
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2015 

Propagation Failure in Discrete Inhomogeneous Medium Using a Propagation Failure in Discrete Inhomogeneous Medium Using a 

Caricature of the Cubic Caricature of the Cubic 

Elizabeth Lydon 
University of Central Florida 

 Part of the Mathematics Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for 

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Lydon, Elizabeth, "Propagation Failure in Discrete Inhomogeneous Medium Using a Caricature of the 
Cubic" (2015). Electronic Theses and Dissertations, 2004-2019. 1228. 
https://stars.library.ucf.edu/etd/1228 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/174?utm_source=stars.library.ucf.edu%2Fetd%2F1228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1228?utm_source=stars.library.ucf.edu%2Fetd%2F1228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


PROPAGATION FAILURE IN DISCRETE INHOMOGENEOUS MEDIA USING A
CARICATURE OF THE CUBIC

by

ELIZABETH LYDON
B.A. Rollins College, 2012

A thesis submitted in partial fulfilment of the requirements
for the degree of Master of Science
in the Department of Mathematics

in the College of Sciences
at the University of Central Florida

Orlando, Florida

Summer Term
2015

Major Professor: Brian E. Moore



ABSTRACT

Spatially discrete Nagumo equations have widespread physical applications, including modeling

electrical impulses traveling through a demyelinated axon, an environment typical in multiple scle-

rosis. We construct steady-state, single front solutions by employing a piecewise linear reaction

term. Using a combination of Jacobi-Operator theory and the Sherman-Morrison formula we de-

rive exact solutions in the cases of homogeneous and inhomogeneous diffusion. Solutions exist

only under certain conditions outlined in their construction. The range of parameter values that

satisfy these conditions constitutes the interval of propagation failure, determining under what

circumstances a front becomes pinned in the media. Our exact solutions represent a very specific

solution to the spatially discrete Nagumo equation. For example, we only consider inhomogeneous

media with one defect present. We created an original script in MATLAB which algorithmically

solves more general cases of the equation, including the case for multiple defects. The algorithmic

solutions are then compared to known exact solutions to determine their validity.
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CHAPTER 1: INTRODUCTION

1.1 Overview

A model for electrical impulses traveling through the nervous system was introduced by Hodgkin

and Huxley. This model is continuous and involves a complex functional which makes it difficult

to solve the system for exact solutions. The Nagumo equation,

φt = φxx − f(φ; a) (1.1)

is a simplification of the Hodgkin-Huxley model. Typically a cubic nonlinearity,

f(φ; a) = φ(φ− 1)(a− φ), (1.2)

where a ∈ (0, 1) is the detuning parameter, is used in the Nagumo equation to approximate the

functional in Hodgkin and Huxley’s model [9]. The Nagumo equation is also referred to as the

Allen-Cahn equation after the authors who used the model to study crystal growth [2]. We study

the spatially discrete Nagumo equation,

φ̇k(t) = L[φk(t)]− f(φk(t); a) (1.3)

where

Lφk(t) = αk[φk+1(t)− φk(t)] + αk−1[φk−1(t)− φk(t)].

The Nagumo equation has been used to model calcium waves [11], electrical activity in cardiac

tissue [8], and fronts moving through myelinated axons in the nervous system [5], [7]. We are

interested in the latter case. Specifically, we want to understand what happens to a front when it
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moves through an axon damaged by demyelination, a symptom of multiple sclerosis.

Multiple sclerosis is a disease affecting the nervous system. It causes the deterioration of the

myelin sheath, the insulting outer shell of a nerve axon which speeds up the conduction of the

action potential. Damage to the myelin sheath is called demyelination. Demyelination can cause

a nerve impulse to slow down or stop, causing many who suffer from multiple sclerosis to ex-

perience loss of motor skills. In our model, the diffusion coefficients αk represent the degree of

demyelination at node k. If all of the diffusion coefficients are equal, αk = α ∀k, we refer to this

as homogeneous diffusion. This means that the myelin sheath is uniform throughout the axon. If

the myelin sheath is damaged at any point, this means ∃k ∈ Z such thatαk 6= α, and we refer to

these variances in the uniform media as “defects”. If defects are present then diffusion is inhomo-

geneous. By considering (1.3) when defects are present, we are gathering insight into how fronts

propagate in a body affected by multiple sclerosis.

Another component of a nerve axon are the nodes of Ranvier. Myelin sheath covers the entire

axon except at periodic breaks in the structure. These breaks are the nodes of Ranvier. At these

nodes, an action potential forces ionized sodium and potassium to flow in and out of the nerve.

This reaction, occurring at the nodes of Ranvier, is what transmits the signal to the next part of the

axon, and is described by the reaction term f . Each k in 1.3 represents a node of Ranvier, and φk

is the voltage at node k.

The action potential described by f involves detuning parameter a, which controls the speed and

the direction of the front. When diffusion is homogeneous, for every value of α there exist corre-

sponding values of a for which a front becomes pinned in the axon. When diffusion is inhomoge-

neous and defects are present, they affect where the front becomes pinned as well as the interval of

propagation failure.
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Definition 1: The interval of propagation failure for a front is the range of values of detuning

parameter a for which stationary fronts exist. We define the interval of propagation failure by

placing conditions on α and a that all stationary front solutions must satisfy.

The study of propagation failure is vast. Propagation failure occurs when a front becomes pinned

at any point in the medium. Several authors examine propagation failure in homogeneous media

of a continuous Nagumo equation [1, 8, 11]. We are interested in studying the discrete Nagumo

equation, because the nerve environment is more discrete than continuous in nature due to the

placement of the nodes of Ranvier making a discrete equation a more accurate model than the con-

tinuous equation. We also believe that studying the discrete Nagumo equation can yield important

insights lost in a continuous model. The discrete and continuous Nagumo models are compared

in [6]. Studies of “wave block” of calcium waves in spatially inhomogeneous media have been

done in [1, 11]. Propagation failure on a two-dimensional lattice with homogeneous diffusion and

a discontinuous nonlinearity has been explored in [3].

The nonlinearity f plays a crucial role in determining the interval of propagation failure because

of the detuning parameter a. Different nonlinearities change the interval for which the speed of

the front is zero. Commonly, authors employ the caricatures of the cubic function suggested by

McKean [9]

f(φ; a) = φ− h(φ− a) (1.4)

where H is the Heaviside function:

h(φ) =


1 φ > 0

[0, 1] φ = 0

0 φ < 0
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or

f(φ; a) =


φ, φ ≤ a/2

a− φ, a/2 < φ < (a+ 1)/2

φ− 1, φ ≥ (a+ 1)/2

(1.5)

where a ∈ (0, 1). The differences in (1.4) and (1.5) are seen in the Figure 1.1.

The following sources all use McKean’s discontinuous caricature (1.4) [1, 4, 6, 7]. The discontin-

uous nonlinearity is easier to work with and allows for solutions to traveling fronts. However the

discontinuity makes results for the interval of propagation failure artificial. The spatially discrete

Nagumo equation with homogeneous diffusion has been solved by [5] using the continuous piece-

wise linear nonlinearity prescribed by McKean (1.5). Either choice in f is an approximation of the

original functional suggested by Hodgkin and Huxley, just as the cubic (1.2) is an approximation

of that functional. Our paper uses the same piecewise continuous nonlinearity (1.5) as [5], but

we employ the techniques from [7] to solve for single-front, steady-state solutions to (1.3) with

inhomogeneous diffusion. We examine the interval of propagation failure for these solutions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

u

f(
u

,a
)

a=1/2

Figure 1.1: Discontinuous nonlinearity (1.4) in red, continuous sawtooth nonlinearity (1.5) in blue.

To explore the role of the detuning parameter further, we examine the Nagumo equation (1.3) when
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there is no diffusion, or L[φk(t)] = 0. Thus we are considering the behavior of a single node as it

changes over time with the equation

φ̇k(t) =
dφ

dt
= −f(φ; a). (1.6)

The general solutions of (1.6) are as follows:

φ =


c1e
−t φ ≤ a/2

a+ c2e
t a/2 < φ < (a+ 1)/2

1 + c3e
−t (a+ 1)/2 ≤ φ

(1.7)

where |c1|, |c2|, |c3| ∈ (0, 1).

Using 1.6, we graphφ vs. dφ
dt

as in Figure 1.2 which shows us that dφ
dt
< 0 when φ < a/2, thus

we require constant c1 > 0 in (1.7) to ensure a negative slope in the solution φ. This means that

if the voltage of φ is initially less that a/2, such solutions tend to zero as t → ∞. Similarly, the

derivative dφ
dt
> 0 if φ > (a+ 1)/2, so we need c3 < 0 in (1.7) for the solution φ to have a positive

slope. If the voltage of φ is initially greater than (a + 1)/2, then φ → 1 as t → ∞. If c2 < 0

and we are in the second case of (1.7), then φ ≤ a ∀t > 0, and as t → ∞, φ → 0. A solution

demonstrating this behavior is depicted in the left panel of Figure 1.3. If c2 > 0 and we are in the

second case of (1.7) then φ ≥ a ∀t > 0 and as t → ∞, φ → 1. A solution depicted in the right

panel of Figure 1.3 is an example of this.

Figures 1.2 and 1.3 also tell us that a is an unstable equilibrium point. If φ < a, the individual

node will turn off as time elapses and the voltage will go to zero. If φ > a, the individual node will

turn on as t → ∞. The closer a is to zero, the more likely it is that φ → 1 as time goes on. The

closer a is to 1, it is more probable that φ→ 0.
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Figure 1.2: Plotting φ vs. dφ
dt
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Figure 1.3: Candidate solutions to (1.6). The black dotted lines, from bottom to top, represent
y = a/2, y = a, and y = (a+ 1)/2, respectively.

When we consider the Nagumo equation with diffusion (L[φk(t)] 6= 0), the voltage of a single

node φk interacts with its surrounding nodes. When a > 1/2 this yields a right moving front (see

right panel of Figure 1.4). This means the signal is turning off the voltage at each node in the nerve

axon, and φk → 0 as t → ∞. When a < 1/2, this produces a left moving front (see left panel of

Figure 1.4), or the impulse is turning the voltage at each node on. This means all of the nodes in

the axon are turned on, and φk → 1 as t → ∞. When a = 1/2 as in the left panel of Figure 1.2,
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φk is pulled equally towards 0 and towards 1, yielding a stationary front.
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Figure 1.4: Plots of traveling front solutions. In left panel a < 1/2, in the right panel a > 1/2.

