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ABSTRACT

Graph signal processing provides an innovative framework to handle data residing on distributed

networks, smart grids, neural networks, social networks and many other irregular domains. By

leveraging applied harmonic analysis and graph spectral theory, graph signal processing has been

extensively exploited, and many important concepts in classical signal processing have been ex-

tended to the graph setting such as graph Fourier transform, graph wavelets and graph filter banks.

Similarly, many optimization problems in machine learning, sensor networks, power systems, con-

trol theory and signal processing can be modeled using underlying network structure. In modern

applications, the size of a network is large, and amount of data needed to store and analyze is

massive. Due to privacy and security concern, storage limitations and communication cost, a tradi-

tional centralized optimization methods are not suitable to solve these optimization problems, and

distributed optimization methods are desirable.

Graph filters and their inverses have been widely used in denoising, smoothing, sampling, inter-

polating and learning. Implementation of an inverse filtering procedure on spatially distributed

networks (SDNs) is a remarkable challenge, as each agent on an SDN is equipped with a data

processing subsystem with limited capacity and a communication subsystem with confined range

due to engineering limitations.

In this dissertation, we implement the filtering procedure associated with a polynomial graph filter

of multiple shifts at the vertex level in a distributed network, where each vertex is equipped with a

data processing subsystem for limited computation power and data storage, and a communication

subsystem for direct data exchange to its adjacent vertices. We also consider the implementation

of inverse filtering procedure associated with a polynomial graph filter of multiple shifts, and we

propose two iterative approximation algorithms applicable in a distributed network and in a central
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facility.

We also introduce a preconditioned gradient descent algorithm to implement the inverse filtering

procedure associated with a graph filter having small geodesic-width. It is applicable for any in-

vertible graph filters with small geodesic-width. The proposed algorithm converges exponentially,

and it can be implemented at vertex level and applied to time-varying inverse filtering on SDNs.

Eigenspaces of some matrix on a network have been used for understanding the spectral clustering

and influence of a vertex. Following the preconditioned gradient descent algorithm, for a matrix

with small geodesic-width, we propose a distributed iterative algorithm to find eigenvectors asso-

ciated with its given eigenvalue. We also consider the implementation of the proposed algorithm

at the vertex/agent level in a spatially distributed network with limited data processing capability

and confined communication range.
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CHAPTER 1: INTRODUCTION

Graph signal processing provides an innovative framework to handle data residing on distributed

networks, smart grids, neural networks, social networks and many other irregular domains [1, 2, 3].

Graphs provide a flexible tool to model the underlying topology of the networks, and the edges

present the interrelationship between data elements. For instance, an edge between two vertices

may indicate the availability of a direct data exchanging channel between sensors of a distributed

network, or the correlation between temperature records of neighboring locations. By leveraging

graph spectral theory and applied harmonic analysis, graph signal processing has been extensively

exploited, and many important concepts in classical signal processing have been extended to graph

setting [1, 2, 3, 4, 5, 7, 9, 60, 61].

Spatially distributed networks (SDNs) have been widely used in (wireless) sensor networks, drone

fleets, smart grids and many real world applications [1, 9, 46, 60]. An SDN has a large amount

of agents and each agent equipped with a data processing subsystem having limited data storage

and computation power and a communication subsystem for data exchanging to its “neighboring”

agents within communication range. The topology of an SDN can be described by a connected,

undirected and unweighted finite graph G := (V,E) with a vertex in V representing an agent and

an edge in E between vertices indicating that the corresponding agents are within some range in

the spatial space.

In this work, we consider a graph signal processing problems such as graph filtering, inverse graph

filtering and eigenvector approximation of a matrix on a spatially distributed networks.
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1.1 Polynomial Graph Filters of Multiple Shifts and Distributed Implementation of Inverse

Filtering

Let G := (V,E) be a connected, undirected and unweighted graph with vertex set V = {1, . . . , N}

and edge set E ⊂ V × V , and define the geodesic distance ρ(i, j) between vertices i, j ∈ V

by the number of edges in a shortest path connecting i, j ∈ V . A graph filter on the graph G

maps one graph signal linearly to another graph signal and it is usually represented by a matrix

H = (H(i, j))i,j∈V . Graph filters and their implementations are fundamental in graph signal

processing, and they have been used in denoising, smoothing, consensus of multi-agent systems,

the estimation of time series and many other applications [10, 11, 12, 13]. In the classical signal

processing, filters are categorized into two families, finite impulse response (FIR) filters and infinite

impulse response (IIR) filters. The FIR concept has been extended to graph filters with the duration

of an FIR filter being replaced by the geodesic-width of a graph filter. Here the geodesic-width

ω(H) of a graph filter H = (H(i, j))i,j∈V is the smallest nonnegative integer ω(H) such that

H(i, j) = 0 hold for all i, j ∈ V with ρ(i, j) > ω(H) [9, 14, 16, 17, 64].

An elementary graph filter is a graph shift, which has one as its geodesic-width [18, 19, 60, 64]. In

this work, we introduce the concept of multiple commutative graph shifts S1, . . . ,Sd, i.e.,

SkSk′ = Sk′Sk, 1 ≤ k, k′ ≤ d, (1.1)

and we consider the implementation of filtering and inverse filtering associated with a polynomial

graph filter

H = h(S1, . . . ,Sd) =

L1∑

l1=0

· · ·
Ld∑

ld=0

hl1,...,ldS
l1
1 · · ·Sld

d , (1.2)

where the polynomial

h(t1, . . . , td) =

L1∑

l1=0

· · ·
Ld∑

ld=0

hl1,...,ldt
l1
1 . . . tldd

in variables t1, · · · , td has polynomial coefficients hl1,...,ld , 0 ≤ lk ≤ Lk, 1 ≤ k ≤ d. The com-
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mutativity of graph shifts S1, . . . ,Sd guarantees that the polynomial graph filter H in (1.2) is

independent on equivalent expressions of the multivariate polynomial h. The concept of com-

mutative graph shifts S1, . . . ,Sd plays a similar role in graph signal processing as the one-order

delay z−1
1 , . . . , z−1

d in classical multi-dimensional signal processing, and in practice graph shifts

may have specific features and physical interpretation, see Appendix and Section 2.4 for their joint

spectrum and some illustrative examples. The commutative assumption on graph shifts S1, . . . ,Sd

is trivial for d = 1 and polynomial graph filters of a single shift have been widely used in graph

signal processing [11, 12, 18, 20, 21, 65, 66].

Polynomial graph filters H in (1.2) have geodesic-width ω(H) no more than the degree
∑d

k=1 Lk

of the polynomial h. Our study of polynomial graph filters of multiple shifts is motivated by signal

processing on time-varying signals, such as video and data collected by a sensor network over a

period of time, which carry different correlation characteristics for different dimensions/directions.

In such a scenario, graph filters should be designed to reflect spectral characteristic on the vertex

domain and also on the temporal domain, hence polynomial graph filters of multiple commutative

shifts are preferable, see [2, 3, 24] and also Subsections 2.4.2 and 2.4.3. Our discussion is also

motivated by directional frequency analysis in [24], feature separation in [25] and graph filtering

in [26] for time-varying graph signals.

For polynomial graph filters of a single shift, algorithms have been proposed to implement their

filtering procedure in finite steps, with each step including data exchanging between adjacent

vertices only, see [10, 11, 12, 21, 27, 66] and also Algorithm 1. The first main contribution is that

we provide the implementation of filtering procedure associated with polynomial graph filters of

multiple shifts at vertex level, see Algorithm 2 in Section 2.1.

Inverse filtering plays an important role in graph signal processing, such as denoising, graph semi-

supervised learning, non-subsampled filter banks and signal reconstruction [12, 20, 21, 27, 28,
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29, 30, 64, 65, 66]. The challenge arisen in the inverse filtering is on its implementation, as the

inverse filter H−1 usually has full geodesic-width even if the original filter H has small geodesic-

width. For the case that the filter H is strictly positive definite, the inverse filtering procedure

b 7−→ H−1b can be implemented by applying the iterative gradient descent method in a distributed

network, see [27, 30, 31] and Remark 2.2.2. To consider implementation of inverse filtering of

an arbitrary invertible filter H with small geodesic-width, in Section 2.2 we start from selecting

a graph filter G with small geodesic-width to approximate the inverse filter H−1, and then we

propose an exponential convergent algorithm (2.12) and (2.13) to implement the inverse filtering

procedure with each iteration mainly including two filtering procedures associated with filters H

and G, see Theorem 2.2.1.

For an invertible polynomial graph filter of a single shift, there are several methods to implement

the inverse filtering in a distributed network [12, 20, 21, 27, 66]. The second main contribution

of this work is that we introduce optimal polynomial filters and Chebyshev polynomial filters to

provide good approximations to the inverse of an invertible polynomial graph filter H of mul-

tiple shifts, see Section 2.3. Then, based on the iterative approximation algorithm in Section

2.2, we propose the iterative optimal polynomial approximation algorithm (2.31) and the iter-

ative Chebyshev polynomial approximation algorithm (2.40) to implement the inverse filtering

procedure b 7−→ H−1b, see Theorems 2.3.1 and 2.3.3 for their exponential convergence. More

importantly, as shown in Algorithms 3 and 4, each iteration in the proposed iterative algorithms

mainly contains two filtering procedures involving data exchanging between adjacent vertices

only and hence they can be implemented in a distributed network of large size, where each ver-

tex is equipped with systems for limited data storage, computation power and data exchanging

facility to its adjacent vertices. The effectiveness of these two iterative algorithms to implement

the inverse filtering procedure is demonstrated in Section 2.4.
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1.2 Preconditioned Gradient Descent Algorithm for Inverse Filtering on Spatially Distributed

Networks

In this section, we consider SDNs equipped with a communication subsystem at each agent to

directly communicate between two agents if the geodesic distance between their corresponding

vertices i, j ∈ V is at most L, i.e., ρ(i, j) ≤ L, and we call the minimal integer L ≥ 1 as the

communication range of the SDN. Therefore the implementation of data processing on our SDNs

is a distributed task and it should be designed at agent/vertex level with confined communication

range. We also consider the implementation of graph filtering and inverse filtering on SDNs, which

are required to be fulfilled at agent level with communication range no more than L.

A signal on a graph G = (V,E) is a vector x = (x(i))i∈V indexed by the vertex set, and a graph

filter H maps a graph signal x linearly to another graph signal y = Hx, which is usually repre-

sented by a matrix H = (H(i, j))i,j∈V indexed by vertices in V . For a filter H = (H(i, j))i,j∈V

with geodesic-width ω(H), the corresponding filtering process

(x(i))i∈V =: x 7−→ Hx = y := (y(i))i∈V (1.3)

can be implemented at vertex level, and the output at a vertex i ∈ V is a “weighted” sum of the

input in its ω(H)-neighborhood,

y(i) =
∑

ρ(j,i)≤ω(H)

H(i, j)x(j). (1.4)

For SDNs with communication range L ≥ ω(H), the above implementation at vertex level pro-

vides an essential tool for the filtering procedure (1.3), in which each agent i ∈ V has equipped

with subsystems to store H(i, j) and x(j) with ρ(j, i) ≤ ω(H), to compute addition and multipli-

cation in (1.4), and to exchange data to its neighboring agents j ∈ V satisfying ρ(j, i) ≤ ω(H).
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For an invertible filter H, the implementation of the inverse filtering procedure

y 7−→ H−1y =: x (1.5)

cannot be directly applied for our SDNs, since the inverse filter H−1 may have geodesic-width

larger than the communication range L. For the consideration of implementing inverse filtering on

an SDN with communication range L ≥ 1, we construct a diagonal preconditioning matrix PH in

(3.1) at vertex level, and propose the preconditioned gradient descent algorithm (PGDA) (3.7) to

implement inverse filtering on the SDN, see Algorithms 5 and 6.

A conventional approach to implement the inverse filtering procedure (1.5) is via the iterative

quasi-Newton method

e(m) = Hx(m−1) − y and x(m) = x(m−1) −Ge(m), m ≥ 1, (1.6)

with arbitrary initial x(0), where the graph filter G is an approximation to the inverse H−1. A

challenge in the quasi-Newton method is how to select the approximation filter G appropriately.

For the widely used polynomial graph filters H = h(S) =
∑K

k=0 hkS
k of a graph shift S where

h(t) =
∑K

k=0 hkt
k [11, 12, 13, 16, 21, 28, 51, 64, 66], several methods have been proposed to con-

struct polynomial approximation filters G [12, 13, 21, 51, 66]. However, for the convergence of

the corresponding quasi-Newton method, some prior knowledge is required for the polynomial h

and the graph shift S, such as the whole spectrum of the shift S in the optimal polynomial approx-

imation method [51], the interval containing the spectrum of the shift S in the Chebyshev approxi-

mation method [12, 51, 66], and the spectral radius of the shift S and the zero set of the polynomial

h in the autoregressive moving average filtering algorithm [13, 21]. For a non-polynomial graph

filter H, the approximation filter in the gradient descent method is of the form G = βHT with

selection of the optimal step length β depending on maximal and minimal singular values of the

6



filter H [27, 28], and the approximation filter in the iterative matrix inverse approximation algo-

rithm (IMIA) could be selected under a strong assumption on H [49, Theorem 3.2]. The proposed

PGDA (3.7) is the quasi-Newton method (1.6) with P−2
H
HT being selected as the approximation

filter G, see (3.3). Comparing with the quasi-Newton methods in [12, 13, 21, 27, 28, 49, 51, 66],

one significance of the proposed PGDA is that the sequence x(m),m ≥ 0, in (3.7) converges expo-

nentially to the output x of the inverse filtering procedure (1.5) whenever the filter H is invertible,

see Theorems 3.1.3 and 3.2.1.

Data processing of time-varying signals, such as data collected by an SDN of sensors over a period

of time, has been received a lot of attentions recently [2, 3, 26, 31, 41, 48, 51]. For a time-varying

filter Ht = (Ht(i, j))i,j∈V , t ≥ 0, with geodesic width ω(Ht) ≤ L bounded by the communication

range L of the SDN, the quasi-Newton method (1.6) to implement the inverse filtering procedure

yt 7−→ H−1
t yt, t ≥ 0, on the SDN should be designed to be self-adaptive, since each agent

i ∈ V of the SDN does not have the whole updated filter Ht and it only receives the entries

Ht(i, j) and Ht(j, i), ρ(j, i) ≤ L, on the i-th row and column of Ht within the range L at every

time instant t [9]. Clearly, the quasi-Newton method (1.6) is self-adaptive if the approximation

filters Gt = (Gt(i, j))i,j∈V , t ≥ 0 are locally selected without the involvement of any global

information of the time-varying filter Ht. The IMIA algorithm is self-adaptive [49, Eq. (3.4)]

but the gradient descent method [27, 28] is not self-adaptive in general except that the step length

β can be chosen to be time-independent. The second significance of the proposed PGDA is its

self-adaptivity and compatibility to implement the time-varying inverse filtering procedure on our

SDNs, as the preconditioner PH (and hence the approximation filter P−2
H
HT in the PGDA) is

constructed at the vertex level with confined communication range, see Algorithm 5.
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1.3 Distributed Algorithms to Determine Eigenvectors of Matrices on Spatially Distributed

Networks

Matrices on SDNs appear as graph filters in graph signal processing, transition matrices in Markov

chains, state matrices of dynamic systems in control theory, sensing matrices in sampling theory,

and in many more applications [9, 11, 12, 18, 20, 21, 51, 53, 55]. In the literature, their eigenspaces

have been used to understand the communicability between vertices, spectral clustering for the

network and influence of a vertex on the network [53, 54, 56, 57, 58, 59]. In this work, we consider

complex-valued matrices with limited geodesic-width, where geodesic-width ω(A) of a matrix

A = (A(i, j))i,j∈V on the graph G = (V,E) is the smallest nonnegative integer such that A(i, j) =

0 for all i, j ∈ V satisfying ρ(i, j) > ω(A). For a matrix A with small geodesic-width ω(A), we

propose a distributed iterative algorithm in Section 4.1 to determine eigenvectors associated with

its eigenvalue. The proposed algorithm is based on the preconditioned gradient descent approach

in [55] for inverse filtering, and it can be implemented on SDNs with communication range L ≥

ω(A). Moreover, the algorithm is scalable and its computational and communication expenses for

subsystems equipped at every agent of the SDN is independent on the order of the graph G. In

this work, we also consider finding eigenvectors associated with the zero eigenvalue of a positive

semidefinite matrix, and eigenvectors of a polynomial filter of multiple graph shifts, see Sections

4.2 and 4.3.
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CHAPTER 2: POLYNOMIAL GRAPH FILTERS OF MULTIPLE SHIFTS

AND DISTRIBUTED IMPLEMENTATION OF INVERSE FILTERING

In this chapter, we propose a polynomial graph filter of a multiple shifts and two distributed algo-

rithms to implement an inverse graph filtering with multiple shifts in a distributed manner. Polyno-

mial graph filters of multiple shifts are useful in a directional frequency analysis, feature separation,

and graph filtering in time-varying graph signals.

