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ABSTRACT

The purpose of this dissertation is to study the first order autoregressive model in the spatial

context with specific error structures. We begin by supposing that the error structure has a

long memory in both the i and the j components. Whenever the model parameters alpha and

beta equal one, the limiting distribution of the sequence of normalized Fourier coefficients of

the spatial process is shown to be a function of a two parameter fractional Brownian sheet.

This result is used to find the limiting distribution of the periodogram ordinate of the spatial

process under the null hypothesis that alpha equals one and beta equals one.

We then give the limiting distribution of the normalized Fourier coefficients of the spatial

process for both a moving average and autoregressive error structure. Two cases of autore-

gressive errors are considered. The first error model is autoregressive in one component

and the second is autoregressive in both components. We show that the normalizing factor

needed to ensure convergence in distribution of the sequence of Fourier coefficients is dif-

ferent in the moving average case, and the two autoregressive cases. In other words, the

normalizing factor differs in each of these three cases.

Finally, a specific case of the functional central limit theorem in the spatial setting is stated

and proved. The assumptions made here are placed on the autocovariance functions. We

then discuss some specific examples and provide a test statistics based on the periodogram

ordinate.
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CHAPTER 1: INTRODUCTION AND PRELIMINARIES

1.1 Time and Spatial Series

The first order autoregressive time series model yt = αyt−1 + µt, 1 ≤ t ≤ n, has received

considerable attention whenever α is either equal to or near one. Fuller (1976)[19] and

Dickey and Fuller (1979, 1981)[15][16] developed a statistical test for detecting the presence

of a unit root. Consider the case whenever y0 is fixed and {µt} is an i.i.d. sequence of

mean zero and finite variance innovations. Let α̂n denote the least-squares estimator of αn.

Whenever |α| < 1, Mann and Wald (1943)[25] showed that n 1
2 (α̂n−α) has a limiting normal

distribution. If |α| > 1, White (1958, 1959)[35][36] proved that the limiting distribution of

|α|n(α2 − 1)−1(α̂n − α) is Cauchy, and also showed that n(α̂n − 1) converges in distribution

to a ratio of functionals of a Brownian motion process. Phillips and Magdalinos (2007)[30]

and Magdalinos (2012)[24] proved that in the mildly explosive case αn = 1 + c

nα
, α ∈ (0, 1)

and c > 0, 1
2cn

ααnn(α̂n−αn) has a limiting Cauchy distribution. Several of the above results

have been generalized by relaxing the requirements on the innovations. Near-integrated

process obtain by replacing α with αn = ec/n has been worked on by Bobkoski (1983)[12],

Cavanagh (1986)[13], Chan and Wei (1987)[14], Nabeya and Tanaka (1990a, b) [28], [29],

and Phillips (1987)[31]. They considered the theoretical aspect of the limiting distribution

of α̂n. With weakly dependent errors, Phillips (1987)[31] showed that n(α̂n − αn) converges

in distribution to a ratio of functionals of an Ornstein-Uhlenbeck process under appropriate

mixing conditions on the sequence {µt}.

Nabeya and Perron (1994)[27] considered the cases µt = εt + θnεt−1 (first order Moving

Average) and µt = ρnµt−1 + εt (first order Autoregressive), where {εt} is a sequence of i.i.d.

normally distributed random variable. In the case of the moving average, they showed that

1



if θn = −1 + δ

n1/2 and εt ∼ i.i.d.(0, σ2
ε ), then as n −→∞,

α̂n
D−→

δ2
∫

[0,1]

Jc(r)2 dr


1 + δ2

∫
[0,1]

Jc(r)2 dr


−1

,

where Jc(r) =
∫

[0,r]

e((r−s)c) dW (s) and W (s) is the unit Wiener process on C[0, 1].

In the autoregressive case, they showed that

n(α̂n − αn) D−→ 1
2Qc(Jd(1))2


∫

[0,1]

Qc(Jd(r))2 dr


−1

− c.

as n −→∞, where Qc(Jd(r)) =
∫

[0,r]

e((r−v)c) Jd(v) dv, and Jd(v) =
∫

[0,v]

e((v−s)d) dW (s).

Most unit root tests proposed are from the time domain perspective due to the fact that

the spectral density of the process fails to exist in the unit root case. Akdi (1995) [3] used

the frequency domain to propose a unit root test in terms of the periodogram ordinate.

Bhattacharyya and Richardson (1996)[7] gave a limiting distribution of a unit root test

proposed by Akdi (1995)[3] under the local Pitman-type alternative of the form {αN = ec/N}

by supposing that the Yt − process obeys the model Yt − µ = αN(Yt−1 − µ) + εt, 1 ≤ t ≤

N , where {εt} are i.i.d. each having mean zero and finite variance σ2. Bhattacharyya,

Richardson, and Flores (2006)[8] used the periodogram ordinate to define an asymptotic

test for testing H0 : α = 1 vs HA : |α| < 1. They showed that the normalized periodogram

ordinate converges in distribution to a linear combination of two independent χ2 random

variables each having one degree of freedom under appropriate assumptions.