The structure of f and a’s role in the reaction term determines the interval of propagation failure.

There are choices of nonlinearity for which no stationary fronts exist [5]. As [8] asserts, finding

the interval of propagation failure for solutions to (1.3) is equivalent to finding the conditions for

which stationary fronts exist. These conditions are stated in the next section 1.2, and we use them

to construct solutions for homogeneous and inhomogeneous media in Chapters 2 and 3, with the

end of Chapter 3 devoted to comparing the intervals of propagation failure of the two cases. The

solutions constructed in this paper for (1.3) with (1.5) in the case of inhomogeneous media are

original results, and we have presented a new way of solving the homogeneous case. We explore

the case of inhomogeneous diffusion with just one defect present in Chapter 3. Solving for exact

solutions with multiple defects present is tedious, thus we’ve created an original script in MATLAB

capable of algorithmically solving (1.3) with as many defects as we choose, with different choices

of nonlinearity f , and any position of the wave. Chapter 4 compares our exact solutions found in

Chapters 2 and 3 with solutions found algorithmically using our code. Results are summarized and

ideas for future work are discussed in Chapter 5.
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1.2 Preliminaries for our problem

We seek steady-state, single front solutions of

φ̇k(t) = Lφk(t)− f(φk(t); a) (1.8)

where φk(t) maps R+∪{0} → R, k ∈ Z indicates an element of a one-dimensional lattice, φ̇ = dφ
dt

,

Lφk(t) = αk[φk+1(t)− φk(t)] + αk−1[φk−1(t)− φk(t)],

and using αk ∈ R+ and p, q ∈ {0} ∪ Z+, the inhomogeneous medium is defined by

αk = α for k < −p or k > q and αk 6= α for − p ≤ k ≤ q

f : R → R is the derivative of a double-well potential. To derive exact solutions we employ

reaction term (1.5), and set boundary conditions

lim
k→−∞

φk = 0 and lim
k→∞

φk = 1. (1.9)

To solve for standing front solutions of (1.3) we set φ̇j(t) = 0, or

αk(φk+1 − φk) + αk−1(φk−1 − φk)− f(φk; a) = 0 (1.10)

to get an equation independent of time t. In order to solve (1.10) we make some assumptions that

allow us to rewrite nonlinearity f in a linear form. Once we do this, we can solve (1.10) as a

difference equation. These assumptions also give us a way to determine where the stationary front

8



is in the medium. This is critical when considering inhomogeneous diffusion because the interval

of propagation failure varies depending on where the front is. Note that

f(φk; a) = φk


1 φk ≤ a/2

−1 a/2 < φk < (a+ 1)/2

1 (a+ 1)/2 ≤ φk

+


0 φk ≤ a/2

a a/2 < φk < (a+ 1)/2

−1 (a+ 1)/2 ≤ φk

(1.11)

Define ϕ(x, η0) = φk to be a continuous function that interpolates φk at any x ∈ R, and assume

that ϕ only crosses a/2 and (a+ 1)/2 once at

a/2 = ϕ(η0; η0), (a+ 1)/2 = ϕ(η1; η0)

In other words, η0 is the spatial location at which ϕ takes the value a/2, and η1 is the spatial

location at which ϕ takes the value (a+1)/2. Thus we can say that ϕ(x, η0) < a/2 for x < η0 and

similarly that a/2 < ϕ(x, η0) < (a + 1)/2 for η0 < x < η1 and ϕ(x, η0) > (a + 1)/2 for x > η1.

Thus

φk ≤ a/2 for k ≤ η0 (1.12)

a/2 < φk < (a+ 1)/2 for η0 < k < η1 (1.13)

(a+ 1)/2 ≤ φk for k ≥ η1. (1.14)

Let n equal the number of φk ∈ [a/2, (a+ 1)/2]. We define k∗ = bη0c and k∗ + n+ 1 = dη1e.

Remark: For the purpose of this thesis, assume one point lies between η0 and η1. That is, n = 1.
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Then

φk ≤ a/2 for k ≤ k∗ (1.15)

a/2 < φk < (a+ 1)/2 for k = k∗ + 1 (1.16)

(a+ 1)/2 ≤ φk for k ≥ k∗ + 2. (1.17)

and φk∗+1 is the only node lying in the interval [a/2, (a+ 1)/2]. Now we can write f as

f(φk; a) = φk


1 k ≤ k∗

−1 k = k∗ + 1

1 k ≥ k∗ + 2

+


0 k ≤ k∗

a k = k∗ + 1

−1 k ≥ k∗ + 2

(1.18)

or as

f(φk, a) = vkφk − wk (1.19)

where

vk =


1, k ≤ k∗

−1, k = k∗ + 1

1, k ≥ k∗ + 2

and wk =


0, k ≤ k∗

−a, k = k∗ + 1

1, k ≥ k∗ + 2

. (1.20)

Now f is linear in k and we can write (1.10) as

−αkφk+1 + (vk + αk + αk−1)φk − αk−1φk−1 = wk ∀k (1.21)

which is a second order linear difference equation.

In past works [7, 10], Jacobi operator theory has been used to solve equations like (1.21) because

the method is useful when considering inhomogeneous media, or varying αk. Jacobi operator

theory dictates that the coefficients of φk depend solely on the position k in the lattice [12]. Un-
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fortunately, the coefficient vk in (1.21) depends on k and k∗, violating the definition of a Jacobi

operator. Note that, (1.21) is the same as

−αkφk+1 + (1 + αk + αk−1)φk − αk−1φk−1 = wk (1.22)

except when k = k∗ + 1 when (1.21) is

−αk∗+1φk∗+2 + (−1− αk∗+1 + αk∗)φk∗+1 − αk∗φ∗k = −a. (1.23)

We can also view (1.22) as an infinite tridiagonal system of equations where

Mij =



αi i = j + 1

(1 + αi + αi−1) i = j

αi−1 i = j − 1

0 otherwise,

and

φ = [...φk φk+1 φk+2...]
T ,

and

w = [...wk wk+1 wk+2...]
T

so that (1.22) is also Mφ = w, where M is a Jacobi operator, and the system can be solved using

the method outlined in [7].

We can solve (1.21) using the Sherman-Morrison formula which solves systems of equations that

are perturbations of systems with already known solutions. Note, (1.21) can be represented Tφ̂ =

w with T = M+∆T where ∆T represents the change/perturbation when k = k∗+1. We already

know how to solve Mφ = w using Jacobi operator theory, which we do in Chapter 2. In Chapter

11



3 we outline how to use the solutions for Mφ = w from Chapter 2 with the Sherman-Morrison

formula to solve our original problem Tφ̂ = w.
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CHAPTER 2: SOLVING Mφ = w

To arrive at the solution for (1.21) we must first derive the solutions for (1.22),

−αkφk+1 + (1 + αk + αk−1)φk − αk−1φk−1 = wk ∀k ∈ Z. (2.1)

We consider solutions to this equation when diffusion is both homogeneous and inhomogeneous

following the method outlined in [7].

2.1 Homogeneous Diffusion

To consider (1.22) with homogeneous diffusion we set αk = α ∀k. Thus (1.22) becomes

−αφk+1 + (2α + 1)φk − αφk−1 = wk ∀k ∈ Z (2.2)

a second-order linear difference equation. The general solution to (2.2) will consist of two funda-

mental solutions and one particular solution. To find the fundamental solutions, we start by setting

the right hand side of (2.2) equal to zero which yields

−αφk+1 + (2α + 1)φk − αφk−1 = 0 ∀k ∈ Z (2.3)

or alternatively,

φk+1 + φk−1 = 2µφk (2.4)

where µ is defined

µ =
2α + 1

2α
. (2.5)
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The solutions of (2.3) will be of the form

φk = φk0ρ(k − k0) + φk0+1σ(k − k0) (2.6)

where k0 is any initial starting point, and ρ(k − k0) and σ(k − k0) are two linearly independent

fundamental solutions. Without loss in generality, we keep k0 = k∗ throughout this paper. To

ensure ρ(k − k∗) and σ(k − k∗) are linearly independent, we choose the following set of linearly

independent initial conditions

ρ(0) = 1, ρ(1) = 0, σ(0) = 0, σ(1) = 1. (2.7)

To find expressions for ρ(k − k∗) and σ(k − k∗) we set φk = λk and plug this into (2.3). This

leads us to the auxiliary equation λ2 − 2µλ+ 1 = 0. Solving for λ we see λ± = µ±
√
µ2 − 1 =

1 + 1
2α
±
√
4α+1
2α

. Note that λ+λ− = 1. If we take λ = λ+ then the two solutions are λ and λ−1

with λ−1 < 1 < λ.

Using the initial conditions (2.7), we arrive at the expressions for the fundamental solutions:

ρ(k − k∗) = λ1+k
∗−k − λk−1−k∗

λ− λ−1
and σ(k− k∗) =

λk−k
∗ − λk∗−k

λ− λ−1
. (2.8)

According to [12], the general solution to (2.2) is

φk = φk∗ρ(k − k∗) + φk∗+1σ(k − k∗) +


∑k

j=k∗+1
−1
αj
wjσ(k − j) k > k∗

0 k = k∗∑k
j=k∗+1

1
αj
wjσ(k − j) k < k∗

(2.9)
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where wj is as defined in (1.20). It can be verified that

φk =


∑k

j=k∗+1
−1
αj
wjσ(k − j) k > k∗

0 k = k∗∑k
j=k∗+1

1
αj
wjσ(k − j) k < k∗

is a particular solution to (2.2). Because wj = 0 for j ≤ k∗ we can simplify (2.9) to

φk = φk∗ρ(k − k∗) + φk∗+1σ(k − k∗) +


∑k

j=k∗+1
−1
αj
wjσ(k − j) k > k∗

0 k ≤ k∗.
(2.10)

We still need to determine the coefficients φk∗ and φk∗+1. Because we are considering homo-

geneous diffusion, it is without loss in generality that we choose k∗ = 0 since the medium is

translationally invariant. We use the boundary conditions (1.9) to set up a system of equations to

solve for these coefficients.

As k → −∞, φk → 0, and

φk = φ0ρ(k) + φ1σ(k) = 0.