2.1 Polynomial Filter and Distributed Implementation

Let G = (V,E) be a connected, undirected and unweighted graph of order N . Graph shifts S on G

are building blocks of a polynomial filter. Our familiar examples of graph shifts are the adjacency

matrix AG , Laplacian matrix LG := DG − AG , symmetric normalized Laplacian matrix L
sym
G =

D
−1/2
G LGD

−1/2
G and their variants, where DG is the degree matrix of the graph G [18, 19, 60, 64].

The filtering procedure x 7−→ Sx associated with a graph shift S = (S(i, j))i,j∈V is a local

operation that updates signal value at each vertex i ∈ V by a “weighted” sum of signal values at

adjacent vertices j ∈ Ni,

x̃(i) =
∑

j∈Ni

S(i, j)x(j),

where x = (x(i))i∈V , Sx = (x̃(i))i∈V , and Ni is the set of adjacent vertices of i ∈ V . The

above local implementation of filtering procedure has been extended to a polynomial graph filter

9



Algorithm 1 Realization of the filtering procedure x 7−→ Hx for a polynomial filter H =∑L
l=0 hlS

l at a vertex i ∈ V .

Inputs: Polynomial coefficients h0, h1, . . . , hL, entries S(i, j), j ∈ Ni in the i-th row of the shift

S, and the value x(i) of the input signal x = (x(i))i∈V at the vertex i.
Initialization: z(0)(i) = hLx(i) and n = 0.

1) Send z(n)(i) to its adjacent vertices j ∈ Ni and receive z(n)(j) from its adjacent vertices

j ∈ Ni.

2) Update z(n+1)(i) = hL−n−1x(i) +
∑
j∈Ni

S(i, j)z(n)(j).

3) Set n = n+ 1 and return to Step 1) if n ≤ L− 1.

Output: The value x̃(i) = z(L)(i) is the output signal Hx = (x̃(i))i∈V at the vertex i.

H =
∑L

l=0 hlS
l of the shift S,





z(0) = hLx,

z(n+1) = hL−n−1x+ Sz(n), n = 0, . . . , L− 1,

Hx = z(L),

(2.1)

where the filtering procedure x 7−→ Hx is divided into (L + 1)-steps with the procedure in each

step being a local operation [11, 12, 21, 66]. The realization of the above implementation (2.1) at

the vertex level is presented in Algorithm 1. In this section, we extend the above implementation to

the filtering procedure associated with a polynomial graph filter H of multiple shifts, and propose

a recursive algorithm containing about
∑d−1

m=0

∏m+1
k=1 (Lk + 1) steps with the output value at each

vertex in each step being updated from some weighted sum of the input values at adjacent vertices

of its preceding step, see Algorithm 2.

Let Sk = (Sk(i, j))i,j∈V , 1 ≤ k ≤ d, be commutative graph shifts, and H be the polynomial graph

filter in (1.2) with d ≥ 2. Define a matrix Ud−1 of size N×
∏d−1

k=1(Lk+1) with its vd−1(l1, . . . , ld−1)-

th column given by

Ud−1

(
:, vd−1(l1, . . . , ld−1)

)
=

Ld∑

ld=0

hl1,...,ld−1,ldS
ld
d x, (2.2)

10



where for 1 ≤ m ≤ d− 1,

vm(l1, . . . , lm) = lm + lm−1(Lm + 1) + · · ·+ l1

m∏

k=2

(Lk + 1) (2.3)

is the lexicographical order of (l1, . . . , lm) with 0 ≤ lk ≤ Lk, 1 ≤ k ≤ m. Follow the procedure in

(2.1), we can evaluate Ud−1(:, vd−1(l1, . . . , ld−1)) in (Ld + 1)-steps with the filtering procedure in

each step being a local operation, see Step 1 in Algorithm 2 for the distributed implementation at

vertex level. Moreover, one may verify that

Hx =

L1∑

l1=0

· · ·

Ld−1∑

ld−1=0

Sl1
1 · · ·S

ld−1

d−1Ud−1(:, vd−1(l1, . . . , ld−1)) (2.4)

by (1.2) and (2.2). By induction on m = d − 2, . . . , 1, we define matrices Um of size N ×
∏m

k′=1(Lk′ + 1) by

Um

(
:, vm(l1, . . . , lm)

)
=

Lm+1∑

lm+1=0

S
lm+1

m+1Um+1

(
:, vm+1(l1, . . . , lm, lm+1)

)
(2.5)

where 0 ≤ lk ≤ Lk, 1 ≤ k ≤ m. By induction on m = d − 2, . . . , 1 we obtain from (2.5) that

every column of the matrix Um can be evaluated from Um+1 in (Lm+1 + 1)-steps, see Step 3 in

Algorithm 2 for the distributed implementation at vertex level. By (2.4) and (2.5), we can prove

Hx =

L1∑

l1=0

· · ·
Lm∑

lm=0

Sl1
1 · · ·Slm

m Um(:, vm(l1, . . . , lm)) (2.6)

by induction on m = d− 2, . . . , 1. Taking m = 1 in (2.6) yields

Hx =

L1∑

l1=0

Sl1
1 U1(:, l1). (2.7)

By (2.7), we finally evaluated the output Hx of the filtering procedure from the matrix U1 in

11



Algorithm 2 Realization of the filtering procedure x 7−→ Hx for the polynomial filter H of

multiple graph shifts at a vertex i ∈ V .

Inputs: Polynomial coefficients hl1,...,ld , 0 ≤ l1 ≤ L1, . . . , 0 ≤ ld ≤ Ld of the polynomial filter

H in (1.2), entries Sk(i, j), j ∈ Ni of the i-th row of graph shifts Sk, 1 ≤ k ≤ d, and the value

x(i) of the input graph signal x = (x(k))k∈V at vertex i.
Step 1: Find the i-th row of the matrix Ud−1.

for p = 0, 1, . . . ,
∏d−1

k=1(Lk + 1)− 1
Step 1a: write p = vd−1(l1, . . . , ld−1) for some 0 ≤ lk ≤ Lk, 1 ≤ k ≤ d− 1.

Step 1b: apply Algorithm 1 with polynomial coefficients and entries of the graph shift

being replaced by polynomial coefficients hl1,...,ld−1,ld , 0 ≤ ld ≤ Ld, and entries Sd(i, j), j ∈ Ni

in the i-th row of the shift Sd, and denote the corresponding output by z(Ld)(i).
Step 1c: set Ud−1(i, p) = z(Ld)(i).

end

Step 2: if d = 2, set W(i, j) = Ud−1(i, j), 0 ≤ j ≤ L1 and do Step 4, otherwise do Step 3.

Step 3: Find the i-th row of the matrix Um, d− 2 ≥ m ≥ 1.

for m = d− 2, . . . , 2, 1
for p = 0, 1, . . . ,

∏m
k=1(Lk + 1)− 1

Step 3a: apply Algorithm 1 with polynomial coefficients, entries of the graph shift and

the value of input being replaced by polynomial coefficients hl = 1, 0 ≤ l ≤ Lm+1, entries

Sm+1(i, j), j ∈ Ni in the i-th row of the shift Sm+1, and the value z(0)(i) = Um+1

(
i, p(Lm+1 +

1) + Lm+1

)
of the (p(Lm+1 + 1) + Lm+1)-column of the matrix Um+1, and denote the corre-

sponding output by z(Lm+1)(i).
Step 3b: set Um(i, p) = z(Lm+1)(i).

end

end

Set W(i, j) = U1(i, j), 0 ≤ j ≤ L1.

Step 4: Find the value of the output signal Hx at vertex i.
Step 4a: apply Algorithm 1 with polynomial coefficients, entries of the graph shift and

the value of input being replaced by polynomial coefficients hl = 1, 0 ≤ l ≤ L1, entries

S1(i, j), j ∈ Ni in the i-th row of the shift S1, and the value u(0)(i) = W
(
i, L1

)
of the L1-

column of the matrix W.

Step 4b: Denote the corresponding output by u(L1)(i).
Output: The value x̃(i) = u(L1)(i) is the output signal Hx = (x̃(i))i∈V at the vertex i.

(L1 + 1)-steps with the filtering procedure in each step being a local operation, see Step 4 in

Algorithm 2 for the implementation at vertex level.

Denote the degree of the graph G by deg G, and for two positive quantities a and b, we denote

a = O(b) if a ≤ Cb for some absolute constant C. Recall that the number of nonzero entries in

12



every row of a graph shift on the graph G is no more than deg G + 1. To implement (2.2), (2.5)

and (2.7) in a central facility, the operations of addition and multiplication are about 2N(deg G +

1)
∏d

k=1(Lk + 1), 2N(deg G + 1)
∑d−2

m=1

∏m+1
k=1 (Lk + 1) and 2N(deg G + 1)(L1 + 1) respectively,

and memory required are about d(deg G+1)N+
∏d

k=1(Lk+1)+2N+N
∑d−1

m=0

∏m
k=1(Lk+1) to

store the graph shifts S1, . . . ,Sd, the polynomial coefficients of the polynomial graph filter H, the

original graph signal x, the output Hx of the filtering procedure and matrices Um, 1 ≤ m ≤ d−1,

in (2.2), (2.5) and (2.6). Hence for the implementation of the filter procedure x 7−→ Hx in a central

facility via applying (2.2), (2.5) and (2.7), the total computational cost is about O
(
N deg G+(N +

Ld + 1)
∏d−1

k=1(Lk + 1)
)

and the memory requirement is about O
(
N(deg G + 1)

∏d
k=1(Lk + 1)

)
.

Shown in Algorithm 2 is the implementation of (2.2), (2.5) and (2.7) at the vertex level. Hence

it is implementable in a distributed network where each agent is equipped with a data processing

subsystem for limited data storage and computation power, and a communication subsystem for

direct data exchange to its adjacent vertices. Denote the cardinality of a set E by #E. To imple-

ment Algorithm 2 in a distributed network, we see that the data processing subsystem at a vertex

i ∈ V performs about O
(
(#Ni + 1)

∑d−1
m=0

∏m+1
k=1 (Lk + 1)

)
= O

(
(deg G + 1)

∏d
k=1(Lk + 1)

)
op-

erations of addition and multiplication, and it stores data of size about O
(∏d

k=1(Lk+1)+(#Ni+

1)(d+ 2 +
∑d−1

m=0

∏m
k=1(Lk + 1))

)
= O

(
(deg G + Ld + 1)

∏d−1
k=1(Lk + 1)

)
, including polynomial

coefficients of the filter H, the i-th row of graph shifts S1, . . . ,Sd, and the i-th and its adjacent

j-th components of the original graph signal x, the output Hx of the filtering procedure and the

matrices Um, 1 ≤ m ≤ d − 1, where j ∈ Ni. Comparing the implementation of (2.2), (2.5) and

(2.7) in a central facility, the total computational cost to implement Algorithm 2 in a distributed

network is almost the same, while the total memory is slightly large, since the polynomial coeffi-

cients of the polynomial graph filter H needs to be stored at every agent in a distributed network

while only one copy of the coefficients needs to be stored in a central facility. In addition to data

processing in a central facility, the implementation of Algorithm 2 in a distributed network requires
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that every agent i ∈ V communicates with its adjacent agents j ∈ Ni with the j-th components of

the original graph signal x, matrices Um, 1 ≤ m ≤ d−1 and the output Hx of filtering procedure,

which is about O
(
#Ni

∏d
k=1(Lk + 1)

)
= O((deg G + 1)

∏d
k=1(Lk + 1)) loops. We observe that

for the implementation of the proposed Algorithm 2 in a distributed network, the computational

cost, memory requirement and communication expense for the data processing and communication

subsystems equipped at each agent is independent on the size N of the network.

2.2 Inverse Filtering and Iterative Approximation Algorithm

Let H be an invertible graph filter on the graph G. In some applications, such as signal denoising,

inpainting, smoothing, reconstructing and semi-supervised learning [12, 20, 21, 27, 28, 30, 64, 65,

66], an inverse filtering procedure

x = H−1b (2.8)

is involved. In this section, we select a graph filter G which provides an approximation to the

inverse filter H−1, propose an iterative approximation algorithm with each iteration including fil-

tering procedures associated with filters H and G, and show that the proposed algorithm converges

exponentially.

Denote the identity matrix by I and the spectral radius of a matrix A by ρ(A). Take a graph filter

G such that the spectral radius of I−HG is strictly less than 1, i.e.,

ρ(I−HG) < 1. (2.9)

By Gelfand’s formula on spectral radius, the requirement (2.9) can be reformulated as

ρ(I−HG) = lim
n→∞

‖(I−HG)n‖1/n2 < 1, (2.10)
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where ‖x‖2 is Euclidean norm of a vector x and ‖A‖2 = sup‖x‖2=1 ‖Ax‖2 is the operator norm of

a matrix A. By (2.10), we can rewrite the inverse filtering procedure (2.8) as

x = G
(
I− (I−HG)

)−1
b = G

∞∑

n=0

(I−HG)nb (2.11)

by applying Neumann series to I−HG. Based on the above expansion, we propose the following

iterative algorithm to implement the inverse filtering procedure (2.8):





z(m) = Ge(m−1),

e(m) = e(m−1) −Hz(m),

x(m) = x(m−1) + z(m), m ≥ 1,

(2.12)

with initials

e(0) = b and x(0) = 0. (2.13)

Due to the approximation property (2.9) of the graph filter G to the inverse filter H−1, we call

the above algorithm (2.12) and (2.13) as an iterative approximation algorithm. In the following

theorem, we show that the requirement (2.9) for the approximation filter is a sufficient and neces-

sary condition for the exponential convergence of the iterative approximation algorithm (2.12) and

(2.13).

Theorem 2.2.1. Let H be an invertible graph filter and G be a graph filter. Then G satisfies (2.9)

if and only if for any graph signal b, the sequence x(m),m ≥ 1, in the iterative approximation

algorithm (2.12) and (2.13) converges exponentially to H−1b. Furthermore, for any r ∈ (ρ(I −

HG), 1), there exists a positive constant C such that

‖x(m) −H−1b‖2 ≤ C‖x‖2r
m, m ≥ 1. (2.14)

15



Proof. First the sufficiency. Applying the first two equations in (2.12) gives

e(m) = (I−HG)e(m−1), m ≥ 1.

Applying the above expression repeatedly and using the initial in (2.13) yields

e(m) = (I−HG)mb, m ≥ 0. (2.15)

Combining (2.15) and the first and third equations in (2.12) gives

x(m) = x(m−1) +G(I−HG)m−1b, m ≥ 1.

Applying the above expression for x(m),m ≥ 1, repeatedly and using the initial in (2.13), we

obtain

x(m) = G

m−1∑

n=0

(I−HG)nb, m ≥ 1. (2.16)

By (2.10), there exists a positive constant C0 for any r ∈ (ρ(I−HG), 1) such that

‖(I−HG)n‖2 ≤ C0r
n, n ≥ 1. (2.17)

Combining (2.9), (2.11) and (2.16), we obtain

‖x(m) − x‖2 =
∥∥∥G

∞∑

n=m

(I−HG)nb
∥∥∥
2
. (2.18)
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From (2.17) and (2.18) it follows that

‖x(m) − x‖2 ≤ ‖G‖2‖b‖2

∞∑

n=m

‖(I−HG)n‖2

≤ C0‖G‖2‖H‖2‖x‖2

∞∑

n=m

rn ≤
C0‖G‖2‖H‖2

1− r
rm‖x‖2

for all m ≥ 1. This proves the exponential convergence of x(m),m ≥ 0 to H−1b.

Next the necessity. Suppose on the contrary that (2.9) does not hold. Then there exist an eigenvalue

λ of I−HG and an eigenvector b0 such that

|λ| ≥ 1 and (I−HG)b0 = λb0. (2.19)

Then the sequence x(m),m ≥ 1, in the iterative approximation algorithm (2.12) and (2.13) with b

replaced by b0 becomes

x(m) =
(m−1∑

n=0

λn
)
Gb0 =





λm−1
λ−1

Gb0 if λ 6= 1

mGb0 if λ = 1

by (2.16) and (2.19). Hence the sequence x(m),m ≥ 1, does not converge to the nonzero vector

H−1b0, since it is identically zero if Gb0 = 0, and it diverges by the assumption that |λ| ≥ 1 if

Gb0 6= 0. This contradicts to the exponential convergence assumption and completes the proof of

the necessity.

By Theorem 2.2.1, the inverse filtering procedure (2.8) can be implemented by applying the itera-

tive approximation algorithm (2.12) and (2.13) with the graph filter G being chosen so that (2.9)

holds. The challenge is how to select the filter G to approximate the inverse filter H−1 appropri-
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ately, which will be discussed in the next section when H is a polynomial filter of commutative

graph shifts.

