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ABSTRACT

This thesis will study the various roles that quasi-Gorenstein modules and their properties play in

the study of homological dimensions and linkage of modules. To that effect we begin by study-

ing these modules in their own right. An R-module M of grade g will be quasi-Gorenstein if

ExtiR(M,R) = 0 for i 6= g and there is an isomorphism M ∼= ExtgR(M,R). Such modules have

many nice properties which we will explore throughout this thesis. We will show they help extend

a characterization of diagonalizable matrices over principal ideal domains to more general rings.

We will use their properties to help lay a foundation for a study of homological dimensions, help-

ing to generalize the concept of Gorenstein dimension to modules of larger grade and present a

connection to these new dimensions with certain generalized Serre conditions.

We then give a categorical construction to the concept of linkage. The main motivation of such a

construction is to generalize ideal and module linkage into one unified theory. By using the defin-

tion of linkage presented by Nagel [53], we can use categorical language to define linkage between

categories. One of the focuses of this thesis is to show that the history of linkage has been wrought

with a misunderstanding of which classes of objects to study. We give very compelling evidence to

suggest that linkage is a tool to gain information about the even linkage classes of objects. Further,

scattered among the literature is a wide array of results pertaining to module linkage, homological

dimensions, duality, and adjoint functor pairs and for which we show that these fall under the um-

brella of this unified theory. This leads to an intimate relationship between associated homological

dimensions and the linkage of objects in a category. We will give many applications of the theory

to modules allowing one to cover vast grounds from Gorenstein dimensions to Auslander and Bass

classes to local cohomology and local homology. Each of these gives useful insight into certain

classes of modules by applying this categorical approach to linkage.
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CHAPTER 1: INTRODUCTION

This dissertation is concerned with exploring the homological properties of objects using the tools

developed in the theory of homological dimensions, ideal linkage, and duality. We capture the

properties of duality and use them to discover the intimate connection between homological di-

mensions and linkage.

Let R be a Noetherian ring and R-Mod be the category of R-modules. We are concerned with

the homological properties of a class of R-modules called the quasi-Gorenstein modules. An R-

moduleM is quasi-Gorenstein if for some g ≥ 0 there is some isomorphism α : M → ExtgR(M,R)

and ExtiR(M,R) = 0 for i 6= g. Finitely generated free R-modules are quasi-Gorenstein where

g = 0 andR/x̄where x̄ is a regular sequence of length g inR is a quasi-GorensteinR-module with

ExtgR(R/x̄, R) ∼= R/x̄. Clearly these are very specialized modules. They are formally defined by

Nagel [53], but have appeared in various forms [8, 9, 12, 29, 43]. These modules play a role in the

study of the structure of modules and matrices, the study of linkage using modules, and the study

of homological dimensions associated to certain functors in R-Mod.

To see their connection to matrices, let m be a square n × n matrix with entries in a ring R. If m

is of full rank there is a short exact sequence

0→ Rn m→ Rn → Q→ 0.

Then we get another short exact sequence

0→ Rn mT

→ Rn → Ext1R(Q,R)→ 0.
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which is obtained from the first sequence by applying the functor HomR(−, R). Assuming m is

symmetric, m = mT and we have that Q ∼= Ext1R(Q,R) and HomR(Q,R) = 0 = ExtiR(Q,R) for

i > 1. Thus Q is quasi-Gorenstein and this construction gives entire families of quasi-Gorenstein

modules that are not free or R/x̄. This situation arises in other areas of mathematics such as com-

binatorics, matrix theory, and graph theory.

Given a graph G, one can associate to it two matrices D and A, the degree matrix and adjacency

matrix, respectively. One can then form the matrix L = D − A. The laplacian matrix associated

to G is the matrix L(1, 1) where the first row and column of L have been deleted. This is a square

full rank symmetric matrix, and so it fits into the short exact sequence

0→ Zn L(1,1)−→ Zn → Q→ 0,

where from the above remarks Q is quasi-Gorenstein where Q ∼= Ext1Z(Q,Z). Q is called the

Sandpile group or critical group of the graph G, see [7, 45–47].

It is clear that quasi-Gorenstein modules are special modules and in this thesis we explore them

as well as their role in other aspects of commutative and homological algebra. The layout of the

thesis is as follows.

Chapter 2 will provide introductory and background material and preliminary and motivational

results.

In Chapter 3, we define quasi-Gorenstein modules which have finite projective dimension and

2



explore their properties and homological characteristics. These are described in the following

way:

Definition 1.0.1. Let R be a Noetherian commutative ring and Q an R-module of finite projective

dimension. We say that Q is quasi-Gorenstein with projective dimension q if the following holds:

(i) pdR(Q) = gradeR(Q)

(ii) Q ∼= ExtqR(Q,R)

In general, these can be defined without finite projective dimension and we will have a much more

general definition attached to the category pair with linkage definition in Chapter 5. Our goal in

this chapter is to present an extension the structure theorem of finitely generated modules over a

principal ideal domain. The classical structure theorem can be stated as follows:

Theorem 1.0.2. Let R be a principal ideal domain. If M is a finitely generated R-module then

pdR(M) ≤ 1 and the following holds:;

(i) M ∼= ⊕ni=1R/(λi), λi ∈ R

(ii) M is presented by a full rank n× n matrix m which is diagonalizable.

(iii) M is presented by a diagonal matrix Λ = diag(λ1, λ2, . . . , λn).

The focus of the chapter is to present properties and results concerning quasi-Gorenstein modules

which will lead to an extension of this theorem.

In Section 3.2 we begin our focus on quasi-Gorenstein R-modules of projective dimension one.

This gives rise to the characterization of such modules using matrices over R.

3



Corollary 1.0.3. Suppose that M is an R-module of projective dimension one presented by a full

rank n×nmatrixm. Thenm is equivalent tomT if and only ifM is a quasi-GorensteinR-module.

In Section 3.3 we present a filtration associated to modules which utilizes their associated primes.

Given an R-modules M one has a lattice of associated primes under inclusion associated to M .

We can then consider an increasing chain of submodules of M ,

0 = M0 (M1 (M2 (M2 ( · · · (M,

where each consecutive quotient Mi+1/Mi
∼= R/Ii+1 has Ii+1 an associated prime of M . We call

such a filtration a cyclic-filtration of M . These are used to help decompose the symmetric matrix

associated to a quasi-Gorenstein module of projective dimension one.

In Section 3.4 we use these definitions and properties of quasi-Gorenstein modules and cyclic-

filtrations to prove the following theorem:

Theorem 1.0.4. Let R be a commutative factorial domain and M an R-module of projective

dimension one presented by a full rank n× n matrix m. The following are equivalent:

(i) M is quasi-Gorenstein and M has a minimal cyclic-filtration consisting of quasi-Gorenstein

submodules.

(ii) m is equivalent to mT and M has a minimal cyclic filtration consisting of quasi-Gorenstein

submodules.

(iii) M ∼=
n⊕
i=1

R/(λi), λi ∈ R.

(iv) The matrix m is diagonalizable.
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This gives an extension to the structure theorem for finitely generated modules over a principal

ideal domain. This is a useful characterization of diagonalizable matrices over more general rings.

In fact, a useful application of these ideas is to the study of laplacian matrices of edge-weighted

graphs and graph operations. By giving an indeterminate weight to an edge of a graph, the lapla-

cian has elements in Z[q] where q is the indeterminate. This polynomial ring is a commutative

factorial domain and that allows us to use this theorem to understand when the laplacian is diago-

nalizable and what this means for families of graphs.

In Chapter 4, we begin our study of homological dimensions associated to the functors ExtiR(−, R)

over a commutative ring R. The definitions and ideas mirror those of C-Gorenstein dimensions,

see [15, 18]. The ideas and intuition built up from quasi-Gorenstein modules helps understand the

homological characteristics of these new modules which can be defined in the following way:

Definition 1.0.5. Suppose that C is a semidualizing R-module. Let M be an R-module where

gradeR(M) = g. We say that M has Gg
C-dimension zero if the following holds:

(i) M is finitely generated

(ii) Extg+iR (M,C) = 0 = Extg+iR (ExtgR(M,C), C) for i 6= 0.

(iii) The biduality map δgC(M) : M → ExtgR(ExtgR(M,C), C) is an isomorphism.

This biduality map can be thought of as an extension of the natural evaluation map δM : M →

HomR(HomR(M,C), C) given by δM(m)(ϕ) = ϕ(m). Clearly, quasi-Gorenstein R-modules of

grade g have Gg
C-dimension zero. One can use Gg

C-dimension zero modules to construct resolu-

tions of modules with grade at least g. This gives rise to a collection of homological dimension

associated to each grade, which are called the intermediate C-Gorenstein dimensions.
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In Section 4.1, we provide results determining what these dimensions are and how they are con-

nected together. We prove the following result which gives an exact value for the dimension if it is

finite.

Theorem 1.0.6. Let C be a semidualizing R-module. For a finitely generated R-module M with

gradeR(M) ≥ g, the following are equivalent:

(i) Gg
C-dimR(M) ≤ n

(ii) Gg
C-dimR(M) <∞ and n ≥ αR(M)− g

(iii) In any Gg
C-resolution,

· · · →Mi →Mi−1 → · · · →M0 →M → 0

the kernel Kn = ker(Mn−1 →Mn−2) has Gg
C-dimension zero.

This also shows how these dimensions are connected together.

Theorem 1.0.7. Let C be a semidualizing R-module and M a finitely generated R-module. Then

G
gradeR(M)
C -dimR(M) <∞ if and only if Gi

C-dimR(M) <∞ for any i ≤ gradeR(M).

This leads to an Auslander-Bridger formula for these dimensions

Corollary 1.0.8. Let C be a semidualizing module for a local ring (R,m, k) with Gj
C-dimR(M) <

∞ for an R-module M . Then

Gj
C-dimR(M) = depth(R)− depthR(M) + j

6



In Section 4.2, we use a more general definition of a condition related to the Serre conditions for

rings to give results concerning these new dimensions. This condition can be stated in the following

way:

Definition 1.0.9. Let C be a semidualizing R-module and M and R-module. We say that M

satisfies S̃gn if

depthRp
(Mp) + g ≥ min{n, depth(Rp)} ∀p ∈ Spec(R)

This leads to a generalization of [18, Proposition 2.4] which gives a characterization of modules

satisfying this general Serre-like condition.

Theorem 1.0.10. Let C be a semidualizing R-module, M an R-module with gradeR(M) = g,

n ≥ g, and M have locally finite Gg
C-dimension. Then the following are equivalent:

(i) Extg+iR (Dg
CM,C) = 0 for 1 ≤ i ≤ n− g

(ii) M is an (n− g)thGgC-syzygy

(iii) M satisfies S̃gn

(iv) gradeCp
(Ext

gradeCp
(Mp)+i

Rp
(Mp, CP )) ≥ i + n for i ≥ 1 and p ∈ Spec(R) where depth(Rp) ≤

i+ n− 1.

In Chapter 5, we begin our study of linkage by defining linkage from a categorical perspective.

Linkage, under the lense of algebra, was originally studied by Peskine and Szpiro, see [57]. They

were concerned with connections between invariants of curves and the study of the intersection

of curves. The linkage they define is hereafter referred to as ideal linkage. There is an extremely

large literature on ideal linkage for which [32,39,40,52,57] are just a few resources. We are more

concerned with the generalization of ideal linkage to module linkage and beyond. Exactly how to
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generalize ideal linkage to module linkage is not an easy question and one that has been studied

thoroughly, see [18, 44, 48, 49, 52, 53, 60]. We are concerned with preserving the homological

characteristics and properties of the associated modules to these ideals. To that end, we choose to

emulate the generalization of ideal linkage to module linkage presented by Nagel, see [53]. He uses

quasi-Gorenstein modules to define a class of modules through which linkage is achieved. Given

an R-module M with gradeR(M) = g, we can approximate M by a quasi-Gorenstein R-module

Q of grade g with a short exact sequence

0→ KM → Q→M → 0

Then by applying HomR(−, R) to this we get the exact sequence

0→ ExtgR(M,R)→ ExtgR(Q,R)→ ExtgR(KM , R)→ Extg+1
R (M,R)→ 0

and using the isomorphism Q→ ExtgR(Q,R) we can obtain an R-module we denote with LQ(M)

where

0→ ExtgR(M,R)→ Q→ LQ(M)→ 0

is a short exact sequence. We then have the following

Definition 1.0.11. We say that twoR-modulesM andN are directly linked by the quasi-Gorenstein

module Q if LQ(M) ∼= N and LQ(N) ∼= M .

We will explore this exact situation in more detail in Chapter 6. The most important property uti-

lized by the quasi-Gorenstein R-modules is their self-dual property. In our definition of a category

pair with linkage we use this property to help formulate an adequate situation in which to perform

linkage.

Definition 1.0.12. Let X and Y be homological categories where S : X → Y and T : Y → X are

8



additive contravariant left exact functors. We say that S and T are linkage functors, and (S, T )

form a linkage functor pair for X and Y if there exists a category B with a pair of full and faithful

functors FX : X → X and FY : B → Y such that the following holds:

(i) There exists functors XB : X|FX (B) → Y|FY (B) and YB : Y|FY (B) → X|FX (B) such that

XB ◦ FX = FY and YB ◦ FY = FX . Moreover, XB and YB are such that S|FB(B) = XB and

T |FY (B) = YB.

(ii) For each B ∈ B, DiS(FX (B)) = 0 and DiT (FY(B)) = 0 for i > 0 where DiS(−) and

DiT (−) are the derived functors of S and T , respectively.

In this case we say that B is a Fossum category, both FX (B) and FY(B) are linking classes of X

and Y , and ((X ,Y),B, (S, T )) is a category pair with linkage.

Before we define a generalization of the linkage defined previously, we want to point out the use

of two categories and two functors here. In order to construct an adequate theory of linkage, one

needs two functors in which to apply one after the other to different sequences. It turns out that

the pairs of functors which give the desired theory (and we give substantial proof of this) are two

contravariant left exact functors, two contravariant right exact functors, or one covariant right exact

functor and one covariant left exact functor. The reason for this is the way in which we compare a

module with what is hopefully its direct link. After application of the functor, one uses the original

object and the self-dual (we will call them Fossum) object to construct the link. Depending upon

the functor this puts the link on either the opposite side or the same side of the short exact se-

quence as the original object. Due to this, the three pairs mentioned above are the ones which form

an adequate theory, and which emulates the already proven theory of ideal and module linkage. So

there are similar definitions in which S and T are both contravariant right exact and where both

are covariant and one is left exact and one is right exact. These three situations are explored in

9



sections 5.1 and 5.2.

Furthermore, the functors XB and YB capture the duality used in Nagel’s definition. For instance,

in the situation of both categories being R-Mod and we use the contravariant left exact functors

S = T = ExtgR(−, R) we have thatXB and YB are the isomorphisms connecting a quasi-Gorenstein

R-module Q with ExtgR(Q,R).

We define linkage in almost exactly the same manner as before, given an object X which can be

approximated by a Fossum object B we have a short exact sequence

0→ KX → FX (B)→ X → 0

in X , and after applying the functor S we get

0→ S(X)→ S(FX (B))→ S(KX)→ R1S(X)→ 0

in Y . From this exact sequence we obtain the short exact sequence

0→ S(X)→ FY(B)→ LSB(X)→ 0

as S ◦ FX = XB ◦ FX = FY . Then we have a similar definition for linkage.

Definition 1.0.13. Let X ∈ X and Y ∈ Y be objects. We say that X is directly linked to Y by

B ∈ B if LSB(X) ∼= Y and LTB(Y ) ∼= X .

One can then discuss objects which are linked through any number of these direct links, and fur-

ther break this down into an even number of direct links and an odd number of direct links. These
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are the even and odd linkage classes of an object in either X or Y . Note, by using two different

categories X and Y we given strong evidence to suggest that properties which should be shared

throughout linked objects should only be shared by those in the same category. In ideal and module

linkage, one large area of study are properties which are shared across an entire linkage class. One

of the more popular properties to consider are those ideals which are in the same linkage class as

a complete intersection ideal. This is similar to asking about objects which are in the same link-

age class as an object in B. However, the question should instead be what properties are shared

by those in the even linkage class of such an object as those are the ones which fall in the same

category. Therefore, many of the results we prove show that objects in the same even linkage class

share many nice properties not shared by the entire linkage class.

Next, we prove which homological properties are shared by linked objects. An interesting object

to consider is one which is invariant under the composition S ◦ T or T ◦ S. We define these as

the perfect objects in X or Y , see Definition 5.1.7. These are quite similar to the Gg
C-Gorenstein

dimension zero modules discuss in Chapter 4. We prove this property is invariant under linkage

giving the following result.

Corollary 1.0.14. Let ((X ,Y),B, (S, T )) be a category pair with linkage. Suppose that X is S-

perfect. Then every object in the even linkage class of X is S-perfect and every object in the odd

linkage class of X is T -perfect.

What is left out is the natural biduality map used to define Gg
C-Gorenstein dimension zero. If such

a mapping exists using the composition S ◦ T or T ◦ S for any object we say the category pair

with linkage is perfect. More specifically, if there is some natural transformation δSX (−) between

the identity functor and T ◦ S or vice versa for Y , we say that the category pair with linkage is

S-perfect. This is exactly when S and T form an adjoint functor pair. In such categories one can
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prove many generalizations of results from many sources such as [18, 36, 49, 61, 62]. Specifically,

one can see that the four term exact sequences associated each natural biduality map is a specific

instance of the following:

Proposition 1.0.15. Let ((X ,Y),B, (S, T )) be a category pair with linkage which is also both

S-perfect and T -perfect. Then

(i) For any X ∈ X we have an exact complex

0 R1T (DS(X)) X T (S(X)) R2T (DS(X)) 0
δSX (X)

(ii) For any Y ∈ Y we have an exact complex

0 R1S(DT (Y )) Y S(T (Y )) R2S(DT (Y )) 0
δTY (Y )

The objects DS(X) and DT (Y ) are called the S and T -duals of X and Y , respectively. Further-

more, we give characterizations of perfect objects and conditions for objects to have nonempty

linkage classes. The culmination of this is the following:

Theorem 1.0.16. Let ((X ,Y),B, (S, T )) be perfect and suppose that X ∈ X has no summands

in B. If X is directly linked to Y by B and X ′ is directly linked to Y by B′ then RiT (DS(X)) ∼=

RiT (DS(X ′)) and RiS(X) ∼= RiS(X ′) for i > 0.

In Section 5.3, we use the perfect objects in these linkage categories to define homological dimen-

sions associated to the functors S and T , called S and T -dimensions. As the perfect objects are

generalizations of Gg
C-Gorenstein dimension zero modules, among many other types of modules

or objects, the results concerning these dimensions will mirror those surrounding Gg
C-dimension.

We first give the exact value for these dimensions, when it is finite.
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Theorem 1.0.17. For a category pair with linkage ((X ,Y),B, (S, T )) we have the following:

(i) For X ∈ X with S-dimX (X) <∞, S-dimX (X) = sup{i : DiS(X) 6= 0}.

(ii) For Y ∈ Y with T -dimY(Y ) <∞, T -dimY(Y ) = sup{i : DiT (Y ) 6= 0}.

With these homological dimensions we are able to discuss their connection with the linkage classes

of objects in X and Y . We are able to show, under additional conditions on S and T , that the

dimension is preserved in linkage.

Corollary 1.0.18. Let ((X ,Y),B, (S, T )) be perfect where S and T are also perfect. Objects

which are evenly linked have the same S or T -dimension.

Chapter 6 is used to present applications of the results found in Chapter 5. We give the example

of module linkage defined by Nagel, except using semidualizing R-modules. This is the situation

where X = Y = R-Mod and S = T = ExtgR(−, C) where C is a semidualizing R-module.

Therefore the associated homological dimension is the Gg
C-dimension. However, we first answer

a question about when the linkage class of an R-module is nonempty. This is a topic of discussion

by Martsinkovsky and Strooker, see [49]. They use the term horizontal linkage to describe when

a module has a nonempty linkage class using only free modules from R. The following definition

gives the situation.

Definition 1.0.19. Let M be an R-module with gradeR(M) = g. We say that M is horizontally

linked by Q if M ∼= L2
Q(M) := LQ(LQ(M)).

It is then clear that M is horizontally linked by some Q if and only if the linkage class of M is

nonempty. Given anR-module with no quasi-Gorenstein summands we can construct a short exact

sequence

0→ Extg+1
R (Dg

CM,C)→M → L2
Q(M)→ 0
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from the associated four term exact sequence. This leads to the following result.

Theorem 1.0.20. A finitely generated R-module M is horizontally linked by some Q if and only if

Extg+1
R (Dg

CM,C) = 0.

This gives a characterization of when the linkage class of any R-module (for this type of linkage)

is nonempty. It is not unexpected that this is purely a homological property since it follows from

categorically defined concepts.

In Section 6.1.2, we extend the results from Section 4.2 to include results connecting together

Gg
C-dimension, the generalized Serre-like conditions, and linkage. We prove the following result:

Theorem 1.0.21. Let R be a Cohen-Macaulay ring, C a semidualizing R-module, and M an R-

module with gradeR(M) = g with no quasi-Gorenstein summands. Suppose that n ≥ g, M is

in the Auslander class with respect to C, and the Gg
C-dimension of M is locally finite. Then the

following are equivalent:

(i) M satisfies S̃gn

(ii) M is horizontally linked by someC-quasi-GorensteinR-moduleQ and Extg+iR (LQ(M), C) =

0 for 0 < i < n− g.

In Section 6.2, we give another application of the results from Chapter 5. Here we specialize to

the situation where X = Y = R-Mod and S = C ⊗R − and T = HomR(C,−). Here C ⊗R − is

a covariant right exact functor and HomR(C,−) is a covariant left exact functor. There is then a

category pair with linkage associated to these functors. It is more difficult to say what R-modules

are in the Fossum categoryB associated to these functors, but it isn’t difficult to see what the perfect

objects are. The Auslander class and Bass class with respect to C are defined in the following way:
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Definition 1.0.22. Let M be an R-module and C a semidualizing R-module. We say that

(i) M is in the Auslander class with respect to C, Aus(C) if

(a) TorRi (C,M) = 0 for i > 0,

(b) ExtIR(C,C ⊗RM) = 0 for i > 0,

(c) the natural evaluation map M → HomR(C,C ⊗RM) is an isomorphism.

(ii) M is in the Bass class with respect to C, Bass(C) if

(a) ExtiR(C,M) = 0 for i > 0,

(b) TorRi (C,HomR(C,M)) = 0 for i > 0,

(c) the natural evaluation map C ⊗R (HomR(C,M))→M is an isomorphism.

It is straightforward to see that these are exactly the conditions needed to be perfect objects and

in fact the natural evaluation maps show that the linkage category is perfect. Therefore the perfect

objects are the modules in the Auslander and Bass classes. These classes have been the object

of study from many different avenues [5, 24, 25, 36, 61, 62] and were originally defined by Foxby,

see [25]. Using results in Chapter 5, this leads to a new characterization of modules in these

classes.

Theorem 1.0.23. Let M be an R-module. Then

(i) M ∈ Aus(C)⇔ TorRi (C,M) = 0 = ExtiR(C,DC⊗R−M) for i > 0.

(ii) M ∈ Bass(C)⇔ ExtiR(C,M) = 0 = TorRi (C,DHomR(C,−)M) for i > 0.

Further, the linkage defined by these functors moves objects from one class to another. It is easy

to see that injective modules are in the Bass class and flat modules are in the Auslander class.
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Further, modules which are used to construct resolutions used for Gorenstein Injective and Flat

dimension are also in these classes, so called C-flat and C-injective modules. Consider the as-

sociated homological dimensions associated to these functors, called the Aus(C)-dimension and

Bass(C)-dimension, we get the following result.

