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ABSTRACT

This dissertation focuses on the existence and uniqueness of the solutions of variational inclusion

and variational inequality problems and then attempts to develop efficient algorithms to estimate

numerical solutions for the problems. The dissertation consists a total of five chapters. Chapter

1 is an introduction to variational inequality problems, variational inclusion problems, monotone

operators, and some basic definitions and preliminaries from convex analysis. Chapter 2 is a study

of a general class of nonlinear implicit inclusion problems. The objective of this study is to explore

how to omit the Lipschitz continuity condition by using an alternating approach to the proximal

point algorithm to estimate the numerical solution of the implicit inclusion problems. In chapter

3 we introduce generalized densely relaxed η − α pseudomonotone operators and generalized re-

laxed η − α proper quasimonotone operators as well as relaxed η − α quasimonotone operators.

Using these generalized monotonicity notions, we establish the existence results for the general-

ized variational-like inequality in the general setting of Banach spaces. In chapter 4, we use the

auxiliary principle technique to introduce a general algorithm for solutions of the densely relaxed

pseudomonotone variational-like inequalities. Chapter 5 is the chapter concluding remarks and

scope for future work.
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CHAPTER 1: INTRODUCTION

1.1 Introduction to the Variational Inequality Problems

In 1964, Stampacchia ([38]) introduced the classical variational inequality problem. Since then,

variational inequalities have been the research of many authors such as Cohen ([16]), Blum and

Oetti ([10]), Ding ([19]), Verma ([47]), Bai et al. ([6], [7]). Variational inequalities have a wide

variety of problems in many fields such as mathematical programming, mechanics, physics, opti-

mization and control theory, elasticity theory, economics and transportation equilibrium problems,

game theory, and engineering sciences.

Basically, a variational inequality problem is a problem of solving inequalities of a functional in

which all possible values of a given variable usually belong to a convex subset of topological vec-

tor spaces such as Hilbert spaces and Banach spaces. The scope of solving variational inequalities

involves two aspects, that is, proving the existence and uniqueness of the solution of the problem

and then develop numerical methods to approximate the solutions.

The definitions of variational inequality are distinguishable between Hilbert spaces and Banach

spaces.

Definition 1.1.1 Let X be a Hilbert space, and let K be a nonempty closed convex subset of X .

Then the variational inequality problem defined on X is as follow:

Find x ∈ K such that

〈f(x), y − x〉 ≥ 0, (1.1.1)

for all y ∈ K and f ∈ X where 〈·, ·〉 stands for the inner product in Hilbert space.

Definition 1.1.2 Let X be a real reflexive Banach space.
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Let X∗ be its dual, and let K be a nonempty closed convex subset of X .

Let T : X → X∗ be an operator. Then the variational inequality problem defined on X can be

mentioned as the following:

Find x ∈ K such that

〈Tx, y − x〉 ≥ 0, (1.1.2)

for all y ∈ K.

Example 1.1.3 Minimum problem over a closed bounded interval in R.

Let f : [a, b]→ R be a real-valued function, then

f(x0) = min f(x)⇒ f ′(x0)(x− x0) ≥ 0, ∀x ∈ [a, b].

Example 1.1.4 Minimum problem over a closed convex set in Rn.

Let K ⊂ R be a closed convex subset and f : K → R be a real-valued function, then

f(x0) = min f(x)⇒
(
∇f(x0)T (x− x0)

)
≥ 0, ∀x ∈ K.

The definition of variational inequalities defined on Hilbert spaces X can be interpreted geomet-

rically in the following manner: find a point x∗ ∈ K such that for any point x ∈ K, the angle

between (x− x∗) and f(x∗) is an acute angle as shown in figure 1.1.
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Figure 1.1: Geometrical Interpretation of Variational Inequality

In general, on Hilbert spaces the variational inequalities are generated in terms of bilinear forms as

the following: given a function f ∈ H , find a point x∗ ∈ X such that

a(x∗, x) = (f, x),

where a : X ×X → R is continuous and linear in both arguments.

1.2 Introduction to the Variational Inclusion Problems

Variational inclusion problem is one of the generalizations of interest and importance of variational

inequality problem. In order to obtain an efficient and implementable algorithm to solve for such

problem is a challenge. In 1976, Rockafellar ([34]) developed an algorithm for solving the varia-

tional inclusion problems: the proximal point algorithm. Since then, the algorithm has been used

by many authors such as Agarwal ([1]), Verma ([39]-[46]), Lan ([27], Li ([29]), and the references

therein.
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The classical general class of inclusion problem is defined as follow:

Definition 1.2.1 Let X be a vector space and let M : X → 2X be a set-valued mapping on X.

Then the variational inclusion problem is defined on X as follow: find a solution to

0 ∈M(x), (1.2.1)

where 2X denotes the class of all subsets of X .

Recall that a cone in a vector space is defined as following:

Definition 1.2.2 (Karamardian [26]) A set K in a vector space is a cone if and only if

x ∈ K ⇒ λx ∈ K ∀λ > 0.

Example 1.2.3 (Lan [27])

Let V : Rn → R be a locally Lipschitz continuous real-valued function and K ⊂ Rn be a closed

convex subset. If x∗ ∈ Rn is a solution to the problem minx∈K V (x), then

0 ∈ ∂V (x∗) +NK(x∗),

where ∂V (x∗) denotes the sub-differential of V at x∗, and NK(x∗) is the normal cone of K at x∗.

In 1976, Rockafellar ([34]) studied the general convergence of the proximal point algorithm for

solving problem (1.2.1). Rockafellar showed that, if M is a maximal monotone and for an initial

point x1, we can construct a sequence {xk} that converges strongly to a solution of (1.2.1) with

xk+1 ≈ Pk(xk), (1.2.2)
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or equivalently,

||xk+1 − Pk(xk)|| ≤ εk, (1.2.3)

for some εk ≥ 0, where Pk = (I + ckM)−1 is the resolvent operator and {ck} is a sequence of

positive numbers that are bounded away from zero (i.e. ∃ε > 0 such that ck ≥ ε ∀k ∈ N). From

(1.2.2), it follows that the approximation xk+1 is sufficiently accurate as the iteration proceeds and

is an approximate solution to the inclusion problem

0 ∈M(x) +
1

ck
(x− xk). (1.2.4)

Since then, the notion of general maximal monotonicity developed and played a significant role

in solving various types of variational problems such as variational inequality problems, minimax

problems, minimization and maximization of functions, etc., which can be unified as problems of

the form (1.2.1). The general maximal monotonicity provided a frame work to develop proximal

point algorithms for estimating computational solutions of many variational problems mentioned

above.

1.3 Monotone Operators

Monotone operators play as a key role on the study of the existence of solutions of variational

inequality and variational inclusion problems. A monotone operator is generally defined as follow:

Definition 1.3.1 Let X be a vector space and let K ⊂ X be a non empty subset.

Let X∗ be the dual space of X .

Let T : K → X∗ be an operator on K.
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Then T is said to be a monotone operator on K if for all x, y ∈ K,

〈Tx− Ty, x− y〉 ≥ 0.

Gradually, the concept of monotonicity is generalized and extended into many other forms such

as strict monotonicity, relaxed monotonicity, pseudomonotonicity, quasimonotonicity, and many

other forms by various researchers.

Some basic definitions are introduced below:

Definition 1.3.2 Let X be a vector space and let K ⊂ X be a non empty subset.

Let X∗ be the dual space of X .

Let T : K → X∗ be an operator on K.

Then T is said to be a

(i) strictly monotone operator on K if:

〈Tx− Ty, x− y〉 > 0

for all x, y,∈ K, x 6= y;

(ii) r-strongly monotone operator on K if ∃r > 0:

〈Tx− Ty, x− y〉 ≥ r||x− y||2

for all x, y,∈ K;
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(iii) pseudomonotone operator on K if :

〈Tx, y − x〉 ≥ 0 =⇒ 〈Ty, y − x〉 ≥ 0

for all x, y,∈ K;

(iv) quasimonotone operator on K if :

〈Tx, y − x〉 > 0 =⇒ 〈Ty, y − x〉 ≥ 0

for all x, y,∈ K, x 6= y.

Definition 1.3.3 (Luc [30])

Let K be a convex set in X and K0 a subset of K. The set K0 is said to be segment-dense in K if

for each x ∈ K, there exists x0 ∈ K0 such that x is a cluster point of the set [x, x0] ∩K0.

Definition 1.3.4 (Definitions Bai et al. [7])

Let X be a vector space and let K ⊂ X be a non empty subset.

Let X∗ be the dual space of X .

Let T : K → X∗ be an operator on K.

Then T is said to be a

(i) relaxed monotone operator on K if ∃µ > 0 s.t. ∀x, y ∈ K:

〈Tx− Ty, x− y〉 ≥ −µ||x− y||2

for all x, y,∈ K, x 6= y;
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(ii) relaxed µ pseudomonotone operator on K if ∃µ > 0 s.t. ∀y ∈ K:

〈Tx, y − x〉 ≥ 0 =⇒ 〈Ty, y − x〉 ≥ −µ||y − x||2;

(iii) relaxed µ quasimonotone operator on K if ∃µ > 0 s.t. ∀y ∈ K:

〈Tx, y − x〉 > 0 =⇒ 〈Ty, y − x〉 ≥ −µ||y − x||2;

(iv) densely relaxed µ pseudomonotone operator on K if there exists a segment-dense subset

K0 ⊂ K such that T is relaxed µ pseudomonotone at every point of K0.

Definition 1.3.5 (Definitions Bai [6] and Arunchai [4])

Let X be a vector space and let K ⊂ X be a non empty subset. Let X∗ be the dual space of X .

Let η : K ×K → X be a mapping and T : K → X∗ be an operator on K.

Let α : X → R be a real-valued function satisfying limt→0+ sup α(tη(x,y))
t

= 0 ∀(x, y) ∈ K ×K.

Then T is said to be a

(i) strictly quasimonotone operator on K if :

〈Tx, y − x〉 > 0 =⇒ 〈Ty, y − x〉 > 0

for all x, y,∈ K, x 6= y;

(ii) strictly η quasimonotone operator on K if :

〈Tx, η(y, x)〉 > 0 =⇒ 〈Ty, η(y, x)〉 > 0

for all x, y,∈ K, x 6= y;
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(iii) relaxed α pseudomonotone operator on K if ∀x, y ∈ K:

〈Tx, y − x〉 ≥ 0 =⇒ 〈Ty, y − x〉 ≥ α(y − x);

(iv) relaxed η − α monotone operator on K if ∀x, y ∈ K:

〈Tx− Ty, η(x, y)〉 ≥ α(η(x, y));

(v) relaxed η − α pseudomonotone operator on K if ∀x, y ∈ K:

〈Tx, η(y, x)〉 ≥ 0 =⇒ 〈Ty, η(y, x)〉 ≥ α(η(y, x)).

Next, we give simple examples of problems that can be put in the variational inequality set up.

Example 1.3.6 (Bai et al. [7])

Let T : [0,+∞)→ R be a function defined by

T (x) =

 x2 − 2 if x ≥
√

3− 1,

−2x if 0 ≤ x <
√

3− 1.

Then T is relaxed µ pseudomonotone with µ = 2 but not pseudomonotone on [0,+∞), i.e., T (x)

is not pseudomonotone at x = 0.

Example 1.3.7 (Bai et al. [7])

Let T : (−∞, 0)→ (0,∞) be a function defined by T (x) = x2. Then T is relaxed µ pseudomono-

tone, but not relaxed monotone on (−∞, 0) since ∀δ > 0 ∃x0 < 0, y0 < 0 with x0 + y0 < −δ < 0

such that

〈Tx0 − Ty0, x0 − y0〉 < −δ||x0 − y0||2.

9



So T is not relaxed monotone on (−∞, 0).

Example 1.3.8 (Luc [30])

Let T : R → R be a function defined by T (x) = x2. Then T is quasimonotone, but not pseu-

domonotone on R since T is not pseudomonotone at x = 0. Also, T is not relaxed µ pseudomono-

tone on R.

Example 1.3.9 (Bai et al. [7])

Let T : R→ R be a function defined by T (x) = −x. Then T is relaxed µ pseudomonotone, but T

is neither pseudomonotone nor quasimonotone on R.

Example 1.3.10 (Bai et al. [7])

Let T : R → [−1, 1] be a function defined by T (x) = sinx. Then T is relaxed µ quasimonotone

on R with µ = 1, but not quasimonotone on R. In fact,

| sin y − sinx| =

∣∣∣∣2 cos
y + x

2
sin

y − x
2

∣∣∣∣
≤ 2

∣∣∣∣sin y − x2

∣∣∣∣
≤ 2

∣∣∣∣y − x2

∣∣∣∣
= 2 |y − x| .

10



Hence, if 〈sinx, y − x〉 > 0, then

〈sin y, y − x〉 = 〈sin y − sinx+ sinx, y − x〉

= 〈sin y − sinx, y − x〉+ 〈sinx, y − x〉

> 〈sin y − sinx, y − x〉

≥ −| sin y − sinx| · |y − x|

≥ −|y − x|2.

Therefore, T is relaxed µ quasimonotone.

Example 1.3.11 (Bai et al. [6])

Let T : R→ R be a function defined by

T (x) =


3
2
x if x ≥ 0,

−1
2
x if x < 0,

and η(x, y) = x − y. Then T is relaxed η − α pseudomonotone with α(x) = −1
2
x2, but T is not

relaxed η − α monotone.