By factoring and separating the λk terms from the λ−k terms we get

φk =
λ−k

λ− λ−1
[λφ0 − φ1]−

λk

λ− λ−1
[
λ−1φ0 − φ1

]
,

in which the first term tends to infinity as k → −∞. Thus we must require that

λφ0 − φ1 = 0. (2.11)
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As k →∞

φk = φ0ρ(k) + φ1σ(k)−
1

α

k∑
j=1

wjσ(k − j).

As before, factor and separate the λk terms from the λ−k terms to get

φk =
λ−k

λ− λ−1

[
λφ0 − φ1 −

aλ

α
+

1

α

k∑
j=2

λj

]
− λk

λ− λ−1

[
λ−1φ0 − φ1 −

aλ−1

α
+

1

α

k∑
j=2

λ−j

]
.

Recall the formula for the sum of a geometric series is
∑k

j=2 λ
j = λk−λ

1−λ−1 and∑k
j=2 λ

−j = λ−k−λ−1

1−λ . The second term grows infinitely large as k →∞ and we require

0 = lim
k→∞

[
λ−1φ0 − φ1 −

aλ−1

α
+

1

α

k∑
j=2

λ−j

]
= lim

k→∞

[
λ−1φ0 − φ1 −

aλ−1

α
+

1

α
(
λ−k − λ−1

1− λ
)

]

Thus we need

λ−1φ0 − φ1 −
aλ−1

α
+

λ−1

α(λ− 1)
= 0. (2.12)

We use (2.11) and (2.12) to solve for φ0 and φ1, which yields

φ0 =
a(λ−1 − 1) + λ−1

λ+ 1
, and φ1 =

a(1− λ) + 1

λ+ 1
. (2.13)

Plugging φ0 and φ1 into the general solution reduces (2.9) to

φk =

 λ1−k(φ1 − 1) + 1 k > 0

λkφ0 k ≤ k∗.
(2.14)

We will revisit these solutions in section 3.1.
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2.2 Inhomogeneous Diffusion

We consider

−αkφk+1 + (1 + αk + αk−1)φk − αk−1φk−1 = wk (2.15)

when p = q = 0, i.e. in the case of one defect at α0. Because the medium is inhomogeneous and

no longer translationally invariant, the fundamental solutions will differ depending on the position

of k∗ relative to the defect at k = 0. There are three cases to consider: k∗ < 0, k∗ = 0, and

k∗ > 0. To construct the fundamental solutions we follow Lemma 3.3 outlined in [7]. In fact, our

fundamental solutions will be the same as the fundamental solutions derived in Section 3.1 of [7]

because our homogeneous equations are the same. We have the same initial conditions on starting

point k∗

ρ̃(k∗, k∗) = 1, ρ̃(k∗ + 1, k∗) = 0, σ̃(k∗, k∗) = 0, σ̃(k∗ + 1, k∗) = 1. (2.16)

When k∗ = 0, the fundamental solutions are

ρ̃(k, 0) =

 τρ(k) k > 0

νρ(k + 1)− ρ(k + 2) k ≤ 0
σ̃(k, 0) =

 νσ(k − 1)− σ(k − 2) k > 0

τσ(k) k ≤ 0

(2.17)

where we define τ = α0

α
and ν = 1+α+α0

α
. When k∗ < 0 or k∗ > 0 the solutions are defined

ρ̃(k, k∗) =


ρ(k − 1)θ(1, k∗) + σ(k − 1)θ(2, k∗) k ≥ 0, k∗ < 0

ρ(k − k∗) k ≤ 0, k∗ < 0, or k ≥ 0, k∗ > 0

ρ(k + 1)θ(−1, k∗) + σ(k + 1)θ(0, k∗) k ≤ 0, k∗ > 0

(2.18)
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and

σ̃(k, k∗) =


ρ(k − 1)ζ(1, k∗) + σ(k − 1)ζ(2, k∗) k ≥ 0, k∗ < 0

σ(k − k∗) k ≤ 0, k∗ < 0, or k ≥ 0, k∗ > 0

ρ(k + 1)ζ(−1, k∗) + σ(k + 1)ζ(0, k∗) k ≤ 0, k∗ > 0

(2.19)

where

θ(1, k∗) =
1

τ
(νρ(−k∗)− ρ(−1− k∗))

θ(2, k∗) =
1

τ
((ν2 − τ 2)ρ(−k∗)− νρ(−1− k∗))

ζ(1, k∗) =
1

τ
(νσ(−k∗)− σ(−1− k∗))

ζ(2, k∗) =
1

τ
((ν2 − τ 2)σ(−k∗)− νσ(−1− k∗))

θ(0, k∗) =
1

τ
(νρ(1− k∗)− ρ(2− k∗))

θ(−1, k∗) = 1

τ
((ν2 − τ 2)ρ(1− k∗)− νρ(2− k∗))

ζ(0, k∗) =
1

τ
(νσ(1− k∗)− σ(2− k∗))

ζ(−1, k∗) = 1

τ
((ν2 − σ2)σ(1− k∗)− νσ(2− k∗)).

The general solution ∀k∗ ∈ Z is

φk = φk∗ ρ̃(k, k
∗) + φk∗+1σ̃(k, k

∗) +


∑k

j=k∗+1
−1
αj
wjσ̃(k, j) k > k∗

0 k ≤ k∗.
(2.20)

We explicitly solve two difference cases: k∗ = −1 and k∗ = 0. From our definition of k∗ in (1.15)-

(1.17), when k∗ = −1 the interface of the front lies at the defect, α0. When k∗ = 0, the interface

lies after the defect at k = 1. The case when the front is at the defect (k∗ = −1) is of significant
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importance because we want to know if ∃a ∈ (0, 1) that yield traveling fronts when α0 = α, but

yield stationary fronts when α0 < α. When we examine the interval of propagation failure for

fronts after the defect (k∗ = 0), we want to see if ∀a ∈ (0, 1) that yield traveling fronts when

α0 = α also yield traveling fronts when α0 < α. We want to compare these results to Theorem 3.2

in [7].

2.2.1 Fronts at the defect

The general form of (2.20) when k∗ = −1 is

φk = φ−1ρ̃(k,−1) + φ0σ̃(k,−1) +


∑k

j=0
−1
αj
σ̃(k, j) k > −1

0 k ≤ −1
(2.21)

with the fundamental solutions found in (2.17)-(2.19). Once more we employ boundary conditions

(1.9) to solve for the coefficients φ−1 and φ0. As k → −∞

φk =
λ−k

λ− λ−1
(φ−1 − λ−1φ0)−

λk

λ− λ−1
(φ−1 − λφ0) = 0.

To prevent the first term from diverging we set

φ−1 − λ−1φ0 = 0. (2.22)

As k →∞

φk =
λ−k

τ(λ− λ−1)
((νλ− λ2)φ−1 + (νλ2 − λ(ν2 − τ 2))φ0 +

τa

α0

(λ2 − νλ) + τ

α

k∑
j=1

λj)

− λk

τ(λ− λ−1)
((νλ−1 − λ−2)φ−1 + (νλ−2 − λ−1(ν2 − τ 2))φ0 +

τa

α0

(λ−2 − νλ−1) + τ

α

k∑
j=1

λ−j).
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Recall that
∑k

j=1 λ
j = λk−1

1−λ−1 and
∑k

j=1 λ
−j = λ−k−1

1−λ . To satisfy the boundary conditions we

require

lim
k→∞

[
(νλ−1 − λ−2)φ−1 + (νλ−2 − λ−1(ν2 − τ 2))φ0 +

τa

α0

(λ−2 − νλ−1) + τ

α

k∑
j=1

λ−j

]
(2.23)

= lim
k→∞

[
(νλ−1 − λ−2)φ−1 + (νλ−2 − λ−1(ν2 − τ 2))φ0 +

τa

α0

(λ−2 − νλ−1) + τ(λ−k − 1)

α(1− λ)

]
(2.24)

= (νλ−1 − λ−2)φ−1 + (νλ−2 − λ−1(ν2 − τ 2))φ0 +
τa

α0

(λ−2 − νλ−1) + τ

α

1

λ− 1
(2.25)

= (ν − λ−1)φ−1 + (νλ−1 − (ν2 − τ 2))φ0 +
τa

α0

(λ−1 − ν) + τλ

α(λ− 1)
= 0 (2.26)

We solve 2.22 and 2.26 for φ−1 and φ0 and

φ−1 =
(a(λ+ τ − 1)− α0(λ− 1))

α(−λ3 + 2λ2 − 2λ2τ + 2λτ − λ)
φ0 =

λ(a(λ+ τ − 1)− α0(λ− 1))

α(−λ3 + 2λ2 − 2λ2τ + 2λτ − λ)
(2.27)

Substituting these expressions back into the general solution 2.21 we see

φk =

 1 + λ1−kτ
λ+τ−1(φ0 − 1) k > 0

λk+1φ−1 k ≤ 0.
(2.28)

We will use employ these solutions further in section 3.2.1.
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2.2.2 Fronts after the defect

Once again, we will use the boundary conditions (1.9) and (2.20) in order to find the coefficients

φ0 and φ1 when k∗ = 0. As k → −∞ we see

φk =
λ−k

λ− λ−1
(
φ0(ν − λ−1)− τφ1

)
− λk

λ− λ−1
(
φ0(ν − λ)− τφ1

)
(2.29)

Note that ν = 1+α+α0

α
= 2µ−1+ α0

α
= λ+λ−1+τ−1. In order to satisfy our boundary conditions

as k → −∞ we need

φ0(ν − λ−1)− τφ1 = 0 ⇔ φ0(λ+ τ − 1)− τφ1 = 0. (2.30)

As k →∞ we have

φk =
λ−k

λ− λ−1
(
λτφ0 − φ1(νλ− λ2)−

aλ

α
+

1

α

k∑
j=2

λj
)

− λk

λ− λ−1
(
λ−1τφ0 − φ1(νλ

−1 − λ−2)− aλ−1

α
+

1

α

k∑
j=2

λ−j
)
,

and we require

lim
k→∞

[
λ−1τφ0 − φ1(νλ

−1 − λ−2)− aλ−1

α
+

1

α

k∑
j=2

λ−j

]
(2.31)

= lim
k→∞

[
λ−1τφ0 − φ1(νλ

−1 − λ−2)− aλ−1

α
+
λ−k − λ−1

α(1− λ)

]
(2.32)

= λ−1τφ0 − φ1(νλ
−1 − λ−2)− aλ−1

α
+

λ−1

α(λ− 1)
= 0 (2.33)
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We use (2.30) and (2.33) to solve for φ0 and φ1 and

φ0 =
τ(a(λ−1 − 1) + λ−1)

λ+ 2τ − 1
and φ1 =

(λ+ τ − 1)(a(λ−1 − 1) + λ−1)

λ+ 2τ − 1
(2.34)

If we plug (2.34) into (2.20) the simplified version of the general solution is

φk =

 λ1−k(φ1 − 1) + 1 k > 0

λkφ0 k ≤ 0.
(2.35)

These solutions are not the same as those found in section 2.1 because coefficients φ0 and φ1 are

different. Again, we revisit this solution in section 3.2.2.
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CHAPTER 3: SOLVING (M + ∆T)φ = w

Now that we have found the solutions φ = M−1w to Mφ = w, we are almost ready to solve our

original problem (1.21), or Tφ̂ = w. Recall that T = M + ∆T, where the matrix ∆T represents

the change from matrix M to T. In our system, matrix T differs from M in exactly one element,

Mk∗+1,k∗+1. That one difference corresponds to the equations (1.21) and (1.22) when k = k∗ + 1.