Theorem 1.0.24. For any R-module M we have the following inequalities

Aus(C)-dimR(M) ≤ GfdR(M) ≤ fdR(M)

Bass(C)-dimR(M) ≤ GidR(M) ≤ idR(M)

Furthermore, these dimensions are preserved through linkage.

Corollary 1.0.25. For any R-module, the Auslander dimension and the Bass dimension with re-

spect to a semidualizingR-moduleC are preserved through even linkage using the functorsC⊗R−

and HomR(C,−).

Lastly, in Section 6.3 we define linkage using the local cohomology and local homology functors.

Here we move between two different categories, local cohomology takes NoetherianR-modules to

Artinian R-modules and local homology takes Artinian R-modules to Noetherian R-modules. The

ith local cohomology functor H i
m(−) is a covariant left exact functor and the ith local homology

functor Hm
i (−) is a covariant right exact functor. These form an adjoint pair of functors and so we

get results concerning linkage and the homological dimensions defined by local cohomology and

local homology. The culmination of these ideas gives a characterization of Cohen-Macaulay rings.

Corollary 1.0.26. Let (R,m, k) be a complete Noetherian local ring which is the homomorphic

image of a Gorenstein ring. Let d = depthR(R). Then the following are equivalent:

(i) R is Cohen-Macaulay
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(ii) R is evenly linked to a Cohen-Macaulay R-module

(iii) R is oddly linked to a co-Cohen-Macaulay R-module

(iv) Γm-dimR(R) = d, i.e. there is an exact sequence

0→ R→ C0 → C1 → C2 → · · · → Cd → 0

where Ci is Cohen-Macaulay of depth 0 for 0 ≤ i ≤ d

(v) Hd
m(R) is a co-Cohen-Macaulay module

(vi) Λm-dimR(Hd
m(R)) = d, i.e. there is an exact sequence

0→ Nd → · · · → N2 → N1 → N0 → Hd
m(R)→ 0

where Ni is co-Cohen-Macaulay of width 0 for 0 ≤ i ≤ d.
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CHAPTER 2: PRELIMINARIES

This chapter will serve as a location for those results which we rely on in the subsequent chapters.

Our references for most of the material concerning basic commutative algebra are [19, 21, 41, 42].

For basic category theory we reference [2, 63]. For an introduction to the theory of homological

dimensions we will reference [15,19,63]. Lastly, for ideal linkage and module linkage we reference

[39, 49, 52, 53, 57]. Those results and definitions which do not originate from the aforementioned

references will be cited when presented. Further, we will recall results and definitions which

motivate ideas that will appear in the rest of this thesis. The reader is advised to use this chapter as

referential material.

2.1 Rings and Modules

We will be working with Noetherian commutative rings (unless otherwise stated) R with identity

and all modules will assumed to be finitely generated. The category of R-modules will be denoted

by R-Mod. We let the set of prime ideals of a ring R be denoted by Spec(R). If R is local we will

denote the maximal ideal by m and let k be the residue class field R/m. A local ring (R,m, k) is

called a regular local ring if size of a minimal set of generators for m is equal to the Krull dimen-

sion of R. A ring R is regular if the localization RP is a regular local ring for every prime ideal P

of R.

Given an R-module M we let the annihilator of M be the ideal AnnR(M) = {r ∈ R : rM = 0}.

A prime ideal P of R is an associated prime of M if P is the annihilator of an element of M . The

collection of all associated primes of M is written AssR(M).
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A complex of R-modules is a diagram

M : · · · →Mi+1
δi+1→ Mi

δi→Mi−1 → · · · →M1 →M0 →M−1 → · · ·

in R-Mod where im δi+1 ⊆ ker δi. We use the notation supM = sup{i : Mi 6= 0} and infM =

inf{i : Mi 6= 0}. The complex is exact at Mi if im δi+1 = ker δi. A complex

0→ A
α→ B

β→ C → 0

is called a short exact sequence if it is exact at A, B, and C. That is, for modules, α is a monomor-

phism (injection) and β is an epimorphism (surjection). Such a short exact sequence is called split

if any of the following equivalent conditions are met:

(i) There is a morphism γ : B → A such that γα = 1A.

(ii) There is a morphism γ : C → B such that βγ = 1C .

(iii) B ∼= A⊕ C.

Note that these conditions are not equivalent in general, but are for the category R-Mod. Short

exact sequences are a useful homological tool to help compare module theoretic and categorical

properties of the modules or objects in the sequence.

Proposition 2.1.1. If 0 → M ′ → M → M ′′ → 0 is a short exact sequence of R-modules, then

AssR(M ′) ⊆ AssR(M) ⊆ (AssR(M ′)) ∪ (AssR(M ′′)).

For a proof see [19, Lemma 3.6 b].
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2.2 Categories and Long Exact Sequences

Given a category C, we call the category Cop the opposite category of C where the arrows are re-

versed. A functor F : C → D is said to be covariant and a functor G : Cop → D is said to be

contravariant. We will suppress the opposite notation and just use the words covariant and con-

travariant.

It is assumed the reader is familiar with the regular notation and terminology, see [2, 63], for

categories including, zero objects, products, coproducts, equalizers, coequalizers, pullbacks, push-

forwards, limits, colimits, monomorphisms, epimorphisms, and isomorphisms.

In this thesis we would like to work in a category in which we can use the Snake Lemma, but one

which is more general than an Abelian category. A homological category, see [10], is one such

category. A homological categoryH is a category which satisfies the following conditions:

(i) H is pointed, i.e. it has a zero object.

(ii) H is regular, i.e. H admits all finite limits, the kernel pair of any morphism f : A →

B admits a coequalizer Q where A ×B A ⇒ A → Q, and the pullback of any regular

epimorphism along any morphism is a regular epimorphism.

(iii) H is protomodular, i.e. H is regular and given a regular epimorphism p and a commutative

diagram
A B C

X Y Z

u

α

v

p γ

x y

if the outer rectangle is a pullback and the left square is a pullback, then the right square is a

20



pullback.

For the rest of this thesis, all categories will be assumed to be homological categories, and in most

instances semi-abelian (homological and has finite coproducts) or abelian categories (homological

and exact). In fact, many of the notation and terminology we pull from abelian categories, but the

results are stated for homological categories. Examples of homological categories are any abelian

category which includes modules categories and abelian groups; semi-abelian categories which

includes categories of groups, rings, rings without unit, associative and Lie algebras; as well as

topological groups and the dual of the category of pointed objects in a topos. For more specific

examples see [10, Section 4.6]. This allows us to move out of the realm of module categories and

consider many different situations.

A functor is called left exact if after application of the functor to a short exact sequence, the

sequence stays exact on the left. Similarly for right exact functors. To each left exact functor F

there are associated to it right derived functors RiF (−) for each i ≥ 0, see [2], where R0F (−) =

F (−) such that given a short exact sequence

0→ A→ B → C → 0

there is an exact complex

0→ F (A)→ F (B)→ F (C)→ R1F (A)→ R1F (B)→ R1F (C)→ R2F (A)→ · · ·

supposing F is covariant, and reversing the order of A, B, and C for F contravariant. Similarly to

each right exact functor G there are associated to it left derived functors LiG(−) for each i ≥ 0,
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see [2], where L0G(−) = G(−) such that given a short exact sequence

0→ A→ B → C → 0

there is an exact complex

· · · → L2G(C)→ L1G(A)→ L1G(B)→ L1G(C)→ G(A)→ G(B)→ G(C)→ 0

supposing G is covariant, and reversing the order of A, B, and C for G contravariant.

These exact complexes are called long exact sequences in homology for the associated short exact

sequences. There are many avenues to their discovery. One such way to approach the theory

is to use comparison lemmas which take multiple short exact sequences and compare them with

mappings to construct new complexes. Perhaps the most useful is the Snake Lemma which we

state now.

Lemma 2.2.1. Let C be a homological category and consider the following commutative diagram

0 A B C 0

0 A′ B′ C ′ 0

α β γ

in C. Then there exists an exact sequence

0→ ker(α)→ ker(β)→ ker(γ)→ coker(α)→ coker(β)→ coker(γ)→ 0

in C.
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2.2.1 Derived Functors; Tor and Ext

There are three functors between categories ofR-modules we specify now,M⊗R−, HomR(M,−),

and HomR(−,M), for a fixed R-module M .

The functor M ⊗R− is right exact covariant and the left derived functors of it are the Tor modules

associated to M and are denoted TorRi (M,−). Note that M ⊗R N ∼= N ⊗R M for any two R-

modules M and N . From this we say that Tor is balanced as TorRi (M,N) ∼= TorRi (N,M) for all i.

The functor HomR(M,−) is left exact and covariant and the right derived functors are the Ext

modules associated to M and are denoted ExtiR(M,−). Similarly, the functor HomR(−,M) is left

exact and contravariant and the right derived functors are also the Ext modules associated to M yet

they have the form ExtiR(−,M).

2.2.2 Basic Homological Dimensions

There are classes of modules which preserve exactness of short exact sequences for certain func-

tors. These classes give rise to certain homological dimensions which help motivate the ideas and

definitions in [15].

Definition 2.2.2. We say that an R-module M is

(i) free if it is a direct sum of copies of R.

(ii) projective if Ext1R(M,N) = 0 for any R-module N .
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(iii) injective if Ext1R(N,M) = 0 for any R-module N .

(iv) flat if TorR1 (M,N) = 0 for any R-module N .

We will letP , I, andF denote the classes of projective, injective, and flatR-modules, respectively.

The vanishing of each of these derived functors is equivalent to each of these types of modules pre-

serving exactness of any short exact sequence when a specific functor is applied.

The following results can be found in [19, Appendix A3.3-5].

Proposition 2.2.3. Let P be an R-module. The following are equivalent:

(i) P ∈ P

(ii) P is a direct summand of a free module.

(iii) Every epimorphism α : M → P splits, i.e. there exists a morphism β : P → M such that

αβ = 1P .

(iv) For every epimorphism of modules α : M → N , the induced morphism HomR(P,M) →

HomR(P,N) is an epimorphism.

(v) For some epimorphism α : F → P where F is free, the induced morphism HomR(P, F ) →

HomR(P, P ) is an epimorphism.

Note that every free module is projective. We say that aE is an essential extension of anR-module

M if every nonzero submodule of E intersects M nontrivially.

Proposition 2.2.4. Suppose that M is an R-module. Then there is a unique essential extension

E(M) of M that is an injective R-module, i.e. there is a monomorphism i : M → E(M) where

E(M) is injective and is minimal in the sense that if M ⊂ E ′ is essential then E ′ = E(M).
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Also, by [19, Corollary 6.6] the following is true.

Proposition 2.2.5. Every free R-module is a flat R-module.

Every R-module can be approximated by an R-module from each class, P , I, and F as well as

by free modules. Given an R-module M we can approximate it by a projective module P0 with an

epimorphism P0 →M . Then consider the short exact sequence

0→ K0 → P0 →M → 0

whereK0 is the kernel of the map P0 →M . We can then approximateK0 with a projective module

and repeat the process. This leads to an exact sequence

· · · → Pn → Pn−1 → · · · → P1 → P0 →M → 0

called a projective resolution of M . This is a way to approximate M using projective modules; it

is a way to see how close M is to being projective. In much that same way we can approximate M

by free modules and construct free resolutions of M .

Similarly, we can construct a injective resolution of M

0→M → I0 → I1 → · · · → In−1 → In → · · ·

where Ii ∈ I for i ≥ 0, and we can construct a flat resolution of M

· · · → Fn → Fn−1 → · · · → F1 → F0 →M → 0

where Fi ∈ F for i ≥ 0.
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So to each R-module M there are collections of free, projective, injective, and flat resolutions

associated to it. The length of a short resolution of each type is an invariant of the module M .

Definition 2.2.6. Let M be an R-module M . Then the length of a shortest

(i) free resolution is the free dimension of M , free-dimR(M).

(ii) projective resolution is the projective dimension of M , pdR(M).

(iii) injective resolution is the injective dimension of M , idR(M).

(iv) flat resolution is the flat dimension of M , fdR(M).

If there is no such shortest resolution or none are of finite length, then we say the respective

dimension is infinite.

Lastly, a local ring (R,m, k) is called Gorenstein if idR(R) < ∞ where R is considered as an

R-module over itself.

2.3 Grade and Depth

In this section we will be working with a Noetherian commutative ring R.

Definition 2.3.1. Given an R-module M , an element r ∈ R is called a non-zero-divisor if rm = 0

implies m = 0 for m ∈ M . Then a sequence r1, r2, . . . , rn is called an M-regular sequence if ri

is a non-zero-divisor on M/(r1, r2, . . . , ri−1)M for i = 0, 1, . . . , n.
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A regular sequence over a module mirrors a linearly independent set in a vector space. We can also

define a regular sequence in an ideal of R for a module M , i.e. the above sequence r1, r2, . . . , rn

lies in an ideal of R.

Definition 2.3.2. Let I be an ideal in R and M and R-module such that IM 6= M . The depth of

I on M is the length of a maximal M -regular sequence in I , written depth(I,M).

If (R,m, k) is a local ring, then we say the depth ofM is depth(m,M) and is denoted by depthR(M).

Definition 2.3.3. Let (R,m, k) be a local ring. We say that R is Cohen-Macaulay if depthR(R) =

dimR(R) where dimR(R) is the Krull dimension of R. In general a ring R is Cohen-Macaulay if

the localization RP is Cohen-Macaulay for every prime ideal P of R.

Theorem 2.3.4. Let (R,m, k) be a local ring and M an R-module. If idR(M) < ∞ then

idR(M) = depthR(R).

For a proof see [6, Lemma 3.3]

Proposition 2.3.5. LetM andN beR-modules. Then depth(Ann(M), N) = inf{i : ExtiR(M,N) 6=

0}.

For a proof see [19, Proposition 18.4].

With this proposition the following definition arises as it is a useful invariant of R-modules.

Definition 2.3.6. Let M be an R-module. We say that the grade of M is defined as

gradeR(M) = depth(Ann(M), R) = inf{i : ExtiR(M,R) 6= 0}
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The grade of anR-moduleM is also referred to as the codimension ofM . With these definitions we

can present a fundamental result connecting together these invariants with projective dimension.

Theorem 2.3.7 (Auslander-Buchsbaum Formula). Let (R,m, k) be a local ring and M an R-

module. If pdR(M) <∞ then

depthR(M) + pdR(M) = depthR(R)

For a proof see [19, Theorem 19.9]

The Auslander-Buchsbaum formula is useful in calculating the depth or projective dimension ofR-

modules or even the ring R. It becomes extremely useful when attempting to characterize regular

local rings.

Theorem 2.3.8. Let (R,m, k) be a local ring. The following are equivalent:

(i) R is a regular local ring

(ii) pdR(k) <∞

(iii) pdR(M) <∞ for any R-module M .

For a proof see [51, Theorem 19.2].

This theorem is often referred to as the regularity theorem. It is one of the more impressive results

showing that properties of a ring can be gained by approximations of its modules with a subclass

of modules.
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2.4 Gorenstein Dimension

In this section we will suppose that R is a Noetherian commutative ring. One of the concerns with

the regularity theorem in the previous section is that the quality of being a projective module is

more than just homological. Therefore one would hope that properties of a ring can be charac-

terized by purely homological properties of its modules. To that end this section presents results

leading up to the characterization of Gorenstein rings using Gorenstein dimension.

In a commutative ring R, given a module M there are a few natural maps concerning the functors

HomR(M,−), HomR(−,M), and M ⊗R −. The first we will discuss is called the biduality map,

it is given by

δM : M → HomR(HomR(M,R), R)

where δ(m)(ϕ) = ϕ(m) for ϕ ∈ HomR(M,R) and m ∈ M . An R-module is called reflexive if

this map is an isomorphism.

Definition 2.4.1. Let M be an R-module. We say that M has Gorenstein dimension zero if the

following conditions hold:

(i) M is finitely generated

(ii) ExtiR(M,R) = 0 = ExtiR(HomR(M,R), R) for i > 0

(iii) The natural biduality map δM is an isomorphism.

It is clear that both free and projective modules satisfy these conditions. Therefore we can construct

resolutions of R-modules using Gorenstein dimension zero modules, called G-resolutions.

Definition 2.4.2. Let M be an R-module. The length of a shortest resolution of M constructed us-

ing Gorenstein dimension zero modules is the Gorenstein dimension of M, denoted by G-dimR(M).
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If there is no finite length resolution then the dimension is infinite.

When the Gorenstein dimension of an R-module is finite, we can say exactly what it is.

Proposition 2.4.3. Let M be an R-module and n ∈ N. The following are equivalent:

(i) G-dimR(M) ≤ n.

(ii) G-dimR(M) <∞ and ExtiR(M,R) = 0 for i > n.

(iii) For any G-resolution of M ,

· · · → Gi → Gi−1 → · · · → G1 → G0 →M → 0,

the kernel Kn = ker(Gn−1 → Gn−2) has Gorenstein dimension zero.

For a proof see [15, Theorem 1.2.7].

Therefore if G-dimR(M) <∞we have that G-dimR(M) = sup{i : ExtiR(M,R) 6= 0}. Gorenstein

dimension shares many of the properties that projective dimension does. In fact, G-dimR(M) ≤

pdR(M) for any R-module M with equality if pdR(M) < ∞. Further, there is also a formula

involving Gorenstein dimension and the depth of the module discovered by Auslander and Bridger,

see [3].

Theorem 2.4.4 (Auslander-Bridger Formula). Let (R,m, k) be a local ring and M an R-module.

If M has finite Gorenstein dimension, then

G-dimR(M) + depthR(M) = d
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For a proof see [3, Theorem 4.13] or [15, Theorem 1.4.8].

This result has been extended to coherent rings by Hummel and Marly, see [38, Theorem 4.4.].

This formula leads to a characterization of Gorenstein rings.

Theorem 2.4.5. Let (R,m, k) be a local ring. The following are equivalent:

(i) R is Gorenstein.

(ii) G-dimR(k) <∞.

(iii) G-dimR(M) <∞ for all finitely generated R-modules M .

For a proof see [15, Theorem 1.4.9].

As stated earlier, there are other natural maps besides the biduality map worth considering in this

context. These will be explored in Chapter 5.

2.5 Ideal Linkage

In this section R is a Noetherian commutative ring. An ideal c in R is called a complete intersec-

tion if a minimal generating set for c is a regular sequence in R. A ring S is called a complete

intersection ring if S ∼= R/I where I is a complete intersection ideal.

Given ideals I and J of a ring R we can define the colon ideal of I and J , or ideal quotient, as

(I : J) = {r ∈ R : rJ ⊆ I}. One can write annihilators of ideals in terms of colon ideals where
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Ann(I) = (0 : I).

Definition 2.5.1. Let I and J be ideals in R. We say that I is linked to J if there is a complete

intersection c ⊆ I ∩ J such that (c : I) = J and (c : J) = I .

Ideal linkage was first defined by Peskine and Szpiro, see [57], and has blossomed into a tremen-

dous theory concerning algebraic structures from modules to schemes. When discussing linkage

we will be dealing with modules, and so we give an equivalent module theoretic definition.

Definition 2.5.2. We say that the two quotients R/I and R/J or R are directly linked if there is a

regular sequence r1, r2, . . . , rn in I ∩ J such that

HomR(R/I,R/(r1, r2, . . . , rn)) = J/(r1, r2, . . . , rn)

and

HomR(R/J,R/(r1, r2, . . . , rn)) = I/(r1, r2, . . . , rn).

This definition connects the concept of ideal linkage with the homological properties of the func-

tor HomR(−, R/c) where c is a complete intersection. In general two quotients R/I and R/J are

linked if there is a sequence of direct links between the two quotients. Two ideals or quotients are

evenly linked if there are an even number of links between them, and similarly for oddly linked

ideals or quotients.

Ideal linkage can be generalized to schemes and this generalization helps connect the geometric

properties with algebraic ones. Many results discuss the properties shared by ideals in the same

linkage class. Linkage of schemes is defined by linkage of their respective ideal representations.
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Proposition 2.5.3. Suppose the two schemes V1 and V2 are linked by X . Then V1 is locally Cohen-

Macaulay if and only if V2 is.

For a proof see [52, Corollary 5.2.12]

Proposition 2.5.4. Suppose the two schemes V1 and V2 are evenly linked and V1 and V2 are of

dimension n. Then Extn−i+1
R (R/IV1 , R) ∼= Extn−i+1

R (R/IV2 , R) for all i = 1, . . . , n.

We won’t be pushing further into the geometric side of linkage, but it is worth noting that many of

the historical motivations for linkage arise from a desire to understand the geometric connections

between curves. Perhaps the most sought after properties are those preserved by being linked to a

complete intersection ideal. Such ideals are called licci ideals, as they are in the linkage class of a

complete intersection. Licci ideals share many nice properties as outlined in [39, 52, 57].

2.6 Module Linkage

In this section we let R be a Noetherian commutative semiperfect ring. Module linkage arose as

a way to generalize ideal linkage. There are many ways to define module linkage that generalize

certain types of ideal linkage and we have chosen the definition which most closely resembles

module theoretic ideal linkage definition.

First consider an R-module M . It has a projective presentation

P1 → P0 →M → 0
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where P0, P1 ∈ P . Define the module DR(M) = coker(HomR(P0, R) → HomR(P1, R)) which

lies in the exact sequence

0→ HomR(M,R)→ HomR(P0, R)→ HomR(P1, R)→ DR(M)→ 0.

It is clear here that DR(M) is only unique up to projective equivalence, but using a minimal

projective presentation DR(M) is uniquely defined. Then considering

HomR(P0, R)→ HomR(P1, R)→ DR(M)→ 0

as a projective presentation of DR(M), we define ΩDR(M) = ker(HomR(P1, R)→ DR(M)).

Definition 2.6.1. Let M and N be R-modules. We say that M and N are directly linked if

ΩDR(M) ∼= N and ΩDR(N) ∼= M .

Breaking down this definition one has the following equivalent defintion. Given a module M , take

a projective presentation

P1 → P0 →M → 0

and let K = ker(P0 →M) so that

0→ K → P0 →M → 0

is short exact. Then define λRM = coker(HomR(M,R)→ HomR(P0, R)). So it follows that two

modules M and N are directly linked if λRM ∼= N and λRN ∼= M . Just as with ideals, we say

two modules are linked, or in the same linkage class, if there is a sequence of direct links from

one module to the other. We further distinguish between evenly linked modules and oddly linked

modules.
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Many homological properties are shared between modules in the same linkage class.

Proposition 2.6.2. Let M and N be R-modules. If M has Gorenstein dimension zero and is

directly linked to N , then N has Gorenstein dimension zero.

This is a consequence of [49, Theorem 1].

In fact, modules in the same linkage class share homological dimensions.

Theorem 2.6.3. If R is Gorenstein, then Gorenstein dimension is preserved under module linkage.

For a proof see [49, Corollary 14].

Further, modules in the same even linkage class also share interesting properties.

Theorem 2.6.4. If R is Gorenstein, then projective dimension is preserved in even linkage classes

for modules.

For a proof see [49, Corollary 18].

In fact, Gorenstein dimension is preserved in even linkage classes even when R is not a Gorenstein

ring, see Chapter 6. Note that in Chapter 6 a more general notion of module linkage due to Nagel,

see [53], is explored as a special case of the theory in Chapter 5.
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CHAPTER 3: QUASI-GORENSTEIN MODULES

In this chapter we will assume our rings are Noetherian and commutative and all modules are

finitely generated. Our goal is to explore the soon to be defined quasi-Gorenstein modules. We

present some properties the modules in this colleciton have, and prove an extension of the classical

structure theorem for modules over a principal ideal domain attributed to Jacobson as well as

Frobenius and Stickelberger. The results in this chapter give the content of our paper [12].

3.1 Definition and Properties

In this section we will give definitions and properties that will be useful in proving our results in

the rest of the chapter.

