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ABSTRACT

The title of the dissertation gives an indication of the material involved with the

connecting thread throughout being the classical Bernstein inequality (and its variants),

which provides an estimate to the size of the derivative of a given polynomial on a prescribed

set in the complex plane, relative to the size of the polynomial itself on the same set.

Chapters 1 and 2 lay the foundation for the dissertation. In Chapter 1, we introduce

the notations and terminology that will be used throughout. Also a brief historical recount is

given on the origin of the Bernstein inequality, which dated back to the days of the discovery

of the Periodic table by the Russian Chemist Dmitri Mendeleev. In Chapter 2, we narrow

down the contents stated in Chapter 1 to the problems we were interested in working during

the course of this dissertation. Henceforth, we present a problem formulation mainly for

those results for which solutions or partial solutions are provided in the subsequent chapters.

Over the years Bernstein inequality has been generalized and extended in several

directions. In Chapter 3, we establish rational analogues to some Bernstein-type inequalities

for restricted zeros and prescribed poles. Our inequalities extend the results for polynomials,

especially which are themselves improved versions of the classical Erdös-Lax and Turán

inequalities. In working towards proving our results, we establish some auxiliary results,

which may be of interest on their own.

Chapters 4 and 5 focus on the research carried out with the Askey-Wilson operator

applied on polynomials and entire functions (of exponential type) respectively. In Chapter

4, we first establish a Riesz-type interpolation formula on the interval [−1, 1] for the Askey-

Wilson operator. In consequence, a sharp Bernstein inequality and a Markov inequality

are obtained when differentiation is replaced by the Askey-Wilson operator. Moreover, an
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inverse approximation theorem is proved using a Bernstein-type inequality in L2−space.

We conclude this chapter with an overconvergence result which is applied to characterize

all q-differentiable functions of Brown and Ismail. Chapter 5 is devoted to an intriguing

application of the Askey-Wilson operator. By applying it on the Sampling Theorem on

entire functions of exponential type, we obtain a series representation formula, which is

what we called an extended Boas’ formula. Its power in discovering interesting summation

formulas, some known and some new will be demonstrated. As another application, we are

able to obtain a couple of Bernstein-type inequalities.

In the concluding chapter, we state some avenues where this research can progress.
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CHAPTER 1: INTRODUCTION AND TERMINOLOGY

“Begin at the beginning,” the King said, very gravely, “and go on till you come to the end:

then stop.”

Lewis Carroll, Alice in Wonderland

This chapter will set the tone to the dissertation in which an expository account will

be given on the notations and definitions of the contents that comprise the dissertation. A

brief literature review will also be provided where references are mentioned which carryout

comprehensive studies of the material.

1.1 Why Inequalities ?

Inequalities pervade mathematics, arises naturally in that in many practical applica-

tions the need may occurs to bound one quantity by another. Not only being a sophisticated

tool in mathematics, they also play an integral role in other disciplines as well. The theory

of inequalities presents an exciting and a very much active field of research, especially in

approximation theory. Two of the most fundamental inequalities are the Bernstein inequal-

ity and the Markov inequality. Apart from being ubiquitous on their own rights, these two

inequalities are proven to be invaluable tools in proving inverse theorems in approximation

theory.

1.1.1 Preliminaries and Notations

In conjunction with the nomenclature, let N,R, and C respectively denote the set of

natural, real, and complex numbers. For x, y ∈ R, let z = x + iy denote an element of C,
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whose complex conjugate is z = x−iy. Let n ∈ N be fixed. In this dissertation, we will come

across several spaces of functions. In particular, we will use the following special spaces.

• Pn: space of complex algebraic polynomials of degree at most n. i.e.,

Pn :=

{
p : p(z) =

n∑
k=0

bkz
k, bk ∈ C

}
.

Indeed, by the Fundamental theorem of algebra, if bn 6= 0, there exist zk, k = 1, 2, . . . , n

such that

p(z) = bn

n∏
k=1

(z − zk).

• Rn: space of rational functions with at most n poles among a1, a2, . . . , an. Let w(z) =∏n
k=1(z − ak).

Rn :=
{
r : r =

p

w
, p ∈ Pn

}
.

• Tn: space of trigonometric polynomials of degree at most n. i.e.,

Tn :=
{
t : t(ϕ) =

n∑
k=−n

cke
ikϕ, cj ∈ C

}
.

In fact, an element of Tn can equivalently be written as

t(ϕ) = a0 +
n∑
k=1

{ak cos(kϕ) + bk sin(kϕ)}, ak, bk ∈ C.

For a compact (closed and bounded) set S in the complex plane, by ‖·‖S we denote

the supremum norm on S. Moreover, we use T = {z : |z| = 1} to denote the unit circle and

D = {z : |z| < 1} to denote the (open) unit disk.
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1.1.2 Bernstein: The protagonist

Historically, the story of (polynomial) inequalities unfolded few years after the Russian

Chemist Dmitri Mendeleev’s discovery of the periodic table (see [16], [29], [48]). While

observing his results of a study of the specific gravity of a solution as a function of the

percentage of the dissolved substance, Mendeleev noticed that the data could be closely

approximated by quadratic arcs and wondered if the corners where the arcs (of the plotted

data) joined were actually there, or was it due to error of measurement. His question, after

normalization was:

If p(x) is a quadratic polynomial with real coefficients and |p(x)| ≤ 1 on [−1, 1], then how

large can |p′(x)| be on [−1, 1]?.

In 1887, Mendeleev himself answered the question and showed that |p′(x)| ≤ 4 on

[−1, 1], and convinced himself that the corners of the arcs were genuine. As we would’ve

guessed, being a non-mathematician he should communicate his results with a mathemati-

cian, which is exactly what he did. He communicated his results with Andrei Markov who

naturally investigated the corresponding problem in a general setting to polynomials of de-

gree n. Few years later Markov established and proved what is now known as the Markov’s

inequality∗ [46]:

If p(x) is a polynomial of degree n with real coefficients and |p(x)| ≤ 1 on [−1, 1], then

|p′(x)| ≤ n2 on [−1, 1]. Equality holds only at ±1 and only when p(x) = ±Tn(x), where

Tn(x) = cos(n cos−1(x))†.

The next episode of this story is to look at a similar inequality for polynomials of

∗The younger brother of Andrei, Vladmir Markov extended Markov’s inequality to higher order deriva-
tives in 1892.

†Tn is called Chebyshev polynomial of the first kind. We will be utilizing Tn and it’s companion, Un in
Chapter 4.

3



degree n over the complex plane, where a typical question can be raised along the same

direction [55, Chapter 14]:

For a given polynomial of degree at most n with some meaningful information about the kind

of values it takes on a prescribed subset of the complex plane. What can we say about the

size of its derivative?

The answer to this question when the subset being the unit disk was provided by Sergei

Natanovich Bernstein [13] in 1912.

Theorem 1.1.1. Let p ∈ Pn, then

‖p′‖D ≤ n ‖p‖D . (1.1.1)

Equality holds for a polynomial whose zeros are at the origin, i.e., (say) p(z) = czn for a

constant c.

Theorem 1.1.1 can be stated in the following equivalent forms.

1. Since p(z) is an analytic function, by the maximum modulus principle

‖p‖D = max
|z|≤1
|p(z)| = max

|z|=1
|p(z)| = ‖p‖T .

So Theorem 1.1.1 holds on the unit circle.

Theorem 1.1.2. Let p ∈ Pn, then

‖p′‖T ≤ n ‖p‖T . (1.1.2)

Equality holds for p(z) = czn for a constant c.

4



2. Bernstein theorem for trigonometric polynomials:

Theorem 1.1.3. Let t ∈ Tn, then for ϕ ∈ (−π, π)

|t′(ϕ)| ≤ n|t(ϕ)|. (1.1.3)

Equality holds for t(ϕ) = γ sin(ϕ− ϕ0), where |γ| = 1.

As before a uniform version of this can also be obtained:

‖t′‖[−π,π] ≤ n ‖t‖[−π,π] . (1.1.4)

3. A connection between trigonometric to algebraic polynomials can be established by

taking t(ϕ) = p(cos(ϕ)), for p ∈ Pn to which (1.1.3) yields:

Theorem 1.1.4. Let p ∈ Pn, then for x ∈ (−1, 1)

|p′(x)| ≤ n√
1− x2

‖p‖[−1,1] . (1.1.5)

Equality is attained at the points x = xj = cos

[
(2j − 1)π

2n

]
, 1 ≤ j ≤ n, if and only if

p(x) = γTn(x), where |γ| = 1.

This is known in the literature as the standard form of the Bernstein’s theorem.

The story involves with these discoveries of Bernstein is quite interesting too. When

first established, in (1.1.4) Bernstein had 2n instead of n, which he proved using a variational

method. In [13, p.527], Bernstein attributed his proof to Edmund Landau. Inequality

(1.1.5) first appeared in a paper by Michael Fekete [25], who attributed his proof to Leopold

Fejér [24]. Simpler proofs of (1.1.3) were established by Marcel Riesz [57], Frigyes Riesz
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[56] and de la Vallée Poussin [23]. Indeed, Marcel Riesz’s elegant proof of (1.1.4) uses the

following interpolation formula for the derivative of a trigonometric polynomial:

t′(ϕ) =
1

2n

2n∑
r=1

t(ϕ+ θr)
(−1)r+1

2 sin2
(
θr
2

) , (1.1.6)

where

θr =
2r − 1

2n
π, r = 1, 2, . . . , 2n.

Over the years, Bernstein inequality‡ had been substantially generalized and extended

in several directions; by restricting the zeros of the polynomials, even to date. For instances,

considering different domains of interest (compact subsets of the real line, arcs of the unit

circle etc.), to different classes of polynomials (Lp-norms ( for 0 < p ≤ ∞), entire functions

etc.) etc. Its wide applicability lies in the fact that being optimal and being the solution to

the following extremal problem:

max
p∈Pn

‖p′‖
‖p‖

= An, (for some An > 0) (1.1.7)

for the respective norms. Its significance is apparent as there’s an area of its own in the

literature named Bernstein-type inequalities.

1.2 Beyond the ordinary derivative: The Askey-Wilson derivative

In 1985, Richard Askey and James Wilson in [6] introduced the theory of Askey-

Wilson operator in their study of a class of orthogonal polynomials, the Askey-Wilson poly-

nomials. For a positive parameter q(< 1), the Askey-Wilson operator or the Askey-Wilson

‡For the equivalent forms of the Benstein inequality and their proofs, see the couple of excellent sources
in [49, Chapter 6] and [55, Chapter 14].
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derivative denoted by Dq, is defined by

(Dqf)(x) =
f̆(q1/2z)− f̆(q−1/2z)

h̆(q1/2z)− h̆(q−1/2z)
, (x ∈ [−1, 1]), (1.2.1)

where

h̆(z) =
1

2

(
z +

1

z

)
, f̆(z) = f

(
1

2

(
z +

1

z

))
, z = eiθ, x = cos θ.

Note that h̆(q1/2z)− h̆(q−1/2z) = i sin θ · (q1/2 − q−1/2) and thus (1.2.1) can be written as

(Dqf)(x) =
f̆(q1/2z)− f̆(q−1/2z)

i sin θ · (q1/2 − q−1/2)
. (1.2.2)

Since

lim
q→1−

(Dqf) (x) = f ′(x)

at any point x where f ′(x) exists, Dqf can be considered as a discrete version of the deriva-

tive§ of f .

1.3 Entire functions of exponential type

An entire function is one which is analytic in the finite complex plane C. Let Bσ

denote the set of entire functions of exponential type σ. That is, f ∈ Bσ if f is an entire

function and for any ε > 0, there is an Aε > 0 such that

|f(z)| ≤ Aεe
(σ+ε)|z|

for all z ∈ C.

§A proof to justify this will be given at the beginning of Chapter 4.
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For such functions, with |f(x)| ≤M for all x, the Bernstein inequality [12] is:

|f ′(x)| ≤Mτ (x ∈ R). (1.3.1)

Equality in (1.3.1) holds for f(z) = aeiτz + be−iτz, where |a|+ |b| = M .

For a function f ∈ Lp(R), p > 0, we write

‖f‖Lp :=

(∫ ∞
−∞
|f(x)|p

)1/p

.

Functions in class Bσ whose restriction to R belongs to Lp(R) are denoted by Bp
σ, for which

an Lp analogue of the Bernstein inequality for p ≥ 1 is:

‖f ′‖Lp ≤ τ ‖f‖Lp . (1.3.2)

In fact, in [54], Qazi Rahman and Gerhard Schmeisser proved that (1.3.2) indeed holds for

0 < p < 1 as well.

Functions in the class B2
σ are called band-limited to [−σ, σ] and are characterized by

the classical Paley-Wiener theorem ([52], [15, p.103]):

Theorem 1.3.1. A function f belongs to B2
σ if and only if it can be represented in the form:

f(t) =

∫ σ

−σ
eixtg(x) dx, (1.3.3)

for t ∈ R and for some function g ∈ L2[−σ, σ].
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1.4 The Classical Sampling theorem

Sampling theory is one of the most significant techniques in mathematics that is

widely applicable in other disciplines such as Engineering and Physics. The fundamental

result in sampling theory is the sampling theorem ([72, Theorem 2.1, p.16]):

Theorem 1.4.1. If a function f is band-limited to [−σ, σ], then f can be reconstructed

from its samples, f

(
kπ

σ

)
. The uniformly-spaced sampling points

kπ

σ
are located on R. The

reconstruction formula is:

f(t) =
∞∑

k=−∞

f

(
kπ

σ

)
sin[σt− kπ]

(σt− kπ)
, (1.4.1)

for t ∈ R. The series being absolutely and uniformly convergent on R.¶

This can be proved though several approaches, the shortest one uses the convolution

structure of the series in (1.4.1). Other proofs involve the use of Fourier series expansions,

Parseval formula, Poisson summation formula and Cauchy’s integral formula.

The series in (1.4.1) can be put in the form

f(t) =
∞∑

k=−∞

f(tk)
G(t)

(t− tk)G′(tk)
, (1.4.2)

where tk = kπ/σ and

G(t) = sin(σt) = σt
∞∏
k=1

(
1− t2

t2k

)
.

The fact that formula (1.4.2) resembles Lagrange interpolation prompts us to call any

¶The sampling frequency σ/π is known as the Nyquist rate, named after Harry Nyquist [51]. It is the
minimum rate at which a signal needs to be sampled in order to reconstruct it properly.

9



series of the form ∑
k

f(tk)
G(t)

(t− tk)G′(tk)
(1.4.3)

a Lagrange-type interpolation series, where G(t) is an entire function whose zeros are located

exactly at the points {tk}. The points will be called the sampling points and the functions

Gk(t) =
G(t)

G′(tk)(t− tk)
, (1.4.4)

will be called the sampling functions. The value of t0 is often taken to be zero.

1.4.1 Historical recount

There are few names associated with the above sampling theorem. The most common

ones among the mathematical community are the Whittaker-Kotenl’nikov-Shannon or simply

WKS/WSK sampling theorem. The name is attributed to the two Whittakers; Edmund

and (his son) John, Vladmir Kotenl’nikov‖, and Claude Shannon. Among the Engineering

community its known as Shannon’s sampling theorem in honor of Shannon’s revelationary

paper [60] which put its mark in communications theory.

The series appeared in the sampling theorem (1.4.1) is known as the cardinal series

or Whittaker’s interpolation series in honor of John Whittaker, whose work in [71] was a

refinement of the work done earlier by his father. Edmund Whittaker published his highly

cited paper [69] on the sampling theorem in 1915. In his work, among other things, he

introduced the term cotabular functions to refer to functions which have the same uniformly

spaced samples.

‖In 1933, introduced the sampling theorem to the Russian literature in the setting of communication
engineering.
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Some absorbing accounts of the history of the sampling theorem and comprehensive

studies of sampling theory can be found in the works of J. R. Higgins [32], A. J. Jerri [36],

Robert J. Marks II [47], Ahmed I. Zayed [72], and references therein.

Sampling theorem has been extended and generalized in many avenues; to non-

uniform sampling, sampling with non-bandlimited signals, multi-dimensional sampling etc.

to name a few.

1.4.2 Significance of the sampling theorem in mathematics

Even though having already made its mark in communication engineering and infor-

mation theory, the sampling theorem itself or even its equivalent forms play a unique role in

several branches of mathematics, directly and indirectly (see [20], [33]). The direct impact

being in the fields of combinatorics, reproducing kernel Hilbert space, frame theory, etc. The

more general form of the sampling theorems are valid not only for band-limited functions,

but also are shown to be equivalent to three fundamental theorems in mathematics.

1. Poisson summation formula (of Fourier analysis)

2. Cauchy’s integral formula (of Complex function theory)

3. Euler-Maclaurin summation formula (of Numerical analysis)

The aforementioned equivalence is in the sense that each stated formula can be obtained

from the sampling theorem by elementary methods. Because of these indirect connections,

sampling theorem becomes applicable in a broad spectrum.

One of the recent developments of sampling theory is in the field of special functions,

where the sampling theorem has proven to be a bona fide tool in summing infinite series.
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(see [72, Chapter 7] and references therein)

1.5 Gosper’s ingenious contribution in discovering series identities

In the early 1980s, using some computer experimentation with the package Macsyma,

R. William Gosper formulated several infinite series identities involving trigonometric func-

tions. Through indirect communications, Gosper passes the message about his identities

with some interested parties. Motivated from this, in 1993, Mourad Ismail and Ruming

Zhang (with Gosper himself) in [27] verified several of those identities utilizing techniques

from Fourier transform and Mittag-Leffler expansions for meromorphic functions. In fact, Is-

mail and Zhang extended some of the identities from trigonometric to Bessel functions of the

first kind. After this work, in the same year, A. I. Zayed [73] proved that some of Gosper’s

formulas and their generalizations by Ismail and Zhang can in fact be obtained from already

known results in Sampling theory. In addition, applying those results to different types of

special functions, Zayed derived some new summation formulas as well.
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CHAPTER 2: FORMULATION OF THE PROBLEMS AND

OUTLINE OF THE DISSERTATION

The formulation of the problem is often more essential than its solution, which may be

merely a matter of mathematical or experimental skill.

Albert Einstein

In this chapter we narrow down the contents mentioned in Chapter 1 and focused

on the formulation of problems of the dissertation with the main theme throughout being

the Bernstein inequality. For the stated problems, the subsequent chapters will comprise of

results which provide the solutions in most cases or partial solutions in some cases.

2.1 A brief review of some generalizations of Bernstein inequality

For p ∈ Pn, recall the Bernstein inequality for the unit circle:

‖p′‖T ≤ n ‖p‖T , (2.1.1)

which is clearly sharp and the equality holds if p(z) = czn where c is a constant, i.e., a

polynomial whose n zeros are at the origin.

So it is natural to seek for improvements, let alone generalizations and extensions of

(2.1.1) by restricting the zeros of the polynomial. For starters, by considering the class of

polynomials which does not vanish in |z| ≤ 1, Paul Erdös conjectured and Peter Lax proved

the following [40]:

‖p′‖T ≤
n

2
‖p‖T , (2.1.2)
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which is sharp and equality holds in (2.1.2) for the polynomial p(z) = α + βzn, where

|α| = |β| = 1.

A reverse inequality to (2.1.2) can be obtained by restricting the zeros of the poly-

nomials to inside the unit disk. In [65], by considering the class of polynomials which does

not vanish in |z| ≥ 1, Pál Turán proved the following:

‖p′‖T ≥
n

2
‖p‖T , (2.1.3)

which is sharp and equality holds in (2.1.3) if all the zeros of p(z) lie on |z| = 1.

The aforementioned inequalities are the cornerstone of our study. Over the years,

several generalizations and extensions had been obtained. Among those results what we

focused on were Bernstein-type inequalities for polynomials when zeros were restricted to

disks smaller and larger than the unit disk. What follows next is a brief literature review

along this direction.

First, in 1969, Mohammad Abdul Malik [45] established the following generalizations

to (2.1.2) and (2.1.3) respectively.

Theorem 2.1.1. For p ∈ Pn with |p(z)| ≤ 1 on |z| ≤ 1 and if p(z) has no zero in the disk

|z| < k, k ≥ 1, then

|p′(z)| ≤ n

1 + k
, (2.1.4)

holds with equality for the polynomial p(z) =

(
z + k

1 + k

)n
.

Theorem 2.1.2. For p ∈ Pn with all its zeros in |z| ≤ k ≤ 1,

‖p′‖T ≥
n

1 + k
‖p‖T , (2.1.5)
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holds with equality for the polynomial p(z) =

(
z + k

1 + k

)n
.

Few years later, in 1973, an interesting, alternative proof for (2.1.5) was presented

by Narendra Kumar Govil in [28]. In addition, to answer to the question: What happens to

(2.1.5) for k > 1 ?, he proved the following:

Theorem 2.1.3. For p ∈ Pn with ‖p‖T = 1 and if p(z) has all its zeros in |z| ≤ k, k ≥ 1,

then

‖p′‖T ≥
n

1 + kn
, (2.1.6)

with equality for the polynomial p(z) =
zn + kn

1 + kn
.

So for k < 1, the extremal polynomial is p(z) =

(
z + k

1 + k

)n
, while for k > 1, the

extremal polynomial is p(z) =
zn + kn

1 + kn
. The critical value being 1. A smooth transition

from k < 1 to k > 1 is yet to be addressed properly, which we would like to mention as a

conjecture.

For p ∈ Pn, by Bernstein lemma we refer to the following inequality (see [53, p.158,

Problem 269]): for R > 1,

max
|z|=R

|p(z)| ≤ Rn ‖p‖T . (2.1.7)

As a sharpening to (2.1.7), using the Erdos-Lax inequality, (2.1.2), in [3] Nesmith C.

Ankeny and Theodore J. Rivlin proved the following:

Theorem 2.1.4. For p ∈ Pn such that ‖p‖T = 1, with no zeros in |z| ≤ 1, then

max
|z|=R

|p(z)| ≤ 1 +Rn

2
, (2.1.8)
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with equality for the polynomial p(z) =
λ+ µzn

2
, where |λ| = |µ| = 1.

