \cap N_{G}(x)\right]$. By Lemma 1.5.3 applied to $N_{G}(x)$ with $k=2 t-5, S=\{u, w\}$ and $M=\left\{y y_{1}, y y_{2}, \ldots, y y_{p}\right\}$, there exists a path P_{i} between y and y_{i} with its internal vertices in $V(G) \backslash N_{G}[x]$ for each $i \in\{1,2, \ldots, p\}$. Note that the paths $P_{1}-y_{1}, \ldots, P_{p}-y_{p}$ have y as a common end. By contracting all paths $P_{i}-y_{i}$ onto y, we see that $G>K_{t}$, a contradiction.

3.3 Proof of Theorem 1.3.8

Let G be a graph that does not contain K_{8}^{-}as a minor. Suppose for a contradiction that $\chi(G) \geq 10$. We may choose such a graph G so that it is 10-contraction-critical. Then by Proposition 1.5.1(i), $\delta(G) \geq 10$. On the other hand, since every $\left(K_{1,2,2,2,2}, K_{7}, 5\right)$-cockade is 7 -colorable, by Theorem 1.4.6 we see that $\delta(G) \leq 10$. Thus $\delta(G)=10$. Let $x \in V(G)$ be such that $d_{G}(x)=10$. Since G has no K_{8}^{-}-minor, by Proposition 1.5.1(ii) we have
(1) $\alpha\left(G\left[N_{G}(x)\right]\right)=2$.

We next show that
(2) $G\left[N_{G}(x)\right]$ is not isomorphic to the graph J.

Suppose that $N_{G}(x)$ is isomorphic to the graph J. Let the vertices of J be labeled as depicted in Figure 3.1. By Lemma 1.5.3 applied to J with $S=\left\{v_{2}, v_{5}\right\}$ and $M=\left\{\left\{u_{1} u_{3}, u_{1} u_{4}, u_{1} v_{3}, u_{1} v_{4}\right\}\right.$, $\left.\left\{u_{2} u_{5}\right\}\right\}$ with $m=2, r_{1}=4$, and $r_{2}=1$, there exist paths $P_{11}, P_{12}, P_{13}, P_{14}$, and P_{21} such that the paths $P_{11}, P_{12}, P_{13}, P_{14}$, and P_{21} have ends $\left\{u_{1}, u_{3}\right\},\left\{u_{1}, u_{4}\right\},\left\{u_{1}, v_{3}\right\},\left\{u_{1}, v_{4}\right\}$, and $\left\{u_{2}, u_{5}\right\}$, respectively, and all their internal vertices in $V(G) \backslash N_{G}[x]$. Moreover, the paths P_{11}, P_{12}, P_{13}, and P_{14} are vertex-disjoint from the path P_{21}. By contracting $\left(V\left(P_{11}\right) \backslash\left\{u_{3}\right\}\right) \cup\left(V\left(P_{12}\right) \backslash\left\{u_{4}\right\}\right) \cup$ $\left(V\left(P_{13}\right) \backslash\left\{v_{3}\right\}\right) \cup\left(V\left(P_{14}\right) \backslash\left\{v_{4}\right\}\right)$ onto $u_{1}, V\left(P_{21}\right) \backslash\left\{u_{2}\right\}$ onto u_{5}, and $\left\{v_{2}, v_{1}, v_{5}\right\}$ into a single
vertex, we see that $G>K_{8}$, a contradiction. This proves (2).
(3) $G\left[N_{G}(x)\right]$ contains a subgraph isomorphic to $K_{5} \cup K_{5}$.

Suppose that $G\left[N_{G}(x)\right]$ does not contain a subgraph isomorphic to $K_{5} \cup K_{5}$. Then by (1), (2), and Lemma 3.1.4, we see that $G\left[N_{G}(x)\right]>K_{6}^{-} \cup K_{1}$. Let $y \in N_{G}(x)$ be a vertex such that $G\left[N_{G}(x) \backslash\{y\}\right]>K_{6}^{-}$. Clearly, y is not complete to $N_{G}(x) \backslash\{y\}$, for otherwise $G>N_{G}[x]>K_{8}^{-}$, a contradiction. Let $\left\{y_{1}, \ldots, y_{p}\right\}=N_{G}(x) \backslash N_{G}[y]$, where $p=10-\left|N_{G}(x) \cap N_{G}[y]\right| \geq 1$. Then y is anticomplete to $\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$. Clearly, $G\left[N_{G}(x) \backslash\left\{y, y_{i}\right\}\right]$ is not a clique for all $i \in\{1,2, \ldots, p\}$. By Lemma 1.5.3 applied p times to $G\left[N_{G}(x)\right]$ with $k=10, s=0$, and $m=1$ (where for $i \in\{1,2, \ldots, p\}$, we have $M=\left\{y y_{i}\right\}$ and $S=\left\{u_{i}, v_{i}\right\}$, where $u_{i} v_{i}$ is any missing edge in $G\left[N_{G}(x) \backslash\left\{y, y_{i}\right\}\right]$), there exists a path P_{i} between y and y_{i} with its internal vertices in $V(G) \backslash N_{G}[x]$ for each $i \in\{1,2, \ldots, p\}$. Note that the paths P_{1}, \ldots, P_{p} all have y as a common end. By contracting each set $V\left(P_{i}\right) \backslash\left\{y_{i}\right\}$ onto y, we see that $G>K_{8}^{-}$, a contradiction. This proves (3).

By (3), x belongs to two different subgraphs of G isomorphic to K_{6}. By Theorem 1.5.2(ii), G is 7connected. By Lemma 3.1.1, $G>K_{8}^{-}$. This contradiction completes the proof of Theorem 1.3.8.

3.4 Proof of Theorem 1.3.9

Suppose the assertion is false. Let G be a graph with no $K_{8}^{=}$-minor such that $\chi(G) \geq 9$. We may choose such a graph G so that it is 9 -contraction-critical. Let $x \in V(G)$ be a vertex of minimum degree. By Proposition 1.5.1(i), $d_{G}(x) \geq 9$. On the other hand, since each $\left(K_{7}, 4\right)$-cockade is 4-colorable, it follows from Theorem 1.4.7 for $p=8$ that $d_{G}(x) \leq 9$. Thus $d_{G}(x)=9$. It follows
from Theorem 1.4.7 for $p=8$ again that
(1) G contains at least 28 vertices of degree 9 .

Since G has no $K_{8}^{=}$-minor, by Proposition 1.5.1(ii),
(2) $\alpha(G[N(x)])=2$.

We next show that
(3) $N_{G}(x)$ contains a subgraph isomorphic to K_{5}.

Suppose that $N_{G}(x)$ does not contain a subgraph isomorphic to K_{5}. Then $\omega\left(G\left[N_{G}(x)\right]\right) \leq 4$ and by (2), $\delta\left(G\left[N_{G}(x)\right]\right) \geq 4$. We claim that $\delta\left(G\left[N_{G}(x)\right]\right)=4$. Suppose that $\delta\left(G\left[N_{G}(x)\right]\right) \geq 5$. By Lemma 3.1.3 applied to $N_{G}(x)$, we see that $N_{G}(x)>K_{6}^{-} \cup K_{1}$. Let $y \in N_{G}(x)$ be such that $G\left[N_{G}(x)\right]-y>K_{6}^{-}$. Clearly y has at least two non-neighbors in $N_{G}(x)-y$, otherwise $G\left[N_{G}[x]\right]>K_{8}^{=}$, a contradiction. Let $\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}=N_{G}(x) \backslash N_{G}[y]$ be all non-neighbors of y in $N_{G}(x)$, where $p=\left|N_{G}(x) \backslash N_{G}[y]\right| \geq 2$. Since $\omega\left(G\left[N_{G}(x)\right]\right) \leq 4, G\left[N_{G}(x) \cap N_{G}(y)\right]$ must have a missing edge, say $u v$. By Lemma 1.5.3 applied to $G\left[N_{G}(x)\right]$ with $S=\{u, v\}$ and $M=\left\{y y_{1}, \ldots, y y_{p}\right\}$, there exist p paths $P_{1}, P_{2}, \ldots, P_{p}$ such that each path P_{i} has ends $\left\{y, y_{i}\right\}$ and all its internal vertices in $V(G) \backslash N_{G}[x]$. By contracting all the edges of each $P_{i}-y_{i}$ onto y for all $i \in\{1,2, \ldots, p\}$, we see that $G>K_{8}^{-}$, a contradiction. This proves that $\delta\left(G\left[N_{G}(x)\right]\right)=4$, as claimed.

Let $y \in N_{G}(x)$ be such that y has degree four in $G\left[N_{G}(x)\right]$ with the number of edges in $G\left[N_{G}(x) \cap\right.$ $\left.N_{G}(y)\right]$ maximum. Let $Z=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$ be the set of all neighbors of y in $N_{G}(x)$. Since $\omega\left(G\left[N_{G}(x)\right]\right) \leq 4, G\left[N_{G}(x) \cap N_{G}[y]\right]$ is not complete. We may assume that $z_{1} z_{2} \notin E(G)$. By (2), $G\left[N_{G}(x) \backslash N_{G}[y]\right]$ is isomorphic to K_{4}. Let $W=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}=N_{G}(x) \backslash N_{G}[y]$. We next
show that
(3.1) each of z_{3}, z_{4} has at most one neighbor in W.

Suppose, say z_{4}, is adjacent to at least two vertices in W. Then the subgraph $G\left[W \cup\left\{z_{4}\right\}\right]$ has a $K_{5}^{=}$-minor and thus $G\left[N_{G}[x]\right]>K_{8}^{=}$if z_{3} is adjacent to all vertices in W (by contracting the path $z_{1} y z_{2}$ into a single vertex), a contradiction. Thus we may assume that z_{3} is not adjacent to w_{1}, \ldots, w_{k}, where $1 \leq k \leq 4$. By Lemma 1.5 .3 applied to $G\left[N_{G}(x)\right]$ with $S=\left\{z_{1}, z_{2}\right\}$ and $M=\left\{z_{3} w_{1}, \ldots, z_{3} w_{k}\right\}$, there exist k paths $P_{1}, P_{2}, \ldots, P_{k}$ such that for each $i=1,2, \ldots, k$, the path P_{i} has ends $\left\{z_{3}, w_{i}\right\}$ and all its internal vertices in $V(G) \backslash N_{G}[x]$. By contracting each $P_{i}-w_{i}$ onto z_{3} and contracting $\left\{z_{1}, y, z_{2}\right\}$ into a single vertex, we see that $G>K_{8}^{=}$, a contradiction. This proves (3.1).

We next claim that $G\left[N_{G}[y] \cap N_{G}(x)\right]$ is isomorphic to K_{5}^{-}. Suppose $z_{3} z_{4} \notin E(G)$. By symmetry, we may apply (3.1) to the missing edge $z_{3} z_{4}$ in $G\left[N_{G}(x)\right]$, and so we see that each of z_{1} and z_{2} has at most one neighbor in W. Hence $e_{G}(Z, W) \leq 4$. On the other hand, since $\alpha\left(G\left[N_{G}(x)\right]\right)=2$, each w_{i} must be adjacent to at least one of the vertices in each of $\left\{z_{1}, z_{2}\right\}$ and $\left\{z_{3}, z_{4}\right\}$, for all $i \in\{1,2,3,4\}$. Thus $e_{G}(W, Z) \geq 8$, a contradiction. This proves that $z_{3} z_{4} \in E(G)$ and thus $G\left[N_{G}(x) \cap N_{G}[y]\right]$ does not have two independent missing edges. Next if $z_{1} z_{3} \notin E(G)$, then $z_{2} z_{3} \in E(G)$ because $\alpha\left(G\left[N_{G}(x)\right]\right)=2$. Since $G\left[N_{G}(x) \cap N_{G}[y]\right]$ does not have two independent missing edges, we see that $z_{2} z_{4} \in E(G)$. If $z_{1} z_{4} \notin E(G)$, then since $\delta\left(G\left[N_{G}(x)\right]\right) \geq 4$ and $N_{G}(x)$ does not contain a subgraph isomorphic to K_{5}, we may assume z_{1} is adjacent to w_{2}, w_{3}, w_{4}. Then since $\alpha\left(G\left[N_{G}(x)\right]\right)=2$ by (2), we have w_{1} complete to $\left\{z_{2}, z_{3}, z_{4}\right\}$. By symmetry, we may apply (3.1) to each of the missing edges $z_{1} z_{2}, z_{1} z_{3}$, and $z_{1} z_{4}$ to conclude that z_{2}, z_{3}, and z_{4} have no other neighbors in W. But now w_{2} has four neighbors in $N_{G}(x)$ and $G\left[N_{G}(x) \cap N_{G}\left[w_{2}\right]\right]$ has 5 edges, contrary to our choice of y. Hence $z_{1} z_{4} \in E(G)$ and $G\left[N_{G}(x) \cap N_{G}[y]\right]$ is isomorphic to $K_{5}^{=}$. Since $\omega\left(G\left[N_{G}(x)\right]\right) \leq 4$, we may assume that $z_{1} w_{1} \notin E(G)$. Then w_{1} must be adjacent to
both z_{2} and z_{3} by (2). By symmetry again, we may apply (3.1) to the missing edges $z_{1} z_{2}$ and $z_{1} z_{3}$, to see that $\left\{z_{2}, z_{3}\right\}$ is anticomplete to $\left\{w_{2}, w_{3}, w_{4}\right\}$ and that z_{4} has at most one neighbor in W. By (2), z_{1} is complete to $\left\{w_{2}, w_{3}, w_{4}\right\}$. Since z_{4} has at most one neighbor in W, we may assume that $w_{4} z_{4} \notin E(G)$. Now w_{4} has degree four in $N_{G}(x)$ with $N_{G}(x) \cap N_{G}\left[w_{4}\right]$ is isomorphic to K_{5}^{-}, contrary to the choice of y. Thus $G\left[N_{G}(x) \cap N_{G}[y]\right]$ isomorphic to K_{5}^{-}with $z_{1} z_{2}$ the only missing edge, as claimed.

Since $\delta\left(G\left[N_{G}(x)\right]\right)=4$, each of z_{1} and z_{2} has at least one neighbor in W. By (2), each of w_{1}, \ldots, w_{4} is adjacent to at least one of z_{1} and z_{2}, and so either z_{1} or z_{2} has at least two neighbors in W. By symmetry, we may assume that $\left|N_{G}\left(z_{1}\right) \cap W\right| \geq\left|N_{G}\left(z_{2}\right) \cap W\right|$. On the other hand, each vertex in Z has at least one non-neighbor in W as $\omega\left(G\left[N_{G}(x)\right]\right) \leq 4$. Thus, z_{1} has either two or three neighbors in W. We consider the following two cases.

Figure 3.2: Finding a $K_{8}^{=}$-minor when z_{1} has exactly two neighbors in W.

First, assume that z_{1} has exactly two neighbors in W, say w_{1}, w_{2}. Then z_{2} must have exactly two neighbors in W, namely w_{3} and w_{4}. By (3.1), each of z_{3} and z_{4} has at most one neighbor in W. We may assume that z_{4} is not adjacent to w_{3} and w_{4}, and that z_{3} is not adjacent to w_{2}. By Lemma 1.5.3
applied twice to $G\left[N_{G}(x)\right]$ with $S=\left\{z_{1}, z_{2}\right\}$ and $M \in\left\{\left\{y w_{1}, z_{3} w_{2}, z_{4} w_{3}\right\},\left\{y w_{2}, z_{4} w_{4}\right\}\right\}$, there exist three vertex-disjoint paths P_{1}, P_{2}, Q_{1} and two vertex-disjoint paths P_{3}, Q_{2} such that the paths $P_{1}, P_{2}, P_{3}, Q_{1}$, and Q_{2} have ends $\left\{y, w_{1}\right\},\left\{z_{3}, w_{2}\right\},\left\{y, w_{2}\right\},\left\{z_{4}, w_{3}\right\}$ and $\left\{z_{4}, w_{4}\right\}$, respectively, and all their internal vertices in $V(G) \backslash N_{G}[x]$, as depicted in Figure 3.2. Notice that for all $i \in\{1,2,3\}$ and all $j \in\{1,2\}$, the ends of each P_{i} are distinct from the ends of each Q_{j}, and so each P_{i} is chosen to be vertex-disjoint from Q_{j} when applying Lemma 1.5.3. Similarly, P_{1} and P_{2} are chosen to be vertex-disjoint, but P_{3} is not necessarily internally disjoint from either of P_{1} or P_{2}. If P_{3} and P_{2} have only w_{2} in common, then contracting $P_{1}-w_{1}$ and $P_{3}-w_{2}$ onto y, contracting $P_{2}-w_{2}$ onto z_{3}, contracting $Q_{1}-w_{3}$ and $Q_{2}-w_{4}$ onto z_{4}, and contracting each of $w_{1} w_{3}$ and $w_{2} w_{4}$ into distinct vertices yields a $K_{8}^{=}$-minor in G, a contradiction. Thus P_{3} and P_{2} must have an internal vertex in common. Let w be the first vertex on P_{3} (when P_{3} is read in order from y to w_{2}) that is also on P_{2}. Then $w \notin V\left(P_{1}\right) \cup\left\{z_{3}\right\}$. Let P_{3}^{\prime} be the subpath of P_{3} from y to w and P_{2}^{\prime} be the subpath of P_{2} from w to w_{2}. Notice that $P_{3}^{\prime}-w$ is vertex-disjoint from P_{2} but not necessarily internally disjoint from P_{1}. Now contracting $P_{1}-w_{1}$ and $P_{3}^{\prime}-w$ onto y, contracting P_{2}^{\prime} onto w_{2}, contracting $P_{2}-P_{2}^{\prime}$ onto z_{3}, contracting $Q_{1}-w_{3}$ and $Q_{2}-w_{4}$ onto z_{4}, and contracting each of $w_{1} w_{3}$ and $w_{2} w_{4}$ into distinct vertices yields another $K_{8}^{=}-$minor in G, a contradiction.