Definition 3.1.1. A finitely generated R-module M with finite projective dimension is quasi-

Gorenstein if the following hold:

(i) pd(M) = grade(M)

(ii) Extpd(M)
R (M,R) ∼= M

There are many motivations for this definition. The paper of Fossum, [23], focuses on the interplay

between ExtiR(−, R) and collection ofR-modules giving many useful results concerning sequences

of functors and ExtiR(−, R). The name and defintion for quasi-Gorenstein modules appears in [53]

to facilitate a generalization of ideal linkage to module linkage. These two papers [23,53] provided

the inspiration for this chapter.
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Nagel gave these modules this name since R/I is quasi-Gorenstein if and only if I is a Gorenstein

ideal when R/I is finitely generated. Futher, Grassi in [29] defines Koszul Modules which are

quasi-Gorenstein modules with certain types of free resolutions. Furthermore, a Gorenstein alge-

bra is a quasi-Gorenstein module and there is a collection of work about such algebras [8,9,22,43].

A module M is said to be perfect if grade(M) = pd(M). Perfect modules are Cohen-Macaulay

and thus so are quasi-Gorenstein modules, as they are clearly perfect. Quasi-Gorenstein modules

have many nice properties (aside from those inherited by being Cohen-Macaulay). We present a

few of them here for completeness as well as their usefulness in proofs later in this chapter.

Proposition 3.1.2 ((see [14] Exercise 1.4.26)). Suppose that M is an R-module of projective di-

mension m which has a projective resolution, J . Then M is quasi-Gorenstein if and only if J and

J ∗ = HomR(J , R) are homotopy equivalent up to shift, i.e. J ∗ is a projective resolution of M.

Proof : Note that the ith homology of J ∗ is exactly ExtiR(M,R). Therefore J ∗ is exact except

at the right where the homology is ExtmR (M,R) ∼= M if and only if M is quasi-Gorenstein of

projective dimension m.

�

The previous result gives us another method of determining when a module is quasi-Gorenstein.

We only need to know how a free or projective resolution of the module behaves with its dual.

Finitely generated free R-modules are examples of quasi-Gorenstein modules of projective dimen-

sions zero. An example of a module of projective dimension greater than 1 that is quasi-Gorenstein

is a complete intersection over regular local ring. This follows as a free resolution of the complete

intersection is the Koszul complex on the regular sequence that generates the ideal, and it is well
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known that this complex is self-dual.

Proposition 3.1.3. Suppose that M and {Mi}`i=1 are quasi-Gorenstein R-modules of projective

dimension m and N is a quasi-Gorenstein R-module of projective dimension n. Then

(i)
⊕`

i=1Mi is quasi-Gorenstein of projective dimension m.

(ii) M is quasi-Gorenstein of projective dimension m if and only if Mm is quasi-Gorenstein of

projective dimension m for all maximal ideals m of R.

(iii) M is quasi-Gorenstein of projective dimension m if and only if the completion M̂ is a quasi-

Gorenstein R̂-module of projective dimension m.

(iv) M ⊗R N is a quasi-Gorenstein R-module of projective dimension m+ n− 1

Proof :

(i) This is clear by properties of Ext as

ExtjR

(⊕̀
i=1

Mi, R

)
∼=
∏̀
i=1

ExtjR(Mi, R) ∼=


0 j 6= m⊕`

i=1Mi j = m

(ii) (⇒) Let J be a projective (free) resolution of M . Then

ExtiR(M,R)m = (H i(HomR(J , R)))m = H i((HomR(J , R))m)

= H i(HomRm(Jm, Rm)

= ExtiRm
(Mm, Rm)
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holds as localization is exact and we use Jm to denote the exact sequence obtained by local-

izing each module and morphism in J . Therefore ExtiRm
(Mm, Rm) ∼= Mm if i = m and 0

otherwise. This shows that Mm is a quasi-Gorenstein Rm-module of projective dimension m

for any maximal ideal m of R.

(⇐) Suppose Mm is a quasi-Gorenstein Rm-module of projective dimension m for every

maximal ideal m of R. Since M = ⊕mMm we have

ExtiR(M,R) = ⊕m(ExtiR(M,R))m = ⊕mExtiRm
(Mm, Rm)

∼=


⊕mMm i = m,

0 i 6= m

=


M i = m,

0 i 6= m.

(iii) Let J be a projective (free) resolution of M . Since M̂ = M ⊗R R̂ we have

Exti
R̂

(M̂, R̂) ∼= Exti
R̂

(R̂⊗RM, R̂) = H i
(

HomR̂(R̂⊗R J , R̂)
)

= H i
(

HomR̂(R̂⊗R J , R̂⊗R R)
)

∼= H i
(
R̂⊗R HomR(J , R)

)
∼= R̂⊗R H i(HomR(J , R))

= R̂⊗R ExtiR(M,R)

= (ExtiR(M,R))∧

showing that M and M̂ are simultaneously quasi-Gorenstein over R and R̂, respectively.
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(iv) Let JM and JN be projective (free) resolutions of M and N , respectively. It then follows

by Proposition 3.1.2 that HomR(JM , R) and HomR(JN , R) are projective resolutions of M

and N , respectively. Further JM ⊗R JN is a projective resolution of M ⊗R N and as

HomR(JM ⊗R JN , R) ∼= HomR(JM , R)⊗R HomR(JN , R)

we see that JM ⊗R JN and HomR(JM ⊗R JN , R) are homotopy equivalent. Therefore by

Proposition 3.1.2 we have that M ⊗R N is quasi-Gorenstein. It is of projective dimension

m+ n− 1 as the length of JM ⊗ JN is m+ n− 1.

�

Proposition 3.1.4. Suppose that M and N are quasi-Gorenstein R-modules with pdR(M) = m

and pdR(N) = n. Then TorRi (M,N) ∼= Extm−iR (M,N). Moreover, Extm−iR (M,N) ∼= Extn−iR (M,N)

for all i =, 1, . . . ,min{m,n}.

Proof : As pdR(N) = n, N has finite Tor dimension as an R-module, see [63, Section 10.8]. We

have

RHomR(M,R)⊗L
R N
∼= RHomR(M,R⊗L

R N)

in D(R) the derived category over R-Mod as N has finite Tor dimension. What is not represented

in the above isomorphisms is the shift in the complexes representing each module. The difference

in shift is exactly the projective dimension of M , which when taking homology gives

H i(RHomR(M,R)⊗L
R N) ∼= Hm−i(RHomR(M,R⊗L

R N)).

Further, in D(R) we have that RHomR(M,R) ∼= ⊕jExtjR(M,R) and R ⊗L
R N

∼= ⊕jTorRj (R,N).
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Therefore

TorRi (M,N) ∼= TorRi (⊕jExtjR(M,R), N) ∼= H i(RHomR(M,R)⊗L
R N)

∼= Hm−i(RHomR(M,R⊗L
R N))

∼= Extm−iR (M,⊕jTorRj (R,N))

∼= Extm−iR (M,N).

Moreover, as Tor is balanced we have

Extm−iR (M,N) ∼= TorRi (M,N) ∼= TorRi (N,M) ∼= Extn−iR (N,M).

�

Corollary 3.1.5. If M and N are quasi-Gorenstein R-modules of projective dimension r, then

ExtrR(M,N) ∼= ExtrR(N,M).

Proof : Follows immediately from Proposition 3.1.4.

�

These results show that the collection of quasi-Gorenstein modules of a fixed projective dimension

form a monoid under direct sum with an associated product using tensor product. Therefore one

can form a ring of isomorphism classes of quasi-Gorenstein R-modules, not unlike a ring associ-

ated to a Grothendieck group.
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3.2 Projective Dimension One

Throughout the rest of this chapter R will be a Noetherian factorial domain. We change gears and

begin exploring additional module theoretic properties by comparing quasi-Gorenstein modules

of projective dimension one. Notice that an R-module M of projective dimension one has a free

resolution

0→ F1
m→ F0 →M → 0

where m is a matrix with entries in R. In fact, we can write the resolution as

0→ Rs m→ Rt →M → 0

wherem is a t×smatrix. It is clear that there is a connection betweenM being a quasi-Gorenstein

R-module and the matrix m. Note that if we apply the functor HomR(−, R) to the resolution we

get an exact sequence

0 HomR(M,R) HomR(Rt, R) HomR(Rs, R) Ext1R(M,R) 0.mT

which reduces to the sequence

0 HomR(M,R) Rt Rs Ext1R(M,R) 0mT

where mT is the transpose of m.

Definition 3.2.1. Letm andm′ be two n×nmatrices overR. We say thatm andm′ are equivalent

if there are isomorphisms Φ : Rn → Rn and Ψ : Rn → Rn such that Φm = mTΨ.

In addition to this definition, we say that a matrix is diagonalizable if it is equivalent to a diagonal
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matrix. If we are considering modules that are candidates to be quasi-Gorenstein, then the matrix

presenting it must be a square matrix. We then get the following result.

Corollary 3.2.2. Suppose that M is an R-module of projective dimension one presented by a full

rank n×nmatrixm. Thenm is equivalent tomT if and only ifM is a quasi-GorensteinR-module.

Proof : Clear by Proposition 3.1.2.

�

3.3 Minimal Cyclic-Filtrations

We begin this section with a result connecting together quasi-Gorenstein modules with their asso-

ciated primes.

Proposition 3.3.1. Suppose M is a quasi-Gorenstein R-module of projective dimension one and

M ′ a submodule of M. Then Ext1R(M/M ′, R) is isomorphic to a submodule of M. Moreover, if

M/M ′ is quasi-Gorenstein of projective dimension 1 then M/M ′ is isomorphic to a submodule of

M and Ass(M/M ′) ⊂ Ass(M).

Proof : Note that by [23] Proposition 3(a) we have that

grade(M ′) ≥ grade(M) = 1.

The result then follows by dualizing the short exact sequence

0 M ′ M M/M ′ 0
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to get

0 Ext1R(M/M ′, R) Ext1R(M,R) Ext1R(M ′, R) Ext2R(M/M ′, R) 0

which shows that Ext1R(M/M ′, R) is isomorphic to a submodule of M ∼= Ext1R(M,R). Further, if

M/M ′ is quasi-Gorenstein of projective dimension 1 then the sequence above shows that M/M ′

is isomorphic to a submodule of M.

�

This shows that the associated primes of a module and whether or not it is a quasi-Gorenstein

module are intimately related. It says that if the quotient of a module is quasi-Gorenstein then the

associated primes of the quotient are among those of the quasi-Gorenstein module. One way to

guarantee this is to restrict ourselves to such modules. We can continue this process of looking

at quotients with the submodule and obtain a filtration of M. Many types of filtrations exist in

the literature and we define a type of filtration closely related to those of clean and pretty clean

filtrations explored by Herzog and Popescu in [35]. We will denote by L(M) the lattice of ideals in

R containing ideals of the form Ann(x) for x ∈M under inclusion, that is the lattice of associated

primes of M .

Definition 3.3.2. Let M be a finitely generated R-module and

M : 0 = M0 (M1 (M2 (M3 ( . . . (M

be an increasing chain of submodules of M. We say thatM is a cyclic-filtration of M if

Mi+1/Mi
∼= R/Ii+1 with Ii+1 ∈ L(M) for i = 0, 1, . . .
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Since R is Noetherian, the length of a cyclic-filtration is finite. We will say that a cyclic-filtration

is a minimal cyclic-filtration if each module Mi is a minimal submodule of Mi+1 such that

Mi+1/Mi
∼= R/Ii+1 is maximal for some Ii+1 ∈ L(Mi+1). In other words, the filtration is minimal

at Mi+1 if the annihilators of the quotients are as small as possible in L(Mi+1). In order to see the

difference between these consider the module Z/4Z over Z. We have the obvious filtration

0 ( Z/4Z

and the one by using the associated prime of Z/4Z which is

0 ( Z/2Z ( Z/4Z.

These are both cyclic-filtrations of Z/4Z, but only the first is a minimal cyclic-filtration of Z/4Z.

Notice that the sequence

0 Z/2Z Z/4Z Z/2Z 0

is not split. We will see in the next section that having the filtration be minimal and consisting of

quasi-Gorenstein submodules is enough to guarantee such a sequence splits.

3.4 An Extension of a Theorem of Frobenius and Stickelberger

This section is a culmination of the chapters material where we present results directly used in

proving the following theorem, which is a useful application of quasi-Gorenstein modules.

Theorem 3.4.1. Let R be a Noetherian commutative factorial domain and M an R-module of

projective dimension one presented by a full rank n× n matrix m. The following are equivalent:
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(i) M is quasi-Gorenstein and M has a minimal cyclic-filtration consisting of quasi-Gorenstein

submodules.

(ii) m is equivalent to mT and M has a minimal cyclic filtration consisting of quasi-Gorenstein

submodules.

(iii) M ∼=
n⊕
i=1

R/(λi), λi ∈ R.

(iv) The matrix m is diagonalizable.

This theorem is an extension of the structure theorem for finitely generated modules over a princi-

pal ideal domain, see [26] for the original result and see [2, Section 6.5] for a modern proof, which

is a futher generalization of the fundamental theorem of finitely generated abelian groups, see [41].

In essence this theorem is a characterization of the class of modules which are in some sense are

free over R. To prove Theorem 3.4.1 the following lemma is key.

Lemma 3.4.2. Let R be a Noetherian factorial domain. Suppose M is a quasi-Gorenstein R-

module of projective dimension one and letM : 0 (M ′ (M be a minimal cyclic-filtration of M

where M ′ is a perfect R-module. Then M ∼= M ′ ⊕M/M ′.

Proof : Consider the short exact sequence

0 M ′ M M/M ′ 0

Where M/M ′ ∼= R/I for some height one ideal I of R. Note that I is principal as R is a factorial

domain, and so R/I is a quasi-Gorenstein R-module. Rewrite the above sequence as

(i) : 0 M ′ M R/I 0
η λ
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and suppose that this sequence is not split exact. There exists m ∈ M such that λ(m) generates

R/I. Now Ann(m) ⊆ I, but as the sequence is not split 0 6= I ·m ⊂ η(M ′), and so Ann(m) ( I.

Then as R/Ann(m) is a submodule of M we have the short exact sequence

(ii) : 0 R/Ann(m) M K 0.
γ δ

If we take the dual of (i) we get

0 R/I M Ext1R(M ′, R) 0λ∗ η∗ϕ

where ϕ is the isomorphism between M and Ext1R(M,R). We get a commutative diagram

0 R/I Ext1R(M,R) Ext1R(M ′, R) 0

(∗)

0 R/Ann(m) M K 0

α

λ∗

ϕ

η∗

β

γ δ

where α and β are induced by universal properties as δϕλ∗ = 0. Note that α is an injection and β
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is a surjection by the Snake Lemma. Taking a dual of (∗) we get a commutative diagram

0

0 0 I/Ann(m)

0 Ext1R(K,R) Ext1R(M,R) R/Ann(m) Ext2R(K,R) 0

0 M ′ M R/I 0

coker(β∗) 0 0

0

δ∗

β∗

γ∗

ϕ ε

η λ

Where the left square is commutative as it is the dual of the right square in (∗). This induces the

mapping ε which is a surjection. We claim that Ext2R(K,R) = 0. Ext2R(K,R) is the cokernel of

the mapping γ∗. The image of γ∗ in R/Ann(m) is isomorphic to R/I as it is the same as α(R/I)

in (∗) and the image of M through λ is R/I . Therefore Ext2R(K,R) = I/Ann(m), As R is a

factorial domain, if Ext2R(K,R) is non zero, it only has associated primes of height at least two.

This is a contradiction as I/Ann(m) ∼= R/(Ann(m) :R I) and (Ann(m) :R I) ⊂ Ann(m) is

principal because both I and Ann(m) are principal. So since R is factorial, R/(Ann(m) :R I) has

only associated primes of height one. Therefore we must have that Ext2R(K,R) = 0. However,

Ext2R(K,R) = I/Ann(M) and so Ann(M) = I a contradiction to the original assumption that (i)

is not split. Therefore (i) must be split.

�

Proposition 3.4.3. Suppose M is a quasi-Gorenstein R-module of projective dimension one and

M : 0 = M0 (M1 (M2 ( · · · (Mn−1 (Mn = M
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is a minimal cyclic-filtration of M where Mi is a quasi-Gorenstein submodule of M for i =

1, . . . , n− 1. Then M ∼=
⊕n−1

i=0 Mi+1/Mi.

Proof : We prove this result by induction on n. The case n = 1 is trivial as M1 = M = M1/M0
∼=

R/I for some I ∈ L(M). The case n = 2 is Lemma 3.4.2. So suppose that n > 2. We claim that

M′ : 0 = M0 (M1 (M2 ( · · · (Mn−2 (Mn−1

is a minimal cyclic-filtration of Mn−1. Indeed it is a cyclic filtration as Mi+1/Mi
∼= R/Ii+1 with

Ii+1 ∈ L(Mi+1) ⊂ L(Mn−1) for i = 0, . . . , n − 2. It is minimal as each module Mi is a minimal

submodule of Mi+1 with Mi+1/Mi
∼= R/Ii+1 with Ii+1 ∈ L(Mi+1), for i = 1, . . . , n − 2. So by

induction Mn−1 ∼=
⊕n−2

i=0 Mi+1/Mi
∼=
⊕n−2

i=0 R/Ii+1. Now Mn−1 is a minimal submodule of M

with M/Mn−1 ∼= R/I for I ∈ L(M). We have the following sequence

0
⊕n−1

i=0 R/Ii+1 M R/I 0α β

Using the same argument as that of Lemma 3.4.2 we see that is split and M ∼=
⊕n−1

i=0 Mi+1/Mi.

�

Now we can prove Theorem 3.4.1.

Proof : (of Theorem 3.4.1)

(i)⇔ (ii) is Corollary 3.2.2.

(iii)⇔ (iv) is trivial.

(i)⇒ (iv) is Proposition 3.4.3.
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So we are left to prove (iv) ⇒ (i). We know that if m is diagonalizable then M is a quasi-

Gorenstein module as m is equivalent to mT . Next as (iii) ⇔ (iv) we can take a decomposition

of M ∼=
⊕m

i=1R/(λi) for λi ∈ R. Consider L(M) and choose (λj) such that (λj) is minimal

among all (λi) for i = 1, . . . ,m. Note that there may be more than one choice of such ideals.

Let Mm−1 =
⊕m

i=1,i 6=j R/(λi). Then Mm−1 ( M is a piece of a minimal cyclic-filtration of M .

It is clear that M/Mm−1 = R/(λj) and Mm−1 is minimal with this property by the choice of

(λj). We repeat this process for Mm−1 in L(Mm−1) to obtain a minimal submodule Mm−2 with

Mm−1/Mm−2 = R/(λk) for some k ∈ {1, 2, . . . ,m}r {j}. Continuing in this fashion we obtain

M1,M2, . . . ,Mm−1 and a cyclic-filtration of M

M : 0 = M0 (M1 (M2 ( · · · (Mm−2 (Mm−1 (M

which is a minimal cyclic-filtration ofM by the choice of each quotientMi+1/Mi for i = 0, . . . ,m−

1. Note that each Mi is a quasi-Gorenstein module by Proposition 3.1.2 (a) as it is a finite direct

sum of quasi-Gorenstein modules R/(λi). ThusM is a minimal cyclic-filtration of M consisting

of quasi-Gorenstein submodules of M. This proves (iv)⇒ (i) and the Theorem is shown.

�
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CHAPTER 4: C-GORENSTEIN DIMENSIONS AND SERRE-LIKE

CONDITIONS

Throughout this chapter R will be a Noetherian ring and all R-modules are assumed to be finitely

generated. The goal of this chapter is to build up a theory of intermediate Gorenstein dimensions

for modules which will allow us to generalize results pertaining to generalized Serre conditions

and module linkage.

4.1 Intermediate C-Gorenstein Dimensions

This section lays the groundwork for a generalization ofG-dimension to modules of nonzero grade.

The theory is presented in full generality by moving to a semidualizing module over the ring.

Recall the definition of a semidualizing R-module, first studied in [25] and [28].

Definition 4.1.1. AnR-module C is called semidualizing if the homothety mapR→ HomR(C,C)

is an isomorphism and ExtiR(C,C) = 0 for i > 0.

Obvious examples of semidualizing modules are the ring R and the canonical module ωR of a

Cohen-Macaulay ring R. There has been a large body of research into semidualizing modules over

rings and their connections with homolgical dimensions, [58], [59], [25], and [28].

51



For a semidualizing R-module C, we can define the C-grade of M as

gradeC(M) = depthR(AnnR(M), C) = inf{i | ExtiR(M,C) 6= 0}.

Note that gradeR(M) = gradeC(M) for any semidualizing R-module C, and so we will continue

to use gradeR(M). In a similar fashion, we define αR(M) = sup{i : ExtiR(M,R) 6= 0} and so we

can also define αC(M) = sup{i | ExtiR(M,C) 6= 0}. Moreover, αC(M) = αR(M) for any semid-

ualizing R-module C and so we will use αR(M) where appropriate. There is a similar natural map

δCM : M → HomR(HomR(M,C), C) to the bi-duality map for any semidualizing R-module C.

Due to this the Gorenstein dimension of a module has been extended to the C-Gorenstein dimen-

sion of a module [24]. In order to do this, one only needs to replace R with C in the appropriate

places in the definition. However, one of the disadvantages of C-Gorenstein dimension (or even

Gorenstein dimension) is that the modules that comprise the resolutions sit in grade zero whereas

the module being examined may not. It is useful to be able to use modules in the same grade as

it helps sift out unwanted information and makes proof techniques simpler. We can illustrate this

with an example.

Example 4.1.2. Consider the polynomial ring R = k[x, y] where k is an infinite field and let

C = R be the semidualizing module and k be the R-module under consideration. We can take a

GC-resolution of k as

0 R R2 R k 0


x

y

 (
−y x

)

which is the Koszul complex of k. If we also consider the R-module R/(x), we see that these
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modules sit in different grades, k in grade 2 and R/(x) in grade 1. If we wanted to consider the R-

module HomR(k,R/(x)) (this arises when discussing depth and local cohomology) we can apply

HomR(−, R/(x)) to the Koszul complex of k. However, it may be simpler instead to consider the

following way of representing k:

0 R/(x) R/(x) k 0.
·y

Notice that since R/(x) is of grade 1, both modules presenting k are of grade 1. Then it is much

simpler to understand HomR(k,R/(x)) by using this short exact sequence. In fact, we have

0 HomR(k,R/(x)) HomR(R/(x), R/(x)) HomR(R/(x), R/(x))
·y

which shows that HomR(k,R/(x)) is the kernel of the right map. This shows that there is an ad-

vantage to using representations of modules in higher grades.

Notice that R/(x) as an R-module satisfies

(i) gradeR(R/(x)) = 1

(ii) HomR(R/(x), R) = 0, HomR(Ext1R(R/(x), R), R) = 0, and Ext2R(R/(x), R) = 0

(iii) R/(x) ∼= Ext1R(Ext1R(R/(x), R), R).

In other words, these conditions are similar to those of GC-dimension zero but for a higher index

in Ext.

In order to define an analogous C-Gorenstein dimension for higher grade, we will need a ”bi-

duality” map in higher grade. It follows from results in [3] or [23] that for an R-module M with
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gradeR(M) ≥ g there is a natural map

δgC(M) : M ExtgR(ExtgR(M,C), C)

we denote by δgC(M).

This motivates the following definition.

Definition 4.1.3. Suppose that C is a semidualizing R-module. We say that an R-module M with

gradeR(M) = g has Gg
C-dimension zero, or Gg

C-dimR(M) = 0, if the following conditions hold:

(i) Extg+iR (M,C) = 0 for i > 0

(ii) Extg+iR (ExtgR(M,C), C) = 0 for i 6= 0

(iii) The map δgC(M) : M → ExtgR(ExtgR(M,C), C) is an isomorphism

We will call the class of all Gg
C-dimension zero modules GgC . Notice that if M ∈ GjC then so is

ExtjR(M,C). Then just as with C-Gorenstein dimension we can resolve any module by modules

in GgC and define

Definition 4.1.4. Suppose that C is a semidualizing R-module and gradeR(M) ≥ j for an R-

module M . Given an exact sequence

C : 0 Mn Mn−1 · · · M1 M0 M 0

where Mi ∈ GjC for i = 0, . . . , n, we will say that C is a Gj
C-resolution of M .