Example 1.3.12 (Arunchai [4])

Let T : (−∞, 0] → [0,+∞) be a function defined by T (x) = x2 with η(x, y) = c|x − y|, where

c > 0, and

α(x) =

 −bxc if x > 0,

bxc if x ≤ 0,

Then T is relaxed η − α pseudomonotone, but T is not relaxed α pseudomonotone. In fact, if we

let y = −1 and x = 0, then 〈T (x), η(y, x)〉 ≥ 0, but 〈T (y), η(y, x)〉 < α(η(y, x)), which is a

contradiction.
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Example 1.3.13 (Arunchai [4])

Let T : (−∞, 1) → R be a function defined by T (x) = x2 − 1 and η(x, y) = c(x − y), where

c < 0.

Then T is strictly η-quasimonotone, but T is not strictly quasimonotone. In fact, if we let y ∈

(−1, 1) and x < −1, then 〈T (x), y − x〉 > 0, but 〈T (y), y − x〉 < 0.

Remark 1.3.14 The implications of the monotone operators from the definitions and examples

above can be summarized as in figure 1.2.

Figure 1.2: Relations between different types of monotonicity.
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1.4 Some Basic Definitions and Preliminaries

In this section, we recall some basic definitions and theorems from convex analysis, which will be

used in the sequel.

Let X be a real vector space. Let X∗ be its dual and K be a non-empty subset of X .

Definition 1.4.1 A subset K ⊂ X is said to be convex if

∀x, y ∈ K, ∀λ ∈ [0, 1]⇒ λx+ (1− λ)y ∈ K.

Definition 1.4.2 Let K ⊂ X be a convex subset. The function f : K → R is said to be convex if

∀x, y ∈ K, ∀λ ∈ [0, 1] : f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Definition 1.4.3 Let A = {x1, x2, ...xn} be a finite set.

Then the convex hull of A, denoted by co{x1, x2, ...xn}, is defined as

co{x1, x2, ...xn} :=

{
n∑
i=1

αixi :
n∑
i=1

αi = 1, ∀αi ≥ 0

}
.

Definition 1.4.4 Let T : K → X∗ be an operator.

Then T is called Lipschitz continuous if there exists α > 0 such that

||Tx− Ty|| ≤ α||x− y||, ∀x, y ∈ K.

Definition 1.4.5 Let X be a Banach space and let x0 ∈ X . A function f : X → (−∞,+∞] is

called

13



(i) lower semi-continuous at x0 if

f(x0) ≤ lim
x→x0

inf(f(x);

(ii) upper semi-continuous at x0 if

f(x0) ≥ lim
x→x0

sup(f(x).

Theorem 1.4.6 (Browder [12]) Let K be a closed convex subset of a Banach space X and let

f : K → R be a convex function. Then f is lower semi-continuous if and only if f if weakly lower

semi-continuous.

Definition 1.4.7 (Brezis [11]) Every closed bounded convex subset of a reflexive Banach space is

weakly compact.

Definition 1.4.8 Let K be a convex subset of X .

Let f : K → R be a real-valued function.

Then f is said to be hemicontinuous if for each x, y ∈ K:

lim
t→0+

f(tx+ (1− t)y) = f(y).

14



CHAPTER 2: GENERAL OVER-RELAXED PROXIMAL POINT

ALGORITHM TO GENERAL (A, η,m)-MONOTONE NONLINEAR

INCLUSION FORMS

2.1 Introduction

Proximal point algorithms have been studied by many authors. See, for example, Rockafella [34],

Agarwal et al. [1], [2], Verma [39], [40], [41], [42], [43], Lan [28], Li [29], and the references

therein.

In [39], [42], and [43], Verma generalized the relaxed and over-relaxed proximal point algorithm

based on the notions of A-maximal monotonicity for solving general problems in Hilbert spaces

and Banach spaces. In [41], Verma also introduced the new relaxed algorithmic procedure based on

the notions of A-maximal monotonicity for solving general inclusion problems in Hilbert spaces.

On the other hand, Lan [27], [28] introduced a new concept of (A, η,m)-maximal monotone

operators, which generalized the existing monotone operators such as A-monotonicity, (H, η)-

monotonicity, and other monotone operators as special cases.

Furthermore, based on the studies of Verma and Lan, Li [29] introduced and studied a new class

of over-relaxed proximal point algorithms for approximating solvability of the nonlinear oper-

ator equation B(x) − RA,η
ρ,M = 0 (equation (1), Li [29]) in Hilbert spaces based on (A, η,m)-

monotonicity framework.

Among these studies, Lipschitz continuity is always a necessary condition for the convergence of

the sequence of the proximal point algorithm. Greatly motivated and inspired by the works men-

tioned above, we introduce an alternating approach to the relaxed algorithmic procedure based on

the notion of A-maximal relaxed η-monotonicity where the Lipschitz continuity requirement for

the monotone mapping A, under some conditions, can be omitted.

15



The objective of this chapter is to see how to remove the Lipschitz continuity requirement by using

an alternating approach to the proximal point algorithm. It does not by any way take away the

value and the importance of the original contributions given by Verma ([39]-[44]), Agawal et al.

([1]-[3]), Lan ([28]), Li ([29]), and many other authors who contributed their works on this sub-

ject. Instead, had these results not been proved, it may not be possible to see how to improve the

proofs without Lipschitz continuity. In this sense, we think our work complements that of Verma

[39]-[42].

Let X be a real Hilbert space with the norm || · || and the inner product 〈·, ·〉. We consider a general

class of nonlinear implicit inclusion problems of the form: find a solution to

0 ∈M(x), (2.1.1)

where M : X → 2X is a set-valued mapping on X .

Equivalently, equation (2.1.1) can be written as: find a solution to

x− JM,η
ρ,A (A(x)) = 0, (2.1.2)

where A : X → X and η : X ×X → X are nonlinear operators; and JM,η
ρ,A = (A + ρM)−1 is the

generalized resolvent operator with ρ > 0.

Remark 2.1.1 Let g : X → X be a single valued mapping.

(i) If η(x, y) := x − y, the operator N : X → 2X is an A-maximal m-relaxed monotone, and

M(x) = N(g(x)) with range(g) ∩ dom(N) 6= ∅ on Hilbert spaces or Banach spaces, then

problem (2.1.1) becomes problem (1) in Verma [39] and Verma [42].

(ii) In addition to (i) above, if T : X → X is a single valued mapping on X with range(g) ∩
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dom(N) 6= ∅ and M(x) = T (x) +N(g(x)), then problem (2.1.1) reduces to problem (1) in

Agarwal et al. [1].

(iii) From (ii) above, if η : X ×X → X be a nonlinear operator and T (x) := A(g(x))−A(x)

then problem (2.1.1) reduces to problem (2) in Li [29].

2.2 Preliminaries and Definitions

In order to reduce the uses of parentheses, whenever the context is clear, the notations of composite

operators will be written without parentheses or composite notation. For example, A(T (x)) and

AoT (x) will be written as AT (x) throughout this chapter.

In this section we recall some basic definitions and known results to prove the strong convergence

in section 3.

Let M,N : X → 2X be multi-valued mappings on X.

Let A : X → X and η : X ×X → X be single-valued mappings.

The graph of the mapping M is defined by graph(M) := {(x, y)|y ∈ M(x)}. In this section, we

will denote both the mapping and its graph by M . It is equivalent to saying that a mapping is any

subset of X ×X .

The following definitions can be found on [1]-[3], [39], [40], [44], and [45].

Definition 2.2.1

(i) The domain of M :

D(M) := {x ∈ X| ∃y ∈ Xs.t.(x, y) ∈M} = {x ∈ X|M(x) 6= ∅};

(ii) The range of M :
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R(M) := {y ∈ X| ∃x ∈ Xs.t.(x, y) ∈M};

(iii) The inverse M−1 of M :

M−1 := {(y, x) ∈ X ×X| (x, y) ∈M};

(iv) Scalar multiplication:

ρM := {(x, ρy)| (x, y) ∈M};

(v) Addition:

M +N := {(x, y + z)| (x, y) ∈M, (x, z) ∈ N};

(vi) Composition:

MN := {(x, z)| (x, y) ∈ N, (y, z) ∈M}.

Definition 2.2.2

(i) A is r-strongly monotone if ∀u, v ∈ X, ∃r > 0 :

〈A(u)− A(v), u− v〉 ≥ r||u− v||2;

(ii) A is r-strongly η-monotone (a.k.a. (r,η)-monotone) if ∀u, v ∈ X, ∃r > 0 :

〈A(u)− A(v), η(u, v)〉 ≥ r||u− v||2;
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(iii) A is r-Lipschitz continuous if ∀u, v ∈ X, ∃r > 0 :

||A(u)− A(v)|| ≤ r||u− v||;

(iv) η is r-Lipschitz continuous if ∀u, v ∈ X, ∃r > 0 :

||η(u, v)|| ≤ r||u− v||.

Definition 2.2.3

(i) M is monotone if ∀(u, u∗) ∈M, (v, v∗) ∈M :

〈u∗ − v∗, u− v〉 ≥ 0;

(ii) M is r-strongly monotone if ∀(u, u∗) ∈M, (v, v∗) ∈M ∃r > 0 :

〈u∗ − v∗, u− v〉 ≥ r||u− v||2;

(iii) M is m-relaxed monotone if ∀(u, u∗) ∈M, (v, v∗) ∈M ∃m > 0 :

〈u∗ − v∗, u− v〉 ≥ −m||u− v||2;

(iv) M is m-relaxed η-monotone if ∀(u, u∗) ∈M, (v, v∗) ∈M ∃m > 0 :

〈u∗ − v∗, η(u, v)〉 ≥ −m||u− v||2.

Remark 2.2.4 Clearly, (ii)⇒ (i)⇒ (iii), but not vice versa.

Also, if η(x, y) = x− y, then (iv) implies (iii).
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Definition 2.2.5 Let A : X → X be a single-valued mapping. The map M : X → 2X is said to

be (A, η,m)-maximal monotone if

(i) M is m-relaxed η-monotone for m > 0, and

(ii) (A+ ρM)(X) = X for ρ > 0.

Definition 2.2.6 Let η : X ×X → X be a single valued mapping.

Let A : X → X be an r-strongly η-monotone mapping.

Let M : X → 2X be an (A, η,m)-maximal monotone mapping.

The generalized resolvent operator JM,η
ρ,A : X → X is defined by JM,η

ρ,A (u) = (A+ ρM)−1(u).

Proposition 2.2.7 (Sahu [37] Lemma 2.1)

Let η : X ×X → X be a single valued mapping.

Let A : X → X be an r-strongly η-monotone mapping.

Let M : X → 2X be an (A, η,m)-maximal monotone mapping.

Then the generalized resolvent operator JM,η
ρ,A : X → X is defined by JM,η

ρ,A = (A + ρM)−1 is

single-valued.

Proposition 2.2.8 (Verma [39] Proposition 2.1)

Let η : X ×X → X be a single valued mapping.

Let A : X → X be an r-strongly η-monotone mapping.

Let M : X → 2X be an (A, η,m)-maximal monotone mapping.

Then (A+ ρM) is a maximal monotone for ρ > 0.

Proposition 2.2.9 Let X be a real Hilbert space.

Let η : X ×X → X be a single valued mapping.
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Let A : X → X be an r-strongly monotone mapping.

Let M : X → 2X be an (A, η,m)-maximal monotone mapping.

Then the generalized operator associated with M and defined by JM,η
ρ,A (u) := (A+ρM)−1(u) ∀u ∈

X , satisfies

〈JM,η
ρ,A A(u)− JM,η

ρ,A A(v), A(u)− A(v)〉 ≥ (r − ρm)||JM,η
ρ,A A(u)− JM,η

ρ,A A(v)||2,

where r − ρm > 0.

Proof. ∀u, v ∈ X ⇒ A(u), A(v) ∈ X . By definition of resolvent operator JM,η
ρ,A ,

JM,η
ρ,A A(u) = (A+ ρM)−1A(u)

A(u) ∈ (A+ ρM)JM,η
ρ,A A(u)

A(u)− AJM,η
ρ,A A(u) ∈ ρMJM,η

ρ,A A(u).

(2.2.1)

Similarly,

A(v)− AJM,η
ρ,A A(v) ∈ ρMJM,η

ρ,A A(v). (2.2.2)

M is (A, η,m)-maximal monotone. Hence, M is m-relaxed η-monotone. Thus,

〈A(u)− A(v)− (AJM,η
ρ,A A(u)− AJM,η

ρ,A A(v)), JM,η
ρ,A A(u)− JM,η

ρ,A A(v)〉

= ρ〈MJM,η
ρ,A A(u)−MJM,η

ρ,A A(v), JM,η
ρ,A A(u)− JM,η

ρ,A A(v)〉

≥ −ρm||JM,η
ρ,A A(u)− JM,η

ρ,A A(v)||2.

(2.2.3)
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Since A is r-strongly η-monotone, from (2.2.3) it follows that

〈A(u)− A(v), JM,η
ρ,A A(u)− JM,η

ρ,A A(v)〉

≥ 〈AJM,η
ρ,A A(u)− AJM,η

ρ,A A(v), JM,η
ρ,A A(u)− JM,η

ρ,A A(v)〉 − ρm||JM,η
ρ,A A(u)− JM,η

ρ,A A(v)||2

≥ (r − ρm)||JM,η
ρ,A A(u)− JM,η

ρ,A A(v)||2.