Schwert (1987, 1989) [32], [33] cited several examples of economic data that can be approx-

imated by the use of an autoregressive time series of order one.
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Martin (1979)[26] extended the autoregressive time series model to the spatial context. He

indicated that it is often desirable in practice for a process {Yij} to have reflection symmetric

autocorrelations ρij = ρ−i,j = ρi,−j = ρ−i,−j for lags i and j. This led Martin to use the

following model to fit agriculture field data:

Yij = αYi−1,j + βYi,j−1 − αβYi−1,j−1 + µij, 1 ≤ i, j ≤ N, (1.1)

where µij denotes the error at the (i, j) position. It is emphasized that all models considered

here are on the regular rectangular lattice of nonnegative integers. Asymptotic normal-

ity results for the estimators of (α, β) have been obtained by Tjostheim (1978)[34], Khalil

(1991)[23], and Basu and Reinsel (1992, 1994)[4][5], whenever |α| < 1, |β| < 1, and {µij}

is an i.i.d. mean zero sequence with finite variance. These estimation methods include

the Yule -Walker equations, maximum likelihood, and least squares procedures. Unlike the

AR(1) time series process, Bhattacharyya, Khalil, and Richardson (1996)[6] have given an

asymptotic normality result for a sequence of Gauss-Newton estimators of (α, β) whenever

α = β = 1 or either α = 1 or β = 1 and the other has modulus less than one. As in the

AR(1) time series case, the normalizing factors depend on whether the moduli of α, β are

less than, equal to, or greater than one. Under the assumptions that α = β = 1 and {µij}

is a mean zero, second order, stationary process having long range dependence, it is shown

here that the limiting distribution of the sequence of normalized Fourier coefficients of the

Y− process is a function of a two parameter fractional Brownian motion process on [0, 1]2.

Further, three models involving moving average and autoregressive errors are studied here,

and stationarity is not a requirement. It is shown that the normalizing factors needed to

ensure convergence in distribution of the sequence of Fourier coefficients differ in each of

these three cases.
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For local Pitman-type alternatives, α and β in model (1.1) are parameterized by αN = ea/N

and βN = eb/N in model (1.2) below:

Yij(N) = αNYi−1,j + βNYi,j−1 − αNβNYi−1,j−1 + µij, (1.2)

where 1 ≤ i ≤ j ≤ N .

The limiting distribution of the normalized Fourier coefficients of the Y− process obeying

the near unit root model (1.2) is found for the following cases:

(E.1) µij = θNεi−1,j + εij, 1 ≤ i, j ≤ N, where θN −→ −1 and Nρ

(
1 + θN

αN

)
−→ 1 as

N −→∞, for some 0 < ρ <
1
2

(E.2) µij = γNµi−1,j + εij, where γN = ec/N and c is a parameter

(E.3) µij = γNµi−1,j+δNµi,j−1−γNδNµi−1,j−1+εij, where 1 ≤ i, j ≤ N, γN = ec/N , δN = ed/N

and c and d are parameters.

1.2 Notations

The following notations are used throughout this work.

(N.1) Z = the set of all integers

EijN =
[
i− 1
N

,
i

N

]
×
[
j − 1
N

,
j

N

]
Et1t2...tk = [0, t1]× [0, t2]× · · · × [0, tk]

(N.2) D2 = D([0, 1]2) equipped with Skorohod’s metric, where [0, 1]2 = [0, 1] × [0, 1]. (See

Billingsley (1999)[11] and Bickel and Wichura (1971)[9])
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(N.3) W (t) denotes a Brownian sheet on [0, 1]2; that is, {W (t) : t ∈ [0, 1]2} is a mean zero,

Gaussian process with cov(W (s),W (t)) = c(s1 ∧ t1) · (s2 ∧ t2) where s = (s1, s2), for

some c ∈ R. (See Xiao (2009)[38])

(N.4) UN(t) = 1
N

[Nt1],[Nt2]∑
i,j=1

εij, t ∈ [0, 1]2

(N.5) J(t) denotes an Ornstein-Uhlenbeck process on [0, 1]2; in particular,

J(t) = W (t) + a
∫
Et1

ea(t1−x) W (x, t2) dx+ b
∫
Et2

eb(t2−y) W (t1, y) dy

+ ab
∫

Et1t2

ea(t1−x)eb(t2−y) W (x, y) dxdy,where t = (t1, t2) ∈ [0, 1]2

(N.6) K(t) =
∫
Et1

ec(t1−x) W (x, t2) dx

(N.7) L(t) =
∫

Et1t2

ec(t1−x)ed(t2−y) W (x, y) dxdy

(N.8) M(f)(t) =

f(t) + a
∫
Et1

ea(t1−x)f(x, t2)dx+ b
∫
Et2

eb(t2−y)f(t1, y)dy

+ ab
∫

Et1t2

ea(t1−x)eb(t2−y)f(x, y)dxdy,

where f : [0, 1]2 −→ R

(N.9) AN , BN denotes the Fourier coefficients of the Y− process ; that is,

AN =
N∑

k,l=1
cos 2π

N
(k + l)Ykl(N)

5



BN =
N∑

k,l=1
sin 2π

N
(k + l)Ykl(N)

(N.10) IN = A2
N +B2

N is the periodogram ordinate of the Y− process.

(N.11) Wd(t) denotes a fractional Brownian sheet on [0, 1]2 ( See Definition 1.3.1).

(N.12) Jd(t) denotes a fractional Ornstein-Uhlenbeck process on [0, 1]2 ( See Definition 1.3.2).

Suppose that the error structure {µij : i, j ∈ Z} is a mean zero second order (E(µ2
ij) < ∞)

process; then it is said to be stationary provided cov(µij, µi+h,j+k) depends only on h and k,

for all i, j ∈ Z. From an asymptotic perspective, if 1
Nd1+d2+1

[Nt1],[Nt2]∑
i,j=1

µij
D−→ Wd(t) on D2,

then the error structure is said to have a long memory in the ith component if 0 < di <
1
2

and short memory whenever di = 0, i = 1, 2. This definition permits long memory in one

component of the error structure and short memory in the other. Observe that if d1 = d2 = 0

(short memory), then (N.11) and (N.12) coincide with (N.3) and (N.5) respectively.