If M has a Gj
C-resolution of length n + 1, such as the one above, then we say that the jth in-

termediate C−Gorenstein dimension of M is less than or equal to n, or Gj
C-dimR(M) ≤ n.

54



Note that this agrees exactly with GC-dimR(M) when j = 0. A question one may have after

this definition is if every module has such a resolution. The assumption that gradeR(M) ≥ j

was made to provide an affirmative answer to this inquiry. If gradeR(M) ≥ j, then there exists a

C-regular sequence x̄ = (x1, . . . , xj) in AnnR(M). Then there is a natural surjective map from

(R/(x̄) ⊗R C)α ∼= (C/(x̄)C)α → M → 0 for some α ≥ 0. Clearly (C/(x̄)C)α ∈ GjC . Since

gradeR(ker(C/(x̄)C →M) ≥ gradeR(M) ≥ j we continue the process with ker(C/(x̄)C →M).

Continuing in this fashion we can iteratively construct a Gj
C-resolution of any R-module M with

gradeR(M) ≥ j.

There are analogous results for Gj
C-dimension for those on G-dimension. We list a few which are

necessary for proofs later on, but many of these results are special cases of results in Chapters 5

and 6. The next result is analogous to [15, Lemma 1.1.10].

Proposition 4.1.5. Suppose that 0 → M ′ → M → M ′′ → 0 is short exact with gradeR(M ′) =

gradeR(M) = gradeR(M ′′) = g. Then

(a) If M ′′ ∈ GgC , then M ∈ GgC ⇔M ′ ∈ GgC

(b) If M ∈ GgC , then Extg+iR (M ′, C) ∼= Extg+i+1
R (M ′′, C) for i > 0

(c) If the sequence splits, then M ∈ GgC ⇔M ′,M ′′ ∈ GgC

Proof : Both (a) and (b) are clear by applying HomR(−, C) and considering the long exact

sequence, and (c) follows by the naturality of δgC(−) and the commutativity of Ext and direct sum.

�

The next two lemmas will make the proof of the following results simpler.
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Lemma 4.1.6. Suppose that

0 Mn Mn−1 · · · M1 M0 M 0

is an exact complex ofR-module withMi ∈ GgC for i = 0, . . . , n−1. LetKi = ker(Mi−1 →Mi−2)

for i = 2, . . . , n with Kn = Mn and K0 = M0. Then

ExtgradeR(Mi−1)+j
R (Ki, C) ∼= ExtgradeR(Mi−1)+i+j

R (M,R) for j > 0 and i = 0, . . . , n.

Proof : Clear by breaking the complex into short exact sequences and applying HomR(−, C) or

using Proposition 4.1.5 (b).

�

Lemma 4.1.7. Suppose that

0 Mn Mn−1 · · · M1 M0 0

is exact with gradeR(Mi) = αR(Mi) = j for all i ≥ 0. Then there is an exact sequence

0 ExtjR(M0, C) ExtjR(M1, C) · · · ExtjR(Mn−1, C) ExtjR(Mn, C) 0

Proof : Clear by breaking the complex into short exact sequences.

�

In fact, one can show that the ith homology of the complex after applying HomR(−, C) to a

resolution of M is exactly Extj+iR (M,C). The next result is analogous to [15, Lemma 1.2.6] and is

useful in the proof of the next theorem.
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Proposition 4.1.8. Suppose that Gj
C-dimR(M) < ∞ and gradeR(M) = j = αR(M). Then

M ∈ GjC .

Proof : Suppose Gj
C-dimR(M) = n. We prove by induction on n. We are done if n = 0, so

suppose n = 1 and consider a shortest Gj
C-resolution of M

0 M1 M0 M 0

By Lemma 4.1.7 we get the following short exact sequence

0 ExtjR(M,C) ExtjR(M0, C) ExtjR(M1, C) 0.

By Proposition 4.1.5 (a) we see that ExtjR(M,C) ∈ GjC . Therefore ExtjR(ExtjR(M,C), C) ∈ GjC .

If we apply HomR(−, C) to the above short exact sequence we get

0 ExtjR(ExtjR(M1, C), C) ExtjR(ExtjR(M0, C), C) ExtjR(ExtjR(M,C), C) 0

and it is then clear using δjC(−) that M ∼= ExtjR(ExtjR(M,C), C) and thus M ∈ GjC .

Now suppose that Gj
C-dimR(M) = n with n > 1. Take a shortest Gj

C-resolution of M

0 Mn · · · M0 M 0

and let K = ker(M0 → M). Then Gj
C-dimR(K) ≤ n− 1 < ∞ and by applying HomR(−, C) to

the short exact sequence

0 K M0 M 0
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we see that Extj+iR (K,C) = 0 for i > 0. Therefore αR(K) = j = gradeR(K) and so by the

induction hypothesis K ∈ GjC . Then Gj
C-dimR(M) ≤ 1 and again by the induction hypothesis

M ∈ GjC .

�

Using these results we get the following theorem about Gg
C-dimension.

Theorem 4.1.9. Let C be a semidualizing R-module. For a finitely generated R-module M with

gradeR(M) ≥ j, the following are equivalent:

(i) Gj
C-dimR(M) ≤ n

(ii) Gj
C-dimR(M) <∞ and n ≥ αR(M)− j

(iii) In any Gj
C-resolution,

· · · Mi Mi−1 · · · M0 M 0

the kernel Kn = ker(Mn−1 →Mn−2) ∈ GjC .

Moreover, if Gj
C-dimR(M) <∞, then Gj

C-dimR(M) = αR(M)− j.

Proof : Clearly, the equivalence of (i) and (ii) will imply the last statement.

(i)⇒ (ii) Suppose that Gj
C-dimR(M) ≤ n and consider a Gj

C-resolution of M

0 Mn Mn−1 · · · M1 M0 M 0
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By Lemma 4.1.6 we have 0 = ExtgradeR(Mn)+i
R (Mn, C) ∼= ExtgradeR(Mn)+n+i

R (M,C) for i > 0 since

Mn ∈ GjC . Then

gradeR(Mn) + n ≥ αR(M)⇒ n ≥ αR(M)− gradeR(Mn)

(ii) ⇒ (i) Suppose that Gj
C-dimR(M) = p. If p ≤ n we are done, and so we may assume that

p > n. Consider a Gj
C-resolution of M

0 Mp · · · Mn Mn−1 · · · M1 M0 M 0

and let Kn = ker(Mn−1 →Mn−2). Then by Lemma 4.1.6 again we have

ExtgradeR(Mn−2)+i
R (Kn, C) ∼= ExtgradeR(Mn−1)+n+i

R (M,C).

Since n ≥ αR(M)−j and j = gradeR(Mn−1), we have gradeR(Mn−1)+n+i ≥ αR(M)+i. Thus

ExtgradeR(Mn−1)+i
R (Kn, R) = 0 for i > 0. Therefore gradeR(Kn) = j = αR(Kn). So by Proposition

4.1.8 we see that Kn ∈ GjC . Therefore Gj
C-dimR(M) ≤ n.

(i)⇒ (iii) Suppose Gj
C-dimR(M) ≤ n. Consider a Gj

C-resolution of M of length n

0 Mn Mn−1 · · · M0 M 0

and let Kn = ker(Mn−1 → Mn−2). Consider a specific Gj
C-resolution constructed by using

projective R/(x̄)-modules, where x̄ is a regular C-sequence in AnnR(M) of length j,

0 Sn Pn−1 · · · P0 M 0
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It is then sufficient to prove that Sn ∈ GjC if and only if Kn ∈ GjC . Since Pi is projective (as R/(x̄)-

modules) we get mappings from one complex to the other. Then the result follows by considering

the mapping cone and using Proposition 4.1.5 (a) and (c).

(iii)⇒ (i) Clear.

�

Corollary 4.1.10. If C is a semidualizing R-module and M is a finitely generated R-module, then

Gi
C-dimR(M) ≤ Gj

C-dimR(M)

for any i ≥ j. Moreover, if Gj
C-dimR(M) < ∞ then Gi

C-dimR(M) = Gj
C-dimR(M) + (j − i) for

all i ≥ j.

So we get this chain of inequalities

GgradeR(M)
C -dimR(M) ≤ GgradeR(M)−1

C -dimR(M) ≤ · · · ≤ G1
C-dimR(M) ≤ G0

C-dimR(M)

In fact we get the following

Theorem 4.1.11. Let C be a semidualizing R-module and M a finitely generated R-module. Then

GgradeR(M)
C -dimR(M) <∞ if and only if Gi

C-dimR(M) <∞ for any i ≤ gradeR(M).

Proof : Clearly if Gi
C-dimR(M) < ∞, then GgradeR(M)

C -dimR(M) < ∞ by Corollary 4.1.10. So

suppose that GgradeR(M)
C -dimR(M) < ∞. Then for a suitable GgradeR(M)

C -resolution of M (con-

structed in R/(x̄) for x̄ a regular C-sequence in AnnR(M)) we can convert it into a GC-resolution
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of M by considering it as a complex over R/(x̄).. As finiteness of GC-dimension is preserved be-

tween R and R/(x̄) when x̄ is a regular sequence [15, Proposition 1.5.3] we are done by Corollary

4.1.10.

�

Corollary 4.1.12. Let C be a semidualizing R-module and M a finitely generated R-module. If

GC-dimR(M) <∞, then

GC-dimR(M) = Gj
C-dimR(M) + j

Note that from now on, any assumption about the finiteness of GC-dimension is the same as as-

suming that any or all of the Gi
C-dimensions are finite. So in the rest of the results we will use

notation that fits the theme of the result. The next result is an Auslander-Bridger formula for these

dimensions.

Corollary 4.1.13 (Auslander-Bridger Formula for GjC). Let C be a semidualizing module for a

local ring (R,m, k) with Gj
C-dimR(M) <∞ for an R-module M . Then

Gj
C-dimR(M) = depth(R)− depthR(M)− j

4.1.1 C-Duals and C-Gorenstein Dimension

Given a semidualizingR-moduleC and a finitely generatedR-moduleM , one can take a projective

presentation

P1 → P0 →M → 0

and by applying HomR(−, C) on obtains the exact sequence

0 HomR(M,C) HomR(P0, C) HomR(P1, C) DCM 0
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where DC(M) = coker(HomR(P0, C)→ HomR(P1, C)) is the C-dual of M . In [18], this is called

the C transpose of M with notation TrCM . Using the notation (−)∇ = HomR(−, C), one can

write the following exact sequences which arise from the above sequence

0 Ext1R(DCM,C) M M∇∇ Ext2R(DCM,C) 0

0 Ext1R(M,C) DCM (DCM)∇∇ Ext2R(M,C) 0

Both of which are stated in [18].

Now suppose that gradeR(M) ≥ j. In almost exactly the same manner we can take a Gj
C-

presentation of M , i.e. a presentation

M1 →M0 →M → 0

where M1,M0 ∈ GjC and after applying ExtjR(−, C) we get the exact sequence

0 ExtjR(M,C) ExtjR(M0, C) ExtjR(M1, C) Dj
CM 0

which leads to the following result.

Lemma 4.1.14. Let C be a semidualizing R-module and M an R-module with gradeR(M) ≥ j.

Then there is an exact sequence

0 Extj+1
R (Dg

CM,C) M ExtjR(ExtjR(M,C), C) Extj+2
R (Dg

CM,C) 0
δjC(M)
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Proof : Consider the presentation of M (as above)

(Π) : M1 M0 M 0α β

Applying ExtjR(−, C) to this and splitting the resulting complex into short exact sequences we get

(Π0) : 0 ExtjR(M,C) ExtjR(M0, C) Q 0

(Π1) : 0 Q ExtjR(M1, C) Dg
CM 0

β∗ γ0

γ1

where γ1 ◦ γ0 = α∗. Applying ExtjR(−, C) to both of these gives the exact sequences

(Π∗
0) : 0 ExtjR(Q,C) ExtjR(ExtjR(M0, C), C) ExtjR(ExtjR(M,C), C) Extj+1

R (Q,C) 0

(Π∗
1) : 0 ExtjR(Dg

CM,C) ExtjR(ExtjR(M1, C), C) ExtjR(Q,C) Extj+1
R (Dg

CM,C) 0.

γ∗
0 β∗∗

γ∗
1

Then if we consider the following commutative diagram

M1 M0 M 0

0 ExtjR(Q,C) ExtjR(ExtjR(M0, C), C) ExtjR(ExtjR(M,C), C),

α

γ∗1◦δ
j
C(M1)

β

δjC(M0) δjC(M)

γ∗0 β∗∗

the coker(γ∗1 ◦ δ
j
C(M1)) = coker(γ∗1) = Extj+1

R (Dg
CM,C) according to (Π∗1). Therefore by the

Snake Lemma, ker(δjC(M)) ∼= coker(γ∗1 ◦ δ
j
C(M1)) ∼= Extj+1

R (Dj
CM,C).

Further, coker(δgC(M)) ∼= coker(β∗∗) ∼= Extj+1
R (Q,C) ∼= Extj+2

R (Dg
CM,C), where the last iso-

morphism comes from applying ExtjR(−, C) to (Π1).
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Lastly, we see from applying ExtjR(−, C) to (Π0) and (Π1) that

Extj+iR (ExtjR(M,C), C) ∼= Extj+1+i
R (Q,C)

and

Extj+iR (Q,C) ∼= Extj+i+1
R (Dj

CM,C)

for i > 0, respectively. This says that Extj+iR (ExtjR(M,C), C) ∼= Extj+i+2
R (Dg

CM,C) for i > 0, as

desired.

�

In the same way one can obtain a sequence of functors

0 Extj+1
R (Dg

CM,−) M ⊗R − ExtjR(ExtjR(M,C),−) Extj+2
R (Dg

CM,−) 0

for any dualizing R-module C.

Corollary 4.1.15. Let C be a semidualizing R-module and M an R-module with gradeR(M) = g.

Then M ∈ GgC if and only if Extg+iR (M,C) = Extg+iR (Dg
CM,C) = 0 for i > 0. Consequently,

M ∈ GgC if and only if Dg
CM ∈ G

g
C .

Proof : From the previous proof we see that Extg+i+2
R (Dg

CM,C) ∼= Extg+iR (ExtgR(M,C), C) for

i > 0. This along with Lemma 4.1.14 gives the result.

�

Corollary 4.1.16. Suppose that 0→M ′ →M →M ′′ → 0 is a short exact sequence with

min{gradeR(M ′), gradeR(M), gradeR(M ′′)} ≥ g.
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Then there is a long exact sequence

0→ ExtgR(M ′′, C)→ ExtgR(M,C)→ ExtgR(M ′, C)→ Dg
CM

′′ → Dg
CM → Dg

CM
′ → 0

4.2 Generalized Serre-like Conditions

The goal of this section is to provide results concerning Serre-like conditions using these newly

developed dimensions. Later in this thesis we will connect these Serre-like conditions with module

linkage.

Recall that an R-module M satisfies (Sn) if depthRp
(Mp) ≥ min{n, dim(Rp)} for p ∈ Spec(R).

Then one says that an R-module M satisfies S̃n if depthRp
(Np) ≥ min{n, depth(Rp)} for p ∈

Spec(R). It is natural for us to generalize S̃n since we will want to use our Auslander-Bridger type

formula which uses the depth of R and not the dimension. So, we define the following

Definition 4.2.1 (Generalized Serre Condition). Let C be a semidualizing R-module and M an

R-module. We say that M satisfies S̃gn if

depthRp
(Mp) + g ≥ min{n, depth(Rp)} ∀p ∈ Spec(R)

Note, S̃gn is always satisfied when n ≤ g. There is a similar generalized condition, (Sjn) for rings

which has been shown to preserve many of the same results as for (Sn), see [37]. We also make

the following definition

Definition 4.2.2. Let C be a semidualizing R-module and M an R-module with gradeR(M) ≥ g.

Then we say that M is Cg
n-torsionless if Extg+iR (Dg

CM,C) = 0 for 1 ≤ i ≤ n.

65



This definition originates from [3] as a way to gauge how far M is from having dimension zero.

Lemma 4.2.3. Let 0→M ′ →M →M ′′ → 0 be a short exact sequence with

min{gradeR(M ′), gradeR(M), gradeR(M ′′)} ≥ g

andQ = coker(ExtgR(M,C)→ ExtgR(M ′, C)). IfM ′ is Cg
k+1-torsionless, M is Cg

k -torsionless, and

gradeR(Q) ≥ k + 1 then M ′′ is Cg
k -torsionless.

Proof : From Corollary 4.1.16 we have the exact sequence

0 Q Dg
CM

′′ Dg
CM Dg

CM
′ 0.

Breaking this into short exacts sequences and looking at the corresponding long exact sequences

in Ext gives the desired result.

�

With these definitions and results we will prove Theorem 4.2.5 and Corollary 4.2.6, generalizing

[18, Proposition 2.4] and [18, Proposition 2.7], respectively. Recall that in a resolution

· · · → Xn → Xn−1 → · · · → X1 → X0 →M → 0

of M , the ith syzygy of M is ker(Xi−1 → Xi−2) where X−1 = M . The next proposition is

given to help give intuition into how these definitions fit together. We show that a module being

Cg
n−g-torsionless is stronger than satisfying S̃gn.

Proposition 4.2.4. Let C be a semidualizing R-module and M an R-module with gradeR(M) = g

and n ≥ g, then for the following conditions:
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(i) M is Cg
n−g-torsionless

(ii) M is an (n− g)th GgC-syzygy

(iii) M satisfies S̃gn

we have (i)⇒ (ii)⇒ (iii).

Proof : We exclude n = g as that is vacuously satisfied.

(i)⇒ (ii) Consider a GgC-resolution of ExtgR(M,C)

· · · Mn−g−1 · · · M0 ExtgR(M,C) 0

If we apply ExtgR(−, C) we get a complex

(∗) : 0 ExtgR(ExtgR(M,C), C) ExtgR(M0, C) · · · ExtgR(Mn−g−1, C)

When n − g = 1 we have that M ⊂ ExtgR(ExtgR(M,C), C) by Lemma 4.1.14 and are done using

(∗). If n− g = 2, then M ∼= ExtgR(ExtgR(M,C), C) by Lemma 4.1.14 and it is clear that M is a 2nd

GgC-syzygy. So suppose that n − g > 2. Then as Extg+iR (Dg
CM,C) ∼= Extg+i−2R (ExtgR(M,C), C)

for 2 < i ≤ n− g we see that (∗) is exact.

(ii)⇒ (iii) If we take an exact complex

0 M M1 · · · Mn−g
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then clearly depthRp
(Mp) ≥ min{depthRp

((Mn−g)p) , n− g}. Using Corollary 4.1.13 we have

depthRp
(Mn−g) = depth(Rp)− gradeCp

(Mp)

and so

depthRp
(Mp) ≥ min{depth(Rp)− gradeCp

(Mp), n− g} ≥ min{depth(Rp), n} − gradeCp
(Mp)

�

We can extend this to an equivalence of statements assuming that the Gg
C-dimension ofM is locally

finite.

Theorem 4.2.5. Let C be a semidualizing R-module, M an R-module with gradeR(M) = g,

n ≥ g, and M have locally finite Gg
C−dimension. Then the following are equivalent:

(i) M is Cg
n−g-torsionless

(ii) M is an (n− g)th GgC-syzygy

(iii) M satisfies S̃gn

(iv) gradeCp
(Ext

gradeCp
(Mp)+i

Rp
(Mp, Cp)) ≥ i + n for i ≥ 1 and p ∈ Spec(R) where depth(Rp) ≤

i+ n− 1.

Proof : We have already seen that (i) ⇒ (ii) ⇒ (iii). We will now show that (iii) ⇒ (iv) and

(iv)⇒ (i).
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(iii)⇒ (iv) Fix i ≥ 1 and a prime p ∈ Spec(R) with depth(Rp) < i+ n. Let gradeCp
(Mp) = gp.

We need to show that Extgp+iRp
(Mp, Cp) = 0, and so we will show that p /∈ Supp(Extgp+iRp

(Mp, Cp)).

Using Corollary 4.1.13 we have

Ggp
Cp

-dimRp(Mp) = depth(Rp)− depthRp
(Mp)− gp

≤ depth(Rp)−min{n, depth(Rp)}

= max{0, depth(Rp)− n}

and since depth(Rp) < i + n we have Ggp
Cp

-dimRp(Mp) < i + n − n = i. This says that

αCp(Mp) < i+ gp and so Extgp+iRp
(Mp, Cp) = 0.

(iv) ⇒ (i) It is enough to show this in a local ring (R, p) for p ∈ Spec(R). So we may assume,

Gg
C-dimR(M) = αR(M)− g <∞. By Corollary 4.1.15 the result holds if Gg

C-dimR(M) = 0. So

suppose that Gg
C-dimR(M) = p > 0 and we proceed by induction on p. Let

0→ K → N →M → 0

be a short exact sequence with N ∈ GgC and so Gg
C-dimR(K) = p− 1. Then we have

gradeR(Extg+iR (K,C)) = gradeR(Extg+i+1
R (M,C)) ≥ i+ n+ 1

for i ≥ 1. So by induction Extg+iR (Dg
CK,C) = 0 for 1 ≤ i ≤ n − g + 1. That is K is Cg

n−g+1-

torsionless. The result will now follow by the following Lemma.

�

Corollary 4.2.6. Let C be a semidualizing R-module, M an R-module with gradeR(M) = g,

n ≥ g, and idR(C) <loc ∞. Then the following are equivalent:

69



(i) M is Cg
n−g-torsionless

(ii) M ⊗R C is an (n− g)th GgC-syzygy

(iii) M ⊗R C satisfies S̃gn

(iv) gradeCp
(Ext

gradeRp
(Mp)+i

Rp
(Mp, Rp)) ≥ i+ n for i ≥ 1 and p ∈ X i+n−1(R)

Proof : Let N = M ⊗R C. Since C is semidualizing

ExtgR(ExtgR(N,C), C) = ExtgR(ExtgR(M ⊗R C,C), C) ∼= ExtgR(ExtgR(M,R), C).

Then using the exact sequence from Lemma 4.1.14 and the remark following the lemma we have

the following commutative diagram

0 Extg+1
R (Dg

RM,C) N ExtgR(ExtgR(M,R), C) Extg+2
R (Dg

RM,C) 0

0 Extg+1
R (Dg

CN,C) N ExtgR(ExtgR(N,C), C) Extg+2
R (Dg

CN,C) 0

∼=

So it follows naturally that Extg+iR (Dg
RM,C) ∼= Extg+iR (Dg

CN,C) for i > 0 using the above diagram

and ExtgR(M,R) ∼= ExtgR(N,C). Then the result follows by replacingM withN in Theorem 4.2.5.

�

To end this chapter, we will prove a result analogous to [18, Theorem 2.12]. We first need to recall

the Auslander class of a semidualizing module. Such modules were defined by Foxby [25] and

further developed by Avramov and Foxby in [5].

Definition 4.2.7. Let C be a semidualizing R-module. The Auslander class with respect to C,AC ,

consists of all R-modules M satisfying:
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(i) The map M → HomR(C,M ⊗R C) is an isomorphism

(ii) TorRi (M,C) = 0 = ExtiR(C,M ⊗R C) for all i > 0

Then using [18, Lemma 2.11] we get

Proposition 4.2.8. Let C be a semidualizing R-module, M ∈ AC , gradeR(M) = g, n ≥ g, and

M have localy finite Gg
C−dimension. Then the following are equivalent:

(i) M is Rg
n−g-torsionless

(ii) M is Cg
n−g-torsionless

(iii) M ⊗R C satisfies S̃gn

(iv) M satisfies S̃gn

Proof : The equivalence of (iii) and (iv) follows from [18, Lemma 2.11] and that gradeR(M) =

gradeR(M ⊗R C) since

ExtiR(M ⊗R C,C) ∼= ExtiR(M,HomR(C,C)) ∼= ExtiR(M,R)

and gradeR(M) = gradeC(M). Note that (i) and (iv) are equivalent from Theorem 4.2.5 by

replacing C with R. Further note that (ii) and (iii) are equivalent from Corollary 4.2.6.