We finish this section with two remarks on the comparison among the gradient descent method

[27], the autoregressive moving average (ARMA) method [21], and the proposed iterative approx-

imation algorithm (2.12) and (2.13), cf. Remark 2.3.2.

Remark 2.2.2. For a positive definite graph filter H, the inverse filtering procedure (2.8) can be

implemented by the gradient descent method

x(m) = x(m−1) − γ(Hx(m−1) − b), m ≥ 1, (2.20)

associated with the unconstrained optimization problem having the objective function F (x) =

xTHx − xTb, where γ is an appropriate step length and xT is the transpose of a vector x. The

above iterative method is shown in [27] to be convergent when 0 < γ < 2/α2 and to have fastest

convergence when γ = 2/(α1 + α2), where α1 and α2 are the minimal and maximal eigenvalues

of the matrix H. By (2.20), we have that

x(m) = γ
m−1∑

n=0

(I− γH)nb+ (I− γH)mx(0), m ≥ 1. (2.21)

By (2.21) and (2.16), the sequence x(m),m ≥ 1, in the gradient descent algorithm with zero

initial coincides with the sequence in the iterative approximation algorithm (2.12) and (2.13) with

G = γI, in which the requirement (2.9) is met as the spectrum of I − HG is contained in [1 −

γα2, 1− γα1] ⊂ (−1, 1) whenever 0 < γ < 2/α2.

Remark 2.2.3. Let S be a graph shift and h be a polynomial of order L with its distinct nonzero

roots 1/bl satisfying

|bl|‖S‖2 < 1, 1 ≤ l ≤ L. (2.22)
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Applying partial fraction decomposition to the rational function 1/h(t) gives (h(t))−1 =
∑L

k=1 ak(1−

bkt)
−1 for some coefficients ak, 1 ≤ k ≤ L. Then for the polynomial filter H = h(S), we can

decompose the inverse filter H−1 into a family of elementary inverse filters (I− bkS)
−1,

H−1 =
L∑

k=1

ak(I− bkS)
−1.

Due to the above decomposition, the inverse filtering procedure (2.8) can be implemented as fol-

lows,

x =
L∑

k=1

ak(I− bkS)
−1b =:

L∑

k=1

akxk. (2.23)

The autoregressive moving average (ARMA) method has widely and popularly known in the time

series model [21]. The ARMA can also be applied for the inverse filtering procedure (2.8), where

it uses the decomposition (2.23) with the elementary inverse procedure xk = (I− bkS)
−1b imple-

mented by the following iterative approach,

x
(m)
k = bkSx

(m−1)
k + b, m ≥ 1

with initial x
(0)
k = 0. We remark that the above approach is the same as the iterative approximation

algorithm (2.12) and (2.13) with H and G replaced by I− bkS and I respectively. Moreover, in the

above selection of the graph filters H and G, the requirement (2.9) is met as it follows from (2.22)

that

ρ(I−HG) ≤ ‖I−HG‖2 ≤ |bk|‖S‖2 < 1 (2.24)

for all 1 ≤ k ≤ L. Applying (2.24), we see that the convergence rate to apply ARMA in the

implementation of the inverse filtering procedure is (max1≤k≤L |bk|)ρ(S) < 1.
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2.3 Iterative Polynomial Approximation Algorithms for Inverse Filtering

Let Sk = (Sk(i, j))i,j∈V , 1 ≤ k ≤ d, be commutative graph shifts on a connected, undirected and

unweighted graph G = (V,E) of order N , Λ be the joint spectrum (A.2) of the shifts S1, . . . ,Sd,

and H = h(S1, . . . ,Sd) be an invertible polynomial filter in (1.2). For polynomial graph filters

of a single shift, there are several methods to implement the inverse filtering in a distributed net-

work [12, 18, 20, 21, 27, 66]. In this section, we proposed two iterative algorithms to implement

the inverse filtering associated with a polynomial graph filter of commutative graph shifts in a

centralized facility with linear complexity and also in a distributed network with limited data pro-

cessing and communication requirement for its agents. For the case that the joint spectrum Λ is

fully known, we construct the polynomial interpolation approximation GI and optimal polynomial

approximations G̃L, L ≥ 0, to approximate the inverse filter H−1 in Subsection 2.3.1, and propose

the iterative optimal polynomial approximation algorithm (2.31) to implement the inverse filtering

procedure b 7−→ H−1b, see Theorem 2.3.1. For a graph G of large order, it is often computation-

ally expensive to find the joint spectrum Λ exactly. However, the graph shifts Sk, 1 ≤ k ≤ d, in

some engineering applications are symmetric and their spectrum sets are known being contained

in some intervals [5, 7, 32, 33]. For instance, the normalized Laplacian matrix on a simple graph is

symmetric and its spectrum is contained in [0, 2]. In Subsection 2.3.2, we consider the implemen-

tation of the inverse filtering procedure b 7−→ H−1b when the joint spectrum Λ of commutative

shifts S1, ...,Sd is contained in a cubic. Based on multivariate Chebyshev polynomial approxima-

tion to the function h−1, we introduce Chebyshev polynomial filters GK , K ≥ 0, to approximate

the inverse filter H−1, and propose the iterative Chebyshev polynomial approximation algorithm

(2.40) to implement the inverse filtering procedure b 7−→ H−1b, see Theorem 2.3.3. In addition

to the exponential convergence, the proposed iterative optimal polynomial approximation algo-

rithm and Chebyshev polynomial approximation algorithm can be implemented at vertex level in

a distributed network, see Algorithms 3 and 4.
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2.3.1 Polynomial Interpolation and Optimal Polynomial Approximation

Let U be the unitary matrix in (A.1) and denote its conjugate transpose by UH. For polynomial

filters H = h(S1, . . . ,Sd) and G = g(S1, . . . ,Sd), one may verify that UH(I−HG)U is an upper

triangular matrix with diagonal entries 1 − h(λλλi)g(λλλi), λλλi ∈ Λ. Consequently, the requirement

(2.9) for the polynomial graph filter G becomes

ρ(I−GH) = sup
λλλi∈Λ

∣∣1− h(λλλi)g(λλλi)
∣∣ < 1. (2.25)

A necessary condition for the existence of a multivariate polynomial g such that (2.25) holds is

that

h(λλλi) 6= 0 for all λλλi ∈ Λ, (2.26)

or equivalently the filter H is invertible. Conversely if (2.26) holds, (λλλi, 1/h(λλλi)), 1 ≤ i ≤ N , can

be interpolated by a polynomial gI of degree at most N − 1 [34], i.e.,

gI(λλλi) = 1/h(λλλi), λλλi ∈ Λ. (2.27)

Take GI = gI(S1, . . . ,Sd). Then all eigenvalues of I −GIH are zero, ρ(I −GIH) = 0, and the

iterative approximation algorithm (2.12) and (2.13) converges in at most N steps.

For L ≥ 0, denote the set of all polynomials of degree at most L by PL. In practice, we may not

use the interpolation polynomial gI in (2.27), and hence the polynomial filter G = gI(S1, . . . ,Sd)

in the iterative approximation algorithm (2.12) and (2.13), as it is of high degree in general. By

(2.14), the convergence rate of the iterative approximation algorithm (2.12) and (2.13) depends on
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the spectral radius in (2.25). Due to the above observation, we select g̃L ∈ PL such that

g̃L = argmin
g∈PL

sup
λλλi∈Λ

|1− g(λλλi)h(λλλi)|. (2.28)

For a multivariate polynomial g ∈ PL, we write g(t) =
∑

|k|≤L ckt
k, where |k| = k1+ · · ·+kd and

tk = tk11 · · · tkdd for t = (t1, . . . , td) and k = (k1, . . . , kd). Then for the case that all eigenvalues of

Sk, 1 ≤ k ≤ d, are real, i.e., Λ ⊂ R
d, the minimization problem (2.28) can be reformulated as a

linear programming,

min s subject to − (s− 1)1 ≤ Pc ≤ (s+ 1)1, (2.29)

where P = (h(λλλi)λλλ
k

i )1≤i≤N,|k|≤L, c = (ck)|k|≤L and 1 is the vector with all entries taking value 1.

Taking polynomial filters

G̃L = g̃L(S1, . . . ,Sd), L ≥ 0, (2.30)

to approximate the inverse filter H−1, the iterative approximation algorithm (2.12) and (2.13) with

the graph filter G replaced by G̃L becomes





z(m) = G̃Le
(m−1),

e(m) = e(m−1) −Hz(m),

x(m) = x(m−1) + z(m), m ≥ 1,

(2.31)

with initials e(0) and x(0) given in (2.13). We call the above iterative algorithm (2.31) by the

iterative optimal polynomial approximation algorithm, or IOPA in abbreviation.

Presented in Algorithm 3 is the implementation of IOPA algorithm at the vertex level in a dis-

tributed network. In each iteration of Algorithm 3, each vertex/agent of the distributed network

needs about O((L+1)d−1+
∏d−1

k=1(Lk+1)) steps containing data exchanging among adjacent ver-
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Algorithm 3 The IOPA algorithm to implement the inverse filtering procedure b 7−→ H−1b at a

vertex i ∈ V .

Inputs: Polynomial coefficients of H and G̃L, entries Sk(i, j), j ∈ Ni in the i-th row of the shift

Sk, 1 ≤ k ≤ d, the value b(i) of the input signal b = (b(i))i∈V at the vertex i, and number M of

iteration.

Initialization: Initial e(0)(i) = b(i), x(0)(i) = 0 and n = 0.

Iteration:

For m = 1, 2, . . . ,M
Step 1: Use Algorithm 1 for d = 1 and Algorithm 2 for d ≥ 2 to implement the filtering

procedure e(m−1) 7−→ z(m) = G̃Le
(m−1) at the vertex i, and the output is the i-th entry z(m)(i)

of the vector z(m).

Step 2: Use Algorithm 1 for d = 1 and Algorithm 2 for d ≥ 2 to implement the filtering

procedure z(m) 7−→ w(m) = Hz(m) at the vertex i, and the output is the i-th entries w(m)(i) of

the vector w(m).

Step 3: Update i-th entries of e(m) and x(m) by e(m)(i) = e(m−1)(i)−w(m)(i) and x(m)(i) =
x(m−1)(i) + z(m)(i) respectively.

end

Output: The approximated value x(i) ≈ x(M)(i) is the output signal H−1b = (x(i))i∈V at the

vertex i.

tices and weighted sum of values at adjacent vertices in each iteration. The memory requirement

for each vertex is about O
(
(deg G + Lk + 1)

∏d−1
k=1(Lk + 1) + (detG) + L+ 1)(L+ 1)d−1)

)
. The

total operations of addition and multiplication in each iteration to implement the inverse filtering

procedure b 7−→ H−1b via Algorithm 3 in a distributed network and procedure (2.31) in a central

facility are almost the same, which are both about O
(
N(deg G + 1)(

∏d
k=1(Lk + 1) + (L+ 1)d)

)
.

By (2.28), we have

ρ(I− G̃LH) = sup
λλλi∈Λ

|1− g̃L(λλλi)h(λλλi)| (2.32)

and

0 = ρ(I−GIH) = ρ(I−G̃N−1H) ≤ ρ(I−G̃L+1H) ≤ ρ(I−G̃LH) ≤ ρ(I−G̃0H), 0 ≤ L ≤ N−1.

(2.33)

In the following theorem, we show that the IOPA algorithm (2.31) converges exponentially when
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L is large enough, see Section 2.4.1 for the numerical demonstration.

Theorem 2.3.1. Let b be a graph signal, S1, ...,Sd be commutative graph shifts, H = h(S1, . . . ,Sd)

be an invertible polynomial graph filter for some multivariate polynomial h, and let degree L ≥ 0

be so chosen that

aL := sup
λλλi∈Λ

|1− g̃L(λλλi)h(λλλi)| < 1. (2.34)

Then x(m),m ≥ 1, in the IOPA algorithm (2.31) converges exponentially to H−1b. Moreover, for

any r ∈ (aL, 1), there exists a positive constant C such that (2.14) holds.

Proof. The conclusion follows from (2.32), (2.34) and Theorem 2.2.1 with G replaced by G̃L.

Let L0 be the minimal nonnegative integer so that aL0
< 1. By (2.33) and Theorem 2.3.1, the

inverse filtering procedure (2.8) can be implemented by applying the IOPA algorithm (2.31) with

L ≥ L0 and the IOPA algorithm (2.31) converges faster when the higher degree L of the optimal

polynomial g̃L is selected, see Section 2.4.1 for the numerical demonstration. However, the imple-

mentation of IOPA algorithm (2.31) with larger L at every agent/vertex in a distributed network

has higher computational cost in each iteration and requires more memory for each agent/vertex,

and also it takes higher computational cost to solve the the minimization problem (2.28) for larger

L.

We finish this subsection with a remark on the IOPA algorithm (2.31) and the gradient descent

method (2.20).

Remark 2.3.2. For the case that the graph filter H has its spectrum contained in [α1, α2], the

solution of the minimization problem (2.28) with L = 0 is given by g̃0 = 2/(α1 + α2), where

α1 = minλλλi∈Λ h(λλλi) and α2 = maxλλλi∈Λ h(λλλi) are the minimal and maximal eigenvalues of H

respectively. Therefore, to implement the inverse filtering procedure (2.8), the gradient descent
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method (2.20) with zero initial and optimal step length γ = 2/(α1 + α2) is the same as the

proposed IOPA algorithm (2.31) with L = 0, cf. Remark 2.2.2. By (2.33), we see that the IOPA

algorithm with L ≥ 1 has faster convergence than the gradient descent method does, at the cost

of heavier computational cost at each iteration, see Table 2.1 and Figure 2.2 in Section 2.4.1 for

numerical demonstrations.

2.3.2 Chebyshev Polynomial Approximation

In this subsection, we assume that commutative graph shifts S1, ...,Sd have their joint spectrum Λ

contained in the cubic [µµµ,ννν] = [µ1, ν1]× · · · × [µd, νd],

λλλi ∈ [µµµ,ννν] for all λλλi ∈ Λ, (2.35)

and h be a multivariate polynomial satisfying

h(t) 6= 0 for all t ∈ [µµµ,ννν]. (2.36)

Define Chebyshev polynomials Tk, k ≥ 0, by

Tk(s) =





1 if k = 0,

s if k = 1,

2sTk−1(s)− Tk−2(s) if k ≥ 2,

and shifted multivariate Chebyshev polynomials T̄k,k = (k1, . . . , kd) ∈ Z
d
+, on [µµµ,ννν] by

T̄k(t) =
d∏

i=1

Tki

(2ti − µi − νi
νi − µi

)
, t = (t1, ..., td) ∈ [µµµ,ννν].
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By (2.36), 1/h is an analytic function on [µµµ,ννν], and hence it has Fourier expansion in term of

shifted Chebyshev polynomials T̄k,k ∈ Z
d
+,

1

h(t)
=

∑

k∈Zd
+

ckT̄k(t), t ∈ [µµµ,ννν],

where

ck =
2d−p(k)

πd

∫

[0,π]d

T̄k(t1(θθθ), . . . , td(θθθ))

h(t1(θθθ), . . . , td(θθθ))
dθ, k ∈ Z

d
+,

p(k) is the number of zero components in k ∈ Z
d
+, and ti(θθθ) =

νi+µi

2
+ νi−µi

2
cos(θi), 1 ≤ i ≤ d,

for θ = (θ1, ..., θd). Define partial sum of the expansion (2.3.2) by

gK(t) =
∑

|k|≤K

ckT̄k(t), (2.37)

where |k| =
∑d

i=1 ki for k = (k1, ..., kd)
T ∈ Z

d
+. Due to the analytic property of the polynomial

h, the partial sum gK , K ≥ 0, converges to 1/h exponentially [35],

bK := sup
t∈[µµµ,ννν]

|1− h(t)gK(t)| ≤ CrK0 , K ≥ 0, (2.38)

for some positive constants C ∈ (0,∞) and r0 ∈ (0, 1).

Set

GK = gK(S1, . . . ,Sd), K ≥ 0, (2.39)

and call the iterative approximation algorithm (2.12) and (2.13) with the graph filter G replaced
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Algorithm 4 The ICPA algorithm to implement the inverse filtering procedure b 7−→ H−1b at a

vertex i ∈ V .

Inputs: Polynomial coefficients of polynomial filters H and GK , entries Sk(i, j), j ∈ Ni in the

i-th row of the shifts Sk, 1 ≤ k ≤ d, the value b(i) of the input signal b = (b(i))i∈V at the vertex

i, and number M of iteration.

Initialization: Initial e(0)(i) = b(i), x(0)(i) = 0 and n = 0.