(2.2.4)

This completes the proof. �

For convenience, from now on, let d := r − ρm.

Definition 2.2.10 Let X be a real Hilbert space.

Let η : X ×X → X be a single valued mapping.

Let A : X → X be r-strongly η-monotone mapping.

Then for x ∈ X , define the function R(x, ρ) by

R(x, ρ) := A(x)− AJM,η
ρ,A A(x). (2.2.5)

Lemma 2.2.11 x∗ ∈ X is a solution of (2.1.1) if and only if R(x∗, ρ) = 0.

Proof.

R(x∗, ρ) = 0 ⇐⇒ A(x∗) = AJM,η
ρ,A A(x∗)

⇐⇒ x∗ = JM,η
ρ,A A(x∗)

⇐⇒ A(x∗) ∈ (A+ ρM)(x∗)

⇐⇒ 0 ∈M(x∗).

(2.2.6)

�
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2.3 Main Convergence Theorems

To prove the main theorem, we need the following lemma.

Lemma 2.3.1 Let X be a real Hilbert space.

Let η : X ×X → X be a single valued mapping.

Let A : X → X be r-strongly monotone.

Let M : X → 2X be an (A, η,m)-maximal monotone.

Then u ∈ X is a solution to (2.1.1) if and only if u = JM,η
ρ,A A(u).

Proof.

u = JM,η
ρ,A A(u) ⇐⇒ A(u) ∈ (A+ ρM)(u)

⇐⇒ 0 ∈ ρM(u)

⇐⇒ 0 ∈M(u).

(2.3.1)

�

Theorem 2.3.2 Let X be a real Hilbert space.

Let η : X ×X → X be a single valued mapping.

Let A : X → X be r-strongly monotone.

Let M : X → 2X be (A, η,m)-maximal monotone.
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Let {xk} be a sequence generated by

xk+1 = (1− αk)xk + αkJ
M,η
ρk,A

A(xk), (2.3.2)

where JM,η
ρk,A

= (A+ ρkM)−1, {ρk} ⊂ [0,∞), and αk ∈ (0, 1] satisfying 0 < ε = inf αk < 1.

Suppose that there exists at least one solution x∗ of (2.1.1).

For any u, v ∈ X , if, in addition, dk > 1 and the following inequality holds:

〈AJM,η
ρk,A

A(u)− AJM,η
ρk,A

A(v), A(u)− A(v)〉 ≥ dk||AJM,η
ρk,A

A(u)− AJM,η
ρk,A

A(v)||2 (2.3.3)

then

(i) the sequence {xk} converges strongly to a unique solution x∗ of (2.1.1),

(ii) with the rate of convergence θk =
√

1− αk − αk

2dk−1
< 1,

where dk := r − ρkm > 1.

Proof of theorem 2.3.2.

We begin by proving the following claim:

Claim:

If dk := r − ρkm > 1, then

〈A(xk)− A(x∗), R(xk, ρk)〉 ≥
dk − 1

2dk − 1
||A(xk)− A(x∗)||2 +

dk
2dk − 1

||R(xk, ρk)||2. (2.3.4)

Proof of claim:
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From (2.2.5) and (2.2.6), we have

AJM,η
ρ,A A(x) = A(x)−R(x, ρ)

and

AJM,η
ρ,A A(x∗) = A(x∗).

Then

〈AJM,η
ρk,A

A(xk)− AJM,η
ρ,A A(x∗), A(xk)− A(x∗)〉 = 〈A(xk)− A(x∗)−R(xk, ρk), A(xk)− A(x∗)〉

≥ dk||A(xk)− A(x∗)−R(xk, ρk)||2.

(2.3.5)

That is,

||A(xk)− A(x∗)||2−〈A(xk)− A(x∗), R(xk, ρk)〉

≥ dk
(
||A(xk)− A(x∗)||2 − 2〈A(xk)− A(x∗), R(xk, ρk)〉+ ||R(xk, ρk)||2

)
.

(2.3.6)

Therefore,

(2dk − 1)〈A(xk)− A(x∗), R(xk, ρk)〉 ≥ (dk − 1)||A(xk)− A(x∗)||2 + dk||R(xk, ρk)||2. (2.3.7)

Since dk > 1, so this proves the claim.

Remark 2.3.3 Technically we only need dk > 1
2

to prove the claim. However, the condition of

dk > 1 is necessary for the removal of Lipschitz continuity later on.
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Now, we begin the to prove the theorem.

From (2.3.2), we have

A(xk+1) = (1− αk)A(xk) + αkAJ
M,η
ρk,A

A(xk)

A(xk+1) = A(xk)− αk
(
A(xk)− AJM

k,η
ρk,A

A(xk)
)

A(xk+1) = A(xk)− αkR(xk, ρk).

(2.3.8)

Hence,

||A(xk+1)− A(x∗)||2 = ||A(xk)− A(x∗)− αkR(xk, ρk)||2

= ||A(xk)− A(x∗)||2 − 2αk〈A(xk)− A(x∗), R(xk, ρk)〉+ ||αkR(xk, ρk)||2

≤ ||A(xk)− A(x∗)||2 + ||αkR(xk, ρk)||2

− 2αk

(
dk − 1

2dk − 1
||A(xk)− A(x∗)||2 +

dk
2dk − 1

||R(xk, ρk)||2
)

=

(
1− αk

2dk − 2

2dk − 1

)
||A(xk)− A(x∗)||2 − αk

(
2dk

2dk − 1
− αk

)
||R(xk, ρk)||2

=

(
1− αk −

αk
2dk − 1

)
||A(xk)− A(x∗)||2 − αk

(
2dk

2dk − 1
− αk

)
||R(xk, ρk)||2.

(2.3.9)

Since dk > 1 and αk ∈ (0, 1], it follows that

0 < αk < 1 +
1

2dk − 2
=

2dk − 1

2dk − 2

0 < αk
2dk − 2

2dk − 1
< 1

0 < 1− αk
2dk − 2

2dk − 1
< 1

0 < 1− αk −
αk

2dk − 1
< 1.

(2.3.10)
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Therefore, from (2.3.9), since αk
(

2dk
2dk−1

− αk
)
> 0, it follows that ∀k ∈ N,

||A(xk+1)− A(x∗)||2 ≤
(

1− αk −
αk

2dk − 1

)
||A(xk)− A(x∗)||2

≤ ||A(xk)− A(x∗)||2

≤ ||A(x1)− A(x∗)||2.

(2.3.11)

Let θk =
√

1− αk − αk

2dk−1
. Since dk > 1 and 0 < ε = inf αk ≤ αk < 1, we have

0 < θk =

√
1− αk −

αk
2dk − 1

≤
√

1− ε− ε

2dk − 1
< 1. (2.3.12)

Let ρ = inf ρk, then dk = r − ρkm ≤ d where d := r − ρm. Hence, 0 < θk ≤ θ < 1, where

θ =
√

1− ε− ε
2d−1

.

Since A is r-strongly monotone, from (2.3.9) we have

r||xk+1 − x∗|| ≤ ||A(xk+1)− A(x∗)||

≤
√

1− αk
2dk − 2

2dk − 1
||A(xk)− A(x∗)||

= θk||A(xk)− A(x∗)||

≤ θ||A(xk)− A(x∗)||

≤ θk||A(x1)− A(x∗)|| → 0

(2.3.13)

as k →∞.

Therefore, limk→∞ ||xk−x∗|| = 0. Moreover, from (2.3.11) it follows that the sequence {A(xk)}is

bounded. Hence, xk → x∗ strongly. Now, we need to show that the solution is unique.

Assume that x∗1 and x∗2 are two solutions of (2.1.1).
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From (2.3.11) we have

||A(xk+1)− A(x∗)|| ≤ ||A(x1)− A(x∗)||. (2.3.14)

Hence, let a = limk→∞ inf ||A(xk)− A(x∗)||, then 0 ≤ a <∞.

Let a1 = limk→∞ inf ||A(xk)− A(x∗1)|| and a2 = limk→∞ inf ||A(xk)− A(x∗2)||.

Then

||A(xk)− A(x∗2)||2 = ||A(xk)− A(x∗1) + A(x∗1)− A(x∗2)||2

= ||A(xk)− A(x∗1)||2 + 2〈A(xk)− A(x∗1), A(x∗1)− A(x∗2)〉

+ ||A(x∗1)− A(x∗2)||2.

(2.3.15)

Since A(x∗1) is a limit point of A(xk), we have

0 = lim
k→∞

2〈A(xk)− A(x∗1), A(x∗1)− A(x∗2)〉 = a2
2 − a2

1 − ||A(x∗1)− A(x∗2)||2. (2.3.16)

Hence,

a2
1 = a2

2 − ||A(x∗1)− A(x∗2)||2. (2.3.17)

Similarly,

a2
2 = a2

1 − ||A(x∗1)− A(x∗2)||2. (2.3.18)
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Therefore,

||A(x∗1)− A(x∗2)|| = 0

r||x∗1 − x∗2|| ≤ ||A(x∗1)− A(x∗2)|| = 0

||x∗1 − x∗2|| = 0.

(2.3.19)

It follows that x∗1 = x∗2.

Finally, we find the estimate zk+1 = (1− αk)xk + αkJ
M,η
ρk,A

A(xk).

We have

||A(zk+1)− A(x∗)||2 = ||(1− αk)A(xk) + αkAJ
M,η
ρk,A

A(xk)− A(x∗)||2

= ||A(xk)− A(x∗)− αk(A(xk)− AJM,η
ρk,A

A(xk))||2

= ||A(xk)− A(x∗)− αkR(xk, ρk)||2

≤ θ||A(xk)− A(x∗)||,

(2.3.20)

where 0 < θ =
√

1− ε− ε
2d−1

< 1.

This completes the proof. �

Remark 2.3.4 After defending our dissertation results, we found that if the equality conditions of

yn from the main theorems of the papers of Li ([29]), Verma ([39, 41, 42, 44, 48], and Agarwal

et al. ([2]) are obtained, then we will be able to apply the method of this chapter to remove the

Lipschitz continuity by using similar approaches:

1. Based on the specific conditions of each paper mentioned above, define the new function

R(x, ρ) that is similar to (2.2.5), then show that Lemma 2.2.11 and Lemma 2.3.1 also hold.
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2. Show that equation (2.3.4) from the proof of the claim in theorem 2.3.2 also holds.

3. Show that equation (2.3.8) also holds, i.e. A(xk+1) = A(xk) − βkR(xk, ρk) for some βk ∈

[ε, 1), with 0 < ε < 1.

With the new approach to the theorems mentioned above, we will need to adjust some conditions

of the scalar sequences {αk}, {δk}, or {ρk} so that the sequence {βk} will be contained in [ε, 1).

However, in return we will be able to simplify the restrictions of the parameters in the theorems.

Moreover, we will also be able to remove the Lipschitz continuity requirement of the operator A

from the theorems, which may not be necessary or difficult to compute in practice.

2.4 Conclusion

In this chapter, we restricted the conditions for the sequence {αk} of positive real numbers to be

between 0 and 1 and is bounded away from zero. We also need d := r − ρm > 1. Under the

given conditions, we showed that the Lipschitz continuity requirement for the monotone mapping

A can be omitted. In 2009, Verma ([39]) generalized the over-relaxed proximal point algorithm and

solved general implicit variational inclusion problems in Hilbert spaces. However in 2016, Huang

and Noor ([25]) showed that the main result of Verma’s paper was incorrect and also suggested

that the Lipschitz continuity assumption of the monotone operator could be dropped. Inspired

by the work of Huang and Noor, we showed that the Lipschitz continuity condition can actually

be omitted from other papers such as Li ([29]), Verma ([39, 41, 42, 44, 48], and Agarwal et al.

([2]). Once again, the objectives of this paper do not by any mean discredit or take away the

original contribution given by Verma and many others. Instead, it would be interesting to examine

if the Lipschitz continuity of the operators can be dropped and hence, it could open an alternating

approach to study variational inclusion problems in the future.
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CHAPTER 3: DENSELY RELAXED PSEUDOMONOTONE AND

PROPERLY RELAXED QUASIMONOTONE VARIATIONAL-LIKE

INEQUALITIES

3.1 Introduction

Let X be a real reflexive Banach space with dual space X∗ and K be a nonempty closed convex

subset ofX . We shall denote by 〈·, ·〉 the duality pairing betweenX∗ andX , and by 2X
∗ the family

of all nonempty subsets of X∗. Let Φ : K → 2X
∗ be a set-valued mapping and η : K ×K → X

be a mapping.