As a further sharpening to the Erdös-Lax inequality, (2.1.2), in 1988, Abdul Aziz and

Q. M. Dawood in [7] proved the following:

‖p′‖T ≤
n

2

{
‖p‖T −min

|z|=1
|p(z)|

}
. (2.1.9)

The inequality is sharp for p(z) = αzn + β, where |β| ≥ |α|. As an application to (2.1.9),

they also proved the following generalization to (2.1.8).

Theorem 2.1.5. For p ∈ Pn with no zeros in |z| < 1, then

max
|z|=R

|p(z)| ≤
(
Rn + 1

2

)
‖p‖T −

(
Rn − 1

2

)
min
|z|=1
|p(z)| , (2.1.10)

with equality for the polynomial p(z) = αzn + β, where |β| ≥ |α|.

In the same paper [7], by considering the minimum modulus of a polynomial which

does not vanish in |z| ≥ 1, Aziz and Dawood established couple of inequalities, which can be

regarded as companion inequalities for the Bernstein inequality (2.1.1) and Bernstein lemma

(2.1.7) respectively:

min
|z|=1
|p′(z)| ≥ nmin

|z|=1
|p(z)| , (2.1.11)

min
|z|=R

|p(z)| ≥ Rn min
|z|=1
|p(z)| . (2.1.12)

Both estimates are sharp with equality for the polynomial p(z) = meiαzn, m > 0.

In the dissertation, we were interested in generalizing the aforementioned inequalities,

from (2.1.4) through (2.1.12) to rational functions. Chapter 3 is devoted to accomplish this
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task, where we considered the space of rational functions whose poles were prescribed to

outside the unit disk and the zeros were restricted in conformity with the hypotheses of the

corresponding polynomial problem. Our results were proved through some auxiliary results,

which are pertinent in their own right.

2.2 Askey-Wilson operator on Polynomials and Entire functions

Askey-Wilson operator, Dq is a discretized version of the ordinary derivative operator.

Bernstein inequality being the main focus, our objective was to obtain Bernstein inequal-

ity(ies) for Dq. The motivation to our approach being the knowledge that the Bernstein

inequalities are often proved through a legitimate interpolation formula, as in the cases of

M. Riesz [57] and R. P. Boas Jr. [14] in establishing Bernstein inequalities for trigonometric

polynomials and functions of exponential type respectively. This motivated us to work in ob-

taining similar interpolation formulas with the Askey-Wilson operator, which will ultimately

lead us to the Bernstein inequalities we need. Once Bernstein inequalities are obtained, they

can be used in related results, especially in proving inverse approximation theorems. In

view of the uniform convergence of the Boas’ interpolation formula by differentiating it term

by term and with the use of a suitable translation to the variable leads to the (classical)

sampling theorem, which can be used in deriving summation identities.

In Chapter 4, we first establish a Riesz-type interpolation formula on the interval

[−1, 1] for the Askey-Wilson operator. As consequences, a sharp Bernstein inequality and a

Markov inequality are obtained when differentiation is replaced by the Askey-Wilson opera-

tor. Moreover, an inverse approximation theorem is proved using a Bernstein type inequality

in L2−space. We conclude chapter 4 with an overconvergence result which is applied to char-

acterize all q-differentiable functions of Brown and Ismail.
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Chapter 5 presents an intriguing application of the Askey-Wilson operator. By apply-

ing it on the Classical Sampling Theorem, we obtain a series representation formula, which

is what we called an extended Boas’ formula. Its power in discovering interesting summa-

tion formulas, some known and some new will be demonstrated. The chapter is concluded

in establishing Bernstein-type inequalities with the Askey-Wilson operator for functions of

exponential type in pointwise and in uniform Lp-norm for p ≥ 1.

2.3 Publication based on results of this dissertation

Finally, in this section, we list the papers prepared based on results established in this

dissertation. Some papers have been accepted, some submitted, and some in preparation.

1. Some of the ideas appear in Chapter 3 was appeared under the title Rational Inequal-

ities Inspired by Rahman’s Research in [42].

2. The contents which comprise the material in Chapter 4 has already been submitted to

the Journal of Approximation Theory under the title A Bernstein Type Inequality for

the Askey-Wilson Operator. At the time of writing this dissertation, we have received

a favorable report from the editor.

3. The subject matter in Chapter 5 except the last section appeared in [44], Proceedings

of American Mathematical Society under the title Askey-Wilson Operator on Entire

Functions of Exponential Type, which has already been accepted and is made available

online.

4. Material that appeared in section 5.5 is in preprint under the title Bernstein inequality

for functions of exponential type with the Askey-Wilson operator.

18



CHAPTER 3: SOME NEW INEQUALITIES FOR RATIONAL

FUNCTIONS WITH PRESCRIBED POLES AND

RESTRICTED ZEROES

“There are three reasons for the study of inequalities: practical, theoretical, and aesthetic.

As has been pointed out, beauty is in the eyes of the beholder. However, it is generally

agreed certain pieces of music, art, or mathematics are beautiful. There is an elegance to

inequalities that makes them very attractive.”

Richard Bellman

3.1 Rational Functions

Recall that by Pn, we denote the space of complex algebraic polynomials of degree at

most n and by Rn the space of rational functions with at most n poles, a1, a2, . . . , an with a

finite limit at ∞. Let w(z) =
n∏
j=1

(z − aj), and

Rn :=
{
r : r =

p

w
, p ∈ Pn

}
.

For p ∈ Pn, define the inverse polynomial of p by p∗(z) := zn p

(
1

z

)
. So for w, we have

w∗(z) =
n∏
j=1

(1− ajz).

Also, let

B(z) :=
w∗(z)

w(z)
=
znw(1/z)

w(z)
=

n∏
j=1

1− ajz
z − aj

.

19



So B(z) is a finite Blaschke product of degree n. In particular, B(z) ∈ Rn and |B(z)| = 1

when |z| = 1. For r ∈ Rn, the inversion r∗ of r is defined by

r∗(z) := B(z) r

(
1

z

)
.

If r = p/w, then r∗ = p∗/w and hence r∗ ∈ Rn. The derivative of r∗(·) will be denoted by

(r∗)′(·). Throughout this chapter, we copiously consider the sup-norm on the unit circle.

Henceforth we simply use ‖·‖ as oppose to ‖·‖T, introduced in Chapter 1.

3.2 Overview

One of the key directions in generalizing Bernstein-type inequalities for polynomials

is to the space of rational functions, which, over the years has gained much interest. In this

connection, Xin Li, Ram Mohaparta, Rene S. Rodriguez in [43] established some significant

results, which were cornerstone for many authors to follow; to name a few, A. Aziz, B. A.

Zarger, W. M. Shah (see [8], [9], [10]) obtained rational analogues by considering restricted

zeros and prescribed poles.

Polynomials can be viewed as rational functions whose distinct poles are all fixed at

infinity. So an inequality for rational function reduces to its polynomial counterpart in the

limit as all poles approach to ∞ (r(z) → p(z), B(z) → zn, |B′(z)| → n etc.). To establish

rational analogues for the corresponding polynomial inequalities, the proofs of the polynomial

counterparts cannot just be imitated; the key observation being the presence of the poles.

Also, the polynomial inequalities are often proved through as an application of a Laguerre’s
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theorem∗ or Grace’s theorem† or even as an equivalent form of the two, which are not readily

available for rational functions. In this connection, Frank Bonsall and Morris Marden ([17,

Theorem 1]) established a result, which states that the counting of the critical points of a

rational function depends not only on its number of zeros but also on its distinct number of

poles. So there is no direct extension of Laguerre’s theorem and Grace’s theorem to rational

functions. So, we have to find alternative proofs for rational case.

In the next section, we state rational analogues to the polynomial inequalities stated

in the previous chapter (Section 2.1). Although, some of our results are not sharp, they do

reduce to their polynomial counterparts in the limit as all poles approach to infinity.

3.3 Statements of our results

Our first result is a rational analogue of the Ankeny-Rivlin inequality, (2.1.8).

Theorem 3.3.1. Let r ∈ Rn with no zeros in |z| ≤ 1 and let R̂ := minj{|aj|}. Then for

|z| = R ≥ 1,

max
|z|=R

|r(z)| ≤ ‖r‖+ ‖r‖
{
‖B′‖

2

(
Rn − 1

n

)
+

2n

(R̂−R)

(
Rn+1 − 1

n+ 1

)}(
R̂ + 1

R

R̂−R

)n

. (3.3.1)

∗[39] A circular domain is the image of the unit disk (open or closed) under a linear transformation.
Laguerre’s theorem states that: For p ∈ Pn and p(z) 6= 0 in a (closed or open) circular domain K, then

np(z)− (z − ζ)p′(z) 6= 0 for z, ζ ∈ K

which in the case ζ =∞ means p′(z) 6= 0 for z ∈ K.

†[30] Two polynomials p, q ∈ Pn are apolar if

n∑
k=0

(−1)kpk(0)g(n−k)(0) = 0.

For such two apolar polynomials, Grace’s theorem states that every circular domain that contains all the
zeros of one of them contains at least one zero of the other.
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Remark 3.3.2. In the limit as all poles approach to infinity, i.e., aj →∞, for j = 1, 2, . . . , n,

R̂→∞. So (3.3.1) is a limiting case of (2.1.8).

The next two pointwise estimates are rational analogues of Aziz and Dawoods’s re-

sults, (2.1.11) and (2.1.12).

Theorem 3.3.3. Assume that r ∈ Rn has all its zeros in |z| ≤ 1. Then

|r′(z)| ≥ |B′(z)|min
|z|=1
|r(z)| for |z| = 1. (3.3.2)

and

|r(z)| ≥ |B(Reiθ)|min
|z|=1
|r(z)| for |z| = R ≥ 1. (3.3.3)

Remark 3.3.4. Inequality (3.3.2) can be rewritten as

|B′(z)|
min|z|=1 |B(z)|

= inf
r∈R∗n

|r′(z)|
min|z|=1 |r(z)|

, (3.3.4)

where R∗n denotes the set of all rational functions, Rn, with zeros in |z| ≤ 1.

A. Aziz and W. M. Shah in [8] generalized Malik’s inequality, (2.1.5), by proving the

following:

Theorem 3.3.5. Suppose r ∈ Rn has all its zeros in |z| ≤ k ≤ 1, then for |z| = 1 the

following holds:

|r′(z)| ≥
(
|B′(z)|

2
+
n

2

1− k
1 + k

)
|r(z)| . (3.3.5)

The result is sharp and equality holds for r(z) =

(
z + k

z − a

)n
, where a > 1, and B(z) =

(
1− az
z − a

)n
evaluated at z = 1.
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A. Aziz and B. A. Zarger in [10] obtained a generalization of one of Malik’s inequal-

ities, (2.1.4), by proving the following:

Theorem 3.3.6. Suppose r ∈ Rn has all its zeros in |z| ≥ K, where K ≥ 1, with ‖r‖ = 1,

then

|r′(z)| ≤ |B
′(z)|
2
− n

2

(K − 1)

K + 1
|r(z)|2 for |z| = 1. (3.3.6)

The result is sharp and equality holds for r(z) =

(
z +K

z − a

)n
, where a > 1, and B(z) =

(
1− az
z − a

)n
evaluated at z = 1.

Our next result is a different version of (3.3.6).

Theorem 3.3.7. Let r ∈ Rn, |r(z)| ≤ 1 for |z| ≤ 1, with no zeros in |z| ≤ K,K ≥ 1, then

|r′(z)| ≤
(

1− |r(z)|
2

)
|B′(z)| − n

2

(
K − 1

K + 1

)
|r(z)| for |z| = 1. (3.3.7)

Remark 3.3.8. We comment on comparisons between (3.3.7) and (3.3.6).

(a) If |B′(z)| > n
K − 1

K + 1
, then their result is better for z such that

|r(z)| < 1. (3.3.8)

(b) If |B′(z)| < n
K − 1

K + 1
, then our result is better for z such that

|B′(z)|
n

K + 1

K − 1
< |r(z)| < 1. (3.3.9)

and their result is better for z such that

|r(z)| < |B
′(z)|
n

K + 1

K − 1
(3.3.10)
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To illustrate this we consider the single pole case, where all poles are at a = r̃eiθ, r̃ > 1.

Then taking the logarithmic derivative of B(z),

zB′(z)

B(z)
=

n∑
j=1

|aj|2 − 1

|z − aj|2
= n

r̃2 − 1

|z − r̃eiθ|2
,

which for |z| = 1,

|B′(z)|
n

=
r̃2 − 1

|z − r̃eiθ|2
.

Using this in (3.3.9),

r̃2 − 1

|z − r̃eiθ|2
<
K − 1

K + 1
,

which for |z| = 1, yields 0 < K − r(K − 1) cos(θ) − r2. This inequality holds for all θ such

that 0 ≤ θ < 2π. So in particular, if θ = π/2, then r <
√
K. So (3.3.7) is better than (3.3.6)

when r <
√
K.

We generalized the other Malik’s inequality, (2.1.5) by proving the following.

Theorem 3.3.9. Let r ∈ Rn and assume that all its n zeros are in |z| ≤ k ≤ 1. Then

|r′(z)| ≥
(
|B′(z)|

2
+
n

2

1− k
1 + k

)
|r(z)| for |z| = 1. (3.3.11)

Theorem 3.3.10. Let r ∈ Rn with all its zeros in |z| ≤ K, 1 ≤ K2 < R̂, where R̂ =

minj |aj|. Then, for 0 ≤ θ < 2π, the following holds:

‖r′‖ ≥
min|z|=1 |B′(z)| − ‖f‖

1 + max|z|=1

∣∣∣B(K2z)
Q(Kz)

∣∣∣ ‖r‖ , (3.3.12)

where f(z) =
2nK2

R̂−R

∣∣∣∣B(K2z)

Q(Kz)

∣∣∣∣+K

∣∣∣∣Q′(Kz)

Q(Kz)

∣∣∣∣ with Q(z) =
BK(z)

B(z/K)
=

n∏
j=1

z − ajK
Kz − aj

. Here
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BK(z) is the Blaschke product associated with the rational function r(Kz) and is defined by

BK(z) =
n∏
j=1

1− aj/Kz
z − aj/K

.

Remark 3.3.11. Though our result is not sharp, it does reduce to its polynomial inequality,

(2.1.6) when aj → ∞ for all j. The condition K2 < R̂ is necessary to make sure that no

overlapping occurs when points on the unit circle moves to |z| = K > 1 and when poles

shrink towards the unit circle due to the condition |aj|/K < 1.

3.4 Proofs

In this section we present some auxiliary results which were used in establishing

rational analogues of the results stated in the previous section. Our proofs adapt the ideas

of Govil [28]; Li, Mohapatra and Rodriguez [43]; and Li [41].

We first prove a pointwise estimate which is a rational analogue of the Bernstein

lemma for polynomials, (2.1.7).

Lemma 3.4.1 (Bernstein Lemma for Rn). Let r ∈ Rn, then

|r(z)| ≤ |B(z)| ‖r‖ for |z| ≥ 1. (3.4.1)

Indeed, a sharpened version of the above result is needed. By Pn−m, m ≥ 0, we

denote the set of polynomials of degree n−m.

Lemma 3.4.2 (Generalized Bernstein lemma for Rn). Let r ∈ Rn and write r(z) =
p(z)

w(z)
,

where p ∈ Pn−m for some m ≥ 0. Then

|r(z)| ≤
∣∣∣∣B(z)

zm

∣∣∣∣ ‖r‖ for |z| ≥ 1. (3.4.2)
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Proof. Note that

zmr(z)

B(z)
=

zm p(z)∏n
k=1 1− akz

,

is a polynomial analytic in |z| ≥ 1 including the point at ∞.

We have,

max
|z|=1

∣∣∣∣zm r(z)

B(z)

∣∣∣∣ ≥ max
|z|=R

∣∣∣∣zm r(z)

B(z)

∣∣∣∣
or, equivalently

|r(z)| ≤
∣∣∣∣B(z)

zm

∣∣∣∣ · ‖r‖ for |z| ≥ 1.

Remark 3.4.3. Taking m = 0, we obtain Lemma 3.4.1.

Following result is due to Li et al.(see [43, Theorem 3]), which is a generalization

of Erdös-Lax inequality for rational functions.

Lemma 3.4.4. Let r ∈ Rn with all its zeros in |z| ≥ 1. Then, for |z| = 1,

|r′(z)| ≤ 1

2
|B′(z)| ‖r‖ . (3.4.3)

Equality in (3.4.3) holds for r(z) = αB(z) + β with |α| = |β| = 1.

The key to our proof of Theorem 3.3.1 is the following Bernstein-type lemma for the

derivative of a rational function, r′(z), for |z| > 1.

Lemma 3.4.5. Let r ∈ Rn with all its zeros in |z| ≥ 1 and let R̂ = minj{|aj|}, for j =

1, . . . , n. Then for |z| ≥ 1,

|r′(z)| ≤ 1

2
‖B′‖ ‖r‖ |B(z)|

|z|
+

2n‖r‖
R̂− |z|

|B(z)|. (3.4.4)
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Proof. Note that

r′(z) =
p′(z)w(z)− w′(z)p(z)

w2(z)
=
p′(z)

w(z)
− p(z)

w(z)

w′(z)

w(z)
.

So ∣∣∣∣p′(z)

w(z)

∣∣∣∣ =

∣∣∣∣r′(z) + r(z)
w′(z)

w(z)

∣∣∣∣ ≤ |r′(z)|+ |r(z)|
∣∣∣∣w′(z)

w(z)

∣∣∣∣. (3.4.5)

and

|r′(z)| =
∣∣∣∣p′(z)

w(z)
− p(z)

w(z)

w′(z)

w(z)

∣∣∣∣ ≤ ∣∣∣∣p′(z)

w(z)

∣∣∣∣+ |r(z)|
∣∣∣∣w′(z)

w(z)

∣∣∣∣ . (3.4.6)

To estimate |r′(z)| for |z| ≥ 1, we estimate the two terms on the right of (3.4.6) for |z| ≥ 1.

First consider

∣∣∣∣p′(z)

w(z)

∣∣∣∣. Applying Lemma 3.4.2 with m = 1, we get

∣∣∣∣p′(z)

w(z)

∣∣∣∣ ≤ ∣∣∣∣B(z)

z

∣∣∣∣ ∥∥∥∥p′w
∥∥∥∥ for |z| ≥ 1. (3.4.7)

Estimating (3.4.5) on |z| = 1 and using it on the right hand side of (3.4.7), we get

∣∣∣∣p′(z)

w(z)

∣∣∣∣ ≤ |B(z)|
|z|

(
‖r′‖+ ‖r‖

∥∥∥∥w′w
∥∥∥∥) for |z| ≥ 1. (3.4.8)

Now, using (3.4.8) in (3.4.6), we get

|r′(z)| ≤
(
‖r′‖+ ‖r‖

∥∥∥∥w′w
∥∥∥∥) |B(z)|

|z|
+ |r(z)|

∣∣∣∣w′(z)

w(z)

∣∣∣∣ for |z| ≥ 1.

Next, to estimate |r(z)| (for |z| ≥ 1) on the right hand side above, we use Lemma 3.4.1;

which yields

|r′(z)| ≤
{(
‖r′‖+ ‖r‖

∥∥∥∥w′w
∥∥∥∥) 1

|z|
+ ‖r‖

∣∣∣∣w′(z)

w(z)

∣∣∣∣ }|B(z)|.
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Applying Lemma 3.4.4 to estimate |r′(z)| on |z| = 1, we get

|r′(z)| ≤
{(

1

2
‖B′‖‖r‖+ ‖r‖

∥∥∥∥w′w
∥∥∥∥) 1

|z|
+ ‖r‖

∣∣∣∣w′(z)

w(z)

∣∣∣∣ }|B(z)| for |z| ≥ 1. (3.4.9)

Now, note that, for ζ = Reiθ, R ≥ 1, we have

∣∣∣∣w′(ζ)

w(ζ)

∣∣∣∣ =

∣∣∣∣w′(Reiθ)w(Reiθ)

∣∣∣∣ =

∣∣∣∣∣
n∑
j=1

(
1

Reiθ − aj

)∣∣∣∣∣ ≤
n∑
j=1

1

|aj| −R
≤ n

R̂−R
,

provided R < R̂ ≤ |aj|. That is, for |ζ| ≥ 1, we have

∣∣∣∣w′(ζ)

w(ζ)

∣∣∣∣ ≤ n

R̂− |ζ|
. (3.4.10)

Since
w′(z)

w(z)
=

n∑
j=1

1

z − aj
is analytic in |z| ≤ R, by maximum modulus principle it follows

that ∣∣∣∣w′(z)

w(z)

∣∣∣∣ ≤ max
|z|=R

∣∣∣∣w′(z)

w(z)

∣∣∣∣ for |z| ≤ R.

In particular, with (3.4.10), it follows that

max
|z|=1

∣∣∣∣w′(z)

w(z)

∣∣∣∣ ≤ max
|z|=R

∣∣∣∣w′(z)

w(z)

∣∣∣∣ ≤ n

R̂−R
. (3.4.11)

Note that, with (3.4.11), for |z| = R ≥ 1, we obtain

‖r‖ |B(z)|
|z|

max
|ζ|=1

∣∣∣∣w′(ζ)

w(ζ)

∣∣∣∣+ ‖r‖ |B(z)|max
|ζ|=R

∣∣∣∣w′(ζ)

w(ζ)

∣∣∣∣ ≤ { 1

R
+ 1

}
n

R̂−R
‖r‖ |B(z)|

≤ 2n|B(z)|
R̂−R

· ‖r‖.