�
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CHAPTER 5: CATEGORIES WITH LINKAGE

This chapter marks the start of a shift to the study of linkage and certain associated homological di-

mensions over general categories. We will assume that our categories are homological categories.

This chapter will serve to define linkage in this generality and we provide results generalizing the

results of Chapter 4 in the section C-duals and C-Gorenstein dimensions along with a study of the

even linkage classes of objects in these categories with linkage.

It should be stated here to importance of moving to this generality. One of the many defining

characteristics of linkage is the ability to compare a multitude of properties with ideals in the same

linkage class. One of the many aims of the theory, and perhaps some would say the most important,

is the study of ideals in the linkage class of a complete intersection, so called licci ideals. There is

an extraordinary amount of literature on the subject, but what has yet to have been made clear is

the misguidedness of concerning ones self with the entire linkage class. We will make extremely

clear here why it is more important to consider the even linkage class of an object when studying

linkage and how this class should be considered when looking for homological properties of these

objects.

One of the many ways one studies category theory is through the lens of functors. This will be our

approach as the only difference between these types of categories will be the functors used in their

definitions. The prototypical example one can think of is module linkage in the category R-Mod.

There is a single functor used in defining linkage, HomR(−, R), but in fact there are two used that

are identical which will become apparent when we define linkage. HomR(−, R) is contravariant

and left exact, and we will begin our study of linkage with contravariant functors in a hope to
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emulate the example in R-Mod.

5.1 Contravariant Linkage Functors

We begin by defining a category pair with linkage.

Definition 5.1.1. SupposeX and Y are homological categories where S : X → Y and T : Y → X

are additive contravariant functors. Also, suppose that S and T are either both right exact or left

exact (RE or LE). We say S and T are linkage functors, and (S, T ) form a linkage functor pair

for X and Y if there exists a category B with a pair of full and faithful functors FX : B → X and

FY : B → Y such that the following holds:

(i) For B ∈ B there exist functors XB : X|FX (B) → Y|FY (B) and YB : Y|FY (B) → X|FX (B) such

that XB ◦ FX = FY and YB ◦ FY = FX . Moreover, XB and YB are such that S|FX (B) = XB

and T |FY (B) = YB.

(ii) For each B ∈ B, DiS(FX (B)) = 0 and DiT (FY(B)) = 0 for i > 0 where DiS(−) and

DiT (−) are the derived functors of S and T , respectively.

In this case we say that B is a Fossum category, both FX (B) and FY(B) are linking classes in X

and Y , and ((X ,Y),B, (S, T )) is a category pair with linkage.

Note that B is exactly the collection of objects in X and Y in which (i) and (ii) hold. This means

that given two contravariant LE or RE functors we can determine the collection B and obtain a cat-

egory pair with linkage. In the rest of the paper we will suppress the notation for the category B.

An objectB in X or Y will denote the representative ofB in X and Y , which are equivalent, and B

will denote both FX (B) and FY(B). We give the category B the name Fossum due to his influence
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into the study of certain types of modules and the functors associated to them. B represents the

collection of quasi-Gorenstein modules of a fixed grade in the example of linkage for R-Mod.

We take a moment here to continue our discussion about the entire linkage class versus the even

linkage class. In this generality it is easy to see why we pay more attention to the even linkage

classes as opposed to the entire linkage class. Linkage switches from one category to another and

so properties that are captured in a single category will be captured through even linkage, not nec-

essarily through direct linkage.

Let ((X ,Y),B, (S, T )) be a category pair with linkage. We say that X is presented by B or

X ∈ Pres(B) if there exists a short exact sequence

0 K B X 0.

in the appropriate category, where B ∈ B, and we say that X is copresented by B or X ∈

Copres(B) if there exists a short exact sequence

0 X B Q 0

in the appropriate category, where B ∈ B.

Definition 5.1.2. Let ((X ,Y),B, (S, T )) be a category pair with linkage. Suppose

(i) X ∈ X and X ∈ Pres(B) and both S and T are left exact. Then there is a short exact

sequence

0 K B A 0
β α

74



in X which induces an exact sequence

0 S(A) B S(K).
YB◦S(α) S(β)◦XB

From this exact sequence we define an object LSB(X) = coker(YB ◦ S(α)). Similarly, we

define LTB(Y ) = coker(XB ◦ T (α)) for Y ∈ Y where Y ∈ Pres(B).

(ii) X ∈ X and X ∈ Copres(B) and both S and T are right exact. Then there is a short exact

sequence

0 X B Q 0α β

in X which induces an exact sequence

S(Q) B S(A) 0.
YB◦S(β) S(α)◦XB

in Y . From this exact sequence we define an object LBS (X) = ker(S(α)◦XB). Similarly, we

define LBT (Y ) = ker(T (α) ◦ YB) for Y ∈ Y where Y ∈ Copres(B).

Definition 5.1.3. Let ((X ,Y),B, (S, T )) be a category pair with linkage.

(i) Suppose that S and T are left exact. Given objects X ∈ X and Y ∈ Y in Pres(B) we say

X is directly S-linked to Y (Y is directly T -linked to X) by B ∈ B if LSB(X) ∼= Y and

LTB(Y ) ∼= X and we use the notation X B
 
S
Y (Y B

 
T
X). Moreover, we say that Z1 is linked

to Z2 if there is a sequence of direct links from Z1 to Z2.

(ii) Suppose that S and T are right exact. Given objects X ∈ X and Y ∈ Y in Copres(B) we

say that X is directly S-linked to Y (Y is directly T -linked to X) by B ∈ B if LBS (X) ∼= Y

and LBT (Y ) ∼= X , and we use the notation X S
 
B
Y (Y T

 
B
X). Moreover, we say that Z1 is

linked to Z2 if there is a sequence of direct links from Z1 to Z2.
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Two objects which are linked will be in the same linkage class. Objects which are linked in an

even number of steps will be in the same even linkage class. Similarly, objects which are linked in

an odd number of steps will be in the same odd linkage class. We will use the notation [Z] for the

linkage class of an object Z.

Note that when discussing direct linkage there is no difference a priori between being directly S-

linked and directly T -linked. So in most of the results concerning direct linkage we will assume

directly S-linked.

Proposition 5.1.4. In a category pair with linkage ((X ,Y),B, (S, T )) every object in B is in the

same linkage class.

Proof : Let B1, B2 ∈ B, then B1 ⊕ B2 ∈ B as S and T are additive. Then by the short exact

sequences

0→ B1 → B1 ⊕B2 → B2 → 0

we see that B2 is directly linked to B1.

�

In fact, this shows that every pair of objects in B are directly linked (both S− and T− linked)

lending more credence to our decision to suppress the notation involving B. The following lemma

is instrumental in finding the homological connections between an object and its linkage class.

Lemma 5.1.5. Let ((X ,Y),B, (S, T )) be a category pair with linkage where S and T are left exact

and suppose X B
 
S
Y . Then the following holds:

(i) The two sequences

0→ X → T (S(X))→ R1T (Y )→ 0
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0→ Y → S(T (Y ))→ R1S(X)→ 0

are exact.

(ii) RiT (S(X)) ∼= Ri+1T (Y ) for i > 0

(iii) RiS(T (Y )) ∼= Ri+1S(X) for i > 0

Proof : As X B
 
S
Y it is assumed that X ∈ Pres(B), and the sequence

0→ K → B → X → 0.

exists. By applying S we get the short exact sequence

∗ : 0→ S(X)→ B → Y → 0.

Similarly Y ∈ Pres(B), and we have the short exact sequence

∗∗ : 0→ T (Y )→ B → X → 0.

So after applying T to ∗ and S to ∗∗ we obtain the following

0 T (Y ) T (B) T (S(X)) R1T (Y ) 0

0 RiT (S(X)) Ri+1T (Y ) 0, i > 0

0 S(X) S(B) S(T (Y )) R1S(X) 0

0 RiS(T (Y )) Ri+1S(X) 0, i > 0
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which shows (ii) and (iii). Once again, using that X and Y are directly linked, we break the two

long sequences into two short exact sequences to show (i).

�

Using the same technique we get a similar result when S and T are right exact.

Lemma 5.1.6. Let ((X ,Y),B, (S, T )) be a category pair with linkage where S and T are right

exact and suppose X S
 
B
Y . Then the following holds:

(i) The two sequences

0→ L1T (Y )→ T (S(X))→ X → 0

0→ L1S(X)→ S(T (Y ))→ Y → 0

are exact.

(ii) LiT (S(X)) ∼= Li+1T (Y ) for i > 0

(iii) LiS(T (Y )) ∼= Li+1S(X) for i > 0

With this lemma in mind, it is easy to see that objects in the same category which are linked (so

evenly linked) share many homological properties. We define a collection of objects which capture

when these derived functors vanish.

Definition 5.1.7. Let ((X ,Y),B, (S, T )) be a category pair with linkage. An object X will be

called S-perfect (T-perfect) if T (S(X)) ∼= X (S(T (X)) ∼= X) and DiS(X) = 0 = DiT (S(X)

for i > 0 (DiT (X) = 0 = DiS(T (X)) for i > 0). We will use the notation Per(S) (Per(T )) for

the collection of S-perfect (T -perfect) objects.

The following lemma will show that this property separates linkage classes from those which

consist of perfect objects and those that do not.
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Lemma 5.1.8. Let ((X ,Y),B, (S, T )) be a category pair with linkage. Suppose X is S-perfect.

Then

(i) S(X) ∈ Per(T )

(ii) if X is directly S-linked to Y by B, Y is T -perfect.

Proof :

(i) Given that X ∈ Per(S), we know that DiT (S(X)) = 0 for i > 0. Further as T (S(X)) ∼= X

we have that S(T (S(X)) ∼= S(X) and DiS(T (S(X)) ∼= DiS(X) = 0 for i > 0. Thus

S(X) is T -perfect.

(ii) Suppose that S and T are left exact. By Lemma 5.1.5 (i),

0→ Y → S(T (Y ))→ R1S(X)→ 0

shows that Y ∼= S(T (Y )). Also by Lemma 5.1.5 (i),

0→ X → T (S(X))→ R1T (Y )→ 0

shows that R1T (Y ) = 0 as X ∼= T (S(X)). Further, by Lemma 5.1.5 (ii) and (iii) we get

that RiS(T (Y )) ∼= Ri+1S(X) = 0 for i > 0 and RiT (Y ) ∼= Ri+1T (S(X)) = 0 for i > 1.

So Y is then T -perfect.

Similarly, if S and T are right exact, we can use Lemma 5.1.6 to show that Y is T -perfect.

�
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Clearly, the same holds true for Y T -perfect with S and T switched. So we immediately get the

following consequence.

Corollary 5.1.9. Let ((X ,Y),B, (S, T )) be a category pair with linkage. Suppose that X is S-

perfect. Then every object in the even linkage class of X is S-perfect and every object in the odd

linkage class of X is T -perfect.

When defining perfect objects in these categories, it is similar to how one defines Gorenstein

dimension zero modules except without some natural bi-duality map. We make this idea formal

which allows us to connect together this class of objects with linkage and in the next chapter

associated a homological dimension to these perfect categories.

Definition 5.1.10. Suppose that ((X ,Y),B, (S, T )) is a category pair with linkage.

(i) (LE) Suppose that S and T are left exact. We say that ((X ,Y),B, (S, T )) is S-perfect (T-

perfect) if X = Pres(Per(S)) (Y = Pres(Per(T ))) and given a morphism X
α→ X ′ in X

(Y
β→ Y ′ in Y), there exists morphisms δSX (X) : X → T (S(X)) and δSX (X ′) : X ′ →

T (S(X ′)) (δTY (Y ) : Y → S(T (Y )) and δTY (Y ′) : Y ′ → S(T (Y ′))) such that the following

square commutes:

X X ′

T (S(X)) T (S(X ′))

α

δSX (X) δSX (X
′)

T (S(α))


Y Y ′

S(T (Y )) S(T (Y ′))

β

δTY (Y ) δTY (Y
′)

S(T (β))


That is, δSX (−) (δTY (−)) is a natural transformation between the identity functor and T (S(−))

(S(T (−))).

(ii) (RE) Suppose that S and T are right exact. We say that ((X ,Y),B, (S, T )) is S-perfect

(T-perfect) if X = Copres(Per(S)) (Y = Copres(Per(T ))) and given a morphism X
α→ X ′
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in X (Y
β→ Y ′ in Y), there exists morphisms δXS (X) : T (S(X)) → X and δXS (X ′) :

T (S(X ′)) → X ′ (δYT (Y ) : S(T (Y )) → Y and δYT (Y ′) : S(T (Y ′)) → Y ′) such that the

following square commutes:

T (S(X)) T (S(X ′))

X X ′

T (S(α))

δXS (X) δXS (X′)

α


S(T (Y )) S(T (Y ′))

Y Y ′

S(T (β))

δYT (Y ) δYT (Y ′)

β


That is, δXS (−) (δYT (−)) is a natural transformation between the identity functor and T (S(−))

(S(T (−))).

We will say that ((X ,Y),B, (S, T )) is perfect if it is both S-perfect and T -perfect.

To simplify the notation we will use a subscript (S, T )L to signify that S and T are left exact and

(S, T )R to signify that S and T are right exact. Suppose that ((X ,Y),B, (S, T ))L) is perfect. As

X = Pres(Per(S)), given an object X we can take an S-perfect presentation of X

P1 → P0 → X → 0

where P0, P1 ∈ Per(S). If we apply S to this we get

0→ S(X)→ S(P0)→ S(P1)→ DS(X)→ 0

whereDS(X) = coker(S(P0)→ S(P1)) is defined to be the S-dual ofX . Similarly, we can define

DT (Y ) = coker(T (P0)→ T (P1)) the T-dual of Y by taking a T -perfect presentation of Y . Also,

for ((X ,Y),B, (S, T ))R) perfect we can consider an S-perfect co-presentation of X , or T -perfect

co-presentation of Y

0→ X → P0 → P1
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or

0→ Y → Q0 → Q1

and define DS(X) = ker(S(P1)→ S(P0)) or DT (Y ) = ker(T (Q1)→ T (Q0)), the S and T duals

of X and Y , respectively.

The S and T duals will help us determine a way to measure how close two objects are to being in

the same linkage class. The next proposition will give us a way to do this.

Proposition 5.1.11. Let ((X ,Y),B, (S, T ))L) be a category pair with linkage. Then

(i) If ((X ,Y),B, (S, T ))L) is S-perfect, then for any X ∈ X we have an exact complex

0 R1T (DS(X)) X T (S(X)) R2T (DS(X)) 0
δSX (X)

(ii) If ((X ,Y),B, (S, T ))L) is T -perfect, then for any Y ∈ Y we have an exact complex

0 R1S(DT (Y )) Y S(T (Y )) R2S(DT (Y )) 0
δTY (Y )

Proof :

(i) Given an S-perfect presentation of X

P1 P0 X 0
p1 p0

we get the exact sequence

0 S(X) S(P0) S(P1) DS(X) 0.
S(p0) S(p1)
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Let K = ker(S(P1)→ DS(X)). Then we have two short exact sequences

0 S(X) S(P0) K 0

0 K S(P1) DS(X) 0.

S(p0) ϕ0

ϕ1

Applying T to these yields the following exact sequences

0 T (K) T (S(P0)) T (S(X)) R1T (K) 0

0 T (DS(X)) T (S(P1)) T (K) R1T (DS(X)) 0

0 R1T (K) R2T (DS(X)) 0.

T (ϕ0) T (S(p0))

T (ϕ1)

From these sequences there arises a commutative diagram

P1 P0 X 0

0 T (K) T (S(P0)) T (S(X))

p1

T (ϕ1)◦δSX (P1)

p0

δSX (P0) δSX (X)

T (ϕ0) T (S(p0))

Note that δSX (P0) is an isomorphism. Therefore, by the Snake Lemma

ker(δSX (X)) = coker(T (ϕ1) ◦ δSX (P1)) = coker(T (ϕ1)) = R1T (DS(X)).

Further, the cokernel of δSX (X) is the same as the cokernel of T (S(p0)) as δSX (P0) is an iso-

morphism and p0 is an epimorphism. Therefore coker(δSX (X)) = R1T (K) = R2T (DS(X)).

(ii) Similar to (i) with S and T switched with an object Y of Y .

�
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Corollary 5.1.12. Let ((X ,Y),B, (S, T ))L) be perfect. Then W is S-perfect (T -perfect) if and

only if DiS(W ) = 0 = DiT (DS(W )) for i > 0 (DiT (W ) = 0 = DiS(DT (W )) for i > 0).

There is an analogous result for right exact linkage functors which we now state.

Proposition 5.1.13. Let ((X ,Y),B, (S, T ))R) be a category pair with linkage. Then

(i) If ((X ,Y),B, (S, T )R) is S-perfect, then for any X ∈ X we have an exact complex

0 L2T (DS(X)) T (S(X)) X L1T (DS(X)) 0
δXS (X)

(ii) If ((X ,Y),B, (S, T ))R) is T -perfect, then for any Y ∈ Y we have an exact complex

0 L2S(DT (Y )) S(T (Y )) Y L1S(DT (Y )) 0
δYT (Y )

Proof :

(i) Given an S-perfect co-presentation of X

0 X I0 I1
i0 i1

we get the exact sequence

0 DS(X) S(I1) S(I0) S(X) 0.
S(i1) S(i0)

Let Q = coker(DS(X)→ S(I1)). Then we have two short exact sequences

0 DS(X) S(I1) Q 0
ψ1
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0 Q S(I0) S(X) 0,
ψ0 S(i0)

Applying T to these yields the following exact sequences

0 L1T (DS(X)) T (Q) T (S(I1)) T (DS(X)) 0
T (ψ1)

0 L1T (Q) T (S(X)) T (S(I0)) T (Q) 0
T (S(i0)) T (ψ0)

0 L2T (DS(A)) L1T (Q) 0.

From these sequences there arise a commutative diagram

T (S(X)) T (S(I0)) T (Q) 0

0 X I0 I1

T (S(i0))

δXS (X)

T (ψ0)

δXS (I0) δXS (I1)◦T (ψ1)

i0 i1

Note that δXS (I0) is an isomorphism. Therefore, by the Snake Lemma

coker(δXS (X)) = ker(δXS (I1) ◦ T (ψ1)) = ker(T (ψ1)) = L1T (DS(X)).

Further, the kernel of δXS (X) is the same as the kernel of T (S(i0)) as i0 is a monomorphism

and δXS (X) is an isomorphism. Therefore ker(δXS (X)) = L1T (Q) = L2T (DS(X)).

(ii) Similar to (i) with S and T switched.

�

Corollary 5.1.14. Let ((X ,Y),B, (S, T ))R) be perfect. Then W is S-perfect (T -perfect) if and

only if DiS(W ) = 0 = DiT (DS(W )) for i > 0 (DiT (W ) = 0 = DiS(DT (W )) for i > 0).
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Notice the parallel between these results and those in Chapter 4. These results are why we choose

to be in a homological category where one can have long exact sequences in homology and the

Snake Lemma.

Let ((X ,Y),B, (S, T ))L) be perfect. We will say that W is stable if W has no summands in B, i.e.

if W ∈ X then there are no summands of the form FX (B) and vice versa for W ∈ Y . If X ∈ X is

stable and also in Pres(B) then there is a short exact sequence

0 K B X 0α

which leads to

0 S(X) B LSB(X) 0
YB◦S(α)

and

0 T (LSB(X)) B LTB(LSB(X)) 0
T (S(α))◦T (YB)

So there is an epimorphism T (S(B)) LTB(LSB(X))
T (S(α))

which is ”minimal” as X is stable.

Similarly there is an epimorphism S(T (B))
S(T (α))−→ LSB(LTB(Y )) for Y ∈ Y .

Proposition 5.1.15. Let ((X ,Y),B, (S, T ))L) be perfect. Then

(i) for X ∈ X where X ∈ Pres(B) we have the short exact sequence

0 R1T (DS(X)) X LTB(LSB(X)) 0
δSX (X)

(ii) for Y ∈ Y where Y ∈ Pres(B) we have the short exact sequence

0 R1F (DG(A)) A LFB(LGB(A)) 0
δGA(A)
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Proof :

(i) Consider the commutative square

B X

T (S(B)) T (S(X))

α

δSX (B) δSX (X)

T (S(α))

where δSX (B) is an isomorphism and α is an epimorphism. Since 0 → LTB(LSB(X)) →

T (S(X)) and T (S(B))
T (S(α))−→ LTB(LSB(X)) → 0 we have that X

δSX (X)
−→ LTB(LSB(X)) → 0.

That is to say that the image of T (S(α)) is the same as the image of δSX (X) for the maps in

the square. Therefore we get the short exact sequence

0 R1T (DS(X)) X LTB(LSB(X)) 0
δSX (X)

using Proposition 5.1.11.

(ii) Same as (i) except with S and T switched.

�

It is clear that there is an analogous result for right exact functors using Proposition 5.1.13. It is also

clear by the previous result that if X B
 
S
LSB(X) then X ∼= LTB(LSB(X)) and so R1T (DS(X)) = 0,

and similarly for R1S(DT (Y )). So the vanishing of R1T (DS(X)) (or R1S(DT (Y ))) is a check to

see if the S-linkage class (or T -linkage class) of X is nonempty for X stable. However, if X is not

stable then we have the following (compare with [53, Lemma 3.11]).

Proposition 5.1.16. Let ((X ,Y),B, (S, T ))L) be perfect and suppose X ∼= X ′ ⊕ B is not stable,

i.e. B ∈ B. Then if [X ′] 6= ∅, X ′ ⊕B is evenly linked to X .
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Proof : We can assume that X ∈ X as the same proof will hold in Y with S and T switched. As

[X ′] 6= ∅ we have that X ′ B
′
 
S
LSB′(X ′) for some B′ ∈ B and so it follows that

X = X ′ ⊕B B⊕B′
 
S
LSB′(X ′)

B′
 
T
X ′.

�

Therefore, if we have an object X ∼= X ′⊕B which is not stable, then it is evenly linked to a stable

module as long as there is an object that X ′ is linked to. We get a similar result for right exact

functors which we state for completeness.

Corollary 5.1.17. Let ((X ,Y),B, (S, T ))R) be perfect and suppose X ∼= X ′⊕B is not stable, i.e.

B ∈ B. Then if [X ′] 6= ∅, X ′ ⊕B is evenly linked to X .

Using these stable representatives in the even linkage classes of an object we can connect the

homological properties of an object with any in its even linkage class using its S or T dual.

Theorem 5.1.18. Let ((X ,Y),B, (S, T ))L) be perfect and suppose thatX ∈ X is stable. IfX B
 
S
Y

and X ′ B
′
 
S
Y then RiT (DS(X)) ∼= RiT (DS(X ′)) and RiS(X) ∼= RiS(X ′) for i > 0.