It remains to consider the case when z_{1} has exactly three neighbors, say w_{1}, w_{2}, w_{3} in W. Then z_{2} is adjacent to w_{4}. By (3.1), we may assume that w_{1} is not adjacent to z_{3} and z_{4}, and that w_{3} is not adjacent to z_{4}. By Lemma 1.5.3 applied twice to $G\left[N_{G}(x)\right]$ with $S=\left\{z_{1}, z_{2}\right\}$ and $M \in\left\{\left\{y w_{2}, z_{3} w_{1}, z_{4} w_{3}\right\},\left\{z_{4} w_{1}\right\}\right\}$, there exist vertex-disjoint paths P_{1}, Q_{1}, Q_{2} and another path Q_{3} such that the paths P_{1}, Q_{1}, Q_{2}, and Q_{3} have ends $\left\{y, w_{2}\right\},\left\{z_{3}, w_{1}\right\},\left\{z_{4}, w_{3}\right\}$, and $\left\{z_{4}, w_{1}\right\}$, respectively, and all their internal vertices in $V(G) \backslash N_{G}[x]$, as depicted in Figure 3.3. Notice that P_{1} is vertex-disjoint from Q_{j} for all $j \in\{1,2,3\}$, but that Q_{3} is not necessarily internally disjoint from either of Q_{1} or Q_{2}. If Q_{3} and Q_{2} have only z_{4} in common, then we obtain a $K_{8}^{=}$-minor by contracting each of P_{1} and $z_{2} w_{4}$ into distinct vertices, contracting $Q_{1}-z_{3}$ and $Q_{3}-z_{4}$ onto w_{1},
and contracting $Q_{2}-z_{4}$ onto w_{3}, a contradiction. Thus Q_{3} and Q_{2} must have an internal vertex in common. Let w be the first vertex on Q_{3} (when Q_{3} is read from w_{1} to z_{4}) that is also on Q_{2}. Then $w \notin V\left(Q_{1}\right) \cup\left\{w_{3}\right\}$. Let Q_{3}^{\prime} be the subpath of Q_{3} from w_{1} to w and Q_{2}^{\prime} be the subpath of Q_{2} from w to z_{4}. Notice that $Q_{3}^{\prime}-w$ is vertex-disjoint from Q_{2} but not necessarily internally disjoint from Q_{1}. Now we obtain another $K_{8}^{=}$-minor by contracting each of P_{1} and $z_{2} w_{4}$ into distinct vertices, contracting $Q_{1}-z_{3}$ and $Q_{3}^{\prime}-w$ onto w_{1}, contracting Q_{2}^{\prime} onto z_{4}, and contracting $Q_{2}-Q_{2}^{\prime}$ onto w_{3}, a contradiction. This completes the proof of (3).

Figure 3.3: Finding a $K_{8}^{=}$-minor when z_{1} has exactly three neighbors in W.

By (3), every vertex of degree 9 belongs to some subgraph of G isomorphic to K_{6}. By (1), G contains at least five different subgraphs isomorphic to K_{6}. By Theorem 1.5.2(ii), G is 7-connected and thus $G>K_{8}^{-}$by Lemma 3.1.1. This contradiction completes the proof of Theorem 1.3.9.

3.5 K_{t}-minor free graphs for $t \geq 10$

Our Theorem 1.3.7, which we proved in Section 3.2, relies on the extremal function for K_{t}-minors for $t \in\{7,8,9\}$, namely Theorem 1.4.1, Theorem 1.4.2, and Theorem 1.4.3. As mentioned in Section 1.4, the extremal function for K_{t}-minors remains open for all $t \geq 10$. By noting that any $\left(H_{1}, H_{2}, k\right)$-cockade not isomorphic to either of H_{1} or H_{2} is at most k-connected and that any complete multipartite graph $K_{k_{1}, \ldots, k_{r}}$ has a fixed number of vertices, Seymour and Thomas [67] proposed the following conjecture.

Conjecture 3.5.1 (Seymour and Thomas [67]) For every $t \geq 1$ there exists a constant $N=N(t)$ such that every $(t-2)$-connected graph on $n \geq N$ vertices with at least $(t-2) n-\binom{t-1}{2}+1$ edges has a K_{t}-minor.

By the results mentioned in Section 1.4, Conjecture 3.5.1 is true for $t \leq 9$. However, as mentioned in Section 1.5, it seems very hard to prove that even 8 -contraction-critical, non-complete graphs are 8-connected. Hence Conjecture 3.5.1 cannot be easily applied to prove results on the coloring of K_{t}-minor free graphs for $t \geq 10$.

By noting that any $\left(H_{1}, H_{2}, k\right)$-cockade is $\max \left\{\chi\left(H_{1}\right), \chi\left(H_{2}\right)\right\}$-colorable and any complete multipartite graph $K_{k_{1}, \ldots, k_{r}}$ is r-colorable, we instead propose the following conjecture.

Conjecture 3.5.2 [58] For every $t \geq 1$, every graph G on n vertices with at least $(t-2) n-\binom{t-1}{2}+1$ edges either has a K_{t}-minor or is $(t-1)$-colorable.

Again by the results mentioned in Section 1.4, Conjecture 3.5.2 is true for $t \leq 9$. To end this chapter, we apply our versatile Lemma 1.5.3 along with an idea different from that used in the proof of Theorem 1.3.7 in Section 3.2 (namely, considering the chromatic number of $G\left[N_{G}(x)\right]$ instead of showing that $\left.N_{G}(x)>K_{t-2} \cup K_{1}\right)$ to prove that the truth of Conjecture 3.5.2 implies
that every graph with no K_{t}-minor is $(2 t-6)$-colorable for all $t \geq 5$. Since Conjecture 3.5 .2 is true for $t \leq 9$, we see that the following Theorem 3.5.3 implies Theorem 1.3.7.

Theorem 3.5.3 [58] If Conjecture 3.5.2 is true, then every graph with no K_{t}-minor is $(2 t-6)$ colorable for all $t \geq 5$.

Proof. Suppose the assertion is false. By Wagner's Theorem and the Four Color Theorem for $t=5$, Theorem 1.3.5 for $t=6$, and Theorem 1.3.7 for $t \in\{7,8,9\}$, we see the conclusion holds for all $t \in\{5, \ldots, 9\}$. Hence $t \geq 10$. Among all minimum counterexamples, we choose G so that G has no K_{t}-minor and G is $(2 t-5)$-contraction-critical. Let $x \in V(G)$ be such that $d_{G}(x)=\delta(G)$. By the assumed truth of Conjecture 3.5.2, we see that $d_{G}(x) \leq 2 t-5$. On the other hand, by Proposition 1.5.1(i), we see that $d_{G}(x) \geq 2 t-5$. Hence $d_{G}(x)=2 t-5$. By Proposition 1.5.1(ii), we have
(1) $\alpha\left(G\left[N_{G}(x)\right]\right)=2$.

Our strategy now will be to examine the subgraph $G\left[N_{G}(x)\right]$ and its chromatic number. We first show that
(2) $\omega\left(G\left[N_{G}(x)\right]\right) \leq t-3$, and so $\delta\left(G\left[N_{G}(x)\right]\right) \geq t-3$.

Suppose $\omega\left(G\left[N_{G}(x)\right]\right) \geq t-2$. Let $H \subseteq G\left[N_{G}[x]\right]$ be isomorphic to K_{t-1}. Since $\delta(G)=2 t-5$, every vertex in $V(H)$ is adjacent to $t-3$ vertices in $V(G-H)$. Then $G-H$ is disconnected, for otherwise $G>K_{t}$ by contracting $G-H$ into a single vertex, a contradiction. Let G_{1} be a component of $G-H$. Then $N_{G}\left(G_{1}\right)$ is a minimal separating set of G. In particular, $N_{G}\left(G_{1}\right)$ is a clique, contrary to Proposition 1.5.1(iii). This proves that $\omega\left(G\left[N_{G}(x)\right]\right) \leq t-3$. By (1), we see that $\delta\left(G\left[N_{G}(x)\right]\right) \geq t-3$. This proves (2).
(3) $\chi\left(G\left[N_{G}(x)\right]\right)=t-2$.

Suppose to the contrary that $\chi\left(G\left[N_{G}(x)\right]\right) \neq t-2$. By (1), it is clear that $\chi\left(G\left[N_{G}(x)\right]\right) \geq$ $t-2$. Thus $\chi\left(G\left[N_{G}(x)\right]\right)=p$ for some $p \geq t-1$. Let V_{1}, \ldots, V_{p} be the color classes of any p-coloring of $G\left[N_{G}(x)\right]$. We may assume that the color classes are ordered so that $V_{i}=\left\{a_{i}\right\}$ for $i \in\{1,2, \ldots, 2 p-2 t+5\}$ and $V_{i}=\left\{a_{i}, b_{i}\right\}$ for $i \in\{2 p-2 t+6, \ldots, p\}$. Let $r=2 p-2 t+6 \geq 4$. Since $\chi\left(G\left[N_{G}(x)\right]\right)=p$, we see that there is at least one edge between any pair of color classes V_{1}, \ldots, V_{p} in G. Hence $\left\{a_{1}, a_{2}, \ldots, a_{r-1}\right\}$ induces a clique in $G\left[N_{G}(x)\right]$, and so $r \leq t-2$ by (2). Furthermore, a_{i} is adjacent to either a_{j} or b_{j} for each $i \in\{1,2, \ldots, r-1\}$ and each $j \in\{r, \ldots, p\}$. Notice that if $p=t-1$, then $r=4$. Suppose either that $p \geq t$ or that $p=t-1$ and a_{1}, a_{2} and a_{3} have a common neighbor in $N(x) \backslash\left\{a_{1}, a_{2}, a_{3}\right\}$, say a_{4}. By Lemma 1.5.3 applied to $G\left[N_{G}(x)\right]$ with $S=\left\{a_{r}, b_{r}\right\}$ and $M=\left\{a_{r+1} b_{r+1}, \ldots, a_{p} b_{p}\right\}$, there exist $p-r$ pairwise vertex-disjoint paths P_{r+1}, \ldots, P_{p} such that each P_{j} has ends $\left\{a_{j}, b_{j}\right\}$ and all its internal vertices in $V(G) \backslash N_{G}[x]$. By contracting each P_{j} to a single vertex for all $j \in\{r+1, \ldots, p\}$, together with $x, a_{1}, \ldots, a_{r-1}$ (if $t \geq p$) or together with x, a_{1}, a_{2}, a_{3}, and a_{4} (if $p=t-1$, where $a_{4}=a_{r}$ is a common neighbor of a_{1}, a_{2}, and a_{3}, we obtain a clique minor with $(p-r)+r=p \geq t$ vertices in the former case and $(p-r)+r+1=p+1=t$ vertices in the latter case, a contradiction. Thus $p=t-1$ and a_{1}, a_{2}, and a_{3} have no common neighbor in $N_{G}(x) \backslash\left\{a_{1}, a_{2}, a_{3}\right\}$.

Figure 3.4: Finding a K_{t}-minor when $\chi\left(G\left[N_{G}(x)\right]\right)=t-1$.

Since each of a_{1}, a_{2}, and a_{3} is adjacent to either a_{5} or b_{5}, by symmetry, we may assume that a_{5} is adjacent to a_{1} and a_{2}, but not to a_{3}. Then b_{5} is adjacent to a_{3}. We may assume that b_{5} is not adjacent to a_{1}. For the worst case scenario, we may further assume that b_{5} is not adjacent to a_{2}. By Lemma 1.5.3 applied twice to $G\left[N_{G}(x)\right]$ with $S=\left\{a_{4}, b_{4}\right\}$ and $M \in\left\{\left\{\left\{a_{6} b_{6}\right\}, \ldots\right.\right.$, $\left.\left.\left\{a_{p} b_{p}\right\},\left\{b_{5} a_{1}, b_{5} a_{2}, b_{5} a_{5}\right\}\right\},\left\{a_{5} a_{3}\right\}\right\}$, there exist pairwise vertex-disjoint paths P_{6}, \ldots, P_{p} such that each P_{j} has ends $\left\{a_{j}, b_{j}\right\}$ and all its internal vertices in $V(G) \backslash N_{G}[x]$, and paths Q_{1}, Q_{2}, Q_{5}, Q with ends $\left\{b_{5}, a_{1}\right\},\left\{b_{5}, a_{2}\right\},\left\{b_{5}, a_{5}\right\}$, and $\left\{a_{5}, a_{3}\right\}$, respectively, and all their internal vertices in $V(G) \backslash N_{G}[x]$. Notice that each P_{j} is vertex-disjoint from Q_{1}, Q_{2}, Q_{5}, and Q, and that Q is vertexdisjoint from Q_{1} and Q_{2} but not necessarily from Q_{5}. Let w be the first vertex on Q (when read from a_{3} to a_{5}) that is also on Q_{5}. Note that w could be a_{5}. Let Q^{\prime} be the subpath of Q between w and a_{3}, as depicted in Figure 3.4. By contracting each P_{j} to a single vertex for all $j \in\{6, \ldots, p\}$, contracting $Q_{1}-a_{1}$ and $Q_{2}-a_{2}$ onto b_{5}, contracting $Q^{\prime}-w$ onto a_{3}, and contracting $Q_{5}-b_{5}$ onto a_{5}, together with the vertices x, a_{1}, a_{2}, and a_{3}, we obtain a K_{t}-minor, a contradiction. This proves (3).

$$
\text { (4) } \delta\left(G\left[N_{G}(x)\right]\right) \geq t-2
$$

By (1) and (2), we have $\delta\left(G\left[N_{G}(x)\right]\right) \geq t-3$. Suppose there exists a vertex $y \in N_{G}(x)$ such that y has exactly $t-3$ neighbors in $N_{G}(x)$. Then $N_{G}(x) \backslash N_{G}[y]$ induces a clique in $G\left[N_{G}(x)\right]$ with $t-3$ vertices. Furthermore, by (2), $G\left[N_{G}(x) \cap N_{G}(y)\right]$ must have some missing edge, say $u v$. Then every vertex of $N_{G}(x) \backslash N_{G}[y]$ is adjacent to at least one of u and v. Thus, by contracting $\{u, y, v\}$ to a single vertex, we can see that $G\left[N_{G}(x)\right]>K_{t-2} \cup K_{1}$.

Now we can assume without loss of generality that $y \in N_{G}(x)$ is such that $G\left[N_{G}(x) \backslash\{y\}\right]>$ K_{t-2}. Clearly y is not adjacent to every vertex in $N_{G}(x) \backslash\{y\}$, or else $G>G\left[N_{G}[x]\right]>K_{t}$, a contradiction. Let $\left\{y_{1}, \ldots, y_{p}\right\}=N_{G}(x) \backslash N_{G}[y]$, where $p \geq 1$. Again, by (2), $G\left[N_{G}(y)\right]$ must have some missing edge, say $u v$. By Lemma 1.5.3 applied to $G\left[N_{G}(x)\right]$ with $S=\{u, v\}$
and $M=\left\{y y_{1}, \ldots, y y_{p}\right\}$, there exist paths P_{1}, \ldots, P_{p} such that each P_{j} has ends $\left\{y, y_{j}\right\}$ and all internal vertices in $V(G) \backslash N_{G}[x]$. Now by contracting each $P_{j}-y_{j}$ onto y, we see that $G>K_{t}$, a contradiction. This proves (3).