The generalized variational-like inequality defined byK, Φ and η, is the problem of finding x̄ ∈ K

such that

(GVLIP) ∃x∗ ∈ Φ(x̄), 〈x∗, η(y, x̄)〉 ≥ 0, ∀y ∈ K. (3.1.1)

If Φ(x) = {T (x)}, where T : K → X∗ be a single-valued mapping, then the problem (3.1.1) is

called a variational-like inequality and it is reduced to finding a vector x̄ ∈ K such that

〈T (x̄), η(y, x̄)〉 ≥ 0,∀y ∈ K. (3.1.2)

If we take η(y, x) = y − x, then the problems (3.1.1) and (3.1.2) reduce, respectively to classical

generalized variational inequality and variational inequality problems which consist to find a vector

x̄ ∈ K such that

∃x∗ ∈ Φ(x̄), 〈x∗, y − x̄〉 ≥ 0, ∀y ∈ K. (3.1.3)
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and,

〈T x̄, y − x̄〉 ≥ 0,∀y ∈ K. (3.1.4)

The existence of solutions for the variational-like inequalities (3.1.2) was established by many

authors, see for instance [6, 7, 31] and the reference therein. One can observe that the opera-

tors involved in the variational inequality problems play a leading role in the generalization of

variational inequalities. The researchers in the literature extended the variational inequality (VI)

problems into generalized variational inequality (GVI) problems, generalized quasi-variational in-

equality (GQVI) problems, variational-like inequality (VLI) problems and mixed variational-like

inequality (MVLI) problems etc.., with the proper generalizations of associated monotone oper-

ators and the underlying spaces. For instance Verma [39] defined p−monotone type maps and

proved that the nonlinear variational inequality (NVI) problems have solutions, Sahu et al. [36]

defined (A, η)-maximal monotonicity, Bai et al. [6] defined relaxed η − α pseudomonotonicity,

Pany et al. [33] defined generalized weakly relaxed η − α monotonicity and proved that the vari-

ational inequality problems have solutions. The variational inequalities have many applications in

mechanics, engineering and equilibrium problems etc. The researchers like Chadli et al. [14] and

Sahu et al. [35], extended and applied the variational inequalities into equilibrium problems.

Hadjisavvas and Schaible [24] in 1996 defined inner points of reflexive Banach spaces and proved

many existence results for the variational-like inequalities (3.1.4) by using quasimonotonicity of

the associated operator. In 1999, Daniilidis and Hadjisavvas [18] defined properly quasimono-

tonicity and proved that the variational inequalities (3.1.4) has solution for T to be a multivalued

mapping. In 2004, Aussel and Hadjisavvas [5] further generalized the results of Hadjisavvas and

Schaible [24] by considering multivalued mapping T to be upper sign-continuous. In 2013, Chen

and Luo [15] established the existence results for the variational-like inequalities (3.1.2) for relaxed

η − α quasimonotonicity.
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In 2007, Bai et al. [7] defined densely relaxed µ pseudomonotonicity and proved some interesting

existence results for the variational inequalities (3.1.4). Again in 2006, Bai et. al. [6] defined

relaxed η − α pseudomonotonicity as follows:

The operator T : K → X∗ is said to be relaxed η − α pseudomonotone if there exists a function

η : K ×K → X and a function α : X → R with α(tz) = tpα(z),∀t > 0 and z ∈ X such that for

any x, y ∈ K, we have

〈Tx, η(y, x)〉 ≥ 0 =⇒ 〈Ty, η(y, x)〉 ≥ α(y − x), (3.1.5)

where p > 1 is a constant. They have used the above monotonicity and proved some important

existence results for the variational-like inequalities (3.1.2).

Inspired and motivated by these works, in this chapter, we introduce generalized densely relaxed

η−α pseudomonotone operator and generalized relaxed η−α properly quasimonotone operator as

well as relaxed η − α quasimonotone operator. Using these generalized monotonicity notions, we

establish the existence results for the generalized variational-like inequalities (3.1.1) and (3.1.2) in

the general setting of Banach spaces. The results obtained in this chapter improve and generalize

many existing results in literature, namely the results by Bai et. al. [7], Luc [30], Daniilidis and

Hadjisavvas [18], Aussel and Hadjisavvas [5] and Chen et al. [15]. Furthermore, we give an

alternative to the results obtained by Arunchai et al. in [4] which seem to be wrong results.

The chapter is organized as the following. In section 2, we introduce the notions of generalized

densely relaxed η − α pseudomonotonicity, η-upper sign-continuity, generalized relaxed η − α

proper quasimonotonicity and relaxed η − α quasimonotonicity for operators, and then give some

definitions and preliminary results. Section 3 is devoted to the study of the existence and unique-

ness of solutions for generalized variational-like inequalities with generalized densely relaxed η−α
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pseudomonotone operators in Banach spaces. In section 4, we focus our study on the existence

of solutions for generalized variational-like inequalities associated to a generalized η − α quasi-

monotone operator. Finally, we end the chapter by some remarks and comments as well as some

comparisons with existing results in the literature which show the interest of the approach devel-

oped in this study.

3.2 Preliminaries and Definitions

Assume X be a normed space with norm ‖ · ‖ and X∗ be its dual. Let K be a nonempty subset

of X and 〈·, ·〉 denotes the pairing between X∗ and X . We shall denote by co({y1, y2, ..., yn}) the

convex hull of a finite subset {y1, y2, ..., yn} of K and by 2X the family of all subsets of X . For

r > 0, we shall denote by B̄(0, r) := {x ∈ X : ‖x‖ ≤ r} the closed ball in X .

The following definitions can be found on [4, 5, 6, 7, 8], [22], [30], and [31].

Definition 3.2.1 Let K be a convex subset of X and f : K → R be a real-valued function, then f is

said to be

(i) hemicontinuous if for any x, y ∈ K fixed,

lim
t→0+

f(x+ t(y − x)) = f(x);

(ii) upper semicontinuous at x ∈ X if for any sequence {xn}n∈N ⊂ X converging to x, we have

lim supn→∞ f(xn) ≤ f(x);

(iii) weakly lower semicontinuous at x ∈ X if for any sequence {xn}n∈N ⊂ X converging weakly

to x, we have f(x) ≤ lim infn→∞ f(xn).

34



Definition 3.2.2 An operator T : K → X∗ is said to be

(i) monotone on K if for each x, y ∈ K :

〈T (x)− T (y), x− y〉 ≥ 0;

(ii) hemicontinuous (respectively, upper hemicontinuous) if for all x, y, z ∈ X , the functional

t 7→ 〈T (x+ t(y − x)), z〉 is continuous (respectively, upper semicontinuous) at 0+.

Definition 3.2.3 [30] An operator T : K → X∗ is said to be

(i) pseudomonotone at x ∈ K if for each y ∈ K :

〈T (y), x− y〉 ≥ 0 =⇒ 〈T (x), x− y〉 ≥ 0,

if T is pseudomonotone for every x ∈ K, we say that T is pseudomonotone on K;

(ii) quasimonotone at x ∈ K if for each y ∈ K :

〈T (y), x− y〉 > 0 =⇒ 〈T (x), x− y〉 ≥ 0,

if T is quasimonotone for every x ∈ K, we say that T is quasimonotone on K.

Definition 3.2.4 [4] Let T : K → X∗ and η : K ×K → X be mappings, and let α : X → R be

a function such that lim
t→0+

α(tη(x, y))

t
= 0, for all (x, y) ∈ K ×K. The operator T is said to be

relaxed η − α pseudomonotone if for any x, y ∈ K, we have

〈Tx, η(y, x)〉 ≥ 0 =⇒ 〈Ty, η(y, x)〉 ≥ α(η(y, x)). (3.2.1)
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Definition 3.2.5 Let Φ : K → 2X
∗

be a set-valued mapping, η : K ×K → X be a mapping and

α : X → R be a function such that lim
t→0+

α(tη(x, y))

t
= 0, for all (x, y) ∈ K ×K. The set-valued

mapping Φ is said to be

(i) relaxed η − α pseudomonotone if for any x, y ∈ K and x∗ ∈ Φ(x), y∗ ∈ Φ(y), we have

〈x∗, η(y, x)〉 ≥ 0 =⇒ 〈y∗, η(y, x)〉 ≥ α(η(y, x)); (3.2.2)

(ii) properly η− α quasimonotone if for all {x1, x2, · · · , xn} ⊂ K and x ∈ co({x1, x2, · · · , xn}),

there exists i ∈ {1, · · · , n} such that for all x∗ ∈ Φ(xi) we have

〈x∗, η(xi, x)〉 ≥ α(η(xi, x));

(iii) η − α quasimonotone if for any x, y ∈ K and x∗ ∈ Φ(x), y∗ ∈ Φ(y), we have

〈x∗, η(y, x)〉 > 0 =⇒ 〈y∗, η(y, x)〉 ≥ α(η(y, x)). (3.2.3)

Remark 3.2.6

1. Suppose that Φ is relaxed η − α pseudomonotone and η satisfies the following properties:

(a) η(x, x) = 0 for all x ∈ K, (b) η(tx+(1− t)y, z) = tη(x, z)+(1− t)η(y, z) for t ∈ [0, 1]

and x, y, z ∈ K. Then, Φ is properly η − α quasimonotone.

2. Suppose that Φ is properly η−α quasimonotone and η satisfies the following properties: (a)

η(x, y) + η(y, x) = 0 for all x, y ∈ K, (b) η(tx + (1 − t)y, z) = tη(x, z) + (1 − t)η(y, z)

for t ∈ [0, 1] and x, y, z ∈ K, (c) limt→0+
α(tz)
t

= 0 for any z ∈ X . Then, Φ is η − α
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quasimonotone. Indeed, let x, y ∈ K and x∗ ∈ Φ(x) such that

〈x∗, η(y, x)〉 > 0. (3.2.4)

Since Φ is properly η− α quasimonotone, it follows that for any w ∈ co({x, y}) there exists

z ∈ {x, y} such that for all z∗ ∈ Φ(z) we have

〈z∗, η(z, w)〉 ≥ α(η(z, w)). (3.2.5)

Since η(z, w) + η(w, z) = 0, we derive

〈z∗, η(w, z)〉+ α(−η(w, z)) ≤ 0. (3.2.6)

Suppose that z = x. Then for t ∈]0, 1[, let w = (1 − t)x + ty ∈ co({x, y}). From (3.2.6)

and by using the properties (a) and (b) of η, we deduce for all x∗ ∈ Φ(x)

t〈x∗, η(y, x)〉+ α(−tη(y, x)) ≤ 0.

Hence,

〈x∗, η(y, x)〉+
α(−tη(y, x))

t
≤ 0.

Since limt→0+
α(tz)
t

= 0 for any z ∈ X , we deduce from the previous inequality that

〈x∗, η(y, x)〉 ≤ 0, which contradicts (3.2.4). Therefore, z = y and the conclusion follows

from (3.2.5) by taking w = x.

In the rest of the chapter, we shall call the relaxed η − α pseudomonotonicity given in the def-

inition above and which was introduced by Arunchai et al. [4], by generalized relaxed η − α
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pseudomonotonicity to distinguish it from relaxed η − α pseudomonotonicity of Bai et al. [6].

Definition 3.2.7 Let T : K → X∗ and η : K × K → X be mappings, and let α : X → R be

a function such that lim
t→0+

α(tη(x, y))

t
= 0, for all (x, y) ∈ K ×K. The operator T is said to be

generalized relaxed η − α pseudomonotone at x ∈ K if for each y ∈ K

〈T (y), η(x, y)〉 ≥ 0 =⇒ 〈T (x), η(x, y)〉 ≥ α(η(y, x)). (3.2.7)

Definition 3.2.8 Let Φ : K → 2X
∗

be a set-valued mapping, η : K ×K → X be a mapping and

α : X → R be a function such that lim
t→0+

α(tη(x, y))

t
= 0, for all (x, y) ∈ K ×K. The set-valued

mapping Φ is said to be relaxed η−α pseudomonotone at x ∈ K if for any y ∈ K and x∗ ∈ Φ(x),

y∗ ∈ Φ(y), we have

〈y∗, η(x, y)〉 ≥ 0 =⇒ 〈x∗, η(x, y)〉 ≥ α(η(x, y)). (3.2.8)

Definition 3.2.9 [6] Let T : K → X∗ and η : K × K → X be two mappings. T is said to

be η-hemicontinuous if, for any fixed x, y ∈ K, the mapping f : [0, 1] → R defined by f(t) =

〈T (x+ t(y − x)), η(y, x)〉 is continuous at 0+.

Definition 3.2.10 [30] Let K be a convex set in X and K0 a subset of K. The set K0 is said to be

segment-dense in K if for each x ∈ K, there exits x0 ∈ K0 such that x is a cluster point of the set

[x, x0] ∩K0.

Inspired and motivated by the works of Arunchai [4] and Luc [30], we introduce the definition of

generalized densely relaxed η − α pseudomonotone operator as the following.
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Definition 3.2.11 Let T : K → X∗ and η : K × K → X be mappings, and let α : X → R be

a function such that lim
t→0+

α(tη(x, y))

t
= 0, for all (x, y) ∈ K × K. The operator T : K → X∗

is said to be generalized densely relaxed η − α pseudomonotone mappings on K if there exists a

segment-dense subset K0 ⊂ K such that T is generalized relaxed η − α pseudomonotone at every

point of K0.

Definition 3.2.12 The set-valued mapping Φ : K → 2X
∗

is said to be generalized densely relaxed

η − α pseudomonotone mappings on K if there exists a segment-dense subset K0 ⊂ K such that

Φ is generalized relaxed η − α pseudomonotone at every point of K0.

Remark 3.2.13

1. If in Definition 3.2.11 we consider η(x, y) = x − y and α(z) = −µ‖z‖2, then the general-

ized densely relaxed η − α pseudomonotonicity reduces to the notion of densely relaxed µ

pseudomonotonicity on K due to Bai et al. [7]. Thus the generalized densely relaxed η − α

pseudomonotonicity generalizes the densely relaxed µ pseudomonotonicity given by Bai et.

al. [7].