When k = k∗ + 1 in (1.22),

−αk∗+1φk∗+2 + (1 + αk∗+1 + αk∗)φk∗+1 − αk∗φ∗k = −a (3.1)

and in our problem (1.21)

−αk∗+1φk∗+2 + (−1 + αk∗+1 + αk∗)φk∗+1 − αk∗φ∗k = −a. (3.2)

For our system of equations Tφ̂ = w we need entry Tk∗+1,k∗+1 = (−1 + αk∗+1 + αk∗) =

(1 + αk∗+1 + αk∗)−2 = Mk∗+1,k∗+1−2. So for us,

(∆T)ij =

 −2 i = j = k∗ + 1

0 otherwise.

We can also write ∆T = yzT by setting

y = −2ek∗+1 and z = ek∗+1. (3.3)

where ek∗+1 is an infinite vector with zeros in every entry except at the (k∗ + 1)st entry where it

is equal to one. Thus, T = (M + ∆T) = M + yzT. It is necessary to write ∆T = yzT because
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the Sherman-Morrison formula is

Tφ̂ = w ⇒ φ̂ = T−1w = (M + yzT)−1w = M−1w − M−1yzTM−1w

1 + zTM−1y
. (3.4)

We have almost all of the information necessary to solve for φ̂ since we know z,y, andM−1w

which is the general solution for φk computed in Chapter 2. The only missing piece of the formula

is M−1y.

If we define x = [. . . xk−1 xk xk+1 . . .]
T, then Mx = y corresponds to the following equation

−αkxk + (1 + αk + αk−1)xk − αk−1xk−1 = yk ∀k ∈ Z (3.5)

where

yk =

 −2 k = k∗ + 1

0 k 6= k∗ + 1
(3.6)

This is another Jacobi operator system and we can use the method outlined in [7] to evaluate

x = M−1y. We consider (3.5) with homogeneous diffusion and inhomogeneous diffusion.

3.1 Homogeneous Diffusion

To consider (3.5) with homogeneous diffusion we set αk = α for all k ∈ Z to get

−αxk+1 + (2α + 1)xk − αxk−1 = yk, ∀k ∈ Z. (3.7)

Once again, we are dealing with a second order difference equation which will have a general

solution made up of two fundamental solutions and one particular solution. The homogeneous
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equation for (3.7) is the same equation as the homogeneous equation for (2.2) in Chapter 2. Thus,

(3.7) will have the same fundamental solutions, (2.8), as those that we constructed for (2.2) in

Chapter 2.

The general solution takes the form

xk = xk∗ρ(k − k∗) + xk∗+1σ(k − k∗) +


−1
α

∑k
j=k∗+1 yjσ(k − j) k > k∗

0 k = k∗

1
α

∑k∗

j=k yjσ(k − j) k < k∗

(3.8)

which can be simplified by plugging in yk from (3.6) which gives us

xk = xk∗ρ(k − k∗) + xk∗+1σ(k − k∗) +


2
α
σ(k − 1) k > k∗

0 k ≤ k∗.
(3.9)

We implement the following boundary conditions on xk:

lim
k→−∞

xk = lim
k→∞

xk = 0 (3.10)

and we use these to solve for coefficients xk∗ and xk∗+1. We choose these boundary conditions in

order to satisfy our original boundary conditions (1.9) for Tφ̂ = w. Recall that we are computing

the solutions xk to “correct” the solutions φk at the point φk∗+1. By setting the boundary conditions

(3.10), we are ensuring that xk will not affect the solutions φ̂k as k → ±∞. Since we are dealing

with homogeneous diffusion, we once again assume k∗ = 0 without loss in generality.

As k → −∞

xk =
λ−k

λ− λ−1
(
λx0 − x1

)
− λk

λ− λ−1
(
λ−1x0 − x1

)
= 0

25



and we require

λx0 − x1 = 0. (3.11)

As k →∞

xk =
λ−k

λ− λ−1
(
λx0 − x1 −

2λ

α

)
− λk

λ− λ−1
(
λ−1x0 − x1 −

2λ−1

α

)
= 0,

and we need

λ−1x0 − x1 −
2λ−1

α
= 0. (3.12)

We use 3.11 and 3.12 to solve for x0 and x1 and we find

x0 =
−2(1− λ−1)

λ+ 1
and x1 =

−2(λ− 1)

λ+ 1
. (3.13)

If we plug these coefficients back into (3.9) the general solution simplifies to

xk =

 x1λ
1−k k > 0

x0λ
k k ≤ 0.

(3.14)

Now that we have solutions xk = M−1y we can evaluate φ̂ = T−1w by plugging M−1w and

M−1y into (3.4). First, notice that 1 + zTM−1y and zTM−1w are scalars.

1 + zTM−1y = 1 + [· · · 0 1 0 · · · ]



...

x0

x1

x2
...


= 1 + x1 (3.15)
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and

zTM−1w = [· · · 0 1 0 · · · ]



...

φ0

φ1

φ2

...


= φ1. (3.16)

Thus, according to the Sherman-Morrison formula,

φ̂ = M−1w − M−1yzTM−1w

1 + zTM−1y
= φk −

φ1xk
1 + x1

=

 λ1−k(φ1 − 1) + 1 k > 0

λkφ0 k ≤ 0
− φ1

1 + x1

 λ1−kx1 k > 0

λkx0 k ≤ 0.

=

 1 + λ1−k(φ1 − 1− φ1x1
1+x1

) k > 0

λk(φ0 − φ1x0
1+x1

) k ≤ 0

Recall that φ1 = λφ0, and that x1 = λx0. Then we can reduce the above equation to:

φ̂k =

 1 + λ1−k(φ1(
1

1+x1
)− 1) k > 0

λkφ0(
1

1+x1
) k ≤ 0

(3.17)

where the coefficients φ0, φ1, x0, and x1 are as defined in (2.13) and (3.13). With these solutions

for φ̂k in (3.17) we examine the interval of propagation failure in section 3.3 at the end of this

chapter.
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3.2 Inhomogeneous Diffusion

We find solutions to

−αkxk + (1 + αk + αk−1)xk − αk−1xk−1 = yk ∀k ∈ Z (3.18)

when diffusion is inhomogeneous and there is one defect at α0. Recall that the homogeneous

equation for (3.18) is the same as the homogeneous equation of (2.15). Thus, the fundamental

solutions for (3.18) will be the same fundamental solutions for (2.15) found in Chapter 2. Plugging

in the values of yk into (3.8), the general solution for inhomogeneous diffusion is

xk = xk∗ ρ̃(k, k
∗) + xk∗+1σ̃(k, k

∗) +


2
α
σ̃(k, k∗ + 1) k > k∗

0 k ≤ k∗.
(3.19)

As in Chapter 2, we solve (3.18) for k∗ = −1 and k∗ = 0 because we wish to explore how adding

a defect changes the interval of propagation failure when the front is at the defect and directly after

it.

3.2.1 Fronts at the Defect

To consider stationary fronts at the defect, we set k∗ = −1. Thus the general solution is

xk = x−1ρ̃(k,−1) + x0σ̃(k,−1) +


2
α0
σ̃(k, 0) k > −1

0 k ≤ −1
(3.20)
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We use the same boundary conditions (3.10) and as k → −∞,

xk =
λ−k

λ− λ−1
(x−1 − λ−1x0)−

λk

λ− λ−1
(x−1 − λx0).

Then we need

x−1 − λ−1x0 = 0. (3.21)

As k →∞,

xk =
λ−k

τ(λ− λ−1)
((λν − λ2)x−1 + (λ2ν − λ(ν2 − τ 2))x0 +

2τ

α0

(λ2 − λν))

− λk

τ(λ− λ−1)
((λ−1ν − λ−2)x−1 + (λ−2ν − λ−1(ν2 − τ 2))x0 +

2τ

α0

(λ−2 − λ−1ν)).

We require

(λ−1ν − λ−2)x−1 + (λ−2ν − λ−1(ν2 − τ 2))x0 +
2τ

α0

(λ−2 − λ−1ν) = 0. (3.22)

Using 3.21 and 3.22 we solve for x−1 and x0 and

x−1 =
2(λ+ τ − 1)

α(−λ3 + 2λ2 − 2λ2τ + 2λτ − λ))
x0 =

2λ(λ+ τ − 1)

α(−λ3 + 2λ2 − 2λ2τ + 2λτ − λ)
, (3.23)

and the general solution reduces to

xk =


λ1−kτx0
λ+τ−1 k > 0

λk+1x−1 k ≤ 0.
(3.24)
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Now that we have evaluated φ = M−1w and x = M−1y we can evaluate φ̂ = T−1w using the

Sherman-Morrison formula and

φ̂k =

 1 + λ1−kτ
λ+τ−1(

φ0
1+x0
− 1) k > 0

λk+1φ−1(
1

1+x0
) k ≤ 0.

(3.25)

Thus (3.25) is the solution to (1.21) when there is one defect at α0 and the front is at the defect.

We use (3.25) to calculate the interval of propagation failure in section 3.3.