By (2) and (4), $N_{G}(x)$ does not contain K_{t-2} as a subgraph and $\delta\left(G\left[N_{G}(x)\right]\right) \geq t-2$. By (3), $\chi\left(G\left[N_{G}(x)\right]\right)=t-2$. Let V_{1}, \ldots, V_{t-2} be the color classes of any $(t-2)$-coloring of $G\left[N_{G}(x)\right]$. By (1), we may assume that the color classes are ordered so that $V_{1}=\left\{a_{1}\right\}$ and $V_{j}=\left\{a_{j}, b_{j}\right\}$ for $j \in\{2, \ldots, t-2\}$. Since $\chi\left(G\left[N_{G}(x)\right]\right)=t-2$, we see that there is at least one edge between any pair of color classes V_{1}, \ldots, V_{t-2} in G. By (4), a_{1} must be complete to some color class $V_{i} \in\left\{V_{2}, \ldots, V_{t-2}\right\}$, say V_{2}. By (4) again, a_{2} and b_{2} must have one common neighbor in some color class $V_{i} \in\left\{V_{2}, \ldots, V_{t-2}\right\}$, say V_{3}. We may assume that a_{3} is adjacent to both a_{2} and b_{2}. By symmetry, we may further assume that b_{3} is adjacent to a_{2}. By Lemma 1.5.3 applied to $G\left[N_{G}(x)\right]$ with $S=\left\{a_{2}, b_{2}\right\}$ and $M=\left\{\left\{b_{3} a_{1}, b_{3} a_{3}\right\},\left\{a_{4} b_{4}\right\}, \ldots,\left\{a_{t-2} b_{t-2}\right\}\right\}$, there exist paths P_{1}, P_{2} and pairwise vertex-disjoint paths Q_{4}, \ldots, Q_{t-2} such that P_{1} and P_{2} have ends $\left\{b_{3}, a_{1}\right\}$ and $\left\{b_{3}, a_{3}\right\}$, respectively, each Q_{j} has ends $\left\{a_{j}, b_{j}\right\}$, and all such paths have their internal vertices in $V(G) \backslash N_{G}[x]$. By contracting $P_{1}-a_{1}$ and $P_{2}-a_{3}$ onto b_{3}, contracting the edge $b_{2} a_{3}$ onto a_{3}, and contracting each Q_{j} into a single vertex for $4 \leq j \leq t-2$, we see that $G>K_{t}$, a contradiction. This contradiction completes the proof of Theorem 3.5.3.

CHAPTER 4: FINDING K_{8}-MINORS USING MADER'S H-WEGE THEOREM

4.1 Proof of Theorem 1.6.6

We will now proceed with the proof of Theorem 1.6.6.

Proof of Theorem 1.6.6. Let G, H_{1}, H_{2}, and H_{3} be given as in the statement of Theorem 1.6.6. Suppose for a contradiction that G does not contain a K_{8}-minor. Let $M:=\left(H_{1} \cap H_{2}\right) \cup\left(H_{2} \cap\right.$ $\left.H_{3}\right) \cup\left(H_{3} \cap H_{1}\right)$. Then $1 \leq|M| \leq 4$ by (B) and (C). Note that any vertex $x \in M$ corresponds to a good path on a single vertex. We also note here that there is symmetry between H_{1} and H_{2}, and in general there is no symmetry between H_{3} and either H_{1} or H_{2}.
(1) G does not have eight disjoint good paths.

For suppose P_{1}, \ldots, P_{8} are disjoint good paths. Then for any distinct $i, j \in\{1,2, \ldots, 8\}, P_{i}$ has an end in two of the sets H_{1}, H_{2}, H_{3}, and similarly for P_{j}. Hence there exists $k \in\{1,2,3\}$ such that H_{k} contains an end of each of P_{i}, P_{j}. Therefore, it follows that contracting each of these good paths to a single vertex gives a K_{8}-minor in G, a contradiction. This proves (1).

From Theorem 1.6.2 and (1), we can immediately conclude the following (see Figure 1.4):
(2) There exists a set $W \subseteq V(G)$ and a partition Y_{1}, \ldots, Y_{n} of $V(G) \backslash W$, and for $1 \leq i \leq n$ a subset $X_{i} \subseteq Y_{i}$, such that
(i) $|W|+\sum_{i=1}^{n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor \leq 7$,
(ii) no vertex in $Y_{i} \backslash X_{i}$ has a neighbor in $V(G) \backslash\left(W \cup Y_{i}\right)$, and $Y_{i} \cap\left(H_{1} \cup H_{2} \cup H_{3}\right) \subseteq X_{i}$ for $1 \leq i \leq n$, and
(iii) every good path disjoint from W has an edge with both ends in Y_{i} for some i.

Let us choose the sets $W, Y_{1}, \ldots, Y_{n}, X_{1}, \ldots, X_{n}$ as in (2) such that W is maximum. We may assume that $Y_{i} \neq \emptyset$ for all $i \in\{1,2, \ldots, n\}$.
(3) $M \subseteq W$.

Since each $v \in M$ corresponds to a good path consisting of only a single vertex, (3) follows immediately from (2.iii).
(4) $n \geq 2$.

If $n=1$, then $H_{1} \cup H_{2} \cup H_{3} \subseteq W \cup X_{1}$ by (2.ii), but since $\left|H_{1} \cup H_{2} \cup H_{3}\right|=18-|M|$ by (C), and since $M \subseteq W$ by (3), we then have $|W|+\left\lfloor\frac{1}{2}\left|X_{1}\right|\right\rfloor \geq 9$, contradicting (2.i). This proves (4).
(5) $X_{i} \neq \emptyset$ for any $i \in\{1,2, \ldots, n\}$.

Suppose for a contradiction that $X_{1}=\emptyset$, say. Then $Y_{1} \backslash X_{1}=Y_{1}$, and by (2.ii) every vertex of Y_{1} has neighbors only in $Y_{1} \cup W$. Let $y_{1} \in Y_{1}$. By (4), $Y_{2} \neq \emptyset$, so let $y_{2} \in Y_{2}$. Then every y_{1}, y_{2}-path in G must meet W. Since G is 7 -connected, this implies $|W| \geq 7$. By (2.i), we conclude that $|W|=7$ and that $\left|X_{i}\right|<2$ for all $i \in\{2,3, \ldots, n\}$. Since $H_{1} \cup H_{2} \cup H_{3} \subseteq W \cup X_{1} \cup \cdots \cup X_{n}$ by (2.ii), and since $\left|H_{1} \cup H_{2} \cup H_{3}\right|=18-|M|$ and $|M| \leq 4$ by (C), we deduce that at least 7 sets X_{i} must be non-empty. It follows that $n \geq 7$. Thus we have shown
(5.1) $|W|=7, n \geq 7$, and $\left|X_{i}\right| \leq 1$ for all $i \in\{2,3, \ldots, n\}$.

Now we show
(5.2) $X_{i} \neq \emptyset$ for any $i \in\{2,3, \ldots, n\}$.

Suppose that $X_{2}=\emptyset$, say. The sets Y_{1} and Y_{2} are non-empty, and, for $i \in\{1,2\}$, any $y \in Y_{i}$ has
neighbors only in $W \cup Y_{i}$ by (2.ii). Thus $G\left[Y_{1}\right]$ and $G\left[Y_{2}\right]$ each contain at least one component of $G-W$. Since $n \geq 7$, and $Y_{i} \cap Y_{j}=\emptyset$ when $i \neq j$, there is at least one more component of $G-W$ disjoint from $G\left[Y_{1} \cup Y_{2}\right]$, contradicting (A). This proves (5.2).

It follows immediately from (5.2) and (A) applied to the minimum separating set W of G that
(5.3) $G-W-Y_{1}$ is connected.

Since $|W|=7$ and by (\mathbf{C}), there is at most one H_{i} such that $H_{i} \subseteq W$. Say, $H_{1} \backslash W \neq \emptyset$ and $H_{j} \backslash W \neq \emptyset$ for some $j \in\{2,3\}$. Let $u_{1} \in H_{1} \backslash W$ and $u_{j} \in H_{j} \backslash W$. By (2.ii) and since $X_{1}=\emptyset, H_{1} \cup H_{j} \subseteq W \cup \bigcup_{i=2}^{n} X_{i}$, and so $u_{1}, u_{j} \notin Y_{1}$. By (5.3), there exists a u_{1}, u_{j}-path P which avoids W. Then P is a good path, so by (2.iii) some edge of P has both ends in Y_{k} for some $k \in\{2,3, \ldots, n\}$. Say $k=2$ and $z_{1} z_{j}$ is an edge of P with both ends in Y_{2}, where $u_{1}, z_{1}, z_{j}, u_{j}$ appear on P in order (note that u_{i} and z_{i} are not necessarily distinct for $i \in\{1, j\}$). If $z_{1} \in Y_{2} \backslash X_{2}$, then by (2.ii) and since P avoids W and $u_{1} \notin Y_{2} \backslash X_{2}$, some vertex of P between u_{1} and z_{1} must belong to X_{2}. Otherwise $z_{1} \in X_{2}$. Similarly, either $z_{j} \in X_{2}$ or some vertex of P between u_{j} and z_{j} belongs to X_{2}. Hence $\left|X_{2}\right| \geq 2$, contradicting (5.1). This completes the proof of (5).
(6) $\left|X_{i}\right|$ is odd for all $i \in\{1,2, \ldots, n\}$.

Suppose that $\left|X_{1}\right|$ is even, say. By (5), $\left|X_{1}\right| \geq 2$. Let $x \in X_{1}$. Define $W^{\prime}=W \cup\{x\}, X_{1}^{\prime}=X_{1} \backslash$ $\{x\}, Y_{1}^{\prime}=Y_{1} \backslash\{x\}$, and $X_{i}^{\prime}=X_{i}, Y_{i}^{\prime}=Y_{i}$ for $i \in\{2,3, \ldots, n\}$. Then $W, X_{1}^{\prime}, \ldots, X_{n}^{\prime}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}$ satisfy (2), contradicting our choice of W as maximum. This proves (6).

Now for $j \in\{1,2,3\}$ let us define the set Z_{j} to be the union of the vertex sets of all paths P meeting H_{j} and avoiding W such that P has no edge with both ends in Y_{i} for any $i \in\{1,2, \ldots, n\}$. In particular, note that any such path P is not a good path. The following is clear from (2.ii), (2.iii),
and our definition of Z_{j} :
(7) For $j \in\{1,2,3\}$,
(i) $H_{j} \backslash W \subseteq Z_{j} \subseteq V(G) \backslash W$,
(ii) $Z_{j} \subseteq X_{1} \cup \cdots \cup X_{n}$, and
(iii) the sets Z_{1}, Z_{2}, Z_{3} are mutually disjoint.
(8) For any $j, k \in\{1,2,3\}$ with $j \neq k$, every Z_{j}, Z_{k}-path avoiding W has at least 2 vertices in X_{i} for some $i \in\{1,2, \ldots, n\}$.

For suppose that G has a path Q avoiding W with ends $u \in Z_{1}$, say, and $v \in Z_{j}$ for some $j \in\{2,3\}$. By the definition of Z_{1} and Z_{j}, there exists both a path P of $G-W$ from some $u^{\prime} \in H_{1}$ to u and a path R of $G-W$ from v to some $v^{\prime} \in H_{j}$, such that both P and R have no edge with both ends in Y_{i} for any $i \in\{1,2, \ldots, n\}$ (possibly $u=u^{\prime}$ or $v=v^{\prime}$, and the corresponding path P or R consists of only a single vertex). Let S be a subpath of $P \cup Q \cup R$ with ends u^{\prime} and v^{\prime}. Then S is a good path avoiding W and so has an edge e with both ends in Y_{i} for some $i \in\{1,2, \ldots, n\}$ by (2.iii). Since $V(P) \subseteq Z_{1}$ and $V(R) \subseteq Z_{j}$ by our choice of P and R, this edge e must belong to Q by the definition of Z_{1} and Z_{j}. By (7.ii) and the definition of Z_{1} and Z_{j}, u and v belong to $X_{1} \cup \cdots \cup X_{n}$, so by (2.ii) the part of Q from u to the first end of e must contain a vertex from X_{i} and the part of Q from the second end of e to v must similarly contain a vertex from X_{i}, as required, where Q is read from u^{\prime} to v^{\prime}. This proves (8).
(9) $|W| \leq 6$.

Suppose $|W|>6$. By (2.i), $|W|=7$. First suppose $G-W$ has some component which contains vertices from at least two of the sets Z_{i}. Say at least one vertex of each of Z_{1} and Z_{j} for some $j \in\{2,3\}$ belong to the same component of $G-W$. Thus there must exist some Z_{1}, Z_{j}-path in G which avoids W. By (8), at least two vertices of this path belong to the same X_{k} for some
$k \in\{1,2, \ldots, n\}$. But then $|W|+\sum_{i=1}^{n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor \geq 8$, contradicting (2.i).

Thus we may suppose that no component of $G-W$ contains vertices from more than one Z_{i}. Since $G-W$ contains at most two components by (A), this means there exists $j \in\{1,2,3\}$ such that $Z_{j}=\emptyset$. Thus, $H_{j} \subseteq W$ by the definition of Z_{j}. Further, since $|W|=7$, no other $H_{i} \subseteq W$ for $i \in\{1,2,3\}, i \neq j$. Thus $G-W$ is disconnected, with $Z_{i}, Z_{i^{\prime}}$ belonging to separate components of $G-W$, where $\left\{i, i^{\prime}, j\right\}=\{1,2,3\}$. But then W is a separating set of G with $|W|=7$ and $H_{j} \subseteq W$, contradicting (A). This proves (9).
(10) $|W| \leq 5$.

Suppose $|W|>5$. By (9), $|W|=6$. We first show the following:
(10.1) There do not exist vertices $x_{1}, x_{2}, x_{3} \in X_{i}$ for some $i \in\{1,2, \ldots, n\}$ such that for $j \in\{1,2,3\}, x_{j} \in Z_{j}$, and such that there exist vertices $y_{1}, y_{2}, y_{3} \in Y_{i}$ (not necessarily distinct from the x_{j}) and internally disjoint paths $P_{1}, P_{2}, P_{3}, Q_{12}, Q_{13}, Q_{23} \subseteq Y_{i}$ where for $j, k \in\{1,2,3\}$ with $j \neq k, P_{j}$ has ends x_{j}, y_{j}, and $Q_{j k}$ has ends y_{j}, y_{k}. (See Figure 4.1.)

Figure 4.1: The arrangement of paths and vertices forbidden by (10.1).

By (8) and (2.i), we may assume that $\left\{x_{1}, x_{2}, x_{3}\right\}=X_{1}$, say. Since $|W|=6$ and $X_{i} \cap(W)=\emptyset$, it not hard to see that $H_{k} \subseteq W \cup X_{1}$ for at most one $k \in\{1,2,3\}$, and so without loss of generality we may assume that Z_{1} and Z_{ℓ}, say, each have a vertex in $G-W-X_{1}$, where $\ell \in\{2,3\}$. As
the proof is identical for both values of ℓ, we will assume that $\ell=2$ for the sake of notational clarity. Say $z_{1} \in Z_{1} \backslash\left\{x_{1}\right\}$ and $z_{2} \in Z_{2} \backslash\left\{x_{2}\right\}$ are vertices of $G-W-X_{1}$. Then Z_{1} and Z_{2} both belong to the same component C of $G-W-x_{3}$ since $P_{1} \cup Q_{12} \cup P_{2} \subseteq G-W-x_{3}$ and the sets Z_{1}, Z_{2} are each connected by definition. If there exists a z_{1}, z_{2}-path P in C which avoids at least one of x_{1} and x_{2}, then by (8) and the fact that $\left\{x_{1}, x_{2}, x_{3}\right\}=X_{1}$, there exists $i \in\{2,3, \ldots, n\}$ such that X_{i} contains two vertices of P, and so $|W|+\sum_{i=1}^{n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor \geq 8$, contradicting (2.i). Thus we may assume that every z_{1}, z_{2}-path in C includes both vertices x_{1} and x_{2}. In particular, C is not 2-connected and $C-x_{i}$ is disconnected for each $i \in\{1,2\}$. Let C_{i} be the component of $C-\left\{x_{1}, x_{2}\right\}$ which contains z_{i} for each $i \in\{1,2\}$. It is clear that for $i \in\{1,2\}$, no vertex of C_{i} can be adjacent to any vertex of $P_{1} \cup P_{2} \cup P_{3} \cup Q_{12} \cup Q_{13} \cup Q_{23} \backslash\left\{x_{1}, x_{2}, x_{3}\right\}$, since then a z_{1}, z_{2}-path in C avoiding one of x_{1} or x_{2} can be found. We further claim that no vertex of C_{i} is adjacent to x_{3} for $i \in\{1,2\}$, that is $x_{3} \notin V\left(C_{i}\right)$. Indeed, if $x_{3} \in V\left(C_{1}\right)$, say, then there is a path P from z_{1} to x_{3} contained in C_{1}. In particular, P is a Z_{1}, Z_{3}-path avoiding $W \cup\left\{x_{1}, x_{2}\right\}$, so by (8), we will have $|W|+\sum_{i=1}^{n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor \geq 8$, contradicting (2.i).

Since G is 7 -connected, there exist 7 internally disjoint z_{1}, z_{2}-paths in G. We have shown that at most one of these paths is contained in C, so at least 6 of these paths must meet $W \cup\left\{x_{3}\right\}$. As $N_{G}\left(C_{i}\right) \subseteq W \cup\left\{x_{i}\right\}$ for $i \in\{1,2\}$ and $|W|=6$, none of these paths meets x_{3}, and so every vertex of W belongs to one such path. If $H_{3} \subseteq W \cup\left\{x_{3}\right\}$, then by contracting each of $C_{i} \cup\left\{x_{i}\right\}, P_{i}$, and $Q_{13} \cup P_{3} \cup Q_{23} \backslash\left\{y_{1}, y_{2}\right\}$ to a single vertex for $i \in\{1,2\}$ and contracting Q_{12} to a single edge, we obtain a K_{8}-minor of G, a contradiction.