Proof : By Proposition 5.1.11 (i) and Proposition 5.1.15 we have the two short exact sequences

0 D1T (DS(X)) X LTB(LSB(X)) 0

0 LTB(LSB(X)) T (S(X)) D2T (DS(X)) 0.

Since X B
 
S
Y we have that D1T (DS(X)) = 0 as X ∼= LTB(Y ) = LTB(LSB(X)). Thus the second

sequence becomes

0 X T (S(X)) D2T (DS(X)) 0.
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However, by Lemma 5.1.5 (i) we have the short exact sequence

0 X T (S(X)) R1T (Y ) 0

and so we must have R1T (Y ) ∼= R2T (DS(X)) since both morphisms X → T (S(X)) are the

same. Therefore as X ′ B
′
 
S
Y we also have R1T (Y ) ∼= R2T (DS(X ′)). So R2T (DS(X)) ∼=

R2T (DS(X ′)). Next, by Lemma 5.1.5 (ii) we have that RiT (S(X)) ∼= Ri+1T (Y ) ∼= RiT (S(X ′))

for i > 0. By the proof of Proposition 5.1.11 (i) we have that Ri+2T (DS(X)) ∼= RiT (S(X)) for

i > 0. Putting these together give Ri+2T (DS(X)) ∼= Ri+2T (DS(X ′)) for i > 0 and thus we have

that RiT (DS(X)) ∼= RiT (DS(X)) for i > 0.

To show that RiS(X) ∼= RiS(X ′) for i > 0. By reversing the roles of X and Y in the above

argument we have R1S(X) ∼= R2S(DT (Y )) and thus R1S(X) ∼= R1S(X ′). Lastly, by Lemma

5.1.5 (iii) we have Ri+1S(X) ∼= RiS(T (Y )) ∼= Ri+1S(X ′) for i > 0. So RiS(X) ∼= RiS(X ′) for

i > 0.

�

The same holds true for Y ∈ Y , but it isn’t necessary to state this result as it only concerns even

linkage classes. The analogous result for right exact linkage functors is as follows.

Corollary 5.1.19. Let ((X ,Y),B, (S, T ))R) be perfect and suppose that X ∈ X is stable. If

X
S
 
B
Y and X ′ S 

B′
Y then LiT (DS(X)) ∼= LiT (DS(X ′)) and LiS(X) ∼= LiS(X ′) for i > 0.

Proof : Analogous to Theorem 5.1.18 using Lemma 5.1.6 and 5.1.13.

�
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From now on we will use the notation [Z]e and [Z]o for the even and odd linkage class of an object

Z.

Corollary 5.1.20. Let ((X ,Y),B, (S, T ))L) be perfect and suppose that X ∈ X is stable. If

|[X]e| > 0, then there is an object Xe for which

0 X ′ T (S(X ′)) Xe 0

is exact for any X ′ ∈ [X]e. There is a corresponding statement for each class [Y ]e, [X]o, and [Y ]o

for Y ∈ Y .

Corollary 5.1.21. Let ((X ,Y),B, (S, T ))R) be perfect and suppose that X is stable. If |[X]e| > 0,

then there is an object Xe for which

0 Xe T (S(X ′)) X ′ 0

is exact for any X ′ ∈ [X]e. There is a corresponding statement for each class [Y ]e, [X]o, [Y ]o for

Y ∈ Y .

Therefore we have come across a way to compare the even linkage class of different objects. These

special objects Xe and Xe exist for any object whose even linkage class is empty. In fact, these

exist for any object whose entire linkage class is empty (as they are then evenly linked to them-

selves). So given two objects X and X ′ in X whose linkage classes are nonempty (similar for Y

and Y ′ in Y) we can compare Xe and X ′e. If Xe 6= X ′e then X and X ′ are not evenly linked.
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5.2 Covariant Linkage Functors

We now present the analogous definitions and results when our functors are covariant. One has to

be more careful in this situation in order to define linkage in a way that makes sense. In this case

we must have one functor be left exact and the other right exact so that we end up with a theory

that produces the results we desire. Many of the results are extremely similar in presentation and

proof, so we may leave some proofs out unless they illuminate some other proof technique or are

altogether different.

Definition 5.2.1. SupposeX and Y are homological categories where S : X → Y and T : Y → X

are additive covariant functors. Suppose that S is right exact (RE) and T is left exact (LE). We say

S and T are linkage functors, and (S, T ) form a linkage functor pair for X and Y if there exists

a category B with a pair of full and faithful functors FX : B → X and FY : B → Y such that the

following holds:

(i) For B ∈ B there exists functors XX : X|FX (B) → Y|FY (B) and YB : Y|FY (B) → X|FX (B) such

that XB ◦ FX = FY and YB ◦ FY = FX . Moreover, XB and YB are such that S|FX (B) = XB

and T |FY (B) = YB.

(ii) For each B ∈ B, LiS(FX (B)) = 0 and RiT (FY(B)) = 0 for i > 0.

In this case we say that B is a Fossum category, both FX (B) and FY(B) are linking classes in X

and Y , and ((X ,Y),B, (S, T )) is a category pair with linkage.

Just as in the contravariant case, the linkage is determined by the functors S and T . Further still,

since we have already set which functors are left and right exact we have less cases to deal with in

the covariant situation.
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Let ((X ,Y),B, (S, T )) be a category pair with linkage. We can define LBS (X) and LGT (Y ) in

a similar manner to the contravariant case. Suppose X ∈ Pres(B), i.e. there is a short exact

sequence

0 K B X 0α

in X where B ∈ B. Using S we can define LBS (X) = ker(S(α) ◦ XB)). If Y ∈ Copres(B) then

we have a short exact sequence

0 Y B Q 0α

in Y where B ∈ B. Using T we can define LTB(Y ) = coker(YB ◦ T (α)).

Definition 5.2.2. Let ((X ,Y),B, (S, T )) be a category pair with linkage. Given two objects X ∈

Pres(B) and Y ∈ Copres(B) we say that X is directly S-linked to Y (Y is directly T -linked to X)

by B ∈ B if LBS (X) ∼= Y and LTB(Y ) ∼= X and we use the notation X S
 
B
Y (Y B

 
T
X). Moreover,

we say that X is linked to W if there is a chain of links starting at X which ends in W .

Just as in the contravariant case we can consider the linkage class, even linkage class, and odd

linkage class of an object.

Proposition 5.2.3. Every object in B is in the same linkage class.

Just as before, every pair of objects in B are directly linked as any object in B is in both Pres(B)

and Copres(B) by the appropriate sequence as was used in the proof of Proposition 5.1.4. Next is

the crucial lemma is connecting the homological properties of linked objects.

Lemma 5.2.4. Let ((X ,Y),B, (S, T )) be a category pair with linkage and suppose X S
 
B
Y . Then

the following holds:
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(i) The two sequences

0 X T (S(X)) R1T (Y ) 0

0 L1S(X) S(T (Y )) Y 0

are exact.

(ii) RiT (S(X)) ∼= Ri+1T (Y ) for i > 0

(ii) LiS(T (Y )) ∼= Li+1S(X) for i > 0.

Proof : As X S
 
B
Y it is assumed that X ∈ Pres(B) and a sequence

0→ K → B → X → 0

exists. Applying S we get the short exact sequence

0→ Y → B → S(X)→ 0.

as LBS (X) = Y . This gives us the first sequence in (i) and (ii) by applying T to this short exact

sequence. Similarly as Y B
 
T
X we have Y ∈ Copres(B) and have the short exact sequence

0→ Y → B → Q→ 0.

Applying T we get the short exact sequence

0→ T (Y )→ B → X → 0
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as LTB(Y ) = X . This gives us the second sequence in (i) and (iii) after applying S to this short

exact sequence.

�

In a similar fashion to the contravariant case we define S-perfect and T -perfect objects in exactly

the same manner. We will continue to use Per(S) and Per(T ) to denote the S-perfect and T -perfect

objects in X and Y , respectively.

Lemma 5.2.5. Let ((X ,Y),B, (S, T )) be a category pair with linkage. Suppose X is S-perfect.

Then

(i) S(X) ∈ Per(T )

(ii) If X is directly S-linked to Y by B, Y is T -perfect.

Proof : Similar to the proof of Lemma 5.1.8 using Lemma 5.2.4.

�

Also the same holds true for Y T -perfect with S and T switched, we have the following

Corollary 5.2.6. Let ((X ,Y),B, (S, T )) be a category pair with linkage. Suppose that X is S-

perfect. Then every object in [X]e is S-perfect and every object in [X]o is T -perfect.

Definition 5.2.7. Let ((X ,Y),B, (S, T )) be a category pair with linkage. We say that

((X ,Y),B, (S, T )) is S-perfect (T-perfect) if X = Pres(Per(S)) (Y = Copres(Per(T ))) and given

a morphism X
α→ X ′ in X (Y

β→ Y ′ in Y), there exists morphisms δSX (X) : X → T (S(X)) and

δSX (X ′) : X ′ → T (S(X ′)) (δYT (Y ) : S(T (Y )) → Y and δYT (Y ′) : S(T (Y ′)) → Y ′) such that the
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following square commutes:

X X ′

T (S(X)) T (S(X ′))

α

δSX (X) δSX (X
′)

T (S(α))


S(T (Y )) S(T (Y ′))

Y Y ′

S(Y (β))

δYT (Y ) δYT (Y ′)

β


That is, δSX (−) (δYT (−)) is a natural transformation between the identity functor and T (S(−))

(S(T (−))).

Once again, we say that ((X ,Y),B, (S, T )) is perfect if it is both S-perfect and T -perfect. Now

suppose that ((X ,Y),B, (S, T )) is perfect. As X = Pres(Per(S)), given any object X we can take

an S-perfect presentation

P1 → P0 → X → 0

where P0, P1 ∈ Per(S). If we apply S to this we get

0→ DS(X)→ S(P1)→ S(P0)→ X → 0

where DS(X) = ker(S(P1)→ S(P0)) is the S-dual of X . Similarly, Y = Copres(Per(T )), given

any object Y we can take a T -perfect copresentation

0→ Y → I0 → I1

where I0, I1 ∈ Per(T ). If we apply T to this we get

0→ T (Y )→ T (I0)→ T (I1)→ DT (Y )→ 0

where DT (Y ) = coker(T (I0)→ T (I1)) is the T -dual of Y .
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Proposition 5.2.8. Let ((X ,Y),B, (S, T )) be a category pair with linkage. Then

(i) If ((X ,Y),B, (S, T )) is S-perfect, then for any X ∈ X we have an exact complex

0 R1T (DS(X)) X T (S(X)) R2T (DS(X)) 0
δSX (X)

(ii) If ((X ,Y),B, (S, T )) is T -perfect, then for any Y ∈ Y we have an exact complex

0 L2S(DT (Y )) S(T (Y )) Y L1S(DT (Y )) 0
δYT (Y )

Proof :

(i) Similar proof to Proposition 5.1.11 (i).

(ii) Similar proof to Proposition 5.1.13 (ii).

�

Corollary 5.2.9. Let ((X ,Y),B, (S, T )) be perfect. Then W is S-perfect (T -perfect) if and only if

LiS(W ) = 0 = RiT (DS(W )) for i > 0 (RiT (W ) = 0 = LiS(DT (W )) for i > 0).

Once again, we say that W is stable if it has no summands in B and we get a result concerning

stable objects as follows.

Proposition 5.2.10. Let ((X ,Y),B, (S, T )) be perfect.

(i) If X ∈ Pres(B) is stable, then there is a short exact sequence

0 R1T (DS(X)) X LTB(LBS (X)) 0
δSX (X)
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(ii) If Y ∈ Copres(B) is stable, then there is a short exact sequence

0 LBS (LTB(Y )) Y L1S(DT (Y )) 0
δYT (Y )

Proof : Similar to Proposition 5.1.15

�

Now in the same way as before, each nonempty even linkage class has a stable representative.

Proposition 5.2.11. Let ((X ,Y),B, (S, T )) be perfect with X ∼= X ′ ⊕ B not stable, i.e. B ∈ B.

Then if [X ′] 6= ∅, X ′ ⊕B is evenly linked to X ′.

Proof : Similar to the proof of Proposition 5.1.16

�

We also get a theorem connecting the homological properties of the even linkage class of a stable

object in X or Y .

Theorem 5.2.12. Let ((X ,Y),B, (S, T )) be perfect and suppose that X is stable. If X B
 
S
Y and

X ′
B′
 
S
Y then RiT (DS(X)) ∼= RiT (DS(X ′)) and LiS(X) ∼= LiS(X ′) for i > 0.

Proof : Similar to the proof of Theorem 5.1.18 using Lemma 5.2.4 and Propositions 5.2.8 and

5.2.10.

�

Corollary 5.2.13. Let ((X ,Y),B, (S, T )) be perfect and suppose that Y is stable. If Y T
 
B
X and

Y ′
T
 
B′
X then LiS(DT (Y )) ∼= LiS(DT (Y ′)) and RiT (Y ) ∼= RiT (Y ′) for i > 0.
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Proof : Analogous to Theorem 5.2.12.

�

Corollary 5.2.14. Let ((X ,Y),B, (S, T )) be perfect and suppose that X is stable.

(i) If |[X]Se | > 0, then there is an object XF
e for which

0 X ′ T (S(X ′)) XF
e 0

is exact for any X ′ ∈ [X]Se .

(ii) If |[Y ]Te | > 0, then there is an object Y T
e for which

0 Y T
e S(T (Y ′)) Y ′ 0

is exact for any Y ′ ∈ [Y ]Te .

5.3 Associated Homological Dimensions

In this section we will begin the study of the homological dimensions associated to perfect cate-

gories with linkage. As each object in the categories can be presented or copresented by perfect

objects we can associate to each functor a dimension. This will mirror the homological aspects

of Gorenstein dimension and other homological dimensions in the literature including Gorenstein

injective, projective, and flat dimension (see [15], [20], and [16]) as well as Noetherian dimension

and width (see [56], [27], and [17]).

From now on we will use the following notation to differentiate between types of functor pairs:

(i) (S, T )L for left exact contravariant functors
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(ii) (S, T )R for right exact contravariant functors

(iii) (S, T ) when S is right exact covariant and T is left exact covariant.

We will present the results in the order of categories stated above.

5.3.1 Left Exact Contravariant Functors

Definition 5.3.1. Let ((X ,Y),B, (S, T ))L) be perfect. As X = Pres(Per(S)) we can iteratively

construct an exact complex

· · · → Pi → Pi−1 → · · · → P1 → P0 → X → 0

where Pj ∈ Per(S) for j ≥ 0 for any object X . We call such a complex an S-resolution of X and

let S(X) be the collection of all S-resolutions of X . Then we define the S-dimension of X as

S − dimX (X) = inf{supS : S ∈ S(X)},

i.e. the length of a shortest S-resolution of X .

Similarly, asY = Pres(Per(T )) we can construct T -resolutions of Y and let T (Y ) be the collection

of such resolutions. We also define the T-dimension of Y as

T − dimY(Y ) = inf{sup T : T ∈ T (Y )},

i.e. the length of a shortest T -resolution of Y .

Proposition 5.3.2. Let ((X ,Y),B, (S, T ))L) be perfect.
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(i) Suppose that 0→ X ′ → X → X ′′ → 0 in X is exact. Then

if X ′′ ∈ Per(S), then X ∈ Per(S)⇔ X ′ ∈ Per(S).

if X ∈ Per(S), then RiS(X ′) ∼= Ri+1S(X ′′) for i > 0.

if X ∼= X ′ ⊕X ′′, then X ∈ Per(S)⇔ X ′, X ′′ ∈ Per(S).

(ii) Suppose that 0→ Y ′ → Y → Y ′′ → 0 in Y is exact. Then

if Y ′′ ∈ Per(T ), then Y ∈ Per(T )⇔ Y ′ ∈ Per(T ).

if Y ∈ Per(T ), then RiT (Y ′) ∼= Ri+1T (Y ′′) for i > 0.

if Y ∼= Y ′ ⊕ Y ′′, then Y ∈ Per(T )⇔ Y ′, Y ′′ ∈ Per(T ).

Proof : Clear by the additivity of S and T and the long exact sequence in RiS(−) and RiT (−).

�

The following result connects together the homological properties of an object X with the homol-

ogy of a resolution of X after applying S or T .

Proposition 5.3.3. Let ((X ,Y),B, (S, T ))L) be perfect. Suppose that

P : · · · Pi Pi−1 · · · P1 P0 X 0

is an S-resolution (T -resolution) of X . Then H i(S(P)) = RiS(X) (H i(T (P)) = RiT (X)) for

i > 0.

Proof : We will show this is true for an S-resolution. The proof for a T -resolution is exactly the

same with S and T interchanged.
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We have the following diagram

0 0 0 0

Kn−2 K0

· · · Pn−1 · · · P1 P0 X 0

Kn−1 K1

0 0 0 0

which gives the following exact sequences

0 S(X) S(P0) S(K0) R1S(A) 0

0 S(Ki−1) S(Pi) S(Ki) R1S(Ki−1) 0, i > 0

and shows that H1(S(P)) = R1S(X), and H i(S(P)) = R1S(Ki−2) for i > 1. Now as

R1S(Ki−2) ∼= RiS(X) by Proposition 5.3.2 (ii) we are done.

�

We will now endeavor to pinpoint what the S-dimension (or T -dimension) of an object X is when

it is finite. First we will show the following result which will lead to the characterization. Notice

the similarities with Proposition 4.1.8.

Lemma 5.3.4. Let ((X ,Y),B, (S, T ))L) be perfect and X an object of X (Y an object of Y).

If S−dimX (X) < ∞ (T−dimY(Y ) < ∞) and RiS(X) = 0 (RiT (Y ) = 0) for i > 0, then

X ∈ Per(S) (Y ∈ Per(T )).

Proof : Once again we will show this holds true for S-dimension. The proof for T -dimension will

be exactly the same except with S and T interchanged.
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We prove by induction on S−dimX (X). If S−dimX (X) = 1, then an S-resolution

0→ P1 → P0 → X → 0

gives

0→ S(X)→ S(P0)→ S(P1)→ 0.

as R1S(X) = 0. Therefore S(X) ∈ Per(T ) by Proposition 5.3.2 (i) as S(P0), S(P1) ∈ Per(T ) by

Lemma 5.1.8 (i). So T (S(X)) ∈ Per(S) by Lemma 5.1.8 (i). We get that X ∼= T (S(X)) by using

the sequence

0→ T (S(P1))→ T (S(P0))→ T (S(X))→ 0

and the Snake Lemma. Thus X ∈ Per(S).

Now suppose that S−dimX (X) = p > 1 and take a shortest S-resolution of X

0→ Pp → · · · → P1 → P0 → X → 0.

Let K = ker(P0 → X). Then S−dimX (K) ≤ p− 1 and RiS(K) ∼= Ri+1S(X) = 0 for i > 0. So

by the induction hypothesis K ∈ Per(S). Then by the short exact sequence

0→ K → P0 → X → 0

we see that S−dimX (X) ≤ 1. So again by the induction hypothesis X ∈ Per(S).

�

We end this section by showing exactly what each dimension is when it is finite. Not unexpect-

edly it turns out to be the largest index of a non vanishing derived functor much like Gorenstein
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dimension or Gg
C-dimension.

Theorem 5.3.5. Let ((X ,Y),B, (S, T ))L) be perfect.

(i) Let X ∈ X . Then

S − dimX (X) ≤ n⇔ S − dimX (X) <∞ and n ≥ sup{i : RiS(X) 6= 0}.

That is, if S−dimX (X) <∞ then S−dimX (X) = sup{i : RiS(X) 6= 0}.

(ii) Let Y ∈ Y . Then

T − dimY(Y ) ≤ n⇔ T − dimY(Y ) <∞ and n ≥ sup{i : RiT (Y ) 6= 0}.

That is, if T−dimY(Y ) <∞ then T−dimY(Y ) = sup{i : RiT (Y ) 6= 0}.

Proof :

(i) Suppose S−dimX (X) ≤ n. Take a shortest S-resolution of X

0→ Pn → Pn−1 → · · · → P1 → P0 → X → 0.

Then RiS(Pn) ∼= Ri+nS(X) = 0 for i > 0 as Pn ∈ Per(S). So n ≥ sup{i : RiS(X) 6= 0}.

Suppose now that S−dimX (X) < ∞ and n ≥ sup{i : RiS(X) 6= 0}. If S−dimX (X) =

p ≤ n, we are done, so suppose p > n and take a shortest S-resolution

0→ Pp → · · · → Pn → Pn−1 → · · · → P0 → X → 0.
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Let Kn = ker(Pn−1 → Pn−2). Then RiS(Kn) ∼= Ri+nS(X) = 0 for i > 0 as n ≥ sup{i :

RiS(X) 6= 0}. By Lemma 5.3.4 Kn ∈ Per(S) which will make

0→ Kn → Pn−1 → · · · → P0 → X → 0

a shorter right S-resolution. Thus p cannot be greater than n and so S−dimX (X) ≤ n.

(ii) The same proof as (i) except with S and T interchanged.

�

5.3.2 Right Exact Contravariant Functors

Now we will build up the same theory for right exact contravariant functors. We can define a

resolution and dimension in an analogous fashion.

Definition 5.3.6. Let ((X ,Y),B, (S, T ))R) be perfect. As X = Copres(Per(S))

(Y = Copres(Per(T ))) we can construct an exact complex

0→ X → I0 → I1 → · · · → Ii−1 → Ii → · · ·

where Ij ∈ Per(S) (Per(T )) for j ≥ 0 for any objectX . Such a complex is called an S-coresolution

(T -coresolution) of X and we let S(X) (T (X)) be the collection of such coresolutions. So we

define the S-dimension (T-dimension) of X as

S − dimX (X) = sup{inf S : S ∈ S(X)} (T − dimY(Y ) = sup{inf T : T ∈ T (Y )}),

i.e. the length of a shortest S-coresolution (T -coresolution) of X .
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We then get analogous results which we state without proof here.

Proposition 5.3.7. Let ((X ,Y),B, (S, T ))R) be perfect.

(i) Suppose that 0→ X ′ → X → X ′′ → 0 in X is exact. Then

if X ′ ∈ Per(S), then X ∈ Per(S)⇔ X ′′ ∈ Per(S).

if X ∈ Per(S), then LiS(X ′′) ∼= Li+1S(X ′) for i > 0.

if X ∼= X ′ ⊕X ′′, then X ∈ Per(S)⇔ X ′, X ′′ ∈ Per(S).

(ii) Suppose that 0→ Y ′ → Y → Y ′′ → 0 in Y is exact. Then

if Y ′ ∈ Per(T ), then Y ∈ Per(T )⇔ Y ′′ ∈ Per(T ).

if Y ∈ Per(T ), then LiT (Y ′′) ∼= Li+1T (Y ′) for i > 0.

if Y ∼= Y ′ ⊕ Y ′′, then Y ∈ Per(T )⇔ Y ′, Y ′′ ∈ Per(T ).

Proposition 5.3.8. Let ((X ,Y),B, (S, T ))R) be perfect. Suppose that

I : 0→ X → I0 → I1 → · · · → Ii−1 → Ii → · · ·

is an S-coresolution (T -coresolution) of X . Then Hi(S(I)) = LiS(X) (Hi(T (I)) = LiT (X))

for i > 0.

Lemma 5.3.9. Let ((X ,Y),B, (S, T ))R) be perfect and X an object of X (Y an object of Y).

If S−dimX (X) < ∞ (T−dimY(Y ) < ∞ and LiS(X) = 0 (LiT (Y ) = 0) for i > 0, then

X ∈ Per(S) (Y ∈ Per(T )).

Theorem 5.3.10. Let ((X ,Y),B, (S, T )R) be perfect.

(i) Suppose that X ∈ X . Then

S-dimX (X) ≤ n⇔ S-dimX (X) <∞ and n ≥ sup{i : LiS(X) 6= 0}
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(ii) Suppose that Y ∈ Y . Then

T-dimY(Y ) ≤ n⇔ T-dimY(Y ) <∞ and n ≥ sup{i : LiT (Y ) 6= 0}

5.3.3 Covariant Functors

Lastly, for covariant functors we must switch between a resolution and a coresolution when ap-

plying each functor. Since we have already built up the theory for resolutions and coresolution

separately this does not pose a problem here.