Finally, using the penultimate line in (3.4.9) we obtain the desired estimate.
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Lemma 3.4.6. Let r ∈ Rn with all its zeros in |z| ≥ 1. Then for |z| = R ≥ 1,

∣∣∣∣( r(z)

B(z)

)′∣∣∣∣ ≤ {‖B′‖2
+

∥∥∥∥w′w
∥∥∥∥} · ‖r‖R +

∣∣∣∣(w∗)′(z)

w∗(z)

∣∣∣∣ · ‖r‖. (3.4.12)

Proof. Note that

∣∣∣∣( r(z)

B(z)

)′∣∣∣∣ =

∣∣∣∣( p(z)

w∗(z)

)′∣∣∣∣ =

∣∣∣∣ p′(z)

w∗(z)
− p(z)

w∗(z)
· (w∗)′(z)

w∗(z)

∣∣∣∣
≤
∣∣∣∣ p′(z)

w∗(z)

∣∣∣∣+

∣∣∣∣ p(z)

w∗(z)

∣∣∣∣ · ∣∣∣∣(w∗)′(z)

w∗(z)

∣∣∣∣ . (3.4.13)

Since both zp′(z)/w∗(z) and p(z)/w∗(z) are analytic outside |z| = 1 including the point at

∞, by maximum modulus principle, for |z| > 1 we have

∣∣∣∣zp′(z)

w∗(z)

∣∣∣∣ ≤ max
|z|=1

∣∣∣∣ p′(z)

w∗(z)

∣∣∣∣ (3.4.14)

and ∣∣∣∣ p(z)

w∗(z)

∣∣∣∣ ≤ max
|z|=1

∣∣∣∣ p(z)

w∗(z)

∣∣∣∣ (3.4.15)

First, considering (3.4.14) on |z| > 1, we get

∣∣∣∣zp′(z)

w∗(z)

∣∣∣∣ ≤ ∥∥∥∥ p′w∗
∥∥∥∥ =

∥∥∥∥p′w
∥∥∥∥ ≤ ∥∥∥∥r′ + r · w

′

w

∥∥∥∥
≤ ‖r′‖+ ‖r‖ ·

∥∥∥∥w′w
∥∥∥∥

≤
{
‖B′‖

2
+

∥∥∥∥w′w
∥∥∥∥} · ‖r‖.

The penultimate line follows from applying Lemma 3.4.4. So for |z| = R ≥ 1, we get

∣∣∣∣ p′(z)

w∗(z)

∣∣∣∣ ≤ {‖B′‖2
+

∥∥∥∥w′w
∥∥∥∥} · ‖r‖R . (3.4.16)
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Next, considering (3.4.15) on |z| > 1, we get

∣∣∣∣ p(z)

w∗(z)

∣∣∣∣ ≤ ∥∥∥ pw∗∥∥∥ =
∥∥∥ p
w

∥∥∥ = ‖r‖ (3.4.17)

Now, using (3.4.16) and (3.4.17) in (3.4.13), the desired result follows.

Lemma 3.4.7. Let r ∈ Rn with no zeros in |z| ≤ 1 and let βj = e−iθ/aj, for j = 1, . . . , n.

Then for |z| = R ≥ 1,

max
|z|=R

∣∣∣∣ r(z)

B(z)

∣∣∣∣ ≤ ‖r‖+

{
‖B′‖

2
+

∥∥∥∥w′w
∥∥∥∥}‖r‖ (R− 1)

R
+ n Re

(
ln

(
R− β
1− β

))
, (3.4.18)

where β := minj |βj|.

Proof. For 0 ≤ θ < 2π and R > 1, we have

r(Reiθ)

B(Reiθ)
− r(eiθ)

B(eiθ)
=

∫ R

1

eiθ
(
r(teiθ)

B(teiθ)

)′
dt.

Using Lemma 3.4.6 it follows that

∣∣∣∣ r(Reiθ)B(Reiθ)
− r(eiθ)

B(eiθ)

∣∣∣∣ ≤ ∫ R

1

∣∣∣∣∣
(
r(teiθ)

B(teiθ)

)′∣∣∣∣∣ dt
≤
{
‖B′‖

2
+

∥∥∥∥w′w
∥∥∥∥} · ‖r‖(R− 1)

R
+ ‖r‖ ·

∫ R

1

∣∣∣∣(w∗)′(teiθ)w∗(teiθ)

∣∣∣∣ dt. (3.4.19)

As mentioned in the introduction, for w(z) =
n∏
j=1

(z − aj), its inverse polynomial w∗(z) =

n∏
j=1

(1− ajz). Taking the logarithmic derivative of w∗(z), and integrating from 1 to R we get
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the following:

∫ R

1

∣∣∣∣(w∗)′(teiθ)w∗(teiθ)

∣∣∣∣ dt ≤ ∫ R

1

n∑
j=1

1

|t− βj|
dt for βj = e−iθ/aj

=
n∑
j=1

∫ R

1

1

|t− βj|
dt

=
n∑
j=1

Re

(
ln

(
R− βj
1− βj

))
. (3.4.20)

Now (3.4.19) yields

∣∣∣∣ r(Reiθ)B(Reiθ)

∣∣∣∣ ≤ |r(eiθ)|+{‖B′‖2
+

∥∥∥∥w′w
∥∥∥∥} · ‖r‖(R− 1)

R
+

n∑
j=1

Re

(
ln

(
R− βj
1− βj

))
.

Thus we get

max
|z|=R

∣∣∣∣ r(z)

B(z)

∣∣∣∣ ≤ ‖r‖+

{
‖B′‖

2
+

∥∥∥∥w′w
∥∥∥∥} · ‖r‖ (R− 1)

R
+

n∑
j=1

Re

(
ln

(
R− βj
1− βj

))
.

By letting β := minj |βj| we obtain the desired result.

3.4.1 Generalization of Ankeny and Rivlin’s inequality

Now we are ready to prove Theorem 3.3.1.

Proof of Theorem 3.3.1. Let t be a positive real number such that 1 ≤ t ≤ |aj|, for

j = 1, . . . , n. Note that

|B(t)| =
n∏
j=1

∣∣∣∣1− ajtt− aj

∣∣∣∣ = tn
n∏
j=1

∣∣∣∣1/t− ajt− aj

∣∣∣∣ = tn
n∏
j=1

∣∣∣∣aj − 1/t

aj − t

∣∣∣∣ . (3.4.21)
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Let a = reiθ, r > 1, 0 ≤ θ < 2π. Consider

∣∣∣∣reiθ − 1/t

re−iθ − t

∣∣∣∣. For 1 ≤ t ≤ R < R̂ ≤ r, we obtain

the following estimates: ∣∣∣∣reiθ − 1/t

re−iθ − t

∣∣∣∣ ≤ r + 1
t

r− t
≤
R̂ + 1

R

R̂−R
. (3.4.22)

Using this in (3.4.21) we get

|B(t)| ≤ |t|n
(
R̂ + 1

R

R̂−R

)n

. (3.4.23)

Now using (3.4.23) in Lemma 4 with z = teiα, 1 ≤ t ≤ R < R̂ ≤ r, we get

|r′(teiα)| ≤ 1

2
‖B′‖ ‖r‖ tn−1

(
R̂ + 1

R

R̂−R

)n

+
2n ‖r‖
R̂− t

tn

(
R̂ + 1

R

R̂−R

)n

.

Since 1 ≤ t ≤ R < R̂, R̂ − t ≥ R̂ − R, so the right hand side of the above inequality is less

than or equals to

1

2
‖B′‖ ‖r‖ tn−1

(
R̂ + 1

R

R̂−R

)n

+
2n ‖r‖
R̂−R

tn

(
R̂ + 1

R

R̂−R

)n

.

i.e.,

|r′(teiα)| ≤ 1

2
‖B′‖ ‖r‖ tn−1

(
R̂ + 1

R

R̂−R

)n

+
2n ‖r‖
R̂−R

tn

(
R̂ + 1

R

R̂−R

)n

. (3.4.24)

Note that, for 0 ≤ α < 2π and R > 1, we have

r(Reiα)− r(eiα) =

∫ R

1

eiαr′(teiα)dt.
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In accordance with (3.4.24), for 0 ≤ θ < 2π and R > 1, it follows that

|r(Reiα)− r(eiα)| ≤
∫ R

1

|r′(teiα)|dt

≤ 1

2
‖B′‖ ‖r‖

(
R̂ + 1

R

R̂−R

)n ∫ R

1

tn−1dt+
2n‖r‖
R̂−R

(
R̂ + 1

R

R̂−R

)n ∫ R

1

tndt

=

{
‖B′‖ ‖r‖

2

(
Rn − 1

n

)
+

2n‖r‖
(R̂−R)

(
Rn+1 − 1

n+ 1

)}(
R̂ + 1

R

R̂−R

)n

.

Thus

|r(Reiα)| ≤ |r(eiα)|+
{
‖B′‖ ‖r‖

2

(
Rn − 1

n

)
+

2n‖r‖
(R̂−R)

(
Rn+1 − 1

n+ 1

)}(
R̂ + 1

R

R̂−R

)n

,

for 0 ≤ θ < 2π and R > 1. Consequently we obtain

max
|z|=R

|r(z)| ≤ ‖r‖+

{
‖B′‖ ‖r‖)

2

(
Rn − 1

n

)
+

2n‖r‖
(R̂−R)

(
Rn+1 − 1

n+ 1

)}(
R̂ + 1

R

R̂−R

)n

,

as desired.

3.4.2 Generalization of Aziz and Dawood’s inequalities

To prove Theorem 3.3.3 we first need the following result of Li ([41, Theorem 3.1]).

Lemma 3.4.8. Let r, s ∈ Rn and assume that s has all its n zeros in |z| ≤ 1, and |r(z)| ≤

|s(z)| for |z| = 1. Then |r′(z)| ≤ |s′(z)| for |z| = 1.

Proof of Theorem 3.3.3. Let m̃ := min|z|=1 |r(z)|. For any complex number α such that

|α| < 1, we have

|α · m̃ ·B(z)| = |α| · m̃ < m̃ ≤ |r(z)| for |z| = 1.
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Since r has all its zeros in |z| ≤ 1, by Lemma 3.4.8, it follows that

|αm̃ ·B′(z)| ≤ |r′(z)| for |z| = 1.

Letting α → 1, we obtain m̃ |B′(z)| ≤ |r′(z)|, for |z| = 1, which proves the desired result,

(3.3.2).

Now to prove (3.3.3), consider r∗(z) = B(z)r(1/z). It is clear that m̃ ≤ |r(z)| = |r∗(z)|, for

|z| = 1. Also, since r has all zeros in |z| ≤ 1, r∗(z) has all its zeros in |z| ≥ 1. Assume

that r∗(z) has no zeros on |z| = 1. Then m̃/r∗(z) is analytic in |z| ≤ 1, and hence by the

maximum modulus principle we have

m̃ ≤ |r∗(z)| for |z| < 1. (3.4.25)

Now, by replacing z with 1/z, (3.4.25) yields

m̃ · |B(z)| ≤ |r(z)| for |z| > 1. (3.4.26)

In particular, for z = Reiθ, R > 1, and 0 ≤ θ < 2π, we have m̃ · |B(Reiθ)| ≤ |r(z)|, which

proves the desired result. Finally, using the continuity of the zeros of r∗(z) we can obtain

the inequality when some zeros of r∗(z) lie on |z| = 1 as well.

3.4.3 Generalization of Malik’s inequalities

It turns out that it is easier to establish the rational version of Theorem 3.3.5 and

use it to prove Theorem 3.3.7. We first prove Theorem 3.3.9, which is a modification of a

proof of Govil in [28, p.543].

34



Proof of Theorem 3.3.9. If b1, b2, . . . , bn are all the zeros of r(z) and if all are in |z| ≤

k ≤ 1, then

∣∣∣∣r′(eiθ)r(eiθ)

∣∣∣∣ ≥ Re

(
eiθ
r′(eiθ)

r(eiθ)

)
=

n∑
j=1

Re

(
eiθ

eiθ − bj

)
−

n∑
j=1

Re

(
eiθ

eiθ − aj

)

≥ n

1 + k
−

n∑
j=1

Re

(
eiθ

eiθ − aj

)
.

Note that

n

2
−

n∑
j=1

Re

(
eiθ

eiθ − aj

)
=
|B′(eiθ)|

2
.

Thus we obtain ∣∣∣∣r′(eiθ)r(eiθ)

∣∣∣∣ ≥ n

2

(
1− k
1 + k

)
+
|B′(eiθ)|

2
,

which implies the desired result.

Proof of Theorem 3.3.7. For any α ∈ R, define R(z) = r(z)−eiα. Then by the Maximum

Modulus Principle, R(z) has no zeros in the disk |z| < 1. So

S(z) = R∗(z) = B(z)R

(
1

z

)
= r∗(z)−B(z)e−iα,

would have no zeros in |z| > 1. By Lemma 3.4.8, for |z| = 1, |R′(z)| ≤ |S ′(z)|. Thus, for

|z| = 1,

|r′(z)| ≤ |(r∗)′(z)−B′(z)e−iα|. (3.4.27)

Choose α such that |(r∗)′(z)−B′(z)e−iα| = |B′(z)| − |(r∗)′(z)|, and use it in (3.4.27) to get

|r′(z)| ≤ |B′(z)| − |(r∗)′(z)| for |z| = 1. (3.4.28)
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Since r has all its zeros in |z| > K, K ≥ 1, r∗(z) has all its zeros in |z| < 1
K
, K ≥ 1. So by

Theorem 3.3.9,

|(r∗)′(z)| ≥
{
n

2

(1− 1/K)

(1 + 1/K)
+
|B′(z)|

2

}
|r(z)| for |z| = 1. (3.4.29)

By (3.4.28) and (3.4.29), for |z| = 1, we obtain

|r′(z)| ≤ |B′(z)| −
{
n

2

(
K − 1

K + 1

)
+
|B′(z)|

2

}
|r(z)|,

as desired.

3.4.4 Generalization of Govil’s inequality

Govil proved his result, (2.1.6) with the help of few auxiliary results. Our proof for a

rational analogue is a modification of Govil’s method. The rational analogue, Theorem 3.3.10

of Govil’s inequality, (2.1.6) requires the restriction K2 < R̂, which is to be understood as a

necessity for no overlapping to occur when points on the unit circle moves to a bigger circle,

|z| = K > 1 and when poles shrink towards the unit circle due to the condition |aj|/K < 1.

Lemma 3.4.9. Let r ∈ Rn with all its zeros in |z| ≤ K, 1 ≤ K2 < R̂, where R̂ = minj{|aj|},

for j = 1, . . . , n. Let BK(z) be the Blaschke product associated with the rational function

r(Kz) and be defined by BK(z) =
n∏
j=1

1− aj/Kz
z − aj/K

. Then for 0 ≤ θ < 2π,

|r′(K2eiθ)| ≥ |Q(Keiθ)|
K2

|(r∗)′(eiθ)| −K
∣∣∣∣Q′(Keiθ)Q(Keiθ)

∣∣∣∣ |r(eiθ)|, (3.4.30)

where Q(z) =
BK(z)

B(z/K)
=

n∏
j=1

z − ajK
Kz − aj

.
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Proof. Define R(z) = r(Kz) for K ≥ 1. Since zeros of r are in |z| ≤ K, zeros of R are in

|z| ≤ 1. Let s(z) = BK(z)R(1/z). So the zeros of s(z) are in |z| ≥ 1. Since |s(z)| = |R(z)| on

|z| = 1 and the function s(z)/R(z) is analytic in |z| ≥ 1 including the point at ∞, from the

maximum modulus principle |s(z)| ≤ |R(z)| for |z| ≥ 1. This implies that |s(Kz)| ≤ |R(Kz)|

for |z| = 1 for any K > 1. It follows that |s′(Kz)| ≤ |R′(Kz)| for |z| = 1 for any K > 1, or

equivalently for |z| ≥ 1,

|s′(z)| ≤ |R′(z)|. (3.4.31)

Now, note that

s(z) =
BK(z)

B(z/K)

B ( z
K

)
r

(
1

z/K

)
=

BK(z)

B(z/K)
r∗
( z
K

)
= Q(z) r∗

( z
K

)
, where Q(z) =

BK(z)

B(z/K)
.

In accordance with this, for z = Keiθ with K ≥ 1 and 0 ≤ θ < 2π, from (3.4.31) it follows

that

|Q(Keiθ)|
K2

|(r∗)′(eiθ)| ≤ |r′(K2eiθ)|+ |Q
′(Keiθ)|
K

|r∗(eiθ)|,

which implies the desired result.

Using Lemma 3.4.9 we prove the following rational analogue for Lemma 2 in [28].

Lemma 3.4.10. Under the same assumptions as in Lemma 3.4.9, for 0 ≤ θ < 2π,

|(r∗)′(eiθ)| ≤
∣∣∣∣B(K2eiθ)

Q(Keiθ)

∣∣∣∣ ‖r′‖+
2nK2

R̂−R

∣∣∣∣B(K2eiθ)

Q(Keiθ)

∣∣∣∣ ‖r‖+K

∣∣∣∣Q′(Keiθ)Q(Keiθ)

∣∣∣∣ |r(eiθ)|, (3.4.32)

holds.
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Proof. By Lemma 3.4.9,

|(r∗)′(eiθ)| ≤ K2

|Q(Keiθ)|
|r′(K2eiθ)|+K

∣∣∣∣Q′(Keiθ)Q(Keiθ)

∣∣∣∣ |r(eiθ)|. (3.4.33)

Applying Lemma 3.4.5 with z = K2eiθ we obtain

|r′(K2eiθ)| ≤ |B(K2eiθ))|
K2

‖r′‖+
2n|B(K2eiθ))|

R̂−R
‖r‖ . (3.4.34)

By (3.4.33) and (3.4.34), the desired result follows.

Remark 3.4.11. Note that a uniform version of (3.4.32) can also be established.

Let

f(z) =
2nK2

R̂−R

∣∣∣∣B(K2z)

Q(Kz)

∣∣∣∣+K

∣∣∣∣Q′(Kz)

Q(Kz)

∣∣∣∣.
Then, from (3.4.32) it follows that

‖(r∗)′‖ ≤ max
|z|=1

∣∣∣∣B(K2z)

Q(Kz)

∣∣∣∣ ‖r′‖+ ‖f‖ ‖r‖ . (3.4.35)

In [43], Li et al. proved the following result which is analogous to Lemma 3 in [28].

Lemma 3.4.12. Let r ∈ Rn, then

|(r∗)′(z)|+ |r′(z)| ≤ |B′(z)| ‖r‖ for |z| = 1, (3.4.36)

and equality holds for r(z) = uB(z) with |u| = 1.

Our next result establishes an inequality that reverses (3.4.36) when ‖r‖ is replaced

by |r(z)|. A rational function r ∈ Rn is called self-inversive if r∗(z) = λr(z) for some |λ| = 1.
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Lemma 3.4.13. Let r ∈ Rn and r(z) ≡ r∗(z), i.e., r is self-inversive. Then

∣∣∣∣ r′(z)

B′(z)

∣∣∣∣ ≥ 1

2
|r(z)| for |z| = 1, (3.4.37)

and equality holds for r(z) = B(z) + 1.

Proof. Write r(z) = r(z). Then r∗(z) = B(z)r(1/z) = B(z) r(1/z), and so

(r∗)′(z) = B′(z) r

(
1

z

)
− B(z)

z2
r′
(

1

z

)
.

Note that for |z| = 1,

|(r∗)′(z)| =
∣∣∣∣B′(z)r

(
1

z

)
− B(z)

z2
r′
(

1

z

)∣∣∣∣ =

∣∣∣∣(zB′(z)

B(z)

)
r(z)− z r′(z)

∣∣∣∣ . (3.4.38)

Taking the logarithmic derivative of B(z), for |z| = 1, we get

zB′(z)

B(z)
=

n∑
j=1

|aj|2 − 1

|z − aj|2
. (3.4.39)

That is, zB′(z)/B(z) is positive. Now, from (3.4.38), for |z| = 1, it follows that

|(r∗)′(z)| = |B′(z)r(z)− r′(z)B(z)|

≥ |B′(z)||r(z)| − |r′(z)|.

The last inequality can be rewritten as

∣∣∣∣(r∗)′(z)

B′(z)

∣∣∣∣+

∣∣∣∣ r′(z)

B′(z)

∣∣∣∣ ≥ |r(z)| for |z| = 1. (3.4.40)

Since r(z) ≡ r∗(z), (3.4.40) yields the desired result.
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Now, we are ready to prove the rational analogue of Govil’s inequality.

Proof of Theorem 3.3.10. For any ε such that |ε| = 1, define

R̃(z) =
1

2
(r(z) + ε · r∗(z)). (3.4.41)

Note that R̃∗(z) ≡ B(z)R̃(z) and max|z|=1 |R̃(z)| = ‖r‖. So applying Lemma 3.4.13 yields

max
|z|=1
|r′(z) + ε · (r∗)′(z)| ≥ |r(z)||B′(z)|, for |z| = 1. (3.4.42)

Equivalently

‖r′‖+ ‖(r∗)′‖ ≥ |r(z)||B(z)|, for |z| = 1.

Using (3.4.35) to estimate from above yields for |z| = 1,

‖r′‖+ max
|z|=1

∣∣∣∣B(K2z)

Q(Kz)

∣∣∣∣ ‖r′‖+ ‖f‖ ‖r‖ ≥ ‖r‖min
|z|=1
|B′(z)|,

from which it follows that

‖r′‖ ≥
min|z|=1 |B′(z)| − ‖f‖

1 + max|z|=1

∣∣∣B(K2z)
Q(Kz)

∣∣∣ ‖r‖ .
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CHAPTER 4: ACTION OF THE ASKEY-WILSON

OPERATOR ON POLYNOMIALS

If things are nice there is probably a good reason why they are nice: and if you do not

know at least one reason for this good fortune, then you still have work to do.

Richard Askey

4.1 Introduction

In 1985, Richard Askey and James Wilson introduced the theory of Askey-Wilson

operator in their study of a class of orthogonal polynomials, the Askey-Wilson polynomials.

