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ABSTRACT

It has been decades since the first paper that mean field problems were studied. More and more

problems are considered or solved as new methods and new concepts have been developed. In this

dissertation, we will present a series of results on (recursive) mean field stochastic optimal control

problems.

Comparing our results with those in the classical stochastic optimal control theory, there are fol-

lowing significant differences. First, the value function of a mean field optimal control problem is

not Markovian any more, even when coefficient functions in the problem are deterministic. Sec-

ond, the cost functional we considered is induced by a mean field backward stochastic differential

equation. This leads to the value function to be random. Last but not the least, the backward

stochastic differential equation we considered is of McKean-Vlasov form. The appearance of the

distribution of its solution Y at time s leads to a new Hamiltion-Jacobi-Bellman equation.

To overcome these difficulties, we first introduce an auxiliary problem associated with the original

optimal control problem, so that we can better analyze the dependence of the value function V on

the initial state ξ. We also give a description of optimal control by a necessary condition, which

is derived from the Hamiltion-Jacobi-Bellman equation. About this new HJB equation, we will

prove the verification theorem and introduce the notion of viscosity solution.

iii



ACKNOWLEDGMENTS

First I would like to express my sincere gratitude to my advisor, Professor Jiongmin Yong, for the

guidance and encouragement he has given me during my entire time as a student at University of

Central Florida.

Also, I would like to thank the rest of the professors in my dissertation committee, Professor

Liqiang Ni, Yuanwei Qi and Jason Swanson, for their service on my dissertation committee.

Then, I want to thank my friends Jie, Jason, Jingmei, Nazar, Tong, Yuchen and many more who

have made my life at UCF wonderful.

Last but not the least, I want to thank my family for the encouragement, support and company.

iv



TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Recursive Stochastic Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Mathematical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Mean Field Interactions and Wasserstein Space . . . . . . . . . . . . . . . . . . . 6

1.2.1 Mean Field Stochastic Differential Equations . . . . . . . . . . . . . . . . 7

1.2.2 Wasserstein Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

CHAPTER 2: CLASSICAL MEAN FIELD OPTIMAL CONTROL . . . . . . . . . . . . 11

2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 The Problem Considered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Main Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Solution of the Mean Field Controlled SDE . . . . . . . . . . . . . . . . . 17

2.3.2 About Value Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Dynamic Programming Principle . . . . . . . . . . . . . . . . . . . . . . 26

v



2.4.2 Verification Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3 Viscosity Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Linear-Quadratic Mean Field Stochastic Optimal Control Problem . . . . . . . . . 33

CHAPTER 3: RECURSIVE MEAN FIELD OPTIMAL CONTROL PROBLEM . . . . . 42

3.1 The Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Mean Field Controlled Stochastic Differential Equation . . . . . . . . . . . 44

3.2.2 Mean Field Controlled Backward Stochastic Differential Equation . . . . . 49

3.3 Dynamic Programming Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 HJB Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.1 Verification Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.2 Necessary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.3 Viscosity Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

CHAPTER 4: FUTURE RESEARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Mean field Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Time-Inconsistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 HJB Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

vi



4.4 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

APPENDIX A: A PROPERTY of VALUE FUNCTION IN PROBLEM (C0) . . . . . . . . 79

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

vii



CHAPTER 1: INTRODUCTION

In this chapter, we review the main results in stochastic optimal control. The problem has been

investigated in many literatures. See, for example, [17][18][53][43]. One powerful tool is the dy-

namic programming principle (DPP), also known as Bellman’s principle of optimality, which was

introduced by Bellman in 1950s, see [3][4][5]. With the help of dynamic programming princi-

ple, a partial differential equation (PDE), called Hamliton-Jacobi-Bellman (HJB) equation, can be

derived to characterize value function in the sense that the value function is the unique viscosity

solution of the HJB equation.

We will review the optimal control problem for which the cost functional is defined by a backward

stochastic differential equation (BSDE). This is called a classical recursive stochastic optimal con-

trol problem. Further, we will also review the basics for the calculus in Wasserstein space, which

is fundamentally important for discussions about equations of McKean-Vlasov type.

1.1 Recursive Stochastic Optimal Control

1.1.1 An Example

First, we consider a classical example in reality, that is the optimal portfolio selection problem.

Suppose that there are n+1 assets in market, which contain a bond, whose price process is denoted

by S0, and n stocks with price processes denoted by Si, i = 1, ..., n. We assume the bond price

process follows

dS0(s) = r(s)S0(s)ds, (1.1)
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with s ∈ [0, T ] and initial condition S0(0) = s0 ∈ R. In comparison, the investment in stocks is

risky due to the randomness of stock prices. This is modeled by

dSi(s) = µSi(s)ds+ σSi(s)dW (s), (1.2)

with s ∈ [0, T ] and initial condition Si(0) = si ∈ R. The processW is a standard Brownian motion

in the filtered probability space (Ω,F ,F,P). For each asset i, let αi(s) represent the portion of the

wealth invested in asset i at time s. Then, it is easy to see that the wealth process corresponding

to the portfolio α(s) is X(s) =
∑n+1

i=0 Si(s)α(s), for which the dynamics, under self-financing

condition, is


dX(s) = X(s)(r + α(s)(µ− r))dt+X(s)α(s)σdW (s),

X(t) = x.

(1.3)

Here each portfolio α : [t, T ]× Ω→ A is regarded as a control, which is usually assumed to be a

progressively measurable stochastic process and integrable in the sense that E[
∫ T
t
|α(s)|2ds] <∞.

It is called an open-loop control and we use A[t,T ] to denote the set of all such controls. The goal

for an agent in financial market is to maximize the expected utility of terminal wealth at horizon

T , that is, to find an optimal portfolio α∗ such that,

E[U(X(T ; t, x;α∗))] = sup
α∈A[t,T ]

E[U(X(T ; t, x;α))] = V (t, x), (1.4)

where X(·; t, x;α) is the solution of (1.3), U : x 7→ U(x) is a utility function (assumed to be

increasing and concave). A more strict and general description about optimal portfolio selection

model as well as methods used to analyze it will be given in next section.
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1.1.2 Mathematical Framework

Let (Ω,F ,F,P) be a filtered probability space satisfying the usual conditions. That is, (Ω,F ,P)

is complete, F0 contains all P−null sets in F and F and F = {Ft}t>0 is right continuous. Let W

be a d-dimensional standard Brownian motion on (Ω,F ,F,P). Here, suppose that Ft = σ{W (s) :

0 ≤ s ≤ t}. Let T > 0. The wealth process is the solution of the following stochastic differential

equation (SDE), which is usually called the state process and has the general form:


dX(s) = b(s,X(s), u(s))ds+ σ(s,X(s), u(s))dW (s), s ∈ [t, T ],

X(t) = x,

(1.5)

where t ∈ [0, T ], x ∈ Rn, b : [0, T ] × Rn × U → Rn, σ : [0, T ] × Rn × U → Rn×d are given

(deterministic) maps, U ⊆ Rm is a non-empty set. Here (t, x) is called an initial pair and u is

called a control process. To be more clear, u here is chosen from the following admissible control

set:

U[t,T ] = {u : Ω× [t, T ]→ U : u is progressively measurable, E
[ ∫ T

t

|u(s)|2ds
]
<∞}. (1.6)

Each u ∈ U[t,T ] is also called an open-loop control. It features that in this system, the controller

does not make decisions based on the information of the states but choose the optimal one from a

very (most) general pool of options, see [17].

To measure performance of each control, we introduce the following so-called recursive cost func-

tional:

J(t, x, u) = Y (t; t, x;u), (1.7)
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where (Y, Z) is the adapted solution of the following BSDE:


dY (s) = −g(s,X(s), Y (s), Z(s), u(s))ds+ Z(s)dW (s), s ∈ [t, T ],

Y (T ) = h(X(T )).

(1.8)

The advantage of considering a cost functional in the recursive form is that it takes into account

of investor’s attitudes: optimistic or pessimistic. When evaluating the current financial situations

(portfolio of assets), the future utility should be taken into account, i.e., the current utility depends

on the future utility, besides other dependence. Recursive utility was introduced to describe such a

situation. In 1992, Duffie and Epstein introduced stochastic differential utility, see [15][16].

Now we introduce the following stochastic optimal control problem.

Problem (C0). For given (t, x) ∈ [0, T ]× Rn, find a control u∗ ∈ U[t,T ] such that

J(t, x, u∗) = essinf
u∈U[t,T ]

J(t, x, u) ≡ V (t, x). (1.9)

The function V (t, x) is called value function, and it satisfies the following dynamic programming

principle:

Proposition 1.1.1. For each τ ∈ [t, T ], the value function V (t, x) satisfies the following equation:

V (t, x) = inf
u∈U[t,τ ]

{Ỹ (t; t, x;u)}. (1.10)

where (Ỹ , Z̃) is the adapted solution of the following BSDE:

Ỹ (t; t, x;u) = V (τ,X(τ ; t, x;u))−
∫ τ

t

Z̃(r)dW (r)

+

∫ τ

t

g(r,X(r; t, x;u), Ỹ (r), Z̃(r), u(r))dr.

(1.11)
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Proof. See [42][52].

Remark 1.1.2. The feature of Problem (C0) is that the cost functional is induced by a BSDE,

which means the cost functional J(t, x, u), therefore, the value function V (t, x), is random in

general. However, it can be proved that V (t, x) is actually a deterministic R−valued function.

This important observation is mentioned in [42], while some important details are not strictly

proved there and we add it in Appendix A.

By dynamic programming principle and Itô’s formula, the HJB equation for the value function V

can be derived. Here are some results.

Proposition 1.1.3. (Verification Theorem) If φ ∈ C1,2([0, T ] × Rn) is a classical solution to the

following PDE:


φt(t, x) + inf

u∈U

{
φx(t, x)b(t, x, u) +

1

2
tr[φxx(t, x)σ(t, x, u)σT (t, x, u)]

+g
(
t, x, φ(t, x), φx(t, x)σ(t, x, u), u

)}
= 0, (t, x) ∈ [0, T ]× Rn,

φ(T, x) = h(x),

(1.12)

then φ = V . Furthermore, suppose for each (t, x), the set

arg min
u∈U

{
Vx(t, x)b(t, x, u) +

1

2
tr[Vxx(t, x)σ(t, x, u)σT (t, x, u)]

+g
(
t, x, V (t, x), Vx(t, x)σ(t, x, u), u

)}
is a singleton and let

ψ(t, x) = arg min
u∈U

{
Vx(t, x)b(t, x, u) +

1

2
tr[Vxx(t, x)σ(t, x, u)σT (t, x, u)]

+g
(
t, x, V (t, x), Vx(t, x)σ(t, x, u), u

)}
,

then u∗(s) ≡ ψ(s,X∗(s; t, x, u∗)) is an optimal control of Problem (C0), provided that the state

5



equation (1.5) admits a unique solution under u∗.

Proof. The proof follows the same idea as the one for Theorem (3.4.1).

If an HJB equation has classical solution then it can be proved that, this solution coincides with the

value function. While, some examples tell us that value functions may not be differentiable, and

the corresponding HJB equations might not have classical solutions. To overcome this difficulty,

the notion of viscosity solution (due to Crandall–Lions 1980s) was introduced.

Proposition 1.1.4. The value function V is a viscosity solution of the PDE (1.12).

Proof. See [42].

1.2 Mean Field Interactions and Wasserstein Space

Since papers like [22][23] [24][25][26] and [34][35][36], mean field game problems have attracted

more and more attention. Mean field problems have actually been investigated since the mid of

last century. It is not surprising that its first appearance was not in a mathematical paper but was

about statistical mechanics and physics, see [28]. This important paper leads to the later works

by McKean [39] about the Mckean-Vlasov type of stochastic differential equations, and Sznitman

[45] about the propagation of chaos.

In this section, we first consider some examples about mean field stochastic differential equations

and then review some mathematical prerequisites which are important in the research of mean field

problems now.
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1.2.1 Mean Field Stochastic Differential Equations

Mean field interactions can be expressed in different ways. Let (Ω,F ,F,P) be a filtered probability

space, on whichW is a standard Brownian motion. Let (Ω̃, F̃ , F̃, P̃) be a copy of (Ω,F ,F,P). Here

is an important mean field type:


dX(s) = b̄(s,X(s),E[X(s)])ds+ σ̄(s,X(s),E[X(s)])dW (s), s ∈ [t, T ],

X(t) = ξ,

(1.13)

or more generally,


dX(s) = Ẽ

[
b̄(s,X(s; t, ξ), X̃(s; 0, x))

]
ds

+Ẽ
[
σ̄(s,X(s; t, ξ), X̃(s; 0, x))

]
dW (s), s ∈ [t, T ],

X(t) = ξ.

(1.14)

where X̃ is a copy of X . The other type is the so-called McKean-Vlasov type. The mean field

interaction is expressed through distribution processes. The problem we considered is of McKean-

Vlasov form. Here is a general form,


dX(s) = b(s,X(s),PX(s))ds+ σ(s,X(s),PX(s))dW (s), s ∈ [t, T ],

X(t) = ξ,

(1.15)

where ξ is an Ft−measurable random variable. The McKean-Vlasov framework is actually a more

general case essentially. It is obvious that the frame work (1.13) can be written in terms of the

form (1.15) by letting

b(s, x, µ) = b̄(s, x,

∫
Rn
x̄µ(dx̄)).

7



Now we give an example to show that (1.15) is actually a more general case. That is, not every

form in (1.13) can be written in the form (1.15).

Example 1.2.1. Let g : R → R have continuous second order derivative and h : P2 → R be

defined by

h(Pξ) =

∫ 0

−∞
g(P(ξ ≥ t)− 1)dt+

∫ ∞
0

g(P(ξ ≤ t))dt.

It is easy to see that this function cannot be written in terms of expectations.

1.2.2 Wasserstein Space

From the formulation of the mean field optimal control problem we can tell that it needs calculus in

the space of probability measures to help further exploring deeper results. Let (M,d) be a metric

space. For each p ≥ 1, define the space Pp(M) by

Pp(M) = {µ : M → [0, 1] is a measure :

∫
M

d(x, x0)pµ(dx) <∞ for some x0 ∈M}. (1.16)

For any µ, ν ∈ Pp(M), the p−Wasserstein distance between them is defined by

Wp(µ, ν) = ( inf
λ∈Λ(µ,ν)

∫
M×M

d(x, y)pλ(dx, dy))
1
p , (1.17)

where Λ(µ, ν) = {λ : M×M → [0, 1] is a probability measure : λ(·,M) = µ(·), λ(M, ·) = ν(·)}.

λ is called a coupling of µ and ν. The space (Pp(M),Wp(·, ·)) is called a Wasserstein space. In

the rest of the dissertation, we adopt the notation P2 = P2(Rn).

Example 1.2.2. Let M = R, d(x, y) = |x − y|, µ = δ{x0} and ν = δ{y0} for some x0, y0 ∈ R.

Since ∫
R
|x|pµ(dx) <∞,

∫
R
|x|pν(dx) <∞,

8



for all p ≥ 1. Then µ, ν ∈ Pp(R). Moreover, the Wasserstein distance between these two delta

measures is

Wp(µ, ν) = ( inf
λ∈Λ(µ,ν)

∫
R×R
|x− y|pλ(dx, dy))

1
p

= |x0 − y0|.

Example 1.2.3. Let M = [0, 1], d(x, y) = |x − y|, µ be the Lebesgue measure and ν = δ{x0} for

some x0 ∈ [0, 1]. Since ∫
[0,1]

|x|pµ(dx) < 1,

∫
[0,1]

|x|pν(dx) 6 1,

for all p ≥ 1. Then µ, ν ∈ Pp([0, 1]). Moreover, the Wasserstein distance between Lebesgue

measure and delta measure on [0, 1] is

Wp(µ, ν) = ( inf
λ∈Λ(µ,ν)

∫
[0,1]×[0,1]

|x− y|pλ(dx, dy))
1
p

=

∫ 1

0

|x− x0|pdx

=
1

p+ 1

[
(1− x0)p+1 − xp+1

0

]
.

Let Ω be a Polish space, G be its Borel σ−algebra and P be an atomless probability measure.

Then for each µ ∈ P2, there exists a random variable ξ ∈ L2(Ω,G;Rn) such that µ = Pξ. Let

f : P2 → R, the lifting of f is defined to be the function f̃ : L2(Ω,G;Rn)→ R by letting

f̃(ξ) = f(Pξ).

Definition 1.2.4. Function f : P2 → R is called differentiable at µ, if there exists a random

9



variable ξ with Pξ = µ such that its lifting f̃ : L2(Ω,G;Rn)→ R is Fréchet differentiable at ξ.

By Proposition 5.25 in [12], we know that when f̃ is differentiable, there exists a deterministic

function, denoted by ∂µf(µ) : Rn → R, such that

Df̃(·) = ∂µf(µ)(·).

This function ∂µf(µ)(·) is defined to be the derivative of f . Since it is a deterministic function on

Rn, its derivative can be defined. We use the notation ∂x∂µf(µ)(·).

Example 1.2.5. Let f, g : P2(R)→ R be defined by

f(µ) =

∫
R
x2µ(dx), g(µ) = (

∫
R
xµ(dx))2.

Then

∂µf(µ)(x) = 2x, ∂x∂µf(µ)(x) = 2,

and

∂µg(µ)(x) = 2

∫
R
x′µ(dx′), ∂x∂µg(µ)(x) = 0.