Thus $H_{3} \nsubseteq W \cup\left\{x_{3}\right\}$, and in particular that some vertex $z_{3} \in Z_{3}$ is in $G-W-X_{1}$. Let C_{3} be the component of $G-W-X_{1}$ which contains Z_{3}. By the same argument as above, no vertex of C_{3} is adjacent to any vertex in $P_{1} \cup P_{2} \cup P_{3} \cup Q_{12} \cup Q_{23} \cup Q_{31} \cup\left\{x_{1}, x_{2}\right\}$. In particular, the graph $G-W-x_{3}$ is disconnected and C_{3} is one of its components. Thus $N_{G}\left(C_{3}\right) \subseteq W \cup\left\{x_{3}\right\}$. Now, $H_{3} \subseteq C_{3} \cup W \cup\left\{x_{3}\right\}$. Since G is 7-connected, there exist 6 disjoint paths R_{1}, \ldots, R_{6} of G with one
end in H_{3} and the other end in $W \cup\left\{x_{3}\right\}$. Additionally, we may select these paths R_{1}, \ldots, R_{6} such that all internal vertices of these paths belong to C_{3}. Since $\left|W \cup\left\{x_{3}\right\}\right|=7$, by (A), $G-W-x_{3}$ has two components, one of which contains both Z_{1} and Z_{2}. Thus, the above arguments apply, and so the component C_{i} of $G-W-X_{1}$ containing z_{i} satisfies $N_{G}\left(C_{i}\right)=W \cup\left\{x_{i}\right\}$ for $i \in\{1,2\}$. Therefore, contracting each of $R_{1}, \ldots, R_{6}, P_{1} \cup C_{1}, P_{2} \cup C_{2}$, and P_{3} to a single vertex and each of Q_{12}, Q_{13}, Q_{23} to a single edge gives a K_{8}-minor in G, a contradiction. This proves (10.1).

As G is 7 -connected and $|W|=6, G-W$ is connected. Also since $|W|=6$, it is easy to see that there are at least two sets Z_{j} such that $\left|Z_{j}\right| \geq 2$, say Z_{1} and Z_{ℓ} for some $\ell \in\{2,3\}$. Again the proof is identical for both values of ℓ, so for notational convenience we will assume $\ell=2$. If there exist two disjoint Z_{1}, Z_{2}-paths in $G-W$, then by (8), $|W|+\sum_{i=1}^{n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor \geq 8$, contradicting (2.i). Thus there is at most one disjoint Z_{1}, Z_{2}-path P in $G-W . G-W$ is connected, so we may choose P as short as possible with ends $z_{j} \in Z_{j}$ for $j \in\{1,2\}$. By (8), at least two vertices of P belong to the same set X_{i} for some $i \in\{1,2, \ldots, n\}$. Let P^{\prime} be the longest subpath of P such that P^{\prime} has distinct ends in the same set X_{i}, say $x_{1}, x_{2} \in X_{1}$, and such that $z_{1}, x_{1}, x_{2}, z_{2}$ appear on P in order (note that z_{i} and x_{i} are not necessarily distinct for $i \in\{1,2\}$). By an application of Menger's Theorem [47], there exists a vertex $p \in V(P)$ such that $G-W-p$ is disconnected. Since $W \cup\{p\}$ is a separating set in G with $|W \cup\{p\}|=7$, we have $H_{3} \nsubseteq W \cup\{p\}$ by (A), and so $Z_{3} \neq \emptyset$ and there exists a shortest Z_{3}, P-path Q in $G-W$. Let t be the unique vertex in $V(P) \cap V(Q)$, and let $z_{3} \in Z_{3}$ be the other end of Q. We next prove the following.

$$
\text { (10.2) } t \notin\left\{x_{1}, x_{2}\right\} .
$$

If $t=x_{1}$, say, then we first claim $x_{1} \notin Z_{3}$. For if $x_{1} \in Z_{3}$, then the subpath of P from x_{1} to z_{1} is a Z_{3}, Z_{1}-path avoiding W, and so must contain two vertices from some X_{i} by (8). By the maximality of P^{\prime}, these two vertices cannot belong to X_{1}, and therefore we will have $|W|+\sum_{i=1}^{n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor \geq 8$, contradicting (2.i). So $x_{1} \notin Z_{3}$, and thus Q contains at least two vertices. The subpath R of $P \cup Q$
with ends z_{1}, z_{3} is a Z_{1}, Z_{3}-path avoiding W. By (8), two vertices of R belong to the same X_{i}. Let Q^{\prime} be the longest subpath of R such that the ends of Q^{\prime} belong to the same set X_{i}. By (2.i) and the maximality of P^{\prime}, the ends of Q^{\prime} must be x_{1} and, say x_{3}, where $X_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $z_{1}, x_{1}, x_{3}, z_{3}$ appear on Q in order (again, z_{3} and x_{3} are not necessarily distinct). Hence $Q^{\prime} \subseteq Q$.

We now claim that $x_{j} \in Z_{j}$ for $j \in\{1,2,3\}$. The proof is similar for all j, so we will suppose $x_{1} \notin Z_{1}$. Since the subpath P^{*} of P from z_{1} to x_{1} does not meet W, by the definition of the set Z_{1}, P^{*} must contain some edge with both ends in Y_{i} for some $i \in\{1,2, \ldots, n\}$. By (2.ii), (7.ii), and the maximality of P^{\prime}, we conclude that $i \neq 1$. Say $e \in E\left(P^{*}\right)$ has both ends in Y_{2}. Then the subpath of P^{*} from z_{1} to the first end of e must contain some vertex from X_{2}, and the subpath of P^{*} from the second end of e to x_{1} must contain another vertex of X_{2} by (2.ii) and the fact that P^{*} avoids W. But then $|W|+\sum_{i=1}^{n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor \geq 8$, contradicting (2.i). This proves the claim that $x_{j} \in Z_{j}$ for $j \in\{1,2,3\}$. In particular, we have $z_{j}=x_{j}$ for $j \in\{1,2,3\}$ by the minimality of P and Q.

We next claim that $V\left(P^{\prime} \cup Q^{\prime}\right) \subseteq Y_{1}$. Assume to the contrary that P^{\prime}, say, has a vertex outside Y_{1}. No interior vertex of P^{\prime} can belong to X_{1} since the minimality of Q implies $x_{3} \notin V\left(P^{\prime}\right)$ and since $X_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}$. By (2.i) no two interior vertices of P^{\prime} can belong to the same set X_{i}, and so we must have $P^{\prime} \subseteq X_{1} \cup \cdots \cup X_{n}$ by (2.ii). But then since $x_{1} \in Z_{1}$ and $x_{2} \in Z_{2}$, and by the definition of Z_{j}, we have that $P^{\prime} \subseteq Z_{1}$ and $P^{\prime} \subseteq Z_{2}$, contradicting (7.iii). The proof in the case that Q^{\prime} has a vertex outside Y_{1} is similar, and so our claim that $P^{\prime} \cup Q^{\prime} \subseteq Y_{1}$ follows.

Now since $x_{2} \notin H_{3},\left|Z_{j}\right| \geq 2$ for $j \in\{1,2\}$, and $\left|Z_{3}\right| \geq 1$, and by (A), there exist at least two sets Z_{j} belonging to the same component C of $G-W-x_{2}$. By (8) and (2.i), for $j, k \in\{1,2,3\}$ with $j \neq k$, any Z_{j}, Z_{k}-path in C must contain both x_{1} and x_{3}, as otherwise $|W|+\sum_{i=1}^{n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor \geq 8$, a contradiction. Thus we may assume $j=1$ and $k=3$, since $x_{1} \in Z_{1}$ and $x_{3} \in Z_{3}$. Let R^{\prime} be the subpath of any Z_{1}, Z_{3}-path in C such that the ends of R^{\prime} are x_{1} and x_{3}. By the same argument
applied to $P^{\prime} \cup Q^{\prime}$ above, it can be shown that $R^{\prime} \subseteq Y_{1}$. Since R^{\prime} avoids x_{2}, some subpath of R^{\prime} is a P^{\prime}, Q^{\prime}-path containing at least one edge. Therefore, for $i \in\{1,2,3\}$, we have vertices $x_{1}, x_{2}, x_{3} \in X_{1}$ such that $x_{i} \in Z_{i}$, and within $P^{\prime} \cup Q^{\prime} \cup R^{\prime}$ we can find vertices $y_{1}, y_{2}, y_{3} \in Y_{1}$ and internally disjoint paths $P_{1}, P_{2}, P_{3}, Q_{12}, Q_{23}, Q_{31}$ where P_{i} has ends x_{i}, y_{i} and $Q_{i j}$ has ends y_{i}, y_{j} (here $\left\{x_{2}\right\}=\left\{y_{2}\right\}=V\left(P_{2}\right)$). This contradicts (10.1), and so (10.2) follows.

If $t \in P-P^{\prime}$, then we may assume z_{1}, t, x_{1} appear on P in order (possibly $t=z_{1}$, but $t \neq x_{1}$ by (10.2)). Then the subpath of $P \cup Q$ with ends z_{1}, z_{3} is a Z_{1}, Z_{3}-path avoiding W. As neither x_{1} nor x_{2} belong to this subpath, by (8), we will have $|W|+\sum_{i=1}^{n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor \geq 8$, contradicting (2.i). Hence by this argument and (10.2), we may assume that $t \in P^{\prime}-\left\{x_{1}, x_{2}\right\}$. Let R_{j} be the subpath of $P \cup Q$ with ends z_{j}, z_{3} for $j \in\{1,2\}$. Then for $j \in\{1,2\}, R_{j}$ is a Z_{j}, Z_{3}-path avoiding W, and so by (8) contains two vertices in some set X_{i}. By (2.i), R_{j} contains x_{j} and, say, x_{3} for $j \in\{1,2\}$. Let Q^{\prime} be the subpath of Q with ends x_{3}, t.

By the same argument as in the proof of (10.2), it can be shown that $x_{j} \in Z_{j}$, and thus that $x_{j}=z_{j}$ for $j \in\{1,2,3\}$. Also by the same argument as in the proof of (10.2), we can show that $P^{\prime} \cup Q^{\prime} \subseteq Y_{1}$.

Suppose $t \neq z_{3}$ and consider the graph $G^{\prime}:=G-W-t$. Then $z_{j} \in V\left(G^{\prime}\right)$ for $j \in\{1,2,3\}$. Since G^{\prime} has at most two components by (A), at least two of the vertices $z_{j}=x_{j}$ must belong to the same component of G^{\prime}, say x_{1} and x_{2} belong to the component C of G^{\prime}. Thus there is a Z_{1}, Z_{2}-path R in C. In particular, R is a path in G^{\prime} with ends x_{1}, x_{2} which avoids t. Using the same argument as above, we can show that $R \subseteq Y_{1}$. Therefore it is easy to see that $P^{\prime} \cup Q^{\prime} \cup R$ contains some set of paths which contradicts (10.1).

Thus we may assume that $t=z_{3}=x_{3}$, and so Q^{\prime} consists of only the single vertex t. Again consider the graph $G^{\prime}:=G-W-t$. If Z_{1} and Z_{2} belong to the same component C of G^{\prime}, a similar argument to the above allows us to find an x_{1}, x_{2}-path R avoiding t such that $R \subseteq Y_{1}$, and
therefore such that $P^{\prime} \cup Q^{\prime} \cup R$ contains some set of paths contradicting (10.1). Thus Z_{1} and Z_{2} must belong to distinct components of G^{\prime}. But then $H_{3} \nsubseteq W \cup\{t\}$ by (A). Hence there is a vertex $z_{3}^{\prime} \in H_{3}$ in G^{\prime} such that $z_{3}^{\prime} \in Z_{3}$. As G^{\prime} has at most two components by (A), z_{3}^{\prime} must belong to the same component as one of Z_{1} or Z_{2}, say Z_{1}. Then there is a Z_{1}, Z_{3}-path in G^{\prime} which avoids both x_{3} and x_{2}, and thus by (8) we will have $|W|+\sum_{i=1}^{n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor \geq 8$, contradicting (2.i). This completes the proof of (10).

The following two statements are immediate consequences of (10).
(11) For $i \in\{1,2, \ldots, n\}$, if $\left|X_{i}\right|=1$, then $Y_{i}=X_{i}$.

Suppose, say, $\left|X_{1}\right|=1$ and $Y_{1} \backslash X_{1} \neq \emptyset$. By (2.ii), $W \cup X_{1}$ separates $Y_{1} \backslash X_{1}$ from $V(G) \backslash X_{1} \cup W$. But $\left|W \cup X_{1}\right| \leq 6$ by (10), contradicting that G is 7 -connected.
(12) $Z_{j} \neq \emptyset$ for any $j \in\{1,2,3\}$.

Since $|W| \leq 5$ by (10), we have $\left|H_{j} \backslash W\right| \geq 6-|W| \geq 1$ for all $j \in\{1,2,3\}$. Thus, for any $j \in\{1,2,3\}$, by (7.i), $Z_{j} \supseteq H_{j} \backslash W \neq \emptyset$.
(13) For all $j \in\{1,2,3\}$ and $i \in\{1,2, \ldots, n\}$, if $z \in Z_{j} \cap X_{i}$ has a neighbor in $G-W-Z_{j}$, then $\left|X_{i}\right| \geq 3$.

Suppose $z \in Z_{1} \cap X_{1}$, say, has a neighbor y in $G-W-Z_{1}$ be a neighbor of z. By the definition of the set Z_{1} and by (2.ii), $y \in Y_{1}$, and so $\left|Y_{1}\right| \geq 2$. By (11), $\left|X_{1}\right| \neq 1$, and so by (6), $\left|X_{1}\right| \geq 3$.
(14) There are at least two sets Z_{j} such that every $z \in Z_{j}$ has a neighbor in $G-W-Z_{j}$ for $j \in\{1,2,3\}$.

Suppose to the contrary that there exist two sets Z_{j} such that some $z_{j} \in Z_{j}$ has no neighbor in $G-W-Z_{j}$. The proof is identical no matter which two sets Z_{j} satisfy the above, so we will
assume that for $j \in\{2,3\}$, there exists a vertex $z_{j} \in Z_{j}$ such that z_{j} has no neighbor in $G-W-Z_{j}$. For each $j \in\{1,2,3\}$, define $G_{j}:=G-\left(W \cup Z_{j}\right)$ and define N_{j} to be the set of vertices in Z_{j} with a neighbor in G_{j}. Let $r:=7-|W|$. Note that by (10), $r \geq 2$. Since $G-W$ is r-connected and $\left|Z_{j}\right| \geq 6-|W|=r-1$, either each vertex in Z_{j} has a neighbor in G_{j}, or at least r vertices of Z_{j} have a neighbor in G_{j} for $j \in\{1,2,3\}$. Thus, for $j \in\{2,3\}$, since z_{j} has no neighbor in G_{j}, $\left|N_{j}\right| \geq r$. By (13), there exists at least one $i \in\{1,2, \ldots, n\}$ such that $\left|X_{i}\right| \geq 3$. Let us reorder the sets Y_{i}, X_{i} so that $\left|X_{1}\right| \geq\left|X_{2}\right| \geq \cdots \geq\left|X_{n}\right|$, and let s be the integer such that $\left|X_{i}\right| \geq 3$ for all $i \in\{1,2, \ldots, s\}$ and $\left|X_{i}\right|=1$ for all $i \in\{s+1, s+2, \ldots, n\}$. Again by (13), we see that $N_{j} \subseteq X_{1} \cup \cdots \cup X_{s}$ for $j \in\{1,2,3\}$, and that

$$
\left|\bigcup_{i=1}^{s} X_{i}\right| \geq\left|\bigcup_{j=1}^{3} N_{j}\right| \geq(r-1)+r+r=3 r-1=20-3|W| .
$$

By (2.i), it is easy to see that either we have $\left|X_{1}\right|=5,\left|X_{i}\right|=3$ for $i \in\{2,3, \ldots, s\}$, and $s=r-1$, or we have $\left|X_{i}\right|=3$ for $i \in\{1,2, \ldots, s\}$ and $s=r$. By (2.i) and (13), the values of $\left|N_{j}\right|$ are restricted as follows. We may have $\left|N_{1}\right|=r$ or $r-1$. If $\left|N_{1}\right|=r-1$, then we may assume $\left|N_{2}\right|=r$ and either $\left|N_{3}\right|=r$ with $\left|X_{1}\right|=5$ and $\left|X_{i}\right|=3$ for all $i \in\{2,3, \ldots, s\}$ or $\left|N_{3}\right|=r+1$ with $\left|X_{i}\right|=3$ for all $i \in\{1,2, \ldots, s\}$. If $\left|N_{1}\right|=r$ then $\left|N_{2}\right|=\left|N_{3}\right|=r$ and $\left|X_{i}\right|=3$ for all $i \in\{1,2, \ldots, s\}$.
(14.1) For any $i \in\{1,2, \ldots, s\}$, if $Z_{1} \cap X_{i} \neq \emptyset$, then $\left|Z_{1} \cap X_{i}\right|=1$. If, in addition, $\left|X_{i}\right|=3$, then $\left|Z_{j} \cap X_{i}\right|=1$ for $j \in\{1,2,3\}$.