(see [6])

Definition 4.1.1. Given a polynomial p, we set p̆(eiθ) := p(x), x = cos θ, that is

p̆(z) = p

(
1

2

(
z +

1

z

))
, z = eiθ. (4.1.1)

The Askey-Wilson operator, Dq, is defined by

(Dqp)(x) =
p̆(q1/2eiθ)− p̆(q−1/2eiθ)
ĕ(q1/2eiθ)− ĕ(q−1/2eiθ)

, (4.1.2)

with e(x) = x. A straightforward calculation shows

ĕ(q1/2eiθ)− ĕ(q−1/2eiθ) = i sin θ · (q1/2 − q−1/2),
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which reduces (4.1.2) to

(Dqp)(x) =
p̆(q1/2eiθ)− p̆(q−1/2eiθ)
i sin θ · (q1/2 − q−1/2)

. (4.1.3)

In the theory of the Askey-Wilson polynomials (see [6]), Dq plays an analogous role

to that of differentiation in the theory of Jacobi, Hermite, and Laguerre polynomials. Note

that Dq is a linear operator, and Dq = D1/q.

Since limq→1− (Dqp) (x) = p′(x) at any point x where p′(x) exists, Dqp can be con-

sidered as a discrete version of the derivative of p. To illustrate this fact we consider an

application. Recall that the Chebyshev polynomials (see [58])

Tn(x) = cos(nθ), x = cos θ, (4.1.4)

and

Un(x) =
sin((n+ 1)θ)

sin(θ)
, x = cos θ. (4.1.5)

From a typical orthogonality argument it can be easily shown that {Tn}∞n=0 and {Un}∞n=0

form an orthogonal basis for L2(1/
√

1− x2) and L2(
√

1− x2), respectively. In fact

∫ 1

−1
Tm(x)Tn(x)

dx√
1− x2

=


0 m 6= n,

π m = n = 0,

π
2

m = n 6= 0.

(4.1.6)

and ∫ 1

−1
Um(x)Un(x)

√
1− x2 dx =

 0 m 6= n,

π
2

m = n.
(4.1.7)
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Now let us apply Dq on Tn using the definition (4.1.3) itself:

(DqTn)(x) =
T̆n(q1/2z)− T̆n(q−1/2z)

(q1/2 − q−1/2) · i sin θ
.

Note that, from

T̆n(z) = Tn

(
1

2

(
z +

1

z

))
, z = eiθ.

T̆n(z) = Tn (cos(θ)) = cos(nθ) =
1

2

(
zn + z−n

)
,

it follows from the uniqueness theorem the above holds for all z and so,

T̆n(q1/2z) =
1

2

(
qn/2zn + q−n/2z−n

)
,

and

T̆n(q−1/2z) =
1

2

(
q−n/2zn + qn/2z−n

)
.

So

T̆n(q1/2z)− T̆n(q−1/2z) =
1

2

{ (
qn/2zn + q−n/2z−n

)
−
(
q−n/2zn + qn/2z−n

) }
= (qn/2 − q−n/2) · 1

2

(
zn − z−n

)
= (qn/2 − q−n/2) · sin(nθ).

From which we obtain

(DqTn)(x) =
qn/2 − q−n/2

q1/2 − q−1/2
· sin(nθ)

sin(θ)
x = cos(θ),

or equivalently

(DqTn)(x) =
qn/2 − q−n/2

q1/2 − q−1/2
Un−1(x). (4.1.8)
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Now in the limit as q → 1−, (DqTn)(x)→ nUn−1(x). Therefore

lim
q→1−

(Dqp)(x) = p′(x),

holds for p ≡ Tn. Indeed, since {Tn(x)} forms a basis for Pn and Dq is a linear operator, the

above relation holds for all polynomials as well.

In this chapter, we will establish some new results using the Askey-Wilson operator.

4.2 Interpolation Formulas and Bernstein Inequalities

In this section, a brief overview will be given on the interpolation formulas for the

derivative of functions in the classes Pn and Tn. Recall that t ∈ Tn if

t(ϕ) = a0 +
n∑
k=1

{ak cos(kϕ) + bk sin(kϕ)}. (4.2.1)

For p ∈ Pn, we have the following Bernstein inequality:

|p′(x)| ≤ n√
1− x2

‖p‖[−1,1] , x ∈ (−1, 1). (4.2.2)

This pointwise inequality eventually leads to a uniform estimate, the Markov inequality:

‖p′‖[−1,1] ≤ n2 ‖p‖[−1,1] , (4.2.3)

which plays a fundamental role in proving the inverse theorems in the theory of approxima-

tion. (4.2.3) can be established from (4.2.2) with the help of the Schur’s inequality ([18,

Theorem 5.1.9, p.233]).
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One common way to establish (4.2.2) is by deriving it from a Bernstein inequality for

trigonometric polynomials:

‖t′‖[0,2π] ≤ n ‖t‖[0,2π] . (4.2.4)

Bernstein claimed (4.2.4) with n replaced by 2n and M. Riesz in [57] gave a very

elegant proof of (4.2.4) with the sharp constant “n” through an interpolating formula for

t′(ϕ):

t′(ϕ) =
1

2n

2n∑
r=1

t(ϕ+ θr)
(−1)r+1

2 sin2
(
θr
2

) , (4.2.5)

where

θr =
2r − 1

2n
π, r = 1, 2, . . . , 2n. (4.2.6)

Let p ∈ Pn. Consider the trigonometric polynomial t(ϕ) = p(cosϕ). By (4.2.5), we

have

p′(cosϕ) · (sinϕ) =
1

2n

2n∑
r=1

p(cos(ϕ+ θr))
(−1)r

2 sin2
(
θr
2

)
or, equivalently,

p′(x) =
1

2n
√

1− x2

2n∑
r=1

p(cos(ϕ+ θr))
(−1)r

2 sin2
(
θr
2

) . (4.2.7)

This is the Riesz’s formula (4.2.5) adapted for algebraic polynomials. Similarly, it is easy

to verify the following consequence of Riesz’s formula on the unit circle. For p ∈ Pn with

|z| = 1, we have

p′(z) =
1

2inz

2n∑
r=1

p(zeiθr)
(−1)r+1

2 sin2
(
θr
2

) . (4.2.8)

In 1974, André Giroux and Qazi Rahman ([26, Lemma 1]) established a discrete version

of (4.2.8): for z = eiϕ, and R > 1, we have

p(Rz) = p(z) +
1

2n

2n∑
k=1

(−1)kAkp(e
i(ϕ+kπ/n)), (4.2.9)
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where

Ak = (Rn − 1) + 2
n−1∑
j=1

(Rn−j − 1) cos

(
jkπ

n

)
. (4.2.10)

The coefficients Ak are positive and

1

2n

2n∑
k=1

Ak = Rn − 1. (4.2.11)

For t ∈ Tn as in (4.2.1), let t̃ denote its ∗conjugate (trigonometric) polynomial:

t̃(ϕ) =
n∑
k=1

{ak sin(kϕ)− bk cos(kϕ)}. (4.2.12)

In 1928, Gábor Szegö [61] extended Riesz’s formula (4.2.5) to the following:

cos(α) · t̃′(ϕ)− sin(α) · t′(ϕ) =
1

2n

2n∑
r=1

(−1)rt(ϕ+ θr,α)
1− (−1)r cos(α)

1− cos(θr,α)
, (4.2.13)

where

θr,α =
rπ

n
− α

n
, r = 1, 2, . . . , 2n.

Remark 4.2.1. When α =
π

2
, θr,α = θr. Accordingly

1− cos(θr,α) = 1− cos(θr) = 2 sin2

(
θr
2

)
.

So Szegö’s formula (4.2.13) reduces to Riesz’s formula (4.2.5).

Remark 4.2.2. For p ∈ Pn with real coefficients, if we let t(ϕ) = Re(p(z)), with z = eiϕ,

∗When ak and bk are all real numbers, t(ϕ) and t̃(ϕ) are respectively the real and imaginary parts of
a0 +

∑n
k=1(ak − ibk)zk for z = eiϕ.
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then t̃(ϕ) = Im(p(z)). So, (4.2.13) gives, for |z| = 1,

Re(e−iαzp′(z)) =
1

2n

2n∑
r=1

(−1)rRe
(
p(zeiθr,α)

) 1− (−1)r cos(α)

2 sin2
(
θr,α
2

) . (4.2.14)

4.3 Bernstein Inequalities for the Askey-Wilson Operator

In this section, we first state our main result, Theorem 4.3.1 from which a Bernstein

inequality for the Askey-Wilson operator is obtained in pointwise norm followed up with

Bernstein inequalities for the Askey-Wilson operator in uniform and integral norms as well.

Immediately after each statement of our results, we show that they are indeed a limiting

case of the corresponding classical result. The proofs of the results in this section will be

given in the subsection 4.4.2.

Theorem 4.3.1. For p ∈ Pn, with x = cosϕ, the following holds:

(Dqp)(x) =
1

2n ·
√

1− x2

2n∑
r=1

(−1)rAr p(cos(ϕ+ θr)), (4.3.1)

where θr =
2r − 1

2n
π, r = 1, 2, . . . , 2n, are as before (4.2.6). The coefficients Ar, r =

1, 2, . . . , 2n, are non-negative constants that are independent of p and x satisfying

Ar =
qn/2 + q−n/2

q1/2 − 2 cos(θr) + q−1/2
, (4.3.2)

and

1

2n

2n∑
r=1

Ar =
qn/2 − q−n/2

q1/2 − q−1/2
. (4.3.3)
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Remark 4.3.2. As q → 1−, (4.3.1) reduces to

p′(x) =
2n√

1− x2
·

2n∑
r=1

(−1)rArp(cos(ϕ+ θr)), (4.3.1)′

with the coefficients satisfying

Ar =
1

2 sin2( θr
2

)
and

1

2n

2n∑
r=1

Ar = n .

This is the Riesz interpolation formula (4.2.5) adapted for algebraic polynomials, (4.2.7).

From (4.3.1), we obtain the following Bernstein-type inequality, which is an analogue

of (4.2.2).

Theorem 4.3.3. For p ∈ Pn, and for x ∈ (−1, 1), the following pointwise estimation holds:

|(Dqp) (x)| ≤ 1√
1− x2

· q
n/2 − q−n/2

q1/2 − q−1/2
· ‖p‖[−1,1] . (4.3.4)

Equality in (4.3.4) holds for p(x) = cTn(x), where Tn(x) is the Chebyshev polynomial of the

first kind and c is an arbitrary constant.

Remark 4.3.4. As q → 1−, (4.3.4) yields

|p′(x)| ≤ n√
1− x2

· ‖p‖[−1,1] , (x ∈ (−1, 1)) (4.3.4)′

which is the Bernstein inequality for p ∈ Pn on [−1, 1].

A uniform version of (4.3.4) can also be established, which is a generalization of the

Markov inequality (4.2.3).
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Theorem 4.3.5. For p ∈ Pn, the following uniform estimation holds:

‖Dqp‖[−1,1] ≤
qn/2 − q−n/2

q1/2 − q−1/2
max

{
n,

1√
1− x2

}
· ‖p‖[−1,1]

≤ n
qn/2 − q−n/2

q1/2 − q−1/2
‖p‖[−1,1] .

(4.3.5)

Remark 4.3.6. As q → 1−, of (4.3.5) yields

‖p′‖ ≤ n2 ‖p‖ , (4.3.5)′

which is the Markov inequality for p ∈ Pn.

Our next result is an integral form of the Bernstein-type inequality.

Theorem 4.3.7. For p ∈ Pn, the following estimation holds:

‖Dqp‖L2(
√
1−x2) ≤

qn/2 − q−n/2

q1/2 − q−1/2
‖p‖L2(1/

√
1−x2) . (4.3.6)

Remark 4.3.8. As q → 1−, (4.3.6) yields

‖p′‖L2(
√
1−x2) ≤ n ‖p‖L2(

√
1−x2) , (4.3.6)′

which is the Bernstein inequality in L2-norm for p ∈ Pn.
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4.4 Proofs

4.4.1 Szegö’s multiplier version

Our proof of the Riesz-type interpolation formula, (4.3.1) is based on the ideas of

Szegö [61]. More precisely, we need the following identity:

Lemma 4.4.1. Let t ∈ Tn and t̃ be its conjugate trigonometric polynomial as in (4.2.1) and

(4.2.12). Let λ0, . . . , λn−1 be given real numbers and define

Λ(t)(ϕ) =
n∑
k=1

λn−k{bk cos(kϕ)− ak sin(kϕ)}, (4.4.1)

and

Λ(t̃)(ϕ) =
n∑
k=1

λn−k{ak cos(kϕ) + bk sin(kϕ)}. (4.4.2)

Then

cos(α) · Λ(t̃)(ϕ)− sin(α) · Λ(t)(ϕ)

=
1

2n

2n∑
r=1

(−1)rt(ϕ+ θr,α)

(
λ0 + 2

n−1∑
k=1

λk cos(kθr,α)

)
,

(4.4.3)

where

θr,α =
rπ

n
− α

n
, r = 1, 2, . . . , 2n.

Remark 4.4.2. The identity (4.4.3) was not explicitly given by Szegö in the above general

form but it was implied in a handwritten note of Dr. N. K. Govil by following Szegö’s

argument of deriving (4.2.13) in [61]. We are grateful to Dr. Ram Mohapatra for making

the note accessible to us. For the convenience of the reader, we give a complete proof here.
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Proof. From t(ϕ) we can compute its Fourier coefficients:

ak =
1

π

∫ π

−π
t(θ) · cos(kθ) dθ

and

bk =
1

π

∫ π

−π
t(θ) · sin(kθ) dθ,

for k = 1, 2, . . . , n.

Note that

Λ(t̃)(ϕ) =
n∑
k=1

λn−k (ak cos(kϕ) + bk sin(kϕ))

=
1

π

∫ π

−π
t(θ) ·

{ n∑
k=1

λn−k · (cos(kϕ) cos(kθ) + sin(kϕ) sin(kθ))

}
dθ

=
1

π

∫ π

−π
t(θ) ·

{ n∑
k=1

λn−k · cos(k(θ − ϕ))

}
dθ

=
1

π

∫ π

−π
t(θ + ϕ)

n∑
k=1

λn−k cos(kθ) dθ,

and

Λ(t)(ϕ) =
n∑
k=1

λn−k (bk cos(kϕ)− ak sin(kϕ))

=
1

π

∫ π

−π
t(θ) ·

{ n∑
k=1

λn−k · (cos(kϕ) sin(kθ)− sin(kϕ) cos(kθ))

}
dθ

=
1

π

∫ π

−π
t(θ) ·

{ n∑
k=1

λn−k · sin(k(θ − ϕ))

}
dθ

=
1

π

∫ π

−π
t(θ + ϕ)

n∑
k=1

λn−k sin(kθ) dθ.
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Then we have

cos(α) · Λ(t̃)(ϕ)− sin(α) · Λ(t)(ϕ)

=
1

π

∫ π

−π
t(θ + ϕ)

n∑
k=1

λn−k
{

cos(kθ) cos(α)− sin(kθ) sin(α)
}
dθ

=
1

π

∫ π

−π
t(θ + ϕ)

n∑
k=1

λn−k cos(kθ + α) dθ.

Since t(θ+ϕ) is a trigonometric polynomial of degree n, from orthogonality relations we can

add cos((2n− k)θ + α)) terms to the sum above without changing the value of the integral:

cos(α) · Λ(t̃)(ϕ)− sin(α) · Λ(t)(ϕ)

=
1

π

∫ π

−π
t(θ + ϕ)

{
λ0 cos(nθ + α) +

n−1∑
k=1

λn−k
[

cos(kθ + α) + cos((2n− k)θ + α))
]}

dθ

=
1

π

∫ π

−π
t(θ + ϕ)

{
λ0 cos(nθ + α) +

n−1∑
k=1

2λn−k cos(nθ + α) · cos((n− k)θ)

}
dθ

=
1

π

∫ π

−π
t(θ + ϕ) cos(nθ + α)

{
λ0 + 2

n∑
k=1

λk cos(kθ)

}
dθ.

Now, we replace cos(nθ+α) by h(nθ+α), where h(θ) is a continuous, periodic function with

period 2π having a Fourier series of the form

h(θ) ∼ cos(θ + α) + c2 sin(2θ + α) + d2 cos(2θ + α) + . . . .

For 0 < r < 1, we take

h(nθ + α) =
1

4r

(
1− r2

1− 2r cos(nθ + α) + r2
− 1− r2

1 + 2r cos(nθ + α) + r2

)
= cos(θ + α)− r2 cos(3θ + α) + r4 cos(θ + α) + . . . .
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In view of the uniform convergence of the right hand side above, we have

cos(α) · Λ(t̃)(ϕ)− sin(α) · Λ(t)(ϕ)

= lim
r→1−

1

4πr

∫ π

−π
t(ϕ+ θ)

{
λ0 + 2

n∑
k=1

λk cos(kθ)

}
×
{

1− r2

1− 2r cos(nθ + α) + r2
− 1− r2

1 + 2r cos(nθ + α) + r2

}
dθ.

(4.4.4)

Using the following well-known property of the Poisson kernel: if F is continuous periodic

with period 2π, then

lim
r→1−

1

4πr

∫ π

−π
F (θ)

(
1− r2

1− 2r cos(nθ + α) + r2
− 1− r2

1 + 2r cos(nθ + α) + r2

)
dθ

=
1

2n

2n∑
r=1
r even

F (θr,α)− 1

2n

2n∑
r=1
r odd

F (θr,α), where θr,α = −α
n

+
rπ

n
, r = 1, 2, . . . , 2n

=
1

2n

2n∑
r=1

(−1)rF (θr,α),

with

F (θ) = t(ϕ+ θ)

{
λ0 + 2

n∑
k=1

λk cos(kθ)

}
;

(4.4.4) yields

cos(α) · Λ(t̃)(ϕ)− sin(α) · Λ(t)(ϕ) =
1

2n

2n∑
r=1

(−1)rt(ϕ+ θr,α)

(
λ0 + 2

n−1∑
k=1

λk cos(kθr,α)

)
,

as desired.

As an application of Lemma 4.4.1 let us give an alternative proof to Giroux and

Rahman’s result, (4.2.9) ([26, Lemma 1]), independent of theirs.
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Proof. Let t(ϕ) = Pn(eiϕ). For R > 1, we have

Pn(Reiϕ)− Pn(eiϕ) =
n∑
k=1

cke
ikϕ(Rk − 1)

=
n∑
k=1

(Rk − 1) (ck cos(kϕ) + ick sin(kϕ))

=
n∑
k=1

(Rk − 1) (ak cos(kϕ) + bk sin(kϕ)) , (ak = ck, bk = ick).

With the notations as in Lemma (4.4.1), the right hand side of the above is Λ(t̃)(ϕ) with

λn−k = Rk − 1. So applying (4.4.3) with α = 0 yields

Pn(Reiϕ)− Pn(eiϕ) =
1

2n

2n∑
r=1

(−1)rPn(eϕ+
rπ
n )

{
(Rn − 1) + 2

n−1∑
k=1

(Rn−k − 1) cos
(
k
rπ

n

)}
,

which is Lemma 1 in [26].

4.4.2 Proofs of the Results in Section 4.3

Before proving Theorem 4.3.1, we first establish the following auxiliary result.

Lemma 4.4.3. For 0 < q < 1 and 0 ≤ θ < 2π, the following holds:

(qn/2 − q−n/2)
(q1/2 − q−1/2)

+ 2
n−1∑
k=1

(qk/2 − q−k/2)
(q1/2 − q−1/2)

cos ((n− k)θ) =
qn/2 − 2 cos(nθ) + q−n/2

q1/2 − 2 cos(θ) + q−1/2
.

Proof. We shall prove

(q1/2 − q−1/2) · (qn/2 − 2 cos(nθ) + q−n/2)

= (q1/2 − 2 cos(θ) + q−1/2)

{
(qn/2 − q−n/2) + 2

n−1∑
k=1

(qk/2 − q−k/2) cos((n− k)θ)

}
,

(4.4.5)
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from which the desired result clearly follows. Indeed, we show that the two cosine trigono-

metric polynomials in (4.4.5) agree on their Fourier coefficients. Let

f(θ) = (q1/2 − 2 cos(θ) + q−1/2)

{
(qn/2 − q−n/2) + 2

n−1∑
k=1

(q(n−k)/2 − q−(n−k)/2) cos(kθ)

}
.

We claim the followings:

(a)
1

2π

∫ π

−π
f(θ) dθ = (q1/2 − q−1/2) · (qn/2 + q−n/2).

(b)

∫ π

−π
f(θ) · cos(kθ) dθ = 0 for k = 1, 2, . . . , n− 1.

(c)
1

π

∫ π

−π
f(θ) · cos(nθ) dθ = −2(q1/2 − q−1/2).

To prove these, we make use of couple of standard orthogonality relations:

∫ π

−π
cos(mθ) · cos(nθ) dθ = πδm,n and

∫ π

−π
cos(mθ) dθ = 0,

where δm,n is the Kronecker delta. In view of these, it is apparent that (b) holds. Proof of

(a) follows from the following computation:

1

2π

∫ π

−π
f(θ) dθ = (q1/2 + q−1/2)(qn/2 − q−n/2)− 1

π
(q(n−1)/2 − q−(n−1)/2)

∫ π

−π
2 cos2(θ) dθ

= q(n+1)/2 − q−(n−1)/2 + q(n−1)/2 − q−(n+1)/2 − 2q(n−1)/2 + 2q−(n−1)/2

=
(
q(n+1)/2 − q−(n+1)/2

)
−
(
q(n−1)/2 − q−(n−1)/2

)
= (q1/2 − q−1/2) · (qn/2 + q−n/2).

To prove (c), multiply f(θ) by cos(nθ) and integrate from −π to π. From the orthogonality

relations, the only surviving term is, k = n− 1:
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1

π

∫ π

−π
f(θ) · cos(nθ) dθ

= −2
n−1∑
k=1

(q(n−k)/2 − q−(n−k)/2)
{

1

π

∫ π

−π
f(θ)

[
2 cos(kθ) · cos(θ)

]
· cos(nθ) dθ

}

= −2
n−1∑
k=1

(q(n−k)/2 − q−(n−k)/2)
{

1

π

∫ π

−π
f(θ)

[
cos((k + 1)θ) + cos((k − 1)θ)

]
· cos(nθ) dθ

}
= −(q1/2 − q−1/2) · 1

π

∫ π

−π
2 cos2(nθ) dθ

= −2(q1/2 − q−1/2).