10



CHAPTER 2: CLASSICAL MEAN FIELD OPTIMAL CONTROL

The objective in this chapter is to consider an optimal control problem with only forward McKean-

Vlasov dynamics. Here we call it classical mean field optimal control problem. We point out that

the control we considered in this chapter is the so-called closed-loop strategy or control law. In

some literatures, see [44], it is also called feedback control, though there is a significant difference

between the control law in there and the one in classical optimal control problem. The reason for

the choice of closed-loop strategy, instead of open-loop control, should be the technical difficulties

encountered when considering the later one. While, there are still some inspiring results obtained

for this problem, see, for example, [2].

Our motivation of considering the mean field stochastic optimal control problems (both the clas-

sical and recursive cases) comes from our curiosity in the following question: if optimal control

problems with mean field type of influences are time-consistent? Moreover, what type of mean

field influence corresponds to time-inconsistency? Does it give any new insights on the reasons

for occurrence of time-inconsistency? The famous mean-variance model and the problems consid-

ered in [51] are examples showing the time-inconsistency of a mean field optimal control problem.

While, some other cases in recent paper, for example, [44] [49], showed the opposite. To answer or

better understand these questions, we start the research on the recursive mean field optimal control

problem. For more details regarding time-inconsistency, see [48][49][50][51][47].

The problem is also considered in [44]. In comparison, we consider a different admissible control

set and use a different way to talk about viscosity solutions. We also cover more details in our

proof. Another significant difference is about the time-consistency of this problem. Different from

the remark in [44], we conclude the problem considered here is time-consistent based on dynamic

programming principle.
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2.1 Examples

Example 2.1.1. Consider:


dX(s) = u(s)ds+X(s)dW (s), s ∈ [t, T ]

X(t) = x,

(2.1)

with cost functional

J(t, x, u) = E
[ ∫ T

t

|u(s)|2ds+ |E[X(T )]|2
]
. (2.2)

It can be proved that the optimal control u∗ has feedback form:

u∗(s, µ) = − 1

T − s+ 1

∫
Rn
x′µ(dx′). (2.3)

Note that the independence of u∗ on (t, x) means the problem is time-consistent. While, when

consider conditional expectations, we have a different observation:

Example 2.1.2. Consider a one-dimensional controlled linear SDE:


dX(s) = u(s)ds+X(s)dW (s), s ∈ [t, T ]

X(t) = x,

(2.4)

with cost functional

J(t, x, u) = Et
[ ∫ T

t

|u(s)|2ds+ |Et[X(T )]|2
]
. (2.5)

It can be shown that the optimal control corresponding to initial condition (t, x) is

u∗(s; t, x) = −P̂ (s)Et[X∗(s)], s ∈ [t, T ], (2.6)
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where P̂ is the solution of the following Ricatti equation:


P̂ ′(s)− P̂ (s)2 = 0, s ∈ [0, T ],

P̂ (T ) = 1,

(2.7)

and (X∗, u∗) is the optimal pair. Time-inconsistency of the optimal control is shown by

u∗(s; t, x) = −P̂ (s)Et[X∗(s)] = − x

T − t+ 1
6= − X∗(τ)

T − τ + 1
= u∗(s; τ,X∗(τ)).

Let h(t, x) = Et,x[X∗(s; t, x, u∗)]. Then,

u∗(s; t, x) = −P̂ (s)h(t, x) = − x

T − t+ 1
,

and

u∗(s; τ,X∗(τ)) = −P̂ (s)h(τ,X∗(τ)) = − X∗(τ)

T − τ + 1
.

It can be seen that the optimal close-loop strategy corresponding to initial condition (t, x) is

u∗(s, x′, µ; t, x) = −P̂ (s)h(t, x), which depends on the initial condition of the problem (t, x).

We can tell that the close-loop optimal control problem is also time-inconsistent.

2.2 The Problem Considered

The problem considered here is in the same form as in [44], while the discussions, especially the

one about viscosity solutions, are different. To give a complete picture about the problem, we start

from the following introduction.

In the rest of the paper, let (Ω,F ,F,P) be a complete filtered probability space on which a d-
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dimensional standard Brownian motion W is defined. Let G be a filtration that is independent of

W and large enough such that P = {µ | µ = Pη for some G−measurable η}. The natural filtration

of W , augmented by all the P-null sets and G, is denoted by F = {Ft}t>0. Let p, q ∈ [1,∞),

t ∈ [0, T ], we introduce the following spaces.

D =
{

(t, ξ) : t ∈ [0, T ], ξ ∈ L2
Ft(Ω;Rn)

}
,

P(Rn) =
{
µ : Rn → [0, 1] is a measure

}
,

P2(Rn) =
{
µ ∈ P(Rn) :

∫
Rn
|x|2µ(dx) <∞

}
,

LpFt(Ω;Rn) =
{
ξ : Ω→ Rn : ξ is Ft-measurable, E[|ξ|p] <∞

}
,

LpFT (Ω;Lq(t, T ;Rn)) =
{
φ : [t, T ]× Ω→ Rn : φ(·) is B[t, T ]⊗FT -measurable,

E
[ ∫ T

t

|φ(s)|qds
] p
q
<∞

}
,

LpF(Ω;Lq(t, T ;Rn)) =
{
φ ∈ LpFT (Ω;Lq(t, T ;Rn)) :

φ is F-progressively measurable
}
,

LpF(Ω;C([t, T ];Rn)) =
{
φ : [t, T ]× Ω→ Rn : φ is F-adapted and has continuous paths,

E
[

sup
s∈[t,T ]

|φ(s)|p
]
<∞

}
.

For p =∞ and/or q =∞, we can obviously define the corresponding spaces. We denote

LpF(Ω;Lp(0, T ;Rn)) = LpF(0, T ;Rn), 1 6 p 6∞.
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Now consider the state dynamics:


dX(s) = b(s,X(s),PX(s), u(s,X(s),PX(s)))ds

+σ(s,X(s),PX(s), u(s,X(s),PX(s)))dW (s), s ∈ [t, T ],

X(t) = ξ,

(2.8)

where b : [0, T ]×Rn×P2×U → Rn, σ : [0, T ]×Rn×P2×U → Rn×d are given (deterministic)

maps, U ⊆ Rm is a non-empty set. (t, ξ) ∈ D is called an initial pair. Under proper conditions,

(2.8) has the unique solution X(·), it is called state process. u(·) is called a control law. Here is a

detailed discussion.

For each L > 0, we introduce the admissible control set UL, which is the set of all functions

u : [0, T ]× Rn × P2 → U such that

|u(s, x, µ)− u(s, x′, µ′)| 6 L(|x− x′|+W2(µ, µ′)),

∀s ∈ [0, T ], x, x′ ∈ Rn, µ, µ′ ∈ P2,

(2.9)

and ∫ T

0

|u(s, 0, δ0)|2ds <∞. (2.10)

Define U ≡ ∪L>0UL. Let u ∈ UL, fix (s, µ) ∈ [0, T ] × P2. Then u(s, ·, µ) is a function from

Rn to U , which is uniformly Lipschitz continuous with Lipschitz constant L. We use the notation

u(s, ·, µ) ∈ LL(Rn;U).

Remark 2.2.1. It is easy to see that for any u ∈ U , and X being the corresponding adapted

solution of (2.8), then u(s,X(s),PX(s)) is progressively measurable and

E[

∫ T

t

|u(s,X(s),PX(s))|2ds] <∞.
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This means the process

α(s) ≡ u(s,X(s),PX(s))

is an open-loop control. While, generally, an open-loop control may not be written in the feedback

form.

To measure the performance of each control, we introduce the following cost functional:

J(t, ξ, u) = E
[
h(X(T ),PX(T )) +

∫ T

t

g(s,X(s),PX(s), u(s,X(s),PX(s)))ds
]
, (2.11)

where h : Rn×P2 → R and g : [0, T ]×Rn×P2×U → R, for which we introduce the following

assumption:

(H2) The maps g : [0, T ] × Rn × P2 × U → R and h : Rn × P2 → R are continuous and there

exists a constant M > 0 such that

|g(t, x, µ, u)|+ |h(x′, ν)| 6M
(
1 + |x|2 + |x′|2 + ‖µ‖2

2 + ‖ν‖2
2 + |u|2

)
,

∀(t, x, x′, u, µ, ν) ∈ [0, T ]× Rn × Rn × U × P2 × P2.

(2.12)

It is clear that for any (t, ξ) ∈ D and u(·) ∈ UL, the state process X(·) ∈ L2
F(Ω;C([t, T ];Rn)). By

(H2),

|g(s,X(s),PX(s), u(s,X(s),PX(s)))|+ |h(X(T ),PX(T ))|

6ML(1 + |X(s)|2 + E[|X(s)|2] + |X(T )|2 + E[|X(T )|2] + |u(s, 0, δ0)|2),

for some constant ML > 0. Hence, the cost functional

J(t, ξ, u) <∞.
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Now we introduce the following stochastic optimal control problem:

Problem (C). For given (t, ξ) ∈ D, find a control u∗ ∈ U such that

J(t, ξ, u∗) = inf
u∈U

J(t, ξ, u) ≡ V (t, ξ). (2.13)

Any such a control u∗ ∈ U is called an optimal control of Problem (C). The map V : (t, ξ) 7→

V (t, ξ) is called the value function of Problem (C). Note that V is a function defined on D.

Generally, it is not in a Markovian form anymore, i.e.,

V (t, ξ) 6= V (t, x)|x=ξ,

or equivalently,

V (t, ξ)(ω) 6= V (t, ξ(ω)).

For each L > 0, we also consider the following stochastic optimal control problem:

Problem (CL). For given (t, ξ) ∈ D, find a control u∗ ∈ UL such that

J(t, ξ, u∗) = inf
u(·)∈UL

J(t, ξ, u) ≡ VL(t, ξ). (2.14)

2.3 Main Properties

2.3.1 Solution of the Mean Field Controlled SDE

To talk about solution results for equation (2.8), we first introduce following conditions on coeffi-

cients b and σ:

17



(H1) The maps b : [0, T ] × Rn × P2 × U → Rn and σ : [0, T ] × Rn × P2 × U → Rn×d are

continuous and there exists a constant C > 0 such that

|b(s, x, µ, u)− b(s, x′, µ′, u′)|+ |σ(s, x, µ, u)− σ(s, x′, µ′, u′)|

6 C(|x− x′|+W2(µ, µ′) + |u− u′|),
(2.15)

for all s ∈ [0, T ], u, u′ ∈ U, x, x′ ∈ Rn, µ, µ′ ∈ P2. And

|b(s, x, µ, u)|+ |σ(s, x, µ, u)| 6 C(1 + |x|+ ‖µ‖2), (2.16)

for all s ∈ [0, T ], u ∈ U, x ∈ Rn, µ ∈ P2. Here ‖µ‖2 ≡ W2(µ, δ0).

Proposition 2.3.1. Under (H1), for any (t, ξ) ∈ D and any u(·) ∈ U , there exists a unique solution

X(·) = X(· ; t, ξ;u) ∈ L2
F(Ω;C([t, T ];Rn)) to equations (2.8). Moreover, the following estimates

hold:

E
[

sup
s∈[t,T ]

|X(s; t, ξ;u)|2
]
6 K(1 + E[|ξ|2]), (2.17)

E
[
|X(s1; t, ξ;u)−X(s2; t, ξ;u)|2

]
6 K(1 + E[|ξ|2])|s2 − s1|, (2.18)

E
[
|X(s; t1, ξ1;u)−X(s; t2, ξ2;u)|2

]
6 K(1 + E[|ξ1|2] + E[|ξ2|2])(|t1 − t2|+ E[|ξ1 − ξ2|2]),

(2.19)

for all (ti, ξi) ∈ D, si ∈ [t, T ], i = 1, 2, s ∈ [t1 ∨ t2, T ]. Note that the constant K here depends

only on Lipschitz constants of b, σ and u.
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Proof. Let x(·) ∈ L2
F(Ω;C([t, T ];Rn)), (t, ξ) ∈ D, u ∈ U , then

∆ ≡ E
[
|ξ +

∫ T

t

b(r, x(r),Px(r), u(r, x(r),Px(r)))dr

+

∫ T

t

σ(r, x(r),Px(r), u(r, x(r),Px(r)))dW (r)|2
]

6 K1E
[
|ξ|2 + (

∫ T

t

(1 + sup
t≤r≤T

|x(r)|+ sup
t≤r≤T

‖Px(r)‖2 + |u(r, x(r),Px(r))|)dr)2

+(

∫ T

t

(1 + sup
t≤r≤T

|x(r)|2 + sup
t≤r≤T

‖Px(r)‖2
2 + |u(r, x(r),Px(r))|2)dr)

]
6 K2E

[
|ξ|2 + (1 + sup

t≤r≤T
|x(r)|2 + sup

t≤r≤T
‖Px(r)‖2

2)(T − t)2 +

∫ T

t

|u(t, 0, δ0)|2dr

+(1 + sup
t≤r≤T

|x(r)|2 + sup
t≤r≤T

‖Px(r)‖2
2)(T − t)

]
,

where ‖Px(r)‖2 ≡ inf{(E[|η|2])
1
2

∣∣ η is G−measurable and Pη = Px(r)} =W2(PX(r), δ{0}), then

‖Px(r)‖2 ≤ (E[|x(r)|2])
1
2 .

So,

∆ 6 KE
[
|ξ|2 + (1 + 2‖x(·)‖2

2)(T − t)(1 + (T − t)) +

∫ T

t

|u(t, 0, δ0)|2dr
]
<∞, (2.20)

for some constant K > 0. This enables us to define the map Ψ : L2
F(Ω;C([t, T ];Rn)) →

L2
F(Ω;C([t, T ];Rn)) by letting

Ψ(x)(·) ≡ ξ +

∫ ·
t

b(r, x(r),Px(r), u(r, x(r),Px(r)))dr

+

∫ ·
t

σ(r, x(r),Px(r), u(r, x(r),Px(r)))dW (r).

(2.21)

Note that Ψ(x) has continuous paths by the continuity of b, σ and u. Now, we show that Ψ is a
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contraction. Let xi(·) ∈ L2
F(Ω;C([t, T ];Rn)), i = 1, 2, then

‖Ψ(x1)−Ψ(x2)‖2
2

= E
[

sup
t6s6T

|
∫ s

t

b(r, x1(r),Px1(r), u(r, x1(r),Px1(r)))− b(r, x2(r),Px2(r), u(r, x2(r),Px2(r)))dr

+

∫ s

t

σ(r, x1(r),Px1(r), u(r, x1(r),Px1(r)))− σ(r, x2(r),Px2(r), u(r, x2(r),Px2(r)))dW (r)|2
]

6 K1E
[
(

∫ T

t

|b(r, x1(r),Px1(r), u(r, x1(r),Px1(r)))− b(r, x2(r),Px2(r), u(r, x2(r),Px2(r)))|dr)2

+(

∫ T

t

|σ(r, x1(r),Px1(r), u(r, x1(r),Px1(r)))− σ(r, x2(r),Px2(r), u(r, x2(r),Px2(r)))|2dr)
]

6 K2E
[
(

∫ T

t

( sup
t6r6T

|x1(r)− x2(r)|+ sup
t6r6T

W2(Px1(r),Px2(r))

+|u(r, x1(r),Px1(r))− u(r, x2(r),Px2(r))|)dr)2

+

∫ T

t

( sup
t6r6T

|x1(r)− x2(r)|2 + sup
t6r6T

W2
2 (Px1(r),Px2(r))

+|u(r, x1(r),Px1(r))− u(r, x2(r),Px2(r))|2)dr)
]

6 KE
[
2(T − t)2( sup

t6r6T
|x1(r)− x2(r)|2) + 2(T − t)2( sup

t6r6T
|x1(r)− x2(r)|2)

+2(T − t)( sup
t6r6T

|x1(r)− x2(r)|p) + 2(T − t)( sup
t6r6T

|x1(r)− x2(r)|2)
]

6 K((T − t)2 + (T − t))‖x1 − x2‖2
2.

When (T − t) is small enough, K(T − t)(1 + (T − t)) < 1. The corresponding equation (2.8) has

a unique solution, X(·) = X(·; t, ξ, u) on a small interval. Let τ ∈ [t, T ] and τ − t and T − τ are

small enough, then the process

X(s) = X1(s; t, ξ, u)1[t,τ ](s) +X2(s; τ,X1(τ ; t, ξ, u), u)1(τ,T ](s) (2.22)
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is a solution of (2.8) on the whole interval [t, T ] since

X(s) = X1(s; t, ξ, u)1[t,τ ](s) +X2(s; τ,X1(τ ; t, ξ, u), u)1(τ,T ](s)

= ξ +

∫ τ∧s

t

b(r,X1(r),PX1(r), u(r,X1(r),PX1(r)))dr

+

∫ τ∧s

t

σ(r,X1(r),PX1(r), u(r,X1(r),PX1(r)))dW (r)

+

∫ s

τ∧s
b(r,X2(r),PX2(r), u(r,X2(r),PX2(r)))dr

+

∫ s

τ∧s
σ(r,X2(r),PX2(r), u(r,X2(r),PX2(r)))dW (r)

= ξ +

∫ s

t

b(r,X(r),PX(r), u(r,X(r),PX(r)))dr

+

∫ s

t

σ(r,X(r),PX(r), u(r,X(r),PX(r)))dW (r).

So, we can get the global existence of a solution to (2.8).