For suppose that $\left|Z_{1} \cap X_{1}\right| \geq 2$, say. By the above, $\left|N_{1}\right| \leq r$. Since $G-W$ is r-connected, we may select $\left|N_{1}\right|$ disjoint N_{1}, Z_{2}-paths with no internal vertices in $Z_{1} \cup Z_{2}$. Then two of these paths must have an end in X_{1}. If $\left|X_{1}\right|=3$, then since the paths have no internal vertices in $Z_{1} \cup Z_{2}$, both paths with an end in X_{1} must meet the third vertex of X_{1}, contradicting that the paths are disjoint. If $\left|X_{1}\right|=5$, then $s=r-1$, and $\left|N_{j}\right|=r$ for $j \in\{2,3\}$. It is easy to see that since $\left|N_{2}\right|=\left|N_{3}\right|=r$,
there must exist $i \in\{2,3, \ldots, s\}$ and $j \in\{2,3\}$, such that $\left|X_{i} \cap Z_{j}\right|=2$. Say $\left|X_{2} \cap Z_{2}\right|=2$. Now $\left|X_{2}\right|=3$, and so by applying the same argument to a set of r disjoint N_{2}, Z_{3}-paths, we obtain a contradiction. This same argument can again be used to prove the final part of the statement, and so (14.1) follows.
(14.2) For $j \in\{2,3\}$, we can select a set of $\left|N_{1}\right|$ disjoint Z_{1}, Z_{j}-paths in $G-W$ such that each path P will have both ends in the same set X_{i}, and $P \subseteq Y_{i}$. Additionally, if $\left|X_{1}\right|=5$, then a Z_{1}, Z_{2}-path Q_{1}, a Z_{1}, Z_{3}-path Q_{2} and a Z_{2}, Z_{3}-path Q_{3} with $Q_{1} \cup Q_{2} \cup Q_{3} \subseteq Y_{1}$ can be chosen with Q_{3} disjoint from $Q_{1} \cup Q_{2}$.

There are two primary cases to consider based on $\left|N_{1}\right|$. If $\left|N_{1}\right|=r$, then $\left|N_{2}\right|=\left|N_{3}\right|=r$, and for $i \in\{1,2, \ldots, s\}$ and $j \in\{1,2,3\},\left|X_{i}\right|=3$ and so by (14.1), $\left|X_{i} \cap Z_{j}\right|=1$. For $j \in\{2,3\}$, we claim that if P is a Z_{1}, Z_{j}-path in $G-W$ with ends $z_{1} \in Z_{1}, z_{j} \in Z_{j}$ say, such that $z_{1}, z_{j} \in X_{i}$ for some $i \in\{1,2, \ldots, s\}$ and no interior vertex of P is in $Z_{1} \cup Z_{j}$, then $P \subseteq Y_{i}$. For if not, some interior vertex of P must belong to $Y_{i^{\prime}}$ for some $i^{\prime} \neq i$. It is clear from the definition of the sets Z_{1} and Z_{j} that the neighbors on P of z_{1} and z_{j} must belong to Y_{i}. Thus by (2.ii), the part of P from z_{1} to $Y_{i^{\prime}}$ must contain two vertices of X_{i}, and likewise the part of P from $Y_{i^{\prime}}$ to z_{j}. But then $\left|X_{i}\right| \geq 4$, a contradiction, thus proving our claim. Now since $G-W$ is r-connected, for $j \in\{2,3\}$, we can select $r=\left|N_{1}\right|$ disjoint Z_{1}, Z_{j}-paths in $G-W$ with no interior vertex in $Z_{1} \cup Z_{j}$. These paths must each have their two ends in the same set X_{i} by our claim, and so (14.2) follows in this case.

Now consider the case $\left|N_{1}\right|=r-1$. The same argument as above can be applied to any set X_{i} with $\left|X_{i} \cap Z_{1}\right|=1$ and $\left|X_{i}\right|=3$ to find a path $P \subseteq Y_{i}$. So let us assume that $\left|X_{1}\right|=5$, and so $\left|N_{2}\right|=\left|N_{3}\right|=r$. It is clear from (14.1) that we must have $\left|X_{1} \cap Z_{j}\right|=2$ for $j \in\{2,3\}$. Now for $j \in\{2,3\}$, by deleting a single vertex from $X_{1} \cap Z_{5-j}$ if necessary, we may find a set of $r-1$ disjoint N_{1}, Z_{j}-paths with no interior vertex in $\left(\cup_{j=1}^{3} Z_{j}\right) \backslash\left(\cup_{i=1}^{n} X_{i}\right)$. Say $j=2$, and let P be the N_{1}, Z_{2}-path with an end in $N_{1} \cap X_{1}$. The subpath P^{\prime} of P from $N_{1} \subseteq Z_{1}$ to its first vertex in
Z_{2}, say x_{2}, is then clearly contained in Y_{1}. Now, consider a set of r disjoint N_{2}, N_{3}-paths with no interior vertex in $Z_{2} \cup Z_{3}$. Let Q and Q^{\prime} be the N_{2}, N_{3}-paths with one end in $Z_{2} \cap X_{1}$. By extending the argument above, it is clear that the second end of each of Q and Q^{\prime} belongs to $Z_{3} \cap X_{1}$, and so $Q, Q^{\prime} \subseteq Y_{1}$, since otherwise we would have $\left|X_{1}\right| \geq 6$, a contradiction. Since x_{2} must be an end of either Q or Q^{\prime}, we see $P^{\prime} \cap\left(Q \cup Q^{\prime}\right) \neq \emptyset$. So we may assume that the first vertex of $Q \cup Q^{\prime}$ on P belongs to Q, where P is read from its end in $N_{1} \cap X_{1}$ to x_{2}. Then for $j \in\{2,3\}, P^{\prime} \cup Q$ contains a subpath R_{j} with ends in $Z_{1} \cap X_{1}$ and $Z_{j} \cap X_{1}$ such that $R_{j} \subseteq Y_{1}$, and R_{j} is disjoint from Q^{\prime} (See Figure 4.2). This proves (14.2).

Figure 4.2: Z_{i}, Z_{j}-paths in Y_{1} when $\left|X_{1}\right|=5$.

By (14.2), let \mathcal{P}^{\prime} be a collection of $\left|N_{1}\right| Z_{1}, Z_{2}$-paths and $\left|N_{1}\right| Z_{1}, Z_{3}$-paths in $G-W$ where for each $P \in \mathcal{P}^{\prime}$ there is some some $i \in\{1,2, \ldots, s\}$ such that P has both ends in the same set X_{i} and $P \subseteq Y_{i}$. By (14.2), we may further select these paths \mathcal{P}^{\prime} so that if $\left|X_{1}\right|=5$ there exists a Z_{2}, Z_{3}-path $Q \subseteq Y_{1}$ disjoint from $\bigcup_{P \in \mathcal{P}^{\prime}} V(P)$. Note that the paths $P \in \mathcal{P}^{\prime}$ are not necessarily pairwise internally disjoint. Now, since $H_{1} \subseteq Z_{1} \cup W$ by (7.i) and G is 7-connected, there exist 6 disjoint paths P_{1}, \ldots, P_{6} in G with one end in H_{1} the other end in $W \cup N_{1}$, and no internal vertices in $H_{1} \cup W \cup N_{1}$. Let $\mathcal{P} \subseteq \mathcal{P}^{\prime}$ be the subset consisting of paths which share an end with one of P_{1}, \ldots, P_{6}. From here, we consider two cases.

Figure 4.3: A K_{8}-minor in G when $N_{1} \backslash H_{1} \neq \emptyset$ and shown here with $s=3$.

If there exists $x \in N_{1}$ such that $x \notin H_{1}$, then $\left|W \cup N_{1}\right|=|W|+r=7$ because either $H_{1} \subseteq$ $W \cup N_{1} \backslash\{x\}$ or $W \cup N_{1}$ is a separating set in G. We select the 6 paths P_{1}, \ldots, P_{6} in $G-x$. Since $N_{G}\left(Z_{1} \backslash N_{1}\right) \subseteq W \cup N_{1}$ and $N_{1} \subseteq Z_{1}$, it is clear that P_{1}, \ldots, P_{6} may be selected such that $\cup_{k=1}^{6} V\left(P_{k}\right) \subseteq W \cup Z_{1}$. Since $x \in N_{1}$, we must have $x \in X_{i}$ for some $i \in\{1,2, \ldots, s\}$, say $x \in X_{1}$. As there exists a Z_{1}, Z_{2}-path $P \in \mathcal{P}^{\prime}$ and a Z_{1}, Z_{3}-path $P^{\prime} \in \mathcal{P}^{\prime}$ such that $P, P^{\prime} \subseteq Y_{1}$, we see that some subpath Q^{\prime} of $P \cup P^{\prime}$ is a Z_{2}, Z_{3}-path. Since x is not an end of any of P_{1}, \ldots, P_{6}, we see that Q^{\prime} is disjoint from \mathcal{P}. Note that since $\left|N_{1}\right|=r$ in this case, $\left|X_{i}\right|=3$ for $i \in\{1,2, \ldots, s\}$. We also have $\left|N_{j}\right|=r$, and so $N_{G}\left(Z_{j} \backslash N_{j}\right)=N_{j} \cup W$ for $j \in\{2,3\}$. Now by contracting each of $P_{1}, \ldots P_{6}, Z_{2}$, and Z_{3} to a single vertex, and contracting Q^{\prime} and each $P \in \mathcal{P}$ to a single edge, we obtain a K_{8}-minor in G, a contradiction (see Figure 4.3).

On the other hand, if $x \in H_{1}$ for every $x \in N_{1}$, then either $\left|N_{1}\right|=r-1$ and $\left|W \cup N_{1}\right|=6$, or $\left|N_{1}\right|=r$ and there exists a single vertex $w \in W \backslash H_{1}$ such that w is not an end of any path
P_{1}, \ldots, P_{6} (by picking these paths in $G-w$, if necessary). We consider these two cases, separately.

First, suppose $\left|N_{1}\right|=r-1$ and $\left|W \cup N_{1}\right|=6$. Then we must have $H_{1}=W \cup N_{1}$. If $\left|X_{1}\right|=5$, then let Q^{\prime} be the Z_{2}, Z_{3}-path Q disjoint from $\underset{P \in \mathcal{P}^{\prime}}{\bigcup} V(P)$ given by (14.2). If $\left|X_{1}\right|=3$, then since there are r sets X_{i} with $\left|X_{i}\right|=3$ and $\left|N_{1}\right|=r-1$, we may assume that $N_{1} \cap X_{1}=\emptyset$. By (14.1) and since $\left|N_{2}\right|=r,\left|N_{3}\right|=r+1$, we have $N_{2} \cap X_{1} \neq \emptyset$ and $N_{3} \cap X_{1} \neq \emptyset$. As there are r disjoint Z_{2}, Z_{3}-paths in $G-W$, it is clear that a Z_{2}, Z_{3}-path Q^{\prime} can be found such that $Q^{\prime} \subseteq Y_{1}$. Now in either case, by contracting each of $P_{1}, \ldots P_{6}, Z_{2}$, and Z_{3} to a single vertex, and contracting Q^{\prime} and each $P \in \mathcal{P}$ to a single edge, as before, we obtain a K_{8}-minor in G, a contradiction.

Lastly, suppose $\left|N_{1}\right|=r$ and there exists a single vertex $w \in W \backslash H_{1}$ such that w is not an end of any path P_{1}, \ldots, P_{6}. Then $\left|X_{i}\right|=3$, and by (14.1) $\left|Z_{j} \cap X_{i}\right|=1$ for all for all $i \in\{1,2, \ldots, s\}$ and $j \in\{1,2,3\}$. Furthermore, we have $\left|N_{2}\right|=\left|N_{3}\right|=r$, and so $\left|N_{2} \cup W\right|=\left|N_{3} \cup W\right|=7$. Since G is 7 -connected, in any set of 7 disjoint z_{2}, z_{3}-paths, one path Q^{\prime}, say, must meet w. It is clear that Q^{\prime} is disjoint from P_{1}, \ldots, P_{6} and every $P \in \mathcal{P}$ since $Q^{\prime} \cap\left(Z_{1} \cup Y_{1} \cup \cdots \cup Y_{s}\right)=\emptyset$. Thus we may once again obtain a K_{8}-minor in G by contracting each of $P_{1}, \ldots P_{6}, Z_{2}$, and Z_{3} to a single vertex, and contracting Q^{\prime} and each $P \in \mathcal{P}$ to a single edge, a contradiction. This completes the proof of (14).
(15) $\max \left\{\left|Z_{1}\right|,\left|Z_{2}\right|,\left|Z_{3}\right|\right\} \geq 7-|W|$.

Suppose to the contrary that $\left|Z_{j}\right| \leq 6-|W|$ for all $j \in\{1,2,3\}$. Since $H_{j} \subseteq Z_{j} \cup W$, we have $\left|Z_{j}\right| \geq 6-|W|$, and so $\left|Z_{j}\right|=6-|W|$ for $j \in\{1,2,3\}$. Since Z_{j} and W are mutually disjoint, it follows that $\left|Z_{j} \cup W\right|=\left|Z_{j}\right|+|W|=6$, and so $Z_{j} \cup W$ induces the K_{6}-subgraph $G\left[H_{j}\right]$ for all $j \in\{1,2,3\}$. Therefore $W \subseteq H_{1} \cap H_{2} \cap H_{3}$. But $|W| \geq 1$ by (B) and (3), and $H_{1} \cap H_{2} \cap H_{3}=\emptyset$ by (C), a contradiction. (15) follows.
(16) At most one of Z_{1}, Z_{2}, Z_{3} has at most $6-|W|$ vertices.

Suppose not. By (15), exactly two sets Z_{j} satisfy $\left|Z_{j}\right| \leq 6-|W|$, say Z_{1} and Z_{k} for some $k \in\{2,3\}$. By the same argument as in the proof of (15), we have that $Z_{1} \cup W$ and $Z_{k} \cup W$ induce the K_{6}-subgraphs $G\left[H_{1}\right]$ and $G\left[H_{k}\right]$, respectively. Thus $W \subseteq H_{1} \cap H_{k}$, and so we must have $k=2, W=M=H_{1} \cap H_{2}$, and $|W|=1$ by (B) and (3). Further, since $H_{j} \subseteq Z_{j} \cup W$ by (7.i), we have $\left|Z_{j}\right|=5$ for $j \in\{1,2\}$. Then $H_{3} \cap W=\emptyset$ by (C), so $\left|Z_{3}\right| \geq 6$.

We first claim for any $i \in\{1,2, \ldots, s\}$ that if $Z_{j} \cap X_{i} \neq \emptyset$ for some $j \in\{1,2\}$, then $\left|X_{i}\right| \geq 5$. Suppose $z \in Z_{1} \cap X_{1}$ with $\left|X_{1}\right|<5$. Then $\left|X_{1}\right|=1$ or 3 by (6). If there exists $y \in Y_{1} \backslash X_{1}$, then by (2.ii), $X_{1} \cup W$ is a separating set in G with $\left|X_{1} \cup W\right| \leq 4$, contradicting that G is 7-connected. Therefore $Y_{1}=X_{1}$. Now by (2.iii) and the definition of the set Z_{1}, z can only have neighbors in $Z_{1} \cup Y_{1} \cup W \backslash\{z\}$. But $\left|Z_{1} \cup Y_{1} \cup W \backslash\{z\}\right| \leq\left|Z_{1} \backslash\{z\}\right|+\left|Y_{1} \backslash\{z\}\right|+|W|=4+2+1=7$, contradicting that $\delta(G) \geq 8$. This proves our claim.

By (2.i), there are at most three sets X_{i} such that $\left|X_{i}\right| \geq 5$. Thus, by our above claim, we may assume that $Z_{1} \cup Z_{2} \subseteq X_{1} \cup X_{2} \cup X_{3}$ say. Then $\left|X_{1} \cup X_{2} \cup X_{3}\right| \leq 15$ by (2.i). Let $z \in Z_{j} \cap X_{i}$ for some $j \in\{1,2\}$ and some $i \in\{1,2,3\}$, say $z \in Z_{1} \cap X_{1}$. Then z cannot be adjacent to a vertex $y \in X_{k} \backslash H_{1}$ unless $k=1$, since by the definition of Z_{1} any such vertex y would belong to Z_{1} and then $\left|Z_{1}\right| \geq 6$, a contradiction. Thus it follows that $W \cup X_{1} \cup X_{2} \cup X_{3} \backslash\left(Z_{1} \cup Z_{2}\right)$ is a separating set in G with at most 6 vertices, contradicting that G is 7 -connected. This completes the proof of (16).