So all three items (a), (b), and (c) hold and consequently the two sides of (4.4.5) are equal.

Proof of Theorem 4.3.1. Let p ∈ Pn and write

p(x) =
n∑
k=0

akTk(x),

where Tk is the Chebyshev polynomial of the first kind. Applying the Askey-Wilson operator

Dq to p(x) and using (4.1.8) we get

(Dqp)(x) =
n∑
k=0

ak(DqTk)(x) =
n∑
k=0

ak
qk/2 − q−k/2

q1/2 − q−1/2
Uk−1(x). (4.4.6)

Let

λn−k =
qk/2 − q−k/2

q1/2 − q−1/2
, x = cos kϕ, and t(ϕ) = p(cos(ϕ)) =

n∑
k=0

ak cos(kϕ).

Then (4.4.6) implies

sin(ϕ) · (Dqp)(cos(ϕ) =
n∑
k=0

λn−kak sin(kϕ) =: −Λ(t)(ϕ). (4.4.7)

56



Now applying (4.4.3) for λk and t as in here with α =
π

2
(so from (4.2.6), θr,π

2
= θr) yields

n∑
k=1

λn−kak sin(kϕ) =
1

2n

2n∑
r=1

(−1)r t (ϕ+ θr)

×
{
qn/2 − q−n/2

q1/2 − q−1/2
+ 2

n−1∑
j=1

q(n−j)/2 − q−(n−j)/2

q1/2 − q−1/2
cos(jθr)

}
.

From (4.4.7) with x = cosϕ, it follows that

(Dqp)(x) =
1

2n ·
√

1− x2

2n∑
r=1

(−1)rAr p (cos (ϕ+ θr)) ,

where

Ar =
qn/2 − q−n/2

q1/2 − q−1/2
+ 2

n−1∑
j=1

q(n−j)/2 − q−(n−j)/2

q1/2 − q−1/2
cos (jθr) ,

which in view of Lemma 4.4.3 and (4.2.6), equals to

qn/2 − 2 cosnθr + q−n/2

q1/2 − 2 cos θr + q−1/2
=

qn/2 + q−n/2

q1/2 − 2 cos θr + q−1/2
,

which is clearly positive. This establishes (4.3.2) and hence (4.3.1).

Now, we shall verify (4.3.3). Applying (4.3.1) to p(x) = Tn(x) and using (4.1.8), we

get

qn/2 − q−n/2

q1/2 − q−1/2
Un−1(x) =

1

2n sinϕ

2n∑
r=1

(−1)rAr Tn(cos(ϕ+ θr)).

This implies

sin(nϕ)
qn/2 − q−n/2

q1/2 − q−1/2
=

1

2n

2n∑
r=1

(−1)rAr cos(nϕ+ nθr). (4.4.8)
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Choosing ϕ =
π

2n
above, we get

1

2n

2n∑
r=1

Ar =
qn/2 − q−n/2

q1/2 − q−1/2
,

which is (4.3.3).

Proof of Theorem 4.3.3. Taking the modulus of both sides of (4.3.1) in Theorem 4.3.1

and using the triangle inequality, we obtain

|(Dqp)(x)| ≤ 1

2n ·
√

1− x2

2n∑
r=1

Ar |p (cos(ϕ+ θr))|

≤ 1

2n ·
√

1− x2
· ‖p‖[−1,1] ·

2n∑
r=1

Ar.

Using (4.3.3), the right hand side equals to

1√
1− x2

· q
n/2 − q−n/2

q1/2 − q−1/2
· ‖p‖[−1,1] ,

which is the desired result.

To prove Theorem 4.3.5 we need the following well-known inequality of Schur’s ([18,

Theorem 5.1.9, p.233]).

Lemma 4.4.4. For p ∈ Pn−1, the following holds:

‖p‖[−1,1] ≤ n ·
∥∥∥p(x) ·

√
1− x2

∥∥∥
[−1,1]

. (4.4.9)

Proof of Theorem 4.3.5. For p ∈ Pn, Dqp ∈ Pn−1. So, by Schur’s inequality (4.4.9), we
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have

‖Dqp‖[−1,1] ≤ n ·
∥∥∥(Dqp)(x) ·

√
1− x2

∥∥∥
[−1,1]

,

which is bounded by

n
qn/2 − q−n/2

q1/2 − q−1/2
‖p‖[−1,1] ,

according to Theorem 4.3.3.

Proof of Theorem 4.3.7. Using (4.3.1), with x = cosϕ, we obtain

∫ 2π

0

|(Dqp)(cos(ϕ))|2 sin2(ϕ) dϕ

=
1

4n2

∫ 2π

0

∣∣∣∣∣
2n∑
r=1

(−1)rAr p (cos (ϕ+ θr))

∣∣∣∣∣
2

dϕ.

So, using triangle inequality,

{∫ 2π

0

|(Dqp)(cos(ϕ))|2 sin2(ϕ) dϕ

}1/2

≤ 1

2n

2n∑
r=1

Ar

{∫ 2π

0

| p (cos (ϕ+ θr))|2 dϕ
}1/2

.

(4.4.10)

The integral on the right of (4.4.10) can be written as

∫ 2π

0

| p (cos (ϕ+ θr))|2 dϕ =

∫ 2π

0

| p (cos (ϕ))|2 dϕ

= 2

∫ 1

−1
| p (x)|2 dx√

1− x2
.

Putting this in (4.4.10) and using (4.3.3), we get{∫ 2π

0

|(Dqp)(cosϕ)|2 sin2(ϕ) dϕ

}1/2

≤ 1

2n

2n∑
k=1

Ak ·
{

2

∫ 1

−1
| p (x)|2 dx√

1− x2

}1/2

=
√

2
qn/2 − q−n/2

q1/2 − q−1/2
‖p‖L2(1/

√
1−x2) ,
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or equivalently

‖Dqp‖L2(
√
1−x2) ≤

qn/2 − q−n/2

q1/2 − q−1/2
‖p‖L2(1/

√
1−x2) .

4.4.3 A second proof for Theorem 4.3.1

An alternative proof of Theorem 4.3.1. Take p ∈ Pn to be p(x) =
n∑
j=0

ajx
j. Then

p̆(z) = p

(
1

2

(
z +

1

z

))
= a0 +

a1
21

(
z +

1

z

)
+
a2
22

(
z +

1

z

)2

+ · · ·+ an
2n

(
z +

1

z

)n
=

n∑
j=−n

cjz
j with cj = c−j for j = 1, 2, . . . , n .

With x = cos(ϕ), we have p(cosϕ) = p̆(eiϕ). So

p(cosϕ) =
n∑

j=−n

cje
ijϕ = c0 + 2

n∑
j=1

cj cos(jϕ) ,

from which we obtain

cj =
1

2π

∫ π

−π
p(cos θ) · cos(jθ) dθ, for j = 0, 1, 2, . . . , n.

Now we shall compute the difference p̆(q1/2z)− p̆(q−1/2z).

p̆(q1/2z)− p̆(q−1/2z) =
n∑

j=−n

cj · (qj/2 − q−j/2) · zj

=
n∑
j=1

cj · (q−j/2 − qj/2) · (z−j − zj) .
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Using z = eiϕ the right hand side equals to

2i
n∑
j=1

cj · (qj/2 − q−j/2) · sin(jϕ)

= 2i
n∑
j=1

(qj/2 − q−j/2) · sin(jϕ) ·
{

1

2π

∫ π

−π
p(cos θ) cos(jθ) dθ

}

=
i

π

∫ π

−π
p(cos θ) ·

n∑
j=1

(qj/2 − q−j/2) cos(jθ) sin(jϕ) dθ.

Since p is a cosine polynomial, by orthogonality relations we can write

p̆(q1/2z)− p̆(q−1/2z) =
i

π

∫ π

−π
p(cos θ)

n∑
j=1

(qj/2 − q−j/2)

× [ sin(jϕ) cos(jθ)− sin(jθ) cos(jϕ) ] dθ

= − i
π

∫ π

−π
p(cos θ) ·

n∑
j=1

(qj/2 − q−j/2) · sin(j(θ − ϕ)) dθ.

Replacing θ by θ + ϕ, the right hand side above equals to

− i
π

∫ π

−π
p(cos(θ + ϕ)) ·

n∑
j=1

(qj/2 − q−j/2) · sin(jθ) dθ.

As before we use orthogonality relations to get the following:

p̆(q1/2z)− p̆(q−1/2z)

= − i
π

∫ π

−π
p(cos(θ + ϕ))

{
(qn/2 − q−n/2) sin(nθ)

+
n−1∑
j=1

(qj/2 − q−j/2) [sin(jθ) + sin(2n− j)θ)]
}
dθ

= − i
π

∫ π

−π
p(cos(θ + ϕ)) sin(nθ)

{
(qn/2 − q−n/2) + 2

n−1∑
j=1

(qj/2 − q−j/2) cos((n− j)θ)
}
dθ.
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From a similar argument as in the proof of Lemma 4.4.1, for 0 < r < 1, we take

h(θ) =
1

4r

(
1− r2

1− 2r sin θ + r2
− 1− r2

1 + 2r sin θ + r2

)
= sin θ − r2 sin 3θ + r4 sin 5θ + . . . .

The series on the penultimate line converges uniformly. Thus we have

p̆(q1/2eiϕ)− p̆(q−1/2eiϕ)

= lim
r→1−

−i
4πr

∫ π

−π
p(cos(θ + ϕ)) ·

{
(qn/2 − q−n/2) + 2

n−1∑
j=1

(qj/2 − q−j/2) · cos((n− j)θ)
}

×
{

1− r2

1− 2r cos
(
nθ − π

2

)
+ r2

− 1− r2

1 + 2r cos
(
nθ − π

2

)
+ r2

}
dθ.

As before in the proof of Lemma 4.4.1: if F is continuous periodic with period 2π, then

lim
r→1−

1

4πr

∫ π

−π
F (θ)

{
1− r2

1− 2r cos(nθ + α) + r2
− 1− r2

1 + 2r cos(nθ + α) + r2

}
dθ

=
1

2n

2n∑
r=1

(−1)rF (θr,α), where θr,α =
rπ

n
− α

n
, r = 1, 2, . . . , 2n.

Apply this result with α = −π
2

and

F (θr,−π
2
) = p(cos(θr,−π

2
+ ϕ))

{
(qn/2 − q−n/2) + 2

n−1∑
j=1

(qj/2 − q−j/2) · cos((n− j)θr,−π
2
)

}

to get

(Dqp)(x) =
p̆(q1/2eiϕ)− p̆(q−1/2eiϕ)

i sin(ϕ) · (q1/2 − q−1/2)

=
1

i sin(ϕ)

{
i

2n

2n∑
r=1

(−1)r+1 p
(

cos
(

(2r + 1)
π

2n
+ ϕ

))
×
{

(qn/2 − q−n/2) + 2
n−1∑
j=1

(qj/2 − q−j/2) · cos
(

(n− j)(2r + 1)
π

2n

)}}
.
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Let

Ar =
(qn/2 − q−n/2)
(q1/2 − q−1/2)

+ 2
n−1∑
j=1

(q(n−j)/2 − q−(n−j)/2)
(q1/2 − q−1/2)

cos

(
(2r + 1)

jπ

2n

)
,

so we have

(Dqp)(x) =
1

2n
√

1− x2

2n∑
r=1

(−1)r+1 Ar p
(

cos
(

(2r + 1)
π

2n
+ ϕ

))
.

To show the non-negativity of the coefficients, Ar, we shall use the following result due to

Rogosinski and Szegö ([59], p.75): If λn ≥ 0, λn−1 − 2λn ≥ 0 and λj−1 − 2λj + λj+1 ≥ 0 for

j = 1, 2, . . . , n− 1, then

λ0 + 2
n∑
j=1

λj cos jθ ≥ 0,

holds for all θ. So we shall choose a λj to satisfy the hypothesis of the above result. Let

λj =
q(n−j)/2 − q−(n−j)/2

q1/2 − q−1/2
, j = 0, 1, 2, . . . , n.

Note that λn = 0, λn−1 − 2λn = 1 > 0, and

λj−1 − 2λj + λj+1 = q(n−j)/2 · q
1/2 − 2 + q−1/2

q1/2 − q−1/2
− q−(n−j)/2 · q

−1/2 − 2 + q1/2

q1/2 − q−1/2

=
(1− q1/2) ·

(
1− q(n−j)

)
q(n−j)/2 · (q1/2 + 1)

> 0.

Sum of the coefficients follows as before in the proof of Theorem 4.3.1.

Remark 4.4.5. The difference between the first proof and the second is merely a phase

angle of
π

n
in the interpolation formula.
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4.5 On q-differentiability of Brown and Ismail

In this section, we first use our integral form of Bernstein inequality, (4.3.6) to study

the concept of q-differentiability introduced in [19] by Malcolm Brown and Mourad Ismail.

It has a flavor of inverse theorems in approximation. The definition of Dq given in [6] uses

values of f at points in the complex plane except [−1, 1]. To make it applicable to more

general classes of functions other than polynomials, Brown and Ismail [19] defined Dq on a

dense subset of L2(1/
√

1− x2):

Definition 4.5.1. Let f ∈ L2(1/
√

1− x2), and then f has a Fourier-Chebyshev expansion

in L2(1/
√

1− x2):

f(x) =
∞∑
n=0

fnTn(x). (4.5.1)

Let the Fourier-Chebyshev coefficients {fn} satisfy

∞∑
n=0

|(1− qn)q−n/2fn|2 <∞. (4.5.2)

Then Dqf is defined as the unique function with the following Fourier-Chebyshev expansion

in L2(
√

1− x2):

(Dqf)(x) =
∞∑
n=1

qn/2 − q−n/2

q1/2 − q−1/2
fnUn−1(x). (4.5.3)

Such functions f are called q-differentiable.

Remark 4.5.2. In Definition 4.5.1, (4.5.2) is satisfied on a dense subset of L2(1/
√

1− x2),

namely the set of all polynomials. Also Dq maps polynomials into polynomials which form

a dense subset of L2(
√

1− x2).
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4.5.1 Sufficient condition for a function to have a Askey-Wilson derivative

Our next result provides a sufficient condition for a function f to have a continuous

Askey-Wilson derivative Dqf .

Theorem 4.5.3. Let f ∈ L2(1/
√

1− x2). If, for some α > 1/2, and for some pn ∈ Pn,

n = 1, 2, 3, ..., we have

‖f − pn‖L2(1/
√
1−x2) = O (qαn) ,

as n→∞, then

(i) f is q-differentiable and Dqf is continuous on [−1, 1];

(ii) ‖Dqf −Dqpn‖L2(
√
1−x2) = O

(
q(α−1/2)n

)
, as n→∞.

Proof of Theorem 4.5.3. From the hypothesis, for some constant C > 0, we have, for

n = 1, 2, 3, . . . ,

‖f − pn‖L2(1/
√
1−x2) ≤ Cqαn. (4.5.4)

Let
∑∞

n=1 fnTn(x) be the Fourier-Chebyshev expansion of f . Then, for N = 0, 1, 2, ..., by

the best approximation property of the partial sums of the Fourier-Chebyshev expansion,

∥∥∥∥∥f −
N∑
n=0

fnTn

∥∥∥∥∥
L2(1/

√
1−x2)

≤ ‖f − pN‖L2(1/
√
1−x2) ≤ CqαN . (4.5.5)

From the orthogonality relations of TN (see (4.1.6)) and using the triangle inequality yields

|fN |
√
π

2
= ‖fNTN‖L2(1/

√
1−x2) =

∥∥∥∥∥
(
f −

N∑
n=0

fnTn

)
−

(
f −

N−1∑
n=0

fnTn

)∥∥∥∥∥
L2(1/

√
1−x2)

≤

∥∥∥∥∥f −
N∑
n=0

fnTn

∥∥∥∥∥
L2(1/

√
1−x2)

+

∥∥∥∥∥f −
N−1∑
n=0

fnTn

∥∥∥∥∥
L2(1/

√
1−x2)

.
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Using (4.5.5) to estimate each norm term above yields

|fN |
√
π

2
≤ CqαN + Cqα(N−1) = C1q

αN ,

where C1 = C(1 + q−α).

i.e.,

|fN |
√
π

2
≤ C1q

αN . (4.5.6)

Thus, (4.5.2) is satisfied and hence f is q-differentiable and (4.5.3) holds. Furthermore,

(4.5.6) implies that the series in both (4.5.1) and (4.5.3) converge uniformly for x ∈ [−1, 1]

since we have

|TN(x)| ≤ 1 and |UN(x)| ≤ N + 1

there, and thus, both f(x) and (Dqf)(x) are continuous functions on [−1, 1]. This completes

the proof of (i). To verify (ii), it suffices to show that

∥∥∥∥∥
N∑
n=0

fnDqTn −DqpN

∥∥∥∥∥
L2(
√
1−x2)

= O(q(α−1/2)N). (4.5.7)

Before we verify (4.5.7), let us observe how it can help us to prove (ii). Indeed, assume that

(4.5.7) holds. Then, in view of (4.1.7) and (4.1.8), from (4.5.6) it follows that

∥∥∥∥∥
N∑
n=0

fnDqTn −Dqf

∥∥∥∥∥
2

L2(
√
1−x2)

=
∞∑

n=N+1

∣∣∣∣fn qn/2 − q−n/2q1/2 − q−1/2

∣∣∣∣2 π2 = O(q2(α−1/2)N).

This and (4.5.7) will verify (ii). To prove (4.5.7), we apply the integral form of Bernstein

inequality (4.3.6) to the polynomial
∑N

n=0 fnTn − pN ∈ PN to obtain∥∥∥∥∥
N∑
n=0

fnDqTn −DqpN

∥∥∥∥∥
L2(
√
1−x2)

≤ qN/2 − q−N/2

q1/2 − q−1/2

∥∥∥∥∥
N∑
n=0

fnTn − pN

∥∥∥∥∥
L2(1/

√
1−x2)
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which, by (4.5.4), is no larger than

qN/2 − q−N/2

q1/2 − q−1/2
CqαN = O(q(α−1/2)N).

This verifies (4.5.7).

4.5.2 Smoothness of q-differentiable functions

As it turns out, the continuity established in Theorem 4.5.3 is not a special case. Our

final result will address the smoothness of any q-differentiable function. So, we turn to the

following natural question: How smooth must f be to ensure that (4.5.2) is true ? In this

connection, we will give a precise description of all functions f that are q-differentiable in

terms of the analytic continuation of f. We do so by casting Definition 4.5.1 in the setting

of overconvergence.

Analytic continuation or analytic extension refers to the process of extending the do-

main over which a complex function is defined to a larger one. By the uniqueness theorem

any such continuation of a function is uniquely determined. The phenomenon of overcon-

vergence (in a different setting than our consideration) was discovered by M. B. Porter in

1906. It was rediscovered by Robert Jentzsch in 1914 and again by Alexander Ostrowski in

1921. The main ideas for our study come purely from Joseph L. Walsh whose contribution

is quite significant on the subject matter (see [66], [67]).

Theorem 4.5.4. Let K be a compact set of the z-plane, whose complementary set with

respect to the entire plane is simply connected. Let w = φ(z) be a function which maps the

exterior of K conformally onto the exterior of the unit circle in the w-plane so that the points

at infinity correspond to each other. Let CR denote the curve |φ(z)| = R > 1, that is, the
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transform in the z-plane of the circle |w| = R.

If the function f(z) is analytic on and within CR, then there exist polynomials pn(z)

of respective degrees n = 0, 1, 2, . . . , such that

|f(z)− pn(z)| ≤ M

Rn
for every z ∈ K, (4.5.8)

holds, where M is independent of n and z.

Theorem 4.5.5. Let K be a compact set whose complement is simply connected. Let the

polynomials pn(z) satisfy inequality (4.5.8) for some R > 1, where M is independent of n

and z. Then the sequence {pn(z)} converges for z interior to CR, uniformly on any closed

point set interior to CR. The function f(z) can be extended from K along paths interior to

CR so as to be single-valued and analytic at every point interior to CR.

The phenomenon illustrated in Theorem 4.5.5 is known as the Overconvergence. In

formal terms it describes the cases where a sequence of polynomials of best approximation

to an analytic function in a given region G converges to that function (or its analytic contin-

uation) not merely in G but in a larger region containing G in its interior. This is achievable

provided the rate of convergence of (4.5.8) is fast enough.

Now we are ready to present our final result of this Chapter.

Theorem 4.5.6. A function f is q-differentiable on [−1, 1] for some q ∈ (0, 1) if and only

if f is analytic over an open set containing the interval [−1, 1] in the complex plane.

Proof. Suppose f is q-differentiable on [−1, 1] for some q ∈ (0, 1). In view of Definition

4.5.1,

f(x) =
∞∑
n=0

fnTn(x) in L2(1/
√

1− x2) (4.5.9)
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and
∞∑
n=0

|(1− qn)q−n/2fn|2 <∞.

Consequently, we have |q−n/2fn| ≤ C for some C > 0 or equivalently |fn| ≤ Cqn/2. Take

R = 1/q1/2, so that R > 1 and

|fn| ≤
C

Rn
, n = 0, 1, 2, · · · . (4.5.10)

Thus the series defined by

f̃(x) :=
∞∑
n=0

fnTn(x) (4.5.11)

is uniformly convergent for x ∈ [−1, 1]. Moreover,

∣∣∣∣∣f̃(x)−
N∑
n=0

fnTn(x)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=N+1

fnTn(x)

∣∣∣∣∣ ≤
∞∑

n=N+1

|fn||Tn(x)| ≤ C ′

RN
,

where C ′ = C/(R− 1).

Therefore, by Theorem 4.5.5, f̃ is analytic on ER′ := {x = (z + 1/z) /2 | 1 ≤ |z| ≤ R′} for

all R′ ∈ (1, R). Note that

∫ 1

−1

∣∣∣∣∣f̃(x)−
N∑
n=0

fnTn(x)

∣∣∣∣∣
2

dx√
1− x2

=
∞∑

n=N+1

π

2
|fn|2 → 0 ,

as N →∞.