Iteration: Use the iteration in Algorithm 3 except replacing G̃L by GK in (2.39), and the output

is x(M)(i).
Output: The approximated value x(i) ≈ x(M)(i) is the output signal H−1b = (x(i))i∈V at the

vertex i.

by GK by the iterative Chebyshev polynomial approximation algorithm, or ICPA in abbreviation,





z(m) = GKe
(m−1),

e(m) = e(m−1) −Hz(m),

x(m) = x(m−1) + z(m), m ≥ 1,

(2.40)

with initials e(0) and x(0) given in (2.13), see Algorithm 4 to the distributed implementation at the

vertex level.

From Algorithm 4, we can implement each iteration in the ICPA algorithm (2.40) at vertex level

in about O((K + 1)d−1 +
∏d−1

k=1(Lk + 1)) steps with each step containing data exchanging among

adjacent vertices and weighted linear combination of values at adjacent vertices. The memory

requirement for each agent in the distributed network is about O
(
(deg G+Ld+1)

∏d−1
k=1(Lk+1)+

(deg G + K + 1)(K + 1)d−1
)
. The total operations of addition and multiplication to implement

each iteration of Algorithm 4 in a distributed network and to implement (2.40) in a central facility

are almost the same, which are both about O
(
N(deg G + 1)(

∏d
k=1(Lk + 1) + (K + 1)d)

)
.

In the following theorem, we show that the ICPA algorithm (2.40) converges exponentially, when

the degree K is so chosen that (2.41) holds, see Section 2.4.1 for the demonstration.

Theorem 2.3.3. Let S1, ...,Sd be commutative graph shifts, H be a polynomial graph filter of the
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graph shifts, b be a graph signal, and let degree K ≥ 0 of Chebyshev polynomial approximation

be so chosen that

bK := sup
t∈[µµµ,ννν]

|1− h(t)gK(t)| < 1. (2.41)

Then x(m),m ≥ 0, in the ICPA algorithm (2.40) converges exponentially to H−1b. Moreover for

any r ∈ (bK , 1), there exists a positive constant C such that (2.14) holds.

Proof. Following the argument used in (2.32), one may verify that

ρ(I−GKH) = sup
λλλi∈Λ

|1− gK(λλλi)h(λλλi)| ≤ bK , (2.42)

where the inequality holds by (2.35) and the definition (2.38) of bK , K ≥ 0. Then the desired

conclusion follows from (2.42) and Theorem 2.2.1 with G replaced by GK .

By (2.38), an inverse filtering procedure (2.8) can be approximately implemented by the filter pro-

cedure GKx with large K, i.e., H−1x ≈ GKx for large K. The above implementation of the

inverse filtering has been discussed in [12, 66] for the case that H is a polynomial graph filter

of one shift, and it is known as the Chebyshev polynomial approximation algorithm (CPA). We

remark that the approximation GKx in the CPA is the same as the first term x(1) in the ICPA algo-

rithm (2.40). To implement the inverse filtering with high accuracy, the CPA requires Chebyshev

polynomial approximation of high degree, which means more integrals involved in coefficient cal-

culations. On the other hand, we can select Chebyshev polynomial approximation of lower degree

in the ICPA algorithm (2.40) to reach the same accuracy with few iterations. By Theorem 2.3.3,

the ICPA algorithm (2.40) has exponential convergent rate bK , which has limit zero as K → ∞.

This indicates that the ICPA algorithm converges faster for large K, however for each agent in a

distributed network, its data processing system need more memory to store data and time to pro-

cess data, and its communication system costs more for larger K too. Our simulation in the next
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section confirms the above observation, see Table 2.1 and Figure 2.2 in Section 2.4.1.

2.4 Simulations

In this section, we demonstrate the performance of the proposed IOPA algorithm (2.31) and ICPA

algorithm (2.40) on the implementation of the inverse filtering on circulant graphs (Section 2.4.1),

on denoising time-varying graph signals on random geometric graphs (Section 2.4.2) and on de-

noising an hourly temperature data collected in the United States (Section 2.4.3). We also compare

our algorithms with the gradient decent method (2.20) with zero initial (GD0) [27], and the autore-

gressive moving average (ARMA) algorithm (2.23) and (2.2.3) [21].

2.4.1 Iterative Approximation Algorithms on Circulant Graphs

Let N ≥ 1 and Q = {q1, . . . , qM} be a set of integers ordered so that 1 ≤ q1 < . . . < qM < N/2.

The circulant graph C(N,Q) generated by Q has the vertex set VN = {0, 1, . . . , N − 1} and the

edge set

EN(Q) = {(i, i± q mod N), i ∈ VN , q ∈ Q}, (2.43)

where a = b mod N if (a − b)/N is an integer. Therefore for the circulant graph C(N,Q),

i ± q1 mod N, . . . , i ± qM mod N are adjacent to the vertex i ∈ VN . Circulant graphs are widely

used in image processing [14, 36, 37, 38, 39]. In this section, we consider the circulant graph

C(N,Q0) generated by Q0 = {1, 2, 5}, the input graph signal x with entries randomly selected in

[−1, 1], and the graph signal b = H1x as the observation, where h1(t) = (9/4 − t)(3 + t) and

H1 = h1(L
sym
C(N,Q0)

) is a polynomial graph filter of the symmetric normalized Laplacian L
sym
C(N,Q0)

on C(N,Q0). We implement the inverse filtering b 7−→ H−1
1 b through the IOPA algorithm (2.31)

and ICPA algorithm (2.40) on the circulant graph C(N,Q0). By Theorems 2.3.1 and 2.3.3, the
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Table 2.1: Average relative iteration error over 1000 trials for the ARMA method, GD0 algorithm,

and IOPA and ICPA algorithms with different degrees to implement the inverse filtering b 7−→
H−1

1 b on the circulant graph C(1000, Q0).

m

AE Alg.
ARMA GD0 ICPA0 ICPA1 ICPA2 IOPA1 ICPA3 IOPA2 IOPA3

1 0.3259 0.2350 0.5686 0.4494 0.1860 0.1545 0.0979 0.0365 0.0167

2 0.2583 0.0856 0.4318 0.2191 0.0412 0.0266 0.0113 0.0019 0.0003

3 0.1423 0.0349 0.3752 0.1103 0.0098 0.0047 0.0014 0.0001 0.0000

4 0.1098 0.0147 0.3521 0.0566 0.0024 0.0008 0.0002 0.0000 0.0000

5 0.0718 0.0063 0.3441 0.0295 0.0006 0.0002 0.0000 0.0000 0.0000

7 0.0381 0.0012 0.3460 0.0082 0.0000 0.0000 0.0000 0.0000 0.0000

9 0.0207 0.0002 0.3577 0.0024 0.0000 0.0000 0.0000 0.0000 0.0000

11 0.0113 0.0000 0.3743 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000

14 0.0047 0.0000 0.4061 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

17 0.0019 0.0000 0.4451 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20 0.0008 0.0000 0.4913 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

IOPA algorithm with L ≥ 0 and the ICPA algorithm with K ≥ 1 converge, and we denote those

algorithms by IOPAL and ICPAK for abbreviation. Notice that the filter H1 is positive definite,

and

1

h1(t)
=

4/21

9/4− t
+

4/21

3 + t

meets the requirement (2.22) for the ARMA. For the circulant graph C(N,Q0) with N = 1000, we

also implement the inverse filtering b 7−→ H−1
1 b by the gradient descent method with zero initial,

GD0 in abbreviation, with the optimal step length γ = 2/(6.7500 + 2.5588), and the ARMA

method, where 2.5588 and 6.7500 are the minimal and maximal eigenvalues for H1 respectively.

Set the relative iteration error

E(m,x) = ‖x(m) − x‖2/‖x‖2, m ≥ 1,
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where x(m),m ≥ 1, are the output at m-th iteration. Shown in Table 2.1 are the comparisons of the

ARMA algorithm, the GD0 algorithm, and IOPAL and ICPAK algorithms regard to the average of

the relative iteration error for implementing the inverse filtering on the circulant graph C(1000, Q0)

over 1000 trials, where 0 ≤ L,K ≤ 3. This confirms that exponential convergence and applicabil-

ity of the inverse filtering procedure b 7−→ H−1
1 b of IOPAL, 0 ≤ L ≤ 5 and ICPAK, 1 ≤ K ≤ 5

on the circulant graph C(1000, Q0). The average exponential convergence rates of IOPAL, 0 ≤

L ≤ 5, over 1000 trials are 0.4401, 0.1820, 0.0593, 0.0208, 0.0067, 0.0023 respectively, which is

close to the theoretical bound aL = 0.4502, 0.1852, 0.0612, 0.0212, 0.0072, 0.0025 for 0 ≤ L ≤ 5,

see (2.34) in Theorem 2.3.1. Similarly, the average exponential convergence rates of ICPAK,

1 ≤ K ≤ 5, are 0.5485, 0.2804, 0.1459, 0.0685, 0.0334 respectively, while their theoretical es-

timate bK , 1 ≤ K ≤ 5, in (2.41) of Theorem 2.3.3 are 0.5837, 0.2924, 0.1467, 0.0728, 0.0367

respectively. By the third column in Table 2.1, we see that the ICPA0 does not yield the desired

inverse filtering result. The reason for the divergence is that the theoretical bound b0 = 1.0463

in (2.41) is strictly larger than one. From Table 2.1, we observe that the IOPAL algorithms with

higher degree L (resp. the ICPAK with higher degree K) have faster convergence, and the IOPAL

algorithm outperforms the ICPAK algorithm when the same degree L = K is selected. Com-

paring with the ARMA algorithm and the GD0 algorithm, we observe that the proposed IOPAL

algorithms with L ≥ 1 and ICPAK algorithms with K ≥ 2 have faster convergence, while the

GD0=IOPA0 algorithm outperforms the ICPAK when K = 1.

We also apply ARMA, GD0, and IOPAL and ICPAK with 1 ≤ L,K ≤ 5 to implement in-

verse filtering procedure on the circulant graph C(N,Q0) with N ≥ 100. All experiments were

performed on MATLAB R2017b, running on a DELL T7910 workstation with two Intel Core

E5-2630 v4 CPUs (2.20 GHz) and 32GB memory. From the simulations, we observe that the ex-

ponential convergence rate r for the proposed algorithms is almost independent on N ≥ 100, see

Figure 2.1, and the number of iterations to ensure the relative iteration error E(m,x) ≤ 10−3 are

31



Figure 2.1: Plotted from top to bottom are the average exponential convergence rate r in the

logarithmic scale over 1000 trials by ARMA, ICPA1, GD0, ICPA2, IOPA1, ICPA3, ICPA4, IOPA2,

ICPA5, IOPA3, IOPA4, IOPA5 to implement the inverse filtering on circulant graphs C(N,Q0)
with 100 ≤ N ≤ 2000, respectively.

20, 8, 11, 5, 4, 4, 3, 3, 2, 2, 2, 2 for ARMA, GD0, ICPA1, ICPA2, IOPA1, ICPA3, ICPA4, IOPA2,

ICPA5, IOPA3, IOPA4, IOPA5 respectively. Shown in Figure 2.2 is the average running time T

in the logarithmic scale over 1000 trials, where the running time T is measured in seconds to en-

sure the relative iteration error E(m,x) ≤ 10−3. From our simulations, we see that there is a

complicated trade-off between the convergence rate and the running time to apply our proposed

algorithms, ARMA and GD0 for the implementation of an inverse filtering procedure.

2.4.2 Denoising Time-Varying Signals

In this section, we consider denoising noisy sampling data

bi = x(ti) + ηηηi, 1 ≤ i ≤ M, (2.44)
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Figure 2.2: Plotted are the average of total running time T in the logarithmic scale for the GD0,

ARMA and the IOPAL and ICPAK algorithms with 1 ≤ L,K ≤ 5 to implement the inverse

filtering on circulant graphs C(N,Q0) with 100 ≤ N ≤ 16000.

of some time-varying graph signal x(t) governed by a differential equation

x′′(t) = Px(t), (2.45)

where ηηηi, 1 ≤ i ≤ M , are noises with noise level η = max1≤i≤M ‖ηηηi‖∞, the sampling procedure

is taken uniformly at ti = t1 + (i− 1)δ, 1 ≤ i ≤ M , with uniform sampling gap δ > 0, and P is a

graph filter with small geodesic-width.

Discretizing the differential equation (2.45) gives

δ−2
(
x(ti+1) + x(ti−1)− 2x(ti)

)
≈ Px(ti), (2.46)

where i = 1, . . . ,M . Applying the trivial extension x(t0) = x(t1) and x(tM+1) = x(tM) around

the boundary, we can reformulate (2.46) in a recurrence relation,

x(ti) ≈ (2I+ δ2P)x(ti−1)− x(ti−2), 2 ≤ i ≤ M, (2.47)
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with x(t0) = x(t1). Let T = (T, F ) be the line graph with the vertex set T = {t1, · · · , tM} and

edge set F = {(t1, t2), . . . , (tM−1, tM)} ∪ {(tM , tM−1), . . . , (t2, t1)}. Denote Kronecker product

of two matrices A and B by A ⊗ B, and the Laplacian matrix of the line graph T with vertices

{t1, . . . , tM} by LT . Then we can reformulate the recurrence relation (2.47) in the matrix form

(δ−2LT ⊗ I+ I⊗P)X ≈ 0, (2.48)

where X is the vectorization of x(t1), . . . ,x(tM). In most of applications [11, 14, 40, 41], the

time-varying signal x(t) at every moment t has certain smoothness in the vertex domain, which is

usually described by

(x(ti))
TL

sym
G x(ti) ≈ 0, 1 ≤ i ≤ M, (2.49)

where L
sym
G is the symmetric normalized Laplacian on the connected, undirected and unweighted

graph G = (V,E). Based on the observations (2.48) and (2.49), we propose the following

Tikhonov regularization approach,

X̂ := argmin
Y

‖Y −B‖22 + αYT (I⊗ L
sym
G )Y + βYT (δ−2LT ⊗ I+ I⊗P)Y, (2.50)

where B is the vectorization of the observed noisy data b1, . . . ,bM , and α, β are penalty constants

in the vertex and “temporal” domains to be appropriately chosen [24].

Set

Dα,β = I+ αI⊗ L
sym
G + β(δ−2LT ⊗ I+ I⊗P), α, β ≥ 0.

The minimization problem (2.50) has an explicit solution

X̂ = (Dα,β)
−1B, (2.51)
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Figure 2.3: Presented on the left and right are the first snapshot xp(t1) and the middle snapshot

xp(t12) of a time-varying signal xp(tm), 1 ≤ m ≤ 24, on the random geometric graph G512 respec-

tively, where the qualities (xp(tm))
TL

sym
G512

xp(tm) to measure smoothness of xp(tm) in the vertex

domain are 84.1992 and 42.4746 for m = 1, 12 respectively.

when I+ αLsym
G + βP is positive definite. Set S1 = I⊗L

sym
G and S2 =

1
2
LT ⊗ I. One may verify

that S1 and S2 are commutative graph shifts on the Cartesian product graph T ×G, see Proposition

A.2.2, and their joint spectrum is contained in [0, 2]2. Therefore for the case that P = p(Lsym
G ) for

some polynomial p, Dα,β = hα,β(S1,S2) is a polynomial graph filter of commutative graph filters

S1 and S2, where hα,β(t1, t2) = 1 + αt1 + βp(t1) + 2βδ−2t2. Moreover, one may verify that Dα,β

is positive definite if

hα,β(t1, t2) > 0, 0 ≤ t1, t2 ≤ 2,

which is satisfied if 1+βp(t1) > 0 for all 0 ≤ t1 ≤ 2. Hence we may use the IOPA algorithm (2.31)

and the ICPA algorithm (2.40) with the polynomial filter H being replaced by Dα,β to implement

the denoising procedure (2.51). By the exponential convergence of the proposed algorithms, we

may use their outputs at m-th iteration with large m as denoised time-varying signals.

Let G512 be the random geometric graph reproduced by the GSPToolbox, which has 512 vertices

randomly deployed in the region [0, 1]2 and an edge existing between two vertices if their physical
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distance is not larger than
√
2/512 = 1/16 [42, 64]. Denote the symmetric normalized Laplacian

matrix on G512 by L
sym
G512

and the coordinates of a vertex i in G512 by (ix, iy). For the simulations in

this section, the time-varying signal x(tm), 1 ≤ m ≤ M , is given in (2.46), where M = 24, δ =

0.1, the governing filter is given by P = −I + L
sym
G512

/2, and the initial graph signal xp(t1) is a

blockwise polynomial consisting of four strips and imposing (0.5 − 2ix) on the first and third

diagonal strips and (0.5 + i2x + i2y) on the second and fourth strips respectively [64]. Shown in

Figure 2.3 are two snapshots of the above time-varying graph signal.