3.2.2 Fronts After the Defect

When k∗ = 0 we have

xk = x0ρ̃(k, 0) + x1σ̃(k, 0) +


2
α
σ̃(k, 1) k > 0

0 k ≤ 0.
(3.26)

and we employ the same boundary conditions from (3.10) which we use to solve for the coefficients

x0 and x1. As k → −∞

xk =
λ−k

λ− λ−1
(
x0(ν − λ−1)− τx1

)
− λk

λ− λ−1
(
x0(ν − λ)− τx1

)
. (3.27)

Recalling that ν = λ+ λ−1 + τ − 1 we set

x0(ν − λ−1)− τx1 = 0 ⇔ x0(λ+ τ − 1)− τx1 = 0. (3.28)

As k →∞

xk =
λ−k

λ− λ−1
(
x1λ(λ− ν)− λτx0 −

2λ

α

)
− λk

λ− λ−1
(
x1λ

−1(λ−1 − ν)− λ−1τx0 −
2λ−1

α

)
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and we need

x1(ν − λ−1)− τx0 +
2

α
= 0 ⇔ x1(λ+ τ − 1)− τx0 =

−2
α
. (3.29)

Using 3.29 and 3.28 we solve for x0 and x1, giving

x0 =
−2τ(1− λ−1)
λ+ 2τ − 1

and x1 =
−2(1− λ−1)(λ+ τ − 1)

λ+ 2τ − 1
. (3.30)

Plugging the coefficients back into (3.26) the general solution simplifies to

xk =

 λ1−kx1 k > 0

λkx0 k ≤ 0.
(3.31)

Now that we have evaluated φ = M−1w and x = M−1y we can evaluate φ̂ = T−1w.

φ̂k =

 1 + λ1−k(φ1(
1

1+x1
)− 1) k > 0

λk(φ0 − φ1
1+x1

x0) k ≤ 0
(3.32)

where φ0 andφ1 are found in (2.34) and x0 and x1 are in (3.30).Thus (3.32) is the solution for (1.21)

in the case where there is one defect at α0 and the front lies at the defect, k∗ = 0.

Once again, we will use the formula for φ̂k in (3.32) to calculate the interval of propagation failure

in the following section 3.3.
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3.3 Interval of Propagation Failure

The interval of propagation failure for each α is determined by conditions (1.15), (1.16), and

(1.17) because they guarantee solutions to the steady-state equation. The interval is the range of a

values that satisfy all of these conditions. We first consider the interval of propagation failure for

homogeneous diffusion, for which we chose we chose k∗ = 0. Given this value of k∗ conditions

(1.15), (1.16), and (1.17) are

φ̂0 ≤ a/2 (3.33)

a/2 < φ̂1 < (a+ 1)/2 (3.34)

(a+ 1)/2 ≤ φ̂2 (3.35)

where φ̂0, φ̂1, and φ̂2 are computed using (3.17). To find the interval of propagation failure, we

plug in φ̂0, φ̂1 and φ̂2 found in Table 3.1 into (3.33), (3.34), (3.35) and solve the inequalities for a.

First we do this for homogeneous diffusion.

Table 3.1: Formulas for φ0, φ1, and φ2 when diffusion is homogeneous. These values of φ̂k
determine the interval of propagation failure.

Homogeneous Diffusion

φ̂0 =
(a(λ−1−1)+λ−1)

3−λ

φ̂1 =
(a(1−λ)+1)

3−λ

φ̂2 = 1 + λ−1(a(1−λ)−2+λ)
3−λ

When solving the inequalities, we must consider any singularities with respect to α in the denom-

inators of φ̂0, φ̂1 and φ̂2, and any singularities in the solution for a. The denominators of φk
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for k = 0, 1, 2 are equal to 3− λ. Recall that λ = 1+ 1
2α

+
√
4α+1
2α

; thus a singularity occurs when λ = 3 which implies α = 3/4.

The solutions for a from (3.33) and (3.35) contain another singularity when 5 − λ − 2λ−1 = 0, or when α = 7−
√
17

8
≈ .3596.

The importance of these singularities is that the direction of each inequality symbol changes when solving for a in (3.33), (3.34),

(3.35) once α crosses 3/4 and 7−
√
17

8
. These changes are demonstrated in Table 3.2.

Table 3.2: Interval of Propagation Failure for Homogeneous Diffusion: Solutions to (3.33)-(3.34) for homogeneous diffusion.

Condition α < 7−
√
17

8
7−
√
17

8
< α < 3/4 α > 3/4 Color/Style on Graph

φ̂0 ≤ a/2 2λ−1

5−λ−2λ−1 ≤ a 2λ−1

5−λ−2λ−1 ≥ a 2λ−1

5−λ−2λ−1 ≤ a Blue/solid line

a/2 < φ̂1 < (a+ 1)/2 2
λ+1

< a < λ−1
λ+1

2
λ+1

< a < λ−1
λ+1

λ−1
λ+1

< a < 2
λ+1

Red/ crosses(+)

φ̂2 ≥ (a+ 1)/2 a ≤ 5−4λ−1−λ
5−λ−2λ−1 a ≥ 5−4λ−1−λ

5−λ−2λ−1 a ≤ 5−4λ−1−λ
5−λ−2λ−1 Blue/solid line

The intersection of all four inequalities is the interval of propagation failure. It is difficult to see the intersection simply by looking

at the inequalities in Table 3.2, so we plot all four conditions as a function of α in the left panel of Figure 3.1 and graphically

determine their intersection. The intersection of the inequalities lies between the red lines with crosses (+) for α < 3/4 and

between the blue lines for α > 3/4. This means that for α < 3/4, the condition (3.34) determines the interval of propagation

failure, and that (3.33) and (3.35) determine the interval for α > 3/4. Just the intersection of the conditions for the interval of

propagation failure are plotted in the right panel of Figure 3.1.
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The figure tells us that for small values of α, any value of a yields a front that fails to propagate. As

α increases, the interval grows smaller until it converges to a single value of a = 1/2 as α→ 3/4.

For α > 3/4, the interval of propagation failure exists only for values of a very close to 1/2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.5

0

0.5

1

a

α

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.5

0

0.5

1

a

α

Figure 3.1: The interval of propagation failure with homogeneous diffusion. The left panel displays
all four conditions 3.33-3.35, while the right panel plots only the conditions that determine the
interval for given α.

According to Elmer [5], this value of α = 3/4 is the maximum value of α for which stationary

fronts exist for homogeneous diffusion when there is one φ̂k ∈ (a
2
, a+1

2
). Recall the Remark made

in Chapter 1. If we were to include more φ̂k nodes in between (a/2, (a + 1)/2) then we would

need to resolve Mφ = w when n ≥ 1.

Our interval of propagation failure for homogeneous diffusion corresponds to Elmer’s [5] interval

of propagation failure. Because our results are comparable to Elmer’s, this validates our method

of using Jacobi operator theory and the Sherman-Morrison formula to construct solutions.

Now we consider the interval of propagation failure when one defect is present and the front is at
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the defect, k∗ = −1. When k∗ = −1, the conditions (1.15), (1.16) and (1.17) are

φ̂−1 ≤ a/2 (3.36)

a/2 < φ̂0 < (a+ 1)/(2) (3.37)

(a+ 1)/2 ≤ φ̂1. (3.38)

The formulas for the nodes φ̂−1, φ̂0 and φ̂1 are computed using (3.25) and are listed in Table 3.3.

We find the interval of propagation failure by plugging the formulas in Table 3.3 into (3.36), (3.37),

and (3.38) and solving for a. The solutions, taking into account any singularities in φ̂−1, φ̂0, and

φ̂1 and in the solutions of a, are listed in Tables 3.4-3.6.

Table 3.3: Formulas for φ−1, φ0, and φ1 when diffusion is inhomogeneous and k∗ = −1. These
values of φk determine the interval of propagation failure.

Inhomogeneous Diffusion

φ̂−1 =
a(λ+τ−1)−α0(λ−1)

α(−λ3+2λ2−2λ2τ+2λτ−λ)+2λ(λ+τ−1)

φ̂0 =
λ(a(λ+τ−1)−α0(λ−1))

α(−λ3+2λ2−2λ2τ+2λτ−λ)+2λ(λ+τ−1)

φ̂1 = 1 + τ
λ+τ−1(

λ(a(λ+τ−1)−α0(λ−1))
α(−λ3+2λ2−2λ2τ+2λτ−λ)+2λ(λ+τ−1) − 1)

Table 3.4: Solution to sufficiency condition (3.36) when k∗ = −1, front is at the defect.

Condition τ < αλ2−αλ−2λ+2
2−2λα Color/Style on Graph

φ̂−1 ≤ a
2

−2α0(λ−1)
α(−λ3+2λ2−2λ2τ+2λτ−λ)+2(λ+τ−1)(λ−1) ≤ a Blue/Solid line

τ > αλ2−αλ−2λ+2
2−2λα

−2α0(λ−1)
α(−λ3+2λ2−2λ2τ+2λτ−λ)+2(λ+τ−1)(λ−1) ≥ a

Recall that the interval of propagation failure is the intersection of the inequalities in Tables 3.4-

3.6. The inequalities have been plotted in Figure 3.2 and Figure 3.3 as functions of τ = α0

α
for
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fixed values of α = 1/2 and α = 7/10, respectively. We fixed α < 3/4 because 3/4 is the upper

bound on α if we are considering (1.13) in the case of one node in between (a/2, (a+ 1)/2)) [5].

Table 3.5: Solution to sufficiency condition (3.37) when k∗ = −1, front is at the defect.

Condition Color/Style on Graph

a/2 < φ̂0 < (a+ 1)/2 −2α0λ(λ−1)
α(−λ3+2λ2−2λ2τ+2λτ−λ) < a < −2λα0(λ−1)−k

k−2λa(λ+τ−1) Red/crosses (+)

Table 3.6: Solution to sufficiency condition (3.38) when k∗ = −1, front is at the defect.

Condition τ < 1
α
− λ

2
− 1

2
Color/Style on Graph

φ̂1 ≥ (a+ 1)/2 a ≤ (α(−λ3+2λ2−2λ2τ+2λτ−λ)+2λ(λ+τ−1))(λ−τ−1)−2τα0λ(λ−1)
(λ+τ−1)(α(−λ3+2λ2−2λ2τ+2λτ−λ)+2λ(λ+τ−1)−2τλ) Blue/Solid line

τ > 1
α
− λ

2
− 1

2

a ≥ (α(−λ3+2λ2−2λ2τ+2λτ−λ)+2λ(λ+τ−1))(λ−τ−1)−2τα0λ(λ−1)
(λ+τ−1)(α(−λ3+2λ2−2λ2τ+2λτ−λ)+2λ(λ+τ−1)−2τλ)

The left panels of Figures 3.2 and 3.3 plot all of the conditions necessary for the interval of prop-

agation failure, while the right panels show only the intersection of those conditions. When α is

fixed at 1/2, the only condition determining the interval of propagation failure is (3.37). When α

is fixed at 7/10, the interval is determined by (3.36) and (3.37). This shows that the conditions

representing the interval of propagation failure vary depending on the value of α.