Definition 5.3.11. Let ((X ,Y),B, (S, T )) be perfect. As X = Pres(Per(S)) we can construct an

exact complex

· · · → Pi → Pi−1 → · · · → P1 → P0 → X → 0

where Pj ∈ Per(S) for j ≥ 0 for any object X ∈ X . We call such a complex an S-resolution of X

and let S(X) be the collection of all S-resolutions of X . Then we define the S-dimension of X as

S-dimX (X) = inf{supS : S ∈ S(X)},

i.e. the length of a shortest S-resolution of X .

Similarly, as Y = Copres(Per(T )) we can construct T -coresolutions of Y ∈ Y

0→ Y → I0 → I1 → · · · → Ii−1 → Ii → · · ·
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and let T (Y ) be the collection of such coresolutions. We also define the T-dimension of Y as

T-dimY(Y ) = sup{inf T : T ∈ T (Y )},

i.e the length of a shortest T -coresolution of Y .

Proposition 5.3.12. Let ((X ,Y),B, (S, T )) be perfect

(i) Suppose that 0→ X ′ → X → X ′′ → 0 in X is exact. Then

(a) if X ′ ∈ Per(S), then X ∈ Per(S)⇔ X ′′ ∈ Per(S).

(b) if X ∈ Per(S), then LiS(X ′′) ∼= Li+1S(X ′) for i > 0.

(c) if X ∼= X ′ ⊕X ′′, then X ∈ Per(S)⇔ X ′, X ′′ ∈ Per(S).

(ii) Suppose that 0→ Y ′ → Y → Y ′′ → 0 in Y is exact. Then

(a) if Y ′′ ∈ Per(T ), then Y ∈ Per(T )⇔ Y ′ ∈ Per(T ).

(b) if Y ∈ Per(T ), then RiT (Y ′) ∼= Ri+1T (Y ′′) for i > 0.

(c) if Y ∼= Y ′ ⊕ Y ′′, then Y ∈ Per(T )⇔ Y ′, Y ′′ ∈ Per(T ).

Proposition 5.3.13. Let ((X ,Y),B, (S, T )) be perfect where X ∈ X and Y ∈ Y . If P ∈ S(X)

then H−i(S(P)) = LiS(X), and if I ∈ T (Y ) then H i(T (I)) = RiT (Y ).

Lemma 5.3.14. Let ((X ,Y),B, (S, T )) be perfect and X and object of X (Y an object of Y). If

S-dimX (X) <∞ (T -dimY(Y ) <∞) and LiS(X) = 0 (RiT (Y ) = 0) for i > 0, then X ∈ Per(S)

(Y ∈ Per(T )).

Theorem 5.3.15. Let ((X ,Y),B, (S, T )) be perfect.

(i) Let X ∈ X . Then

S − dimX (X) ≤ n⇔ S − dimX (X) <∞ and n ≥ sup{i : LiS(X) 6= 0}.
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That is, if S−dimX (X) <∞ then S−dimX (X) = sup{i : LiS(X) 6= 0}.

(ii) Let Y ∈ Y . Then

T − dimY(Y ) ≤ n⇔ T − dimY(Y ) <∞ and n ≥ sup{i : RiT (Y ) 6= 0}.

That is, if T−dimY(Y ) <∞ then T−dimY(Y ) = sup{i : RiT (Y ) 6= 0}.

5.3.4 Perfect Functors

We now explore the connection between the associated homological dimensions for S and T and

linkage classes of objects in a perfect category pair with linkage. First we make a definition spe-

cializing the type of functor we would like to consider.

Definition 5.3.16. Suppose that ((X ,Y),B,−) is perfect where − is one of (S, T ), (S, T )L, or

(S, T )R.

(i) Suppose we are in the case (S, T )L, then we say that S (T ) is perfect if we can complete a

diagram
0 0

0 W ′ W W ′′ 0

M ′ M ′′
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in X (Y) with M ′,M ′′ ∈ Per(S) (Per(T )) to a diagram

0 0 0

0 W ′ W W ′′ 0

0 M ′ M M ′′ 0

0 K ′ K K ′′ 0

0 0 0

where M ∈ Per(S) (Per(T )).

(ii) Suppose we are in the case (S, T )R, then we say that S (T ) is perfect if we can complete a

diagram
M ′ M ′′

0 W ′ W W ′′ 0

0 0
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in X (Y) with M ′,M ′′ ∈ Per(S) (Per(T )) to a diagram

0 0 0

0 K ′ K K ′′ 0

0 M ′ M M ′′ 0

0 W ′ W W ′′ 0

0 0 0

where M ∈ Per(S) (Per(T )).

(iii) Suppose we are in the case (S, T ), then we say that S is perfect if it satisfies the conditions

in (i) and T is perfect if it satisfies the conditions in (ii).

We make this definition in order to be able to compare S and T dimension along a short exact

sequence. This will allow us to compare S and T dimension among the links of an object.

Proposition 5.3.17. Suppose that ((X ,Y),B, (S, T ))L) is perfect and both S and T are perfect.

(i) If 0→ X ′ → X → X ′′ → 0 is short exact in X , then the following holds:

(a) S-dimX (X ′′) ≤ n⇒ S-dimX (X ′) ≤ n⇔ S-dimX (X) ≤ n

(b) If S-dimX (X ′) > S-dimX (X ′′) or S-dimX (X) > S-dimX (X ′′), then S-dimX (X ′) =

S-dimX (X)

(c) If S-dimX (X ′′) > 0 and X ∈ Per(S), then S-dimX (X ′) = S-dimX (X ′′)− 1.

Moreover, if any two have finite S-dimension then so does the other.
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(ii) If 0→ Y ′ → Y → Y ′′ → 0 is short exact in Y , then the following holds:

(a) T -dimY(Y ′′) ≤ n⇒ T -dimY(Y ′) ≤ n⇔ T -dimY(Y ) ≤ n

(b) If T -dimY(Y ′) > T -dimY(Y ′′) or T -dimY(Y ) > T -dimY(Y ′′), then T -dimY(Y ′) =

T -dimY(Y )

(c) If T -dimY(Y ′′) > 0 and Y ∈ Per(T ), then T -dimY(Y ′) = T -dimY(Y ′′)− 1.

Moreover, if any two have finite T -dimension then so does the other.

Proof :

(i) (a) Clearly true if S-dimX (X ′′) ≤ 0 by Proposition 5.3.2 (i). So suppose that S-

dimX (X ′′) ≤ n. Using S-resolutions of X ′′ and X ′ we can get a commutative diagram

0 0 0

0 X ′ X X ′′ 0

0 M ′
0 M0 M ′′

0 0

...
...

...

0 M ′
n−1 Mn−1 M ′′

n−1 0

0 K ′n Kn K ′′n 0

0 0 0
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as S is perfect. Then as K ′′n ∈ Per(S) we have that K ′n ∈ Per(S) ⇔ Kn ∈ Per(S). The

inequalities then follow.

(b) Clear by the inequalities in part (a).

(c) Follows by Proposition 5.3.2 (ii).

It then clearly follows that if any two have finite dimension then so does the third.

(ii) (a), (b), and (c) are proved in the same way as in (i) with S and T switched.

�

Proposition 5.3.18. Suppose that ((X ,Y),B, (S, T ))R) is perfect and both S and T are perfect.

(i) If 0→ X ′ → X → X ′′ → 0 is short exact in X , then the following holds:

(a) S-dimX (X ′) ≤ n⇒ S-dimX (X ′′) ≤ n⇔ S-dimX (X) ≤ n

(b) If S-dimX (X ′′) > S-dimX (X ′) or S-dimX (X) > S-dimX (X ′), then S-dimX (X ′′) =

S-dimX (X)

(c) If S-dimX (X ′) > 0 and X ∈ Per(S), then S-dimX (X ′′) = S-dimX (X ′)− 1.

Moreover, if any two have finite S-dimension then so does the other.

(ii) If 0→ Y ′ → Y → Y ′′ → 0 is short exact in Y , then the following holds:

(a) T -dimY(Y ′) ≤ n⇒ T -dimY(Y ′′) ≤ n⇔ T -dimY(Y ) ≤ n

(b) If T -dimY(Y ′′) > T -dimY(Y ′) or T -dimY(Y ) > T -dimY(Y ′), then T -dimY(Y ′′) =

T -dimY(Y )
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(c) If T -dimY(Y ′) > 0 and Y ∈ Per(T ), then T -dimY(Y ′′) = T -dimY(Y ′)− 1.

Moreover, if any two have finite T -dimension then so does the other.

Proof : Exactly the same as the proof of Proposition 5.3.17 except using 5.3.7 and with the arrows

reversed.

�

Corollary 5.3.19. Suppose that ((X ,Y),B, (S, T ))) is perfect and both S and T are perfect.

(i) If 0→ X ′ → X → X ′′ → 0 is short exact in X , then the following holds:

(a) S-dimX (X ′′) ≤ n⇒ S-dimX (X ′) ≤ n⇔ S-dimX (X) ≤ n

(b) If S-dimX (X ′) > S-dimX (X ′′) or S-dimX (X) > S-dimX (X ′′), then S-dimX (X ′) =

S-dimX (X)

(c) If S-dimX (X ′′) > 0 and X ∈ Per(S), then S-dimX (X ′) = S-dimX (X ′′)− 1.

Moreover, if any two have finite S-dimension then so does the other.

(ii) If 0→ Y ′ → Y → Y ′′ → 0 is short exact in Y , then the following holds:

(a) T -dimY(Y ′) ≤ n⇒ T -dimY(Y ′′) ≤ n⇔ T -dimY(Y ) ≤ n

(b) If T -dimY(Y ′′) > T -dimY(Y ′) or T -dimY(Y ) > T -dimY(Y ′), then T -dimY(Y ′′) =

T -dimY(Y )

(c) If T -dimY(Y ′) > 0 and Y ∈ Per(T ), then T -dimY(Y ′′) = T -dimY(Y ′)− 1.

Moreover, if any two have finite T -dimension then so does the other.
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We will call the collection of objects with finite S-dimension S(X ) and the objects with finite

T -dimension T (Y). Then if S and T are perfect S(X ) and T (Y) form thick subcategories of X

and Y , respectively.

If we are in a perfect category pair with linkage, then from the previous results we can show that

S and T dimension are preserved through even linkage when S and T are perfect.

Proposition 5.3.20. Suppose that X is directly linked to Y by B and X ′ is directly linked to Y by

B′ where S-dimX (X) = n. Then S-dimX (X ′) = n.

Proof : Suppose we are in the case (S, T )L. Then by Proposition 5.3.17 and the sequences

0 T (Y ) B X 0

0 T (Y ) B′ X ′ 0

we have that S-dimX (T (Y )) = n − 1 from the first sequence and then S-dimX (X ′) = n by the

second.

Suppose we are in the case (S, T )R. Then by Proposition 5.3.18 and the sequences

0 X B T (Y ) 0

0 X ′ B′ T (Y ) 0

we have that S-dimX (T (Y )) = n − 1 from the first sequence and then S-dimX (X ′) = n by the

second.
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It is then clear by these two arguments that if we are in the case (S, T ) we are done.

�

Corollary 5.3.21. Let ((X ,Y),B,−) be perfect where − is one of (S, T ), (S, T )L, or (S, T )R.

Objects which are evenly linked have the same S or T -dimension.

This result is what generalizes the results which discuss the preservation of projective dimension,

Gorenstein dimension, and C-Gorenstein dimension through linkage. Those are all special cases

of this result and we will show other dimensions are preserved through linkage in the next chapter.
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CHAPTER 6: APPLICATIONS OF LINKAGE

In this chapter we have combined together a collection of applications of the linkage theory pre-

sented in the previous chapters. We give the classical examples of ideals and module linkage in

the category of R-modules over a ring R, but we also present linkage using different functors in

R-Mod which will extend the theory of certain homological dimension including the C-Gorenstein

dimension defined earlier and Gorenstein injective and flat dimensions.

6.1 R-Mod and C-quasi-Gorenstein R-modules

Our first example will be extending the classical ideal and module linkage theory using our inter-

mediate C-Gorenstein dimensions. This will help us extend some results aboue module linkage

that are found in [49] and [18]. Throughtout this section R will be a semiperfect ring. Semiperfect

rings are products of commutative local Noetherian rings, and so we do not lose too much gener-

ality (with regards to the rest of the thesis) in this setting. One of the reasons for choosing such a

setting is that in a semiperfect ring every finitely generated module has a projective cover, (see [21]

Ch. 18). In fact, we will only need this hypothesis for Proposition ?? and the results following it.

We first will present how module linkage is defined according to Nagel. Given a semidualizing R-

module C, an R-module Q is said to be C-quasi-Gorenstein if Q ∈ GgradeR(Q)
C and there is some

isomorphism α : Q → ExtgradeR(Q)
R (Q,C). C-Quasi-Gorenstein modules, Q, have nice properties

outlined in Chapter 3 and in [54], [12], and [53]. Given a C-quasi-Gorenstein module Q of grade

g we will denote by Epi(Q) the set of all R-module homomorphisms ϕ : Q→M where im ϕ has
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the same grade as Q. Given such a homomorphism ϕ we have a short exact sequence

0 kerϕ Q im ϕ 0

which induces a long exact sequence

0 ExtgR(im ϕ,C) ExtgR(Q,C) ExtgR(kerϕ,C) Extg+1
R (im ϕ,C) · · ·ψ

If α : C → ExtgR(Q,C) is an isomorphism, then we can construct a short exact sequence from the

long sequence above as

0 ExtgR(im ϕ,C) Q im LQ(ϕ) 0
LQ(ϕ)

where LQ(ϕ) = ψ ◦ α.

Definition 6.1.1. We say that M and N are directly linked by the C-quasi-Gorenstein module Q

if there are ϕ, ψ ∈ Epi(Q) such that

(i) M = im ϕ, N = im ψ

(ii) M ∼= im LQ(ψ), N ∼= im LQ(ϕ)

It may not immediately be apparent that this is a generalization of the module linkage defined

in [49], but if we restrict which types of modules we are allowed to be linked by then it becomes

clear, see [53, Remark 3.20].

Now it is easy to ask when we would run across rings with semidualizing modules C such that

there are nontrivial C-quasi-Gorenstein modules. Then the results that follow would be useful as
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they would give information about such modules that was not previously apparent.

The following construction allows one to build up a family of such rings.

Example 6.1.2. Let k be a field and consider the ring R = k[X, Y ]/(X, Y )2. Then R is a local

Cohen-Macaulay ring which is not Gorenstein. It is clear then that R is a free k-module. R has

two semidualizing modules, R and ωR = Homk(R, k). In fact, ωR is dualizing and ωR 6∼= R.

Clearly, R is an R-quasi-Gorenstein module. It is then straightforward to see that k is a ωR-quasi-

Gorenstein module as

HomR(k, ωR) = HomR(k,Homk(R, k)) ∼= Homk(k ⊗R R, k) ∼= Homk(k, k) ∼= k

Therefore, one has that R is an ωR-quasi-Gorenstein module, as R is a free k-module of rank 3.

Therefore k and R are directly linked by the ωR-quasi-Gorenstein module k ⊕ R. However, k is

not an R-quasi-Gorenstein module and so it is not easy to see if k and R are linked using some

R-quasi-Gorenstein module. Thus, k and R may not be directly linked through some R-quasi-

Gorenstein module, but they are through some ωR-quasi-Gorenstein module. So we can see that

the extension of linkage to semidualizing modules has given new information about linkage classes.

Now, if we take (R,m, k) as above and construct S = R[U, V ]/(U, V )2 (just as R is constructed

above) then S is a local Cohen-Macaulay ring with residue field k. Then S has four distinct

semidualizing modules S, C1 = HomR(S,R), C2 = S ⊗R ωR, and ωS = HomR(S, ωR). In fact,

ωS is dualizing and ωS 6∼= S. Once again, using S-quasi-Gorenstein modules it is not clear if S,
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R, and k are directly linked to each other. However, R is a C1-quasi-Gorenstein module as

HomS(R,C1) = HomS(R,HomR(S,R)) ∼= HomR(R⊗S S,R) ∼= HomR(R,R) ∼= R

and k is a ωS-quasi-Gorenstein module as

HomS(k, ωS) = HomS(k,HomR(S, ωR)) ∼= HomR(k ⊗S S, ωR) ∼= HomR(k, ωR) ∼= k.

Then, as S is a freeR-module (of rank 3) we have that S andR are directly linked by the C1-quasi-

Gorenstein module S ⊕ R. Further, S is a free k-module (of rank 9) and so S and k are directly

linked by the ωS-quasi-Gorenstein module S ⊕ k. As above, R and k are directly linked as well.

One could continue such a construction and obtain a ring with 2n distinct semidualizing modules

for any n. The idea to take away from this example is that using different semidualizing modules

for linkage may allow one to find links between modules that may have not been there before, i.e.

shift around the linkage classes of modules. So in what follows we are not only presenting new

results concering linkage of modules but also presenting it in a way that concerns all such linkage

classes with different semidualizing modules.

We will now show how this is an application of the theory for categorical linkage. Here we set

X = Y = R-Mod and S = T = ExtgR(−, C) for a fixed g. When discussing R-modules we

will assume their grade is g. Then B is the subcategory of R-Mod for with ExtgR(B,C) ∼= B and

ExtiR(B,C) = 0 for i 6= g. These are exactly the C-quasi-Gorenstein R-modules which form

the Fossum category for ExtgR(−, C) and R-Mod. Also, the functors FX and FY are the inclusion

functors of B into R-Mod and XB = YB are the identity functors on B.
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The S and T -perfect objects then become the Gg
C-dimension zero modules over R. Further the

natural map M → ExtgR(ExtgR(M,C), C) for any R-module M shows that R-Mod is a perfect

category using S = T = ExtgR(−, C). Further, ExtgR(−, C) is a perfect functor using ideas and

results from [11]. Therefore we get the following results

Corollary 6.1.3. Suppose that M ∈ GgC . Then M ′ ∈ GgC for any M ′ ∈ [M ].

Proof : See Lemma 5.1.8.

�

Corollary 6.1.4. For any R-module we have an exact sequence

0→ Extg+1
R (Dg

CM,C)→M → ExtgR(ExtgR(M,C), C)→ Extg+2
R (Dg

CM,C)→ 0

Proof : See Proposition 5.1.11.

�

Corollary 6.1.5. Even linkage preserves Gg
C-dimension.

Proof : See Corollary 5.3.21.

�

6.1.1 Horizontal Linkage

We will follow the ideas in [49] to develop some properties of modules in GgC under linkage. We

will now use Q to represent C-quasi-Gorenstein R-modules and LQ(−) = LExtgR(−,C)

B (−) in this

case.
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Definition 6.1.6. Suppose thatM is anR-module of grade g. We say thatM is horizontally-linked

by Q if M ∼= L2
Q(M) := LQ(LQ(M)).

Horizontal linkage is a concept explored by Martsinkovsky and Strooker in [49]. Horizontal link-

age is equivalent to saying that M 
Q
LQ(M). Therefore it is clear that M is horizontally linked

by some Q if and only if |[M ]| 6= 0. Recall by Corollary 5.1.17 that if M is not stable then we

can find a stable representative of M in its linkage class, provided the stable representative has a

nonempty linkage class. This is a generalization of [53, Lemma 3.11]. For this example this states

the following

Corollary 6.1.7. Suppose that M is not stable, i.e. M ∼= M ′⊕Q where Q is C-quasi-Gorenstein.

Then M ′ is evenly linked to M .

Proof : See Corollary 5.1.17 or [53, Lemma 3.11].

�

Now we will combine this with the following statement, which is a special case of Proposition

5.1.15 (i).

Corollary 6.1.8. Suppose that M is a stable R-module. Then im(δgC(M)) ∼= L2
Q(M) and we have

a short exact sequence

0 Extg+1
R (Dg

CM,C) M L2
Q(M) 0.

δgC(M)

Proof : See Proposition 5.1.15 (i).

�
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Proposition 6.1.9. Suppose that M is horizontally linked by Q. Then so is LQ(M).

Proof : Since M ∼= L2
Q(M) we know that L2

Q(LQ(M)) ∼= LQ(L2
Q(M)) ∼= LQ(M).

�

Notice that for a stable R-module horizontal linkage is independent of the C-quasi-Gorenstein R-

module Q. From now on we will say that M is horizontally linked if there is some Q such that

M ∼= L2
Q(M). These results lead to the characterization of horizontally-linked modules

Theorem 6.1.10. A finitely generated R-module M is horizontally-linked if and only if

Extg+1
R (Dg

CM,C) = 0.

Proof : Suppose that M is horizontally linked. If M is stable, then by Proposition 6.1.8

Extg+1
R (Dg

CM,C) = 0. If M is not stable then M is evenly linked to a stable R-module M ′

by Corollary 6.1.7 and so by Theorem 5.1.18 Extg+1
R (Dg

CM,C) ∼= Extg+1
R (Dg

CM
′, C). Now as

|[M ′]| 6= 0 M ′ is horizontally linked by some Q′ and thus Extg+1
R (Dg

CM
′, C) = 0.

If M is stable the converse follows by Corollary 6.1.8. If M is not stable then M ∼= M ′ ⊕ Q′

where Q′ is C-quasi-Gorenstein and therefore |[M ′]| 6= 0 and so by Theorem 5.1.18 we have

that Extg+1
R (Dg

CM
′, C) ∼= Extg+1

R (Dg
CM,C) = 0. So by Proposition 6.1.8 we have that M ′ is

horizontally linked by some C-quasi-Gorenstein R-module Q. Therefore M is horizontally linked

by Q⊕Q′.

�
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6.1.2 Serre-like Conditions

With this result in hand, we now turn to understanding how module linkage and Gg
C-dimension

are related. We will prove Proposition 6.1.12 and Corollary 6.1.13 generalizations of Proposition

2.6 and Corollary 2.8 in [18], respectively. First, recall the Local Duality Theorem [14, Corollary

3.5.9]

Theorem 6.1.11. Let (R,m, k) be a Cohen-Macaulay local ring of dimension d with a canonical

module ωR. Then for all finitely generated R-modules M and all integers i there exists natural

isomorphism

H i
m(M) ∼= HomR(Extd−iR (M,ωR), ER(k)),

where ER(k) is the injective envelope of k.

We begin by relating the local cohomology of M ⊗R ωR in a Cohen-Macaulay local ring to prop-

erties of LQ(M) when M is horizontally linked by Q.

Proposition 6.1.12. Let R be a Cohen-Macaulay local ring of dimension d with canonical module

ωR andM anR-module. Suppose thatM is stable and horizontally linked byQwith gradeR(M) =

g, and that Extg+1
R (Dg

RM,ωR) = 0. Then, for a positive integer n ≥ g, the following statements

are equivalent:

(i) LQ(M) satisfies S̃gn

(ii) H i
m(M ⊗R ωR) = 0 for all i, d− n+ g < i < d

Proof : LQ(M) satisfies S̃gn if and only ifDg
RM satisfies S̃gn−1 because LQ(M) is a first GgR-syzygy

of Dg
RM and Extg+1

R (Dg
RM,ωR) = 0. Thus by Theorem 4.2.5 statement (i) is equivalent to Dg

RM
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being (ωR)gn−g−1-torsionless, i.e.

Extg+iR (Dg
ωR

(Dg
RM), ωR) = 0 for all i, 1 ≤ i ≤ n− g − 1.

However,Dg
ωR

(Dg
RM) ∼= Dg

RD
g
RM⊗RωR, and asM is stableDg

RD
g
RM
∼= M and soDg

RD
g
RM⊗R

ωR ∼= M ⊗R ωR. Hence LQ(M) satisfies S̃gn if and only if Extg+iR (M ⊗R ωR, ωR) = 0 for all

i, 1 ≤ i ≤ n− g − 1, which is equivalent to

H i
m(M ⊗R ωR) = 0 for all i, d− n+ g < i < d

by the Local Duality Theorem.