Long memory of a stationary process exists whenever the covariance function decreases suf-

ficiently slow. This means that, partial sums of such processes requires a larger normalizing

factor in order to obtain convergence.

For the sake of easy reference, various conditions listed below are needed to prove the theo-

rems that follows.

(A.0) α = β = 1

(A.1) Yij = µij = εij = 0 whenever i ∧ j ≤ 0

(A.2) αN = ea/N , βN = eb/N , where a < 0 and b < 0

6



(A.3) {εij : i, j ∈ Z} is an independent and identically distributed , mean zero, finite variance

sequence

(A.4) {µij : i, j ∈ Z} is a mean zero, second order, stationary process satisfying

1
Nd1+d2+1

[Nt1],[Nt2]∑
i,j=1

µij
D−→ Wd(t),

where t = (t1, t2) ∈ [0, 1]2 and d = (d1, d2) with 0 ≤ di <
1
2, i = 1, 2, and µij = 0

whenever i ∧ j ≤ 0

The primary results of this work are listed below and proved in later chapters.

Theorem 1.2.1. Let U1 and U2 denote independent chi-square random variables each having

one degree of freedom. Assume that the Y−process satisfies

(i) model (1.1), (A.0), (A.1), and (A.4). Then

1
N2(d1+d2)+6 IN

D−→ σ11U1 + σ22U2,

where σ11 and σ22 are given in (2.5).

(ii) model (1.2), (A.1), (A.2), and (A.4). Then

1
N2(d1+d2)+6 IN

D−→ λ1(d)U1 + λ2(d)U2,

where λ1 and λ2 are defined in (2.6).

7



Theorem 1.2.2. Suppose that the Y− process obeys model (1.2), (E.1), and (A.1)-(A.3).

Then 1
N3−ρ (AN , BN) D−→ (A,B) as N −→∞ on R2, where

A =
∫

[0,1]2
cos 2π(x+ y) J(x, y) dxdy

and

B =
∫

[0,1]2
sin 2π(x+ y) J(x, y) dxdy.

Theorem 1.2.3. Assume that the Y− process obeys model (1.2), (E.2), and (A.1)-(A.3).

Then 1
N4 (AN , BN) D−→ (A,B) as N →∞ on R2, where

A =
∫

[0,1]2
cos 2π(t1 + t2) M(K(t)) dt

and

B =
∫

[0,1]2
sin 2π(t1 + t2) M(K(t)) dt.

Theorem 1.2.4. If the Y− process satisfies model (1.2), (E.3), and (A.1)-(A.3). Then
1
N5 (AN , BN) D−→ (A,B) as N →∞ on R2, where

A =
∫

[0,1]2
cos 2π(t1 + t2) M(L(t)) dt

and

B =
∫

[0,1]2
sin 2π(t1 + t2) M(L(t)) dt.

An excellent treatment of convergence in distribution or weak convergence of a sequence of

measurable functions from a probability space to the function space D([0, 1]) can be found

in Billingsley (1968) [10]. Bickel and Wichura (1971) [9] have extended these concepts to the

8



function space D2.

Fix t ∈ [0, 1]2, and denote the four quadrant of [0, 1]2 having t as their origin by Q1(≥,≥),

Q2(<,≥), Q3(<,<), and Q4(≥, <). Let D2 denote the set of all real-valued functions f

defined on [0, 1]2 for which lims→t f(s) exists whenever s belongs to a single quadrant, and

lims−→t f(s) = f(t) provided s ∈ Q1. Bickel and Wichura (1971) [9] show there is a metric

on D2 which makes it separable, complete, and whose Borel σ− field coincides with that

generated by the coordinate mappings. Further, this metric extends Skorohod’s well-known

metric on D([0, 1]) to D2 . An important result needed in this context is the Continuous

Mapping Theorem. In particular, if Xn, X are measurable functions from a probability

space (Ω,F , P ) into D2 , and h : D2 −→ R is continuous (except possibly on a set of PX

measure zero), then Xn
D−→ X on D2 implies that h(Xn) D−→ h(X) on R. In our application

here, h : D2 −→ R is defined using integration, h(f) =
∫

[0,1]2
f(x) dx. Always Xn

D−→ X means

E (φ(Xn))→ E (φ(X)) on R, for each bounded continuous φ : D2 −→ R.

Riemann-Stieltjes integration is another tool used extensively in proofs of theorems. Let

RS
∫
A

f dg denote the Riemann-Stieltjes over a rectangular subset A of [0, 1]2. Recall that

sufficient conditions for this to exist is for either f or g be continuous and the other be of

bounded variation on [0, 1]2; moreover, an integration by parts formula is valid in this case.

These and other results concerning Riemann-Stieltjes integration can be found in Hobson

(1957)[21] and Yeh (1963)[39]. For easy reference, the Riemann-Stieltjes integration by parts

formula for the subset A of [0, 1]2 shown below having boundary lines Li, 1 ≤ i ≤ 4.

9



Figure 1.1: Subset of [0, 1]2

Theorem 1.2.5. Assume that the Riemann-Stieltjes integral of f with respect to g exists

on the subset A as shown above. Then the Riemann-Stieltjes integral of g with respect to f

exists. Moreover,

∫
A

g df =f(t)g(t)− f(s1, t2)g(s1, t2)− f(t1, s2)g(t1, s2) + f(s)g(s)−
∫

[s1,t1]

f(x, t2) dg(x, t2)

−
∫

[s2,t2]

f(t1, y) dg(t1, y) +
∫

[s1,t1]

f(x, s2) dg(x, s2)

+
∫

[s2,t2]

f(s1, y) dg(s1, y) +RS
∫
A

f dg.