The dotted lines in the right panel of Figures (3.2) and (3.3) represent the interval of propagation

failure when diffusion is homogeneous, or α0 = α. It is clear from Figures 3.2 and 3.3 that the

interval of propagation failure shifts downward from the interval for homogeneous diffusion when

we consider fronts at the defect.

Taking a closer look at Figure 3.2 when α = 1/2, the shift at k∗ = −1 suggests that ∃a ∈ (0, 1)

such that a yields a stationary fronts when α0 = α but it produces a traveling front when α0 < α.
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Figure 3.2: Interval of propagation failure when one defect is present at α0, k∗ = −1, and α = 1/2.
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Figure 3.3: Interval of propagation failure when one defect is present at α0, k∗ = −1, and α =
7/10.

Such values lie in between the upper red line (+) and the upper dotted black line in Figure 3.2.

It may be that these values of a produce traveling fronts, but it is more realistic that the values

yield stationary fronts for other monotonic fronts with different conditions than those outlined in

our Remark in section 1.2. Figure 3.4 illustrates this theory, because the front is monotonic but

contains no nodes in between (a/2, (a+ 1)/2), thus n = 0. This could be a stationary front.
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Also in Figure 3.2, ∃a ∈ (0, 1) such that a produces a traveling front when α0 = α but yields a

stationary front when α0 < α. These are the values of a that lie in between the bottom red line (+)

and the bottom dotted black line, and this result is congruous with Theorem 3.2 in [7].

When α0 is close to zero, this shift means that almost all left traveling waves become stuck at the

defect because a < 1/2 indicates a left traveling front, and these values are included in the interval

of propagation failure. Also, nearly all values of a > 1/2 lie outside the interval of propagation

failure, hence, any right traveling front that has reached to k = −1 will propagate beyond the

defect at α0.

−20 −15 −10 −5 0 5 10 15 20
0
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0.4

0.6

0.8

1

1.2
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Φ
k

Figure 3.4: Monotonic front with conditions a = .55, α = 1/2, and α0 = .15. According to Figure
3.2, this is a traveling front since a = .55 lies outside the interval of propagation failure when
τ = .3. The black solid line is the value (a+ 1)/2, the red dots represent a/2.

Examining Figure 3.3, the interval’s shift downwards is even more drastic, and the interval is not

as large for this larger value of α. This means there are fewer fronts satisfying our sufficiency

condition in the Remark in section 1.2. Values of a that would produce a traveling front when

α0 = α, particularly values of a < 1/2, fail to propagate when a defect is added. Once again,

nearly all values of a > 1/2 will produce a propagating front past k = −1.

Now we consider the interval of propagation failure when k∗ = 0 (fronts to the right of the defect)
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and the defect has been added at α0. When k∗ = 0 and diffusion is inhomogeneous, the conditions

for (1.15), (1.16) and (1.17) are the same as (3.33), (3.34) and (3.35). The interval of propagation

failure is found by plugging the values for φ̂−1, φ̂0 and φ̂1, computed with (3.32), found in Table

3.7 into (3.33), (3.34) and (3.35), and solving for a. The solutions to these inequalities, with all

singularities taken into account, are listed in Tables 3.8-3.10.

Table 3.7: Formulas for φ0, φ1, and φ2 when diffusion is inhomogeneous and k∗ = 0. These values
of φk determine the interval of propagation failure.

Inhomogeneous Diffusion

φ̂0 =
τ(a(λ−1−1)+λ−1)
3−λ+2λ−1τ−2λ−1

φ̂1 =
(λ+τ−1)(a(λ−1−1)+λ−1)

3−λ+2λ−1τ−2λ−1

φ̂2 = 1 + λ−1[ (λ+τ−1)(a(λ
−1−1)+λ−1)

3−λ+2λ−1τ−2λ−1 − 1]

Table 3.8: Solution to sufficiency condition (3.33) when diffusion is inhomogeneous and k∗ = 0.

Condition τ < λ
2
− 3

2
+ λ−1 τ > λ

2
− 3

2
+ λ−1 Color/Style on Graph

φ̂0 ≤ a/2 a ≥ 2τλ−1

3−λ+2τ−2λ−1 a ≤ 2τλ−1

3−λ+2τ−2λ−1 Blue/solid line

Table 3.9: Solution to sufficiency condition (3.34) when diffusion is inhomogeneous and k∗ = 0.

Condition Color/Style on Graph

a/2 < φ̂1 < (a+ 1)/2 2λ−1(λ+τ−1)
λ+2τ−1 < a < λ−1

λ+2τ−1 Red/ crosses (+)
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Table 3.10: Solution to sufficiency condition (3.35) when diffusion is inhomogeneous and k∗ = 0.

Condition τ < 5−6λ−1−λ+2λ−2

2λ−2−4λ−1 τ > 5−6λ−1−λ+2λ−2

2λ−2−4λ−1 Color/Style on Graph

φ̂2 ≥ (a+ 1)/2 a ≤ 5−6λ−1−λ+2λ−2(1+τ−τλ)
5−6λ−1−λ+4λ−1τ+2λ−2(1−τ) a ≥ 5−6λ−1−λ+2λ−2(1+τ−τλ)

5−6λ−1−λ+4λ−1τ+2λ−2(1−τ) Blue/solid line

The solutions in Tables 3.8-3.10 are plotted in Figures 3.5 and 3.6 as functions of τ = α0

α
for fixed α = 1/2 and α = 7/10,

respectively. The right panels of the figures show the intersection of the solutions to (3.33), (3.34) and (3.35) plotted versus the

interval of propagation failure for homogeneous diffusion in the black dotted lines. The conditions that determine the interval

of propagation failure differ between the two plots. In Figure 3.5, only (3.34) determines the interval, while in Figure 3.6, a

combination of conditions (3.34) and (3.35) determine the interval.

It’s obvious in Figures 3.5 and 3.6 that the interval of propagation failure has shifted upwards from the corresponding value of α

in the interval for homogeneous diffusion. Thus when the defect is bad, or α0 is close to zero, it appears that all fronts traveling

to the left (when a < 1/2) travel past k = 0 because those values are below the interval of propagation failure. The only fronts

that may become stuck are those traveling to the right, i.e. with detuning parameter a > 1/2. These results are incongruous with

Theorem 3.2 in [7], which states that when k∗ is after the defect and if ∃a ∈ (0, 1) that yields a traveling front when α0 = α then

there are no corresponding stationary fronts to a when α0 < α.
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Figure 3.5: Interval of propagation failure when k∗ = 0 when one defect is present at α0 and
α = 1/2.
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Figure 3.6: Interval of propagation failure when k∗ = 0 when one defect is present at α0 and
α = 7/10.

A comparison of the three intervals of propagation failure in Figures 3.7 and 3.8 sheds light onto

these shifts in the intervals when the front is at and after the defect. When α0/α = 1/2 in Figure

3.7, a = .6 is outside the red lines representing the interval of propagation failure for a front at the

defect, thus any front with detuning parameter a = .6 will travel at k = −1. However, a = .6 is

in between the blue lines representing the interval of propagation failure for fronts after the defect,
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thus that same front will become stuck when k∗ = 0. If a = .6 the front is right moving, so that

front will become stuck at k = 0. Also, most left moving fronts (a¡1/2) become pinned at k = −1.

Thus Figure 3.7 shows us that the interval of propagation failure is much worse than the interval

of propagation failure when diffusion is homogeneous, because more fronts become stuck at either

k = −1 or k = 0. The exception to this rule occurs when the defect is severe (α0 is close to zero)

and a ≈ 1/2, where there is gap in between the blue (solid) and red (+) lines. This gap could

represent other monotonic fronts that don’t satisfy our condition in the Remark in section 1.2 but

may also be stationary fronts.
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Figure 3.7: A comparison of the intervals of propagation failure when a defect is present at α0

when the front is at the defect (k∗ = −1, the red crosses (+)), after the defect (k∗ = 0, the blue
solid line), when α is fixed at 1/2, and when diffusion is homogeneous (black dotted lines).

This region between the two intervals of propagation failure is even larger in Figure 3.8. The gap

suggests values of a which yielded stationary fronts when diffusion was homogeneous (the values

in between the dotted black lines) now produce fronts that travel past the defect (because they lie

outside the red(+) lines) and past k=0 (because they lie outside the blue solid lines). However,

Figure 3.9 shows a monotonic front after the defect (k∗ = 0) in which n = 2 nodes lie in between

(a/2, (a + 1)/2) and a = 1/2. Fronts satisfying our Remark from section 1.2, meaning n = 1,

travel for values of a in the gap region. But Figure 3.9 could be showing us that when a lies
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between the red (+) and blue lines, fronts for which n = 2 become pinned.
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Figure 3.8: A comparison of the intervals of propagation failure for different k∗ when a defect is
present at α0 and α is fixed at 7/10. The red lines (+) represent the interval when k∗ = −1, the
blue solid line represents the interval when k∗ = 0. The black lines (-) represent the interval when
diffusion is homogeneous and α = 7/10.
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Figure 3.9: Monotonic front with conditions a = .5, k∗ = 0, and α0/α = .5. According to Figure
3.8, this is a traveling front since a = .5 lies outside the interval of propagation failure when
α0/α = .5. The black solid lines are, from bottom to top, a/2 and (a+ 1)/2.

The asymmetry of the interval of propagation failure when the front is after the defect is congruous

with the results produced in [7]. However, the interval of propagation failure for fronts at the
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defect is symmetrical in [7], whereas it is asymmetrical in our results. This is likely due to the

restrictions we placed on (1.13) to include only one node in (a/2, (a+1)/2), and our definition of

k∗. /As Figure ?? suggests, if we allowed more nodes to fall in to that interval, or considered any

monotonic front to be stationary regardless of the number of nodes in between (a/2, (a + 1)/2),

we would probably see the symmetry in the interval of propagation failure.