Appropriate selection of the penalty constants α, β in the vertex and temporal domains are crucial

to have a satisfactory denoising performance. In the simulations, we let noise entries of ηηηi, 1 ≤

i ≤ 24 in (2.45), be i.i.d. variables uniformly selected in the range [−η, η], and we take

α =
E‖B−X‖22

E
(
BT (I⊗ L

sym
G512

)B
) =

MNη2/3

XT (I⊗ L
sym
G512

)X+MNη2/3
≈

η2

0.2306 + η2
, (2.52)

and

β =
E‖B−X‖22

2E
(
BT (δ−2LT ⊗ I+ I⊗P)B

) ≈ 0.0026 (2.53)

to balance the fidelity term and the regularization terms on the vertex and temporal domains in

(2.50).

We use the IOPA algorithm (2.31) with L = 1, the ICPA algorithm (2.40) with K = 1 and

the gradient descent method (2.20) with zero initial to implement the inverse filter procedure

B 7−→ X̂ = D−1
α,βB, denoted by IOPA1(α, β), ICPA1(α, β) and GD0(α, β) respectively. Let

X̂(m),m ≥ 1, be the outputs of either the IOPA1(α, β) algorithm, or the ICPA1(α, β) algorithm,

or the GD0(α, β) method at m-th iteration. To measure the denoising performance of our ap-

proaches, we define the input signal-to-noise ratio

ISNR = −20 log10 ‖B−X‖2/‖X‖2,
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and the output signal-to-noise ratio

SNR(m) = −20 log10 ‖X̂
(m) −X‖2/‖X‖2, m ≥ 1,

and

SNR(∞) = −20 log10 ‖X̂−X‖2/‖X‖2.

Presented in Table 2.2 are the average over 1000 trials of ISNR and SNR(m),m = 1, 2, 4, 6,∞.

From Table 2.2, we observe that the denoising procedure B 7−→ X̂ = D−1
α,βB via Tikhonov

regularization (2.50) on the temporal-vertex domain can improve the signal-to-noise ratio in the

range from 2dBs to 5dBs, depending on the noise level η. Also we see that the denoising pro-

cedure B 7−→ X̂(m) via the output of the m-th iteration in IOPA1(α, β) algorithm with m ≥ 2,

the GD0(α, β) method and the ICPA1(α, β) algorithm with m ≥ 4 have similar denoising perfor-

mance. Due to the correlation of time-varying signals across the joint temporal-vertex domains, it

is expected that the Tikhonov regularization (2.50) on the temporal-vertex domain has better de-

noising performance than Tikhonov regularization either only on the vertex domain (i.e., β = 0 in

(2.50)) or only on the temporal domain (i.e., α = 0 in (2.50)) do. The above performance expecta-

tion is confirmed in Table 2.2. We remark that denoising approach via the Tikhonov regularization

on the temporal-vertex domain is an inverse filtering procedure of a polynomial graph filter of two

shifts, while the one either on the vertex domain or on the temporal domain only is an inverse

filtering procedure of a polynomial graph filter of one shift.

2.4.3 Denoising an Hourly Temperature Dataset

In the section, we consider denoising the hourly temperature dataset collected at 218 locations in

the United States on August 1st, 2010, measured in Fahrenheit [43]. The above real-world dataset

is of size 218 × 24, and it can be modelled as a time-varying signal w(i), 1 ≤ i ≤ 24, on the
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product graph C ×W , where C := C(24, {1}) is the circulant graph with 24 vertices and generator

{1}, and W is the undirected graph with 218 locations as vertices and edges constructed by the 5

nearest neighboring algorithm.

Given noisy temperature data

w̃i = wi + ηηηi, i = 1, . . . , 24,

we propose the following denoising approach,

Ŵ := argmin
Z

‖Z− W̃‖22 + α̃ZT (I⊗ L
sym
W )Z+ β̃ZT (Lsym

C ⊗ I)Z, (2.54)

where W̃ is the vectorization of the noisy temperature data w̃1, . . . , w̃24 with noises ηηηi, 1 ≤ i ≤ 24

in (2.45) having their components randomly selected in [−η, η] in a uniform distribution, L
sym
W and

L
sym
C are normalized Laplacian matrices on the graph W and C respectively, and α̃, β̃ ≥ 0 are

penalty constants in the vertex and temporal domains to be appropriately selected.

Set S̃1 = I ⊗ L
sym
W , S̃2 = L

sym
C ⊗ I and Fα̃,β̃ = I + α̃S̃1 + β̃S̃2, α̃, β̃ ≥ 0. One may verify

that the explicit solution of the minimization problem (2.54) is given by Ŵ = (Fα̃,β̃)
−1W̃, and

the proposed approach to denoise the temperature dataset becomes an inverse filtering procedure

(2.8) with H and b replaced by Fα̃,β̃ and W̃ respectively. In absence of notation, we still denote

the IOPA algorithm (2.31) with L = 1, the ICPA algorithm (2.40) with K = 1 and the gradient

descent method (2.20) with initial zero to implement the inverse filter procedure W̃ 7−→ F−1

α̃,β̃
W̃

by IOPA1(α̃, β̃), ICPA1(α̃, β̃) and GD0(α̃, β̃) respectively.

In our simulations, we take

α̃ =
E‖Z− W̃‖22

E
(
W̃T S̃1W̃)

=
1744η2

WT S̃1W + 1744η2
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and

β̃ =
E‖Z− W̃‖22

E(W̃T S̃2W̃)
=

1744η2

WT S̃2W + 1744η2

to balance three terms in the regularization approach (2.54). Presented in Table 2.3 are the average

over 1000 trials of the input signal-to-noise ratio ISNR and the output signal-to-noise ratio

SNR(m) = −20 log10
‖Ŵ(m) −W‖2

‖W‖2
, m ≥ 1,

which are used to measure the denoising performance of the IOPA1(α̃, β̃), ICPA1(α̃, β̃) and GD0(α̃, β̃)

at the mth iteration, where Ŵ(∞) := Ŵ and Ŵ(m),m ≥ 1, are outputs of the IOPA1(α̃, β̃) al-

gorithm, or the ICPA1(α̃, β̃), or the GD0(α̃, β̃) at m-th iteration. From Table 2.3, we see that the

Tikhonov regularization on the temporal-vertex domain has better performance on denoising the

hourly temperature dataset than the Tikhonov regularization only either on the vertex domain (i.e.

β̃ = 0) or on the temporal domain (i.e. α̃ = 0) do.

2.5 Conclusions

Polynomial graph filters of multiple shifts are preferable for denoising and extracting features

for multidimensional graph signals, such as video or time-varying signals. Some Tikhonov reg-

ularization approaches on the temporal-vertex domain to denoise a time-varying signal can be

reformulated as an inverse filtering procedure for a polynomial graph filter of two shifts which

represent the features on the temporal and vertex domain respectively. Two exponentially conver-

gent iterative algorithms are introduced for the inverse filtering procedure of a polynomial graph

filter, and each iteration of the proposed algorithms can be implemented in a distributed network,

where each vertex is equipped with systems for limited data storage, computation power and data

exchanging facility to its adjacent vertices. The proposed iterative algorithms are demonstrated to

implement the inverse filtering procedure effectively and to have satisfactory performance on de-
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noising multidimensional graph signals. Future works will concentrate on the design methodology

of polynomial filters of multiple graph shifts and their inverses with certain spectral characteristic.
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Table 2.2: The average of the signal-to-noise ratio SNR(m),m = 1, 2, 4, 6,∞ for the noise level

η = 3/4, 1/2, 1/4 over 1000 trials, where penalty constants α and β are given in (2.52) and (2.53)

respectively.

Alg.

SNR m

1 2 4 6 ∞

η=3/4, ISNR= 3.3755

IOPA1(α, 0) 6.5777 6.8047 6.7927 6.7926 6.7926

IOPA1(0, β) 6.0597 6.0907 6.0735 6.0735 6.0735

IOPA1(α, β) 7.4797 8.5330 8.4942 8.4931 8.4930

ICPA1(α, 0) 6.4581 6.8169 6.7928 6.7926 6.7926

ICPA1(0, β) 6.0433 6.0899 6.0735 6.0735 6.0735

ICPA1(α, β) 7.4036 8.4602 8.4924 8.4930 8.4930

GD0(α, 0) 4.9399 6.7283 6.8062 6.7943 6.7926

GD0(0, β) 5.0027 6.3873 6.1225 6.0787 6.0735

GD0(α, β) 4.1778 6.9998 8.3432 8.4750 8.4930

η=1/2, ISNR=6.8975

IOPA1(α, 0) 9.2211 9.3576 9.3544 9.3544 9.3544

IOPA1(0, β) 9.4981 9.6116 9.5949 9.5949 9.5949

IOPA1(α, β) 10.0425 11.0678 11.0624 11.0620 11.0620

ICPA1(α, 0) 9.1525 9.3617 9.3544 9.3544 9.3544

ICPA1(0, β) 9.5037 9.6110 9.5949 9.5949 9.5949

ICPA1(α, β) 9.7218 11.0092 11.0613 11.0620 11.0620

GD0(α, 0) 7.1610 9.2163 9.3568 9.3546 9.3544

GD0(0, β) 6.8746 9.5953 9.6392 9.6000 9.5949

GD0(α, β) 5.3263 8.9866 10.8804 11.0423 11.0620

η=1/4, ISNR= 12.9164

IOPA1(α, 0) 13.8837 13.9053 13.9053 13.9053 13.9053

IOPA1(0, β) 15.0923 15.6251 15.6109 15.6108 15.6108

IOPA1(α, β) 14.6334 15.9121 15.9192 15.9192 15.9192

ICPA1(α, 0) 13.8693 13.9055 13.9053 13.9053 13.9053

ICPA1(0, β) 15.2045 15.6255 15.6109 15.6108 15.6108

ICPA1(α, β) 14.1329 15.8756 15.9190 15.9192 15.9192

GD0(α, 0) 12.2195 13.8694 13.9052 13.9053 13.9053

GD0(0, β) 8.5703 14.2275 15.6302 15.6153 15.6108

GD0(α, β) 7.2800 12.7687 15.7309 15.9044 15.9192
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Table 2.3: The average over 1000 trials of the signal-to-noise ratio SNR(m),m = 1, 2, 4, 6,∞
denoise the US hourly temperature dataset collected at 218 locations on August 1st, 2010, where

η = 35, 20, 10.

Alg.

SNR m

1 2 4 6 ∞

η=35, ISNR= 11.5496

IOPA1(α̃, 0) 14.8906 16.2623 16.2499 16.2497 16.2497

IOPA1(0, β̃) 13.3792 15.7143 15.6925 15.6911 15.6911

IOPA1(α̃, β̃) 11.2985 18.1294 19.0536 19.0491 19.0487

ICPA1(α̃, 0) 14.2783 16.3118 16.2509 16.2498 16.2497

ICPA1(0, β̃) 14.0451 15.7475 15.6925 15.6911 15.6911

ICPA1(α̃, β̃) 9.8634 16.9294 19.0281 19.0486 19.0487

GD0(α̃, 0) 7.2407 13.2001 16.1692 16.2523 16.2497

GD0(0, β̃) 5.7453 10.8805 15.3374 15.7069 15.6911

GD0(α̃, β̃) 3.9579 7.8606 14.4865 17.9663 19.0487

η=20, ISNR= 16.4086

IOPA1(α̃, 0) 18.3271 20.2473 20.2470 20.2470 20.2470

IOPA1(0, β̃) 15.4936 20.4129 20.5195 20.5183 20.5183

IOPA1(α̃, β̃) 12.3927 21.0773 22.8075 22.8097 22.8095

ICPA1(α̃, 0) 17.5792 20.2654 20.2474 20.2470 20.2470

ICPA1(0, β̃) 16.73029 20.5223 20.5196 20.5183 20.5183

ICPA1(α̃, β̃) 10.7460 19.4217 22.7759 22.8092 22.8095

GD0(α̃, 0) 8.4637 15.7834 20.1310 20.2470 20.2470

GD0(0, β̃) 5.9817 11.7217 19.1824 20.4607 20.5183

GD0(α̃, β̃) 4.2594 8.4753 16.1761 21.0514 22.8095

η=10, ISNR=22.4320

IOPA1(α̃, 0) 23.3572 24.5564 24.5565 24.5565 24.5565

IOPA1(0, β̃) 16.9511 25.9123 26.4291 26.4284 26.4284

IOPA1(α̃, β̃) 14.2863 24.9125 26.9961 26.9990 26.9990

ICPA1(α̃, 0) 22.5720 24.5572 24.5565 24.5565 24.5565

ICPA1(0, β̃) 18.6319 26.2493 26.4294 26.4285 26.4284

ICPA1(α̃, β̃) 12.7428 23.3488 26.9816 26.9989 26.9990

GD0(α̃, 0) 11.7089 21.2276 24.5387 24.5566 24.5565

GD0(0, β̃) 6.2342 12.3916 22.7545 26.1414 26.4284

GD0(α̃, β̃) 4.9806 9.9239 19.2003 25.2121 26.9990
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CHAPTER 3: PRECONDITIONED GRADIENT DESCENT

ALGORITHM FOR INVERSE FILTERING ON SPATIALLY

DISTRIBUTED NETWORKS

Polynomial graph filters are favorable for a distributed implementation where at each step every

node i ∈ V replaces its signal value with the linear combination of the signal values at the one-hope

neighbors. However, not every graph filters can be represented as polynomial of some commuta-

tive graph shifts. The existing algorithms for implementation of an arbitrary inverse graph filtering

in a distributed manner requires some global information, such as spectral radius and entire spec-

trum of the filter H. For some applications such as graph filtering in time-varying graph signals,

the spectrum of a graph filter may be sensitive to noise or graph topology may change in time,

and for this case an inverse graph filtering algorithm with the selection of parameters depending

on some global information are not ideal. In this chapter, inspired by the preconditioning method

in numerical analysis, we propose the preconditioned gradient descent algorithm (PGDA) to im-

plement an inverse filtering procedure associated with an arbitrary invertible filter H with small

geodesic-width, which converges exponentially. The proposed PGDA is designed based on the

local information of the graph and the filter within communication range only.

3.1 Preconditioned Gradient Descent Algorithm for Inverse Filtering

Let G := (V,E) be a connected, undirected and unweighted graph and H = (H(i, j))i,j∈V be a

filter on the graph G with geodesic-width ω(H). In this section, we induce a diagonal matrix PH
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Algorithm 5 Realization of the preconditioner PH at a vertex i ∈ V .

Inputs: Geodesic width ω(H) of the filter H and nonzero entries H(i, j) and H(j, i) for j ∈
B(i, ω(H)) in the i-th row and column of the filter H.

1) Calculate

d(i) = max
{ ∑

j∈B(i,ω(H))

|H(i, j)|,
∑

j∈B(i,ω(H))

|H(j, i)|
}

.

2) Send d(i) to all neighbors k ∈ B(i, ω(H))\{i} and receive d(k) from neighbors k ∈
B(i, ω(H))\{i}.

3) Calculate PH(i, i) = max
k∈B(i,ω(H))

d(k).

Output: PH(i, i).

with diagonal elements PH(i, i), i ∈ V , given by

PH(i, i) := max
k∈B(i,ω(H))

{
max

( ∑

j∈B(k,ω(H))

|H(j, k)|,
∑

j∈B(k,ω(H))

|H(k, j)|
)}

, (3.1)

where we denote the set of all s-hop neighbors of a vertex i ∈ V by B(i, s) = {j ∈ V, ρ(j, i) ≤

s}, s ≥ 0. The above diagonal matrix PH can be evaluated at vertex level and constructed on

SDNs with communication range L ≥ ω(H), see Algorithm 5.

For symmetric matrices A and B, we use B � A and B ≺ A to denote the positive semidefinite-

ness and positive definiteness of their difference A −B respectively. A crucial observation about

the diagonal matrix PH is as follows.

Theorem 3.1.1. Let H be a graph filter with geodesic-width ω(H) and PH be as in (3.1). Then

HTH � P2
H
. (3.2)

Proof. Write H = (H(i, j))i,j∈V . For x = (x(i))i∈V , we have
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0 ≤ xTHTHx =
∑

j∈V

∣∣∣
∑

i∈V

H(j, i)x(i)
∣∣∣
2

≤
∑

j∈V

(∑

i∈V

|H(j, i)||x(i)|2
)
×

(∑

i′∈V

|H(j, i′)|
)

=
∑

i∈V

|x(i)|2
∑

j∈B(i,ω(H))

|H(j, i)| ×
(∑

i′∈V

|H(j, i′)|
)

≤
∑

i∈V

|x(i)|2PH(i, i)
∑

j∈B(i,ω(H))

|H(j, i)|

≤
∑

i∈V

(PH(i, i))
2|x(i)|2 = xTP2

H
x.

This proves (3.2) and completes the proof.