Another tool which will be used in the proofs of theorems is the Cramér-Wold device. We

will need the following theorem to prove the Cramér-Wold device.

Theorem 1.2.6. (Lévy’s Continuity Theorem) Let {Xn : n ≥ 1} be a sequence of k−

10



dimensional random vectors with characteristic function φXn and let X be a k− dimensional

random vector with characteristic function φX . Then Xn
D−→ X if and only if φXn(t) −→

φX(t) as n −→∞, for each fixed t ∈ Rk.

Theorem 1.2.7. (Cramér-Wold device)[17] Under the assumptions of Theorem 1.2.6, Xn
D−→

X iff λ ·Xn
D−→ λ ·X for all λ ∈ Rk.

1.3 Important Definitions

The definition of a fractional Brownian sheet was introduced by Kamont (1996)[22]. These

and more general works on anisotropic Gaussian random fields can be found in Xiao (2009)[38].

Definition 1.3.1. Fractional Brownian Sheet([22]): Given d = (d1, d2), 0 ≤ di <
1
2, i =

1, 2. A mean zero, Gaussian process {Wd(t) : t ∈ [0, 1]2} is called a fractional Brownian sheet

provided that the cov(Wd(s),Wd(t)) = c[s2d1+1
1 + t2d1+1

1 − |s1 − t1|2d1+1] · [s2d2+1
2 + t2d2+1

2 −

|s2 − t2|2d2+1] for some c ∈ R, where s = (s1, s2) and t = (t1, t2) ∈ [0, 1]2.

Rather than parameters d1 and d2, some authors use the Hurst indices Hi = di +
1
2, i = 1, 2.

For convenience, d1 = 0 or d2 = 0 is included in Definition 1.3.1. In particular, a Brownian

sheet occurs whenever d1 = d2 = 0. In general each Hi lies between 0 and 1, since 0 ≤ di <
1
2,

it is obvious that we are considering only values of Hi between 1
2 and 1 here, i = 1, 2.

Definition 1.3.2. Fractional Ornstein-Uhlenbeck process: Given a, b ∈ R, let {Wd(t) :

t ∈ [0, 1]2} denote a fractional Brownian sheet. Define

Jd(t) :=Wd(t) + a
∫

[0,t1]

ea(t1−x)Wd(x, t2)dx+ b
∫

[0,t2]

eb(t2−y)Wd(t1, y)dy

+ ab
∫

Et1t2

ea(t1−x)eb(t2−y)Wd(x, y)dxdy,where t = (t1, t2) ∈ [0, 1]2.

11



Then {Jd(t) : t ∈ [0, 1]2} is called a fractional Ornstein-Uhlenbeck process on [0, 1]2. When-

ever d = 0, cov
(
J0(s1, s2), J0(t1, t2)

)
=
[e(s1+t1)a − e(s1−t1)a

2a
]
·
[e(s2+t2)b − e(s2−t2)b

2b
]
; that is,

J0 has the same covariance structure as the product of two-independent one-parameter

Ornstein-Uhlenbeck processes.

Definition 1.3.3. Fourier Coefficients and Periodogram Ordinate: Denote

ωk = 2πk
N

. The Fourier coefficients of the Y− process are defined as

AN,k,l =
N∑

i,j=1
cos(ωki+ ωlj)Yij

and

BN,k,l =
N∑

i,j=1
sin(ωki+ ωlj)Yij.

Remark 1.3.4. For ease of exposition, k = l = 1 is selected. The notation in Definition

1.3.3 is condensed to ω = 2π/N , and AN =
N∑

i,j=1
cosω(i + j)Yij, BN =

N∑
i,j=1

sinω(i + j)Yij

denote the Fourier coefficients of the Y− process. The periodogram ordinate of the Y−

process is given by

IN = A2
N +B2

N .
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CHAPTER 2: UNIT ROOTS TEST: SPATIAL MODEL WITH

LONG MEMORY ERRORS

Most of the results in this chapter have been published by this author in [1].

A stationary time series {Xt : t ∈ Z} obeying an autoregressive model has a covariance

function satisfying γX(h) ∼ c|r|h as h → ∞, where |r| < 1 under suitable assumptions. In

this case, the covariance approaches zero at a geometric rate as h −→ ∞. On the other

hand, there has been some work done in time series whose covariance function decays to

zero at a much slower rate. These processes are said to posses long memory provided the

covariance function γX(h) ∼ c
1
hα

as h −→∞, where 0 < α < 1. In the spatial setting, recall

that from an asymptotic perspective, if 1
Nd1+d2+1

[Nt1],[Nt2]∑
i,j=1

µij
D−→ Wd(t) on D2, then the error

structure is said to have a long memory in the ith component if 0 < di <
1
2 and short memory

whenever di = 0, i = 1, 2. This extends the corresponding result 1
N

1
2 +d

[Nt]∑
i=1

µi
D−→ Wd(t) on

D([0, 1]), 0 < d <
1
2 , in the time series setting.

We will state and prove the main theorem of this chapter below; however, the following

lemma is verified first. The lemma establishes that the limiting distribution of the sequence

of normalized Fourier coefficients of the Y− process is a function of a two parameter fractional

Brownian motion process on [0, 1]2 whenever α = β = 1.

Lemma 2.0.1. ([1]) Suppose that {Yij : i, j ≥ 1} satisfies model (1.2), (A.1), (A.2), and

the µ-process obeys (A.4). Let AN and BN denote the Fourier coefficients of the Y− process

defined in (N.9). Then

1
Nd1+d2+3

(
AN(d), BN(d)

)
D−→
(
A(d), B(d)

)

13



in R2, where A(d) :=
∫

[0,1]2
cos 2π(x+y)Jd(x, y)dxdy and B(d) :=

∫
[0,1]2

sin 2π(x+y)Jd(x, y)dxdy.