Let Xi(·) = X(·; ti, ξi;u), i = 1, 2 be the solutions of (2.8) on [ti, T ], respectively. Let s ∈

[t1 ∨ t2, T ], i = 1, 2. Without loss of generality, assume t2 6 t1, then

E
[
|X(s; t1, ξ1;u)−X(s; t2, ξ2;u)|2

]
6 KE

[
|ξ1 − ξ2|2 + |

∫ t1

t2

b(r,X2(r),PX2(r), u(r,X2(r),PX2(r)))dr|2

+|
∫ t1

t2

σ(r,X2(r),PX2(r), u(r,X2(r),PX2(r)))dW (r)|2

+|
∫ s

t1

b(r,X1(r),PX1(r), u(X1(r),PX1(r)))− b(r,X2(r),PX2(r), u(X2(r),PX2(r)))dr|2

+|
∫ s

t1

σ(r,X1(r),PX1(r), u(X1(r),PX1(r)))− σ(r,X2(r),PX2(r), u(X2(r),PX2(r)))dW (r)|2
]

6 K
{
E
[
|ξ1 − ξ2|2

]
+ C2(1 + L2)(s− t1 + 1)

∫ s

t

E
[
|X1(r)−X2(r)|2

]
dr

+C2(t1 − t2 + 1)(1 + E
[

sup
r∈[t2,t1]

|X2(r)|2
]
)(t1 − t2)

}
.
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By Gronwall’s lemma, we have

E
[
|X(s; t1, ξ1, u)−X(s; t2, ξ2, u)|2

]
6 K(1 + E

[
sup

r∈[t2,t1]

|X2(r)|2
]
)((t1 − t2) + E

[
|ξ1 − ξ2|2

]
)

6 K(1 + E[|ξ2|2])((t1 − t2) + E[|ξ1 − ξ2|2]).

This shows the uniqueness of the global solution on [t, T ] as well as the estimate (2.19). Now we

prove the estimate (2.18). Let (t, ξ) ∈ D and si ∈ [t, T ], i = 1, 2, without loss of generality,

assume s1 6 s2, then

E
[
|X(s1; t, ξ, u)−X(s2; t, ξ, u)|2

]
6 KE

[
|
∫ s2

s1

b(r,X(r),PX(r), u(r,X(r),PX(r)))dr|2

+|
∫ s2

s1

σ(r,X(r),PX(r), u(r,X(r),PX(r)))dW (r)|2
]

6 KC2(s2 − s1 + 1)(1 + E
[

sup
r∈[s1,s2]

|X(r)|2
]
)(s2 − s1)

6 K(1 + E[|ξ|2])|s2 − s1|.

Proposition 2.3.2. (Flow Property) Let X(·) = X(·; t, ξ, u) be the solutions to equations (2.8).

Then it satisfies the flow property:

X(s; t, ξ, u) = X(s; τ,X(τ ; t, ξ, u1), u2); (2.23)

for all 0 ≤ t ≤ τ ≤ s ≤ T , where u(·) = u1(·)1[t,τ) + u2(·)1[τ,T ].

Proof. This is an easy corollary from the existence and uniqueness for solution of (2.8).

Remark 2.3.3. Note that the initial state ξ being an Ft−measurable random variable is necessary
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for the flow property of the dynamics X(s). In comparison, X(s; t, x, u) is not a flow, where

x ∈ Rn.

2.3.2 About Value Functions

The dependence of value function V (VL) on ξ makes trouble when deriving HJB equation. The

main reason is: V cannot be simplified to be a deterministic function on [0, T ]×Rn, this makes the

Itô’s formula impossible to be applied. The following key observation helps to better understand

the dependence of V (VL) on ξ.

Proposition 2.3.4. Let X(·) = X(·; t, ξ, u) be the solutions to equations (2.8). Then, for any

s ∈ [t, T ], the distribution PX(s) depends on ξ only through its distribution Pξ.

Proof. We will use this result in the next chapter and it is more natural to show the proof there.

From this result, we can rewrite PX(s;t,ξ,u) by adopting the notation: PX(s;t,ξ,u) = Pt,Pξ,us .

Proposition 2.3.5. The dependence of V on ξ is through its distribution Pξ. That is, there exists

function Ṽ : [0, T ] × P2 → R such that V (t, ξ) = Ṽ (t,Pξ). A similar result can be obtained for

VL.

Proof. We first show that the dependence of cost functional J(t, ξ, u) on ξ is through Pξ. By

definition,

J(t, ξ, u)

= E
[
h(X(T ),Pt,Pξ,uT ) +

∫ T

t

g(r,X(r),Pt,Pξ,ur , u(r,X(r),Pt,Pξ,ur ))dr
]

=

∫
Rn
h(x′,Pt,Pξ,uT )Pt,Pξ,uT (dx′) +

∫ T

t

∫
Rn
g(r, x′,Pt,Pξ,ur , u(r, x′,Pt,Pξ,ur ))Pt,Pξ,ur (dx′)dr.
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We use the notation J̃(t,Pξ, u) ≡ J(t, ξ, u). Let

Ṽ (t,Pξ) ≡ inf
u∈U

J̃(t,Pξ, u),

then

V (t, ξ) = inf
u∈U

J(t, ξ, u) = inf
u∈U

J̃(t,Pξ, u) = Ṽ (t,Pξ).

Follow similar discussion, we can find a function ṼL : [0, T ]× P2 → R such that

VL(t, ξ) = ṼL(t,Pξ).

Now we are going to talk about conditions under which we can get the well-posedness and regu-

larity of V . Assume that besides (H2), g and h also satisfy

(H3) g and h are lower bounded by a constant or a convex function, uniformly for all u ∈ U . And,

|g(t, x1, µ, u)− g(t, x′1, µ
′, u′)|+ |h(x2, ν)− h(x′2, ν

′)|

6M
(
|x1 − x′1|2 + |x2 − x′2|2 +W2

2 (µ, µ′) +W2
2 (ν, ν ′) + |u− u′|2

)
,

(2.24)

for all (t, x1, x
′
1, x2, x

′
2, u, µ, µ

′) ∈ [0, T ]× (Rn)4 × U × P2 × P2.

Proposition 2.3.6. Under conditions (H2) and (H3), the value functions V, VL : D → R, equiv-

alently, Ṽ , ṼL : [0, T ] × P2 → R, are a well-defined functions. Especially, VL and ṼL are

continuous.
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Proof. Let (t, ξ), (s, η) ∈ D, t 6 s, then

|V (t, ξ)− V (s, η)|

6 sup
u∈U
|J(t, ξ, u)− J(s, η, u)|

6 sup
u∈U

{
E[

∫ T

s

|g(r,X(r; t, ξ),Pt,ξ,ur , u(r,X(r; t, ξ),Pt,ξ,ur ))

−g(r,X(r; s, η),Ps,η,ur , u(r,X(r; s, η),Ps,η,ur ))|dr

+|h(X(T ; t, ξ),Pt,ξ,uT )− h(X(T ; s, η),Ps,η,uT )|

+

∫ s

t

|g(r,X(r; t, ξ),Pt,ξ,ur , u(r,X(r; t, ξ),Pt,ξ,ur ))|dr]
}

6 K sup
u∈U

{
E[

∫ T

s

|X(r; t, ξ)−X(r; s, η)|2 +W2
2 (Pt,ξ,ur ,Ps,η,ur ) + |u(r,X(r; t, ξ),Pt,ξ,ur )

−u(r,X(r; s, η),Ps,η,ur )|2dr + |X(T ; t, ξ)− (X(T ; s, η)|2 +W2
2 (Pt,ξ,uT ,Ps,η,uT )

+

∫ s

t

(1 + |X(r; t, ξ)|2 + ‖Pt,ξ,ur ‖2
2 + |u(r,X(r; t, ξ),Pt,ξ,ur ))|2)dr]

}
6 K sup

u∈U

{
E[ sup

s6r6T
|X(r; t, ξ)−X(r; s, η)|2 + sup

s6r6T
W2

2 (Pt,ξ,ur ,Ps,η,ur )

+K̃u( sup
s6r6T

|X(r; t, ξ)−X(r; s, η)|2 + sup
s6r6T

W2
2 (Pt,ξ,ur ,Ps,η,ur ))

+(s− t)(1 + sup
s6r6T

|X(r; t, ξ)|2 + sup
s6r6T

‖Pt,ξ,ur ‖2
2)

+(s− t)K̃u(1 + sup
s6r6T

|X(r; t, ξ)|2 + sup
s6r6T

‖Pt,ξ,ur ‖2
2)]
}

6 K
{

(sup
u∈U

K̃u)E[|X(s; t, ξ)− η|2] + (s− t)(1 + E[|ξ|2])
}

6 K((sup
u∈U

K̃u)E[|ξ − η|2] + (s− t)(1 + E[|ξ|2])),

Then,

|Ṽ (t,Pξ)− Ṽ (s,Pη)|

6 K((sup
u∈U

K̃u)W2
2 (Pξ,Pη) + (1 + ‖Pξ‖2

2 + ‖Pη‖2
2)|s− t|).

Thus, the value function Ṽ (t, µ) and ṼL(t, µ) are continuous with respect to t. The L−value
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function ṼL(·, ·) is continuous on D. For each t ∈ [0, T ], Ṽ (t, ·) is uniformly continuous on

P2.

2.4 Main Results

2.4.1 Dynamic Programming Principle

Theorem 2.4.1. (Dynamic Programming Principle) The value function Ṽ (t, µ) satisfies the fol-

lowing equation:

Ṽ (t, µ) = inf
u∈U
{
∫ τ

t

∫
Rn
g(s, x,Pt,µ,us , u(s, x,Pt,µ,us ))Pt,µ,us (dx)ds+ Ṽ (τ,Pt,µ,uτ )}. (2.25)

Proof. By the definition of Ṽ , we have

Ṽ (t, µ) 6
∫ T

t

∫
Rn
g(s, x,Pt,µ,us , u(s, x,Pt,µ,us ))Pt,µ,us (dx)ds+

∫
Rn
h(x,Pt,µ,uT )Pt,µ,uT (dx)

=

∫ τ

t

∫
Rn
g(s, x,Pt,µ,us , u(s, x,Pt,µ,us ))Pt,µ,ur (dx)ds

+

∫ T

τ

∫
Rn
g(s, x,Pt,µ,us , u(s, x,Pt,µ,us ))Pt,µ,ur (dx)ds+

∫
Rn
h(x,Pt,µ,uT )Pt,µ,uT (dx)

=

∫ τ

t

∫
Rn
g(s, x,Pt,µ,us , u(s, x,Pt,µ,us ))Pt,µ,ur (dx)ds

+

∫ T

τ

∫
Rn
g(s, x,Pτ,P

t,µ,u
τ ,u

s , u(s, x,Pτ,P
t,µ,u
τ ,u

s ))Pτ,P
t,µ,u
τ ,u

s (dx)ds

+

∫
Rn
h(x,Pτ,P

t,µ,u
τ ,u

T )Pτ,P
t,µ,u
τ ,u

T (dx)

=

∫ τ

t

∫
Rn
g(s, x,Pt,µ,us , u(s, x,Pt,µ,us ))Pt,µ,us (dx)ds+ J̃(τ,Pt,µ,uτ , u)
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for all u(·) ∈ U . Then,

Ṽ (t, µ) 6
∫ τ

t

∫
Rn
g(s, x,Pt,µ,us , u(s, x,Pt,µ,us ))Pt,µ,us (dx)ds+ Ṽ (τ,Pt,µ,uτ ),

for all u ∈ U . So,

Ṽ (t, µ) 6 inf
u∈U
{
∫ τ

t

∫
Rn
g(s, x,Pt,µ,us , u(s, x,Pt,µ,us ))Pt,µ,us (dx)ds+ Ṽ (τ,Pt,µ,uτ )}.

On the other hand, let ε > 0, then there exists some u(ε) ∈ U such that

Ṽ (t, µ) + ε > J̃(t, µ, u(ε)),

then

Ṽ (t, µ) + ε >

∫ τ

t

∫
Rn
g(s, x,Pt,µ,u(ε)s , u(ε)(s, x,Pt,µ,u(ε)s ))Pt,µ,u(ε)s (dx)ds+ J̃(τ,Pt,µ,u(ε)τ , u(ε))

>
∫ τ

t

∫
Rn
g(s, x,Pt,µ,u(ε)s , u(ε)(s, x,Pt,µ,u(ε)s ))Pt,µ,u(ε)s (dx)ds+ Ṽ (τ,Pt,µ,u(ε)τ )

> inf
u∈U
{
∫ τ

t

∫
Rn
g(s, x,Pt,µ,us , u(s, x,Pt,µ,us ))Pt,µ,us (dx)ds+ Ṽ (τ,Pt,µ,uτ )}.

Let ε→ 0, we have

Ṽ (t, µ) = inf
u∈U
{
∫ τ

t

∫
Rn
g(s, x,Pt,µ,us , u(s, x,Pt,µ,us ))Pt,µ,us (dx)ds+ Ṽ (τ,Pt,µ,uτ )}.

It can be proved that dynamic programming principle also holds for ṼL.

Remark 2.4.2. Note that the dynamic programming principle still holds for the value function
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V (t, ξ) since V (t, ξ) = Ṽ (t, µ). In Remark 3.2 of [44], the authors mistakenly admitted that the

appearance of nonlinear function of E[X] results in time-inconsistency. From examples in the

first section and the discussion above about dynamic programming principle, we conclude that

it is nonlinear functions of conditional expectation Et[X] or conditional distribution that causes

time-inconsistency.

The reason for introducing distributions functions here is that it helps giving an HJB equation that

is easier for further discussions. While the trade-off is that the open-loop control problem cannot

be dealt, if not impossible, so neatly as for the closed-loop case.

2.4.2 Verification Theorem

Theorem 2.4.3. Suppose that the following PDE

∂tṼ (t, µ) +H(t, µ, ∂µṼ (t, µ)(·), ∂x∂µṼ (t, µ)(·)) = 0, (2.26)

for all t ∈ [0, T ], µ ∈ P2, where

H(t, µ, p, A) = inf
u∈L(Rn;U)

{E[
1

2
tr[A · σσT (t, ξ, µ, u(ξ))] + p · b(t, ξ, µ, u(ξ)) + g(t, ξ, µ, u(ξ))]},

has a classical solution ψ, and for each (t, µ), u∗(t, ·, µ) ∈ L(Rn;U) such that

H(t, µ, p, A) = E
[1

2
tr[A·σσT (t, ξ, µ, u∗(t, ξ, µ))]+p·b(t, ξ, µ, u∗(t, ξ, µ))+g(t, ξ, µ, u∗(t, ξ, µ))

]
,

and u∗ ∈ U . Then ψ is the value function, that is, ψ = Ṽ and u∗ is an optimal control.

Proof. Let X∗(s) = X(s; t, ξ, u∗). By applying Itô’s formula (see [10]) to the process ψ(s,PX(s)),
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we have

ψ(s,Pt,µ,u∗s )

= E
[
h(X̄∗(T ),Pt,µ,u

∗

T )
]
−
∫ T

s

∂rψ(r,Pt,µ,u∗r )

+E
[
∂µψ(r,Pt,µ,u∗r )(X∗(r))b(r,X∗(r),Pt,µ,u∗r , u∗(r,X∗(r),Pt,µ,u∗r ))

+
1

2
tr [∂ω∂µψ(r,Pt,µ,u∗r )(X∗(r))σσT (r, X̃∗(r),Pt,µ,u∗r , u∗(r, X̃∗(r),Pt,µ,u∗r ))]

]
dr.

Since ψ solves (3.50), we have

ψ(t, µ) = J̃(t; t;µ, u∗) > Ṽ (t, µ).

On the other hand, let u ∈ U . There exists f : [0, T ]× Rn × P2 → [0,∞), such that

∂tṼ (t, µ) + E
[1

2
tr [∂ω∂µṼ (t, µ)(ξ) · σσT (t, ξ, µ, u(t, ξ, µ))] + ∂µṼ (t, µ)(ξ) · b(t, ξ, µ, u(t, ξ, µ))

+g(t, ξ, µ, u∗(t, ξ, µ))
]
− f(t, µ) = 0.

It’s easy to see that

ψ(t, µ) 6 J̃(t, µ, u),

for all u ∈ U . Then ψ(t, µ) 6 Ṽ (t, µ).

Remark 2.4.4. Let

φ(s, x, µ, p, A) = arg inf
u∈U
{1

2
tr [A · σσT (t, x, µ, u)] + p · b(t, x, µ, u) + g(t, x, µ, u)},

and

u∗(s, x, µ) = φ(s, x, µ, ∂µψ(t, µ)(x), ∂ω∂µψ(t, µ)(x)).

Suppose that u∗ ∈ U , then infu∈U > infu∈U . On the other hand, it is generally correct that
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infu∈U 6 infu∈U . This shows that an optimal control could be found by taking

u∗(t, x, µ) = arg inf
u∈U
{1

2
tr [A · σσT (t, x, µ, u)] + p · b(t, x, µ, u) + g(t, x, µ, u)}.

2.4.3 Viscosity Solutions

First we introduce the following definition:

Definition 2.4.5. (Viscosity Solution) A continuous function ψ : [0, T ] × P2 → R is called a

viscosity supersolution of equation (2.28) if for any ϕ ∈ C1,2([0, T ]×P2), whenever ψ−ϕ attains

a local maximum at (t, µ) ∈ [0, T ]× P2, we have

∂tϕ(t, µ) +H(t, µ, ∂µϕ(t, µ)(·), ∂x∂µϕ(t, µ)(·)) > 0. (2.27)

It is called a viscosity subsolution if in (2.27) the inequality ”>” is replaced by ”6” and ”local

maximum” is replaced by ”local minimum”. ψ is called a viscosity solution if it is a viscosity

supersolution and viscosity subsolution.