This, together with (4.5.9), implies that

f̃(x) =
∞∑
n=0

fnTn(x) = f(x) a.e. for x ∈ [−1, 1]. (4.5.12)

Thus, f has an analytic continuation to the interior of ER which contains [−1, 1].
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Figure 4.1
Joukowsky transformation

Conversely, suppose that a function f is analytic over an open set G. Choose R > 1

such that ER ⊆ G. Then, by Theorem 4.5.4, there exist M > 0 and a sequence of polynomials

{PN(z)} such that

|f(z)− PN(z)| ≤ M

RN
, z on ER. (4.5.13)

Consider the Fourier-Chebyshev expansion

f(x) =
∞∑
n=0

cnTn(x). (4.5.14)

We have ∥∥∥∥∥f(x)−
N∑
n=0

cnTn(x)

∥∥∥∥∥
L2(1/

√
1−x2)

:= min
pN∈PN

‖f(x)− pN(x)‖L2(1/
√
1−x2)

≤ ‖f(x)− PN(x)‖L2(1/
√
1−x2) .

By (4.5.13), the right hand side is less than or equals to

M

RN

{∫ 1

−1

dx√
1− x2

}1/2

=

√
πM

RN
.
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Using this we can estimate |cn|:

‖cNTN‖L2(1/
√
1−x2)

≤

∥∥∥∥∥f(x)−
N∑
n=0

cnTn

∥∥∥∥∥
L2(1/

√
1−x2)

+

∥∥∥∥∥f(x)−
N−1∑
n=0

cnTn

∥∥∥∥∥
L2(1/

√
1−x2)

≤
√
πM

RN
+

√
πM

RN−1 =
M ′

RN
,

where M ′ =
√
πM(R+1). Since ‖TN‖L2(1/

√
1−x2) =

√
π/2, we get, with M ′′ =

√
2M(R+1),

|cN | ≤
M ′′

RN
.

Then, if q ∈ (R−2, 1), we have

∞∑
n=0

∣∣(1− qn)q−n/2 · cn
∣∣2 ≤ ∞∑

n=0

∣∣∣∣(1− qn)q−n/2 · M
′′

Rn

∣∣∣∣2
= M ′′

∞∑
n=0

(1− qn)2
(

1

qR2

)n
<∞.

So f is q-differentiable for all q ∈
(
R−2, 1

)
.

Remark 4.5.7. The proof of Theorem 4.5.6 above indeed shows that

(i) if f is analytic on E1/q1/2 , then f is q-differentiable;

(ii) if f is q-differentiable, then f is analytic on E̊1/q1/2 , the interior of E1/q1/2 .
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CHAPTER 5: ACTION OF THE ASKEY-WILSON

OPERATOR ON ENTIRE FUNCTIONS.

Somebody came up to me after a talk I had given, and say, “You make mathematics seem

like fun.” I was inspired to reply, “If it isn’t fun, why do it?”

Ralph Boas Jr.

5.1 Definitions

In Chapter 4 we have already introduced the Askey-wilson operator in the setting of

polynomials. In this chapter, we consider only entire functions; complex-valued functions

which are analytic in the finite complex plane, C.

Definition 5.1.1 (Entire Functions of exponential type). Let Bσ denote the set of

entire functions of exponential type σ. That is, f ∈ Bσ if f is an entire function and for any

ε > 0, there is an Aε > 0 such that |f(z)| ≤ Aεe
(σ+ε)|z|, for all z ∈ C.

Next we state few examples and elementary properties of entire functions of expo-

nential type (see [15], [22]):

• Functions of exponential type σ > 1 include all functions of type less than or equal to

σ, type 1, and functions of type less than 1.

• Rational entire functions are of exponential type zero. In particular polynomials p(z)

are of exp. type zero, as for large values of z ∈ C, |p(z)| is dominated by eε|z|, for any

ε > 0.
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• If a is a constant, the function eaz is of exponential type. |a|.

• If f(x) is of exponential type σ, then f(ax+ b) is of exp. type |a|σ, when a and b are

constants.

• If f1(x) and f2(x) are of exponential types σ1 and σ2, respectively, then the product

f1(x) · f2(x) is of exponential type not exceeding σ1 + σ2.

Ralph Boas Jr (see [14], [15, pp.210-211]), in providing a simpler and elegant proof

of a Bernstein’s inequality given in [12], established an interesting interpolating formula for

the derivatives of functions in Bσ, known as Boas’ formula, which is a generalization of an

interpolation formula of Marcel Riesz [57] for trigonometric polynomials:

Theorem 5.1.2. If f ∈ Bσ and is bounded on the real line R, then the following holds:

f ′(x) =
4σ

π2

∞∑
n=−∞

(−1)n

(2n+ 1)2
f
(
x+

π

2σ
+
nπ

σ

)
. (5.1.1)

In this chapter, we extend Boas’ formula by replacing the differentiation with the

Askey-Wilson operator, and then show its power in discovering summation formulas.

For the sake of completeness we re-state the definition of the Askey-Wilson operator

in the setting of entire functions.

Definition 5.1.3. Let f be an entire function and q ∈ (0, 1). Then from (4.1.2) we have

the following equivalent form of (4.1.3):

(Dqf)(x) =
f̆(q1/2z)− f̆(q−1/2z)

i sin θ · (q1/2 − q−1/2)
, (5.1.2)
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where

f̆(z) = f

(
1

2

(
z +

1

z

))
, z = eiθ, x = cos θ.

Recall that the definition of Dq given in [6] was mainly used to act on polynomials f

and it uses values of f at points in C \ [−1, 1]. To extend the domain of the operator to act

on more general classes of functions, Brown and Ismail [19] proposed an approach to define

Dq on a dense subset of L2[(1 − x2)−1/2, [−1, 1]]. (see our discussion on this in section 4.5)

In this chapter, we consider only entire functions so Dq is well-defined as in (5.1.2), even for

x ∈ C.

5.2 Main result: Generalized Boas’ formula

To set the stage to our main result in this chapter, we first introduced a convenient

way of writing the Askey-Wilson operator. The novelty of our method lies in the following

two parameter family: with x = cos θ, write

α :=
1

2
(q1/2 + q−1/2) cos(θ) and β := (q1/2 − q−1/2) sin(θ). (5.2.1)

Note that, when (x, q) ∈ [−1, 1]× (0, 1), we have α, β ∈ R. Now, we are ready to state our

main result.

Theorem 5.2.1. Assume that f ∈ Bσ and the restriction of f on R is bounded. Then, for

x ∈ [−1, 1],

(Dqf) (x) =
4

σ

∞∑
k=−∞

f
(
α +

π

2σ
(2k + 1)

) (−1)k cosh
(
σ
2
β
)

β2 + (2k + 1)2 π2/σ2
. (5.2.2)

Remark 5.2.2. When q → 1−, we have α → x and β → 0, and thus, the limiting case of
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(5.2.2) becomes the classical Boas’ formula (5.1.1).

Remark 5.2.3. In view of our two parameter family, (5.2.1), we can write

q1/2z +
1

q1/2z
= q1/2eiθ + q−1/2e−iθ

= q1/2 · (cos(θ) + i sin(θ)) + q−1/2 · (cos(θ)− i sin(θ))

= (q1/2 + q−1/2) cos(θ) + i sin(θ)(q1/2 − q−1/2)

= 2α + iβ ,

and

q−1/2z +
1

q−1/2z
= q−1/2eiθ + q1/2e−iθ

= q−1/2 · (cos(θ) + i sin(θ)) + q1/2 · (cos(θ)− i sin(θ))

= (q1/2 + q−1/2) cos(θ)− i sin(θ)(q1/2 − q−1/2)

= 2α− iβ .

So we can write the numerator term in (5.1.2) as

f̆(q1/2z)− f̆(q−1/2z) = f

(
1

2

(
q1/2z +

1

q1/2z

))
− f

(
1

2

(
q−1/2z +

1

q−1/2z

))
= f

(
α +

iβ

2

)
− f

(
α− iβ

2

)
.

Accordingly, now we can write (5.1.2) as:

(Dqf)(x) =
f
(
α + iβ

2

)
− f

(
α− iβ

2

)
iβ

. (5.2.3)

Observe that the left hand side of (5.2.3) depends on x and q while the right hand side

depends on α and β. So we will introduce a new notation, (Df)(α, β) to denote the right-

hand side to emphasize the dependence of (Dqf)(x) on α and β.
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Remark 5.2.4. Theorem 5.2.1 holds under the restriction on (x, q) ∈ [−1, 1]×(0, 1). Indeed,

the theorem holds for complex x and q. Our next result is such an example by using variables

α and β.

Corollary 5.2.5. Under the same assumptions on f as in Theorem 5.2.1, we have

(Df)(α, β) =
4

σ

∞∑
k=−∞

f
(
α +

π

2σ
(2k + 1)

) (−1)k cosh
(
σ
2
β
)

β2 + (2k + 1)2 π2/σ2
, (5.2.4)

holds for all α, β ∈ C and the convergence is locally uniform for α, β ∈ C.

5.2.1 Classical sampling theorem

The proof of Theorem 5.2.1 is based on the well-celebrated WSK sampling theo-

rem, which was named after Edmound Whittaker, John Whittaker, Vladmir Kotelnikov and

Claude Shannon. Among the four, the latter gets much of the recognition solely for him

being the pioneer of information theory where it is heavily used. In layman’s terms, the

theorem states that a signal (a function) can be reconstructed from its samples, evaluated at

uniformly spaced points on the real line. For comprehensive studies of the sampling theorem

see [36], [60], [72], and references therein.

There are many variations of the sampling theorem. The form we use here is due to

Paul Butzer, Gerhard Schmeisser, and Rudolf Stens as used in [21].

Theorem 5.2.6. If f ∈ Bσ and f is bounded on R, then

f(x) =
+∞∑

k=−∞

f

(
kπ

σ

)
sinc

[
σ

π

(
x− kπ

σ

)]
(x ∈ C), (5.2.5)

the convergence being absolute and uniform on compact subsets of C.
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Definition 5.2.7. The sinc function is defined as:

sincx :=


sin(πx)

πx
for x ∈ C\{0},

1 for x = 0.

The Boas’ formula (5.1.1) can be obtained from the Sampling theorem in the following

manner [?]. Starting from (5.2.5), apply it to the function gy(x) = f(x+ y) to get

gy(x) =
+∞∑

k=−∞

f

(
y +

kπ

σ

)
sinc

[
σ

π

(
x− kπ

σ

)]
(x ∈ C),

from which we can recover f :

f(x) = gy(x− y) =
+∞∑

k=−∞

f

(
y +

kπ

σ

)
sinc

[
σ

π

(
x− y − kπ

σ

)]
.

In view of the absolute and uniform convergence on compact subsets of C of the series above,

we can differentiate term by term to get

f ′(x) =
∞∑

k=−∞

f

(
y +

kπ

σ

)
d

dx

{
sin
[
σ
(
x− y − kπ

σ

) ]
σ
(
x− y − kπ

σ

) }

=
∞∑

k=−∞

f

(
y +

kπ

σ

){cos
[
σ
(
x− y − kπ

σ

) ]
· σ · σ

(
x− y − kπ

σ

)
− sin

[
σ
(
x− y − kπ

σ

) ]
· σ

σ2
(
x− y − kπ

σ

)2
}
.

Let y = x+
π

2σ
, to get

f ′(x) =
∞∑

k=−∞

f

(
x+

(2k + 1)π

2σ

) − cos
[
(2k + 1)π

2

]
· (σ) · (2k + 1)π

2
+ σ sin

[
(2k + 1)π

2

]
(2k + 1)2 π

2

4

,
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which equals to

f ′(x) =
4σ

π2

∞∑
k=−∞

(−1)k

(2k + 1)2
f

(
x+

(2k + 1)π

2σ

)
,

which is the Boas’ formula, (5.1.1).

5.3 Proof of the main result

This prime purpose of this section is to present the proof of Theorem 5.2.1, which will

be accomplished by applying the Askey-Wilson operator on the Classical Sampling theorem,

Theorem 5.2.6. We first establish a lemma that gives us the action of the Askey-Wilson

operator on the sinc function. To indicate that the operator Dq is applied with respect to x,

we will use the notation Dq,x.

Lemma 5.3.1. Let x ∈ C and k be any integer. Then the following holds:

(
Dq,x

(
sinc

[
σ

π
(x− y − kπ

σ
)

]))∣∣∣∣
y=α+π/(2σ)

=
4

σ
·

(−1)k · cosh
(
σ
2
β
)

β2 + (2k + 1)2 π2

σ2

. (5.3.1)

Remark 5.3.2. The key feature of the lemma is the evaluation of y at a point α+ π
2σ

that

is independent of k.

Proof. Let g(x) := sinc
[
σ
π
(x− y − kπ

σ
)
]
. Then, by the definition of sinc function, we have

g(x) =
sin
(
σ(x− y − kπ

σ
)
)

σ(x− y − kπ
σ

)
.

Note that

ğ(q1/2z) =
sin
(
σ
2
·
(
q1/2z + q−1/2z−1

)
− (σy + kπ)

)
σ
2
· (q1/2z + q−1/2z−1)− (σy + kπ)

, (5.3.2)
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and

ğ(q−1/2z) =
sin
(
σ
2
·
(
q−1/2z + q1/2z−1

)
− (σy + kπ)

)
σ
2
· (q−1/2z + q1/2z−1)− (σy + kπ)

. (5.3.3)

So, we have

(
Dq,x

(
sinc

[
σ

π
(x− y − kπ

σ
)

]))
(x) =

ğ(q1/2z)− ğ(q−1/2z)

i sin θ · (q1/2 − q−1/2)
(5.3.4)

with

ğ(q1/2z)− ğ(q−1/2z)

=
sin
(
σ
2

(
q1/2z + 1

q1/2z

)
− σy − kπ

)
σ
2

(
q1/2z + 1

q1/2z

)
− σy − kπ

−
sin
(
σ
2

(
z

q1/2
+ q1/2

z

)
− σy − kπ

)
σ
2

(
z

q1/2
+ q1/2

z

)
− σy − kπ

= (−1)k

[
sin
(
−σ

2

(
q1/2z + 1

q1/2z

)
+ σy

)
−σ

2

(
q1/2z + 1

q1/2z

)
+ σy + kπ

−
sin
(
σ
2

(
z

q1/2
+ q1/2

z

)
− σy

)
σ
2

(
z

q1/2
+ q1/2

z

)
− σy − kπ

]
.

Note that, when y = α + π
2σ

, we have y = 1
4
(q1/2 + q−1/2)(z + z−1) + π

2σ
and

−1

2

(
q1/2z +

1

q1/2z

)
+ y − π

2σ
=

1

2

(
z

q1/2
+
q1/2

z

)
− y +

π

2σ
. (5.3.5)

Let the common value of the two sides of (5.3.5) be w. Then

w =
1

4
(q1/2 − q−1/2)(z−1 − z) =

1

4
(q1/2 − q−1/2)(−2i) sin θ = −1

2
iβ. (5.3.6)

Thus, we can write

ğ(q1/2z)− ğ(q−1/2z) = (−1)k
{

sin
(
σw + π

2

)
σw + π

2
+ kπ

−
sin
(
σw − π

2

)
σw − π

2
− kπ

}
=

(−1)k · 2w cos(σw)

σ ·
(
w2 −

(
k + 1

2

)2 π2

σ2

) .
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From this and (5.3.6), (5.3.4) yields

(
Dq,x(sinc

[
σ

π
(x− y − kπ

σ
)

]
)

)∣∣∣∣
y=α+π/(2σ)

=
4

σ
·

(−1)k · cosh
(
σ
2
β
)

β2 + (2k + 1)2 π2

σ2

,

which is the desired result, (5.3.1).

Proof of Theorem 5.2.1. We start by introducing a translation parameter in the Sam-

pling Theorem, Theorem 5.2.6: Fix y ∈ R and apply Theorem 5.2.6 to gy(x) := f(x + y) to

obtain

gy(x) =
∞∑

k=−∞

f(y +
kπ

σ
) sinc

[
σ

π
(x− kπ

σ
)

]
.

Then

f(x) = gy(x− y) =
∞∑

k=−∞

f(y +
kπ

σ
) sinc

[
σ

π
(x− y − kπ

σ
)

]
. (5.3.7)

Now, apply Dq with respect to x on both sides of (5.3.7) to obtain

(Dqf) (x) =
∞∑

k=−∞

f(y +
kπ

σ
) Dq,x

(
sinc

[
σ

π
(x− y − kπ

σ
)

])
.

The left-hand side is independent of y and so we can take a special value of y on the right-

hand side. Letting y = α + π
2σ

and using (5.3.1) of Lemma 5.3.1, for x ∈ [−1, 1], we get

(Dqf) (x) =
∞∑

k=−∞

f

(
α + (k +

1

2
)
π

σ

)
4

σ
·

(−1)k · cosh
(
σ
2
β
)

β2 + (2k + 1)2 π2

σ2

,

which is (5.2.2).

To prove Corollary 5.2.5 we employ the following uniqueness (or identity) theorem.

Theorem 5.3.3. ([1]) Let each of the two functions f(z) and g(z) be analytic in a common

domain D. If f(z) and g(z) coincide in some sub-portion D′ ⊂ D or on a curve Γ interior
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to D, then f(z) = g(z) everywhere in D.

Proof of Corollary 5.2.5. Let (α, β) ∈ K, where K is a compact subset in C2. Note

first that both sides of (5.2.4) are entire functions of α and of β, of exponential types σ and

σ/2 respectively. Since as (x, q) runs through [−1, 1]× (0, 1), α, β ∈ R, both sides of (5.2.4)

are equal by Theorem 5.2.1. Thus, by the Identity Theorem, (5.2.4) holds for all α, β ∈ C.

Finally, we shall prove the local uniform convergence of the series in (5.2.4). To this end, we

need an estimate of Boas ([15, p.84]): for ε > 0, there is an Aε > 0 such that

|f(z)| ≤ Aεe
(σ+ε)|Im(z)| for z ∈ C.

Applying this to the series in (5.2.4), yields

|(Df)(α, β)| =

∣∣∣∣∣ 4σ
∞∑

k=−∞

f
(
α +

π

2σ
(2k + 1)

) (−1)k cosh
(
σ
2
β
)

β2 + (2k + 1)2 π2/σ2

∣∣∣∣∣
≤ 4

σ

∞∑
k=−∞

∣∣∣f (α +
π

2σ
(2k + 1)

)∣∣∣ ∣∣cosh
(
σ
2
β
)∣∣

|β2 + (2k + 1)2 π2/σ2|

≤ 4

σ

∞∑
k=−∞

Aεe
(σ+ε)·|Im(α+ π

2σ
(2k+1))|

∣∣cosh
(
σ
2
β
)∣∣

|β2 + (2k + 1)2 π2/σ2|

=
4

σ
· Aεe(σ+ε)·|Im(α)| ·

∣∣∣cosh
(σ

2
β
)∣∣∣ ∞∑

k=−∞

1

|β2 + (2k + 1)2 π2/σ2|
.

Note that e(σ+ε)·|Im(α)| and
∣∣cosh

(
σ
2
β
)∣∣ are both bounded in K. Now, |β2+(2k + 1)2 π2/σ2| ≥

(2k + 1)2 π2/σ2 − |β|2 and if |k| > |β|,

1

|β2 + (2k + 1)2 π2/σ2|
≤ 1

(2k + 1)2 π2/σ2 − |β|2
.

Thus by the Weierstrass M-test, the series in (5.2.4) is locally uniformly convergent for all

β ∈ C \ {±(2k + 1) iπ
σ
}∞−∞.
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5.4 Identities of infinite series

5.4.1 Overview

To elucidate the capability of the extended Boas’ formula (Theorem 5.2.1) and its

Corollary 5.2.3, we derive identities on infinite series, some new and some known. Several

other series identities can be established as a by product. In essence, we pick few candi-

dates that satisfy the hypotheses of the aforementioned and apply either (5.2.2) or (5.2.4)

accordingly. We begin with two general remarks.

(i) As a direct consequence from the locally uniform convergence in (5.2.4), convergence

in series below is locally uniform in α and β.

(i) The extra parameter q introduced in the Askey-Wilson operator (5.2.2), which is not

available in Boas’ formula, will be seen as a desirable feature.

5.4.2 Applications of the main result

First, we apply (5.2.2) for f(x) = 1. It can be easily seen that Dqf(x) = 0. So we

obtain
∞∑

k=−∞

(−1)k

β2 + (2k + 1)2
= 0, (5.4.1)

which can be directly verified. Next, take the function f(x) = sin(σx). Applying (5.2.3)

yields

(Df) sin(σx) =
sin
[
σ
(
α + iβ

2

)]
− sin

[
σ
(
α− iβ

2

)]
iβ

=
2 cos(σα) sin( iσβ

2
)

iβ
.
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Since sin(iΘ) = i sinh(Θ) for any Θ, it follows that

(Df) sin(σx) =
2 cos(σα) sinh(σ

2
β)

β
. (5.4.2)

This is the left hand side of (5.2.4). The right hand side of (5.2.4) is

4

σ
cosh

(σ
2
β
) ∞∑
k=−∞

sin
[
σ(α +

π

2σ
(2k + 1))

] (−1)k

β2 + (2k + 1)2 π2/σ2

=
4

σ
cosh

(σ
2
β
) ∞∑
k=−∞

cos(σα)
1

β2 + (2k + 1)2 π2/σ2
.

Combining this with (5.4.2), we get

σ tanh(σ
2
β)

2β
=

∞∑
k=−∞

1

β2 + (2k + 1)2 π2/σ2
. (5.4.3)

Note that, by Corollary 5.2.5, (5.4.3) holds for all β ∈ C\{±(2k+1) iπ
σ
}∞−∞. This is equivalent

to a known result, see, e.g., [70, p. 136] or [31, 1.421.2].

Here is one more identity that can be derived directly from (5.2.4): Let f(x) = sinc x.

Note that

(Df)(α, β) =
−4β sin(πα) cosh(π

2
β) + 8α cos(πα) sinh(π

2
β)

πβ(4α2 + β2)
.