Proof. Denote g = d1+d2. Iterating, using model (1.2) with Yij = 0 whenever i ≤ 0 or j ≤ 0,

Ykl =
k,l∑
i,j=1

αk−iN βl−kN µij.

Define

ZN(t) := 1
N g+1 cosω([Nt1] + [Nt2])

[Nt1],[Nt2]∑
i,j=1

α
[Nt1]−i
N β

[Nt2]−j
N µij. (2.1)

The key steps in the proof are to show that ZN(t) D−→ cos 2π(t1 + t2) ·Jd(t) and 1
N g+3AN−1 =∫

[0,1]2
ZN(t)dt.

According to (A.4), XN
D−→ Wd in D2, where XN(t) = 1

N g+1

[Nt1],[Nt2]∑
i,j=1

µij, whenever t =

(t1, t2) ∈ [0, 1]2.

Observe that

RS
∫

EijN

1 · dXN(x, y) = XN

( i
N
,
j

N

)
−XN

(i− 1
N

,
j

N

)

−XN

( i
N
,
j − 1
N

)
+XN

(i− 1
N

,
j − 1
N

)
= µij
N g+1 .

(2.2)
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Using (2.1), (2.2), αN = ea/N , βN = eb/N , and the Mean Value Theorem,

ZN(t) = cosω([Nt1] + [Nt2])·
[Nt1],[Nt2]∑
i,j=1

RS
∫

EijN

ea/N([Nt1]−i)eb/N([Nt2]−j) dXN(x, y)

= cos 2π(t1 + t2)

×
[Nt1],[Nt2]∑
i,j=1

RS
∫

EijN

[
ea(t1−x)eb(t2−y) +O

( 1
N

)]
dXN(x, y)

= cos 2π(t1 + t2) ·RS
∫

Et1t2

ea(t1−x)eb(t2−y) dXN(x, y) + cos 2π(t1 + t2)O
( 1
N

)
XN(t).

Denote VN(t) = cos 2π(t1 + t2)O
( 1
N

)
XN(t), t ∈ [0, 1]2, and note that XN

D−→ Wd implies

that VN D−→ 0.

Integrating by parts (Theorem 1.2.5),

ZN(t) = cos 2π(t1 + t2) ·
[
XN(t) + a

∫
[0,t1]

ea(t1−x)XN(x, t2) dx

+ b
∫

[0,t2]

eb(t2−y)XN(t1, y) dy + ab
∫

Et1t2

ea(t1−x)eb(t2−y)XN(x, y) dx dy
]

+ op(1).
(2.3)

Define h : D2 −→ D2 by

h(f)(t) := cos 2π(t1 + t2) ·
[
f(t) + a

∫
[0,t1]

ea(t1−x)f(x, t2) dx+ b
∫

[0,t2]

eb(t2−y)f(t1, y) dy

+ ab
∫

Et1t2

ea(t1−x)eb(t2−y)f(x, y) dx dy
]
.

Then h | C([0, 1]2) −→ D2 is continuous, where C([0, 1]2) denotes the set of all continuous
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real-valued functions defined on [0, 1]2. Since XN
D−→ Wd in D2 and PWd

(
C([0, 1]2)

)
= 1,

it follows by the Continuous Mapping Theorem (Billingsley (1999), Theorem 2.7)[11] that

h(XN) D−→ h(Wd) in D2, where h(Wd)(t) = cos 2π(t1 + t2) · Jd(t) for each t = (t1, t2) ∈ [0, 1]2.

Employing (2.3), ZN(t) = h(XN)(t) + op(1), and thus

ZN(t) D−→ h(Wd)(t) = cos 2π(t1 + t2) · Jd(t) (2.4)

as N −→∞ in D2.

Moreover, by (2.1),

∫
[0,1]2

ZN(t)dt = 1
N g+1

[Nt1],[Nt2]∑
i,j=1

∫
[0,1]2

cosω([Nt1] + [Nt2])α[Nt1]−i
N β

[Nt2]−j
N µij dt

= 1
N g+1

N∑
k,l=1

∫
EklN

[Nt1],[Nt2]∑
i,j=1

cosω([Nt1] + [Nt2])α[Nt1]−i
N β

[Nt2]−j
N µij dt

= 1
N g+3

N∑
k,l=2

k−1,l−1∑
i,j=1

cosω(k + l − 2)αk−1−i
N βl−1−j

N µij

= 1
N g+3

N−1∑
k,l=1

k,l∑
i,j=1

cosω(k + l)αk−iN βl−jN µij

= 1
N g+3AN−1(d).

Since integration is continuous on C([0, 1]2), it follows from (2.4) and the Continuous Map-

ping Theorem that 1
N g+3AN−1(d) =

∫
[0,1]2

ZN(t) dt D−→
∫

[0,1]2
cos 2π(t1 + t2) · Jd(t) dt = A(d) in

R.

Likewise, 1
N g+3BN−1(d) D−→

∫
[0,1]2

sin 2π(t1 +t2) ·Jd(t) dt = B(d) in R, and the above argument

extends to show that 1
N g+3

(
λ1AN(d) +λ2BN(d)

)
D−→ λ1A(d) +λ2B(d) as N −→∞ in R, for
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each λ1, λ2 ∈ R. Hence, by the Cramér-Wold device (Theorem 1.2.7), 1
N g+3

(
AN(d), BN(d)

)
D−→(

A(d), B(d)
)

as N −→∞ in R2.

The main theorem establishes that the limiting distribution of the periodogram ordinate of

the Y− process under the null hypothesis that α = β = 1 is a linear combination of two

independent chi-square random variables.