Denote the spectral radius and operator norm of a matrix A by r(A) and ‖A‖2 = sup‖x‖2=1 ‖Ax‖2

respectively, where ‖x‖2 = (
∑

j∈V |x(j)|2)1/2 for x = (xj)j∈V . By Theorem 3.1.1, P−2
H
HT is an

approximation filter to the inverse filter H−1 in the sense that

r(I−P−2
H
HTH) = r(I−P−1

H
HTHP−1

H
) = ‖I−P−1

H
HTHP−1

H
‖2 < 1. (3.3)

Remark 3.1.2. Define the Schur norm of a matrix H = (H(i, j))i,j∈V by

‖H‖S = max
{
max
i∈V

∑

j∈V

|H(i, j)|, max
j∈V

∑

i∈V

|H(i, j)|
}
,

and denote the zero and identity matrices of appropriate size by O and I respectively. One may

verify that

O ≺ HTH � ‖H‖2SI. (3.4)

By (3.1), we have PH � ‖H‖SI. Then we may consider the conclusion (3.2) for the preconditioner

PH as a distributed version of the well-known matrix dominance (3.4) for the graph filter H.

Preconditioning technique has been widely used in numerical analysis to solve a linear system,
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Algorithm 6 Implementation of the PGDA (3.7) at a vertex i ∈ V .

Inputs: Iteration number M , geodesic-width ω(H), preconditioning constant PH(i, i), observa-

tion y(i) at vertex i, and filter coefficients H(i, j) and H(j, i), j ∈ B(i, ω(H)).

1) Calculate H̃(j, i) = H(j, i)/(PH(i, i))
2.

Initialization: Initial x(0)(j), j ∈ B(i, ω(H)), and m = 1.

2) Calculate v(m)(i) = y(i)−
∑

j∈B(i,ω(H))

H(i, j)x(m−1)(j).

3) Send v(m)(i) to neighbors j ∈ B(i, ω(H)) and receive v(m)(j) from neighbors j ∈
B(i, ω(H)).
4) Update

x(m)(i) = x(m−1)(i) +
∑

j∈B(i,ω(H))

H̃(j, i)v(m)(j).

5) Send x(m)(i) to neighbors j ∈ B(i, ω(H)) and receive x(m)(j) from neighbors j ∈
B(i, ω(H)).
6) Set m = m+ 1 and return to Step 2) if m ≤ M .

Outputs: x(j) := x(M)(j), j ∈ B(i, ω(H)).

where the difficulty is how to select the preconditioner appropriately. Here, we use PH as a right

preconditioner to the linear system

Hx = y (3.5)

associated with the inverse filtering procedure (1.5), and we solve the following right precondi-

tioned linear system

HP−1
H
z = y and x = P−1

H
z, (3.6)

via the gradient descent algorithm





z(m) = z(m−1) −P−1
H
HT

(
HP−1

H
z(m−1) − y

)

x(m) = P−1
H
z(m), m ≥ 1,

with initial z(0). The above iterative algorithm can be reformulated as a quasi-Newton method (1.6)
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with G replaced by P−2
H
HT ,





e(m) = Hx(m−1) − y

x(m) = x(m−1) −P−2
H
HTe(m), m ≥ 1

(3.7)

with initial x(0). We call the above approach to implement the inverse filtering procedure (1.5) by

the preconditioned gradient descent algorithm, or PGDA for abbreviation.

Define wm := PH(x
(m) −H−1y), m ≥ 0. Then

wm =
(
I−P−1

H
HTHP−1

H

)
wm−1, m ≥ 1 (3.8)

by (3.7). Therefore the iterative algorithm (3.7) converges exponentially by (3.3) and (3.8).

Theorem 3.1.3. Let H be an invertible graph filter and x(m),m ≥ 0, be as in (3.7). Then

‖PH(x
(m) −H−1y)‖2 ≤

∥∥I−P−1
H
HTHP−1

H

∥∥m

2
‖PH(x

(0) −H−1y)‖2, m ≥ 0.

In addition to the exponential convergence in Theorem 3.1.3, the PGDA is that each iteration can be

implemented at vertex level, see Algorithm 6. Therefore for an invertible filter H with ω(H) ≤ L,

the PGDA (3.7) can implement the inverse filtering procedure (1.5) on SDNs with each agent only

storing, computing and exchanging the information in a L-hop neighborhood.

3.2 Symmetric Preconditioned Gradient Descent Algorithm for Inverse Filtering

In this section, we consider implementing the inverse filtering procedure (1.5) associated with a

positive definite filter H = (H(i, j))i,j∈V on a connected, undirected and unweighted graph G.
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Algorithm 7 Implementation of the SPGDA (3.11) at a vertex i ∈ V .

Inputs: Iteration number M , geodesic-width ω(H), observation y(i) at vertex i, and filter coef-

ficients H(i, j) and H(j, i), j ∈ B(i, ω(H)).

1) Calculate P sym
H

(i, i) =
∑

j∈B(i,ω(H))

|H(i, j)|, H̃(i, j) = H(i, j)/P sym
H

(i, i) and ỹ(i) =

y(i)/P sym
H

(i, i), j ∈ B(i, ω(H)).
Initialization: Initial x(0)(j), j ∈ B(i, ω(H)) and m = 1.

2) Compute

x(m)(i) = x(m−1)(i) + ỹ(i)−
∑

j∈B(i,ω(H))

H̃(i, j)x(m−1)(j).

3) Send x(m)(i) to neighbors j ∈ B(i, ω(H)) and receive x(m)(j) from neighbors j ∈
B(i, ω(H)).
4) Set m = m+ 1 and return to Step 2) if m ≤ M .

Outputs: x(j) := x(M)(j), j ∈ B(i, ω(H)).

Define the diagonal matrix P
sym
H

with diagonal entries

P sym
H

(i, i) =
∑

j∈B(i,ω(H))

|H(i, j)|, i ∈ V, (3.9)

and set

Ĥ = (Psym
H

)−1/2H(Psym
H

)−1/2. (3.10)

We remark that the normalized matrix in (3.10) associated with a diffusion matrix has been used

to understand diffusion process [52], and the one corresponding to the Laplacian LG on the graph

G is half of its normalized Laplacian L
sym
G := (DG)

−1/2LG(DG)
−1/2, where DG is degree matrix of

G [64]. Similar to the PGDA (3.7), we propose the following symmetric preconditioned gradient

descent algorithm, or SPGDA for abbreviation,

x(m) = x(m−1) − (Psym
H

)−1(Hx(m−1) − y), m ≥ 1, (3.11)

with initial x(0), to solve the following preconditioned linear system

Ĥz = (Psym
H

)−1/2y and x = (Psym
H

)−1/2z. (3.12)
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Comparing with the PGDA (3.7), the SPGDA for a positive definite graph filter has less computa-

tion and communication cost in each iteration and it also can be implemented at vertex level, see

Algorithm 7.

For x = (x(i))i∈V , we obtain from (3.9) and the symmetry of the matrix H that

xTHx ≤
∑

i,j∈V

|H(i, j)|
(x(i))2 + (x(j))2

2
= xTP

sym
H

x.

Combining (3.1) and (3.9) proves that H � P
sym
H

� PH, cf. (3.2). This together with (3.10)

implies that

r(I− (Psym
H

)−1H) = r(I− Ĥ) = ‖I− Ĥ‖2 < 1. (3.13)

Similar to the proof of Theorem 3.1.3, we have

Theorem 3.2.1. Let H be a positive definite graph filter. Then x(m),m ≥ 0, in (3.11) converges

exponentially,

‖(Psym
H

)1/2(x(m) −H−1y)‖2‖I− Ĥ‖m2
∥∥(Psym

H
)1/2(x(0) −H−1y)

∥∥
2
.

3.3 Simulations

Let GN = (VN , EN), N ≥ 2, be random geometric graphs with N vertices deployed on [0, 1]2

and an undirected edge between two vertices if their physical distance is not larger than
√
2/N

[42, 64]. In the first simulation, we consider the inverse filtering procedure associated with the

graph filter H = Ho + (Lsym
GN

)2, where K ≥ 1, L
sym
GN

is the normalized Laplacian on the graph GN ,

the filter Ho = (Ho(i, j))i,j∈VN
is defined by Ho(i, j) = 0 if ρ(i, j) ≥ 3 and

Ho(i, j) = exp
(
− 2K‖(ix, iy)− (jx, jy)‖

2
2 −

‖(ix, iy) + (jx, jy)‖
2
2

2

)
+

γij + γji
2

if ρ(i, j) ≤ 2,
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Figure 3.1: Plotted on the left is a corrupted blockwise polynomial signal x and in the middle is the output

y = Hx of the filtering procedure, where ‖x‖2 = 24.8194, ‖y‖2 = 21.5317 and the condition number

of the filter H is 107.40. Shown on the right is average of the relative inverse filtering error E2(m) =
‖x(m) − x‖2/‖x‖2, 1 ≤ m ≤ 200 over 1000 trials, where N = K = 512, η = 0.2, γ = 0.05 and x(m),

m ≥ 1, are the outputs of SPGDA, PGDA, OpGD and IMIA.

(ix, iy) is the coordinator of a vertex i ∈ VN and γij are i.i.d random noises uniformly distributed

on [−γ, γ]. Let xo be the blockwise polynomial consisting of four strips and imposes (0.5 − 2ix)

on the first and third diagonal strips and (0.5+ i2x+ i2y) on the second and fourth strips respectively

[51, 64]. In the simulation, the signals x = xo + ηηη are obtained by a blockwise polynomial xo

corrupted by noises ηηη with their components being i.i.d. random variables with uniform distribution

on [−η, η], and the observations y of the filtering procedure are given by y = Hx, see the left and

middle images of Figure 3.1. In the simulation, we use the SPGDA (3.11) and the PGDA (3.7)

with zero initial to implement the inverse filtering procedure y 7→ H−1y, and also we compare

their performances with the gradient decent algorithm

x(m) = (I− βopH
TH)x(m−1) + βopH

Ty, m ≥ 1
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with zero initial and optimal step length βop selected in [28, 51, 27], OpGD in abbreviation, and

the iterative matrix inverse approximation algorithm,

x(m) = (I− D̃H)x(m−1) + D̃y, m ≥ 1

IMIA in abbreviation, where x(0) = 0 and the diagonal matrix D̃ has entries

H(i, i)/(
∑

ρ(j,i)≤2

|H(i, j)|2), i ∈ V,

see [49, Eq. (3.4)] with σ̃ = 0. Shown in Figure 3.1 is the average of the relative inverse fil-

tering error E2(m), 1 ≤ m ≤ 200 over 1000 trials, and it reaches the relative error 5% at about

57th iteration for IMIA, 118th iteration for SPGDA, and more than 3000 iterations for PGDA

and OpGD. This confirms that x(m),m ≥ 1, in the SPGDA, PGDA, OpGD and IMIA converge

exponentially to the output x of the inverse filtering, and the convergence rate are spectral radii

of matrices I − (Psym
H

)−1H, I − P−2
H
HTH, I − βopH

TH and I − D̃H, see Theorems 3.1.3 and

3.2.1. Here the average of spectral radii in SPGDA, PGDA, OpGD and IMIA shown in Figure 3.1

are 0.9786, 0.9996, 0.9993, 0.9566 respectively. We remark that the reason for PGDA and OpGD

to have slow convergence in the above simulation could be that their spectral radii are too close

to 1. Our simulation shows that for the graph filter on some random geometric graphs of order

N = 1024, which has one as its diagonal entries and nondiagonal entries of Ho in (3.14) with

γ = 0 and K = 512 as its nondiagonal entries, the corresponding PGDA, OpGD, SPGDA con-

verge and the IMIA diverges.

Let GT = (VT , ET ) be the undirected graph with 218 locations in the United States as vertices and

edges constructed by the 5 nearest neighboring locations, and let x12 be the recorded temperature

vector of those 218 locations on August 1st, 2010 at 12:00 PM, see Figure 3.2 [43, 51]. In the

second simulation, we consider to implement the inverse filtering procedure x̃ = (I+ αLsym
GT

)−1b
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Figure 3.2: Plotted on the left is the original temperature data x12. Shown on the right is average of the

signal-to-noise ratio SNR(m) = −20 log10 ‖x
(m) − x12‖2/‖x12‖2, 1 ≤ m ≤ 35, over 1000 trials, where

x(m), m ≥ 1, are the outputs of PGDA, SPGDA, OpGD, IMIA and ICPA, and average of the limit SNR is

16.7869.

arisen from the minimization problem x̃ := argminz ‖z−b‖22+αzTLsym
GT

z in denoising the hourly

temperature data x12, where L
sym
GT

is the normalized Laplacian on GT , α is a penalty constraint and

b = x12 + ηηη is the temperature vector corrupted by i.i.d. random noise ηηη with its components

being randomly selected in [−η, η] in a uniform distribution [43, 51]. Shown in Figure 3.2 is

the performance of the SPGDA, PGDA, OpGD, IMIA and ICPA to implement the above inverse

filtering procedure with noise level η = 35 and the penalty constraint α = 0.9075 [51], where

ICPA is the iterative Chebyshev polynomial approximation algorithm of order one [12, 51, 66].

This indicates that the 3rd term in ICPA, the 5th term in IMIA, the 8th term of SPGDA, the 10th

term of OpGD and the 30th term of PGDA can be used as the denoised temperature vector x̃.

To implement the inverse filter procedure (1.5) on SDNs, we observe from the above two simula-

tions that OpGD outperforms PGDA while the selection of optimal step length in OpGD is com-

putationally expensive. If the filter is positive definite, SPGDA, IMIA and ICPA may have better

performance than OpGD and PGDA have. On the other hand, SPGDA always converges, but the
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requirement in [49, Theorem 3.2] to guarantee the convergence of IMIA may not be satisfied and

ICPA is applicable for polynomial filters.

53



CHAPTER 4: DISTRIBUTED ALGORITHM TO DETERMINE

EIGENVECTORS OF MATRICES ON SPATIALLY DISTRIBUTED

NETWORKS

In the literature, the eigenspaces of a matrix on the graph G have been used to understand the

communicability between vertices, spectral clustering for the network and influence of a vertex on

the network [53, 54, 56, 57, 58, 59]. In this chapter, following the preconditioned gradient descent

algorithm we propose the distributed algorithm to approximate an eigenvectors of a complex-

valued matrices with limited geodesic-width.

4.1 A Distributed Iterative Algorithm for Determining Eigenvectors

Let G = (V,E) be a connected, undirected and unweighted graph of order N . Denote the set of

all s-hop neighbors of a vertex i ∈ V by B(i, s) = {j ∈ V, ρ(j, i) ≤ s}, s ≥ 0. For a complex-

valued matrix A = (A(i, j))i,j∈V , we denote its Hermitian transpose by A∗ and define the diagonal

preconditioning matrix PA with diagonal elements

PA(i, i) := max
k∈B(i,ω(A))

{
max

( ∑

j∈B(k,ω(A))

|A(j, k)|,
∑

j∈B(k,ω(A))

|A(k, j)|
)}

, i ∈ V (4.1)

as in (3.1) [55]. In this section, we introduce a distributed iterative algorithm to find eigenvectors

associated with a given eigenvalue for complex-valued matrices with small geodesic-width.

Theorem 4.1.1. Let A be a complex-valued matrix on the graph G, PA be the diagonal matrix

given in (4.1), and Q be a nonsingular diagonal matrix such that

Q−PA is positive semidefinite. (4.2)
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Then for any initial x0 ∈ C
N , the sequence xn, n ≥ 1, defined inductively by

xn+1 = (I−Q−2A∗A)xn, n ≥ 0, (4.3)

converges exponentially to either the zero vector or an eigenvector associated with the zero eigen-

value of the matrix A.

Proof. By nonsingularity of the matrix Q, the proof reduces to showing

‖Q(xn − u)‖2 ≤ ‖Qx0‖2r
n, n ≥ 0 (4.4)

for some u satisfying Au = 0, where r ∈ (0, 1). Set B = I − Q−1A∗AQ−1 and let ui be

orthonormal eigenvectors associated with eigenvalues γi of the Hermitian matrix B,

Bui = γiui, 1 ≤ i ≤ N. (4.5)

Following the argument in Theorem 3.1.1 [55, Theorem II.1] and applying (4.2), we obtain that

Q2 −A∗A is positive semidefinite. This together with nonsingularity of the matrix Q implies that

0 ≤ γi ≤ 1, 1 ≤ i ≤ N. (4.6)

Write Qx0 =
∑N

i=1〈Qx0,ui〉ui, where 〈·, ·〉 is the standard inner product on C
N . By (4.3), we

have that Qxn = BQxn−1, n ≥ 1. This together with (4.5) implies that

Qxn = BnQx0 =
N∑

i=1

γn
i 〈Qx0,ui〉ui, n ≥ 0. (4.7)

Define u =
∑

γi=1〈Qx0,ui〉Q
−1ui. Then by (4.6), (4.7) and the orthonormality of ui, 1 ≤ i ≤ N ,
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we obtain

‖Q(xn − u)‖2 =
( ∑

0≤γi<1

|〈Qx0,ui〉|
2γ2n

i

)1/2

≤ rn‖Qx0 −Qu‖2 ≤ rn‖Qx0‖2, (4.8)

where r = max0≤γi<1 γi. This proves (4.4) and the desired exponential convergence of the se-

quence xn, n ≥ 0.