The plots in this chapter show us that adding a defect will cause more fronts to become stationary at

or right after the defect. Fronts traveling to the left could get stuck at k = −1, and fronts traveling

to the right could become stationary at k = 0.

44



CHAPTER 4: SIMULATIONS

4.1 Comparison

The problem of finding the general solution for

−αkφk+1 + (vk + αk + αk−1)φk − αk−1φk−1 = wk (4.1)

in which more than one defect is present is difficult to solve analytically. Even when we consider

(4.1) in the case of just one defect at α0, there are three different sets of fundamental solutions

(2.17), (2.18), and (2.19), to derive because the fundamental solutions change based on whether

k∗ is less than, greater than, or equal to zero. When diffusion is inhomogeneous, it is interesting

to consider other values of k∗ because the interval of propagation failure changes as the proximity

of k∗ varies with respect to the defect region. If we were to consider m defects, we would have to

computem+2 different sets of fundamental solutions to account for the all of the varying positions

of k∗ relative to the defects. Once the fundamental solutions were computed, the general solutions

would need to be solved for each of the m+2 cases as well, a doable yet time-consuming process.

Also, recall the Remark made in 1.2. It would be interesting to see what happens as we add more

nodes n in between η0 and η1 in the nonlinearity f . If we chose to vary n, then we would have to

solve another difference equation for each value of n.

The importance of the nonlinearity’s role in determining the interval of propagation failure has

already been stated in 1.1. Having a resource that quickly computes solutions to (1.3) with different

nonlinearities would be helpful in comparing the affects that different nonlinearities have on the

interval of propagation failure.
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The scripts SDNagumo.m and FundSol.m were created in MATLAB so that we could quickly

solve (1.3) when more defects are added, the value of n changes, or the nonlinearity changes. The

details of how the scripts work is outlined in the next section, 4.2. In this section, we compare the

algorithmic solutions with known exact solutions to examine the accuracy of the solutions derived

with our scripts.

Remark: Let ψ represent the solutions to φ̂ = T−1w that were computed using the scripts

SDNagumo.m and FundSol.

Figures 4.1-4.3 were made comparing ψ to our formulas for the solution (3.17), when diffusion is

homogeneous. The error in Figures 4.1 and 4.2 is taken to be the 2-norm of ψ and φ̂. Figure 4.1

tells us that the value of a affects the error in ψ very little while the value of α affects the error

significantly. Figure 4.2 shows us that ψ is more reliable for values of α close to 1.
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Figure 4.1: Error in ψ for fixed a as α varies.

The error in Figure 4.3 is the |φ̂k − ψk|. Figure 4.3 tells us that the error for any a and α close to

k∗ = 0 is very good ≈ 10−15. This is important because these values of ψk can be used to help us

determine the interval of propagation failure.
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Figure 4.2: Error in ψ for fixed α as a varies.
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Figure 4.3: Error in ψ for different fixed values of a and α. The value of k∗ = 0.

Figures 4.4 and 4.5 are plots of ψ compared to formula (3.25) from 3.2.2. The error in Figure 4.4

is taken to be the 2-norm and the error in Figure 4.5 is |φ̂−ψ|. Figure 4.4 demonstrates that adding

a defect decreases the accuracy of ψ. Figure 4.5 shows us that the error of ψk close to k∗ = 0 is

very good, ≈ 10−16 for any α, α0, and a. It is critical that nodes close to φ̂k∗ are accurate since

these nodes determine the interval of propagation failure.
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Figure 4.4: Error in ψ as α0 varies. Red line represents α = 1/2, blue line α = 7/10.
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Figure 4.5: Error in ψ solutions in case of one defect. Blue line represents α = 1/2 with α0 = .25
and a = .6, red line represents α = 7/10 with α0 = .42 and a = .6, value of k∗ = 0, values of α,
α0, and a were chosen from the interval of propagation failure (Figures 3.5 and 3.6) from section
3.3.

Figures 4.1-4.5 indicate that to achieve the most accurate results from the script, α should be kept

close to 1. The figures also tell us that no matter what the parameter values are, the accuracy of ψk

close to k∗ is close to machine accuracy.
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4.2 Code Description

We have designed two programs in MATLAB which work in tandem to produce solutions to (1.3)

when φ̇j(t) = 0. The first is a function called FundSol.m which outputs a matrix containing fun-

damental solutions for any location of k∗. The function follows the procedure outlined in Lemma

3.3 from [7] to achieve the solutions. The script SDNagumo.m calls the fundamental solutions from

FundSol and uses them to create the particular solutions for φ = M−1w and x = M−1y. Once

the particular solutions are made, SDNagumo.m then solves for the coefficients φk∗ , φk∗+1, xk∗ ,

and xk∗+1, computes the general solution vectors φ and x and uses those vectors in the Sherman-

Morrison formula to solve for the solution vector φ̂k.

Note that when we set the right hand side of (1.22) equal to zero and solve for φk+1 and φk−1 we

get the following two equations

φk+1 = 1
αk
((1 + αk + αk−1)φk − αk−1φk−1) (4.2)

φk−1 = 1
αk−1

((1 + αk + αk−1)φk − αkφk+1). (4.3)

Given initial conditions (2.16) for any starting point k∗, (4.2) and (4.3) give us formulas to derive

the fundamental solutions recursively ∀k. The function FundSol.m takes a vector with the initial

conditions for the fundamental solutions (2.16), and a vector containing the value of the diffusion

coefficients αk on the interval lattice and computes the fundamental solutions with formulas (4.2)

and (4.3). Being able to manipulate the vector of diffusion coefficients is what allows us to examine

(1.3) with multiple defects.

49



Recall that [12] gives us the particular solution


∑k

j=k∗+1
−1
αj
wjσ̃(k, j) k > k∗

0 k = k∗∑k∗

j=k+1
1
αj
wjσ̃(k, j) k < k∗.

(4.4)

to equation (2.1), and 
∑k

j=k∗+1
−1
αj
yjσ̃(k − j) k > k∗

0 k = k∗∑k∗

j=k
1
αj
yjσ̃(k − j) k < k∗

(4.5)

to (3.5). The script SDNagumo.m first creates vectors for wk and yk, the right hand sides of the

equations (2.1) and (3.5), that are k∗ dependent. Being able to change these vectors is what allows

us to consider different nonlinearities, different positions of k∗, and for our choice in nonlinearity,

the varying number of n nodes in between η0 and η1. SDNagumo.m then makes another vector

storing the particular solution for each value φk and xk. Recall that we need to employ the boundary

conditions to solve for the coefficients φk∗ , φk∗+1, xk∗ , and xk∗+1. That is, we are examining the

general solution as k → ±∞, or

lim
k→∞

φk = lim
k→∞

(ρ̃(k, k∗)φk∗ + σ̃(k, k∗)φk∗+1 +
k∑

j=k∗+1

−1
αj
wjσ̃(k, j)) = 1. (4.6)

and

lim
k→−∞

φk = lim
k→−∞

(ρ̃(k, k∗)φk∗ + σ̃(k, k∗)φk∗+1 +
k∗∑

j=k+1

1

αj
wjσ̃(k, j)) = 0 (4.7)

We obviously cannot take k → ±∞ in our code, but we can compute the fundamental and par-

ticular solutions for a sufficiently large value of k. We kept k = ±20 as our largest and smallest

node. Then we can use (4.6) and (4.7) to solve for the coefficients φk∗ and φk∗+1 by solving a 2×2
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system of equations

 ρ̃(20, k∗) σ̃(20, k∗)

ρ̃(−20, k∗) σ̃(−20, k∗)


 φk∗

φk∗+1

 =

1−∑k
j=k∗+1

−1
αj
wjσ̃(k, j))

−
∑k∗

j=k+1
1
αj
wjσ̃(k, j))

 (4.8)

for

 φk∗

φk∗+1

 by using the matrix solver command in MATLAB. Once the coefficients are solved,

we can compute the general solution ∀φk,

φk = φk∗ ρ̃(k, k
∗) + φk∗+1σ̃(k, k

∗) +


∑k

j=k∗+1
−1
αj
wjσ̃(k, j) k > k∗

0 k = k∗∑k∗

j=k+1
1
αj
wjσ̃(k, j) k < k∗

(4.9)

with all of our stored fundamental and particular solutions. We follow the same approach for xk

except we use the boundary conditions for (3.5), (3.10) to solve for the coefficients. MATLAB

solves the following 2× 2 matrix in order to evaluate the coefficients for xk∗ and xk∗+1 ρ̃(20, k∗) σ̃(20, k∗)

ρ̃(−20, k∗) σ̃(−20, k∗)


 xk∗

xk∗+1

 =

−∑k
j=k∗+1

−1
αj
yjσ̃(k − j)

−
∑k∗

j=k
1
αj
yjσ̃(k − j).

 (4.10)

We can then evaluate xk ∀k by plugging in the coefficients, the fundamental solutions, and the

particular solutions into

xk = xk∗ρ(k − k∗) + xk∗+1σ(k − k∗) +


−1
α

∑k
j=k∗+1 yjσ(k − j) k > k∗

0 k = k∗

1
α

∑k∗

j=k yjσ(k − j) k < k∗.

(4.11)

Once the script has the solutions for φk and xk, all that is left to do in order to use the Sherman-
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Morrison formula (3.4) is to make a vector zT. Once this vector is made, we have all that we

require to use the Sherman-Morrison formula

φ̂ = M−1w − M−1yzTM−1w

1 + zTM−1y
. (4.12)

The code for FundSol.m and SDNagumo can be found in the appendix.
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CHAPTER 5: CONCLUSION

We constructed exact monotonic steady-state solutions to (1.3) with a continuous piecewise nonlin-

earity f using Jacobi operator theory and the Sherman-Morrison formula, an original approach to

this problem. Initial restrictions on the stationary front solutions (1.15), (1.16), and (1.17) revealed

the interval of propagation failure in the case of homogeneous and inhomogeneous diffusion. Our

results for the interval of propagation failure with homogeneous diffusion were corroborated by

previous work done in [5]. The interval of propagation failure found when one defect is present is

an original result. The result is important in helping us to understand how fronts propagate, or fail

to propagate, when nerve cells are damaged by multiple sclerosis.