Theorem 2.0.2. ([1]) Let U1 and U2 denote independent chi-square random variables each

having one degree of freedom. Assume that the Y−process satisfies

(i) model (1.1), (A.0), (A.1), and (A.4). Then

1
N2(d1+d2)+6 IN

D−→ σ11U1 + σ22U2,

where σ11 and σ22 are given in (2.5).

(ii) model (1.2), (A.1), (A.2), and (A.4). Then

1
N2(d1+d2)+6 IN

D−→ λ1(d)U1 + λ2(d)U2,

where λ1 and λ2 are defined in (2.6).

Proof. (i) : Observe that model (1.2) given by Yij(N) = αNYi−1,j+βNYi,j−1−αNβNYi−1,j−1+

µij, reduces to model (1.1) which is Yij = αYi−1,j + βYi,j−1 − αβYi−1,j−1 + µij, with

α = β = 1 whenever a = b = 0. Moreover, when a = b = 0, Jd = Wd, and hence by

Lemma 2.0.1, we obtain

A(d) =
∫

[0,1]2
cos 2π(x+ y)Wd(x, y)dxdy,
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B(d) =
∫

[0,1]2
sin 2π(x+ y)Wd(x, y)dxdy.

Let Σ0 =
(
σij(d)

)
denote the variance-covariance matrix of

(
A(d), B(d)

)
. Define,

for each α > 0, L(α) =
∫

[0,1]

xα cos 2πxdx − α

α + 1

∫
[0,1]

xα+1 cos 2πxdx, and M(α) =

∫
[0,1]

xα cos 2πxdx− α + 2
α + 1

∫
[0,1]

xα+1 cos 2πxdx.

Straightforward calculations give the following results:

σ11(d) = b2(L(2d1 + 1)L(2d2 + 1) +M(2d1 + 1)M(2d2 + 1))

σ22(d) = b2(M(2d1 + 1)L(2d2 + 1) + L(2d1 + 1)M(2d2 + 1))

σ21(d) = 0.

(2.5)

Since {Wd(t) : t ∈ [0, 1]2} is a mean zero, Gaussian process,
(
A(d), B(d)

)
is distributed

as N(0,Σ0). Applying Lemma 2.0.1, the normalized periodogram ordinate of the Y−

process satisfies

1
N2g+6 IN = 1

N2g+6

(
A2
N(d) +B2

N(d)
)

D−→ σ11(d)U1 + σ22(d)U2,

where U1 and U2 are independent chi-square random variables each having one degree

of freedom. Hence Theorem 2.0.2 (i) is valid.

(ii) : Consider model (1.2) with αN = ea/N and βN = eb/N , where a and b are negative real

numbers. Let Σ1 =
(
δij(d)

)
denote the variance-covariance matrix of

(
A(d), B(d)

)
.
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There exists an orthogonal matrix Q such that QΣ1Q
′ = diag(λ1, λ2), where

λ1(d) and λ2(d) (2.6)

are the eigenvalues of Σ1(d).

Since {Wd(t) : t ∈ [0, 1]2} is a mean zero, Gaussian process, it follows that(
A(d), B(d)

)
∼ N

(
0,Σ1(d)

)
, and thus by Lemma 2.0.1,

CN := 1
N g+3

(
AN(d), BN(d)

)
Q′

D−→ N
(
0, QΣ1Q

′) = N(0, diag(λ1, λ2)
)
.

Therefore,

1
N2g+6 IN = 1

N2g+6

(
A2
N(d) +B2

N(d)
)

= CNC
′
N

D−→ λ1U1 + λ2U2,

where U1 and U2 are independent chi-square random variables each having one degree

of freedom.
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CHAPTER 3: UNIT ROOTS TEST: SPATIAL MODEL WITH

MOVING AVERAGE ERROR STRUCTURE

Most of the results in this chapter have been published by this author in [2].

In this chapter, we establish the limiting distribution of the normalized Fourier coefficients

of the Y− process obeying the near unit root model

Yij(N) = αNYi−1,j + βNYi,j−1 − αNβNYi−1,j−1 + µij, (3.1)

where µij is a first order moving average of the form µij = θNεi−1,j + εij, θN → −1,

Nρ

(
1 + θN

αN

)
−→ 1 as N −→∞, for some 0 < ρ <

1
2 and 1 ≤ i, j ≤ N .

Assumptions.

The following assumptions are made about the Y− process

(A.1) Yij = µij = εij = 0 whenever i ∧ j ≤ 0

(A.2) αN = ea/N , βN = eb/N

(A.3) {εij : i, j ≥ 0} is an independent and identically distributed , mean zero, finite variance

sequence

The main theorem of this chapter is stated and proved below.
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Theorem 3.0.1. [2] Suppose that the Y− process obeys model (3.1), and (A.1)-(A.3). Then
1

N3−ρ (AN , BN) D−→ (A,B) as N −→∞ on R2, where

A =
∫

[0,1]2
cos 2π(x+ y) J(x, y) dxdy

and

B =
∫

[0,1]2
sin 2π(x+ y) J(x, y) dxdy.

Proof. Using (A.1) and iterating , Ykl =
k,l∑
i,j=1

αk−iN βl−jN µij =
k,l∑
i,j=1

αk−iN βl−jN (εij + θNεi−1,j). The

second equality is due to the fact that µij = θNεi−1,j + εij. Thus the Fourier coefficient AN

is given by

AN =
N∑

k,l=1
cos 2π

N
(k + l)Ykl

=
N∑

k,l=1

k,l∑
i,j=1

cos 2π
N

(k + l)αk−iN βl−jN εij

+ θN
N∑

k,l=1

k,l∑
i,j=1

cos 2π
N

(k + l)αk−iN βl−jN εi−1,j.