We will utilize the following definition from the proof of (14) throughout the remainder of the proof of Theorem 1.6.6. For $j \in\{1,2,3\}$, define N_{j} to be the set of vertices of Z_{j} with a neighbor in $G-\left(Z_{j} \cup W\right)$.
(17) $\left|Z_{j}\right| \geq 7-|W|$ for $j \in\{1,2,3\}$.

Suppose to the contrary. By (16), we have only one set Z_{j} with $\left|Z_{j}\right| \leq 6-|W|$. Since $\left|Z_{j}\right| \geq$
$6-|W|$ by (7.i), we have $\left|Z_{j}\right|=6-|W|$ for some $j \in\{1,2,3\}$. Hence $W \subseteq H_{j}$, and so $j \in\{1,2\}$, say $\left|Z_{1}\right|=6-|W|$. Then $N_{1}=Z_{1}$ since G is 7 -connected. By (2.i), (13), and that G is 7-connected, each of $\left|N_{2}\right|$ and $\left|N_{3}\right|$ must be equal to one of $7-|W|$ or $8-|W|$, with at most one equal to the latter. We now prove the following.
(17.1) $\left|X_{i}\right| \leq 3$ for all $i \in\{1,2, \ldots, n\}$.

For suppose $\left|X_{1}\right|>3$. By (6), $\left|X_{1}\right| \geq 5$. By (2.i) and (13), we must have $\left|N_{2}\right|=\left|N_{3}\right|=$ $7-|W|$, and additionally $\left|X_{1}\right|=5$ and $\left|X_{i}\right| \leq 3$ for all $i \in\{2,3, \ldots, n\}$. If $\left|X_{1} \cap Z_{1}\right| \geq 3$, then $\left(Z_{1} \backslash X_{1}\right) \cup\left(X_{1} \backslash Z_{1}\right) \cup W$ is a separating set of G with cardinality

$$
\left|\left(Z_{1} \backslash X_{1}\right) \cup\left(X_{1} \backslash Z_{1}\right) \cup W\right|=\left|Z_{1} \backslash X_{1}\right|+\left|X_{1} \backslash Z_{1}\right|+|W| \leq(3-|W|)+2+|W|=5,
$$

contradicting that G is 7 -connected. If $\left|X_{1} \cap Z_{1}\right|=2$ or 0 , then it is easy to see that some other set X_{i}, say X_{2}, must have $\left|X_{2} \cap N_{j}\right|=2$ for some $j \in\{1,2,3\}$. But then $\left(N_{j} \backslash X_{2}\right) \cup\left(X_{2} \backslash N_{j}\right) \cup W$ is a separating set of G with cardinality

$$
\left|\left(N_{j} \backslash X_{2}\right) \cup\left(X_{2} \backslash N_{j}\right) \cup W\right|=\left|N_{j} \backslash X_{2}\right|+\left|X_{2} \backslash N_{j}\right|+|W| \leq(5-|W|)+1+|W|=6,
$$

again contradicting that G is 7-connected. Thus we must have $\left|X_{1} \cap Z_{1}\right|=1$. If $\left|X_{1} \cap N_{j}\right| \geq 3$ for $j \in\{2,3\}$, then $\left(N_{j} \backslash X_{1}\right) \cup\left(X_{1} \backslash N_{j}\right) \cup W$ is a separating set of G of cardinality at most 6 , a contradiction. Thus we have $\left|X_{1} \cap N_{2}\right|=\left|X_{1} \cap N_{3}\right|=2$. By a similar argument again, we must have $\left|X_{i} \cap N_{j}\right|=1$ for all $i \in\{2,3, \ldots, n\}$ and $j \in\{1,2,3\}$ such that $\left|X_{i}\right|=3$.

Now by (B), (C), (7.i), and since $W \subseteq H_{1}$, we must have $\left|Z_{2}\right| \geq\left|H_{2} \backslash W\right| \geq 5$ and $\left|Z_{3}\right| \geq$ $\left|H_{3} \backslash W\right| \geq 3$. By (14), either $\left|Z_{2}\right|=\left|N_{2}\right|=7-|W|$ or $\left|Z_{3}\right|=\left|N_{3}\right|=7-|W|$, and thus $|W| \leq 4$. Therefore $\left|Z_{1}\right| \geq 2$, and so there is a set, say X_{2}, with $\left|X_{2} \cap Z_{1}\right|=1$ and $\left|X_{2}\right|=3$. Let $x \in X_{2} \cap Z_{1}$. Then the neighbors of x in G must be in $Z_{1} \cup W \cup Y_{2}$. As $\left|Z_{1} \cup W \backslash\{x\}\right|=5, x$
must have at least 3 neighbors in Y_{2} since $\delta(G) \geq 8$. Thus $Y_{2} \neq X_{2}$, and so $X_{2} \cup W$ is a separating set in G of size $3+|W|$. Since G is 7 -connected, we conclude $|W| \geq 4$. Therefore $|W|=4$. Since $\left|Z_{2}\right| \geq 5$ and now $\left|N_{2}\right|=3$, we have $Z_{2} \neq N_{2}$. Thus $Z_{3}=N_{3}$ by (14). Since $\left|Z_{3}\right|=3$, we see that $\left|H_{1} \cap H_{3}\right|=3$. But now $S:=H_{1} \cup X_{2} \backslash\left(Z_{1} \cap X_{2}\right)$ is a separating set in G with $|S|=7$ and $\Delta(G[S]) \geq 5$, contradicting (A). This proves (17.1).

It is clear from (13) and (17.1) that $\left|N_{1}\right|+\left|N_{2}\right|+\left|N_{3}\right|$ must be divisible by 3 , and so $\left\{\left|N_{2}\right|,\left|N_{3}\right|\right\}=$ $\{7-|W|, 8-|W|\}$. Now let $x \in Z_{1}$. Since $Z_{1}=N_{1}, x$ belongs to some set, say X_{1}, such that $\left|X_{1}\right|=3$. Since $Z_{1} \cup X_{1} \cup W \backslash\left(Z_{1} \cap X_{1}\right)$ is a separating set of G, it is clear that $\left|Z_{1} \cap X_{1}\right|=1$. Now x can have neighbors in G only in $Y_{1} \cup Z_{1} \cup W$. As $W \cup Z_{1} \subseteq H_{1}$, we see that x must have at least three neighbors in Y_{1} since $\delta(G) \geq 8$, and so $Y_{1} \neq X_{1}$. Thus, by (2.ii), $X_{1} \cup W$ is a separating set of G with $\left|X_{1} \cup W\right|=3+|W|$. Since G is 7 -connected, we conclude $|W| \geq 4$. Since $\left|Z_{2}\right| \geq 5$, we see $\left|Z_{2}\right| \geq 9-|W|$, and so $Z_{2} \neq N_{2}$. By (14), $Z_{3}=N_{3}$. Since $\left|H_{3} \cap H_{1}\right| \leq 3$, we see $\left|Z_{3}\right| \geq 3$.

We claim that $X_{1} \cap Z_{3} \neq \emptyset$. Indeed, if $X_{1} \cap Z_{3}=\emptyset$, then $\left|X_{1} \cap N_{2}\right|=2$ and $N_{2} \cup X_{1} \cup W \backslash\left(X_{1} \cap N_{2}\right)$ is a separating set of G with

$$
\left|N_{2} \cup X_{1} \cup W \backslash\left(X_{1} \cap N_{2}\right)\right| \leq\left|N_{2}\right|+\left|X_{1}\right|+|W|-\left|X_{1} \cap N_{2}\right|=\left|N_{2}\right|+|W|-1
$$

Since G is 7-connected, this gives $\left|N_{2}\right| \geq 8-|W|$, and so $\left|N_{2}\right|=8-|W|$. Thus $\left|Z_{3}\right|=7-|W| \leq 3$ since $|W| \geq 4$, and since $\left|Z_{3}\right| \geq 3$ we must have $|W|=4$ and $\left|Z_{3}\right|=3$. Now it is not hard to see that there must exist some set X_{i}, say X_{2}, such that $\left|Z_{3} \cap X_{2}\right| \geq 2$. But then $Z_{3} \cup X_{2} \cup W \backslash\left(Z_{3} \cap X_{2}\right)$ is a separating set with $\left|Z_{3} \cup X_{2} \cup W \backslash\left(Z_{3} \cap X_{2}\right)\right| \leq 6$, contradicting that G is 7-connected. This proves the claim. But now $S:=H_{1} \cup X_{1} \backslash\left(H_{1} \cap X_{1}\right)$ is a separating set in G with $|S|=7$ and
$\Delta(G[S]) \geq 5$, contradicting (A). This proves (17).
(18) $\left|N_{j}\right|=7-|W|$ for $j \in\{1,2,3\}$.

Since G is 7-connected and $\left|Z_{j}\right| \geq 7-|W|$ by (17), it follows that $\left|N_{j}\right| \geq 7-|W|$ for all $j \in\{1,2,3\}$. By (13) and (2.i), it is easy to see that (18) follows.
(19) $\left|X_{i}\right| \leq 3$ for all $i \in\{1,2, \ldots, n\}$.

By (18), $\left|N_{1}\right|+\left|N_{2}\right|+\left|N_{3}\right|=21-3|W|$, and so it is clear by (13) and (2.i) that there must exist exactly $7-|W|$ sets X_{i} with $\left|X_{i}\right|=3$, and all other sets X_{i} have $\left|X_{i}\right|=1$.
(20) $\left|X_{i} \cap N_{j}\right|=1$ for all $j \in\{1,2,3\}$ and $i \in\{1,2, \ldots, n\}$ such that $\left|X_{i}\right|=3$.

For if $\left|X_{i} \cap N_{j}\right| \geq 2$, then $X_{i} \cup N_{j} \cup W \backslash\left(X_{i} \cap N_{j}\right)$ is a separating set in G with $\mid X_{i} \cup N_{j} \cup W \backslash$ $\left(X_{i} \cap N_{j}\right) \mid \leq 6$, a contradiction.
(21) If $|W| \leq 3$, then $X_{i}=Y_{i}$ for all $i \in\{1,2, \ldots, n\}$.

By (11), this is true if $\left|X_{i}\right|=1$. So assume by (19) that, say, $\left|X_{1}\right|=3$ and $X_{1} \neq Y_{1}$. Then $X_{1} \cup W$ is a separating set in G with $\left|X_{1} \cup W\right|=3+|W|$. Since G is 7-connected, we must have $|W| \geq 4$, and (21) follows.
(22) For $i \in\{1,2, \ldots, n\}$, if $\left|X_{i}\right|=3$ and $X_{i}=Y_{i}$, then X_{i} induces a K_{3}-subgraph of G.

By (14) and the symmetry between Z_{1} and Z_{2}, we may assume that $Z_{1}=N_{1}$. Let $x \in Z_{1}$, and suppose by (13) and (19) that $x \in X_{1}$, say, where $\left|X_{1}\right|=3$ and $X_{1}=Y_{1}$. Then x can have neighbors in G only in $Z_{1} \cup Y_{1} \cup W$. Since $\left|Z_{1} \cup W \backslash\{x\}\right|=6$ by (18), and since $\delta(G) \geq 8, x$ must have at least two neighbors in Y_{1}, namely the two vertices of $X_{1} \backslash Z_{1}$. By (14), there exists $j \in\{2,3\}$ such that $N_{j}=Z_{j}$. By (20), there exists $x^{\prime} \in Z_{j} \cap X_{1}$. Then by the same argument, x^{\prime} also must have at least two neighbors in Y_{1}. Since $\left|X_{1}\right|=3$, it is clear that X_{1} must then induce a
K_{3}-subgraph in G. This proves (22).
(23) $|W| \geq 2$.

Suppose to the contrary that $|W| \leq 1$. By (B) and (3), $|W| \geq 1$. Thus $|W|=1$. Then $\left|N_{3}\right|=6$ by (18). Since G is 7 -connected, $G-W$ is 6 -connected. So let P_{1}, \ldots, P_{6} be disjoint paths in $G-W$ such that one end of P_{i} belongs to H_{3} and the other end belongs to N_{3} for each $i \in$ $\{1,2, \ldots, 6\}$. Note that it is possible some paths P_{i} may consist of only a single vertex. For each $i \in\{1,2, \ldots, 6\}$, let x_{i} be the end of P_{i} in N_{3}, and by (13), (19), and (20), we may assume that $x_{i} \in X_{i}$, where $\left|X_{i}\right|=3$. By (20) and (22), each x_{i} has a neighbor in each of Z_{1} and Z_{2} for $i \in\{1,2, \ldots, 6\}$. But then contracting each of $P_{1}, \ldots, P_{6}, Z_{1}$, and $Z_{2} \cup W$ to a single vertex gives a K_{8}-minor in G, a contradiction. This proves (23).
(24) $|W| \geq 3$.

Suppose to the contrary that $|W| \leq 2$. By (23), $|W| \geq 2$. Thus $|W|=2$. First, consider the case that $W \subseteq H_{1}$, say. Then $W \cap H_{3}=H_{1} \cap H_{3}$. If $H_{1} \cap H_{3} \neq \emptyset$, then $\left|H_{2} \backslash W\right|=\left|H_{3} \backslash W\right|=5$. By (14) and (18), either $Z_{2}=H_{2} \backslash W$ or $Z_{3}=H_{2} \backslash W$. If $H_{1} \cap H_{3}=\emptyset$, then $\left|Z_{3}\right| \geq\left|H_{3}\right|>7-|W|$, and so $Z_{3} \neq N_{3}$ by (18). Hence $Z_{2}=N_{2}=H_{2} \backslash W$ by (14) and (18). In either case, Z_{j} induces a $K_{5^{-}}$ subgraph of G for some $j \in\{2,3\}$. Suppose $Z_{2}=N_{2}=H_{2} \backslash W$, and let $x \in N_{2} \cap X_{1}$, say. Then x can have neighbors only in $Z_{2} \cup Y_{1} \cup W$ by (2.ii) and the definition of Z_{2}. Since $\left|Z_{2} \cup Y_{1} \backslash\{x\}\right|=6$ by (21), x must be adjacent to both vertices of W since $\delta(G) \geq 8$. It follows that Z_{2} is complete to W. But then $Z_{2} \cup W$ induces a K_{7}-subgraph of G, and so a K_{8}-minor can be easily found since G is 7-connected, a contradiction. A similar argument holds if $Z_{3}=N_{3}=H_{3} \backslash W$.

Thus $W \nsubseteq H_{j}$ for any $j \in\{1,2,3\}$. If $|M|=2$, then $W=M \subseteq H_{j}$ for some $j \in\{1,2,3\}$, and so we must have $|M|=1$. Then if $W \cap H_{3}=\emptyset$, then $W \subseteq H_{j}$ for some $j \in\{1,2\}$, and so $\left|W \cap H_{3}\right|=1$. By symmetry and (14), we may assume that $Z_{1}=N_{1}$. Then by (14), either
$Z_{2}=N_{2}$ or $Z_{3}=N_{3}$. If $Z_{2}=N_{2}$, then $Z_{2}=H_{2} \backslash W$ by (18). Let $x \in Z_{2}$ and suppose $x \in X_{1}$, say. Since x can have neighbors only in $Z_{2} \cup Y_{1} \cup W$, and since $\left|Z_{2} \cup Y_{1} \backslash\{x\}\right|=6$ by (21), we see that x must be adjacent to both vertices of W since $\delta(G) \geq 8$. Thus it follows that Z_{2} is complete to W, and by symmetry Z_{1} is complete to W as well. Let P_{1}, \ldots, P_{5} be disjoint paths in Z_{3} with one end in $H_{3} \backslash W$ and the other end in N_{3}, where possibly the paths P_{k} consist of only a single vertex. Then contracting each of $P_{1}, \ldots, P_{5}, Z_{1}$, and H_{2} to a single vertex gives a K_{8}-minor in G (along with the vertex in $H_{3} \cap W$) by (21) and (22), a contradiction. If instead $Z_{3}=N_{3}$, a similar argument shows that Z_{3} and Z_{1} are complete to W, and suitable paths from H_{2} to N_{2} can be contracted along with Z_{1}, a Z_{1}, W-edge and Z_{3} to give a K_{8}-minor. This proves (24).
(25) $|W| \geq 4$.

Suppose to the contrary that $|W|<4$. By (24), $|W|=3$. We may assume that $\left|W \cap H_{1}\right| \geq\left|W \cap H_{2}\right|$ by symmetry.
(25.1) $|M| \geq 2$.