Theorem 2.4.6. For each L > 0, the L-value function ṼL(t, µ) is a viscosity solution to the

following PDE:

∂tṼL(t, µ) +HL(t, µ, ∂µṼL(t, µ)(·), ∂x∂µṼL(t, µ)(·)) = 0, (2.28)

for all t ∈ [0, T ], µ ∈ P2, where HL : [0, T ]× P2 × Rn × Rn×n → R is defined by

HL(t, µ, p, A)

= inf
u∈LL(Rn;U)

{
E
[1

2
tr[A · σσT (t, ξ, µ, u(ξ))] + p · b(t, ξ, µ, u(ξ)) + g(t, ξ, µ, u(ξ))

]}
.
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Proof. The continuity of ṼL is given by the discussion in the section 2.3.2. Now, we first prove ṼL

is a viscosity supersolution of (2.28). Let (t, µ) ∈ [0, T ] × P2, ϕ ∈ C1,2([0, T ] × P2) such that

ṼL−ϕ has a local maximum at (t, µ), without loss of generality, assume that ṼL 6 ϕ on [0, T ]×P2.

By Itô’s formula, we have

ϕ(s,Pt,µ,us )− ϕ(t, µ)

=

∫ s

t

∂rϕ(r,Pt,µ,ur ) + E
[
∂µϕ(r,Pt,µ,ur )(X(r)) · b(r,X(r),Pt,µ,ur , u(r,X(r),Pt,µ,ur ))

+
1

2
tr [∂x∂µϕ(r,Pt,µ,ur )(X(r)) · σσT (r,X(r),Pt,µ,ur , u(r,X(r),Pt,µ,ur ))]

]
dr,

for all t 6 s 6 T . By ṼL(s,Pt,µ,us )− ṼL(t, µ) 6 ϕ(s,Pt,µ,us )− ϕ(t, µ) and dynamic programming

principle, we have

0 6 −ṼL(s,Pt,µ,us ) + ṼL(t, µ) + ϕ(s,Pt,µ,us )− ϕ(t, µ)

6
∫ s

t

∂rϕ(r,Pt,µ,ur ) + E
[
∂µϕ(r,Pt,µ,ur )(X(r)) · b(r,X(r),Pt,µ,ur , u(r,X(r),Pt,µ,ur ))

+
1

2
tr[∂x∂µϕ(r,Pt,µ,ur )(X(r)) · σσT (r,X(r),Pt,µ,ur , u(r,X(r),Pt,µ,ur ))]

+g(r,X(r),Pt,µ,ur , u(r,X(r),Pt,µ,ur ))
]
dr.

Then it is easy to see that

0 6 ∂tϕ(t, µ) + E
[
∂µϕ(t, µ)(ξ) · b(t, ξ, µ, u(t, ξ, µ))

+
1

2
tr[∂x∂µϕ(t, µ)(ξ) · σσT (t, ξ, µ, u(t, ξ, µ))] + g(t, ξ, µ, u(t, ξ, µ))

]
,

for all u ∈ UL. Since u(t, ·, µ) ∈ LL(Rn;U) for each fixed (t, µ), we have

0 6 inf
u∈LL(Rn;U)

{
∂tϕ(t, µ) + E[∂µϕ(t, µ)(ξ) · b(t, ξ, µ, u(t, ξ, µ))

+
1

2
tr[∂x∂µϕ(t, µ)(ξ) · σσT (t, ξ, µ, u(t, ξ, µ))] + g(t, ξ, µ, u(t, ξ, µ))]

}
.
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Then

∂tϕ(t, µ) +HL(t, µ, ∂µϕ(t, µ)(·), ∂x∂µϕ(t, µ)(·)) > 0. (2.29)

Now we show that ṼL is also a viscosity subsolution. Let ε > 0, τ > t with τ − t small enough.

Then there exists uε,τ ∈ UL such that

ṼL(t, µ)− ṼL(τ,Pt,µ,uε,ττ )

>
∫ τ

t

E
[
g(r,X t,ξ,uε,τ

r ,Pt,µ,uε,τr , uε,τ (r,X
t,ξ,uε,τ
r ,Pt,µ,uε,τr ))

]
dr − ε(τ − t).

Let (t, µ) be a local minimum point of ṼL − ϕ, then

0 > −ṼL(τ,Pt,µ,uε,ττ ) + ṼL(t, µ) + ϕ(τ,Pt,µ,uε,ττ )− ϕ(t, µ)

> −ε(τ − t) +

∫ τ

t

∂rϕ(r,Pt,µ,uε,τr )

+E
[
∂µϕ(r,Pt,µ,uε,τr )(X(r;uε,τ )) · b(r,X(r;uε,τ ),Pt,µ,uε,τr , uε,τ (r,X(r;uε,τ ),Pt,µ,uε,τr ))

+
1

2
tr[∂x∂µϕ(r,Pt,µ,uε,τr )(X(r;uε,τ )) · σσT (r,X(r;uε,τ ),Pt,µ,uε,τr , X(r;uε,τ ),Pt,µ,uε,τr ))]

+g(r,X(r;uε,τ ),Pt,µ,uε,τr , uε,τ (r,X(r;uε,τ ),Pt,µ,uε,τr ))
]
dr

> −ε(τ − t) +

∫ τ

t

inf
u∈LL

{
∂rϕ(r,Pt,µ,ur )

+E
[
∂µϕ(r,Pt,µ,ur )(X(r; t, ξ;u)) · b(r,X(r; t, ξ;u),Pt,µ,ur , u(X(r; t, ξ;u)))

+
1

2
tr[∂x∂µϕ(r,Pt,µ,ur )(X(r; t, ξ;u)) · σσT (r,X(r; t, ξ;u),Pt,µ,ur , u(X(r; t, µ;u)))]

+g(r,X(r; t, ξ;u),Pt,µ,ur , u(X(r; t, ξ;u)))
]}
dr,

where X(r;uε,τ ) = X(r; t, ξ;uε,τ ). Divide by (τ − t) on both sides of above inequality and let

τ → t. By the arbitrariness of ε, we have

∂tϕ(t, µ) +HL(t, µ, ∂µϕ(t, µ)(·), ∂x∂µϕ(t, µ)(·)) 6 0. (2.30)
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Thus, ṼL is a viscosity solution of (2.28).

Proposition 2.4.7. For any (t, µ) ∈ [0, T ]× P2,

lim
L→∞

ṼL(t, µ) = Ṽ (t, µ).

Proof. It is clear that lim
L→∞

ṼL(t, µ) > Ṽ (t, µ). On the other hand, for each n, there exists some

control un ∈ U such that

J̃(t, µ, un) < Ṽ (t, µ) +
1

n
.

While, un ∈ ULn for some Ln > 0, we have

J̃(t, µ, un) > ṼLn(t, µ).

Since ṼL(t, µ) decreases as L increases, we have

|ṼL(t, µ)− Ṽ (t, µ)| 6 1

n
,

for all L > Ln, Thus, lim
L→∞

ṼL(t, µ) = Ṽ (t, µ).

2.5 Linear-Quadratic Mean Field Stochastic Optimal Control Problem

It would be good to completely solve a mean field optimal control. That is, to find out optimal

control and value function. Then HJB equation could be double checked that if it really has value

function as its solution. While, this is usually difficult, if not impossible, to give a general example,

especially in recursive case. Generally, linear quadratic problems are used as examples, since

under proper and relatively very mild conditions, it can be solved completely. For example, it is
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considered in [49] the state dynamics:


dX(s) = (A(s)X(s) + Ā(s)E[X(s)] +B(s)u(s) + B̄(s)E[u(s)])ds

+(C(s)X(s) + C̄(s)E[X(s)] +D(s)u(s) + D̄(s)E[u(s)])dW (s),

X(0) = x,

(2.31)

with the cost functional:

J(x, u(·)) = E
[
〈GX(T ), X(T )〉+

〈
ḠE[X(T ),E[X(T )]]

〉
+

∫ T

t

〈Q(s)X(s), X(s)〉+
〈
Q̄E[X(s)],E[X(s)]

〉
+
〈
R̄E[u(s)],E[u(s)]

〉
+ 〈R(s)u(s), u(s)〉 ds

]
,

(2.32)

The optimal control problem considered there is

Problem (MF-LQ-0). For given x ∈ R, find a u∗ ∈ U[t,T ] such that

J(x, u∗) = essinf
u(·)∈U[t,T ]

J(x, u). (2.33)

To better compare with our result, we consider the problem with the more general initial condition

(t, ξ), where ξ ∈ Ft is a random variable. Consider the state dynamics:


dX(s) = (A(s)X(s) + Ā(s)E[X(s)] +B(s)u(s))ds

+(C(s)X(s) + C̄(s)E[X(s)] +D(s)u(s))dW (s), s ∈ [t, T ],

X(t) = ξ,

(2.34)
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and cost functional

J(t, ξ;u(·)) = E
[
〈GX(T ), X(T )〉+

〈
ḠE[X(T ),E[X(T )]]

〉
+

∫ T

t

〈Q(s)X(s), X(s)〉+
〈
Q̄E[X(s)],E[X(s)]

〉
+ 〈R(s)u(s), u(s)〉 ds

]
,

(2.35)

And we considered the following problem:

Problem (MF-LQ-general). For given (t, ξ) ∈ D, find a u∗ ∈ U[t,T ] such that

J(t, x, u∗) = essinf
u(·)∈U[t,T ]

J(x, u) ≡ V (t, ξ). (2.36)

Remark 2.5.1. Note that the difference between the problem considered here and the one in [49] is

not only the more general initial condition, but also the form of state dynamics and cost functional.

That is the term containing E[u(s)] is not considered here. From the result below we can see that,

it is enough to considered the simple form (2.34) and (2.35), since the influence of E[u(s)] can be

covered by u(s) and E[X(s)].

Here is our main result:

Theorem 2.5.2. Let (X∗, u∗) be an optimal pair. Then the following mean field backward SDE

admits a unique adapted solution (Y (·), Z(·)):


dY (s) = −(A(s)TY (s) + ĀT (s)E[Y (s)] + C(s)TZ(s))

+Q(s)X∗(s) + Q̄(s)E[X∗(s)])ds+ Z(s)dW (s), s ∈ [t, T ],

Y (T ) = GX∗(T ) + ḠE[X∗(T )],

(2.37)
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such that

R(s)u∗(s) +B(s)TY (s) +D(s)TZ(s) = 0, (2.38)

This condition is proved to be sufficient under certain convexity condition. Furthermore, we have

the following result about decoupled mean field forward backward stochastic differential equations

(MF-FBSDE for short) and Riccati equation.

Theorem 2.5.3. Under proper conditions on the coefficients, the following Riccati equations admit

unique solutions P and Π, respectively:


P ′ + PA+ ATP + CTPC +Q

−(PB + CTPD)Σ−1(PB + CTPD)T = 0, s ∈ [t, T ],

P (T ) = G,

(2.39)


Π′ + Π(A+ Ā) + (A+ Ā)TΠ + CTPC +Q+ Q̄

−(ΠB + CTPD)Σ−1(ΠB + CTPD)T = 0, s ∈ [t, T ],

Π(T ) = G+ Ḡ,

(2.40)

where Σ = R +DTPD. Further, the following closed-loop system admits a unique solution X∗:



dX∗(s) = ((A(s)−B(s)Σ−1(s)(BT (s)P (s) +DT (s)P (s)C(s)))X∗(s)

+(Ā(s) +B(s)Σ−1(s)(BT (s)P (s) +DT (s)P (s)C(s) +BT (s)Π(s)

+DT (s)P (s)(C(s) + C̄(s))))E[X∗(s)])ds+ ((C(s)−D(s)Σ−1(s)(BT (s)P (s)

+DT (s)P (s)C(s)))X∗(s) + (C̄(s) +D(s)Σ−1(s)(BT (s)P (s)

+DT (s)P (s)C(s) +BT (s)Π(s) +DT (s)P (s)(C(s) + C̄(s))))E[X∗(s)])dW (s),

X∗(t) = ξ,

(2.41)
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and by defining



u∗ = −Σ−1(BTP +DTPC)(X∗ − E[X∗])− (BTΠ +DTP (C + C̄))E[X∗]

Y = P (X∗ − E[X∗]) + ΠE[X∗]

Z = (PC − PDΣ−1(BTP +DTPC))(X∗E[X∗])

+(P (C + C̄)− PDΣ−1(BTΠ +DTP (C + C̄)))E[X∗],

(2.42)

the four-tuple (X∗, u∗, Y, Z) is the adapted solution to the MF-FBSDE and (X∗, u∗) is the optimal

pair. Moreover,

essinf
u

J(t, ξ, u) = J(t, ξ, u∗) = p(t)E[〈ξ, ξ〉] + (Π(t)− p(t)) 〈E[ξ],E[ξ]〉 . (2.43)
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Proof.

J(t, ξ, u)− E[〈P (t)(ξ − E[ξ]) + Π(t)E[ξ], ξ〉]

= E[

∫ T

t

〈QX,X〉+
〈
Q̄E[X],E[X]

〉
+ 〈Ru, u〉+ 〈P ′(X − E[X]), X − E[X]〉

+2 〈P (A(X − E[X]) +B(u− E[u])), X − E[X]〉+
〈
P (CX + C̄E[X] +Du),

CX + C̄E[X] +Du+ 〈Π′E[X],E[X]〉+ 2
〈
Π(A+ Ā)E[X] +BE[u],E[X]

〉
ds

+ 〈GX(T ), X(T )〉+
〈
ḠE[X](T ),E[X](T )

〉
− 〈P (T )(X(T )− E[X(T )]), X(T )

−E[X(T )]− 〈Π(T )E[X(T )],E[X(T )]〉]

= E[

∫ T

t

〈
(P ′ +Q+ 2PA+ CTPC)(X − E[X]), X − E[X]

〉
+
〈
(Q+ Q̄+ (C + C̄)TP (C + C̄) + Π′ + 2Π(A+ Ā))E[X],E[X]

〉
+
〈
(R +DTPD)(u− E[u]), u− E[u]

〉
+
〈
(R +DTPD)E[u],E[u]

〉
+2
〈
u− E[u], (BTP +DTPC)(X − E[X])

〉
+ 2

〈
E[u], BTΠ +DTP (C + C̄)E[X]

〉
ds]

= E[

∫ T

t

〈
(CTPD + PB)Σ−1(CTPD + PB)T (X − E[X]), X − E[X]

〉
+ 〈ΣE[u],E[u]〉

+
〈
((C + C̄)TPD + ΠB)Σ−1((C + C̄)TPD + ΠB)TE[X],E[X]

〉
+ 〈Σ(u− E[u]), u− E[u]〉+ 2

〈
Σ

1
2 (u− E[u]),Σ−

1
2 (CTPD + PB)T (X − E[X])

〉
+2
〈
E[u], ((C + C̄)TPD + ΠB)TE[X]

〉
ds]

= E[

∫ T

t

‖Σ
1
2 (u− E[u] + Σ−1(BTP +DTPC)(X − E[X]))‖2

+‖Σ
1
2 (E[u] + Σ−1(BTΠ +DTP (C + C̄)E[X]))‖2ds]

> 0,

On the other hand, note that

J(t, ξ, u∗) = E[〈Y (t), X∗(t)〉] = E[〈P (t)(ξ − E[ξ]) + Π(t)E[ξ], ξ〉],
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so we have

V (t, ξ) = E[〈P (t)(ξ − E[ξ]) + Π(t)E[ξ], ξ〉] = E[〈P (t)ξ, ξ〉+ (Π(t)− P (t)) 〈E[ξ],E[ξ]〉].

Now we verity that, the value function obtained by the discussion above is exactly the classical

solution of the HJB we obtained in the previous section. Moreover, the optimal control obtained

from the two methods coincide.

Proposition 2.5.4. The Value function obtained in the LQ case satisfies the HJB equation

∂tV (t, µ) + inf
u∈U

H(t, x, µ, u, ∂µV (t, µ), ∂x∂µV (t, µ)) = 0, (2.44)

for all t ∈ [0, T ], µ ∈ P2, x ∈ Rn, where

H(t, x, µ, u, y, z) =
1

2
tr[z · σσT (t, x, µ, u)] + y · b(t, x, µ, u) + g(t, x, µ, u).

Proof. The value function in the LQ case, when writing in terms of distribution, is

Ṽ (t, µ) =

∫
Rn
〈P (t)x, x〉µ(dx) +

〈
(Π(t)− P (t))

∫
Rn
xµ(dx),

∫
Rn
xµ(dx)

〉
,

and V (t, ξ) is the lift of Ṽ (t, ξ), where Pξ = µ. It is easy to get that

∂µṼ (t, µ)(x) = 2P (t)x+ 2(Π(t)− P (t))

∫
Rn
xµ(dx),

∂x∂µṼ (t, µ)(x) = 2P (t),
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H(t, x, µ, u, p, ) =
1

2

〈
z(Cx+ C̄

∫
Rn
xµ(dx) +Du), Cx+ C̄

∫
Rn
xµ(dx) +Du

〉
+

〈
y, (Ax+ Ā

∫
Rn
xµ(dx) +Bu)

〉
+

〈
Q̄(

∫
Rn
xµ(dx)),

∫
Rn
xµ(dx)

〉
+ 〈Ru, u〉+ 〈Qx, x〉

Then, by plugging in all these terms, the value function Ṽ is a (classical) solution of (2.44). More-

over, the minimum point of H is

u∗(t, x, µ) = −1

2
(
1

2
DT zD +R)−1(DT z(Cx+ C̄

∫
Rn
xµ(dx)) +BTy)

= −1

2
(DTPD +R)−1(2DTP (Cx+ C̄

∫
Rn
xµ(dx))

+BT (2Px+ 2(Π− P )

∫
Rn
xµ(dx)))

= −Σ−1((DTPC +BTP )x+ (DTPC̄ +BT (Π− P )

∫
Rn
xµ(dx))),

This gives a closed-loop form for the optimal control. It is true that

u∗(s,X∗(s),PX∗(s)) = u∗(s).