Define VN =
N∑

k,l=1

k,l∑
i,j=1

cos 2π
N

(k + l)αk−iN βl−jN εij. Then

AN =VN + θN
αN

N∑
k,l=1

k,l∑
i,j=1

cos 2π
N

(k + l)αk−i+1
N βl−jN εi−1,j

= VN + θN
αN

N∑
k,l=1

k−1,l∑
i=0,j=1

cos 2π
N

(k + l)αk−iN βl−jN εij

= VN + θN
αN

VN + θN
αN

N∑
k,l=1

l∑
j=1

cos 2π
N

(k + l)αkNβ
l−j
N ε0j

− θN
αN

N∑
k,l=1

l∑
j=1

cos 2π
N

(k + l)βl−jN εkj =
(

1 + θN
αN

)
VN −WN ,
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where θN
αN

N∑
k,l=1

l∑
j=1

cos 2π
N

(k + l)αkNβ
l−j
N ε0j = 0, since ε0j = 0, and

WN = θN
αN

N∑
k,l=1

l∑
j=1

cos 2π
N

(k + l)βl−jN εkj.

Write WN = θN
αN

N∑
k=1

ZNk, where ZNk =
N∑
l=1

l∑
j=1

cos 2π
N

(k + l)βl−jN εkj; then

Var WN = θ2
N

α2
N

N∑
k=1

Var ZNk since {ZNk : 1 ≤ k ≤ N} is a set of independent random

variables.

Note that Var ZNk =
N∑

l1,l2=1
cov

(
l1∑
j=1

cos 2π
N

(k + l1)βl1−jN εkj,
l2∑
j=1

cos 2π
N

(k + l2)βl2−jN εkj

)
=

N∑
l1,l2=1

l1∧l2∑
j=1

cos 2π
N

(k + l1) cos 2π
N

(k + l2)βl1−jN βl2−jN σ2 ≤ M
N∑

l1,l2=1
l1 ∧ l2 = O(N3). This implies

that Var WN = θ2
N

α2
N

N∑
k=1

Var ZNk = O(N4) and thus WN = Op(N2).

As shown above, AN =
(

1 + θN
αN

)
VN −WN and thus 1

N3−ρAN = Nρ

(
1 + θN

αN

)
1
N3VN −

1
N3−ρWN for some 0 < ρ <

1
2. Since WN = Op(N2), 1

N3−ρWN = op(1). Under assump-

tion (A.3), we know from Lemma 2.0.1 that, 1
N3VN

D−→ A as N → ∞ on R. Note that,

Nρ

(
1 + θN

αN

)
−→ 1 as N −→∞ and thus it follows that 1

N3−ρAN
D−→ A as N −→∞ on R.

Likewise 1
N3−ρBN

D−→ B as N −→∞ on R. According to Lemma 2.0.1,

1
N3

 N∑
k,l=1

k,l∑
i,j=1

(
cos 2π

N
(k + l)αk−iN βl−jN εij, sin

2π
N

(k + l)αk−iN βl−jN εij

) D−→ (A,B)

on R2. Denote V ′N =
N∑

k,l=1

k,l∑
i,j=1

sin 2π
N

(k + l)αk−iN βl−jN εij and W ′
N = θN

αN

N∑
k,l=1

l∑
j=1

sin 2π
N

(k +

l)βl−jN εkj. Using above equations,
1

N3−ρ (AN , BN) = 1
N3−ρ

((
1 + θN

γN

)
VN −WN ,

(
1 + θN

γN

)
V ′N −W ′

N

)
=

Nρ

(
1 + θN

αN

)
1
N3 (VN , V ′N)− 1

N3−ρ (WN ,W
′
N). Since Nρ

(
1 + θN

αN

)
−→ 1

and 1
N3−ρWN = op(1), 1

N3 (VN , V ′N) D−→ (A,B) on R2 implies that 1
N3−ρ (AN , BN) D−→ (A,B)
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as N −→∞ on R2 .

3.1 Results on the boundary

Next we give a normalizing constants χ(N) and ψ(N) in terms of a = b = N and show that

χ(N) A D−→ N(0, 1), ψ(N) B D−→ N(0, 1), and (χ(N)A,ψ(N)B) D−→ N(0,Σ1) as N −→ ∞,

where Σ1 =

1 − 1

−1 1

.

Suppose that the assumptions made in Theorem 3.0.1 are fulfilled. Then 1
N3−ρ (AN , BN) D−→

(A,B) as N −→∞ on R2, where

A =
∫

[0,1]2
cos 2π(x+ y) J(x, y) dxdy

and

B =
∫

[0,1]2
sin 2π(x+ y) J(x, y) dxdy.

Recall that cov (J(u, v), J(s, t)) =

(
e(u+s)a − e|u−s|a

)
2a ·

(
e(v+t)b − e|v−t|b

)
2b . Assume that a = b.

Then

cov(A,B) =
∫

[0,1]4
cos 2π(u+ v) sin 2π(s+ t)cov (J(u, v), J(s, t)) du dv ds dt.
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Using Mathematica with θ = 2π, one obtains

Var A = 1
2a2 (a2 + 4π2)4

(
(−12ea + 14e2a − 8e3a + 2e4a + 5)a6 − 2(7ea − 6e2a + 2e3a − 3)a5

+ 2(2(8π2 − 1)ea + 32π2e3a − 8π2e4a + (1− 40π2)e2a + 4π2 + 1)a4

+ 16π4(−12ea + 14e2a − 8e3a + 2e4a + 5)a2 + 32π4(7ea − 6e2a + 2e3a − 3)a

+ 32π4(ea − 1)2)
)
.