If $|M|=1$, it is not hard to see that this is only possible if $\left|W \cap H_{j}\right|=2$ for $j \in\{1,2\}$ by (14) and (18). Then $\left|Z_{3}\right| \geq\left|H_{3}\right|=6>7-|W|$, and so $Z_{3} \neq N_{3}$ by (18). By (14), (18), and (7.i), $N_{j}=Z_{j}=H_{j} \backslash W$ for $j \in\{1,2\}$. Let $x \in Z_{2} \cap X_{1}$, say. Then x can have neighbors only in $Z_{2} \cup Y_{1} \cup W$ by (2.ii) and the definition of Z_{2}. Since $Y_{1}=X_{1}$ by (21) and $\left|Z_{2} \cup Y_{1} \backslash\{x\}\right|=5$, it is clear that x must be complete to W since $\delta(G) \geq 8$, and so every vertex in W has at least one neighbor in Z_{2}. Now let $y \in Z_{3} \backslash N_{3}$. Since G is 7 -connected, there exist $7 x, y$-paths in G, disjoint except for their ends. As any vertex of $Z_{3} \backslash N_{3}$ can have neighbors only in $Z_{3} \cup W$ and $\left|N_{3} \cup W\right|=7$, it is clear that each vertex of $N_{3} \cup W$ is met by one of these paths. In particular, each vertex in W has at least one neighbor in Z_{3}. Additionally note by (22) that each set X_{i} with $\left|X_{i}\right|=3$ induces a triangle for any $i \in\{1,2, \ldots, n\}$. Since every vertex of H_{1} either belongs to W or to N_{1}, we therefore deduce that every vertex in H_{1} has some neighbor in each of Z_{2} and Z_{3}.

Then Z_{2} and Z_{3} are adjacent via any set X_{i} with $\left|X_{i}\right|=3$. By contracting each of Z_{2} and Z_{3} to a single vertex, we obtain a K_{8}-subgraph in G, a contradiction. This proves (25.1).
(25.2) $W=M$.

Suppose to the contrary that $W \neq M$. By (3) and (25.1), $|M|=2$. Since $\left|H_{1} \cap H_{2}\right|=1$ by (B), we may assume $\left|H_{1} \cap H_{3}\right|=1$, say. Let $w \in W \backslash M$. If $w \in H_{1}$, then $\left|Z_{j}\right| \geq 5>7-|W|$ and $Z_{j} \neq N_{j}$ by (18) for $j \in\{2,3\}$, contradicting (14). So by symmetry, we may assume $w \in H_{3}$, say. Then $\left|Z_{2}\right| \geq 5$, and so $Z_{2} \neq N_{2}$. Then by (14), $Z_{j}=N_{j}$ for $j \in\{1,3\}$. Let $x \in Z_{3} \cap X_{1}$, say. Then x can have neighbors only in $Z_{3} \cup Y_{1} \cup W$, and since $\left|Z_{3} \cup Y_{1} \backslash\{x\}\right|=5$ by (21), it is clear that x must be complete to W since $\delta(G) \geq 8$. It follows that Z_{3} is complete to W, and in particular that $y \in H_{1} \cap H_{2}$ is complete to Z_{3}. But this contradicts that $d(y) \leq 11$ by (B). This proves (25.2).

From (25.2), we have $|M|=3$. Thus either $\left|H_{3} \cap H_{j}\right|=1$ for $j \in\{1,2\}$ or $\left|H_{3} \cap H_{1}\right|=2$ and $\left|H_{3} \cap H_{2}\right|=0$. In the former case, by symmetry and (14), we may assume $Z_{1}=N_{1}$. In the latter case, $\left|Z_{2}\right| \geq 5>7-|W|$, and so $Z_{2} \neq N_{2}$ by (18), and by (14), $Z_{1}=N_{1}$. So in either case, we have $Z_{1}=N_{1}$. Let $x \in Z_{1} \cap X_{1}$, say. Then x can have neighbors only in $Z_{1} \cup Y_{1} \cup W$. By (21), $Y_{1}=X_{1}$, and so $\left|Z_{1} \cup Y_{1} \cup W \backslash\{x\}\right|=8$. Thus x is complete to $Z_{1} \cup Y_{1} \cup W \backslash\{x\}$ since $\delta(G) \geq 8$, and it follows both that Z_{1} is complete to W and that Z_{1} induces a clique in G (note if $\left|H_{3} \cap H_{1}\right|=2$, then $\left.Z_{1} \neq H_{1} \backslash W\right)$. As $W=M$ also induces a clique, we see that $Z_{1} \cup W$ induces a K_{7}-subgraph of G. Since G is 7 -connected, a K_{8}-minor can be easily obtained, which is a contradiction. This proves (25).
(26) $|W|=5$.

Suppose to the contrary that $|W| \neq 5$. By (10) and (25), $|W|=4$. By symmetry, we may assume that $\left|W \cap H_{1}\right| \geq\left|W \cap H_{2}\right|$. Then it is not too hard to see that there are only three possibilities
which satisfy (14) and (18):
(i) $\left|H_{1} \cap H_{3}\right|=2$ and $\left|H_{2} \cap H_{3}\right|=1$;
(ii) $|M|=3,\left|H_{1} \cap H_{3}\right|=2$, and $\left|W \cap H_{3}\right|=1$; or
(iii) $\left|H_{1} \cap H_{3}\right|=3$ and $Z_{1} \neq H_{1} \backslash W$.

Note that in each of these cases, $\left|Z_{2}\right| \geq 4$, so $Z_{2} \neq N_{2}$, and thus by (14), $Z_{j}=N_{j}$ for $j \in\{1,3\}$. We claim that for any $i \in\{1,2, \ldots, n\}$, if $\left|X_{i} \cap Z_{j}\right|=1$ for all $j \in\{1,2,3\}$, then $X_{i}=Y_{i}$. Suppose to the contrary that, say, $\left|X_{1} \cap Z_{j}\right|=1$ for $j \in\{1,2,3\}$, and that $X_{1} \neq Y_{1}$. Then $S:=X_{1} \cup W$ is a separating set in G and so $|S|=7$ by (19). But $x \in H_{1} \cap H_{3} \subseteq W$ has five neighbors in S, contradicting that $\Delta(G[S]) \leq 4$ by (A). This proves the claim.

It now follows that each $x \in Z_{3}$ belongs to some X_{i} where $X_{i}=Y_{i}$ by (13) and (19), since $Z_{3}=N_{3}$. Say $x \in Z_{3} \cap X_{1}$. As such an x can have neighbors only in $Z_{3} \cup Y_{1} \cup W$ and $\left|Z_{3} \cup Y_{1} \backslash\{x\}\right|=4$, it is clear that x is complete to W since $\delta(G) \geq 8$. It follows that Z_{3} is complete to W, and in particular that $y \in H_{1} \cap H_{2}$ is complete to Z_{3}. But this contradicts that $d(y) \leq 11$ by (B). This proves (26).

By (18) and (26), we have $\left|N_{j}\right|=2$ for all $j \in\{1,2,3\}$. In order to satisfy this and (14), it is not hard to see that, by symmetry, we must have $\left|H_{1} \cap H_{3}\right|=3,|M|=4$, and $H_{3} \supseteq(W \backslash M) \neq \emptyset$. Then $\left|Z_{2}\right| \geq\left|H_{3} \backslash W\right|>5$, and so $Z_{2} \neq N_{2}$. By (14), $H_{j} \backslash W=Z_{j}=N_{j}$ for $j \in\{1,3\}$.
(27) For $i \in\{1,2, \ldots, n\}$, if $Y_{i} \neq X_{i}$, then every vertex in $X_{i} \cup W$ has a neighbor in every component of $G\left[Y_{i} \backslash X_{i}\right]$.

Suppose $Y_{1} \neq X_{1}$, say. Then $\left|X_{1}\right|=3$ by (11) and (19), and $S:=X_{1} \cup W$ is a separating set of G with $|S|=8$. Thus for any component C of $G\left[Y_{1} \backslash X_{1}\right]$, at least seven vertices of S have a neighbor in $V(C)$ since G is 7-connected. If only seven vertices of S have a neighbor in some component C of $G\left[Y_{1} \backslash X_{1}\right]$, say $x \in S$ is anticomplete to $V(C)$, then $S \backslash\{x\}$ is a separating set
with $|S \backslash\{x\}|=7$, but then any vertex in $H_{1} \cap H_{3} \backslash\{x\}$ has at least five neighbors in $S \backslash\{x\}$, contradicting (A). Thus (27) follows.
(28) For $i \in\{1,2, \ldots, n\}$, the subgraph of G induced by Y_{i} is connected. Additionally, if $\left|X_{i}\right|=3$ and $x, y \in X_{i}$, then the subgraph of G induced by $Y_{i} \backslash\{x, y\}$ is connected.

If $X_{i}=Y_{i}$ this follows from (11) and (22). So we may assume that $X_{1} \neq Y_{1}$, say. From (27) we see that each vertex of X_{1} has at least one neighbor in every component of $G\left[Y_{1} \backslash X_{1}\right]$, and so (28) follows.
(29) For $i \in\{1,2, \ldots, n\}$, if $\left|X_{i}\right|=3$ then $X_{i} \neq Y_{i}$.

For suppose there exists $i \in\{1,2, \ldots, n\}$ such that $\left|X_{i}\right|=3$ and $X_{i}=Y_{i}$, say $i=1$. By (22), X_{1} induces a K_{3}-subgraph of G. Let $x \in N_{3} \cap X_{1}$. Then x can have neighbors only in $Z_{3} \cup Y_{1} \cup W$, and since $\left|Z_{3} \cup Y_{1} \backslash\{x\}\right|=3$, we can see that x must be complete to W since $\delta(G) \geq 8$, and in particular x is complete to M. Thus $H^{\prime}:=M \cup X_{1} \backslash N_{2}$ induces a clique in G with $\left|H^{\prime}\right|=6$. There must be one more set X_{i} with $\left|X_{i}\right|=3$, say X_{2}. Then by (28), $Y_{2} \backslash\left(N_{j} \cup N_{k}\right)$ induces a connected subgraph of G for all $j, k \in\{1,2,3\}$ with $j \neq k$, and it follows that there is an N_{1}, N_{3}-path P avoiding N_{2}, and a P, N_{2}-path Q disjoint from P except for its end, such that both P and Q are in Y_{2}. It is clear that every vertex in H^{\prime} is adjacent to at least one end of P. Lastly, $W \cup N_{2}$ is a minimum separating set in G, and so it follows that every vertex of W has a neighbor in $Z_{2} \backslash N_{2}$. Since X_{1} induces a K_{3}, we see that every vertex of H^{\prime} thus has a neighbor in Z_{2}. Then contracting each of $V(P)$ and $Z_{2} \cup V(Q) \backslash V(P)$ to a single vertex will give a K_{8}-minor in G, a contradiction. This proves (29).

Now, by (18) and (26), $\left|N_{j}\right|=3$ for all $j \in\{1,2,3\}$. By (13) and (19), there are two sets X_{i} with $\left|X_{i}\right|=3$, say X_{1} and X_{2}. It follows from (29) and (27) that the vertex $y \in H_{1} \cap H_{2}$ has at least one neighbor in each of $Y_{1} \backslash X_{1}$ and $Y_{2} \backslash X_{2}$. Since $\left(H_{1} \cup H_{2}\right) \cap\left(Y_{i} \backslash X_{i}\right)=\emptyset$ for $i \in\{1,2\}$, we
see y has at least twelve neighbors in G, contradicting (B). This contradiction completes the proof of Theorem 1.6.6.

CHAPTER 5: FUTURE WORK

In this chapter, we discuss possible extensions of our work in this dissertation, as well as other topics of interest.

5.1 Double-Critical Graph Conjecture

Our ultimate goal in this area is to prove the next open case of the Double-Critical Graph Conjecture, namely that the only double-critical, 6-chromatic graph is the complete graph K_{6}. In [68], Stiebitz showed that any non-complete, 5-chromatic, double-critical graph must contain a K_{3}, and hence a K_{4}, thereby obtaining a contradiction when the vertices of any edge disjoint from the K_{4} are deleted. The additional color in a non-complete, 6-chromatic, double-critical graph prevents Stiebitz's method from being applied directly. It is not even clear that any non-complete, 6-chromatic, double-critical graph must contain K_{4} as a subgraph.

We also hope to prove the next case of the Double-Critical Graph Conjecture for claw-free graphs. That is, we want to show that any 9-chromatic, double-critical, claw-free graph must be K_{9}. Our methods presented in Section 2.4 applied to this case show that any such graph must contain vertices of only degree 11 or 12 . We believe that it should be possible, although very tedious, to prove this case by analyzing the neighborhoods of vertices of degree 11 or 12 in a manner similar to our examination of the neighborhoods of vertices of degree 10 in the proof of Theorem 1.2.8. One approach to simplify this would be to improve Theorem 1.2.9. If we can show that no vertex of degree $t+2$ is adjacent to a vertex of degree $t+2$ or $t+3$, then any 9 -chromatic, double-critical, claw-free graph must be 12-regular.

5.2 Hadwiger's Conjecture

We hope to apply our powerful Lemma 1.5.3 to improve Theorem 1.3.7. Our main goal is to show that any K_{7}-minor-free graph is 7-colorable. Hadwiger's Conjecture says that any K_{7}-minor-free graph is 6 -colorable. We have been able to make some partial progress on this particular problem. If G is an 8 -contraction-critical, K_{7}-minor-free graph, then we are able to show in [61] that G contains at most one vertex of degree 8 . If we can similarly restrict the number of vertices of degree 9 in such graphs, then it will follow from Theorem 1.4.1 that G contains a K_{7}-minor, a contradiction. This task, however, seems very hard.

Other applications of Lemma 1.5.3 are possible. If Theorem 1.4.6 can be extended to give an edge bound for K_{9}^{-}-minors, then we believe that Lemma 1.5.3 can be used to extend our Theorem 1.3.8 to show that any K_{9}^{-}-minor free graph is 11-colorable. Similarly, if Theorem 1.4.7 can be extended to give an edge bound for $K_{9}^{=}$-minors, then we believe that Lemma 1.5.3 can be used to extend Theorem 1.3.9 to show that any $K_{9}^{=}$-minor free graph is 10 -colorable. In general, if a suitable analogue to Conjecture 3.5 .2 holds true for K_{t}^{-}-minors and $K_{t}^{=}$-minors, then we believe it can be shown that any K_{t}^{-}-minor-free graph is $(2 t-7)$-colorable and any $K_{t}^{=}$-minor-free graph is $(2 t-8)$-colorable .

5.3 On $\mathcal{R}_{\text {min }}\left(K_{3}, \mathcal{T}_{k}\right)$-saturated Graphs

Given graphs G, H_{1}, \ldots, H_{t}, we write $G \rightarrow\left(H_{1}, \ldots, H_{t}\right)$ if every t-edge-coloring of G contains a monochromatic H_{i} in color i for some $i \in\{1,2, \ldots, t\}$. The classical Ramsey number $r\left(H_{1}, \ldots, H_{t}\right)$ is the minimum positive integer n such that $K_{n} \rightarrow\left(H_{1}, \ldots, H_{t}\right)$. A graph G is $\left(H_{1}, \ldots, H_{t}\right)$-Ramsey-minimal if $G \rightarrow\left(H_{1}, \ldots, H_{t}\right)$, but for any proper subgraph G^{\prime} of $G, G^{\prime} \nrightarrow$ $\left(H_{1}, \ldots, H_{t}\right)$. We define $\mathcal{R}_{\min }\left(H_{1}, \ldots, H_{t}\right)$ to be the family of $\left(H_{1}, \ldots, H_{t}\right)$-Ramsey-minimal
graphs. It is straightforward to prove by induction that a graph G satisfies $G \rightarrow\left(H_{1}, \ldots, H_{t}\right)$ if and only if there exists a subgraph G^{\prime} of G such that G^{\prime} is $\left(H_{1}, \ldots, H_{t}\right)$-Ramsey-minimal. Ramsey's theorem [52] implies that $\mathcal{R}_{\min }\left(H_{1}, \ldots, H_{t}\right) \neq \emptyset$ for all integers t and all finite graphs H_{1}, \ldots, H_{t}. As pointed out in a recent paper of Fox, Grinshpun, Liebenau, Person, and Szabó [21], "it is still widely open to classify the graphs in $\mathcal{R}_{\min }\left(H_{1}, \ldots, H_{t}\right)$, or even to prove that these graphs have certain properties". Some properties of $\mathcal{R}_{\min }\left(H_{1}, \ldots, H_{t}\right)$ have been studied, such as the minimum degree $s\left(H_{1}, \ldots, H_{t}\right):=\min \left\{\delta(G): G \in \mathcal{R}_{\min }\left(H_{1}, \ldots, H_{t}\right)\right\}$, which was first introduced by Burr, Erdős, and Lovász [6]. Recent results on $s\left(H_{1}, \ldots, H_{t}\right)$ can be found in [22, 21]. For more information on Ramsey-related topics, the readers are referred to a very recent informative survey due to Conlon, Fox, and Sudakov [13].

A graph G is $\mathcal{R}_{\min }\left(H_{1}, \ldots, H_{t}\right)$-saturated if no element of $\mathcal{R}_{\min }\left(H_{1}, \ldots, H_{t}\right)$ is a subgraph of G, but for any edge e in \bar{G}, some element of $\mathcal{R}_{\min }\left(H_{1}, \ldots, H_{t}\right)$ is a subgraph of $G+e$. This notion was initiated by Nešetřil [49] in 1986 when he asked whether there are infinitely many $\mathcal{R}_{\min }\left(H_{1}, \ldots, H_{t}\right)$-saturated graphs. This was answered in the positive by Galluccio, Siminovits, and Simonyi [23]. We define $\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(H_{1}, \ldots, H_{t}\right)\right)$ to be the minimum number of edges over all $\mathcal{R}_{\text {min }}\left(H_{1}, \ldots, H_{t}\right)$-saturated graphs on n vertices. This notion was first discussed by Hanson and Toft [28] in 1987 when H_{1}, \ldots, H_{t} are complete graphs. They proposed the following conjecture.