2. If T is pseudomonotone at every point on K0, then T is said to be densely pseudomonotone

on K by Luc [30]. Thus the generalized densely relaxed η − α pseudomonotonicity notion

also extends the densely pseudomonotonicity concept introduced by Luc [30].

Definition 3.2.14 An operator T : K → X∗ is said to be generalized relaxed η − α quasi-

monotone, if there exists a function η : K × K → X and a function α : X → R with

lim
t→0+

α(tη(x, y))

t
= 0,∀(x, y) ∈ K ×K such that for any x, y ∈ K, we have

〈Tx, η(y, x)〉 > 0 =⇒ 〈Ty, η(y, x)〉 ≥ α(η(y, x)). (3.2.9)
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Remark 3.2.15 If α(η(y, x)) = α(y−x), then (3.2.9) implies that T is relaxed η−α quasimono-

tone mapping established by Chen and Luo [15] in 2013:

〈Tx, η(y, x)〉 > 0 =⇒ 〈Ty, η(y, x)〉 ≥ α(y − x).

Again if η(y, x) = y− x and α(u) = −µ‖u‖2, then (3.2.9) implies that T is relaxed µ quasimono-

tone mapping given by Bai et al [7] in 2007:

〈Tx, y − x〉 > 0 =⇒ 〈Ty, y − x〉 ≥ −µ‖y − x‖2.

Definition 3.2.16 An operator T : K → X∗ is said to be generalized relaxed η − α prop-

erly quasimonotone, if there exists a function η : K × K → X and a function α : X → R

with lim
t→0+

α(tη(x, y))

t
= 0,∀(x, y) ∈ K × K such that for any y1, y2, ..., yn ∈ K and x ∈

co({y1, y2, ..., yn}), there exits i ∈ {1, 2, ..., n} such that

〈Tyi, η(yi, x)〉 ≥ α(η(yi, x)). (3.2.10)

Remark 3.2.17

1. If we take α(η(y, x)) = α(y − x), then our generalized relaxed η − α properly quasimono-

tonicity reduces to the relaxed η − α properly quasimonotonicity given by Chen and Luo in

[15].

2. If we take η(y, x) = y − x and α(u) = 0, then we will get properly quasimonotonicity given

by Daniilidis and Hadjisavvas [18] in case of T single valued.

Definition 3.2.18 [22] The set-valued mapping F : K → 2X is said to be a KKM mapping if for
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any finite subset {y1, y2, ..., yn} of K, we have

co({y1, y2, ..., yn}) ⊂
n⋃
i=1

F (yi).

Definition 3.2.19 Let X be a Banach space with topological dual space X∗ and K be a nonempty

subset of X . A set-valued mapping Φ : K → 2X
∗

is said to be

(i) lower semicontinuous, if Φ(x) 6= ∅ for all x ∈ K and for any x ∈ K, for any open setO ⊂ X∗

such that Φ(x) ∩ O 6= ∅, there exists a neighborhood U of x such that Φ(x) ∩ O 6= ∅ for

every x ∈ U .

(ii) upper semicontinuous, if for any x ∈ K and any open set O ⊂ X∗ such that Φ(x) ⊂ O, there

exists a neighborhood U of x such that Φ(x) ⊂ O for every x ∈ U .

(iii) upper hemicontinuous, if the restriction of Φ to every line segment of K is upper semicontin-

uous.

The following Lemma given by Fan [22] will be needed in the sequel.

Lemma 3.2.20 [22] Let M be a nonempty subset of a Hausdorff topological vector space X and

let F : M → 2X be a KKM mapping. If F (y) is closed in X for all y ∈ M and compact for some

y ∈M , then ⋂
y∈M

F (y) 6= φ.

Lemma 3.2.21 (Michael selection theorem [32]) Let X be a paracompact space and Y be a Ba-

nach space. Then every lower semicontinuous set-valued mapping Φ : X → 2Y such that Φ(x) is a

nonempty, closed, convex subsets of Y admits a continuous selection, i.e. there exists a continuous

function φ : X → Y such that φ(x) ∈ Φ(x) for each x ∈ X .
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We end this section by the following result that will be needed in the sequel.

Lemma 3.2.22 [10] Let D be a convex and compact set, and let K be a convex set. Let p :

D×K → R be convex and lower semicontinuous in the first argument, and concave in the second

argument. Assume that

min
ξ∈D

p(ξ, y) ≤ 0, for all y ∈ K.

Then, there exists ξ̄ ∈ D such that p(ξ̄, y) ≤ 0 for all y ∈ K.

3.3 Existence Results for (GVLIP) with Generalized Densely Relaxed η − α Pseudomonotone

Mappings

In this section, we establish some existence results for the variational-like inequalities (3.1.2) with

the generalized densely relaxed η−α pseudomonotonicity and compare our results with the exist-

ing results in literature.

Theorem 3.3.1 Let K be a nonempty, convex and compact subset of a normed space X and T :

K → X∗ be an η−hemicontinuous and generalized densely relaxed η−α pseudomonotone on K.

Suppose that

(i) η(x, y) + η(y, x) = 0, for all x, y ∈ K;

(ii) η(tx+ (1− t)z, y) = tη(x, y) + (1− t)η(z, y), for all x, y, z ∈ K and t ∈ [0, 1];

(iii) For each fixed w, z ∈ K, the mapping y ∈ K 7→ α(η(y, z)) is lower hemicontinuous and the

mapping x ∈ K 7→ α(η(w, x)) is lower semicontinous;

(iv) For each fixed x, z ∈ K, the mapping y ∈ K 7→ 〈Tx, η(y, z)〉 is lower semicontinuous.
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Then variational-like inequalities (3.1.2) has a solution.

Proof. Since T is generalized densely relaxed η − α pseudomonotone on K, it follows that there

exists a segment-dense subset K0 ⊂ K such that T is generalized relaxed η − α pseudomonotone

at every point of K0. For any y ∈ K0, define a set valued mapping F : K0 → 2K by

F (y) = {x ∈ K : 〈Tx, η(y, x)〉 ≥ 0}.

From (ii), we have that y ∈ F (y) and hence F (y) 6= ∅ for each y ∈ K0. We claim that F is a

KKM mapping. Suppose by contradiction that F is not a KKM mapping, then there exists a subset

{x1, x2, ..., xn} of K0, such that

co({x1, x2, ..., xn}) 6⊆
n⋃
i=1

F (xi).

That is there exists x0 ∈ co({x1, x2, ..., xn}), x0 =
∑n

i=1 tixi, where ti ≥ 0, i = 1, 2, ..., n,∑n
i=1 ti = 1, such that x0 /∈

⋃n
i=1 F (xi). From the definition of F , we have

〈T (x0), η(xi, x0))〉 < 0, ∀i = 1, 2, ..., n.

Since by (i) we have η(x0, x0) = 0, it follows by using (ii) that

0 = 〈T (x0), η(x0, x0)〉

= 〈T (x0), η(
n∑
i=1

tixi, x0)〉

=
n∑
i=1

ti〈T (x0), η(xi, x0)〉

< 0,
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which is a contradiction. Thus F is a KKM mapping. Let us consider the following set-valued

mapping G : K0 → 2K defined by

G(y) = {x ∈ K : 〈Ty, η(y, x)〉 ≥ α(η(y, x))}.

Since T is generalized relaxed η − α pseudomonotone on K0, it follows that F (y) ⊆ G(y), for all

y ∈ K0. Therefore G is a KKM mapping as F is a KKM mapping. Now, let us verify that G(y)

is closed for each y ∈ K0. To this aim, let {xn}n∈N ⊂ G(y) such that xn → x. Then from the

definition of G, we have

〈Ty, η(y, xn)〉 ≥ α(η(y, xn)).

Hence, from (i) we get

α(η(y, xn)) + 〈Ty, η(xn, y)〉 ≤ 0.

By using (iii) and (iv), it follows

α(η(y, x)) + 〈Ty, η(x, y)〉 ≤ lim inf α(η(y, xn)) + lim inf〈Ty, η(xn, y)〉

≤ lim inf [α(η(y, xn)) + 〈Ty, η(xn, y)〉]

≤ 0.

Thus, by using (i) once again, we get

〈Ty, η(y, x)〉 ≥ α(η(y, x)).

Therefore x ∈ G(y) and hence G(y) is closed for each y ∈ K0. Since by assumptions we have that

K is a nonempty compact subset of X , it follows that G(y) is compact for each y ∈ K0. Therefore
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from Lemma 3.2.20, we have ⋂
y∈K0

G(y) 6= ∅. (3.3.1)

Let x∗ ∈
⋂
y∈K0

G(y), then

〈Tz, η(z, x∗)〉 ≥ α(η(z, x∗)), ∀z ∈ K0. (3.3.2)

Let y be an arbitrary element in K. Since K0 is segment-dense in K, it follows that there exists

z0 ∈ K such that y is a cluster point of [y, z0] ∩ K0. Then, there exists a sequence {yn}n∈N ⊂

[y, z0] ∩K0 such that yn → y. Hence, yn = y + tn(z0 − y) ∈ K0 with tn ∈ [0, 1] and tn → 0. By

using relation (3.3.2), we obtain

〈Tyn, η(yn, x
∗)〉 ≥ α(η(yn, x

∗)), ∀n ∈ N. (3.3.3)

Assumption (ii) leads us to obtain

(1− tn)〈T (y + tn(z0 − y)), η(y, x∗)〉+ tn〈T (y + tn(z0 − y)), η(z0, x
∗)

≥ α(η(y + tn(z0 − y), x∗)), ∀n ∈ N.
(3.3.4)

Since T is η-hemicontinuous and α(η(·, x∗)) is lower hemicontinuous on K, it follows from rela-

tion (3.3.4) that

〈Ty, η(y, x∗)〉 ≥ α(η(y, x∗)), ∀y ∈ K. (3.3.5)

Now, for t ∈]0, 1] let us set yt := (1− t)x∗ + ty ∈ K, where y is an arbitrary element in K. From

(3.3.5), we have

〈Tyt, η(yt, x
∗)〉 ≥ α(η(yt, x

∗)), for all t ∈]0, 1]. (3.3.6)
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By using assumption (ii) and the fact that η(x∗, x∗) = 0, we derive from (3.3.6)

t〈Tyt, η(y, x∗)〉 ≥ α(tη(y, x∗)), for all t ∈]0, 1].

Hence,

〈Tyt, η(y, x∗)〉 ≥ α(tη(y, x∗))

t
, for all t ∈]0, 1].

By considering the limit when t → 0+ in the previous inequality and by taking account of the

η-hemicontinuity of T and the fact that lim
t→0+

α(tη(y, x∗))

t
= 0, we obtain

〈Tx∗, η(y, x∗)〉 ≥ 0, for all y ∈ K.

Consequently, x∗ is a solution of the variational-like inequality (3.1.2). Which completes the proof.

�

Remark 3.3.1

1. If in Theorem 3.3.1 we take η(y, x) = y − x and α(u) = −µ‖u‖2 , then we obtain Theorem

3.1 of Bai et al. [7] as a particular case.

2. As every relaxed η−α pseudomonotone operator is densely relaxed η−α pseudomonotone

operator, we see that Theorem 3.3.1 is the proper generalization of [6, Theorem 3.2 ].

3. Clearly our densely relaxed η − α pseudomonotonicity generalizes densely pseudomono-

tonicity of Luc [30]. Therefore, Theorem 3.3.1 extends Theorem 4.3 of Luc [30].

We have the following existence result for the variational-like inequalities (3.1.2) when K is an

unbounded subset of X .
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Theorem 3.3.2 Let K be a locally compact, convex unbounded subset of a normed space X and

T : K → X∗ be an η−hemicontinuous and generalized densely relaxed η−α pseudomonotone on

K. Suppose that the conditions (i)-(iv) of Theorem 3.3.1 are satisfied. Furthermore, suppose that

0 ∈ K and that one of the following assumptions is satisfied: For every sequence {xn}n∈N ⊂ K

with lim ‖xn‖ = +∞,

[A1] ∃n0 ∈ N∗ such that 〈Txn0 , η(0, xn0)〉 ≤ 0;

[A2] ∃n0 ∈ N∗ and y ∈ K with ‖y‖ < ‖xn0‖ such that 〈Txn0 , η(xn0 , y)〉 ≥ 0;

[A3] ∃n0 ∈ N∗ and y ∈ K such that 〈Ty, η(y, xn)〉 < α(η(y, xn), ∀n ≥ n0.

Then the variational-like inequalities (3.1.2) has at least one solution.

Proof. Define the set Bn := K ∩ B̄(0, n), for n ∈ N∗. Clearly the sets Bn, n ∈ N∗, are compact

and convex. Hence by Theorem 3.3.1, there exists xn ∈ Bn such that

〈Txn, η(x, xn)〉 ≥ 0, ∀x ∈ Bn, for every n ≥ 1. (3.3.7)

If ‖xn‖ < n, for some n ∈ N∗, then xn is local minimum of the function ϕ(x) = 〈Txn, η(x, xn)〉

on K. Hence it is also a global minimum, that is

〈Txn, η(x, xn)〉 ≥ 0, ∀x ∈ K. (3.3.8)

Hence xn is a solution variational-like inequalities (3.1.2).