Remark 2.5.5. Here are some remarks about the optimal control in linear quadratic mean field

optimal control problem and the related time-(in)consistency:

• The optimal control u∗ depends on µ, it is not the classical ”feedback” form.

• In the explicit form of u∗,

u∗(t, x, µ) = −Σ−1((DTPC +BTP )x+ (DTPC̄ +BT (Π− P )

∫
Rn
x′µ(dx′))), (2.45)
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we have u∗(s) = u∗(s,X(s),PX(s)), this can be seen from (2.42). This shows that the open-

loop optimal control can be represented in terms of close-loop form.

• Time-consistency of this problem can be seen from (2.45).

u∗(s; t, x) = F (s)X∗(s; t, x, u∗) +G(s)E[X∗(s; t, x, u∗)],

and

u∗(s; τ,X∗(τ ; t, x, u∗|[t,τ ])) = F (s)X∗(s; τ,X∗(τ ; t, x, u∗|[t,τ ]), u
∗|[τ,T ])+G(s)E[X∗(s; ...)],

this is obtained by the flow property of X(s).

• When dynamic programming principle can be derived for a problem, then the problem must

be time-consistent. Conversely, when a problem is time-consistent, and there exists an opti-

mal control, then a relation like dynamic programming principle is true.
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CHAPTER 3: RECURSIVE MEAN FIELD OPTIMAL CONTROL

PROBLEM

The objective of this chapter is to present the mean field recursive stochastic optimal control prob-

lem and establish the basic results including dynamic programming principle and HJB equations

for it.

The research of BSDEs can be traced as early as 1970s, see [32][7][6][21]. Since the paper by

Peng and Paradox [40], which initiated the study of nonlinear BSDE, the related theory has been

explored extensively. See [31][38][41][54] and the reference therein. Many interesting applica-

tions of BSDEs have been found in finance. For example, when we consider asset allocation

problems, people could be optimistic or pessimistic. In evaluating the current financial situations

(portfolio of assets), when the future utility is taken account, i.e., the current utility depends on the

future utility, besides other dependence. Recursive utility was introduced to describe such situa-

tions. In 1992, Duffie and Epstein introduced stochastic differential utility[15][16], which is in the

form:

Y (t) = Et
[
η +

∫ T

t

g(s, Y (s))ds
]
, (3.1)

where Et[ · ] = E[ · |Ft] represents expectation conditional on information at time t. (3.1) is the

recursive utility of the payoff η at T . Also see [53][43][14][46].

3.1 The Statement of the Problem

Let (Ω,F ,F,P) be a complete filtered probability space on which a d-dimensional standard Brow-

nian motion W (·) is defined. Let G be a filtration that is independent of W . The filtration F is
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defined the same as in the previous chapter. Now we consider the state dynamics:


dX(s) = b(s,X(s),PX(s), u(s,X(s),PX(s)))ds

+σ(s,X(s),PX(s), u(s,X(s),PX(s)))dW (s), s ∈ [t, T ],

X(t) = ξ,

(3.2)

where ξ ∈ Ft. The state dynamics is the same as (2.8), while, the cost functional we considered

here is defined by the adapted solution of the mean field backward stochastic differential equation

(MF-BSDE):

J(t, ξ;u) ≡ Y (t; t, ξ, u), (3.3)

where 
dY (s) = −g(s,X(s),PX(s), Y (s),PY (s), Z(s), u(s,X(s),PX(s)))ds

+Z(s)dW (s), s ∈ [t, T ],

Y (T ) = h(X(T ),PX(T )).

(3.4)

The problem considered here is

Problem (MF-R). For given (t, ξ) ∈ D, find a u∗ ∈ U such that

J(t, ξ, u∗) = essinf
u∈U

J(t, ξ, u) = V (t, ξ), (3.5)

where U is the set of closed-loop strategies defined in the previous chapter.

3.2 Properties

In this section, we will discuss the existence and uniqueness of the solution for the corresponding

SDEs and BSDEs.
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3.2.1 Mean Field Controlled Stochastic Differential Equation

The existence and uniqueness of solution to (3.2) have been showed in the previous chapter. While,

the main difficulty we encounter here is still that the initial condition ξ is random, which leads to the

value function V (t, ξ) to be random. Moreover, unlike the case in the last chapter, the dependence

of V on ξ here is not only through its distribution Pξ. That is,

V (t, ξ) 6= V (t, x)|x=ξ,

and

V (t, ξ) 6= Ṽ (t,Pξ),

generally. To overcome this difficulty, we consider the following auxiliary equation for (3.2):


dX̄(s) = b(s, X̄(s),PX(s), u(s, X̄(s),PX(s)))ds

+σ(s, X̄(s),PX(s), u(s, X̄(s),PX(s)))dW (s), s ∈ [t, T ],

X̄(t) = x,

(3.6)

Proposition 3.2.1. Under (H1), for any (t, ξ) ∈ D, x ∈ Rn and any u ∈ U , there exist unique solu-

tionsX(·) = X(· ; t, ξ, u(·)) ∈ L2
F(Ω;C([t, T ];Rn)) and X̄(·) = X̄(·; t, x, ξ, u) ∈ L2

F(Ω;C([t, T ];Rn))

to equations (3.2) and (3.6) respectively. Moreover, the following estimates hold for X̄:

E
[

sup
s∈[t,T ]

|X̄(s; t, x, ξ, u)|2
]
6 K(1 + x2 + E[|ξ|2]), (3.7)

E
[

sup
s∈[t,T ]

|X̄(s; t, x1, ξ1, u)− X̄(s; t, x2, ξ2, u)|2
]

6 K(|x1 − x2|2 +W2
2 (Pξ1 ,Pξ2)(T − t)).

(3.8)
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Note that the constant K here depends on b, σ and u.

Proof. Note that (3.6) is actually a classical SDE since PX(s) can be considered as given. Then, the

existence and uniqueness of the solution to (3.6) under (H1) and the property (3.7) are standard,

see, for example, [27]. The proof of the property (3.8) needs also the following result.

Now, we rewrite the genuine dependence of PX(s) and X̄(s) on initial condition ξ. The result is

first proved in [10] without showing all important details. We give a complete proof here.

Proposition 3.2.2. Let X(·) = X(·; t, ξ, u) and X̄(·) = X̄(·; t, x, ξ, u) be the solutions to equa-

tions (3.2) and (3.6) respectively. Then, for any s ∈ [t, T ], the distribution PX(s) and the state

X̄(s) depend on ξ only through its distribution Pξ. We adopt the notation PX(s;t,ξ,u) = Pt,Pξ,us . And

it satisfies the following estimate:

W2(Pt1,Pξ1 ,us1 ,Pt2,Pξ2 ,us2 )

6 K(1 + ‖Pξ1‖2 + ‖Pξ1‖2)(W2(Pξ1 ,Pξ2) + |t2 − t1|
1
2 + |s2 − s1|

1
2 ),

(3.9)

for all (ti, ξi) ∈ D, si ∈ [ti, T ], i = 1, 2.

Proof. By the uniqueness of the SDE (3.2), it’s easy to see that, for any s ∈ [t, T ],

X̄(s; t, ξ, ξ, u) = X̄(s; t, x, ξ, u)|x=ξ = X(s; t, ξ, u).

First we show that, for any η, η′ ∈ L2
Ft(Ω;Rn) with Pη′ = Pη, it is true that X̄(s; t, η′, ξ, u) and

X̄(s; t, η, ξ, u) have the same distribution.

When η and η′ are both simple randome variables, say η =
m∑
i=1

xi1Ei and η′ =
m∑
i=1

xi1E′i , where

x′is are constants and the partition E ′is are Ft−measurable sets with P(Ei) = P(E ′i) for each
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i = 1, ...,m. Since

X̄(s; t, η, ξ, u) =
m∑
i=1

X̄(s; t, xi, ξ, u)1Ei ;

X̄(s; t, η′, ξ, u) =
m∑
i=1

X̄(s; t, xi, ξ, u)1E′i ;

Let A ∈ B(Rn), then

P(X̄(s; t, η, ξ, u) ∈ A)

= P(
m∑
i=1

X̄(s; t, xi, ξ, u)1Ei ∈ A)

=
m∑
i=1

P(X̄(s; t, xi, ξ, u)1Ei ∈ A)

=
m∑
i=1

P(X̄(s; t, xi, ξ, u) ∈ A ∩ Ei)

=
m∑
i=1

P(X̄(s; t, xi, ξ, u) ∈ A) · P(Ei)

=
m∑
i=1

P(X̄(s; t, xi, ξ, u) ∈ A) · P(E ′i)

= P(X̄(s; t, η′, ξ, u) ∈ A).

Generally, since Pη′ = Pη, there exists sequence {ηn} ({η′n}) of simple Ft−measurable random

variables that converges to η (η′) pointwisely as n → ∞ and Pη′n = Pηn , for all n. By (3.8), for

each s ∈ [t, T ],

X̄(s; t, ηn, ξ, u)
L2

→ X̄(s; t, η, ξ, u),

X̄(s; t, η′n, ξ, u)
L2

→ X̄(s; t, η′, ξ, u)

as n→∞. By Theorem 5.5 in [12], it implies that

lim
n→∞

W2(PX̄(s;t,ηn,ξ,u),PX̄(s;t,η,ξ,u)) = 0,
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and

lim
n→∞

W2(PX̄(s;t,η′n,ξ,u),PX̄(s;t,η′,ξ,u)) = 0.

Also, from the discussion for simple random variables, we have PX̄(s;t,ηn,ξ,u) = PX̄(s;t,η′n,ξ,u) for all

n. Since
W2(PX̄(s;t,η,ξ,u),PX̄(s;t,η′,ξ,u))

6W2(PX̄(s;t,η,ξ,u),PX̄(s;t,ηn,ξ,u)) +W2(PX̄(s;t,η′n,ξ,u),PX̄(s;t,η′,ξ,u)),

we have

PX̄(s;t,η,ξ,u) = PX̄(s;t,η′,ξ,u).

Now, it is easy to see that PX̄(s;t,ξ′,ξ,u) = PX(s;t,ξ,u) wheneven Pξ′ = Pξ.

By the discussion above and the definition of Warsserstein distance,

W2
2 (PX(s;t,ξ1,u),PX(s;t,ξ2,u))

=W2
2 (PX̄(s;t,ξ′1,ξ1,u),PX̄(s;t,ξ′2,ξ2,u))

6 E[|X̄(s; t, ξ′1, ξ1, u)− X̄(s; t, ξ′2, ξ2, u)|2]

6 KE[|ξ′1 − ξ′2|2 +

∫ s

t

W2
2 (PX(r;t,ξ1,u),PX(r;t,ξ2,u))dr],

for all ξ′i with Pξ′i = Pξi , i = 1, 2. So,

W2
2 (PX(s;t,ξ1,u),PX(s;t,ξ2,u)) 6 K(W2

2 (Pξ1 ,Pξ2) +

∫ s

t

W2
2 (PX(r;t,ξ1,u),PX(r;t,ξ2,u))dr),

for all s ∈ [t, T ], where the constant K depends only on L and s− t. By Gronwall’s inequality,

W2
2 (PX(s;t,ξ1,u),PX(s;t,ξ2,u)) 6 KW2

2 (Pξ1 ,Pξ2),

the distribution PX(s;t,ξ,u) depends on ξ only through its distribution Pξ. And we adopt the notation
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PX(s;t,ξ,u) = Pt,Pξ,us . Moreover,

E
[

sup
s∈[t,T ]

|X̄(s; t, x, ξ1, u1)− X̄(s; t, x, ξ2, u2)|2
]

6 KE[

∫ T

t

(W2
2PX(r;t,ξ1,u),PX(r;t,ξ2,u))dr]

6 KW2
2 (Pξ1 ,Pξ2)(T − t).

So, X̄(s; t, x, ξ, u) depends on ξ only through Pξ and we adopt the notation X̄(s; t, x, ξ, u) =

X̄(s; t, x,Pξ, u). To prove the estimate (3.9), note that

W2
2 (Pt1,Pξ1 ,us1 ,Pt2,Pξ2 ,us2 )

6 E[|X̄(s1; t1, ξ
′
1, ξ1, u)− X̄(s2; t2, ξ

′
2, ξ2, u)|2]

6 K(1 + E[|ξ1|2 + |ξ2|2])(E[|ξ′1 − ξ′2|2] +W2
2 (Pξ1 ,Pξ2) + |t2 − t1|+ |s2 − s1|)

6 K(1 + ‖Pξ1‖2
2 + ‖Pξ1‖2

2)(W2
2 (Pξ1 ,Pξ2) + |t2 − t1|+ |s2 − s1|),

where K depends on the Lipschitz constant of u.

Proposition 3.2.3. (Flow Property) Let X(·) = X(·; t, ξ, u) and X̄(·) = X̄(·; t, x, ξ, u) be the

solutions to equations (3.2) and (3.6) respectively. Then they satisfy the flow property:

X(s; t, ξ, u) = X(s; τ,X(τ ; t, ξ, u1), u2); (3.10)

its distribution process also satisfies the flow property that

Pt,Pξ,us = Pτ,P
t,Pξ,u1
τ ,u2

s , (3.11)
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X̄(s; t, x,Pξ, u) = X̄(s; τ, X̄(τ ; t, x,Pξ, u1),Pt,Pξ,u1τ , u2), (3.12)

for all 0 ≤ t ≤ τ ≤ s ≤ T , where u(·) = u1(·)1[t,τ) + u2(·)1[τ,T ].

Proof. The proof follows from the existence and uniqueness of solution to equations (3.2) and

(3.6).

3.2.2 Mean Field Controlled Backward Stochastic Differential Equation

The mean field BSDE we considered here is of McKean-Vlasov type. Similar to the discussion

in previous section, we know this is a very general framework. The discussions on different types

of mean field BSDE started in the last decade, see [8][9][37][20][1]. Note that the cost functional

considered in our problem is defined by

J(t, ξ;u(·)) ≡ Y (t; t, ξ, u), (3.13)

where Y is the solution to the mean field BSDE (3.4). Similar as the discussion for state dynamics,

we also introduce the auxiliary BSDE for (3.4),


dȲ (s) = −g(s, X̄(s),Pt,Pξ,us , Ȳ (s),PY (s), Z̄(s), u(s, X̄(s),Pt,Pξ,us ))ds

+Z̄(s)dW (s),

Ȳ (T ) = h(X̄(T ),Pt,Pξ,uT ),

(3.14)

where s ∈ [t, T ], X̄(s) = X̄(s; t, x,Pξ, u) and the coefficients h and g are deterministic functions,

for which we introduce the following assumptions:
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(H2’) The map g : [0, T ] × Rn × P2 × R × P2(R) × Rd × U → R and h : Rn × P2 → R are

continuous and there exists constant C > 0 such that

|g(t, x, µ, y, ν, z, u)|+ |h(x′, µ′)|

6 C
(
1 + |x|+ ‖µ‖2 + |y|+ ‖ν‖2 + |z|+ |x′|+ ‖µ′‖2

)
,

(3.15)

for all (t, x, µ, y, ν, z, u, x′, µ′) ∈ [0, T ]× Rn × P2 × R× P2(R)× Rd × U × Rn × P2, and

|g(t, x1, µ1, y1, ν1, z1, u1)− g(t, x2, µ2, y2, ν2, z2, u2)|

+|h(x
′

1, µ
′

1)− h(x
′

2, µ
′

2)|

6 C
(
|x1 − x2|+W2(µ1, µ2) + |x′1 − x

′

2|+W2(µ
′

1, µ
′

2)

+|u1 − u2|+ |y1 − y2|+W2(ν1, ν2)
)
,

(3.16)

for all (t, xi, µi, x
′
i, µ

′
i, ui) ∈ [0, T ]× Rn × P2 × Rn × P2 × U , i = 1, 2.

Proposition 3.2.4. Under (H2’), for any (t, ξ) ∈ D, x ∈ Rn and any u ∈ U , there exists a unique

solution (Y (·), Z(·)) = (Y (·; t, ξ, u), Z(·; t, ξ, u)) ∈ L2
F(Ω;C([t, T ];R))× L2

F(Ω;L2([t, T ];R)) to

(3.4) and (Ȳ (·), Z̄(·)) ∈ L2
F(Ω;C([t, T ];R)) × L2

F(Ω;L2([t, T ];R)) to (3.14) with the following

estimations:

E
[

sup
s∈[t,T ]

|Y (s; t, ξ, u)|2
]
6 C(1 + E[|ξ|2]). (3.17)

E
[

sup
s∈[t,T ]

|Y (s; t, ξ1, u)− Y (s; t, ξ2, u)|2
]
6 CE

[
|ξ1 − ξ2|2

]
. (3.18)

E
[

sup
s∈[t,T ]

|Ȳ (s; t, x, ξ, u)|2
]
6 C(1 + x2 + E[|ξ|2]). (3.19)
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E
[

sup
s∈[t,T ]

|Ȳ (s; t, x1, ξ1, u)− Ȳ (s; t, x2, ξ2, u)|2
]

6 C(|x1 − x2|2 +W2
2 (µ1, µ2) +

∫ T

t

W2
2 (PY1(r),PY2(r))dr),

(3.20)

where µi = Pξi , i = 1, 2. Moreover, note that

Y (s; t, ξ, u) = Ȳ (s; t, x, ξ, u)|x=ξ,

for all s ∈ [t, T ].

First we recall the following result:

Lemma 3.2.5. The BSDE

 dY (s) = −g0(s)ds+ Z(s)dW (s), s ∈ [t, T ],

Y (T ) = ζ.

(3.21)

has a unique adapted solution, provided that E
[
(
∫ T
t

∣∣g0(r)
∣∣dr)2

]
< ∞ and ζ ∈ L2(Ω,FWT ,R).