Conjecture 5.3.1 (Hanson and Toft [28]) Let $r=r\left(K_{k_{1}}, \ldots, K_{k_{t}}\right)$ be the classical Ramsey number for complete graphs. Then

$$
\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(K_{k_{1}}, \ldots, K_{k_{t}}\right)\right)= \begin{cases}\binom{n}{2}, & n<r \\ (r-2)(n-r+2)+\binom{r-2}{2}, & n \geq r\end{cases}
$$

Chen, Ferrara, Gould, Magnant, and Schmitt [7] proved that $\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(K_{3}, K_{3}\right)\right)=4 n-10$ for
$n \geq 56$. This settles the first non-trivial case of Conjecture 5.3.1 for sufficiently large n, and is so far the only settled case. Ferrara, Kim, and Yeager [20] proved that $\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(m_{1} K_{2}, \ldots\right.\right.$, $\left.\left.m_{t} K_{2}\right)\right)=3\left(m_{1}+\cdots+m_{t}-t\right)$ for $m_{1}, \ldots, m_{t} \geq 1$ and $n>3\left(m_{1}+\cdots+m_{t}-t\right)$. The problem of finding $\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(K_{3}, T_{k}\right)\right)$ was also explored in [7].

Proposition 5.3.2 (Chen, Ferrara, Gould, Magnant, and Schmitt [7]) Let $k \geq 2$ and $t \geq 2$ be integers. Then

$$
\begin{array}{r}
\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(K_{t}, T_{k}\right)\right) \leq n(t-2)(k-1)-(t-2)^{2}(k-1)^{2}-(t-2)\binom{k-1}{2} \\
+\binom{(t-2)(k-1)}{2}+\left\lfloor\frac{n}{k-1}\right\rfloor\binom{ k-1}{2}+\binom{r}{2}
\end{array}
$$

where $r=n(\bmod k-1)$.

It was conjectured in [7] that the upper bound in Proposition 5.3.2 is asymptotically correct. Note that there is only one tree on three vertices, namely, P_{3}. A slightly better result was obtained for $\mathcal{R}_{\text {min }}\left(K_{3}, P_{3}\right)$-saturated graphs in [7].

Theorem 5.3.3 (Chen, Ferrara, Gould, Magnant, and Schmitt [7]) For $n \geq 11, \operatorname{sat}\left(n, \mathcal{R}_{\min }\left(K_{3}\right.\right.$, $\left.P_{3}\right)=\left\lfloor\frac{5 n}{2}\right\rfloor-5$.

Motivated by Conjecture 5.3.1, we study the following problem in [60]. Let \mathcal{T}_{k} be the family of all trees on k vertices. Instead of fixing a tree on k vertices as in Proposition 5.3.2, we will investigate $\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(K_{3}, \mathcal{T}_{k}\right)\right)$, where a graph G is $\left(K_{3}, \mathcal{T}_{k}\right)$-Ramsey-minimal if for any 2coloring $c: E(G) \rightarrow\{$ red, blue $\}, G$ has either a red K_{3} or a blue tree $T_{k} \in \mathcal{T}_{k}$, and we define $\mathcal{R}_{\text {min }}\left(K_{3}, \mathcal{T}_{k}\right)$ to be the family of $\left(K_{3}, \mathcal{T}_{k}\right)$-Ramsey-minimal graphs. By Theorem 5.3.3, we see that $\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(K_{3}, \mathcal{T}_{3}\right)\right)=\lfloor 5 n / 2\rfloor-5$ for $n \geq 11$. In [60], we prove the following two main results. We first establish the exact bound for $\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(K_{3}, \mathcal{T}_{4}\right)\right)$ for $n \geq 18$, and then obtain an
asymptotic bound for $\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(K_{3}, \mathcal{T}_{k}\right)\right)$ for all $k \geq 5$ and $n \geq 2 k+(\lceil k / 2\rceil+1)\lceil k / 2\rceil-2$.
Theorem 5.3.4 [60] For $n \geq 18$, $\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(K_{3}, \mathcal{T}_{4}\right)\right)=\left\lfloor\frac{5 n}{2}\right\rfloor$.
Theorem 5.3.5 [60] For any integers $k \geq 5$ and $n \geq 2 k+(\lceil k / 2\rceil+1)\lceil k / 2\rceil-2$, there exist constants $c=\left(\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil+\frac{3}{2}\right) k-2$ and $C=2 k^{2}-6 k+\frac{3}{2}-\left\lceil\frac{k}{2}\right\rceil\left(k-\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil-1\right)$ such that

$$
\left(\frac{3}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-c \leq \operatorname{sat}\left(n, \mathcal{R}_{\min }\left(K_{3}, \mathcal{T}_{k}\right)\right) \leq\left(\frac{3}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n+C
$$

The constants c and C in Theorem 5.3.5 are both quadratic in k. We believe that the true value of $\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(K_{3}, \mathcal{T}_{k}\right)\right)$ is closer to the upper bound in Theorem 5.3.5.

For future work in this area, we plan to investigate $\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(K_{3}, T_{k}\right)\right)$ for fixed trees T_{k}, rather than the family of trees \mathcal{T}_{k}. Further, we we believe the method developed in the proof of Theorem 5.3.5 can be used to find $\operatorname{sat}\left(n, \mathcal{R}_{\text {min }}\left(K_{4}, \mathcal{T}_{k}\right)\right)$.

LIST OF REFERENCES

[1] B. Albar and D. Gonçalves, "On triangles in K_{r}-minor free graphs," (submitted). arXiv:1304.5468.
[2] K. Appel and W. Haken, "Every planar map is four colorable. Part I. Discharging," Illinois J. Math. 21 (1977), 429-490.
[3] K. Appel, W. Haken, and J. Koch, "Every planar map is four colorable. Part II. Reducibility," Illinois J. Math. 21 (1977), 491-567.
[4] J. Balogh, A. V. Kostochka, N. Prince, and M. Stiebitz, "The Erdős-Lovász Tihany conjecture for quasi-line graphs," Discrete Math. 309 (2009), 3985-3991.
[5] W. G. Brown and H. A. Jung, "On odd circuits in chromatic graphs." Acta Math. Sci. Hung. 20 (1969), 129-134.
[6] S. A. Burr, P. Erdős, and L. Lovász, "On graphs of Ramsey type," Ars Combin. 1 (1976), 167-190.
[7] G. Chen, M. Ferrara, R. J. Gould, C. Magnant, and J. Schmitt, "Saturation numbers for families of Ramsey-minimal graphs," J. Combinatorics. 2 (2011), 435-455.
[8] G. Chen, Z. Hu, and F. Song, "Linkage and Hadwiger's conjecture," (submitted).
[9] M. Chudnovsky and A. Fradkin, "Hadwiger's conjecture for quasi-line graphs," J. Graph Theory. 59 (2008), 17-33.
[10] M. Chudnovsky, A. Fradkin, and M. Plumettaz, "On the Erdős-Lovász Tihany Conjecture for Claw-Free Graphs," (preprint). arXiv:1309.1020v1.
[11] M. Chudnovsky, B. Reed, and P. Seymour, "The edge-density for $K_{2, t}$ minors," J. Combin. Theory, Ser. B. 101 (2011), 18-46.
[12] M. Chudnovsky and P. Seymour, "Claw-free graphs. V. Global structure," J. Combin. Theory, Ser. B. 98 (2008), 1373-1410.
[13] D. Conlon, J. Fox and B. Sudakov, "Recent developments in graph Ramsey theory," Surveys in Combinatorics. 424 (2015), 49-118.
[14] G. Ding, "A characterisation of graphs with no octohedron minor," J. Graph Theory. 74 (2013), 143-162.
[15] G. A. Dirac, "Homomorphism theorems for graphs," Math. Ann. 153 (1964), 69-80.
[16] G. A. Dirac, "On the structure of 5- and 6-chromatic abstract graphs," J. Reine Angew. Math. 214/215 (1964), 43-52.
[17] G. A. Dirac, "A property of 4-chromatic graphs and some remarks on critical graphs," J. London Math. Soc. 27 (1952), 85-92.
[18] G. A. Dirac, "Trennende Knotenpunktmengen und Reduzibilität abstrakter Graphen mit Anwendung auf das Vierfarbenproblem," J. Reine Agew. Math. 204 (1960), 116-131.
[19] P. Erdős, Problem 2. In: Theory of Graphs (Proc. Colloq., Tihany, 1966). Academic Press, New York, (1968), 361.
[20] M. Ferrara, J. Kim, and E. Yeager, "Ramsey-minimal saturation numbers for matchings," Discrete Math. 322 (2014), 26-30.
[21] J. Fox, A. Grinshpun, A. Liebenau, Y. Person, and T. Szabó, "On the minimum degree of minimal Ramsey graphs for multiple colors," J. Combin. Theory, Ser. B. 120 (2016), 64-82.
[22] J. Fox and K. Lin, "The minimum degree of Ramsey-minimal graphs," J. Graph Theory. 54 (2007), 167-177.
[23] A. Galluccio, M. Simonovits, and G. Simonyi, "On the structure of co-critical graphs," Proc. of Graph Theory, Combinatorics, and Computing (Kalamazoo, MI), Wiley-Intersci. Publ., Wiley, New York, (1995), 1053-1071.
[24] E. Györi, "On the edge numbers of graphs with Hadwiger number 4 and 5," Period. Math. Hung. 13 (1982), 21-27.
[25] H. Hadwiger, "Über eine Klassifikation der Streckencomplexe," Vierteljschr. Naturforsch. Ges. Zürich. 88 (1943), 133-142.
[26] D. W. Hall, "A note on primitive skew curves," Bull. Amer. Math. Soc. 49 (1943), 935-936.
[27] P. Hall, "On Representatives of Subsets," J. London Math. Soc. 10 (1935), 26-30.
[28] D. Hanson and B. Toft, "Edge-colored saturated graphs," J. Graph Theory. 11 (1987), 191196.
[29] P. J. Heawood, "Map-color theorem," Q. J. Math. 24 (1890), 332-339.
[30] K. Hendrey and D. R. Wood, "The extremal function for Petersen minors," (submitted). arXiv:1508.04541.
[31] H. Huang and A. Yu, "A note on the double-critical graph conjecture," (submitted).
[32] I. T. Jakobsen, "A homomorphism theorem with an application to the conjecture of Hadwiger," Studia Sci. Math. Hungar. 6 (1971), 151-160.
[33] I. T. Jakobsen, "On certain homomorphism properties of graphs I," Math. Scand. 31 (1972), 379-404.
[34] I. T. Jakobsen, "On certain homomorphism properties of graphs II," Math. Scand. 52 (1983), 229-261.
[35] L. K. Jørgensen, "Contractions to K_{8}," J. Graph Theory. 18 (1994), 431-448.
[36] K. Kawarabayashi, "On the connectivity of minimum and minimal counterexamples to Hadwiger's Conjecture," J. Combin. Theory, Ser. B. 97 (2007), 144-150.
[37] K. Kawarabayashi, A. S. Pedersen, and B. Toft, "Double-critical graphs and complete minors," Electron. J. Combin. 17(1) (2010) Research Paper 87.
[38] K. Kawarabayashi, R. Luo, J. Niu, and C. Zhang, "On the structure of k-connected graphs without K_{k}-minor," Euro. J. Combin. 26 (2005), 293-308.
[39] K. Kawarabayashi and B. Toft, "Any 7-chromatic graph has K_{7} or $K_{4,4}$ as a minor," Combinatorica. 25 (2005), 327-353.
[40] K. Kawarabayashi and G. Yu, "Connectivities for k-knitted graphs and for minimal counterexamples to Hadwiger's Conjecture," J. Combin. Theory, Ser. B. 103 (2013), 320-326.
[41] A. V. Kostochka and M. Stiebitz, "Partitions and edge colorings of multigraphs," Electron. J. Combin. 15 (2008), N25.
[42] M. Kriesell, "On Seymour's strengthening of Hadwiger's conjecture for graphs with certain forbidden subgraphs," Discrete Math. 310 (2010), 2714-2724.
[43] K. Kuratowski, "Sur le problème des courbes gauches en topologie," Fund. Math. 15 (1930), 271-283.
[44] W. Mader, "Homomorphiesätze für Graphen," Math. Ann. 178 (1968), 154-168.
[45] W. Mader, "Über die Maximalzahl kreuzungsfreier H-Wege," Arch. Math. (Basel). 31 (1978), 387-402.
[46] W. Mader, "Über trennende Eckenmengen in homomorphiekritischen Graphen," Math. Ann. 175 (1968), 243-252.
[47] K. Menger, "Zur allgemeinen Kurventheorie," Fun. Math. 10 (1927), 95-115.
[48] N. N. Mozhan, "On doubly critical graphs with the chromatic number five," Metody Diskretn. Anal. 46 (1987), 50-59.
[49] J. Nešetřil, "Problem," in: Irregularities of Partitions. (edited by G. Halász and V. T. Sós), Springer Verlag, Series Algorithms and Combinatorics, vol 8, (1989), 164. (Proc. Coll. held at Fertőd, Hungary 1986).
[50] A. S. Pedersen, "Complete and almost complete minors in double-critical 8-chromatic graphs," Electron. J. Combin. 18(1) (2011), Research Paper 80.
[51] M.D. Plummer, M. Stiebitz, and B. Toft, "On a special case of Hadwiger's Conjecture," Discuss. Math. Graph Theory. 23 (2003), 333-363.
[52] F. P. Ramsey, "On a problem of formal logic," Proc. London Math. Soc. 30 (1930), 264-286.
[53] B. Reed and P. Seymour, "Hadwiger's conjecture for line graphs," European J. Math. 25 (2004), 873-876.
[54] N. Robertson, D. Sanders, P. Seymour, and R. Thomas, "The four-color theorem," J. Combin. Theory, Ser. B. 70 (1997), 2-44.
[55] N. Robertson, P. Seymour, and R. Thomas, "Hadwiger's conjecture for K_{6}-free graphs," Combinatorica. 13 (1993), 279-361.
[56] M. Rolek, "Finding a K_{8}-minor using Mader's H-Wege Theorem," (to be submitted).
[57] M. Rolek and Z-X. Song, "Double-critical Graph Conjecture for Claw-free Graphs," to appear in Discrete Math. arXiv:1610.00636
[58] M. Rolek and Z-X. Song, "Coloring Graphs with Forbidden Minors," (submitted). arXiv:1606.05507
[59] M. Rolek and Z-X. Song, "Clique Minors in Double-critical Graphs," (submitted). arXiv:1603.06964
[60] M. Rolek and Z-X. Song, "On $\mathcal{R}_{\min }\left(K_{3}, \mathcal{T}_{k}\right)$-saturated graphs," (submitted).
[61] M. Rolek, Z-X. Song, and R. Thomas, "Every graph with no K_{7}-minor is 7-colorable," (in preparation).
[62] P. Seymour, "Hadwiger's conjecture," in: Open Problems in Mathematics. (edited by J. Nash and M. Rassias), Springer, (2016), 417-437.
[63] A. Schrijver, "A Short Proof of Mader's \mathscr{S}-Paths Theorem," J. Combin. Theory, Ser. B. 82 (2001), 319-321.
[64] Z-X. Song, "The extremal function for K_{8}^{-}minors," J. Combin. Theory, Ser. B. 95 (2005), 300-317.
[65] Z-X. Song, "Extremal functions for contractions of graphs," Doctoral Dissertaton, Georgia Institute of Technology, (2004).
[66] Z-X. Song and B. Thomas, "Hadwiger's conjecture for graphs with forbidden holes," (submitted). arXiv:1607.06718
[67] Z.-X. Song and R. Thomas, "The extremal function for K_{9} minors," J. Combin. Theory, Ser. B. 96 (2006), 240-252.
[68] M. Stiebitz, " K_{5} is the only double-critical 5-chromatic graph," Discrete Math. 64 (1987), 91-93.
[69] M. Stiebitz, "On k-critical n-chromatic graphs," in: Combinatorics (Eger, 1987). Colloq. Math. Soc. János Bolyai. 52 (1987), 509-514.
[70] M. Stiebitz, "A relaxed version of the Erdős-Lovász Tihany conjecture," to appear in J. Graph Theory.
[71] B. Toft, "A survey of Hadwiger’s Conjecture," in: Surveys in Graph Theory (edited by G. Chartrand and M. Jacobson), Congr. Numer. 115 (1996), 249-283.
[72] P. Turán, "On an extremal problem in graph theory," Matematikai és Fizikai Lapok. 48 (1941), 436-452.
[73] K. Wagner, "Über eine Eigenschaft der ebenen Komplexe," Math. Ann. 114 (1937) 570-590.
[74] D. R. Woodall, "A Short Proof of a Theorem of Dirac's About Hadwiger's Conjecture," J. Graph Theory. 16 (1992) 79-80.