Using this in (5.2.2), we have

−4β sin(πα) cosh(π
2
β) + 8α cos(πα) sinh(π

2
β)

πβ(4α2 + β2)

=
4

π
cosh

(π
2
β
) ∞∑
k=−∞

(−1)k sin(π(α + k + 1
2
))

π(α + k + 1
2
)(β2 + (2k + 1)2)

=
4

π
cosh

(π
2
β
) ∞∑
k=−∞

cos(πα)

π(α + k + 1
2
)(β2 + (2k + 1)2)

.
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So, dividing both sides of the above by 4
π

cosh(π
2
β) cos(πα), we get

−πβ tan(πα) + 2πα tanh(π
2
β)

β(4α2 + β2)
=

∞∑
k=−∞

1

(α + k + 1
2
)(β2 + (2k + 1)2)

, (5.4.4)

which implies several known identities as special cases. For example, writing (5.4.4) as

−π tan(πα)

4α2 + β2
+

2πα

4α2 + β2
·

tanh(π
2
β)

β
=

∞∑
k=−∞

1

(α + k + 1
2
)(β2 + (2k + 1)2)

,

and letting β → 0 yields

−π tan(πα)

4α2
+
π2

4α
=

∞∑
k=−∞

1

(α + k + 1
2
)(2k + 1)2

, α 6= 0.

Set α = 1 in the above to get

π2

8
=

∞∑
k=−∞

1

(2k + 3)(2k + 1)2
.

Now, we will drift a bit from the functions considered so far and take f(x) = x, which

is an entire function of type 0. So f ∈ B0 ⊂ Bπ. Since Dqf(x) = 1, it is tempting to let

f(x) = x in (5.2.2) with σ = π to get

1 =
4

π
cosh

(π
2
β
) ∞∑
k=−∞

(
α +

1

2
(2k + 1)

)
(−1)k

β2 + (2k + 1)2
. (5.4.5)

But there is a major issue here. For f(x) = x, the assumption that f being bounded on R

is not satisfied, and so, we could not apply Theorem 5.2.1 directly to f(x) = x. Fortunately,

we can prove (5.4.5) through a limiting process motivated by the ones used in [15, p. 211]

and [33, Lemmas 1 and 2]. One of the key ideas involved in our proof is the following

Abel’s partial summation formula.
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Theorem 5.4.1 ([38]). Let {an}∞n=0 and {bn}∞n=0 be sequences in C and write

(i) A−1 = 0 and for n ≥ 0, An =
n∑
k=0

ak .

Then for any integers q > p ≥ −1, we have

(ii)

q∑
n=p+1

anbn =

q∑
n=p+1

An(bn − bn+1) + Aqbq+1 − Apbp+1.

Proof of (5.4.5). For δ ∈ (0, 1
2
), define gδ(x) = sin(δx). Then gδ ∈ Bδ ⊆ Bπ and gδ is

also bounded on R. Note that

(Dqgδ)(x) =
2 cos(δα) sinh( δ

2
β)

β
.

Applying Theorem 5.2.1 to gδ with σ = π yields

2 cos(δα) sinh( δ
2
β)

δβ
=

4

π
cosh

(π
2
β
) ∞∑
k=−∞

(−1)k
sin(δ(α + k + 1

2
))

δ(β2 + (2k + 1)2)
. (5.4.6)

Claim. The partial sums
K∑

k=−K

(−1)k
sin(δ(α + k + 1

2
))

δ
is O(K) uniformly in δ > 0.

Let SK =
K∑
k=0

(−1)k
sin
(
δ
(
α + k + 1

2

))
δ

. First assume that K is odd. Then

|SK | =

∣∣∣∣∣sin
(
δ
(
α + 0 + 1

2

))
δ

−
sin
(
δ
(
α + 1 + 1

2

))
δ

+
sin
(
δ
(
α + 2 + 1

2

))
δ

−
sin
(
δ
(
α + 3 + 1

2

))
δ

+ · · ·+ (−1)K
sin
(
δ
(
α +K + 1

2

))
δ

∣∣∣∣∣.
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Let

f(t) =
sin
(
δ
(
α + 0 + 1

2
+ t
))

δ
+

sin
(
δ
(
α + 2 + 1

2
+ t
))

δ
+ . . .

+
sin
(
δ
(
α +K − 1 + 1

2
+ t
))

δ
.

So

|f ′(t)| =
∣∣∣∣cos

(
δ

(
α + 0 +

1

2
+ t

))
+ · · ·+ cos

(
δ

(
α +K − 1 +

1

2
+ t

))∣∣∣∣
≤
∣∣∣∣cos

(
δ

(
α + 0 +

1

2
+ t

))∣∣∣∣+ · · ·+
∣∣∣∣cos

(
δ

(
α +K − 1 +

1

2
+ t

))∣∣∣∣
≤ K + 1

2
.

Similarly, for K is even, we obtain |f ′(t)| ≤ K

2
+ 1.

Since

f(t) =
sin
(
δ
(
α + 1 + 1

2
+ t
))

δ
+

sin
(
δ
(
α + 3 + 1

2
+ t
))

δ
+ . . .

+
sin
(
δ
(
α +K + 1

2
+ t
))

δ
.

by Mean value theorem, it follows that

|SK | = |f(t)− f(t+ 1)| = |f ′(ξ)| ≤


K+1
2

if K is odd,

K
2

+ 1 if K is even.

In either of the cases above, we can bound |SK | by 3(K + 1). So for δ > 0,

K∑
k=−K

(−1)k
sin(δ(α + k + 1

2
))

δ
≤ 3(K + 1). (5.4.7)
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Apply Theorem 5.4.1 with n = k, p+ 1 = L, q = M,An = Sk and

ak = (−1)k
sin
[
δ
(
α + k + 1

2

) ]
δ

, bk =
1

β2 + (2k + 1)2

and compute:

M∑
k=L

(−1)k
sin

[
δ
(
α + k + 1

2

) ]
δ · (β2 + (2k + 1)2)

=
M∑
k=L

Sk
[ 1

β2 + (2k + 1)2
− 1

β2 + (2k + 3)2
]

+
SM

β2 + (2M + 3)2
− SL−1
β2 + (2L+ 1)2

.

Consequently,

∣∣∣∣∣
M∑
k=L

(−1)k
sin
[
δ
(
α + k + 1

2

) ]
δ · (β2 + (2k + 1)2)

∣∣∣∣∣
≤

∣∣∣∣∣
M∑
k=L

Sk

[
1

β2 + (2k + 1)2
− 1

β2 + (2k + 3)2

]∣∣∣∣∣+

∣∣∣∣ SL−1
β2 + (2L+ 1)2

∣∣∣∣+

∣∣∣∣ SM
β2 + (2M + 3)2

∣∣∣∣
≤

∣∣∣∣∣
M−1∑
k=L

Sk

[
8k + 8{

β2 + (2k + 1)2
}
·
{
β2 + (2k + 3)2

}]∣∣∣∣∣+

∣∣∣∣ SL−1
β2 + (2L+ 1)2

∣∣∣∣+

∣∣∣∣ SM
β2 + (2M + 3)2

∣∣∣∣
=

M−1∑
k=L

|Sk|

∣∣∣∣∣
[

8k + 8{
β2 + (2k + 1)2

}
·
{
β2 + (2k + 3)2

}]∣∣∣∣∣+
|SL−1|

β2 + (2L+ 1)2
+

|SM |
β2 + (2M + 3)2

.

Note that, for sufficiently large k, using (5.4.7) we have

|Sk|

∣∣∣∣∣
[

8k + 8{
β2 + (2k + 1)2

}
·
{
β2 + (2k + 3)2

}]∣∣∣∣∣ ≤ 3(k + 1) · 8(k + 1)

4k2 · 4k2
≤ 2

k2
.

Also when |L| → ∞ and |M | → ∞,

|SL−1|
β2 + (2L+ 1)2

,
|SM |

β2 + (2M + 3)2
→ 0.
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Thus, for all ε > 0, there exists N(ε) > 0, independent of δ > 0, such that

∣∣∣∣∣∣∣∣
M∑
k=L

(−1)k
sin

[
δ
(
α + k + 1

2

) ]
δ · (β2 + (2k + 1)2)

∣∣∣∣∣∣∣∣ < ε,

whenever |M |, |L| > N(ε). Hence, by the Cauchy criterion,
∞∑

k=−∞

(−1)k
sin
[
δ
(
α + k + 1

2

) ]
δ · (β2 + (2k + 1)2)

is

uniformly convergent for δ ∈
(
0, 1

2

]
. So, by using the Abel’s partial summation formula, it

is not hard to verify that the series on the right-hand side of (5.4.6) converges uniformly in

δ > 0. Thus, by taking limits as δ → 0+ on both sides of (5.4.6), we obtain

1 =
4

π
cosh

(π
2
β
) ∞∑
k=−∞

(α + k +
1

2
)

(−1)k

β2 + (2k + 1)2
.

which is (5.4.5).

Now, (5.4.5) being established, let’s put it in the equivalent form:

π

4 cosh(π
2
β)

=
∞∑

k=−∞

(
α +

1

2
(2k + 1)

)
(−1)k

β2 + (2k + 1)2
. (5.4.8)

Using (5.4.1) (or setting α = 0), we get, for β ∈ C,

π

2 cosh
(
π
2
β
) =

∞∑
k=−∞

(−1)k(2k + 1)

β2 + (2k + 1)2
. (5.4.9)

This is another known identity (see [70, p. 136] or [31]). Note that the series in (5.4.9)

converges locally uniformly for β ∈ C \ {±(2k + 1)i}∞−∞. So by integrating both sides of

(5.4.9) from β = 0 to β = x, with term-by-term integration on the right-hand side, Berndt

used this identity to obtain an identity of Ramanujan ([11, p. 457]).
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We can apply the same idea to obtain extensions to yet another known identity due

to Gosper, Ismail, and Zhang [27, (1.3)]. For b ∈ R, consider the function

fδ,b(x) =
sin(δx) sin(

√
b2 + (π − δ)2x2 )√

b2 + (π − δ)2x2
.

Then fδ,b ∈ Bπ and fδ,b is bounded on the real line. So, we can apply (5.2.2) to fδ,b to get:

π(Dqfδ,b)(x)

4δ cosh(π
2
β)

=
∞∑

k=−∞

(−1)k sin(δ(α + k + 1
2
)) sin

(√
b2 + (π − δ)2(α + k + 1

2
)2
)

δ(β2 + (2k + 1)2)
√
b2 + (π − δ)2(α + k + 1

2
)2

.

As we did in the proof of (5.4.5), it can be verified that the series on the right-hand side

above is uniformly convergent in δ ∈ (0, 1
2
). So taking the limit as δ → 0+ on both sides

above and bringing the limit inside the sum yields

lim
δ→0+

π(Dqfδ,b)(x)

4δ cosh(π
2
β)

=
∞∑

k=−∞

(−1)k(α + k + 1
2
) sin

(√
b2 + π2(α + k + 1

2
)2
)

(β2 + (2k + 1)2)
√
b2 + π2(α + k + 1

2
)2

. (5.4.10)

Now, using (5.2.3) on fδ,b yields

(Dqfδ,b)(x) =
sin(α + 1

2
iβ) sin

(√
b2 + (π − δ)2(α + i

2
β)2

)
iβ cosh(π

2
β)
√
b2 + (π − δ)2(α + i

2
β)2

−
sin(α− 1

2
iβ) sin

(√
b2 + (π − δ)2(α− i

2
β)2

)
iβ cosh(π

2
β)
√
b2 + (π − δ)2(α− i

2
β)2

.

(5.4.11)

Divide both sides above by δ and take the limit as δ → 0+ to get

lim
δ→0+

(Dqfδ,b)(x)

δ

=
(α + 1

2
iβ) sin

(√
b2 + π2(α + i

2
β)2

)
iβ
√
b2 + π2(α + i

2
β)2

−
(α− 1

2
iβ) sin

(√
b2 + π2(α− i

2
β)2

)
iβ
√
b2 + π2(α− i

2
β)2

.
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Using this on the left hand side in (5.4.10), we obtain the following new identity: For any

α, β ∈ C,

∞∑
k=−∞

(−1)k(α + k + 1
2
) sin

(√
b2 + π2(α + k + 1

2
)2
)

(β2 + (2k + 1)2)
√
b2 + π2(α + k + 1

2
)2

(5.4.12)

=
π(α + 1

2
iβ) sin

(√
b2 + π2(α + i

2
β)2

)
4iβ cosh(π

2
β)
√
b2 + π2(α + i

2
β)2

−
π(α− 1

2
iβ) sin

(√
b2 + π2(α− i

2
β)2

)
4iβ cosh(π

2
β)
√
b2 + π2(α− i

2
β)2

.

If we let α = 0, then the above identity becomes

∞∑
k=−∞

(−1)k(2k + 1) sin
(√

b2 + π2(k + 1
2
)2
)

(β2 + (2k + 1)2)
√
b2 + π2(k + 1

2
)2

=
π sin

(√
b2 − π2β2

4

)
2 cosh(π

2
β)
√
b2 − π2β2

4

. (5.4.13)

By taking β to be a purely imaginary number, say β = iγ, for γ ∈ R we can recover identity

(1.10) of Gosper, Ismail, and Zhang in [27]:

∞∑
k=−∞

(−1)k(2k + 1) sin
(√

b2 + π2(k + 1
2
)2
)

((2k + 1)2 − γ2)
√
b2 + π2(k + 1

2
)2

=
π sin

(√
b2 + π2γ2

4

)
2 cos(π

2
γ)
√
b2 + π2γ2

4

.

If we further take β = 0, then (5.4.13) reduces to

∞∑
k=−∞

(−1)k sin
(√

b2 + π2(k + 1
2
)2
)

(2k + 1)
√
b2 + π2(k + 1

2
)2

=
π sin b

2b
, (5.4.14)

which is the identity (1.3) of Gosper, Ismail, and Zhang in [27]. Thus, identity (5.4.12)

provides a two-parameter family extension of these identities of Gosper, Ismail, and Zhang.

In fact the above argument really applies to a much more general family of functions

as indicated by our next result, Theorem 5.4.2 whose statement involves not only the Askey-
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Wilson operator but also a companion operator to it called the Average operator.

The average operator, Aq is defined by ([35, p. 301]):

(Aqf)(x) =
1

2

{
f̆(q1/2z) + f̆(q−1/2z)

}
. (5.4.15)

In terms of our new notations, α and β introduced in (5.2.1), we can write (5.4.15) as:

(Aqf)(x) =
1

2

{
f

(
α +

iβ

2

)
+ f

(
α− iβ

2

)}
. (5.4.16)

We will use the notation (A f)(α, β) to denote the right-hand side of (5.4.16) to emphasize

the dependence of (Aqf)(x) on α and β.

Theorem 5.4.2. Let g be an entire function of exponential type π that is bounded on R.

Then, for α, β ∈ C,

∞∑
k=−∞

(−1)k(α + k + 1
2
)g(α + k + 1

2
)

β2 + (2k + 1)2
(5.4.17)

=
πα
[
g(α + i

2
β)− g(α− i

2
β)
]

+ i
2
πβ
[
g(α + i

2
β) + g(α− i

2
β)
]

4iβ cosh(π
2
β)

=
π

4 cosh(π
2
β)

{
α (Dqg) (x) + (Aqg) (x)

}
. (5.4.18)

Proof. Let gδ(x) = g

(
π − δ
π

x

)
, for δ ∈

(
0, 1

2

)
. First, we shall apply Theorem 5.2.1 to the

function g̃(x) = sin(δx)gδ(x) with σ = π to get

(Dqg̃) (x)

δ
=

4

π
cosh

(π
2
β
) ∞∑
k=−∞

(−1)k
sin
(
δ
(
α + k + 1

2

))
gδ
(
α + k + 1

2

)
δ(β2 + (2k + 1)2)

.

Again, as in the proof of (5.4.5), we can show that the series is uniformly convergent in

δ ∈
(
0, 1

2

)
. So, we can take the limit as δ → 0+ of both sides of above with taking limit
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inside the sum to get

lim
δ→0+

(Dqg̃) (x)

δ
=

4

π
cosh

(π
2
β
) ∞∑
k=−∞

(−1)k(α + k + 1
2
)g(α + k + 1

2
)

β2 + (2k + 1)2
. (5.4.19)

Now we shall directly compute lim
δ→0+

(Dqg̃) (x)

δ
with the use of (5.2.3).

lim
δ→0+

(Dqg̃) (x)

δ
=

(
α + i

2
β
)
g
(
α + i

2
β
)
−
(
α− i

2
β
)
g
(
α− i

2
β
)

iβ

=
α
[
g
(
α + i

2
β
)
− g

(
α− i

2
β
) ]

+ iβ
2

[
g
(
α + i

2
β
)

+ g
(
α− i

2
β
) ]

iβ
.

(5.4.20)

Equating the two sides of (5.4.19) and (5.4.20) yields (5.4.17). Finally, (5.4.18) follows from

(5.4.16) with f replaced by g.

Remark 5.4.3. When g(x) =
sin
[√
b2 + π2x2

]
√
b2 + π2x2

, (5.4.17) implies (5.4.12).

As applications of Theorem 5.4.2, we illustrate additional examples of entire functions

of exponential type π that are also bounded on R. Applying Theorem 5.4.2 to these functions

will verify extensions of (5.4.14), (1.6) of [27], and identities of Zayed [73, p.702].

Definition 5.4.4. A Bessel function∗ of the first kind, Jν(z) is defined by

Jν(z) :=
∞∑
n=0

(−1)n
(
z
2

)ν+2n

n! Γ(n+ ν + 1)
. (5.4.21)

The Bessel functions of order ν = 1
2

and ν = −1
2

are defined as

J1/2(z) =

√
2

πz
sin(z) and J−1/2(z) =

√
2

πz
cos(z).

∗see the classical text [68] for a comprehensive study of Bessel functions.
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The relationship between Jν(z) and J−ν(z) for an integer ν is

J−ν(z) =
∞∑
n=0

(−1)(n+m)

22n+m n! (n+m)!
x2n+m

= (−1)ν Jν(z).

Example 5.4.5. Consider the function
Jν(
√
b2 + π2x2)(√

b2 + π2x2
)ν , for b > 0 and Re(ν) > −1

2
. Apply-

ing Theorem 5.4.2 to this function, we get the following identity: with αk := α + k + 1
2
,

∞∑
k=−∞

(−1)k · αkJν(
√
b2 + π2(αk)2)(√

b2 + π2(αk)2
)ν
β2 + (2k + 1)2

= πα

{Jν (√b2 + π2
(
α + iβ

2

)2)/(√
b2 + π2

(
α + iβ

2

)2)ν
4iβ cosh(π

2
β)

−
Jν

(√
b2 + π2

(
α− iβ

2

)2)/(√
b2 + π2

(
α− iβ

2

)2)ν
4iβ cosh(π

2
β)

}

+
iπβ

2

{Jν (√b2 + π2
(
α + iβ

2

)2)/(√
b2 + π2

(
α + iβ

2

)2)ν
4iβ cosh(π

2
β)

+

Jν

(√
b2 + π2

(
α− iβ

2

)2)/(√
b2 + π2

(
α− iβ

2

)2)ν
4iβ cosh(π

2
β)

}
,

which extends (1.6) in [27] for two parameters α and β. Also, with v = 1, α = 0, and with

β → 0, (1.3) of [27] can be obtained. Taking α = 0 and letting β → 0, we get

∞∑
k=−∞

(−1)k · Jν
(√

b2 + π2(k + 1
2
)2
)

(√
b2 + π2(k + 1

2
)2
)ν

(k + 1
2
)

=
πJν(b)

bν
,

which is the identity (1.6) in [27].
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Example 5.4.6. Consider the function Jν

[π
2

(
√
b2 + x2 + x)

]
Jν

[π
2

(
√
b2 + x2 − x)

]
. Apply-

ing Theorem 5.4.2 to this function, we get the following identity: with αk := α + k + 1
2
,

∞∑
k=−∞

(−1)kαkJν [
π
2
(
√
b2 + α2

k + αk)]Jν [
π
2
(
√
b2 + α2

k − αk)]
β2 + (2k + 1)2

= πα

{
Jν [

π
2
(
√
b2 + (α + iβ

2
)2 + (α + iβ

2
))]Jν [

π
2
(
√
b2 + (α + iβ

2
)2 − (α + iβ

2
))]

4iβ cosh(π
2
β)

−
Jν [

π
2
(
√
b2 + (α− iβ

2
)2 + (α− iβ

2
))]Jν [

π
2
(
√
b2 + (α− iβ

2
)2 −

(
α− iβ

2

))]
4iβ cosh(π

2
β)

}

+
iπβ

2

{
Jν [

π
2

(√
b2 +

(
α + iβ

2

)2
+
(
α + iβ

2
))]Jν [

π
2
(
√
b2 +

(
α + iβ

2
)2 −

(
α + iβ

2
))]

4iβ cosh(π
2
β)

+
Jν [

π
2
(
√
b2 +

(
α− iβ

2

)2
+
(
α− iβ

2

))]
Jν [

π
2
(
√
b2 + (α− iβ

2
)2 − (α− iβ

2
))]

4iβ cosh(π
2
β)

}
.

Taking α = 0 and letting β → 0 above, we get

[
Jν

(
πb

2

)]2
= 2

∞∑
k=0

Jν

π
2

√b2 +

(
k +

1

2

)2

+

(
k +

1

2

)
× Jν

π
2

√b2 +

(
k +

1

2

)2

−
(
k +

1

2

) (−1)k

π(k + 1/2)
,

which is an identity of Zayed [73, p.702].
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Example 5.4.7. Let g(x) = Jν+x(b) · Jν−x(b). with αk := α + k + 1
2
, we have

∞∑
k=−∞

(−1)kαk Jν+αk(b)Jν−αk(b)

β2 + (2k + 1)2

= πα

{
Jν+(α+ iβ

2
)(b)Jν−(α+ iβ

2
)(b)− Jν+(α− iβ

2
)(b)Jν−(α− iβ

2
)(b)

4iβ cosh(π
2
β)

}

+
iπβ

2

{
Jν+(α+ iβ

2
)(b)Jν−(α+ iβ

2
)(b) + Jν+(α− iβ

2
)(b)Jν−(α− iβ

2
)(b)

4iβ cosh(π
2
β)

}
.