Further, there exists a constant K1 such that

Et
[

sup
t≤s≤T

∣∣Y (s)
∣∣2 +

∫ T

t

∣∣Z(s)
∣∣2ds] ≤ K1Et

[∣∣ζ∣∣2 + (

∫ T

t

∣∣g0(r)
∣∣dr)2

]
.
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Proof. The unique existence is the standard result of BSDE. We just show that the inequality holds.

Et
[

sup
t≤s≤T

∣∣Y (s)
∣∣2]

= Et
[

sup
t≤s≤T

∣∣Es[ζ +

∫ T

s

g0(r)dr
]∣∣2]

≤ Et
[

sup
t≤s≤T

∣∣Es[∣∣ζ∣∣+

∫ T

t

∣∣g0(r)
∣∣dr]∣∣2]

≤ 4Et
[
(
∣∣ζ∣∣+

∫ T

t

∣∣g0(r)
∣∣dr)2

]
≤ 4Et

[∣∣ζ∣∣2 + (

∫ T

t

∣∣g0(r)
∣∣dr)2

]
.

And,

Et
[ ∫ T

t

∣∣Z(s)
∣∣2ds] ≤ cEt

[
sup
t≤s≤T

∣∣ ∫ s

t

Z(r)dW (r)
∣∣2]

≤ cEt
[

sup
t≤s≤T

∣∣ ∫ T

s

Z(r)dW (r)
∣∣2]

≤ cEt
[∣∣ζ∣∣2 + sup

t≤s≤T

∣∣Y (s)
∣∣2 + sup

t≤s≤T

∣∣ ∫ T

s

g0(r)dr
∣∣2].

Combine with the first result, we have

Et
[

sup
t≤s≤T

∣∣Y (s)
∣∣2 +

∫ T

t

∣∣Z(s)
∣∣2ds] ≤ K1Et

[∣∣ζ∣∣2 + (

∫ T

t

∣∣g0(r)
∣∣dr)2

]
,

for some constant K1 > 0.

Now we give the proof of Proposition 3.2.4.
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Proof. First of all, we consider the following BSDE:

 dY (s) = −f(s, Y (s),PY (s), Z(s))ds+ Z(s)dW (s), s ∈ [t, T ],

Y (T ) = ζ,

(3.22)

where ζ ∈ L2(Ω,FWT ,R), f : Ω× [0, T ]×R×P2(R)×Rd → R is FW−progressively measurable

and satisfies: P−a.s.

|f(s, y1, ν1, z1)− f(s, y2, ν2, z2)| 6M
(
|y1 − y2|+W2(ν1, ν2) + |z1 − z2|

)
,

∀(s, yi, νi, zi) ∈ [0, T ]× R× P2 × Rd, i = 1, 2.

(3.23)

and

E[(

∫ T

0

|f(s, 0, δ0, 0)|ds)2] <∞, (3.24)

for some constant M > 0. Let (y(·), z(·)) ∈ L2
FW (Ω;C([t, T ];R)) × L2

FW (Ω;L2([t, T ];R)), then

f(s, y(s),Py(s), z(s)) satisfies the condition in Lemma 3.2.5. There exists uniquely (Y (·), Z(·)) ∈

L2
FW (Ω;C([t, T ];R))× L2

FW (Ω;L2([t, T ];R)) such that,

Y (s) = ζ +

∫ T

s

f(r, y(r),Py(r), z(r))dr −
∫ T

s

Z(r)dW (r).

This leads to the definition of a map Φ : (y(·), z(·)) 7→ (Y (·), Z(·)), which is proved to be a

contraction, since for any (yi, zi) ∈ L2
FW (Ω;C([t, T ];R)) × L2

FW (Ω;L2([t, T ];R)), let (Yi, Zi) =

Φ(yi, zi), for i = 1, 2, then

E
[

sup
t≤s≤T

∣∣Y1(s)− Y2(s)
∣∣2 +

∫ T

t

|Z1(s)− Z2(s)|2ds
]

≤ E
[
(

∫ T

t

f(s, y1(s),Py1(s), z1(s))− f(s, y2(s),Py2(s), z2(s))ds)2
]

≤ K1E
[

sup
t6s6T

|y1(s)− y2(s)|2(T − t)2 + (

∫ T

t

|z1(s)− z2(s)|2ds)(T − t)
]
.
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So, there exists a unique solution to the equation (3.22).

Generally, for the solution to the SDE (3.2), we have X(·) ∈ L2
F(Ω;C([t, T ];Rn)), where Fs =

FWs ∨G. By the Theorem 5.1 of [29], for any (y(·), z(·)) ∈ L2
F(Ω;C([t, T ];R))×L2

F(Ω;L2([t, T ];R)),

the following generalized BSDE


dỸ (s) = −g(s,X(s),Pt,Pξ,us , y(s),Py(s), z(s), u(s,X(s),Pt,Pξ,us ))ds

+Ỹ (s)dW (s)− dM̃(s),

Ỹ (T ) = h(X(T ),Pt,Pξ,uT ),

(3.25)

has a unique solution (Ỹ , Z̃, M̃), where (Ỹ , Z̃, M̃) ∈ L2
F(Ω;C([t, T ];R))×L2

F(Ω;L2([t, T ];R))×

L2
F(Ω;L2([t, T ];R)) and M̃ is an F−martingale orthogonal to W . Moreover, the following esti-

mate holds:

E
[

sup
s∈[t,T ]

|Ỹ (s)|2 +

∫ T

t

|Z̃(s)|2ds+ [M̃ ]T

]
6 CE

[ ∫ T

t

|g(r,X(r),Pt,Pξ,ur , y(r),Py(r), z(r), u(r,X(r),Pt,Pξ,ur ))|2)dr

+|h(X(T ),Pt,Pξ,uT )|2
]
.

(3.26)

Now we show that the map Φ : (y, z) 7→ (Ỹ , Z̃) is a contraction. Let (yi(·), zi(·)) ∈ L2
F(Ω;C([t, T ];R))×

L2
F(Ω;L2([t, T ];R)), and (Ỹi, Z̃i) = Φ(yi, zi), i = 1, 2. By (3.26), we have

E
[

sup
s∈[t,T ]

|Ỹ1(s)− Ỹ2(s)|2 +

∫ T

t

|Z̃1(s)− Z̃2(s)|2ds+ [M̃1 − M̃2]T

]
6 CE

[ ∫ T

t

|g(r,X(r),Pt,Pξ,ur , y1(r),Py1(r), z1(r), u(r,X(r),Pt,Pξ,ur ))

−g(r,X(r),Pt,Pξ,ur , y2(r),Py2(r), z2(r), u(r,X(r),Pt,Pξ,ur ))|2)dr
]

6 CE
[

sup
s∈[t,T ]

|y1(s)− y2(s)|2 +

∫ T

t

|z1(s)− z2(s)|2ds
]
(T − t)

54



Combine with the flow property of the BSDE, we can prove the existence and uniqueness of the

equation:


dY (s) = −g(s,X(s),Pt,Pξ,us , Y (s),PY (s), Z(s), u(s,X(s),Pt,Pξ,us ))ds

+Z(s)dW (s)− dM(s),

Y (T ) = h(X(T ),Pt,Pξ,uT ),

(3.27)

Now, we consider the auxiliary BSDE


dȲ (s) = −g(s, X̄(s),Pt,Pξ,us , Ȳ (s),PY (s), Z̄(s), u(s, X̄(s),Pt,Pξ,us ))ds

+Z̄(s)dW (s)− dM̄(s),

Ȳ (T ) = h(X̄(T ),Pt,Pξ,uT ).

(3.28)

Since X̄(s) is FWs −measurable, we have M̄(s) = M̄(s; t, x,Pξ, u) = 0. For any ξ ∈ L2
Ft(Ω;Rn),

there exists a sequence ξn =
mn∑
i=1

ηi1Eni , where ηi ∈ FWt and En
i ∈ G which is independent of W .

So, we have

M̄i(s) = M̄(s; t, ηi,Pξ, u) = 0,
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and

mi∑
i=1

Ȳi(s)1Eni

=

mi∑
i=1

h(X̄(T ; ηi),P
t,Pξ,u
T )1Ei −

mi∑
i=1

∫ T

t

Z̄i(s)dW (s)1Eni

+

mi∑
i=1

∫ T

t

g(s, X̄(s; ηi),P
t,Pξ,u
s , Ȳi(s),PY (s), Z̄i(s), u(s, X̄(s; ηi),P

t,Pξ,u
s ))ds1Eni

= h(X̄(T ;

mi∑
i=1

ηi1Eni ),Pt,Pξ,uT )−
∫ T

t

mi∑
i=1

Z̄i(s)1Eni dW (s)

+

∫ T

t

g(s, X̄(s;

mi∑
i=1

ηi1Eni ),Pt,Pξ,us ,

mi∑
i=1

Ȳi(s)1Eni ,PY (s),

mi∑
i=1

Z̄i(s)1Eni , u(s, X̄(s;

mi∑
i=1

ηi1Eni ),Pt,Pξ,us ))ds.

Then, by (3.26) and (3.8), we can show that (Ȳ (s; t, x, ξ, u)|x=ξ, Z̄(s; t, x, µ, u)|x=ξ) solves the

BSDE (3.27) in the sense that:

Ȳ (s; t, x, ξ, u)|x=ξ = Ȳ (s; t, ξ, ξ, u) = Y (s; t, ξ, µ, u),

Z̄(s; t, x, ξ, u)|x=ξ = Z̄(s; t, ξ, ξ, u) = Z(s; t, ξ, µ, u),

and

M = 0.

The proof of estimations (3.17)-(3.20) follows the idea of standard discussion for BSDE, while

note that the proof of (3.20) needs the following result on PY (s).

Proposition 3.2.6. Let Y (·) = Y (·; t, ξ, u) and Ȳ (·) = Ȳ (·; t, x, ξ, u) be the solutions to equations

(3.4) and (3.14) respectively. Then, for any s ∈ [t, T ], the distribution PY (s) and the state Ȳ (s)
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depend on ξ only through its distribution Pξ. We adopt the notation PY (s) = Pt,µ,uY,s and Ȳ (s) =

Ȳ (s; t, x, µ, u), where µ = Pξ.

Proof. Apply the discussion in Proposition 3.2.2 for Ȳ , we have for any η, η′ ∈ L2
Ft(Ω;Rn) with

Pη′ = Pη, it is true that Ȳ (s; t, η′, ξ, u) and Ȳ (s; t, η, ξ, u) have the same distribution. Then, by

(3.20), we have

W2
2 (PY (s;t,ξ1,u),PY (s;t,ξ2,u))

=W2
2 (PȲ (s;t,ξ′1,ξ1,u),PȲ (s;t,ξ′2,ξ2,u))

6 E[|Ȳ (s; t, ξ′1, ξ1, u)− Ȳ (s; t, ξ′2, ξ2, u)|2]

6 KE[|ξ′1 − ξ′2|2 +W2
2 (µ1, µ2) +

∫ T

s

W2
2 (PY (r;t,ξ1,u),PY (r;t,ξ2,u)dr]

,

for all ξ′i with Pξ′i = Pξi , i = 1, 2. By Burkholder-Davis-Gundy Inequality [27][54],

W2
2 (PY (s;t,ξ1,u),PY (s;t,ξ2,u)) 6 K(W2

2 (Pξ1 ,Pξ2) +

∫ s

t

W2
2 (PY (r;t,ξ1,u),PY (r;t,ξ2,u))dr),

for all s ∈ [t, T ], where the constant K depends only on L and s− t. By Gronwall’s inequality,

W2
2 (PY (s;t,ξ1,u),PY (s;t,ξ2,u)) 6 KW2

2 (Pξ1 ,Pξ2),

the distribution PY (s;t,ξ,u) depends on ξ only through its distribution Pξ. And we adopt the notation

PT (s;t,ξ,u) = Pt,Pξ,uY,s . Moreover,

E
[

sup
s∈[t,T ]

|Ȳ (s; t, x, ξ1, u1)− Ȳ (s; t, x, ξ2, u2)|2
]

6 KE[W2
2 (Pξ1 ,Pξ2) +

∫ T

t

(W2
2PY (r;t,ξ1,u),PY (r;t,ξ2,u))dr]

6 KW2
2 (Pξ1 ,Pξ2).
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So, Ȳ (s; t, x, ξ, u) depends on ξ only through Pξ and we adopt the notation Ȳ (s; t, x, ξ, u) =

Ȳ (s; t, x,Pξ, u)

Proposition 3.2.7. (Flow Property) The solutions to (3.27) and (3.28), Y (s; t, ξ, u) and Ȳ (s; t, x, µ, u)

satisfy the following property: for any τ ∈ [t, T ]

Y (s) = Ŷ (s), s ∈ [t, τ ], (3.29)

where (Y, Z) is the adapted solution to (3.4) and (Ŷ , Ẑ) is the adapted solution to


dŶ (s) = −g(s,X(s),Pt,Pξ,us , Ŷ (s),PŶ (s), Ẑ(s; ξ), u(s,X(s),Pt,Pξ,us ))ds

+Ẑ(s; ξ)dW (s),

Ŷ (τ) = Y (τ).

(3.30)

And,

Ȳ (s; t, x, µ, u) = Ỹ (s), s ∈ [t, τ ]. (3.31)

where (Ȳ , Z̄) is the adapted solution to (3.14) and (Ỹ , Z̃) is the adapted solution to


dỸ (s) = −g(s, X̄(s),Pt,Pξ,us , Ỹ (s),PY (s), Z̃(s; ξ), u(s, X̄(s),Pt,Pξ,us ))ds

+Z̃(s; ξ)dW (s),

Ỹ (τ) = Ȳ (τ).

(3.32)

Proof. It can be proved by the uniqueness of the solution to equations (3.30) and (3.32).

Theorem 3.2.8. (Comparison Theorem) Let ζi ∈ L2
FT (Ω;Rn), gi(·, 0,P{0}, 0) ∈ L2

F(Ω;C([t, T ];Rn)),

i = 1, 2, satisfy: ζ1 > ζ2, g1(s, y, ν, z) > g2(s, y, ν, z), dP×ds−a.s. Let (Yi, Zi) ∈ L2
F(Ω;C([t, T ];R))×
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L2
F(Ω;L2([t, T ];R)) be the solution to the following BSDE:


dYi(s) = −gi(s, Yi(s),PYi(s), Zi(s))ds+ Zi(s)dW (s),

Yi(T ) = ζi,

(3.33)

i = 1, 2. Furthermore, gi : Ω × [0, T ] × R × P2(R) × Rd → R have bounded first-order partial

derivatives with respect to (y, z) and have bounded derivative with respect to ν, that is, for all

s ∈ [0, T ]

0 6 ∂µgi(s, y, ν, z)(·) ≤ C. (3.34)

P−a.s., a.e. Then Y1(t) > Y2(t), P−a.s.

Proof. See [20].

Theorem 3.2.9. (Comparison Theorem) Let ζi ∈ L2
FT (Ω;Rn), gi(·, 0,P{0}, 0) ∈ L2

F(Ω;C([t, T ];Rn)),

i = 1, 2, satisfy the same conditions as in Theorem 3.2.8. Let (Ȳi, Z̄i) ∈ L2
F(Ω;C([t, T ];R)) ×

L2
F(Ω;L2([t, T ];R)) be the solution to the following BSDE:


dȲi(s) = −gi(s, Ȳi(s),PYi(s), Z̄i(s))ds+ Z̄i(s)dW (s),

Ȳi(T ) = ζi,

(3.35)

where Yi is given by (3.33), i = 1, 2. Then Ȳ1(t) > Ȳ2(t), P−a.s.
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Proof. Let δȲ (s) = Ȳ1(s)− Ȳ2(s), δZ̄(s) = Z̄1(s)− Z̄2(s), and δζ = ζ1 − ζ2, then

δȲ (s) = δζ +

∫ T

s

(g1(r, Ȳ1(r),PY1(r), Z̄1(r))− g2(r, Ȳ2(r),PY2(r), Z̄2(r)))dr

−
∫ T

s

δZ̄(r)dW (r)

= δζ +

∫ T

s

(Ā(r)δȲ (r) + Ẽ[B̄(r)δỸ (r)] + C̄(r)δZ̄(r) + φ(r))dr

−
∫ T

s

δZ̄(r)dW (r),

where

Ā(r) =

∫ 1

0

∂yg1(r, Ȳ2(r) + λδȲ (r),PY1(r), Z̄1(r))dλ,

B̄(r) =

∫ 1

0

∂µg1(r, Ȳ2(r),PY2(r)+λδY (r), Z̄1(r))(Ỹ2(r) + λδỸ (r))dλ,

C̄(r) =

∫ 1

0

∂zg1(r, Ȳ2(r),PY1(r), Z̄2(r) + λδZ̄(r))dλ,

are all bounded and

φ(r) = g1(r, Ȳ2(r),PY2(r), Z̄2(r))− g2(r, Ȳ2(r),PY2(r), Z̄2(r)) > 0.

By the result of the last theorem, we have Ẽ[B̄(r)δỸ (r)] + φ(r) > 0. By the comparison for

standard BSDE, we have the desired result.

Now we introduce the following stochastic optimal control problem.

Problem (CR). For given (t, ξ) ∈ D, find a u∗ ∈ U such that

J(t, ξ;u∗) = essinf
u(·)∈U

J(t, ξ;u) ≡ V (t, ξ). (3.36)
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Note that, by definition of essential infimum, V (t, ξ) is a random variable such that,

J(t, ξ;u) ≥ V (t, ξ), P− a.s.,

and for any η that satisfies the property above,

V (t, ξ) ≥ η, P− a.s..