If ‖xn‖ = n, for all n ≥ 1. Assume that hypodissertation [A1] holds. Let us verify that xn0 is a

solution of the variational-like inequalities (3.1.2). Since 0 ∈ K, we have for any x ∈ K there
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exists t ∈]0, 1] such that tx ∈ Bn0 . Hence,

〈Txn0 , η(tx, xn0)〉 ≥ 0.

By using assumption (ii), it follows that

t〈Txn0 , η(x, xn0)〉+ (1− t)〈Txn0 , η(0, xn0)〉 ≥ 0.

Hence, from [A1] we deduce that 〈Txn0 , η(x, xn0)〉 ≥ 0, and consequently xn0 is a solution of the

variational-like inequalities (3.1.2).

Assume that hypodissertation [A2] holds, i.e. ∃n0 ∈ N∗ and y ∈ K with ‖y‖ < ‖xn0‖ such that

〈Txn0 , η(xn0 , y)〉 ≥ 0. (3.3.9)

Since ‖y‖ < ‖xn0‖ = n0, it follows that y ∈ Bn0 and hence

〈Txn0 , η(y, xn0)〉 ≥ 0. (3.3.10)

From (3.3.9), (3.3.10) and assumption (i), we deduce that

〈Txn0 , η(y, xn0)〉 = 0.

Hence, y is a local minimum of the function ψ(x) = 〈Txn0 , η(x, xn0)〉 on K. It follows that y is a

global minimum of ψ on K. Thus,

〈Txn0 , η(x, xn0)〉 ≥ 〈Txn0 , η(y, xn0)〉 = 0, for all x ∈ K.
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Therefore, xn0 is a solution of the variational-like inequalities (3.1.2).

Assume that hypodissertation [A3] holds, i.e. ∃n0 ∈ N∗ and y ∈ K such that

〈Ty, η(y, xn)〉 < α(η(y, xn)), ∀n ≥ n0. (3.3.11)

Let us fix n ≥ n0 and let us set z̃ = xn. Since K0 is segment-dense in K, it follows that there

exists z̃0 ∈ K0 such that z̃ is a cluster point of [z̃, z̃0]∩K0. Hence, there exists {z̃k}k∈N ⊂ K0 with

z̃k = tkz̃0 + (1− tk)z̃ where {tk}k∈N ⊂ [0, 1] and tk → 0, i.e. z̃k → z̃. Note that

〈Ty, η(z̃k, y)〉+ α(η(y, z̃k)) = (1− tk)〈Ty, η(z̃, y)〉+ tk〈Ty, η(z̃0, y)〉+ α(η(y, z̃k)).

It follows, by using assumptions (i) and (iv),

lim inf [〈Ty, η(z̃k, y)〉+ α(η(y, z̃k))]

≥ lim [(1− tk)〈Ty, η(z̃, y)〉+ tk〈Ty, η(z̃0, y)〉] + lim inf α(η(y, z̃k))

≥ 〈Ty, η(z̃, y)〉+ α(η(y, z̃))

Since by (3.3.11) and assumption (i), we have that 〈Ty, η(z̃, y)〉+ α(η(y, z̃)) > 0, it follows that

lim inf [〈Ty, η(z̃k, y)〉+ α(η(y, z̃k))] > 0.

Hence, there exists a subsequence of {z̃k}k∈N also denoted by {z̃k}k∈N such that

lim [〈Ty, η(z̃k, y)〉+ α(η(y, z̃k))] > 0.
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Therefore, there exists k0 ∈ N∗, such that

〈Ty, η(z̃k, y)〉+ α(η(y, z̃k)) > 0, for all k ≥ k0,

which implies, by using assumption (i),

〈Ty, η(y, z̃k)〉 < α(η(y, z̃k)), for all k ≥ k0.

Since z̃k ∈ K0 and T is generalized relaxed η − α pseudomonotone at z̃k, it follows from relation

(3.2.7) that

〈T z̃k, η(y, z̃k)〉 < 0, for all k ≥ k0.

Thus, from assumption (i) we get

〈T z̃k, η(z̃k, y)〉 > 0, for all k ≥ k0.

Consequently, by using (ii), we obtain

(1− tk)〈T z̃k, η(z̃, y)〉+ tk〈T z̃k, η(z̃0, y)〉 > 0, for all k ≥ k0.

By considering the limit in the previous inequality and by taking account of the fact that T is

η-hemicontinuous, we deduce

〈T z̃, η(z̃, y)〉 ≥ 0.

Since z̃ = xn, where n ≥ n0 is arbitrary, we derive

〈Txn, η(xn, y)〉 ≥ 0, for all n ≥ n0.
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Let us consider n ≥ n0 such that ‖y‖ < n. Therefore, assumption [A2] is satisfied, and hence the

variational-like inequality (3.1.2) has at least one solution. �

Remark 3.3.2 Theorem 3.3.2 generalizes the Corollary 3.1 of Bai et al. [7] and Theorem 3.3 of

Bai et al. [6].

Theorem 3.3.3 Let K be a nonempty convex and compact subset of a normed space X . Let

η : K ×K → X be a mapping and Φ : K → 2X
∗

be a set-valued mapping with nonempty closed

and convex values. Suppose that conditions (i)-(iii) of Theorem 3.3.1 are satisfied and that the

following assumptions hold:

[H1] Φ is lower semicontinuous where X∗ is endowed with the strong topology;

[H2] Φ is generalized densely relaxed η − α pseudomonotone;

[H3] For each x, z ∈ K and ξ ∈ Φ(x), the mapping y ∈ K 7→ 〈ξ, η(y, z)〉 is lower semicontinu-

ous.

Then the generalized variational-like inequality problem (3.1.1) has a solution.

Proof. Since every metrizable space is paracompact, then from the Michael’s selection theo-

rem (Lemma 3.2.21) we deduce that there exists a continuous mapping F : K → X∗ such that

F (x) ∈ Φ(x) for any x ∈ K. We can easily verify that F is generalized densely relaxed η − α

pseudomonotone. Indeed, since Φ is generalized densely relaxed η − α pseudomonotone, there

exists a segment-dense set K0 ⊂ K such that Φ is generalized relaxed η − α pseudomonotone

on K0. Let x0 ∈ K0 and y ∈ K such that 〈F (y), η(x0, y)〉 ≥ 0. Since F (y) ∈ Φ(y) and Φ is

generalized relaxed η − α pseudomonotone at x0, it follows for any x∗ ∈ Φ(x0) we have

〈x∗, η(x0, y)〉 ≥ α(η(x0, y)).
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Particularly, if we take x∗ = F (x0) ∈ Φ(x0) in the previous inequality, we obtain

〈F (x0), η(x0, y)〉 ≥ α(η(x0, y)).

Therefore, F generalized densely η − α pseudomonotone. Hence, from Theorem 3.3.1 we deduce

that there exists x̄ ∈ F (x̄) such that

〈F (x̄), η(y, x̄)〉 ≥ 0, for all y ∈ K.

Thus, there exists x∗ = F (x̄) ∈ Φ(x̄) such that

〈x∗, η(y, x̄)〉 ≥ 0, for all y ∈ K.

Which completes the proof of the theorem. �

Theorem 3.3.3 can be extended to the case where K in not necessarily bounded. We have the

following result.

Theorem 3.3.4 Let K be a locally compact, convex unbounded subset of a normed space X . Let

η : K ×K → X be a mapping and Φ : K → 2X
∗

be a set-valued mapping with nonempty closed

and convex values. Suppose that all the conditions of Theorem 3.3.3 are satisfied. Then each of the

following conditions is sufficient for the generalized variational-like inequality problem (3.1.1) to

have a solution: For every sequence {xn}n∈N ⊂ K with lim ‖xn‖ = +∞,

[C1] ∃n0 ∈ N∗ such that 〈ξ, η(0, xn0)〉 ≤ 0, for all ξ ∈ Φ(xn0);

[C2] ∃n0 ∈ N∗ and y ∈ K with ‖y‖ < ‖xn0‖ such that infz∗∈Φ(xn0 )〈z∗, η(xn0 , y)〉 ≥ 0;

[C3] ∃n0 ∈ N∗ and y ∈ K such that supy∗∈Φ(y)〈y∗, η(y, xn)〉 < α(η(y, xn), ∀n ≥ n0.
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Proof. From the Michael’s selection theorem, there exists a continuous mapping F : K → X∗

such that F (x) ∈ Φ(x) for any x ∈ K. The operator F is generalized densely relaxed η − α

pseudomonotone since Φ is generalized densely relaxed η − α pseudomonotone. Furthermore, F

satisfies all the assumptions of Theorem 3.3.1. For n ∈ N∗, define the set Bn := K ∩ B̄(0, n).

Clearly the sets Bn, n ∈ N∗, are compact and convex. Hence by Theorem 3.3.1, we deduce that

for every n ≥ 1, there exists xn ∈ Bn such that

〈F (xn), η(x, xn)〉 ≥ 0, for all x ∈ Bn. (3.3.12)

Moreover, we can easily verify that if the condition [C1] (respectively, [C2], [C3]) holds, then the

operator F : K → X∗ satisfies the assumption [H1] (respectively, [H2], [H3]) of Theorem 3.3.3.

Therefore, by using a similar development to the one considered in the proof of Theorem 3.3.3, we

conclude that the generalized variational-like inequality problem (3.1.1) has a solution. �

3.4 Existence Results for (GVLIP) with Generalized Relaxed η − α Quasimonotone Mappings

In this section, we study the existence of solutions for the generalized variational-like inequality

(3.1.1) with Φ being η−α quasimonotone. In our development and rather than the one considered

in the previous section, we consider different concepts of solutions for the problem (3.1.1). This is

presented in the definition below.

Definition 3.4.1 Let K be a nonempty set.

(i) An element x ∈ K is said to be a weak solution of the generalized variational-like inequality

(3.1.1) if and only if ∀y ∈ K, ∃x∗ ∈ Φ(x) such that 〈x∗, η(y, x)〉 ≥ 0. The set of weak

solutions of (3.1.1) will be denoted by Sw(Φ, K).
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(ii) An element x ∈ K is said to be a solution (or a strong solution) of the generalized variational-

like inequality (3.1.1) if and only if ∃x∗ ∈ Φ(x) such that 〈x∗, η(y, x)〉 ≥ 0, ∀y ∈ K. The

set of solutions (or strong solutions) of (3.1.1) will be denoted by S(Φ, K).

Obviously we have S(Φ, K) ⊂ Sw(Φ, K).

In our study, we need to consider the following dual problem, called also Minty generalized

variational-like inequality: Find x ∈ K such that for all y ∈ K and y∗ ∈ Φ(y), we have

〈y∗, η(y, x)〉 ≥ 0. (3.4.1)

We shall denote by Sd(Φ, K) the solution set of the dual problem (3.4.1).

We consider also the following relaxed dual problem, called also relaxed Minty generalized variational-

like inequality: Find x ∈ K such that for all y ∈ K and y∗ ∈ Φ(y), we have

〈y∗, η(y, x)〉 ≥ α(η(y, x)). (3.4.2)

We shall denote by Sr,d(Φ, K) the solution set of the relaxed dual problem (3.4.2).

An element x ∈ K is called local solution of the dual problem (3.4.1), if there exists a neighbor-

hood U of x such that x ∈ Sd(Φ, K ∩U). The set of all local solutions of the dual problem (3.4.1)

will be denoted by Sd,loc(Φ, K).

Definition 3.4.2 A set-valued mapping S : K → 2X
∗

is called η-upper sign-continuous on K, if
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for every x, y ∈ K the following implication holds:

[
∀t ∈]0, 1[, inf

x∗∈S(xt)
〈x∗, η(y, x)〉 ≥ 0

]
=⇒

[
sup

x∗∈S(x)

〈x∗, η(y, x)〉 ≥ 0

]
,

where xt = (1− t)x+ ty.

Remark 3.4.3 Suppose that S : K → 2X
∗

is weak∗ upper hemicontinuous, i.e. the restriction

of S to every line segment of K is upper semicontinuous with respect to the weak∗ topology of

X∗, and η : K × K → X satisfies the following properties: (a) η(x, x) = 0 for all x ∈ K, (b)

η(tx+ (1− t)y, z) = tη(x, z) + (1− t)η(y, z), ∀t ∈ [0, 1]. Then S is η-upper sign-continuous.

In the following lemmas, we give some relations between the different concepts of solutions intro-

duced above.

Lemma 3.4.4 Let K be a nonempty closed and convex subset of the Banach space X , Φ : K →

2X
∗

be a set-valued mapping and η : K × K → X be a mapping such that η(x, x) = 0 and

η(tx + (1 − t)y, z) = tη(x, z) + (1 − t)η(y, z) for all x, y, z ∈ K and t ∈ [0, 1]. Suppose that

for every x ∈ K there exists a convex neighborhood V of x and a set-valued mapping Φx : K ∩

U → 2X
∗

with nonempty weak∗ compact values which is η-upper sign-continuous and satisfying

Φx(y) ⊂ Φ(y), for all y ∈ K ∩ V . Then, Sd,loc(Φ, K) ⊂ Sw(Φ, K). Furthermore, if for every

x ∈ K the set-valued mapping Φx is convex valued, then Sd,loc(Φ, K) ⊂ Sw(Φ, K) = S(Φ, K).

Proof. Let x ∈ Sd,loc(Φ, K). Then there exists a neighborhood U of x such that x ∈ Sd(Φ, K∩U).