Taking the limit in (4.3) and applying the convergence in (4.4) gives Q−2A∗Au = 0. This proves

that u is either the zero vector or an eigenvector associated with eigenvalue zero.

We remark that a nonsingular diagonal matrix Qc = diag(Qc(i, i))i∈V satisfying (4.2) can be

constructed at the vertex level by setting

Qc(i, i) = max(PA(i, i), c), i ∈ V, (4.9)

where c is a positive constant and the i-th diagonal entries PA(i, i) of preconditioning matrix PA

can be obtained by the distributed algorithm, see Algorithm 5 and [55, Algorithm II.1].

Let H = (H(i, j))i,j∈V be an arbitrary matrix on the graph G and λ be its eigenvalue. By selecting

the initial x0 with entries i.i.d variable randomly selected from [0,1] and applying the iterative

algorithm (4.3) to the matrix A = H−λI, we obtain from the proof of Theorem 4.1.1 that the limit

of the sequence xn, n ≥ 0, is a nonzero vector with probability one and hence it is an eigenvector

of the matrix H associated with eigenvalue λ. Following the terminology in [55], we call the above

algorithm to find eigenvectors of a matrix as a preconditioned gradient descent algorithm, PGDA

for abbreviation.
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Algorithm 8 Realization of the PGDA to find an eigenvector at a vertex i ∈ V .

Inputs: The total iteration number M , the geodesic-width ω(H) of the matrix H =
(H(i, j))i,j∈V , the set B(i, ω(H)) of ω(H)-hop neighbors of the vertex i, the eigenvalue λ of the

matrix H, entries H(i, j) and H(j, i), j ∈ B(i, ω(H)) in the i-th row and column of the matrix

H, and the i-th diagonal entry Q(i, i) of the matrix Q.

Pre-iteration: Compute A(i, j) = H(i, j) − λδ(i, j) and Ã(j, i) = (Q(i, i))−2
(
H(j, i) −

λδ(j, i)
)

for j ∈ B(i, ω(H)), where δ is the Kronecker delta.

Initial: Select the i-th component x0(i) ∈ [0, 1] of the initial vector x0 randomly, and set n = 0.

Iteration:

1. Send xn(i) to all neighbors k ∈ B(i, ω(H))\{i} and receive xn(k) from neighbors k ∈
B(i, ω(H))\{i}.

2. Evaluate x̃n(i) =
∑

j∈B(i,ω(H)) A(i, j)xn(j).

3. Send x̃n(i) to all neighbors k ∈ B(i, ω(H))\{i} and receive x̃n(k) from neighbors k ∈
B(i, ω(H))\{i}.

4. Evaluate x̂n(i) =
∑

j∈B(i,ω(H)) Ã(j, i)x̃n(j).

5. Set xn+1(i) = xn(i)− x̂n(i) and n = n+ 1.

6. return to step 1 if n ≤ M , go to Output otherwise.

Output: u(i) ≈ xM(i), where u = (u(i))i∈V is the eigenvector.

The significance of the proposed PGDA is the distributed implementation at the vertex level, see

Algorithm 5. For the implementation of Algorithm 5, every vertex i ∈ V is required to have the

information of its ω(H)-hop neighbors, equipped direct communication with its ω(H)-hop neigh-

bors, and need memory to store the eigenvalue λ, the iteration number M , the i-th diagonal entries

of the matrix Q, and entries H(i, j) and H(j, i), j ∈ B(i, ω(H)) in the i-th row and column of the

matrix H. Moreover, the computational and communication expenses for each vertex is indepen-

dent on the order N of the graph G. With the selection of the nonsingular diagonal matrix Q as in

(4.2), we conclude that the proposed PGDA can be applied for an SDN with communication range

L to find eigenvectors associated with a given eigenvalue for arbitrary matrix H with geodesic

width ω(H) ≤ L.
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Principal eigenvectors associated with eigenvalue one of some left stochastic matrix on a network

have been used to determine the influence of a vertex, see [53, 54] and references therein. Let

W = (w(i, j))i,j∈V be the hyperlink matrix on a network described by a graph G = (V,E), where

weights w(i, j) = 0 for (i, j) 6∈ E and w(i, j) = 1/dj for (i, j) ∈ E, the reciprocal of the degree

dj of a node j. The matrix W is a left stochastic matrix with one as the leading eigenvalue and

the principal eigenvector associated with eigenvalue one has positive entries by Perron-Frobenius

theorem. Applying the proposed PGDA to the hyperlink matrix W, we can locally evaluate prin-

cipal eigenvectors of the hyperlink matrix and hence identify the local influence of a vertex on its

neighborhood.

4.2 Evaluation of Eigenvectors of Positive Semidefinite Matrices

In this section, we consider finding eigenvectors associated with the zero eigenvalue of a positive

semidefinite matrix on a connected, undirected and unweighted graph in a distributed manner.

Theorem 4.2.1. Let A = (A(i, j))i,j∈V be a positive semidefinite matrix on the graph G = (V,E)

of order N with its geodesic-width denoted by ω(A), and Qsym = diag(Qsym(i, i))i∈V be a non-

singular diagonal matrix with diagonal entries satisfying

Qsym(i, i) ≥
∑

j∈B(i,ω(A))

|A(i, j)|, i ∈ V. (4.10)

Then for any x0 ∈ C
N , the sequence xn, n ≥ 0, defined by

xn+1 = (I− (Qsym)−1A)xn, (4.11)

converges exponentially to either the zero vector or an eigenvector associated with the zero eigen-

value of the matrix A.
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Proof. By the nonsingularity of the matrix Qsym, the proof of the exponential convergence reduces

to establishing

‖(Qsym)1/2(xn − u)‖2 ≤ ‖(Qsym)1/2x0‖2r
n, n ≥ 0 (4.12)

for some r ∈ (0, 1) and a vector u ∈ C
N satisfying Au = 0. Following the argument in Theorem

3.2.1 and applying (4.10), we obtain that Qsym − A is positive semidefinite. This together with

the positive semidefiniteness of the matrix A implies that all eigenvalues of the Hermitian matrix

Bsym := I − (Qsym)−1/2A(Qsym)−1/2 are in the unit interval [0, 1], cf. (4.6). Applying similar

argument used in the proof of Theorem 4.1.1 with Q and A∗A replaced by (Qsym)1/2 and A

respectively, we can prove the exponential convergence of xn, n ≥ 0 in (4.12) with r being the

largest eigenvalue of Bsym in [0, 1).

For a positive semidefinite matrix A = (A(i, j))i,j∈V with geodesic-width ω(A), a nonsingular

diagonal matrix Qsym
c = diag(Qsym

c (i, i))i∈V satisfying (4.10) can be constructed at the vertex

level by setting

Qsym
c (i, i) = max

( ∑

j∈B(i,ω(A))

|A(i, j)|, c
)
, i ∈ V, (4.13)

where c is a positive constant, cf. (4.9). With the above selection of the preconditioning matrix in

(4.11), we can find eigenvectors of the positive semidefinite matrix A associated with eigenvalue

zero by the distributed iterative algorithm (4.11) implemented at the vertex level, see Algorithm

9. Following the terminology in [55], we call the above algorithm as a symmetric preconditioned

gradient descent algorithm, SPGDA for abbreviation. Comparing with Algorithm 8 to find eigen-

vectors for an arbitrary matrix, the Algorithm 9 for a positive semidefinite matrix takes shorter

running time and less communication expense in each iteration. Our numerical simulations in

Section 4.4 also indicate that it may have faster convergence.
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Algorithm 9 Realization of the SPGDA at a vertex i ∈ V .

Inputs: The total iteration number M , the geodesic-width ω(A) of the positive semidefinite ma-

trix A, the set B(i, ω(A)) of ω(A)-hop neighbors of the vertex i, entries A(i, j), j ∈ B(i, ω(A))
in the i-th row of the matrix A and the i-th entry Qsym(i, i) of the diagonal matrix Qsym.

Pre-iteration: Evaluate Ã(i, j) = (Qsym(i, i))−1A(i, j), j ∈ B(i, ω(A)).
Initial: Select x0(i) randomly in [0, 1], and set n = 0.

Iteration:

1. Send xn(i) to all neighbors k ∈ B(i, ω(A))\{i} and receive xn(k) from neighbors k ∈
B(i, ω(A))\{i}.

2. Evaluate xn+1(i) = xn(i)−
∑

j∈B(i,ω(A)) Ã(i, j)xn(j) and set n = n+ 1.

3. return to step 1 if n ≤ M , go to Output otherwise.

Output: v(i) ≈ yM(i), where v = (v(i))i∈V .

4.3 Eigenvectors of Polynomial Filters

Graph filter is a fundamental concept in graph signal processing and it has been used in many

applications such as denoising and consensus of multi-agent systems [1, 3, 4, 5, 11, 12, 51, 55, 60,

61, 62, 63, 64]. Graph filters in most of literature are designed to be polynomials

A = h(S1, . . . ,Sd) =

L1∑

l1=0

· · ·
Ld∑

ld=0

hl1,...,ldS
l1
1 · · ·Sld

d (4.14)

of commutative graph shifts S1, ...,Sd, i.e., SkSk′ = Sk′Sk for all 1 ≤ k, k′ ≤ d, where the mul-

tivariate polynomial h(t1, . . . , td) =
∑L1

l1=0 · · ·
∑Ld

ld=0 hl1,...,ldt
l1
1 . . . tldd has polynomial coefficients

hl1,...,ld , 0 ≤ lk ≤ Lk, 1 ≤ k ≤ d [11, 12, 18, 20, 21, 64, 65, 66]. On the graph G = (V,E),

a polynomial filter A in (4.14) can be represented by a matrix A = (A(i, j))i,j∈V , which has

geodesic-width no more than the degree of the polynomial h, i.e., ω(A) ≤
∑d

k=1 Lk. Then we

can apply the PGDA (and the SPGDA if A is positive semidefinite) to find eigenvectors associ-

ated with eigenvalue zero on SDNs with communication range L ≥
∑d

k=1 Lk. In this section, we

propose ierative algorithm to determine eigenvectors associated with a polynomial graph filter A
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Algorithm 10 Realization of each iteration in the iterative algorithms (4.3) and (4.11) at a vertex

i ∈ V for a polynomial filter A.

Inputs: Polynomial coefficients hl1,...,ld , 0 ≤ l1 ≤ L1, . . . , 0 ≤ ld ≤ Ld of the polynomial filter

A in (4.14), the set Ni of all adjacent vertices j of the vertex i, entries Sk(i, j) and Sk(j, i), j ∈
Ni of graph shifts Sk, 1 ≤ k ≤ d, the i-th diagonal entry Q(i, i) of the matrix Q, and the i-th
entry xn(i) of the input vector xn = (xn(k))k∈V at n-th iteration,

1: Apply Algorithm 2 to implement the polynomial filter procedure x 7−→ Ax at the vertex i.
The input is the i-th entry xn(i) of xn and the output is the i-th entry x̂n(i) of x̂n = Axn =:
(x̂n(k))k∈V .

2: Apply Step 1 with the matrix A replaced by its complex conjugate A∗ and the input xn(i)
by x̂n(i). The output is the i-th entry x̌n(i) of the vector x̌n = A∗x̂n =: (x̌n(k))k∈V .

3: Evaluate xn+1(i) = xn(i)− (Q(i, i))−2x̌n(i) and x̃n+1(i) = xn(i)− (Q(i, i))−1x̂n(i).
Outputs: The outputs xn+1(i) and x̃n+1(i) are the i-th entry of xn+1 at n-th iteration in (4.3)

and (4.11) respectively.

in (4.14) which can be implemented on an SDN with 1 as its communication range, i.e., direct

communication exists between all adjacent vertices.

Observe that

A∗ =

L1∑

l1=0

· · ·
Ld∑

ld=0

hl1,...,ld(S
∗
d)

ld · · · (S∗
1)

l1 (4.15)

is a polynomial graph filter of commutative shifts S∗
1, ...,S

∗
d. Then applying Algorithm 2 to imple-

ment the filtering procedure associated with polynomial graph filters A and A∗, we can implement

each iteration in the PGDA (4.3) and the SPGDA (4.11) in finite steps with each step including

data exchanging between adjacent vertices only, see Algorithm 10. This concludes that eigenvec-

tors associated with a given eigenvalue for a polynomial graph filter on SDNs with communication

range one can be obtained by applying Algorithm 10 in each iteration.

Now it remains to construct diagonal matrices satisfying (4.2) and (4.10) on SDNs with commu-

nication range one. For the polynomial grah filter A in (4.14), define diagonal matrices Q̂c =
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diag(Q̂c(i, i))i∈V and Q̂sym
c = diag(Q̂sym

c (i, i))i∈V by

Q̂c(i, i) = max
ρ(j,i)≤L

max
{∑

k∈V

Â(j, k),
∑

k∈V

Â(k, j), c
}
, (4.16)

and

Q̂sym
c (i, i) = max

{∑

k∈V

Â(j, k), c
}
, i ∈ V, (4.17)

where c is a positive number, |Sk| = (|Sk(i, j)|)i,j∈V , 1 ≤ k ≤ d, and

(Â(i, j))i,j∈V =: Â :=

L1∑

l1=0

· · ·
Ld∑

ld=0

|hl1,...,ld ||S1|
l1 · · · |Sd|

ld .

One may verify that |A(i, j)| ≤ Â(i, j) for all i, j ∈ V . Therefore the matrices Q̂c and Q̂sym
c in

(4.16) and (4.17) satisfy (4.2) and (4.10) respectively. Moreover, as shown in Algorithm 11, they

can be constructed at the vertex level in finite steps such that in each step, every vertex needs to

exchange data with adjacent vertices only.

4.4 Simulations

Let GN = (VN , EN), N ≥ 2, be random geometric graphs with N vertices deployed on [0, 1]2

and an undirected edge between two vertices in VN existing if their physical distance is not larger

than
√
2/N [64, 42]. In this section, we consider finding eigenvectors associated with eigenvalue

1 of lowpass spline filters H
spln
0,m = (I − Lsym/2)m,m ≥ 1, where Lsym is the symmetric normal-

ized Laplacian matrix on the graph GN [64, 38]. In the simulations, we take c = 0.01 and use

PGDA and PGDA1h to denote the PGDA with A replaced by I − H
spln
0,m and Q by Qc in (4.9)

and Q̂c in (4.16) respectively, and similarly we use SPGDA and SPGDA1h to denote the SPGDA

with A replaced by I − H
spln
0,m and Q by Qsym

c in (4.13) and Q̂sym
c in (4.17) respectively. Set
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Algorithm 11 Construction of diagonal entries Q̂c(i, i) and Q̂sym
c (i, i) at a vertex i ∈ V for a

polynomial filter A.

Inputs: The positive constant c, polynomial coefficients hl1,...,ld , 0 ≤ l1 ≤ L1, . . . , 0 ≤ ld ≤ Ld,

of the polynomial filter A, entries Sk(i, j) and Sk(j, i) for all 1 ≤ k ≤ d and j ∈ Ni.

1: Apply Algorithm 2 to implement the polynomial filter procedure 1 7−→ Â1 at the vertex i.
The input is the i-th entry 1 of the all-one vector 1 and the output is the i-th entry a1(i) of the

vector Â1 =: (a1(k))k∈V .

2: Apply Step 1 with the same input but the filter Â replaced by Â∗. The output is the i-th entry

a2(i) of the vector Â∗1 =: (a2(k))k∈V .

3: Evaluate q0(i) = max(a1(i), a2(i), c) and set l = 0.

4: Finite-step Iteration:

4a) Send ql(i) to all adjacent vertices k ∈ Ni and receive ql(k) from all adjacent vertices

k ∈ Ni.

4b) Compare ql(i) with ql(k), k ∈ Ni and define ql+1(i) = max(ql(i),maxk∈Ni
ql(k)) and set

l := l + 1.

4c) Return to step 1 if l ≤ L1 + . . .+ Ld, go to Outputs otherwise.

Outputs: Q̂c(i, i) = qL and Q̂sym
c (i, i) = max(a1(i), c).

‖x‖2 =
(∑

j∈V |x(j)|2
)1/2

for x = (xj)j∈V . For the sequences xn, n ≥ 0, in the PGDA, SPGDA,

PGDA1h and SPGDA1h, and their limits u, define convergence errors CE(n) = log10‖x̃n − ũ‖2

and normalized residues NR(n) = log10‖(I −H
spln
0,m )x̃n‖2, n ≥ 0, in the logarithmic scale, where

x̃n = xn/‖xn‖2 and ũ = u/‖u‖2. Shown in Figure 4.1 are the average of convergence errors

CE(n) and normalized residues RE(n), n ≥ 0, over 500 trials. This demonstrates the exponential

convergence of xn, n ≥ 0, in the proposed distributed iterative algorithms to some eigenvector

associated with eigenvalue 1 of H
spln
0,m ,m ≥ 1, which is proved in Theorems 4.1.1 and 4.2.1.