�

Corollary 6.1.13. Let R be a Cohen-Macaulay local ring of dimension d with canonical module

ωR and M an R-module. Suppose that M is stable and horizontally linked by Q with grade(M) =

g, and that Extg+1
R (Dg

RM,ωR) = 0. Then, for a positive integer n ≥ g, the following statements

are equivalent:

(i) M ⊗R ωR satisfies S̃gn

(ii) H i
m(LQ(M)) = 0 for d− n+ g < i < d

Proof : This is clear using Proposition 6.1.12 and Local Duality.

�

Recall the Auslander class of a semidualizing module C is the collection AC of R-modules M

which satisfy:
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(i) The natural map M → HomR(C,M ⊗R C) is an isomorphism.

(ii) TorRi (M,C) = 0 = ExtiR(C,M ⊗R C) for all i > 0.

This collection was defined by Foxby, see [25], and studied by Avramov and Foxby, see [5]. With

this definition, Proposition 4.2.8, and Theorem 6.1.10 we get the following generalization of [18,

Corollary 2.14].

Theorem 6.1.14. Let R be a Cohen-Macaulay ring, C a semidualizing R-module, and M a stable

R-module with gradeR(M) = g. Suppose that n ≥ g, M ∈ AC , and Gg
C-dimR(M) <loc ∞. Then

the following are equivalent:

(i) M satisfies S̃gn

(ii) M is horizontally linked by someC-quasi-GorensteinR-moduleQ and Extg+iR (LQ(M), C) =

0 for 0 < i < n− g.

Proof : Clear by Proposition 4.2.8 and Theorem 6.1.10.

�

To summarize some of these results we give some properties that modules which are linked to

C-quasi-Gorenstein R-modules have, which helps give new information concerning licci ideals.

Corollary 6.1.15. Let (R,m, k) be a local Cohen-Macaulay ring of dimension d with canoni-

cal module ωR and M an R-module of grade g. Suppose M is directly linked to an ωR-quasi-

Gorenstein module by the module Q. Then the following hold

(i) M ∈ GgωR
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(ii) M is horizontally linked by Q

(iii) depthRp
(Mp) ≥ depth(Rp)− g for all p ∈ Spec(R)

(iv) Hi
m(M ⊗R ωR) = 0 for g < i < d.

6.2 Auslander and Bass Classes

In this section we give an application of the linkage theory for covariant functors which will give

new proofs and results concerning the Auslander and Bass classes with respect to a semidualizing

module.

We will be in the category R-Mod and let C be a semidualizing R-module. The two functors we

will consider are HomR(C,−) and C ⊗R −. HomR(C,−) is a left exact covariant functor and

C ⊗R − is a right exact covariant functor. These two functors form a linkage functor pair for

R-Mod where B is Fossum subcategory of R-Mod associated with these two functors in R-Mod.

Suppose that M ∈ Pres(B) is directly linked to N ∈ Copres(B). Then, by Lemma 5.2.4, there are

short exact sequences

0→ N → Q→ C ⊗RM → 0

0→ HomR(C,N)→ Q→M → 0

where Q ∈ B is a Fossum object. We also have short exact sequences

0→ TorR1 (C,M)→ C ⊗R (HomR(C,N))→ N → 0
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0→M → HomR(C,C ⊗RM)→ Ext1R(C,N)→ 0.

This shows that if either M is flat or N is injective, we get certain isomorphisms that are useful. In

fact the following holds for these two functors.

Proposition 6.2.1. Let M be an R-module. The following holds

(i) If M is injective then

(a) There is an isomorphism C ⊗R (HomR(C,M))→M .

(b) ExtiR(C,M) = 0 for i > 0.

(c) TorRi (C,HomR(C,M)) = 0 for i > 0.

(ii) If M is flat then

(a) There is an isomorphism M → HomR(C,C ⊗RM).

(b) TorRi (C,M) = 0 for i > 0.

(c) ExtiR(C,C ⊗RM) = 0 for i > 0.

Proof : For a proof see [61, Lemma 2.5] and [36, Lemma 5.1].

�

Therefore injective and flat R-modules are perfect modules for HomR(C,−) and C ⊗R −, respec-

tively. Given an R-module M , there are natural evaluation maps

θM : C ⊗R (HomR(C,M))→M

and

µM : M → HomR(C,C ⊗RM)
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where θM(c⊗Rϕ) = ϕ(c) and µM(m)(c) = c⊗m, see [62]. These natural maps show thatR-Mod

is a perfect category for the functors C ⊗R− and HomR(C,−). Then we can discuss certain exact

sequences and the associated homological dimensions for C ⊗R − and HomR(C,−). First we

determine what the class of perfect objects is for each of these functors. Recall the definition of

the Auslander and Bass classes of C.

Definition 6.2.2. Let M be an R-module. We say that

(i) M is in the Auslander class with respect to C, Aus(C), if

(a) TorRi (C,M) = 0 for i > 0,

(b) ExtiR(C,C ⊗RM) = 0 for i > 0,

(c) the map µM is an isomorphism.

(ii) M is in the Bass class with respect to C, Bass(C), if

(a) ExtiR(C,M) = 0 for i > 0,

(b) TorRi (C,HomR(C,M)) = 0 for i > 0,

(c) the map θM is an isomorphism.

Therefore the perfect objects for HomR(C,−) are exactly the objects in Bass(C) and the perfect

objects for C ⊗R − are exactly the objects in Aus(C). This leads to a new characterization of

modules in the Auslander or Bass classes with respect to C.

Theorem 6.2.3. Let M be an R-module. Then

(i) M ∈ Aus(C)⇔ TorRi (C,M) = 0 = ExtiR(C,DC⊗R−M) for i > 0.

(ii) M ∈ Bass(C)⇔ ExtiR(C,M) = 0 = TorRi (C,DHomR(C,−)M) for i > 0.
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We also get corresponding results about the even linkage classes using these functors and the

Auslander and Bass classes with respect to C.

Proposition 6.2.4. Given an R-module M where M ∈ Aus(C) we have that M ′ ∈ Aus(C) for any

M ′ ∈ [M ]e and N ∈ Bass(C) for any N ∈ [M ]o.

Proof : See the proof of Lemma 5.2.5.

�

Proposition 6.2.5. Let M be an R-module. Then there are exact sequences

0 Ext1R(C,DC⊗R−M) M HomR(C,C ⊗R M) Ext2R(C,DC⊗R−M) 0

0 TorR2 (C,DHomR(C,−)M) C ⊗R (HomR(C,M)) M TorR1 (C,DHomR(C,−)M) 0

µM

θM

Proof : See the proof of Proposition 5.2.8.

�

The second sequence is [61, Proposition 3.2] where DHomR(C,−)M is called the cotranspose of the

R-module M . This generalizes results found in [61,62] and sheds light on why these natural maps

and semidualizing modules are important homologically.

As R-Mod is a perfect category for these two covariant functors we have associated homological

dimensions. We will call these two dimension the Auslander and Bass dimensions of an R-module

M , and denote them by Aus(C)-dimR(M) and Bass(C)-dimR(M), respectively. Then if these
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dimensions are finite they are equal to

Aus(C)-dimR(M) = sup{i : TorRi (C,M) 6= 0}

Bass(C)-dimR(M) = sup{i : ExtiR(C,M) 6= 0}

by Theorem 5.3.15. Since every flat module is in the Auslander class with respect to C and every

injective modules is in the Bass class with respect to C we have the following immediately.

Proposition 6.2.6. For any R-module M we have the following inequalities

Aus(C)-dimR(M) ≤ fdR(M)

Bass(C)-dimR(M) ≤ idR(M)

In fact, we see that using [36, Theorem 1] and [36, Lemma 5.1] that every R-module of the form

C ⊗RN where N is flat is flat and every R-module of the form HomR(C,N) where N is injective

is injective. Such R-modules are call C-flat and C-injective and they form the basis of resolutions

used to define Gorenstein flat and Gorenstein injective dimension, see [15, 20, 36, 61, 62]. These

also fall into the Auslander and Bass classes and give us the following inequalities

Theorem 6.2.7. For any R-module M we have the following inequalities

Aus(C)-dimR(M) ≤ GfdR(M) ≤ fdR(M)

Bass(C)-dimR(M) ≤ GidR(M) ≤ idR(M)

Note that since we can iteratively construct resolutions of these modules using flat and injective

modules we have that C ⊗R − and HomR(C,−) are perfect functors in R-Mod. This gives the

following result.
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Corollary 6.2.8. For anyR-module, the Auslander dimension and the Bass dimension with respect

to a semidualizing R-module C are preserved through even linkage using the functors C⊗R− and

HomR(C,−).

Proof : See the proof of Corollary 5.3.21.

6.3 Local Homology and Cohomology

We begin this section by defining a few concepts dual to regular sequences, depth, and dimension.

Let (R,m, k) be a local ring and M an R-module. We define the Noetherian dimension, or

NdimR(M), of M in the following manner. If M = 0 then NdimR(M) = −1, and for M 6= 0 the

Noetherian dimension NdimR(M) is the least integer i such that (0 :M (x1, . . . , xr)R) has finite

length for some x1, . . . , xr ∈ m. Next, we say that x ∈ R is a coregular element an R-module M

if xM = M , i.e. there is a short exact sequence

0→ (0 :M xR)→M
·x−→M → 0.

Then we say that a sequence x1, x2, . . . , xn is a coregular sequence on M , or M -coregular se-

quence, if the mapping

(0 :M (x1, . . . , xi−1)R)
·xi−→ (0 :M (x1, . . . , xi−1)R)

is surjective for 1 ≤ i ≤ n. Then we define the width of M , widthR(M), as the length of a

maximal M -coregular sequence in m. It follows that for any Artinian R-module M we have that
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widthR(M) ≤ NdimR(M) <∞. For more information concerning Noetherian dimension, coreg-

ular sequences, and width see [27, 56]

In the rest of this section we let (R,m, k) be a Noetherian local ring which is the homomorphic

image of a Gorenstein ring. This allows us to guarantee the existence of certain resolutions which

will be expanded upon later.

Given an ideal I inR the section functor ΓI(−) betweenR-modules is a covariant left exact functor

which takes a module M to the module ΓI(M) = lim
−→

HomR(R/In,M). Its right derived functors

are called the local cohomology modules of M and are denoted by H i
I(M) = lim

−→
ExtiR(R/In,M).

There is an enormous amount of literature concerning the local cohomology of modules and

schemes. A few appropriate references are [1, 13, 19, 31, 33, 55].

Similarly one can define the I-adic completion using the functor ΛI(−) = lim
←−

R/In ⊗R −. This

is a right exact covariant functor. In this case however, we end up with a module ΛI(M) over the

completion of R, R̂, with respect to the ideal I . The left derived functors of this functor are called

the local homology modules of a module M and are denoted by HI
i (M) = lim

←−
TorRi (R/In,M).

Local homology has not had as much of a focus as local cohomology because the duality theo-

rems concerning local homology are a recent discovery. For more information on local homology

see [1, 17, 30, 33, 34, 50]

So, over a Noetherian ring we set I = m and then we can consider the functors H i
m(−) and Hm

i (−)

for i ≥ 0. If we compose Hm
i (−) with the forgetful functor U : R̂-Mod→ R-Mod, then H i

m(−)

and U ◦Hm
i (−) form a linkage functor pair for i ≥ 0. As neither of the vanishing of these functors
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or their derived functors depends upon the completeness of R, we will consider R to be a complete

Noetherian ring and forget the use of U .

In this situation, X will be the Noetherian R-modules, which we denote by NR and Y will be the

Artinian R-modules which we denote by AR. Then B = {M ∈ NR ∩ AR : H i
m(M) ∼= M ∼=

Hm
i (M)}. Then we can perform linkage using local cohomology and local homology.

Suppose that M ∈ Pres(B) ∩ NR is directly linked to N ∈ Copres(B) ∩ AR. Then, by Lemma

5.2.4, there are short exact sequences

0→ N → Q→ Hm
i (M)→ 0

0→ H i
m(N)→ Q→M → 0

inAR andNR, respectively, whereQ ∈ B is a Fossum object. There are also short exact sequences

0→ Hm
i+1(M)→ Hm

i (H i
m(N))→ N → 0

0→M → H i
m(Hm

i (M))→ H i+1
m (N)→ 0

Recently, there has been a focus on the connection between local cohomology and local homol-

ogy. In fact, H i
m(−) and Hm

i (−) form an adjoint pair of functors for each i ≥ 0 [1]. Fur-

ther, if we assume that R is a homorphic image of a Gorenstein ring, then we will show that

AR = Pres(Per(Hm
i (−)) and NR = Copres(Per(H i

m(−))) by determining exactly which R-

modules are perfect. Thus, NR is a perfect H i
m(−)-category and AR is a perfect Hm

i (−)-category.

We will now find out what the perfect objects in this scenario are. We have the following results
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concerning Noetherian and Artinian R-modules.

Proposition 6.3.1. Let (R,m, k) be a local ring andM a NoetherianR-module. ThenH i
m(M) = 0

if i < depth(M) or i > dim(M) and H i
m(M) 6= 0 if i = depth(M) or i = dim(M).

Proposition 6.3.2. Let (R,m, K) be a local ring andM an ArtinianR-module. ThenHm
i (M) = 0

if i < width(M) or i > Ndim(M) and Hm
i (M) 6= 0 if i = width(M) or i = Ndim(M).

Recall that a NoetherianR-moduleM is Cohen-Macaulay if depth(M) = dim(M). We also define

an Artinian R-module to be co-Cohen-Macaulay if width(M) = Ndim(M). These two classes

of R-modules form the collection of perfect objects for H i
m(−) and Hm

i (−) by Hellus [33] which

states the following:

Proposition 6.3.3. Let (R,m, k) be a complete Noetherian local ring. Then

(i) If M is a Noetherian Cohen-Macaulay R-module with depth(M) = d, then Hd
m(M) is an

Artinian co-Cohen-Macaulay R-module with width d.

(ii) If M is an Artinian co-Cohen-Macaulay R-module with width(M) = d, then Hm
d (M) is a

Noetherian Cohen-Macaulay R-module with depth d.

(iii) If M is a Noetherian Cohen-Macaulay R-module with depth(M) = d, then

Hm
d (Hd

m(M)) ∼= M.

(iv) If M is an Artinian co-Cohen-Macaulay R-module with width(M) = d, then

Hd
m(Hm

d (M)) ∼= M.
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Therefore in this situation the perfect objects are the Cohen-Macaulay and co-Cohen-Macaulay

R-modules. So we only need to check for the vanishing of H i
m(−) or Hm

i (−) to see if an object is

perfect. Thus through linkage using local cohomology and homology we see the following:

Proposition 6.3.4. Let (R,m, k) be a complete Noetherian ring. Given a Cohen-Macaulay R-

module M we have that M ′ is Cohen-Macaulay for any M ′ ∈ [M ]e and N is co-Cohen-Macaulay

for any N ∈ [M ]o.

Proof : See the proof of Lemma 5.2.5.

�

Recall that the dual of an object is found by using a perfect presentation, and if we have an R-

module we can copresent it by a Cohen-Macaulay R-module if the ring is a homorphic image of a

Gorenstein ring, see [4]. Given anR-moduleM of depth dwe can find a minimal Cohen-Macaulay

copresentation

0→M → C0 → C1

which leads to the exact sequence

0→ Hd
m(M)→ Hd

m(C0)→ Hd
m(C1)→ DHd

m(−)(M)→ 0.

Similarly we can find the dual using local homology. In fact, using the duals of these modules

constructed by the local cohomology and local homology we get the following exact sequences

Proposition 6.3.5. Let (R,m, k) be a complete Noetherian local ring. For an R-module M we

have the following:
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(i) If M is Noetherian then there is an exact sequence

0 Hm
i+2(D

Hi
m(−)(M)) Hm

i (H i
m(M)) M Hm

i+1(D
Hi

m(−)(M)) 0

(ii) If M is Artinian then there is an exact sequence

0 H i+1
m (DHm

i (−)(M)) M H i
m(Hm

i (M)) H i+2
m (DHm

i (−)(M)) 0.

Proof : See the proof of Proposition 5.2.8.

�

This leads to another characterization of Cohen-Macaulay and co-Cohen-Macaulay R-modules.

Theorem 6.3.6. Let (R,m, k) be a complete Noetherian local ring and M be an R-module.

(i) Suppose depth(M) = d. Then M is Cohen-Macaulay if and only if Hm
i (DHi

m(−)(M)) = 0

for all i 6= d.

(ii) Suppose width(M) = d. ThenM is co-Cohen-Macaulay if and only ifH i
m(DHm

i (−)(M)) = 0

for all i 6= d.

In other words, an R-module is Cohen-Macaulay (co-Cohen-Macaulay) if and only if its dual

through local cohomology (homology) is co-Cohen-Macaulay (Cohen-Macaulay).

Since we are in a perfect category pair with linkage, we have certain homological dimensions

that can be define. We can find a coresolution of a Noetherian R-module M by Cohen-Macaulay
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R-modules of depth i such as

0→M → C0 → C1 → C2 → · · · ,

and define aH i
m(−)-dimension, denoted byH i

m-dimR(M). For i = 0 we will denoteH0
m-dimR(M)

by Γm-dimR(M).

Similarly we can find a resolution of an Artinian R-module M by co-Cohen-Macaulay R-modules

of width i such as

· · · → N2 → N1 → N0 →M → 0,

and define a Hm
i (−)-dimension, denoted by Hm

i -dimR(M). For i = 0 we will denote Hm
0 -

dimR(M) by Λm-dimR(M). Therefore, for each i ≥ 0 we have homological dimensions asso-

ciated to local cohomology and local homology. We must be careful in knowing which dimensions

we can consider for certain modules. Given an R-module M , if it is Noetherian then the H i
m-

dimR(M) is defined when i ≤ depthR(M) and if it is Artinian then the Hm
i -dimR(M) is defined

when i ≤ widthR(M). In these cases we get the following result:

Theorem 6.3.7. Let (R,m, k) be a complete Noetherian local ring. For an R-module M we have

the following

Hj
m-dimR(M) = sup{i : H i

m(M) 6= 0} − j

Hm
j -dimR(M) = sup{i : Hm

i (M) 6= 0} − j

provided that these dimensions are finite.

Proof : See the proof of Theorems 5.3.5 and 4.1.9.

�

137



We immediately get the following corollary:

Corollary 6.3.8. Let (R,m, k) be a complete Noetherian local ring. Given an R-module M we

have the following:

(i) If Γm-dimR(M) <∞ then Γm-dimR(M) = dimR(M).

(ii) If Λm-dimR(M) <∞ then Λm-dimR(M) = NdimR(M).

Proof : Follows by Theorem 6.3.7 and Propositions 6.3.1 and 6.3.2.

�

These results can give us information about the ring R. Since it is Noetherian we have that

depth(R) ≤ dim(R) < ∞. This leads us to the following characterization of Cohen-Macaulay

rings which are homomorphic images of Gorenstein rings.

Corollary 6.3.9. Let (R,m, k) be a complete Noetherian local ring which is the homomorphic

image of a Gorenstein ring. Let d = depthR(R). Then the following are equivalent:

(i) R is Cohen-Macaulay

(ii) R is evenly linked to a Cohen-Macaulay R-module

(iii) R is oddly linked to a co-Cohen-Macaulay R-module

(iv) Γm-dimR(R) = d, i.e. there is an exact sequence

0→ R→ C0 → C1 → C2 → · · · → Cd → 0

where Ci is Cohen-Macaulay of depth 0 for 0 ≤ i ≤ d
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(v) Hd
m(R) is a co-Cohen-Macaulay module

(vi) Λm-dimR(Hd
m(R)) = d, i.e. there is an exact sequence

0→ Nd → · · · → N2 → N1 → N0 → Hd
m(R)→ 0

where Ni is co-Cohen-Macaulay of width 0 for 0 ≤ i ≤ d.
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[27] J. R. Garcı́ a Rozas, Inmaculada López, and Luis Oyonarte, Relative attached primes and

coregular sequences, Taiwanese J. Math. 17 (2013), no. 3, 1095–1114. MR 3072278

[28] Evgenii S. Golod, G-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov. 165

(1984), 62–66, Algebraic geometry and its applications. MR 752933

[29] Michele Grassi, Koszul modules and Gorenstein algebras, J. Algebra 180 (1996), no. 3, 918–

953. MR 1379218

[30] J. P. C. Greenlees and J. P. May, Derived functors of I-adic completion and local homology,

J. Algebra 149 (1992), no. 2, 438–453. MR 1172439

142



[31] Robin Hartshorne, Local cohomology, A seminar given by A. Grothendieck, Harvard Uni-

versity, Fall, vol. 1961, Springer-Verlag, Berlin-New York, 1967. MR 0224620

[32] , Liaison with Cohen-Macaulay modules, Rend. Semin. Mat. Univ. Politec. Torino 64

(2006), no. 4, 419–432. MR 2295448

[33] Michael Hellus, Local Cohomology and Matlis Duality, eprint arXiv:math/0703124v1,

March 2007.

[34] Michael Hellus, Local homology, Cohen-Macaulayness and Cohen-Macaulayfications, Al-

gebra Colloq. 15 (2008), no. 1, 63–68. MR 2371578

[35] Jürgen Herzog and Dorin Popescu, Finite filtrations of modules and shellable multicomplexes,

Manuscripta Math. 121 (2006), no. 3, 385–410. MR 2267659

[36] Henrik Holm and Diana White, Foxby equivalence over associative rings, J. Math. Kyoto

Univ. 47 (2007), no. 4, 781–808. MR 2413065

[37] Brent Holmes, A Generalized Serre’s Condition, arXiv:1710.02631v1, October 2017.

[38] Livia Hummel and Thomas Marley, The Auslander-Bridger formula and the Gorenstein prop-

erty for coherent rings, J. Commut. Algebra 1 (2009), no. 2, 283–314. MR 2504937

[39] Craig Huneke and Bernd Ulrich, The structure of linkage, Ann. of Math. (2) 126 (1987),

no. 2, 277–334. MR 908149

[40] , Algebraic linkage, Duke Math. J. 56 (1988), no. 3, 415–429. MR 948528

[41] Nathan Jacobson, Basic algebra. I, W. H. Freeman and Co., San Francisco, Calif., 1974. MR

0356989

[42] , Basic algebra. II, W. H. Freeman and Co., San Francisco, Calif., 1980. MR 571884

143



[43] Steven Kleiman and Bernd Ulrich, Gorenstein algebras, symmetric matrices, self-linked ide-

als, and symbolic powers, Trans. Amer. Math. Soc. 349 (1997), no. 12, 4973–5000. MR

1422609

[44] Andrew R. Kustin, Matthew Miller, and Bernd Ulrich, Linkage theory for algebras with pure

resolutions, J. Algebra 102 (1986), no. 1, 199–228. MR 853240

[45] Lionel Levine, The sandpile group of a tree, European J. Combin. 30 (2009), no. 4, 1026–

1035. MR 2504661 (2010m:05145)

[46] Dino Lorenzini, Smith normal form and laplacians, J. Combin. Theory Ser. B 98 (2008),

no. 6, 1271–1300. MR 2462319 (2010d:05092)

[47] Dino J. Lorenzini, A finite group attached to the laplacian of a graph, Discrete Math. 91

(1991), no. 3, 277–282. MR 1129991 (93a:05091)

[48] Heath M. Martin, Linkage and the generic homology of modules, Comm. Algebra 28 (2000),

no. 9, 4285–4301. MR 1772507

[49] Alex Martsinkovsky and Jan R. Strooker, Linkage of modules, J. Algebra 271 (2004), no. 2,

587–626. MR 2025542

[50] Eben Matlis, The Koszul complex and duality, Comm. Algebra 1 (1974), 87–144. MR

0344241

[51] Hideyuki Matsumura, Commutative ring theory, second ed., Cambridge Studies in Advanced

Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989, Translated from the

Japanese by M. Reid. MR 1011461

[52] Juan C. Migliore, Introduction to liaison theory and deficiency modules, Progress in Mathe-
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