Any u∗ ∈ U satisfying (3.36) is called an optimal strategy of Problem (CR), and (t, ξ) 7→ V (t, ξ)

is called the value function of Problem (CR). Note that V is a function defined on D, generally,

it is not in a Markovian form, i.e., V (t, ξ) 6= V (t, x)|x=ξ. Similarly, we introduce the auxiliary

problem:

Problem (Cau). For given (t, x, µ) ∈ [0, T ]× Rn × P2(Rn), find a u∗ ∈ U such that

J̄(t, x, µ;u∗) = inf
u∈U

J̄(t, x, µ;u) ≡ V̄ (t, x, µ), (3.37)

where the auxiliary cost functional is

J̄(t, x, µ;u) = Ȳ (t; t, x, µ, u), (3.38)

Ȳ is the solution to the auxiliary BSDE (3.14).

Proposition 3.2.10. Suppose that there exists an optimal control u∗ such that

J̄(t, x, µ;u∗) = V̄ (t, x, µ), (3.39)

for all x ∈ Rn, then

V (t, ξ) = V̄ (t, x, µ)|x=ξ. (3.40)
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Proof. Since the adapted solution (Ȳ , Z̄) to the equation (3.14) is FX̄−adapted, where F X̄s =

σ{X̄(r) : t 6 r 6 s}. So, V̄ : [0, T ]×Rn×P2 → R is a deterministic function. By the definition

of essential infimum, it’s easy to show that

V (t, ξ) ≥ V̄ (t, ξ, µ).

On the other hand, by (3.39), we have

J̄(t, ξ, µ, u∗) = V̄ (t, ξ, µ) = J(t, ξ, u∗) ≥ V (t, ξ).

3.3 Dynamic Programming Principle

Theorem 3.3.1. (Dynamic Programming Principle) For each τ ∈ [t, T ], the value function V̄ (t, x, µ)

satisfies the following equation:

V̄ (t, x, µ) > inf
u∈U
{Ỹ (t; t, x, µ, u)}. (3.41)

where Ỹ is the solution of the following BSDE:

Ỹ (t; t, x, µ, u) = V̄ (τ, X̄(τ ; t, x, µ, u),Pt,µ,uτ )−
∫ τ

t

Z̃(r)dW (r)

+

∫ τ

t

g(r, X̄(r),Pt,µ,ut , Ỹ (r),PŶ (r), Z̃(r), u(r, X̄(r),Pt,µ,ur ))dr,

(3.42)

62



where Ŷ is the solution to:

Ŷ (t; t, ξ, µ, u) = V̄ (τ,X(τ ; t, ξ, u),Pt,µ,uτ )} −
∫ τ

t

Ẑ(r)dW (r)

+

∫ τ

t

g(r,X(r),Pt,µ,ut , Ŷ (r),PŶ (r), Ẑ(r), u(r,X(r),Pt,µ,ur ))dr,

(3.43)

for s ∈ [t, τ ], where τ ∈ [t, T ]. Suppose that for each (t, µ) ∈ [0, T ]× P2, there exists an optimal

control u∗ such that

J̄(t, x, µ, u∗) = V̄ (t, x, µ), (3.44)

for all x ∈ Rn. Then,

V̄ (t, x, µ) 6 inf
u∈U
{Ỹ (t; t, x, µ, u)}. (3.45)

In other words, the dynamic programming principle holds for Problem (Cau).

Proof. By definition, we have

Ȳ (t; t, x, µ, u)

= h(X̄(T ),Pt,µ,uT )−
∫ T

t

Z̄(r)dW (r)

+

∫ T

t

g(r, X̄(r),Pt,µ,ut , Ȳ (r),Pt,µ,uY,r , Z̄(r), u(r, X̄(r),Pt,µ,ur ))dr,

= h(X̄(T ),Pt,µ,uT )−
∫ T

τ

Z̄(r)dW (r)q

+

∫ T

τ

g(r, X̄(r),Pt,µ,ur , Ȳ (r),Pt,µ,uY,r , Z̄(r), u(r, X̄(r),Pt,µ,ur ))dr,

−
∫ τ

t

Z̄(r)dW (r) +

∫ τ

t

g(r, X̄(r),Pt,µ,ur , Ȳ (r),Pt,µ,uY,r , Z̄(r), u(r, X̄(r),Pr,µ,ur ))dr

= Ȳ (τ ; τ, X̄(τ ; t, x, µ, u1),Pt,µ,u1τ , u2)−
∫ τ

t

Z̄(r)dW (r)

+

∫ τ

t

g(r, X̄(r),Pt,µ,u1t , Ȳ (r),Pt,µ,u1Y,r , Z̄(r), u1(r, X̄(r),Pt,µ,u1r ))dr,

63



where u1 = u|[t,τ ], u2 = u|(τ,T ]. Since

V̄ (τ, X̄(τ ; t, x, µ, u1),Pt,µ,u1τ ) 6 inf
u2∈U[τ,T ]

{Ȳ (τ ; τ, X̄(τ ; t, x, µ, u1),Pt,µ,u1τ , u2)}, (3.46)

and the comparison theorem 3.2.8, we have

Ŷ (s; t, ξ, u1) 6 Y (s; t, ξ, u), (3.47)

for s ∈ [t, τ ]. By applying the comparison theorem 3.2.9, we have

Ỹ (t; t, x, µ, u1) 6 Ȳ (t; t, x, µ, u1), (3.48)

for any u1 ∈ U[t,τ ]. So,

inf
u1∈U[t,τ ]

{Ỹ (t; t, x, µ, u1)} 6 V̄ (t, x, µ).

On the other hand, by assumption, there exists a control u∗2 ∈ U[τ,T ], such that

Ȳ (τ ; τ, X̄(τ ; t, x, µ, u1),Pt,µ,u1τ , u∗2) = V̄ (τ, X̄(τ ; t, x, µ, u1),Pt,µ,u1τ ),

then

Y (τ ; τ,X(τ ; t, ξ, u1),Pt,µ,u1τ , u∗2) = V (τ, X̄(τ ; t, ξ, u1),Pt,µ,u1τ ).

So,

Ȳ (t; t, x, µ, u) = Ỹ (t; t, x, µ, u1) > V̄ (t, x, µ),

for all u1 ∈ U[t,T ], and

V̄ (t, x, µ) 6 inf
u∈U[t,τ ]

Ỹ (t; t, x, µ, u1). (3.49)
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3.4 HJB Equation

In this section, we introduce the following PDE:

V̄s(s, x, µ) + inf
u∈U
{
∫
Rn
H(s, x, x̄, µ, V̄ (s, x, µ),PV̄ (s,ξ,µ), V̄x(s, x, µ), ∂µV̄ (s, x, µ)(x̄),

V̄xx(s, x, µ), ∂w∂µV̄ (s, x, µ)(x̄), u, u′)µ(dx̄)} = 0,

(3.50)

for s ∈ [t, T ], with terminal condition V̄ (T, x, µ) = h(x, µ), where

H : [0, T ]× Rn × Rn × P2 × R× P2(R)× Rn × Rn × Rn×n × Rn×n × U × U → R

is defined by letting

H(s, x, x̄, µ, y, ν, p, p̄, A, Ā, u, u′)

= p · b(s, x, µ, u) + p̄ · b(s, x̄, µ, u′) +
1

2
tr [A · σσT (s, x, µ, u) + Ā · σσT (s, x̄, µ, u′)]

+g(s, x, µ, y, ν, p · σ(s, x, µ, u), u).

(3.51)

Define the map

H : [0, T ]× Rn × P2 × R× P2(R)× Rn × C1(Rn)× Rn×n × C(Rn;Rn)× U → R

by letting:

H(s, x, µ, y, ν, p, p̄(·), A, Ā(·), u)

=

∫
Rn
H(s, x, x̄, µ, y, ν, p, p̄(x̄), A, Ā(x̄), u(s, x, µ), u(s, x̄, µ))µ(dx̄).

(3.52)
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Let

H(s, x, µ, y, ν, p, p̄(·), A, Ā(·)) = inf
u∈U
{H(s, x, µ, y, ν, p, p̄(·), A, Ā(·), u)},

then (3.50) could be rewritten as

V̄s(s, x, µ) + H(s, x, µ, V̄ (s, x, µ),PV̄ (s,ξ,µ), V̄x(s, x, µ), ∂µV̄ (s, x, µ)(·),

+V̄xx(s, x, µ), ∂w∂µV̄ (s, x, µ)(·)) = 0.

(3.53)

3.4.1 Verification Theorem

Theorem 3.4.1. (Verification Theorem) Suppose the equation (3.50) has a classical solution ψ and

there exists u∗ ∈ U such that

H(s, x, µ, ψ(s, x, µ),Pψs(s,ξ,µ), ψx(s, x, µ), ∂µψ(s, x, µ)(·), ψxx(s, x, µ),

∂w∂µψ(s, x, µ)(·), u∗)

= H(s, x, µ, ψ(s, x, µ),Pψs(s,ξ,µ), ψx(s, x, µ), ∂µψ(s, x, µ)(·), ψxx(s, x, µ),

∂w∂µψ(s, x, µ)(·)),

(3.54)

for all (s, x, µ) ∈ [0, T ] × Rn × P2. Then ψ is the value function of the problem, i.e., ψ = V̄ .

Furthermore, such defined u∗ is an optimal strategy.

Proof. Let X∗(s) = X(s; t, ξ, u∗) and X̄∗(s) = X̄(s; t, x, µ, u∗). By applying Itô’s formula (see
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[10]) to the process ψ(s, X̄(s),PX(s)), we have

ψ(s, X̄∗(s),Pt,µ,u∗s ) = h(X̄∗(T ),Pt,µ,u
∗

T )−
∫ T

s

{∂rψ(r, X̄∗(r),Pt,µ,u∗r )

+∂xψ(r, X̄∗(r),Pt,µ,u∗r )b(r, X̄∗(r),Pt,µ,u∗r , u∗(r, X̄∗(r),Pt,µ,u∗r ))

+
1

2
tr
[
∂xxψ(r, X̄∗(r),Pt,µ,u∗r )σσT (r, X̄∗(r),Pt,µ,u∗r , u∗(r, X̄∗(r),Pt,µ,u∗r ))

]
+Ẽ
[
∂µψ(r, X̄∗(r),Pt,µ,u∗r )(X̃∗(r; t, ξ̃, u∗))b(r, X̃∗(r; t, ξ̃, u∗),Pt,µ,u∗r ,

u∗(r, X̃∗(r; t, ξ̃, u∗),Pt,µ,u∗r )) +
1

2
tr
[
∂ω∂µψ(r, X̄∗(r),Pt,µ,u∗r )(X̃∗(r; t, ξ̃, u∗))·

σσT (r, X̃∗(r; t, ξ̃, u∗),Pt,µ,u∗r , u∗(r, X̃∗(r; t, ξ̃, u∗),Pt,µ,u∗r ))
]]
}.

Since ψ solves (3.50), we have

ψ(t, x, µ) = Ȳ (t; t, x, µ, u∗) > V̄ (t, x, µ).

On the other hand, let u ∈ U . There exists f : [0, T ]× Rn × P2 → [0,∞), such that

H(s, x, µ, ψ(s, x, µ),Pψs(s,ξ,µ), ψx(s, x, µ), ∂µψ(s, x, µ)(·), ψxx(s, x, µ),

∂w∂µψ(s, x, µ)(·), u) + ψs(s, x, µ)− f(s, x, µ) = 0.

Combine with Ito’s formula, we have

ψ(t, x, µ) =
ˆ̂
Y (t; t, x, µ, u),

where ˆ̂
Y (t; t, x, µ, u) is the solution to the following BSDE

ˆ̂
Y (t; t, x, µ, u) = h(X̄(T ; t, x, µ, u),Pt,µ,uT )−

∫ T

t

ˆ̂
Z(r)dW (r)

+

∫ T

t

g(r, X̄(r),Pt,µ,ur ,
ˆ̂
Y (r),PŶ (r),

ˆ̂
Z(r), u(r, X̄(r),Pt,µ,ur )) + f(r, X̄(r),Pt,µ,ur )dr,

(3.55)
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and Ŷ is the solution to the BSDE:

Ŷ (t; t, x, µ, u) = h(X(T ; t, ξ, u),Pt,µ,uT )−
∫ T

t

Ẑ(r)dW (r)

+

∫ T

t

g(r,X(r),Pt,µ,ur , Ŷ (r),PŶ (r), Ẑ(r), u(r,X(r),Pt,µ,ur )) + f(r,X(r),Pt,µ,ur )dr,

(3.56)

By comparison theorem, we have

ψ(t, x, µ) ≤ Ȳ (t; t, x, µ, u),

for all u ∈ U . Then we have the desired result.

Remark 3.4.2. Note that the HJB equation related to the classical recursive optimal control prob-

lem is a special case of (3.53). That is, let b(s, x, µ, u) = b(s, x, u), σ(s, x, µ, u) = σ(s, x, u),

g(s, x, µ, y, ν, z, u) = g(s, x, y, z, u) and h(x, µ) = h(x). Then, (3.53) becomes (1.12).

Also, the problem stated in Chapter 2 can also be covered here. Let g(s, x, µ, y, ν, z, u) = g(s, x, µ, u)

and VF (t, µ) denote the value function in Chapter 2, then

VF (t, µ) = E
[
V̄ (t, ξ, µ)

]
.

By definition,

∂µVF (t, µ)(x) = V̄x(t, x, µ) + ∂µV̄ (t, ξ, µ)(x),

and

∂ω∂µVF (t, µ)(x) = V̄xx(t, x, µ) + ∂ω∂µV̄ (t, ξ, µ)(x).

Let x = ξ in (3.53) and apply E to both sides, we can recover the HJB equation (2.28).
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3.4.2 Necessary Condition

Theorem 3.4.3. (Necessary Condition for Optimal Strategy) Suppose V̄ ∈ C1,2,2 and û ∈ U is an

optimal strategy, then it solves the following equation:

F (x, û(x)) +

∫
Rn
G(x̄, x, û(x))µ(dx̄) = 0, (3.57)

where

F (x, û(x)) = V̄x(s, x, µ) · bu(s, x, µ, û(s, x, µ)) + V̄xx(s, x, µ) · σσu(s, x, µ, û(s, x, µ))

+gz(s, x, µ, V̄ (s, x, µ),PV̄ (s,ξ,µ), V̄x(s, x, µ) · σ(s, x, µ, û(s, x, µ)),

û(s, x, µ)) · V̄x(s, x, µ) · σu(s, x, µ, û(s, x, µ))

+gu(s, x, µ, V̄ (s, x, µ),PV̄ (s,ξ,µ), V̄x(s, x, µ) · σ(s, x, µ, û(s, x, µ)), û(s, x, µ)),

(3.58)

and

G(x̄, x, û(x)) = ∂µV̄ (s, x̄, µ)(x) · bu(s, x, µ, û(s, x, µ))

+∂w∂µV̄ (s, x̄, µ)(x) · σσu(s, x, µ, û(s, x, µ)).

(3.59)

Proof. Suppose that û ∈ U is an optimal strategy, then Ȳ (t; t, x, µ, û) = V̄ (t, x, µ). Since V̄ ∈

C1,2,2, we have

V̄s(s, x, µ) + V̄x(s, x, µ)b(s, x, µ, û(s, x, µ)) + E
[
∂µV̄ (s, x, µ)(ξ)b(s, ξ, µ, û(s, ξ, µ))

]
+

1

2
tr
[
V̄xx(s, x, µ)σσT (s, x, µ, û(s, x, µ)) + E

[
∂w∂µV̄ (s, x, µ)(ξ)σσT (s, ξ, µ, û(s, ξ, µ))

]]
+g(s, x, µ, V̄ (s, x, µ),PV̄ (t,ξ,µ), V̄x(s, x, µ)σ(s, x, µ, û(s, x, µ)), û(s, x, µ)) = 0,

(3.60)
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V̄ is the classical solution to (3.53) and û is a minimizer of

∫
Rn
H(s, x, x̄, µ, V̄ (s, x, µ),PV̄ (s,ξ,µ), V̄x(s, x, µ), ∂µV̄ (s, x, µ)(x̄), V̄xx(s, x, µ),

∂w∂µV̄ (s, x, µ)(x̄), V̄x(s, x, µ) · σ(s, x, µ, u), u)µ(dx̄).

The first order variational condition gives:

F (x, û(x)) · δ(x) +

∫
Rn
G(x, x̄, û(x̄)) · δ(x̄)µ(dx̄) = 0, (3.61)

for all δ ∈ U . Take integral with respect to x on both sides, we have

∫
Rn

∫
Rn

(F (x̄, û(x̄)) +G(x, x̄, û(x̄))) · δ(x̄)µ(dx̄)µ(dx) = 0, (3.62)

or, ∫
Rn

[F (x̄, û(x̄)) +

∫
Rn
G(x, x̄, û(x̄))µ(dx)] · δ(x̄)µ(dx̄) = 0, (3.63)

for all δ ∈ U . We have (3.57).

Remark 3.4.4. For the classical recursive stochastic optimal control problem, we have G ≡ 0 and

(3.57) becomes F (x, û(x)) = 0, which is the first order variational condition for the minimizer of

Hamiltonian.

For the mean field optimal control problem in Chapter 2, we have F ≡ 0 and (3.57) becomes∫
Rn G(x̄, x, û(x))µ(dx̄) = 0. This also corresponds to the first order necessary condition for the

minimizer of the Hamiltonian there.
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3.4.3 Viscosity Solution

If an HJB equation has classical solution then this solution must be the value function. But, some

examples tell us that value function may not be differentiable, thus it cannot be the classical so-

lution of the HJB equation. Also, the HJB equation may have no classical solution in generaly.