Taking α = 0 yields

∞∑
k=−∞

(−1)k(k + 1/2) Jν+(k+1/2)(b)Jν−(k+1/2)(b)

β2 + (2k + 1)2

= πα

{
Jν+ iβ

2
(b)Jν− iβ

2
(b)− Jν− iβ

2
(b)Jν+ iβ

2
(b)

4iβ cosh(π
2
β)

}

+
iπβ

2

{
Jν+ iβ

2
(b)Jν− iβ

2
(b) + Jν− iβ

2
(b)Jν+ iβ

2
(b)

4iβ cosh(π
2
β)

}
.

Letting β → 0 yields

∞∑
k=−∞

(−1)k Jν+(k+1/2)(b)Jν−(k+1/2)(b)

(2k + 1)
=
π

2
[Jν(b)]

2. (5.4.22)

This is true for any ν > −1
4
. So in particular letting ν = 1

2
, we get

b
∞∑

k=−∞

(−1)k Jk+1(b)Jk(b)

(2k + 1)
= (sin(b))2 , (5.4.23)

which is another identity of Zayed [73, p.703].
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5.5 Generalized Bernstein inequality

In this section we establish two types of generalizations of Bernstein inequality for

the Askey-Wilson operator:

• In pointwise norm,

• In uniform Lp-norm for p ≥ 1.

The main ingredient for our results is the extended Boas formula, Theorem 5.2.1.

5.5.1 Generalized Bernstein inequality for entire functions

For the derivative of an entire function of exponential type σ, Bernstein [12] proved,

for x ∈ R,

|f ′(x)| ≤ σ sup
x∈R
|f(x)|. (5.5.1)

Boas (see [14], [15, pp.210-211]) used his interpolating formula (5.1.1) to give a simpler

proof of (5.5.1). Now, following Boas and using our extended Boas’ formula for the Askey-

Wilson operator, we obtain the following result.

Theorem 5.5.1. If f ∈ Bσ with |f(x)| ≤M for x ∈ R, then for

|x| <

√
π2

σ2(q1/2 − q−1/2)2
+ 1 , (5.5.2)

the following inequality holds:

|Dqf(x)| ≤
2M sinh

(
σ
2
(q1/2 − q−1/2)

√
1− x2

)
(q1/2 − q−1/2)

√
1− x2

. (5.5.3)

96



The branch of
√
z is chosen such that the function is analytic in C\{z : z = ia, a ≥ 0}.

Note that for x ∈ R, the right hand side of (5.5.3) is always positive.

Remark 5.5.2. Recall that z = eiθ and x = cos θ. Note that

√
z = e

1
2
log(z) = e

1
2
(ln(|z|)+i Arg(z)) .

1. If we choose the principal branch of the logarithm to be −π
2
≤ Arg(z) ≤ 3π

2
, then

Arg(z) = 0 for z > 0 and Arg(z) = π for z < 0. Consequently
√
z = e

1
2
(ln(|z|)+iπ) = i

√
z.

2. If we choose −3π
2
≤ Arg(z) ≤ π

2
, then Arg(z) = 0 for z > 0 and Arg(z) = −π for z < 0.

Consequently
√
z = e

1
2
(ln(|z|)−iπ) = −i

√
z.

Figure 5.1
Branch cut for −π

2
≤ Arg(z) ≤ 3π

2

Figure 5.2
Branch cut for −3π

2
≤ Arg(z) ≤ π

2

Proof of Theorem 5.5.1. Recall first that q ∈ (0, 1). For x = ±1, the right hand side of

(5.5.3) equals to σM > 0. For |x| < 1, 1 − x2 is real and positive and thus the right hand
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side of (5.5.3) is real and positive. For |x| > 1,
√

1− x2 = i
√
x2 − 1, and thus the right hand

side of (5.5.3) equals to

2M sin
(
σ
2
(q1/2 − q−1/2)

√
x2 − 1

)
(q1/2 − q−1/2)

√
x2 − 1

.

Now, for |x| <
√

π2

σ2(q1/2−q−1/2)2
+ 1 ,

0 <
√
x2 − 1 <

π

σ · (q1/2 − q−1/2)
.

It follows that

0 <
σ

2
(q1/2 − q−1/2)

√
x2 − 1 <

π

2
.

Since sin is increasing on
(
0, π

2

)
, It follows that

0 < sin
(σ

2
(q1/2 − q−1/2)

√
x2 − 1

)
< 1 .

Next, we shall establish the desired inequality in view of two cases; |x| ≤ 1 and |x| > 1.

Case 1: First, suppose that |x| ≤ 1. From (5.2.2), we have, for |x| ≤ 1,

| (Dqf) (x)| ≤ 4

σ

∣∣∣cosh
(σ

2
β
)∣∣∣ ∞∑

k=−∞

∣∣∣f (α +
σ

2π
(2k + 1)

)∣∣∣ 1

|β2 + (2k + 1)2 π2/σ2|
,

which is less than or equal to

4M

σ
cosh

(σ
2
β
) ∞∑
k=−∞

1

β2 + (2k + 1)2 π2/σ2

which, by (5.4.3), equals to

2M sinh(σ
2
β)

β
.
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Case 2: Now, suppose that x ∈ (−∞,−1) ∪ (1,∞). So β is purely imaginary, and so

β2 = −|β|2. Thus, from (5.2.2) we obtain

|(Dqf)(x)| ≤ 4M

σ

∣∣∣cosh
(σ

2
β
)∣∣∣ ∞∑

k=−∞

1∣∣−|β|2 + (2k + 1)2 π2/σ2
∣∣

=
4M

σ

∣∣∣cosh
(σ

2
β
)∣∣∣ ∑
|β|<|2k+1|π

σ

1

−|β|2 + (2k + 1)2 π2/σ2

+
4M

σ

∣∣∣cosh
(σ

2
β
)∣∣∣ ∑
|β|>|2k+1|π

σ

1

|β|2 − (2k + 1)2 π2/σ2
.

For |x| <
√

π2

σ2(q1/2−q−1/2)2
+ 1 , from (5.2.1) we have

1 +
|β|2

(q1/2 − q−1/2)2
<

π2

σ2(q1/2 − q−1/2)2
+ 1 .

Solving the inequality for β yields |β| < π

σ
. So the second sum above is empty (and thus

have value zero), and hence,

|(Dqf)(x)| ≤ 4M

σ

∣∣∣cosh
(σ

2
β
)∣∣∣ ∞∑

k=−∞

1

−|β|2 + (2k + 1)2 π2/σ2

=
2M sinh(σ

2
β)

β
.

The desired result follows from (5.2.1) with x = cos θ.

Remark 5.5.3. Note that, in the limit as q → 1−, the finite interval

(
−

√
π2

σ2(q1/2 − q−1/2)2
+ 1,

√
π2

σ2(q1/2 − q−1/2)2
+ 1

)

expands to the whole real line and

2 sinh
(
σ
2
(q1/2 − q−1/2)

√
1− x2

)
(q1/2 − q−1/2)

√
1− x2

→ σ .
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So the Bernstein inequality is a limiting case of Theorem 5.5.1.

Now, we establish the same inequality in terms of only α and β.

Theorem 5.5.4. If f ∈ Bσ with |f(x)| ≤M for x ∈ R, then for

β = u+ iv ∈ R ∪
{
it : |t| < π

σ

}
, u, v ∈ R

the following inequality holds:

|(Df)(α, β)| ≤ 2M ·
∣∣∣cosh

(σ
2
β
)∣∣∣ · tanh

(
σ
2

√
u2 − v2

)
√
u2 − v2

. (5.5.4)

Proof. For any α, β ∈ C, from (5.2.4) we have

| (Df) (α, β)| ≤ 4

σ

∣∣∣cosh
(σ

2
β
)∣∣∣ ∞∑

k=−∞

∣∣∣f (α +
σ

2π
(2k + 1)

)∣∣∣ 1

|β2 + (2k + 1)2 π2/σ2|
,

which is less than or equals to

4M

σ

∣∣∣cosh
(σ

2
β
)∣∣∣ ∞∑

k=−∞

1∣∣β2 + (2k + 1)2 π2/σ2
∣∣ .

For β = u+ iv, note that

∣∣∣∣β2 + (2k + 1)2
π2

σ2

∣∣∣∣2 =

∣∣∣∣(u+ iv)2 + (2k + 1)2
π2

σ2

∣∣∣∣2
=

∣∣∣∣u2 − v2 + (2k + 1)2
π2

σ2
+ 2iuv

∣∣∣∣2
= u4 + v4 − 2u2v2 + 2(u2 − v2) · (2k + 1)2

π2

σ2
+ (2k + 1)4

π4

σ4
+ 16u4v4

≥ u4 + v4 − 2u2v2 + 2(u2 − v2) · (2k + 1)2
π2

σ2
+ (2k + 1)4

π4

σ4

=

(
u2 − v2 + (2k + 1)2

π2

σ2

)2

.
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Thus we have

| (Df) (α, β)| ≤ 4M

σ

∣∣∣cosh
(σ

2
β
)∣∣∣ ∞∑

k=−∞

1

(u2 − v2 + (2k + 1)2π2/σ2)

=
4M

σ

∣∣∣cosh
(σ

2
β
)∣∣∣ ∞∑

k=−∞

1(
(
√
u2 − v2)2 + (2k + 1)2π2/σ2

) .
By (5.4.3) the right hand side above equals to

4M

σ

∣∣∣cosh
(σ

2
β
)∣∣∣ · σ tanh

(
σ
2

√
u2 − v2

)
2
√
u2 − v2

= 2M ·
∣∣∣cosh

(σ
2
β
)∣∣∣ · tanh

(
σ
2

√
u2 − v2

)
√
u2 − v2

.

Note that if u2 − v2 + π2

σ2 > 0, β is in the region bounded by the hyperbola v = −
√
u2 + π2

σ2

and v =
√
u2 + π2

σ2 in the complex plane, where u = Re(β) and v = Im(β).

Remark 5.5.5. Note that, in the limit as q → 1−, β → 0, and hence

2M ·
∣∣∣cosh

(σ
2
β
)∣∣∣ · tanh

(
σ
2

√
u2 − v2

)
√
u2 − v2

→ σM .

So the Bernstein inequality is a limiting case of Theorem 5.5.4.

5.5.2 Generalized Bernstein inequality in Lp-norm for entire functions

The following theorem is an Lp analogue of the Bernstein inequality for entire func-

tions of exponential type.

Theorem 5.5.6. Let f be an entire function of exponential type τ belonging to Lp(R), i.e.,

f ∈ Bp
σ. Then

‖f ′‖Lp ≤ τ ‖f‖Lp , (p ≥ 1). (5.5.5)
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For the proof of our result we need the following classical inequality of Holder’s:

Theorem 5.5.7 (Hölder’s inequality). Let
1

p
+

1

p′
= 1. Then

∞∑
k=−∞

|akbk| ≤
{ ∞∑
k=−∞

|ak|p
}1/p{ ∞∑

k=−∞

|ak|p
′
}1/p′

. (5.5.6)

The case when p = p′ = 2, is called the Cauchy-Schwarz inequality.

Now we will state and prove our result for the generalization of Theorem 5.5.6 for the

Askey-Wilson operator.

Theorem 5.5.8. Let f ∈ Bp
σ. Assume that α, β ∈ R. Then, for p ≥ 1, the following holds:

‖Df‖Lp ≤ σ ‖f‖Lp

∥∥∥∥∥sinh
(
σ
2
β
)

σ
2
β

∥∥∥∥∥
Lp

. (5.5.7)

Here

‖Df‖Lp =

(∫ ∞
β=−∞

∫ ∞
α=−∞

|(Df)(α, β)|p dα dβ

)1/p

, (5.5.8)

and Df is as defined in(5.2.3).

Proof. Assume that α, β ∈ R. We will start with our main result and integrate both sides

of (5.2.2) with respect to α and β from −∞ to ∞ to get

∫ ∞
β=−∞

∫ ∞
α=−∞

|(Df)(α, β)|p dα dβ

=
4p

σp

∫ ∞
β=−∞

coshp
(σ

2
β
){∫ ∞

α=−∞

∣∣∣∣∣
∞∑

k=−∞

f
(
α +

π

2σ
(2k + 1)

) (−1)k

β2 + (2k + 1)2 π2/σ2

∣∣∣∣∣
p

dα

}
dβ.

(5.5.9)
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Using the Hölder’s inequality yields

∣∣∣∣∣
∞∑

k=−∞

f
(
α +

π

2σ
(2k + 1)

) (−1)k

β2 + (2k + 1)2 π2/σ2

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

k=−∞

f
(
α +

π

2σ
(2k + 1)

) { (−1)k

β2 + (2k + 1)2 π2/σ2

}1/p

·
{

(−1)k

β2 + (2k + 1)2 π2/σ2

}1/p′
∣∣∣∣∣

≤

[
∞∑

k=−∞

∣∣∣f (α +
π

2σ
(2k + 1)

)∣∣∣p { 1

β2 + (2k + 1)2 π2/σ2

}]1/p [ ∞∑
k=−∞

1

β2 + (2k + 1)2 π2/σ2

]1/p′

=

[
∞∑

k=−∞

∣∣∣f (α +
π

2σ
(2k + 1)

)∣∣∣p { 1

β2 + (2k + 1)2 π2/σ2

}]1/p{
σ tanh(σ

2
β)

2β

}1/p′

.

The penultimate line follows from (5.4.3). Using this in (5.5.9) yields

∫ ∞
β=−∞

∫ ∞
α=−∞

|(Df)(α, β)|p dα dβ

≤ 4p

σp

∫ ∞
β=−∞

coshp
(σ

2
β
)[∫ ∞

α=−∞

{ ∞∑
k=−∞

∣∣∣f (α +
π

2σ
(2k + 1)

)∣∣∣p { 1

β2 + (2k + 1)2 π2/σ2

}}

×
{
σ tanh(σ

2
β)

2β

}p/p′
dα

]
dβ.

Isolating the integrals with respect to α and β, the right hand side of the above inequality

equals to

4p

σp

∫ ∞
β=−∞

coshp
(σ

2
β
)
·
{
σ tanh(σ

2
β)

2β

}p/p′[ ∞∑
k=−∞

{∫ ∞
α=−∞

∣∣∣f (α +
π

2σ
(2k + 1)

)∣∣∣p dα}
×
{

1

β2 + (2k + 1)2 π2/σ2

}]
dβ.

From
1

p
+

1

p′
= 1, we have

p

p′
= p− 1, so the above equals to

4p

σp
‖f‖pLp

∫ ∞
β=−∞

coshp
(σ

2
β
)
·
{
σ tanh(σ

2
β)

2β

}p−1[ ∞∑
k=−∞

1

β2 + (2k + 1)2 π2/σ2

]
dβ ,
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which in view of (5.4.3) equals to

4p

σp
‖f‖pLp

∫ ∞
β=−∞

coshp
(σ

2
β
)
·
{
σ tanh(σ

2
β)

2β

}p
dβ

= σp ‖f‖pLp
∫ ∞
β=−∞

{
sinh(σ

2
β)

σ
2
β

}p
dβ

= σp ‖f‖pLp
∥∥∥∥sinh(σ

2
β)

σ
2
β

∥∥∥∥p
Lp

.

i.e., ∫ ∞
β=−∞

∫ ∞
α=−∞

|(Df)(α, β)|p dα dβ ≤ σp ‖f‖pLp
∥∥∥∥sinh(σ

2
β)

σ
2
β

∥∥∥∥p
Lp

.

Taking the pth root on both sides yields

‖Df‖Lp ≤ σp ‖f‖Lp ·

∥∥∥∥∥sinh
(
σ
2
β
)

σ
2
β

∥∥∥∥∥
Lp

.

Remark 5.5.9. In the limit as q → 1−,

sinh
(
σ
2
β
)

σ
2
β

→ 1.

Hence Theorem 5.5.8 is a limiting case of Theorem 5.5.6.
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CHAPTER 6: CONCLUSION

It’s fine to work on any problem, so long as it generates interesting mathematics along the

way - even if you don’t solve it at the end of the day.

Andrew Wiles

As the title of the dissertations states, this was indeed an adventure seeking for

Bernstein inequalities in which along the way we explore several avenues; Rational functions,

Askey-Wilson operator, Interpolation formulae and Summation identities for entire functions.

The journey has not come to a destination, rather it has opened several paths for me to

continue and explore this exciting branch of mathematics. Following I will state some possible

directions that the current work in the dissertation can be carried out.

6.1 Generalizing and extending polynomial inequalities to rational functions

In accordance with Chapter 3, I want to continue with the inequalities we already

have and to improve the final forms if possible, especially in the rational analogue of the

Govil’s inequality, Theorem 3.3.10, and to work on the conjecture stated on page 15.

In establishing rational analogues to polynomial inequalities, the main focus in the

dissertation was Bernstein-type inequalities associated with the unit disk; generalizations

and extensions. While exploring more along this direction, I would also like to look not only

at Bernstein inequalities, but also at Markov inequalities in different domains, for instance

smooth and non-smooth Jordan curves, arcs, and intervals on the real line etc. as in the

recent works of Vilmos Totik and his collaborators (see [37], [50], [62], [63], and [64]).
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6.2 A systematic way of looking at summation identities

There are diverse collections of identities, even to the scale of encyclopedic nature

stated in references such as [27], [73], Ramanujan’s notebooks, and [31]. Our plan is to

discover as many identities we can with our two parameter extended Boas’ formula. We

are optimistic that our frame work will pave the way to accomplish this task. Also, we are

looking at not only working with the Askey-Wilson operator alone but combining it and the

Average operator.

During one of the discussions we had, Dr. Mourad Ismail suggested to us that our

expansions should extend to theta functions and the proper setting to the kind of expansions

that we’re looking at is not in terms of sine and cosine but in terms of theta functions. We

believe that a clear understanding of this procedure will aid us in establishing a system-

atic method to derive summation identities starting from our framework. Dr. Ismail also

explained to us that the way we write things is similar to the way of that of the Wilson

operator [6]:

(W f)(x) :=
f̆
(
y + i

2

)
− f̆

(
y − i

2

)
2yi

, y =
√
x, f(x) = f̆(y).

So by an appropriate change of variables, followed by a limit, our results should yield results

related to Wilson’s operator.

As a sequel to his paper [73], A. I. Zayed in [74], yet again by borrowing tech-

niques from sampling theory, derived summation formulas for doubly infinite series involving

trigonometric functions and Bessel functions of the first kind. A higher dimensional/order

version of the Askey-Wilson operator is yet unknown. Once such an operator is established,

our framework can be used in discovering multivariate summation identities as well.
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6.3 A general setting for interpolation formulas

It is well known in the folklore that once we have the “correct” interpolation formula

we can get the “corresponding” Bernstein inequality(ies), which was what we accomplished

through our generalized Riesz-type interpolation formula (Theorem 4.3.1) and the ex-

tended Boas’ formula (Theorem 5.2.1). More precisely, the former led us in establishing

(4.3.4); the latter in establishing (5.5.3), (5.5.4), and (5.5.7).

In [2, p.144, Theorem 3] Naum I. Achieser showed that Bernstein inequality for

functions of exponential type is in fact a special case of each of the two theorems below:

Theorem 6.3.1. If f ∈ Bσ, then the inequality

sup
−∞<x<∞

| sin(α) · f ′(x)− σ cos(α) · f(x)| ≤ σ sup
−∞<x<∞

|f(x)| (6.3.1)

and

sup
−∞<x<∞

| sin(α) · f ′(x) + cos(α) · (f̃)′(x)| ≤ σ sup
−∞<x<∞

|f(x)| . (6.3.2)

are satisfied for every α ∈ R. The equality holds if and only if f(z) = aeiσz + be−iσz.

To prove (6.3.1) and (6.3.2), Achieser used the following two interpolation formulas

respectively for the functions in Bσ:

sin(α) · f ′(x)− σ cos(α) · f(x) = σ
∞∑

k=−∞

(−1)k−1
sin2(α)

(α− kπ2)
f

(
kπ − α
σ

+ x

)
(6.3.3)

and

sin(α) · f ′(x) + cos(α) · (f̃)′(x) = σ

∞∑
k=−∞

(−1)k−1
2 sin2

(
α−kπ

2

)
(α− kπ)2

f

(
kπ − α
σ

+ x

)
. (6.3.4)
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Stimulated by Achieser’s work, our objective is to find interpolation formulas of the

following types where p ∈ Pn, f ∈ Bσ, and t ∈ Tn.

1. sin(α) · (Dqf)(x)− σ cos(α) · f(x) = . . . . . .?

2. sin(α) · (Dqp)(x)− σ cos(α) · p(x) = . . . . . .?

For the following items, (Λp)(·) is called the Szegö composition∗ of the polynomials

Λ and p.

3. sin(α) · (Λt)(ϕ)− cos(α) · t(ϕ) = . . . . . .?

4. sin(α) · (Λt̃)(ϕ)− cos(α) · t̃(ϕ) = . . . . . .? etc.

6.4 Bernstein inequality in Lp-norm for 0 < p < 1

Q. I. Rahman and G. Schmeisser in [54] proved that a Bernstein inequality for Lp-

norm indeed holds for 0 < p < 1 as well. They claimed their result with the use of couple of

significant results of Vitalii Arestov [4] and Lars Hörmander [34] with the use of a function φ

given by φ(t) := ψ(log(t)), where ψ is a nonnegative, nondecreasing convex function defined

on R. Following the methods of Rahman and Schmeisser, I would like to work on generalizing

such a Bernstein inequality for the Askey-Wilson operator.

∗[5] More precisely, for the polynomials

Λ(z) =

n∑
k=0

λk

(
n

k

)
zk, p(z) =

n∑
k=0

ak

(
n

k

)
zk ,

the polynomial

(Λp)(z) =

n∑
k=0

λkak

(
n

k

)
zk

is called the Szegö composition of the polynomials Λ and p.
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