Since Φx(y) ⊂ Φ(y) for each y ∈ K ∩ V , it follows that x ∈ Sd(Φx, K ∩ U ∩ V ). Therefore,

〈y∗, η(y, x)〉 ≥ 0 for all y ∈ K ∩ U ∩ V and y∗ ∈ Φx(y). Let y ∈ K, then there exists ỹ ∈]x, y[
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such that [x, ỹ] ⊂ K ∩ U ∩ V . Hence, for yt = tỹ + (1− t)x with t ∈ [0, 1], we have

〈y∗, η(yt, x)〉 ≥ 0, ∀y∗ ∈ Φx(yt).

By using the properties of the mapping η, we derive that

〈y∗, η(ỹ, x)〉 ≥ 0, ∀y∗ ∈ Φx(yt).

Thus inf
y∗∈Φx(yt)

〈x∗, η(ỹ, x)〉 ≥ 0, ∀t ∈ [0, 1]. By the η-upper sign continuity of Φx, we get

sup
y∗∈Φx(x)

〈y∗, η(ỹ, x)〉 ≥ 0. (3.4.3)

Since Φx(x) is weak∗ compact, it follows that there exists x̃∗ ∈ Φx(x) such that

〈x̃∗, η(ỹ, x)〉 ≥ 0. (3.4.4)

On the other hand, we have that ỹ = λx + (1 − λ)y for some λ ∈]0, 1[ since ỹ ∈]x, y[. It

follows, from (3.4.4) and the properties of η, that 〈x̃∗, η(y, x)〉 ≥ 0. Consequently, we have shown

that for each y ∈ K, there exists x̃∗ ∈ Φx(x) ⊂ Φ(x) such that 〈x̃∗, η(y, x)〉 ≥ 0. Therefore,

x ∈ Sw(Φ, K). Now, let us suppose that Φx(x) is convex. To verify that x ∈ S(Φ, K), it suffices

to apply Lemma 3.2.22 with D = Φx(x) and p(x∗, y) = 〈x∗, η(y, x)〉 for (x∗, y) ∈ D×K. Which

completes the proof of the Lemma. �

Lemma 3.4.5 Let K be a nonempty closed and convex subset of the Banach space X . Let η :

K × K → X and α : X → R be mappings and Φ : K → 2X
∗

be a set-valued mapping with

nonempty weak∗ compact values. Suppose that Φ is upper hemicontinuous with respect to the
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weak∗ topology of X∗ and that the following properties hold:

(i) For all x, y ∈ K, η(x, y) + η(y, x) = 0;

(ii) η(tx+ (1− t)y, z) = tη(x, z) + (1− t)η(y, z) for all t ∈ [0, 1] and x, y, z ∈ K;

(iii) For any w ∈ X , lim
t→0+

α(tw)

t
= 0.

Then, Sr,d(Φ, K) ⊂ Sw(Φ, K). Furthermore, if for every x ∈ K the set-valued mapping Φ is

convex valued, then Sr,d(Φ, K) ⊂ Sw(Φ, K) = S(Φ, K).

Proof. Let x ∈ Sr,d(Φ, K). Then,

〈y∗, η(y, x)〉 ≥ α(η(y, x)), ∀y ∈ K, ∀y∗ ∈ Φ(y). (3.4.5)

For t ∈]0, 1] and y ∈ K, let us set yt = ty + (1− t)x ∈ K. Hence, from (3.4.5) we get

〈y∗, η(yt, x)〉 ≥ α(η(yt, x)), ∀y∗ ∈ Φ(yt), ∀t ∈]0, 1]. (3.4.6)

Note that from (i), we have that η(x, x) = 0. By using (ii), we deduce from (3.4.6) that

〈y∗, η(y, x)〉 ≥ α(tη(y, x))

t
, ∀y∗ ∈ Φ(yt), ∀t ∈]0, 1].

By (i), it follows that

〈y∗, η(x, y)〉+
α(tη(y, x))

t
≤ 0, ∀y∗ ∈ Φ(yt), ∀t ∈]0, 1].

Therefore,

inf
y∗∈Φ(yt)

〈y∗, η(x, y)〉+
α(tη(y, x))

t
≤ 0, ∀t ∈]0, 1]. (3.4.7)

57



Let us set for t ∈ [0, 1], φ(t) := inf
y∗∈Φ(yt)

〈y∗, η(x, y)〉. By the Berge’s theorem [9, Théorème 2, p.

122 ], we deduce that the function φ : [0, 1]→ R is lower semicontinuous. Hence, by considering

the lower limit when t→ 0+ in relation (3.4.7) and by taking account of (iii), we obtain

φ(0) = inf
y∗∈Φ(x)

〈y∗, η(x, y)〉 ≤ 0.

Since Φ(x) is weak∗ compact, it follows that there exists x∗ ∈ Φ(x) such that 〈x∗, η(x, y)〉 ≤ 0

and hence by (i), we have 〈x∗, η(y, x)〉 ≥ 0. This implies that x ∈ Sw(Φ, K). Furthermore,

if Φ(x) is convex, we use Lemma 3.2.22 with D = Φ(x) and p : D × K → R defined by

p(x∗, y) = 〈x∗, η(y, x)〉 for (x∗, y) ∈ D ×K to conclude that x ∈ S(Φ, K). �

We show the following result on the existence of solutions for the dual problem (3.4.1).

Theorem 3.4.1 Let X be a Banach space with topological dual space X∗ and K be a nonempty

closed and convex subset ofX . Let η : K×K → X be a mapping and Φ : K → 2X
∗

be a properly

η − α quasimonotone operator. Suppose that

(i) For all x ∈ K, η(x, x) = 0;

(ii) η(tx+ (1− t)y, z) = tη(x, z) + (1− t)η(y, z) for all t ∈ [0, 1] and x, y, z ∈ K;

(iii) For each x ∈ K and x∗ ∈ Φ(x), the mapping y ∈ K 7→ 〈x∗, η(x, y)〉 is weakly upper

semicontinuous;

(iv) K is weakly compact, or alternatively there exists a weakly compact subset C of K and

x0 ∈ C such that

∀x ∈ K \ C, ∃x∗0 ∈ Φ(x0) satisfying 〈x∗0, η(x0, x)〉 < α(η(x0, x)). (3.4.8)
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Then Sr,d(Φ, K) 6= ∅, i.e. the relaxed dual variational-like inequality problem (3.4.2) has a solu-

tion.

Proof. Let us consider the set-valued mapping F : K → 2X
∗ defined by

F (x) := {y ∈ K : 〈x∗, η(x, y)〉 ≥ α(η(x, y)), for all x∗ ∈ Φ(x)}.

From condition (i), we have that x ∈ F (x). Hence F (x) 6= ∅ for any x ∈ K. Furthermore,

from condition (iii) we can easily verify that F (x) is weakly closed for each x ∈ K. On the other

hand, let {x1, x2, · · · , xn} ⊂ K and x ∈ co({x1, x2, · · · , xn}), proper η − α quasimonotonicity

of Φ implies that x ∈
⋃n
i=1 F (xi). Hence, F is a KKM-mapping. Therefore, if K is weakly

compact, then F (x) is weakly compact for each x ∈ K, and from Lemma 3.2.20 we deduce that⋂
y∈K F (y) 6= ∅. Otherwise, from relation (3.4.8), we deduce that F (x0) ⊂ C. Thus, F (x0) is

weakly compact since it is a weakly closed subset of C. Hence, by using again Lemma 3.2.20 we

deduce that
⋂
y∈K F (y) 6= ∅. Which completes the proof. �

Proposition 3.4.6 LetK be a nonempty convex subset of the Banach spaceX , let η : K×K → X

be a mapping and Φ : K → 2X
∗

be an η − α quasimonotone operator. Suppose that

(i) η(x, y) + η(y, x) = 0 for all x, y ∈ K;

(ii) η(tx+ (1− t)y, z) = tη(x, z) + (1− t)η(y, z) for all t ∈ [0, 1] and x, y, z ∈ K;

(iii) For each x ∈ K, the mappings η(x, ·) and α(η(x, ·)) are continuous.

Then one of the following holds:

(a) Φ is properly η − α quasimonotone.
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(b) Sd,loc(Φ, K) 6= ∅.

Proof. Suppose that Φ is not properly η− α quasimonotone. Then there exists {x1, · · · , xn} ⊂ K

and x ∈ co({x1, · · · , xn}) such that for each i ∈ {1, · · · , n} there exists x∗i ∈ Φ(xi) satisfying

〈x∗i , η(xi, x)〉 < α(η(xi, x)).

From condition (ii), we deduce that there exists a neighborhood U of x such that

〈x∗i , η(xi, y)〉 < α(η(xi, y)), for all y ∈ K ∩ U and i = 1, · · · , n.

Since Φ is η − α quasimonotone, we deduce that

〈y∗, η(xi, y)〉 ≤ 0, for all y∗ ∈ Φ(y) and i = 1, · · · , n.

By using condition (ii), we get

〈y∗, η(x, y)〉 ≤ 0, for all y∗ ∈ Φ(y).

Hence, from (i) we obtain

〈y∗, η(y, x)〉 ≥ 0, for all y∗ ∈ Φ(y).

Therefore, x ∈ Sd,loc(Φ, K). �

Now, we give the main result of this section.

Theorem 3.4.2 LetK be a nonempty closed and convex subset of a Banach space with topological
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dual space X∗. Let η : K ×K → X and α : X → R be mappings and Φ : K → 2X
∗

be an η − α

quasimonotone operator. Suppose that the following properties hold:

(i) η(x, y) + η(y, x) = 0, for all x, y ∈ K;

(ii) η(tx+ (1− t)z, y) = tη(x, y) + (1− t)η(z, y), for all x, y, z ∈ K and t ∈ [0, 1];

(iii) For each x ∈ K and w ∈ X , the mappings η(x, ·) and α(η(x, ·)) are continuous, and

lim
t→0+

[α(tw)/t] = 0;

(iv) For each x ∈ K and x∗ ∈ Φ(x), the mapping y ∈ K 7→ 〈x∗, η(x, y)〉 is weakly upper

semicontinuous;

(v) Φ is upper hemicontinuous with nonempty weak∗ compact and convex values;

(vi) (Coercivity condition) There exists r0 > 0 such that for each x ∈ K \ B̄(0, r0), there exists

y ∈ K with ‖y‖ < ‖x‖ satisfying: ∀x∗ ∈ Φ(x), 〈x∗, η(x, y)〉 ≥ 0.

Moreover, suppose that there exists r1 > r0 such that K ∩ B̄(0, r1) is nonempty and weakly

compact.

Then, the generalized variational-like inequality (3.1.1) has a solution, i.e. S(Φ, K) 6= ∅.

Proof. Let us set Kr1 := K ∩ B̄(0, r1) which is a nonempty convex and weakly compact set. From

Proposition 3.4.6 we have either Φ is properly η − α quasimonotone or Sd,loc(Φ, K) 6= ∅.

If Sd,loc(Φ, K) 6= ∅, we deduce from Remark 3.4.3 and Lemma 3.4.4 that S(Φ, K) 6= ∅.

If Φ is properly η − α quasimonotone, then from Theorem 3.4.1 we deduce that Sr,d(Φ, Kr1) 6= ∅.

By using Lemma 3.4.5, we derive that S(Φ, Kr1) 6= ∅. Let x0 ∈ S(Φ, Kr1), then there exists

x∗0 ∈ Φ(x0) such that 〈x∗0, η(y, x0)〉 ≥ 0, ∀y ∈ Kr1 . We have two possibilities:
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• If ‖x0‖ < r1, then for any y ∈ K we can find t ∈]0, 1[ such that yt := ty + (1− t)x0 ∈ Kr1 .

Hence, 〈x∗0, η(yt, x0)〉 ≥ 0. Which implies, by using (i) and (ii), that 〈x∗0, η(y, x0)〉 ≥ 0.

Thus, x0 ∈ S(Φ, K).

• If ‖x0‖ = r1, then from condition (vi) we deduce that there exists y0 ∈ K with ‖y0‖ < ‖x0‖

such that 〈z∗, η(x0, y0)〉 ≥ 0, for all z∗ ∈ Φ(x0). In particular for z∗ = x∗0, we get

〈x∗0, η(x0, y0)〉 ≥ 0. (3.4.9)

On the other hand, since y0 ∈ Kr1 , we obtain that 〈x∗0, η(y0, x0)〉 ≥ 0. From (i), it follows

〈x∗0, η(x0, y0)〉 ≤ 0. (3.4.10)

Hence from (3.4.9) and (3.4.10) we deduce that 〈x∗0, η(x0, y0)〉 = 〈x∗0, η(y0, x0)〉 = 0. Thus,

y0 is a minimum of the function θ(y) = 〈x∗0, η(y0, x0)〉 on Kr1 . This implies that y0 is a

global minimum of θ on K. Therefore, y0 ∈ S(Φ, K).

Which completes the proof of the theorem. �

3.5 Remarks and comments

Below, we give some remarks and comments on the results obtained in this chapter as well as some

comparison with existing results in literature.

(1) Theorem 3.3.1 extends Theorem 3.1 of Bai et al. [7] to the general case of generalized densely

relaxed η − α pseudomonotone single-valued operators. Moreover, Theorem 3.3.2, consid-

ered with α(z) = −µ‖z‖2 and η(x, y) = x− y, improves Corollary 3.1 in [7].
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(2) Theorems 3.3.1 and 3.3.2 extend the results obtained by Luc [30]. Furthermore, Theorems

3.3.3 and 3.3.4 give a set-valued version of the results obtained by Luc [30, Theorem 4.3,

Corollary 4.5] as particular case.