For a matrix A on a graph G = (V,E), define its Schur norm by ‖A‖S = maxi∈V PA(i, i), where

PA(i, i), i ∈ V , are given by (4.1) [9, 55]. For the case that the constant c in (4.9) and (4.13) is

chosen that c ≥ ‖A‖S , the matrices Qc and Qsym
c become a multiple of the identity I and the cor-

responding PGDA and SPGDA are the conventional gradient descent algorithm and the symmetric

gradient descent algorithm respectively [12, 21, 28, 51, 55]. We denote the above algorithms with
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Figure 4.1: Plotted on the first and second rows are average of the convergence errors CE(n) and

the normalized residues RE(n), 1 ≤ n ≤ 4000, over 500 trials, while from left to right are lowpass

spline filters H
spln
0,m of orders m = 2, 3, 4 on the random geometric graph GN with N = 512.

c = ‖A‖S by GDASchur and SGDASchur respectively, see Figure 4.1 for their performances to

determine eigenvectors associated with eigenvalue 1 of H
spln
0,m ,m ≥ 1. As matrices H

spln
0,m ,m ≥ 1,

have 1 as their maximal eigenvalue in absolute value, we can use the conventional power iteration

method with entries of the initial x0 randomly selected in [0, 1], POWER for abbreviation, to find

eigenvectors associated with eigenvalue 1 [67]. Presented in Figure 4.1 is its performance. From

Figure 4.1, we observe that the centralized algorithm POWER has fastest convergence rate to find

eigenvectors associated with eigenvalue 1 of matrices H
spln
0,m , 2 ≤ m ≤ 4, as followed are the dis-

tributed algorithm SPGDA, the centralized algorithm SPGDASchur and the distributed algorithm

SPGDA1h, the next are the distributed algorithm PGDA and the centralized algorithm GDASchur,

and the distributed algorithm PGDA1h has slowest convergence.
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APPENDIX A: COMMUTATIVE SHIFTS AND JOINT SPECTRUM
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The assumption that the graph shifts S1, . . . ,Sd are commutative, is indispensable for us to develop

the IOPA and ICPA algorithms for inverse filtering. In the first part of the Appendix, we discuss

the joint spectrum of commutative graph shifts. Graph shifts are building blocks of a polynomial

filter and the concept of commutative graph shifts is similar to the one-order delay z−1
1 , . . . , z−1

d

in classical multi-dimensional signal processing. In this appendix, we introduce two illustrative

families of commutative graph shifts on circulant graphs and product graphs, see also Sections

2.4.2 and 2.4.3 for commutative graph shifts with specific features.

A.1 Joint Spectrum of Commutative Shifts

Let S1, ...,Sd be commutative graph shifts. Then they can be upper-triangularized simultaneously

by [44, Theorem 2.3.3], i.e.,

Ŝk = UHSkU, 1 ≤ k ≤ d, (A.1)

are upper triangular matrices for some unitary matrix U. Write Ŝk = (Ŝk(i, j))1≤i,j≤N , 1 ≤ k ≤ d,

and set

Λ =
{
λλλi =

(
Ŝ1(i, i), ..., Ŝd(i, i)

)
, 1 ≤ i ≤ N

}
. (A.2)

As Ŝk(i, i), 1 ≤ i ≤ N , are eigenvalues of Sk, 1 ≤ k ≤ d, we call Λ as the joint spectrum

of S1, . . . ,Sd. The joint spectrum Λ of commutative shifts S1, . . . ,Sd plays an essential role in

Section 2.3 to construct optimal polynomial approximation filters and Chebyshev polynomial ap-

proximation filters to the inverse filter of a polynomial filter of S1, ...,Sd.
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A.2 Commutative Shifts on Circulant Graphs and Product Graphs

Let C(N,Q) be the circulant graph of order N generated by Q = {q1, . . . , qM}, where 1 ≤ q1 <

. . . < qM < N/2. Observe that EN(Q) = ∪1≤k≤d{(i, i ± qk mod N), i ∈ VN}. Then the sym-

metric normalized Laplacian matrix L
sym
C(N,Q) on C(N,Q) is the average of symmetric normalized

Laplacian matrices L
sym
C(N,Qk)

on C(N,Qk), 1 ≤ k ≤ d, i.e.,

L
sym
C(N,Q) =

1

d

d∑

k=1

L
sym
C(N,Qk)

,

where Qk = {qk}, 1 ≤ k ≤ d. In the following proposition, we establish the commutativity of

L
sym
C(N,Qk)

, 1 ≤ k ≤ d.

Proposition A.2.1. The symmetric normalized Laplacian matrices L
sym
C(N,Qk)

of the circulant graphs

C(N,Qk), 1 ≤ k ≤ d, are commutative graph shifts on the circulant graph C(N,Q).

Proof. Clearly L
sym
C(N,Qk)

, 1 ≤ k ≤ d, are graph shifts on the circulant graph C(N,Q). Define

B = (b(i− j mod N))1≤i,j≤N ,

where b(0) = · · · = b(N − 2) = 0 and b(N − 1) = 1. Then one may verify that

L
sym
C(N,Qk)

= I−
1

2
(Bqk +B−qk) = −

1

2
B−qk(Bqk − I)2,

where 1 ≤ k ≤ d. Therefore for 1 ≤ k, k′ ≤ d,

L
sym
C(N,Q

k′
)L

sym
C(N,Qk)

=
1

4
B−qk−q

k′ (Bqk − I)2(Bq
k′ − I)2 = L

sym
C(N,Qk)

L
sym
C(N,Q

k′
).

This completes the proof.
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For undirected and unweighted finite graphs G1 and G2, let G1 ×G2 be the Cartesian product graph

of G1 and G2 [40, 41]. Denote symmetric normalized Laplacian matrices and orders of the graph

Gi, i = 1, 2 by L
sym
i and Ni respectively. One may verify that L

sym
1 ⊗ IN2

and IN1
⊗L

sym
2 are graph

filters of the Cartesian product graph G1 × G2. In the following proposition, we show that they are

commutative.

Proposition A.2.2. Filters L
sym
1 ⊗ IN2

and IN1
⊗ L

sym
2 are commutative graph shifts on G1 × G2.

Proof. Set C1 = L
sym
1 ⊗ IN2

and C2 = IN1
⊗ L

sym
2 . Then

C1C2 = L
sym
1 ⊗ L

sym
2 = C2C1,

where the equality follows from the mixed-product property (A⊗B)(C⊗D) = (AC)⊗ (BD)

for Kronecker product of matrices A,B,C,D of appropriate sizes [45].
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[30] S. Chen, A. Sandryhaila, and J. Kovačević, “Distributed algorithm for graph signal in-

painting,” 2015 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Brisbane, QLD, 2015, pp. 3731-3735.

[31] K. Qiu, X. Mao, X. Shen, X. Wang, T. Li, and Y. Gu, “Time-varying graph signal reconstruc-

tion,” IEEE J. Sel. Topics Signal Process., vol. 11, no. 6, pp. 870-883, Sept. 2017.

[32] F. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, No.

92. Providence, RI, Amer. Math. Soc., 1997.

[33] A. Sakiyama, K. Watanabe, Y. Tanaka, and A. Ortega, “Two-channel critically sampled graph

filter banks with spectral domain sampling,” IEEE Trans. Signal Process., vol. 67, no. 6, pp.

1447-1460, Mar. 2019.

[34] W. Cheney and W. Light. A Course in Approximation Theory, Brook/Cole Publishing Com-

pany, 2000.

[35] G. M. Phillips, Interpolation and Approximation by Polynomials, CMS Books Math.,

Springer-Verlag, 2003.

[36] V. N. Ekambaram, G. C. Fanti, B. Ayazifar, and K. Ramchandran, “Multiresolution graph sig-

nal processing via circulant structures,” in Proc. IEEE Digital Signal Process. Signal Process.

Educ. Meeting (DSP/SPE), 2013, pp. 112-117.

72



[37] M. S. Kotzagiannidis and P. L. Dragotti, “Splines and wavelets on circulant graphs,” Appl.

Comput. Harmon. Anal., vol. 47, no. 2, pp. 481-515, Sept. 2019.

[38] M. S. Kotzagiannidis and P. L. Dragotti, “Sampling and reconstruction of sparse signals on

circulant graphs – an introduction to graph-FRI,” Appl. Comput. Harmon. Anal., vol. 47, no.

3, pp. 539-565, Nov. 2019.

[39] D. Valsesia, G. Fracastoro, and E. Magli, “Deep graph-convolutional image denoising,”

arXiv:1907.08448, Jul. 2019.

[40] A. Loukas and D. Foucard, “Frequency analysis of time-varying graph signals,” in IEEE

Global Conf. Signal Inf. Process. (GlobalSIP), 2016, pp. 346-350.

[41] F. Grassi, A. Loukas, N. Perraudin, and B. Ricaud, “A time-vertex signal processing frame-

work: scalable processing and meaningful representations for time-series on graphs,” IEEE

Trans. Signal Process., vol. 66, no. 3, pp. 817-829, Feb. 2018.

[42] P. Nathanael, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Vandergheynst, and D. K.

Hammond, “GSPBOX: A toolbox for signal processing on graphs,” arXiv:1408.5781, Aug.

2014.

[43] J. Zeng, G. Cheung, and A. Ortega, “Bipartite approximation for graph wavelet signal de-

composition,” IEEE Trans. Signal Process., vol. 65, no. 20, pp. 5466-5480, Oct. 2017.

[44] R. A. Horn and C. R. Johnson. Matrix Analysis, Cambridge University Press, 2012.

[45] A. J. Laub, Matrix Analysis for Scientists and Engineers, PA, Philadelphia, SIAM, 2005.

[46] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Comput. Netw., vol.

52, no. 12, pp. 2292-2330, Aug. 2008.

[47] R. Hebner, “The power grid in 2030,” IEEE Spectrum, vol. 54, no. 4, pp. 50-55, Apr. 2017.

73



[48] J. Jiang, D. B. Tay, Q. Sun and S. Ouyang, “Recovery of time-varying graph signals via

distributed algorithms on regularized problems”, IEEE Trans. Signal Inf. Process. Netw., vol.

6, pp. 540-555, 2020.

[49] J. Jiang, and D. B. Tay, “Decentralised signal processing on graphs via matrix inverse ap-

proximation,” Signal Process., vol. 165, pp. 292-302, Dec. 2019.

[50] J. Jiang, C. Cheng, and Q. Sun, “Nonsubsampled graph filter banks: theory and distributed

algorithms,” IEEE Trans. Signal Process., vol. 67, no. 15, pp. 3938-3953, Aug. 2019.

[51] N. Emirov, C. Cheng, J. Jiang, and Q. Sun, “Polynomial graph filter of multiple shifts and

distributed implementation of inverse filtering,” arXiv: 2003.11152, Mar. 2020.

[52] B. Nadler, S. Lafon, I. Kevrekidis, and R. Coifman, “Diffusion maps, spectral clustering and

eigenfunctions of Fokker-Planck operators,” In Advances in Neural Information Processing

Systems 18, Y. Weiss, B. Schölkopf, and J. Platt eds, MIT Press, Cambridge, 2006, pp. 955-

962.

[53] D. F. Gleich, “Pagerank beyond the web,” SIAM Review, vol. 57, no. 3, pp. 321-363, 2015.

[54] A. Langville and C. Meyer, Google’s PageRank and Beyond: The Science of Search Engine

Rankings, Princeton University Press, 2006.

[55] C. Cheng, N. Emirov, and Q. Sun, “Preconditioned gradient descent algorithm for inverse

filtering on spatially distributed networks,” IEEE Signal Process. Lett., vol. 27, pp. 1834-

1838, 2020.

[56] X. Ma, L. Gao, and X. Yong, “Eigenspaces of networks reveal the over- lapping and hierar-

chical community structure more precisely,” J. Stat. Mech. Theory Exp., vol. 2010, no. 8, pp.

P08012, Aug. 2010.

74



[57] R. J. Snchez-Garca, M. Fennelly, S. Norris, N. Wright, G. Niblo, J. Brodzki, and J. W. Bialek,

“Hierarchical spectral clustering of power grids,” IEEE Trans. Power Syst., vol. 29, no. 5, pp.

2229-2237, Sept. 2014.

[58] D. I. Shuman, M. J. Faraji, and P Vandergheynst, “A multiscale pyramid transform for graph

signals,” IEEE Trans. Signal Process., vol. 64, no. 8, pp. 2119-2134, Apr. 2016.

[59] A. Gusrialdi and Z. Qu, “Distributed estimation of all the eigenvalues and eigenvectors of

matrices associated with strongly connected digraphs,” IEEE Control Syst. Lett., vol. 1, no.

2, pp. 329–333, Oct. 2017.

[60] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs,” IEEE Trans.

Signal Process., vol. 61, no. 7, pp. 1644-1656, Apr. 2013.

[61] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs: Frequency analy-

sis,” IEEE Trans. Signal Process., vol. 62, no. 12, pp. 3042-3054, June 2014.

[62] O. Teke and P. P. Vaidyanathan, “Extending classical multirate signal processing theory to

graphs Part II: M-channel filter banks,” IEEE Trans. Signal Process., vol. 65, no. 2, pp. 423-

437, Jan. 2017.

[63] J. Yi and L. Chai, “Graph filter design for multi-agent system consensus,” in IEEE 56th

Annual Conference on Decision and Control (CDC), Melbourne, VIC, 2017, pp. 1082-1087.

[64] J. Jiang, C. Cheng, and Q. Sun, “Nonsubsampled graph filter banks: Theory and distributed

algorithms,” IEEE Trans. Signal Process., vol. 67, no. 15, pp. 3938-3953, Aug. 2019.

[65] K. Lu, A. Ortega, D. Mukherjee, and Y. Chen, “Efficient rate-distortion approximation and

transform type selection using Laplacian operators,” in 2018 Picture Coding Symposium

(PCS), San Francisco, CA, 2018, pp. 76-80.

75



[66] C. Cheng, J. Jiang, N. Emirov, and Q. Sun, “Iterative Chebyshev polynomial algorithm for

signal denoising on graphs,” in Proceeding 13th Int. Conf. on SampTA, Bordeaux, France,

July 2019, pp. 1-5.

[67] G. H. Golub and C. F. V. Loan, Matrix Computations, The Johns Hopkins University Press,

2013.

76


	Distributed Algorithms and Inverse Graph Filtering
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Polynomial Graph Filters of Multiple Shifts and Distributed Implementation of Inverse Filtering 
	1.2 Preconditioned Gradient Descent Algorithm for Inverse Filtering on Spatially Distributed Networks
	1.3 Distributed Algorithms to Determine Eigenvectors of Matrices on Spatially Distributed Networks

	CHAPTER 2:  POLYNOMIAL GRAPH FILTERS OF MULTIPLE SHIFTS AND DISTRIBUTED IMPLEMENTATION OF INVERSE FILTERING 
	2.1 Polynomial Filter and Distributed Implementation
	2.2 Inverse Filtering and Iterative Approximation Algorithm
	2.3 Iterative Polynomial Approximation Algorithms for Inverse Filtering
	2.3.1 Polynomial Interpolation and Optimal Polynomial Approximation
	2.3.2 Chebyshev Polynomial Approximation

	2.4 Simulations
	2.4.1 Iterative Approximation Algorithms on Circulant Graphs
	2.4.2 Denoising Time-Varying Signals
	2.4.3 Denoising an Hourly Temperature Dataset

	2.5 Conclusions

	CHAPTER 3: PRECONDITIONED GRADIENT DESCENT ALGORITHM FOR INVERSE FILTERING ON SPATIALLY DISTRIBUTED NETWORKS
	3.1 Preconditioned Gradient Descent Algorithm for Inverse Filtering
	3.2 Symmetric Preconditioned Gradient Descent Algorithm for Inverse Filtering
	3.3 Simulations

	CHAPTER 4: DISTRIBUTED ALGORITHM TO DETERMINE EIGENVECTORS OF MATRICES ON SPATIALLY DISTRIBUTED NETWORKS
	4.1 A Distributed Iterative Algorithm for Determining Eigenvectors
	4.2 Evaluation of Eigenvectors of Positive Semidefinite Matrices
	4.3 Eigenvectors of Polynomial Filters
	4.4 Simulations

	APPENDIX A: COMMUTATIVE SHIFTS AND JOINT SPECTRUM
	A.1 Joint Spectrum of Commutative Shifts
	A.2 Commutative Shifts on Circulant Graphs and Product Graphs

	LIST OF REFERENCES