To overcome this difficulty, the notion of viscosity solution (due to Crandall–Lions 1980s [33]) is

introduced. Also see [13][53][11]. Now, we introduce the following definition.

Definition 3.4.5. (Viscosity Solution) A continuous function ψ : [0, T ]×Rn ×P2 → R is called a

viscosity supersolution of equation (3.53) if,

ψ(t, x, µ) > h(x, µ),

and, for any test function ϕ ∈ C1,2,2([0, T ]×Rn ×P2), whenever ψ − ϕ attains a local minimum

at (t, x, µ) ∈ [0, T ]× Rn × P2, we have

ϕt(t, x, µ) + H(t, x, µ, ϕ(t, x, µ),Pϕ(t,ξ,µ), ϕx(t, x, µ), ∂µϕ(t, x, µ)(·), ϕxx(t, x, µ),

∂w∂µϕ(t, µ)(·)) 6 0.

(3.64)

It is called a viscosity subsolution if in (3.64) the inequality ”6” is replaced by ”>” and ”local

minimum” is replaced by ”local maximum”.

We first talk about the continuity of the value function V̄ .

Lemma 3.4.6. The value function V̄L(t, x, µ) ≡ inf
u∈UL

J̄(t, x, µ) is continuous. Also,

lim
L→∞

V̄L(t, x, µ) = V̄ (t, x, µ).

Proof. The discussion is similar to Proposition 2.3.6.
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Theorem 3.4.7. The value function V̄L is a viscosity solution to (3.53), for which the infimum is

taken for u ∈ UL.

Proof. Let φ ∈ C1,2,2([0, T ]×Rn×P2(Rn);R). Define the function F : [0, T ]×Rn×P2(Rn)×

R× P2(R)× Rd × U → R by letting

F (s, x, µ, y, ν, z, u)

= φs(s, x, µ) + φx(s, x, µ)b(s, x, µ, u) + E[∂µφ(s, x, µ)(ξ)b(s, ξ, µ, u)]

+
1

2
tr[φxx(s, x, µ)σσT (s, x, µ, u)] +

1

2
E[∂w∂µφ(s, x, µ)(ξ)σσT (s, ξ, µ, u)]

+g(s, x, µ, y + φ(s, x, µ), ν, z + φx(s, x, µ)σ(s, x, µ, u), u)

= φs(s, x, µ) +H(s, x, µ, y + φ(s, x, µ), ν, φx(s, x, µ), ∂µφ(s, x, µ)(·),

φxx(s, x, µ), ∂w∂µφ(s, x, µ)(·), u).

(3.65)

Let δ > 0.

Step 1: Let’s consider following BSDE:


dȲ1(s) = −F (s, X̄(s),PX(s), Ȳ1(s),PY1(s)+φ(s,X(s),PX(s)), Z̄1(s),

u(s, X̄(s),PX(s)))ds+ Z̄1(s)dW (s),

Ȳ1(t+ δ) = 0,

(3.66)

where s ∈ [t, t+ δ], Y1 is defined by the following BSDE:


dY1(s) = −F (s,X(s),PX(s), Y1(s),PY1(s)+φ(s,X(s),PX(s)), Z1(s),

u(s,X(s),PX(s)))ds+ Z1(s)dW (s),

Y1(t+ δ) = 0.

(3.67)
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Then Y1(s) = Ỹ1(s)− φ(s,X(s),PX(s)), where Ỹ1 is given by the BSDE:


dỸ1(s) = −g(s,X(s),PX(s), Ỹ1(s),PỸ1(s), Z̃1(s), u(s,X(s),PX(s)))ds

+Z̃1(s)dW (s),

Ỹ1(t+ δ) = φ(t+ δ,X(t+ δ),PX(t+δ)).

(3.68)

And Ȳ1(s) = ˜̃Y1(s)− φ(s, X̄(s),PX(s)), where ˜̃Y1 is given by the BSDE:


d ˜̃Y1(s) = −g(s, X̄(s),PX(s),

˜̃Y1(s),PỸ1(s),
˜̃Z1(s), u(s, X̄(s),PX(s)))ds

+ ˜̃Z1(s)dW (s),

˜̃Y1(T ) = φ(t+ δ, X̄(t+ δ),PX(t+δ)).

(3.69)

The above result can be proved by applying the Ito formula to φ(s, X̄(s),PX(s)) and φ(s,X(s),PX(s))

and the uniqueness of the solution to mean field BSDEs.

Step 2: We show

|Ȳ1(t)− Ȳ2(t)| ≤ Cδρ(δ), (3.70)

E[|Y1(t)− Y2(t)]| ≤ Cδρ(δ), (3.71)

where Ȳ2 is the solution to the following BSDE:


dȲ2(s) = −F (s, x, µ, Ȳ2(s),PY2(s)+φ(s,ξ,µ), Z̄2(s), u(s, x, µ))ds

+Z̄2(s)dW (s),

Ȳ2(t+ δ) = 0,

(3.72)
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where s ∈ [t, t+ δ], and Y2 is defined by the following BSDE:


dY2(s) = −F (s, ξ, µ, Y2(s),PY2(s)+φ(s,ξ,µ), Z2(s), u(s, ξ, µ))ds

+Z2(s)dW (s),

Y2(t+ δ) = 0,

(3.73)

and

Proof. (for step 2) By Lemma 3.2.5, we have

E[|Y1(t)− Y2(t)|2 +

∫ t+δ

t

|Z1(r)− Z2(r)|2dr]

6 CE
[
(

∫ t+δ

t

φs(r,X(r),PX(r))− φs(r, ξ, µ)

+φx(r,X(r),PX(r))b(r,X(r),PX(r), u(r,X(r),PX(r)))

−φx(r, ξ, µ)b(r, ξ, µ, u(r, ξ, µ))

+Ẽ[∂µφ(r,X(r),PX(r))(X̃(r))b(r, X̃(r),PX(r), u(r, X̃(r),PX(r)))

−∂µφ(r, ξ, µ)(ξ̃)b(r, ξ̃, µ, u(r, ξ̃, µ))]

+
1

2
tr [φxx(r,X(r),PX(r))σσ

T (r,X(r),PX(r), u(r,X(r),PX(r)))

−φxx(r, ξ, µ)σσT (r, ξ, µ, u(r, ξ, µ))]

+
1

2
Ẽ
[
tr [∂w∂µφ(r,X(r),PX(r))(X̃(r))σσT (r, X̃(r),PX(r))

−∂w∂µφ(r, ξ, µ)(ξ̃)σσT (r, ξ̃, µ)]
]

+g(r,X(r),PX(r), Y1(r) + φ(r,X(r),PX(r)),PY1(r),

Z1(r) + φx(r,X(r),PX(r))σ(r,X(r),PX(r)), u(r,X(r),PX(r)))−

g(r, ξ, µ, Y2(r) + φ(r, ξ, µ,PY2(r), Z2(r) + φx(r, ξ, µ)σ(r, ξ, µ, u(r, ξ, µ)))))2
]

6 CE
[
(

∫ t+δ

t

L(r)|X(r)− ξ|dr)2
]
,
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for some L(r) with
∫ t+δ
t
|L(r)|2dr < ∞. Since E

[
|X(r) − ξ|2

]
→ 0, as r → t, we have the

desired result (3.71). The proof for (3.70) follows a similar discussion.

Step 3: Now we prove that Ȳ0(t) = inf
u∈U
{Ȳ2(t)}, where


dȲ0(s) = −F0(s, x, µ, Ȳ0(s),PY0(s)+φ(s,ξ,µ), 0)ds,

Ȳ0(t+ δ) = 0,

(3.74)

where F0(s, x, µ, y, ν, z) = inf
u∈U
{F (s, x, µ, y, ν, z, u)} and Y0(s) is the solution to the following

BSDE: 
dY0(s) = −F0(s, ξ, µ, Y0(s),PY0(s)+φ(s,ξ,µ), 0)ds,

Y0(t+ δ) = 0.

(3.75)

By the definition of F0 and comparison theorem, we have Ȳ0(t) 6 infu∈U{Ȳ2(t)}. On the other

hand, let u∗ ∈ U such that F (s, x, µ, y, ν, z, u∗) = F0(s, x, µ, y, ν, z), then we have

Ȳ0(t) = Ȳ2(t;u∗) > inf
u∈U
{Ȳ2(t)}.

Step 4: Let (t, x, µ) be a minimum point of V̄ − φ, without loss of generality, suppose that

V̄ (s′, x′, µ′) > φ(s′, x′, µ′), for any (s′, x′, µ′) ∈ [0, T ] × Rn × P2. By the dynamic program-

ming principle and the comparison theorem, we have

φ(t, x, µ) > inf
u∈U
{ ˜̃Y1(t)},

where ˜̃Y1(t) is decided by the BSDE (3.68). Since Ȳ1(t) = ˜̃Y1(t) − φ(t, X̄(t),PX(t)), we have
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inf
u∈U
{Ȳ1(t)} 6 0. By (3.70), we have

Ȳ0(t) = inf
u∈U
{Ȳ2(t)} 6 δρ(δ).

By letting δ → 0, we have

F0(t, x, µ, 0,Pφ(t,ξ,µ), 0) = inf
u∈U
{F (t, x, µ, 0,Pφ(t,ξ,µ), 0, u)} 6 0.

So, V̄ is a viscosity supersolution of the equation (3.50). By applying a similar discussion we can

prove the other direction.
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CHAPTER 4: FUTURE RESEARCH

4.1 Mean field Problems

Mean-field models can be used to describe many group activities in economy and psychology. I do

have strong interests in building, solving and comparing mean-filed models that describe processes

with mean-field interactions for a problem in reality. There are several works on this topic, while

many other interesting topic to be considered.

4.2 Time-Inconsistency

The description for time-inconsistency is not completely clear, especially about risk preference.

That is to find an accurate and applicable way to describe how the change of people’s attitude

towards risk and what is the equilibrium control related.

Another interesting question related is if equilibrium control is not unique, how do we find and

characterize the optimal one among them? This natural and non-trivial problem is in my research

plan.

One problem which can be studied is the time-inconsistent problem with conditional distribution

and recursive cost functional. The difficulty lies is about the solution condition for the equilibrium

HJB equation.
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4.3 HJB Equation

There are many interesting technical problems concerning the HJB equations. For example, the

classical solution to the equation (3.50). A similar result can be found in [12], for example. While,

the PDE (3.50) is in a new form whose well-posedness problem is interesting, important and chal-

lenging. Especially, it will be interesting to consider the problem from a pure PDE point of view,

without the help of the related stochastic optimal control problem. People have mentioned some

seemingly potential ways several years ago, and more work needs to be done on it.

4.4 Deep Learning

Another topic that is attrative is to apply deep learning method for numerical results in mean field

stochastic optimal control and related problems.

Since the paper [19], applying deep learning in solving PDEs and stochastic optimal control prob-

lems have attracted more and more attentions, as it overcomes many difficulties encountered when

dealing in traditional methods. It would be interesting to show the numerical results for a non-

trivial optimal control problem and it gives more insights for understanding new problems.
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APPENDIX A: A PROPERTY of VALUE FUNCTION IN PROBLEM (C0)
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For each fixed t ∈ [0, T ), define

Ft,s ≡ σ{W (r)−W (t) : t 6 r 6 s}. (A.1)

Note that for each s ∈ [t, T ],

Fs = Ft,s ∨ Ft. (A.2)

And,

Ft ≡ {Ft,s}s6t. (A.3)

Corresponding to the two filtrations F and Ft, it is natrual to consider two admissible control sets:

U[t,T ] = {u : [t.T ]× Ω→ U is F− progressive measurable}; (A.4)

and

Û[t,T ] = {u : [t.T ]× Ω→ U is Ft − progressive measurable}, (A.5)

where U ⊂ Rm. It is easy to prove that:

Proposition A.0.1. Let A and B be two sigma algebras, then

P = {A ∩B : A ∈ A, B ∈ B}, . (A.6)

is a π−system that generates A ∨ B.

Proposition A.0.2. (U[t,T ], ρ) is a Polish space, where

ρ(u1, u2) ≡ (E[(

∫ T

t

|u1(r)− u2(r)|2dr)])
1
2 .
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And the set Ustep ≡
⋃
n>1

UcT (In) is a dense subset of U[t,T ] under ρ, where In:

t = t(n)
n0

< t(n)
n1

< ... < t(n)
nK

= T

is a partition of [t, T ] with ‖In‖ → 0 as n→∞ and

UcT (In) = {
nK−1∑
i=0

(

Ni∑
j=1

a
(n)
ji 1

E
(n)
ji

(ω))1
[t
(n)
i ,t

(n)
i+1)

(·) : a
(n)
ji ∈ Udense,

{E(n)
ji }

Ni
j=1 generated by {Eti

l }16l6L, is a partition of (Ω,Fti)}.

(A.7)

Udense is a countable dense subset of U and for each s ∈ [t, T ], {E(s)
l }l>1 is a countable class of

subset of Ω that generates Fs.

Proof. By Lemma 3.2.6 in [31].

Let b, σ, g and h be deterministic functions that satisfy proper conditions. Let(t, x) ∈ [0, T ]×Rn.

Consider the following decoupled FBSDE


dX(s; t, x, u) = b(s,X(s), u(s))ds+ σ(s,X(s), u(s))dW (s), s ∈ [t, T ],

X(t; t, x, u) = x,

(A.8)


dY (s; t, x, u) = −g(s,X(s), u(s), Y (s), Z(s))ds+ Z(s)dW (s), s ∈ [t, T ],

Y (T ; t, x, u) = h(X(T )),

(A.9)

We introduce the cost functional as

J(t, x, u) = Y (t; t, x, u). (A.10)

81



And two value functions:

V (t, x) ≡ sup
u∈U[t,T ]

J(t, x, u), V̂ (t, x) ≡ sup
u∈Û[t,T ]

J(t, x, u). (A.11)

With the help of the following theorem, we can prove that the value function V (t, x) is a determin-

istic function.

Theorem A.0.3.

V (t, x) = V̂ (t, x). (A.12)

Proof. It is obvious that V̂ : [0, T ] × Rn is a deterministic function. In fact, for each u ∈ Û[t,T ],

J(t, x, u) is a deterministic function of (t, x), while, generally, it is an Ft−measurable random

variable when u is in U[t,T ].

Step 1: Show that there exists a sequence un ∈ U[t,T ] such that J(t, x, un) ↑ V (t, x) a.s., as

n → ∞. For any u1, u2 ∈ U[t,T ], let E ≡ {J(t, x, u1) > J(t, x, u2)}, then u ≡ u11E + u21Ec

satisfies that

u ∈ U[t,T ], J(t, x, u) > max{J(t, x, u1), J(t, x, u2)}.

Together with the separability of space (U[t,T ], ρ), we get the step 1 proved. Actually, this sequence

can be selected in Ustep.

Step 2: Show that for each n, there exists a sequence in the form {
∑
i

u
(n)
m,i(·)1E(n)

m,i
}m>1, where

En,i ∈ Ft and u(n)
n,i (s) is Ft,s−measurable, such that

∑
i

u
(n)
m,i(·)1E(n)

m,i
→ un a.s., as m→∞. Before

the proof, we introduce the following lemma:

Lemma A.0.4. Let G be a σ−algebra and Π be a π−system that generates G. Then for ∀ B ∈ G,
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there exists a sequence of sets {Ai} ⊂ Π and a sequence of numbers l(i) ∈ {0, 1}, such that

1B =
∑
i>1

(−1)l(i)1Ai .

Proof. For any A, C ∈ Π, A ∩ C ∈ Π. And

1A · 1C = 1A∩C ;

1A + 1C = 1A + 1C − 1A∩C .

Note that the setB can be constructed through countable unions and intersections of sets in Π. This

corresponds to its characteristic function 1B can be written as a countable ’sum’ of characteristic

functions of sets in Π.

Note that every element in UcT (In) could be written as

N(n)∑
j=1

(

nK−1∑
i=0

a
(n)
j,i 1

E
(n)
j,i ∩E

(n)
j0

1[ti,ti+1))1E(n)
j0
, (A.13)

where each E(n)
j,i ∈ Ft,ti . By Lemma A.0.4 and Proposition A.0.2, each process in the form of

(A.13) could be approximated by a sequence

N(n)∑
j=1

(

nK−1∑
i=0

a
(n)
j,i (

M(n)∑
r=1

(−1)l(i,j,r)1
A

(n)
i,j,r∩B

(n)
i,j,r∩E

(n)
j,0

)1[ti,ti+1))1E(n)
j0
,

=
N(n)∑
j=1

nK−1∑
i=0

a
(n)
j,i

M(n)∑
r=1

(−1)l(i,j,r)1
A

(n)
i,j,r

1[ti,ti+1)1E(n)
j0 ∩B

(n)
i,j,r

(A.14)

a.s. as M (n) ↑ ∞, where A(n)
i,j,r ∈ Ft,ti and B(n)

i,j,r ∈ Ft. Now, by the continuity of J with respect to
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u, we have shown that there exists a sequence {ûm} ∈ U[t,T ] such that J(t, x, ûm) ↑ V (t, x) a.s., as

m→∞ and each um is in the form:

um(s) =
Km∑
i

um,i(s)1Em,i ,

with um,i(s) being Ft,s measurable and Em,i ∈ Ft.

Step 3: Show that (A.12). Without loss of generality, assume that, for each m, J(t, x, um,1) =

max
16i6Km

{J(t, x, um,i)}. Then

V (t, x) > J(t, x, um,1) >
Km∑
i=1

J(t, x, um,i)1Em,i = J(t, x, um) ↑ V (t, x).

So, V (t, x) is a deterministic function. Further, since

V̂ (t, x) > J(t, x, um,1) ↑ V (t, x) > V̂ (t, x),

we can get (A.12).
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