We examined the interval of propagation failure for fronts at and directly after a single defect, be-

cause the most significant changes to the interval occur when the front is close to the defect. This

represents the conditions for which a front becomes stationary when just one node in the neuron

has erosion of the myelin sheath. The interval tells us that when a defect is present, the interval of

propagation failure worsens. That is, there exist fronts that would propagate under homogeneous

conditions that become stuck at or right after the defect. Based off of similar experiments con-

ducted in [7], we expected that the interval of propagation failure of fronts at the defect, would

be symmetric about a = 1/2. This was not the case for our problem set-up. Perhaps the interval

would be symmetric if we altered our restriction on n in Remark in section 1.2. If we considered

any monotonic front to be a stationary front, the interval of propagation failure would encompass

more values of a.

Because damage to the myelin sheath can occur at more than one node, we’d like to solve for exact

solutions when a region of defects is present, or αk 6= α for−p ≤ k ≤ q and p, q ∈ Z+. When one

defect is present, we see that the interval of propagation failure expands, making it more difficult
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for fronts to pass through the nerve. However, there is a hypothesis that when more than one defect

exists in the axon, the interval of propagation failure may actually improve from when only one is

present. This means that more impulses may propagate through an axon in which demyelination

occurs at multiple parts of the nerve than when just one node is damaged. The case of multiple

defects should be explored in future work in order to test this hypothesis.

The case of multiple defects is tedious to solve for exact solutions, thus we have presented an

algorithmic method in MATLAB which calculates solutions to (1.3) in the case of more than one

defect. The algorithmic script is capable of evaluating the steady-state solutions of (1.3) with

different choices in nonlinearity f , and different cases of our own nonlinearity, i.e. varying values

of n as defined in the Remark in section 1.2. The algorithm’s accuracy varies based on choices in

parameter values. Under certain parameter conditions, the algorithm yields solutions with machine

accuracy. The threshold of parameter values for which the algorithm produces accurate results

could be tested in future research.

Our contributions include: a new method for solving a reaction-diffusion equation with a continu-

ous nonlinearity, a method for finding the interval of propagation failure for a class of solutions to

the reaction-diffusion equation, and an algorithmic method capable of computing solutions to the

Nagumo equation in MATLAB.
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APPENDIX: CODE
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The following code is the algorithmic approach to solving the general solutions to the spatially

discrete Nagumo equation (1.3).

%%%%%%%%%The following code creates solutions for spatially discrete

%%%%%%%%%Nagumo equations with a piecewise nonlinearity.

clear %clears all variables

alf = .7; % value of diffusion coefficients alpha

bet = .42; % the value of the defects in the defective region.

N = 20;%half the total number of elements in soln vector

M = 0;%number of defects in alpha vector depends on M.

%M=x corresponds to 2x+1 defects

a =.6;%value of a

% vector limits

nminus = 1;

nplus = 2*N +1; %size of the solution vector is (1 x 2N+1)

mminus = N +1 -M; %

mplus = N +1 +M;

% diffusion coefficients

beta = bet*ones(1,mplus+1-mminus); %sets defect interval to length

%mplus+1-mminus

alpha(nminus:mminus-1) = alf*ones(1,mminus-1);

%sets interval of homogeneous diffusion before defect interval

alpha(mminus:mplus) = beta;%centers defect interval around zero

alpha(mplus+1:nplus) = alf*ones(1,nplus-mplus);
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%interval of homogeneous diffusion after defect interval

%initial conditions for the fundamental solution

rho(1)=1; rho(2)= 0;

sig(1)=0; sig(2)= 1;

%the FundSol function creates the fundamental solutions with the given

%initial conditions and diffusion coefficient vector

[rhof, sigf]=FundSol(rho, sig, alpha, N);

%setting k0 and creating w_k vector. w_k represents the right hand side

% of the difference equation. When k0=N+1, this corresponds to the case

%that k*=0. For k0=x, this corresponds to k* = x-N-1.

k0=N+1;

w(1:k0)=0;

w(k0+1)= -a;

w(k0+2:nplus)= 1;

%creates particluar soln vector for all

psum=0;

for jk=k0+1:nplus

for i=k0+1:jk

par = psum + w(i)*(-1/(alpha(i)))*sigf(i, jk);

psum= par;

end

part(jk-k0) = psum;

psum=0;

57



end

ps=part(length(part));

%particular soln as k goes to "infinity". This is the last element

%in the particular soln vector

A=[rhof(k0,nplus) sigf(k0,nplus); rhof(k0,1) sigf(k0,1)];

%matrix of coefficients

b=[(1-ps); 0]; %matrix of constants

s=A\ b; %solves for coefficients phi0=s(1,1) and phi1=s(2,1)

phim= s(1,1)*rhof(k0, 1:k0) + s(2,1)*sigf(k0,1:k0);

%general soln for phi_k when k<=k0

phip= s(1,1)*rhof(k0, k0+1:nplus) + s(2,1)*sigf(k0,k0+1:nplus) + part;

%general soln for phi_k when k>k0

phi=[phim phip];

% combines phim and phip vectors into one containing solns

%phi_k for all k

%%%%%%%%%%%%%%%Now we have phi=Mˆ-1*w %%%%%%%%%%%

%%%%%%%%%%%Time to compute x = Mˆ-1*y %%%%%%%%%%%%%

%%The fundamental solns are the same for Mx=y, thus all that’s left is

%%to compute particular solns and determine coefficients x0 and x1%%%

%creating y_k vector, the right hand side of the difference equation

y(1:k0)=0; y(k0+1)= -2; y(k0+2:nplus)=0;

%makes particluar soln for x
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xsum=0;

for j=k0+1:nplus

for i=k0+1:j

xpar= xsum + y(i)*(-1/alpha(i))*sigf(i,j);

xsum= xpar;

end

xpart(j-k0) = xsum;

xsum=0;

end

xps=xpart(length(xpart));

%particular soln as k goes to "infinity". This is last element in the

%particular soln vector

X=[rhof(k0,nplus) sigf(k0,nplus); rhof(k0,1) sigf(k0,1)];

%matrix of coefficients

y=[-xpart(length(xpart)); 0];

%matrix of constants determined by boundary conditions

xs=X \ y;

%solves for coefficients x0 and x1

x(1:k0)=xs(1,1)*rhof(k0, 1:k0)+xs(2,1)*sigf(k0, 1:k0);

%gen solns for x_k for k<=k0

x(k0+1:nplus)=xs(1,1)*rhof(k0,k0+1:nplus)+

xs(2,1)*sigf(k0,k0+1:nplus)+xpart;

%gen solns for x_k for k>k0
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%%%%Now that we have both phi=Mˆ(-1)w and x=Mˆ(-1)y, we can use these

%%%%solution vectors in the Sherman-Morrison formula to solve for

%%%%solns hatphi=Tˆ(-1)w%%%%%%

z(1:k0)=0; z(k0+1)=1; z(k0+2:nplus)=0;

%creates vector z transpose for Sherman-Morrison formula

e=1+ z*x.’;%scalar in the Sherman-Morrison formula

PHI= phi.’ - (1/e)*((x.’)*z*phi.’);%The Sherman-Morrison formula

%%%%%%Now we have the solutions for hatphi=Tˆ(-1)w%%%%%%%%

Code for computing the fundamental solutions is Fundsol.m .

Fundsol.m

function [rhof,sigf] = HMVVfunc1(rho,sig,alpha, N)

% Generates the functions rhof and sigf, the

% polynomial solutions of the homogeneous Jacobi

% operator equation for discontinuous nonlinearity.

for k0=1:2*N+1 %k0 is the equivalent of k*. The loop goes through each

%each value of k0, 1-2N+1, and computes the fundamental

%solns from that starting point. k0=x corresponds to

%k* = x-N-1. Thus k0=1 corresponds to k* = -20.

%%%%%%% this ’if’ loop for k0=1:2N %%%%%

if k0<2*N+1

%RHO0 and SIG0 are the fund soln vectors to the left of k0. The initial

%conditions must be stored at the elements k0 and k0+1 in the vectors,

%since the solns are computed backwards. That is, if k0=5, then the
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%next fund solns we wish to find are rho(4) and sig(4). By keeping

%the initial conditions at the k0 and k0+1 elements, we allow

%room to work backwards to store the other fund solns in order.

RHO0(k0) = 1; RHO0(k0+1)=0;

SIG0(k0) = 0; SIG0(k0+1)=1;

%initial conditions for rho0 and sig0, fund solns to right of k0

rho0 = rho;

sig0 = sig;

% recusion loop for k>k0. Creates solutions to the right of k0.

for j = 2:((2*N+1)-k0)

A=(1+alpha(j+k0-1)+alpha(j+k0-2))/alpha(j+k0-1);

B = alpha(j+k0-2)/alpha(j+k0-1);

rho0(j+1) = A*rho0(j) -B*rho0(j-1);

sig0(j+1) = A*sig0(j) -B*sig0(j-1);

end

% recursion loop for k<k0. Creates solutions to the left of k0.

for k = k0-1:-1:1

A = (1+alpha(k)+alpha(k+1))/alpha(k);

B = alpha(k+1)/alpha(k);

SIG0(k) = A*SIG0(k+1) -B*SIG0(k+2);

RHO0(k) = A*RHO0(k+1) -B*RHO0(k+2);

end
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sig0=sig0(3:length(sig0));

%trims the repeat elements also in vector SIG0

rho0=rho0(3:length(rho0));

%trims the repeat elements also in vector RHO0

%the fundamental solns with initial starting point k0 are stored

% in row k0 of the matrix rhof and sigf

rhof(k0, :) =[RHO0 rho0];

sigf(k0, :) =[SIG0 sig0];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% this loop is for when k0=2*N+1. Had to create a separate loop

%%%%%% for this value of k0 in order to keep the length of row

%%%%%% k0=2N+1 uniform with the rest of the matrix.

else

RHO0(k0) = 1; RHO0(k0+1)=0;

SIG0(k0) = 0; SIG0(k0+1)=1;

%recursion loop for k<k0. When k0=2N+1 we only compute solns

%to the left of k0.

for k = k0-1:-1:1

A = (1+alpha(k)+alpha(k+1))/alpha(k);

B = alpha(k+1)/alpha(k);

SIG0(k) = A*SIG0(k+1) -B*SIG0(k+2);

RHO0(k) = A*RHO0(k+1) -B*RHO0(k+2);

end

%These are the last two rows of the matrices rhof and sigf,

%respectively.

rhof(k0, :)= RHO0(1:2*N+1);
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sigf(k0, :)= SIG0(1:2*N+1);

end

end

end
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