(3) Note that every generalized relaxed η − α pseudomonotone operator is a generalized densely

relaxed η − α pseudomonotone operator. Therefore, Theorems 3.3.1, 3.3.2, 3.3.3 and 3.3.4

improve and extend to the general case of set-valued mapping the results obtained by Bai

et al. [6]. In addition, the afore mentioned results of ours give an alternative to the results

obtained by Arunchai et al in [4] which appear to be wrong results. In order to be more

precise, in the proof of Theorem 3.2 in [4], the authors considered the set-valued mapping

T : K → 2X defined by

T (x) = {y ∈ K ∩ Ω̄ : 〈F (y), η(x, y)〉 ≥ 0},

where Ω̄ is the closure of the open ball Ω of X . In their proof, they showed that T is a KKM

mapping, which means that x ∈ T (x) for any x ∈ K. Hence, K ⊂ K ∩ Ω̄. Therefore, K

must be a bounded set. In this case condition (a) in [4, Theorem 3.2] is obviously obtained.

The same remark is pointed out in the proof of Theorems 3.3, 4.2 and 4.3 in [4].

Furthermore, we point out that the strict η-quasimonotonicity notion introduced in [4] is

nothing other than the generalized relaxed η−α pseudomonotonicity considered with α ≡ 0

when the mapping η satisfies η(x, y) + η(y, x) = 0 for all x, y ∈ K. Therefore, the results

obtained in the section 3 of this chapter give an alternative to the results in [4, Section 4]

which are, by the same raison presented above, are wrong results.

(4) The results obtained in Section 4 of this chapter generalize the ones obtained by Aussel and

Hadjisavvas [5], as well as they extend and improve in a certain sense the results obtained by

Bai et al. in [7] for relaxed µ quasimonotone, since in [7] the results are obtained on compacts
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sets for single-valued µ quasimonotone operators while in this chapter we present more

general results with more a general concept of quasimonotonicity for set-valued mappings.

(5) We also point out that the results obtained in Section 4 improve considerably the results ob-

tained by Chen and Luo in [15].
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CHAPTER 4: FINDING ITERATIVE SOLUTIONS

4.1 General Algorithm and Convergence

In this section, we introduce a general algorithm using the auxiliary principal technique to approx-

imate the solution of the problem (3.1.2).

Let F : K → (−∞,+∞] be a given differentiable proper convex functional, and let ρ > 0 be a

given positive number. Consider the following auxiliary minimizing problem:

min
x∈K

[F (x) + ρ〈Tx∗, η(x, x∗)〉 − 〈F ′(x∗), x〉]. (4.1.1)

According to Ding [19], if x 7→ 〈Tx∗, η(x, x∗)〉 is convex and ∀x, y, z ∈ K, η(x, x) = 0 and

η(x, y) + η(y, z) = η(x, z), then the solution of the auxiliary problem (4.1.1) can be characterized

by the following variational inequality problem: find x ∈ K such that for all y ∈ K:

〈F ′(x), y − x〉+ ρ〈Tx∗, η(y, x)〉 ≥ 〈F ′(x∗), y − x〉. (4.1.2)

Clearly, if x = x∗ then x∗ is a solution of problem (3.1.2).

Based on this observation, we use the auxiliary principle technique to suggest the following general

algorithm to compute the solution of the problem (3.1.2).

Algorithm 4.1.1 Given ε > 0.

(i) Step 1: Choose an arbitrary initial point x0 ∈ K.

(ii) Step 2: Solve the auxiliary variational in equality (4.1.2) with x∗ = xn, and let xn+1 be the
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solution of problem (4.1.2).

(iii) Step 3: If ||xn+1 − xn|| < ε then stop; otherwise, repeat Step 2.

Remark 4.1.2 Since the auxiliary problem (4.1.1) is a minimizing problem, there are a number of

available methods for solving it. For instance, the computational algorithms including gradient,

subgradient, and decomposition have been studied by Cohen [16]. In the Algorithm 4.1.1, we

calculate the unique solution xn+1 of (4.1.2) and show that the sequence xn is strongly convergent

to x∗, which is the solution of problem (3.1.2).

The following lemma of Ding et al. will be needed in the sequel. Readers can find the proof of this

lemma via Ding et al. (Ding [20] Corollary 1).

Lemma 4.1.3 (Ding [20] Corollary 1) Let K be a nonempty compact convex subset of a topologi-

cal vector space X.

Let h : K ×K → [−∞,+∞] be a function such that for each x ∈ K, h(x, y) is a lower semicon-

tinuous function of y on K. Then for each t ∈ R, there exists y∗ ∈ K such that h(x, y∗) ≤ t for all

x ∈ K.

We are now ready to introduce and prove the main theorem.

Theorem 4.1.4 Let K be a nonempty convex compact subset of a normed space X.

Let η : K ×K → X and T : K → X∗ be two mappings.

Let F : X → (−∞,+∞] be a differentiable proper convex functional. Assume that all the

conditions from theorem 3.3.1 hold. In addition, suppose that

(i) the derivative F ′ of F is µ-strongly monotone;
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(ii) the function η is δ-Lipschitz continuous;

(iii) the function α is η-strongly monotone, (i.e. ∃λ > 0 s.t. α(η(x, y) ≥ λ||x − y||2 ∀x, y ∈

K);

Then,

(a) there exists a solution x∗ ∈ K of problem (3.1.2);

(b) for each ρ > 0, there exists a unique solution xn+1 ∈ K of the auxiliary problem (4.1.1) with

x∗ = xn;

(c) if T is also β-Lipschitz continuous such that

0 < µ < min{2λ− ρβδ − 1 +
ρβδ

2λ
, 2λ− ρβδ}, (4.1.3)

where λ, ρ, µ, δ, β > 0, then the sequence {xn} defined by Algorithm 4.1.1 is strongly con-

vergent to the unique solution x∗ of the problem (3.1.2).

Proof.

(a) Clearly from theorem 3.3.2, the unique solution x∗ ∈ K of problem (3.1.2) exists.

(b) For each fixed ρ > 0 and x∗ ∈ K, define a functional h : K ×K → [−∞,+∞] by

h(x, y) = 〈F ′(x∗)− F ′(x), η(y, x)〉 − ρ〈Tx∗, η(y, x)〉,

then h(x, y) satisfies all conditions of Lemma 4.1.3. Hence, let t = 0, there exists y∗ ∈ K
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such that ∀x ∈ K:

h(x, y∗) = 〈F ′(x∗)− F ′(x), η(x, y∗)〉 − ρ〈Tx∗, η(x, y∗)〉 ≤ 0. (4.1.4)

Now we need to show that the solution is unique. Assume y1 and y2 are two solutions of

(4.1.4). Since y∗ = y1 is a solution of (4.1.4), let x = y2, we obtain

h(y2, y1) = 〈F ′(x∗)− F ′(y2), η(y2, y1)〉 − ρ〈Tx∗, η(y2, y1)〉 ≤ 0. (4.1.5)

Similarly,

h(y1, y2) = 〈F ′(x∗)− F ′(y1), η(y1, y2)〉 − ρ〈Tx∗, η(y1, y2)〉 ≤ 0. (4.1.6)

Adding (4.1.5) to (4.1.6) and notice that η(y1, y2) + η(y2, y1) = 0 we obtain

〈F ′(y2)− F ′(y1), η(y1, y2)〉 = 0. (4.1.7)

Since F is a differentiable proper convex functional, it follows that y1 = y2. Hence, the

solution of (4.1.4) is unique.

(c) From part (b) above, let x∗ = xn, then equation (4.1.4) has a unique solution y∗ = xn+1, i.e.

for each xn ∈ K, there exists a unique xn+1 ∈ K such that

h(x, xn+1) = 〈F ′(xn)− F ′(xn+1), η(x, xn+1)〉 − ρ〈Txn, η(x, xn+1〉 ≤ 0. (4.1.8)

We need to show that the sequence {xn} converges strongly to 0 as n→∞.
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Define a function L : K → (−∞,+∞] by

L(x) = F (x∗)− F (x)− 〈F ′(x), η(x∗, x)〉.

Since F ′ is strongly monotone, we have

L(x) = F (x∗)− F (x)− 〈F ′(x), η(x∗, x)〉 ≥ µ

2
||x− x∗||2. (4.1.9)

From (4.1.8) with x = x∗we have

h(x∗, xn+1) = 〈F ′(xn)− F ′(xn+1), η(x∗, xn+1)〉 − ρ〈Txn, η(x∗, xn+1)〉 ≤ 0.

It follows that

〈F ′(xn+1)− F ′(xn), η(x∗, xn+1)〉 ≥ ρ〈Txn, η(xn+1, x
∗)〉.
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Hence,

L(xn)− L(xn+1)

= F (xn+1)− F (xn)− 〈F ′(xn), η(x∗, xn+1) + η(xn+1, xn)〉+ 〈F ′(xn+1), η(x∗, xn+1)〉

= F (xn+1)− F (xn)− 〈F ′(xn), η(xn+1, xn)〉+ 〈F ′(xn+1)− F ′(xn), η(x∗, xn+1)〉

≥ µ

2
||xn − xn+1||2 + ρ〈Txn, η(xn+1, x

∗)〉

=
µ

2
||xn − xn+1||2 + ρ〈Txn − Txn+1, η(xn+1, x

∗)〉+ ρ〈Txn+1, η(xn+1, x
∗)〉

=
µ

2
||xn − xn+1||2 + ρ〈Txn − Txn+1, η(xn+1, xn)〉+ ρ〈Txn − Txn+1, η(xn, x

∗)〉

+ ρ〈Txn+1, η(xn+1, x
∗)〉

≥ µ

2
||xn − xn+1||2 − ρβδ||xn − xn+1||2 − ρβδ||xn − xn+1|| · ||xn − x∗||+ α(η(xn+1, x

∗))

≥ (
µ

2
− ρβδ)||xn − xn+1||2 − ρβδ||xn − x∗|| · ||xn − xn+1||+ λ||xn+1 − x∗||2

≥ (
µ

2
− ρβδ)||xn − xn+1||2 − ρβδ||xn − x∗|| · ||xn − xn+1||+ λ(||xn+1 − xn|| − ||xn − x∗||)2

≥ (λ+
µ

2
− ρβδ)||xn − xn+1||2 + λ||xn − x∗||2 − (2λ+ ρβδ)||xn − x∗|| · ||xn − xn+1||

≥ (λ+
µ

2
− ρβδ)||xn − xn+1||2 + λ||xn − x∗||2

− (2λ+ ρβδ)

4(λ+ µ
2
− ρβδ)

||xn − x∗||2 − (λ+
µ

2
− ρβδ)||xn − xn+1||2

= (λ− (2λ+ ρβδ)2

4(λ+ µ
2
− ρβδ)

||xn − x∗||2.

Together with the condition (4.1.3) it follows that

L(xn)− L(xn+1) ≥ (λ− (2λ+ ρβδ)2

4(λ+ µ
2
− ρβδ)

||xn − x∗||2 > 0.

Therefore, the sequence {L(xn)} is strictly decreasing (unless xn = x∗).

Furthermore, by (4.1.9), {L(xn)} is a nonnegative sequence. Hence, it is a convergent sequence.

Therefore, (L(xn)−L(xn+1))→ 0 and so the sequence {xn} converges strongly to x∗ as n→ +∞.

70



This completes the proof. �

Remark 4.1.5 The theorem provides a method to compute the solution of the variational inequal-

ity problem (3.1.2). It will be interesting to find some relaxation techniques to speed up the con-

vergence.
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CHAPTER 5: CONCLUSION AND FUTURE RESEARCH

Our dissertation started with the study of general over-relaxed proximal point algorithm to approx-

imate the solution of a general (A, η,m)-monotone nonlinear inclusion form. The study showed

that, under some specific conditions of the coefficients, the Lipschitz continuity requirement of the

monotone operator can be omitted. In chapter two, we showed that there were at least six papers

with Lipschitz conditions that could be removed. Hence, there is an open research question for

future study: can Lipschitz continuity condition also be removed from other variational inclusion

papers?

Secondly, in chapter three we studied the existence and uniqueness of the solution of a variational-

like inequality with densely relaxed pseudomonotone operators and relaxed quasimonotone oper-

ators. The study showed that the existence of the solution could be extended from relaxed pseu-

domonotone operator to densely relaxed pseudomonotone operators. Also, our study showed that

the results obtained in Arunchai ([4], section 4) has some incorrect assertions and we have pro-

vided the correct version of those results in Chapter 3. It will be interesting to prove its vector

analogue and devise a method to seek an iterated sequence which converges to the solution. Once

that is established, then we can determine ways to speed up the convergence by using relaxation

techniques.

Finally, in chapter 5 we introduced a general algorithm for estimating the numerical solution by

applying the auxiliary principle technique, which introduced by Cohen and later on used by Noor,

Pany, Mohapatra, and Pani. What all the above papers referred to and our work lacks is a deter-

mination of the degree of convergence of the iterated sequence to the solution. We need to seek

Newton-like method to obtain solutions and, if possible, get quadratic convergence. For the future

study, we believe that similar approach can be applied to relaxed quasimonotone operators to prove
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the existence and uniqueness of the solution and to develop an algorithm for estimating a numerical

solution.
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