Var B = 1
2a (a2 + 4π2)4

((
−4ea + 2e2a + 3

)
a5 − 2 (ea − 1) a4+

8π2
(
−20ea + 26e2a − 16e3a + 4e4a + 7

)
a3

+ 16π2
((

2π2 − 1
)
e2a +

(
2− 4π2

)
ea + 3π2 − 1

)
a+ 32π4 (ea − 1)

)
.

cov (A,B) = 1
(a2 + 4π2)4

(
4π (ea − 1)3

(
− (ea − 1) a3 + a2 + 4π2 (ea − 1) a+ 4π2

))
.

Define f(a) ∼ g(a) provided f(a)
g(a) −→ 1 as a −→ ∞. Then one has Var A ∼ e4a

a4 , Var B ∼

4θ2e4a

a6 , and cov(A,B) ∼ −2θe4a

a5 . Denote χ(a) = a2

e2a , ψ(a) = a3

2θe2a and it follows that

Var χ(N) A −→ 1, Var ψ(N) B −→ 1, and cov (χ(N) A,ψ(N) B) ∼ N2

e2N ·
N3

2θe2N ·
−2θe4N

N5 =

−1 as N −→∞.

It follows that
(
N2

e2NA,
N3

2θe2NB

)
D−→ N(0,Σ1) as N −→∞, where Σ1 =

1 − 1

−1 1

.
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CHAPTER 4: UNIT ROOTS TEST: SPATIAL MODEL WITH

AUTOREGRESSIVE ERROR STRUCTURE

Most of the results in this chapter have been published by this author in [2].

Two error models are studied in this chapter. It is shown that the normalizing factors needed

to ensure convergence in distribution of the sequence of Fourier coefficients differ in each of

these two cases. The following lemmas are needed to prove the two main theorems in this

chapter.

Lemma 4.0.1. Let XN(x, y) = 1
N

[Nt1],[Nt2]∑
i,j=1

γ
[Nt1]−i
N εij, t ∈ [0, 1]2. Then ∆XN = 1

N
εij +

(γN − 1)
N

i−1∑
k=1

γi−1−k
N εkj.

Proof. Recall that ∆XN = XN

( i
N
,
j

N

)
−XN

(i− 1
N

,
j

N

)
−XN

( i
N
,
j − 1
N

)
+XN

(i− 1
N

,
j − 1
N

)

XN

( i
N
,
j

N

)
−XN

(i− 1
N

,
j

N

)
= 1
N

i,j∑
k,l=1

γi−kN εkl −
1
N

i−1,j∑
k,l=1

γi−1−k
N εkl

= 1
N

γN i,j∑
k,l=1

γi−1−k
N εkl −

i−1,j∑
k,l=1

γi−1−k
N εkl


= 1
N

 j∑
l=1

εil + (γN − 1)
i−1,j∑
k,l=1

γi−1−k
N εkl


Likewise,

XN

( i
N
,
j − 1
N

)
+XN

(i− 1
N

,
j − 1
N

)
= 1
N

j−1∑
l=1

εil + (γN − 1)
i−1,j−1∑
k,l=1

γi−1−k
N εkl

 .
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Thus

∆XN = 1
N

 j∑
l=1

εil + (γN − 1)
i−1,j∑
k,l=1

γi−1−k
N εkl

− 1
N

j−1∑
l=1

εil + (γN − 1)
i−1,j−1∑
k,l=1

γi−1−k
N εkl


= 1
N
εij + (γN − 1)

N

i−1∑
k=1

γi−1−k
N εkj

Lemma 4.0.2. Let QN(t) = γNδN
N

[Nt1],[Nt2]∑
i,j=1

γ
[Nt1]−i
N δ

[Nt2]−j
N εij, t ∈ [0, 1]2. Then ∆QN =

1
N

(γN − 1)(δN − 1)
i,j∑

k,l=1
γi−kN δj−lN εkl + 1

N
(γN − 1)

i∑
k=1

γi−kN εkj + 1
N

(δN − 1)
j∑
l=1

δj−lN εil + 1
N
εij.

Proof. Recall that

∆QN =
(
QN

( i
N
,
j

N

)
−QN

(i− 1
N

,
j

N

))
−
(
QN

( i
N
,
j − 1
N

)
−QN

(i− 1
N

,
j − 1
N

))
.

QN

( i
N
,
j

N

)
−QN

(i− 1
N

,
j

N

)
=γNδN

N

i,j∑
k,l=1

γi−kN δj−lN εkl −
γNδN
N

i−1,j∑
k,l=1

γi−1−k
N δj−lN εkl

= γNδN
N

i,j∑
k,l=1

γi−kN δj−lN εkl −
γNδN
NγN

i−1,j∑
k,l=1

γi−kN δj−lN εkl

= γNδN
N

(
1− 1

γN

) i,j∑
k,l=1

γi−kN δj−lN εkl + γNδN
NγN

j∑
l=1

δj−lN εil.

Likewise,

QN

( i
N
,
j − 1
N

)
−QN

(i− 1
N

,
j − 1
N

)
=γNδN

N

(
1− 1

γN

)
1
δN

i,j−1∑
k,l=1

γi−kN δj−lN εkl

+ γNδN
NγNδN

j−1∑
l=1

δj−lN εil
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Thus

∆QN =
γNδN

N

(
1− 1

γN

) i,j∑
k,l=1

γi−kN δj−lN εkl + γNδN
NγN

j∑
l=1

δj−lN εil

−
γNδN

N

(
1− 1

γN

)
1
δN

i,j−1∑
k,l=1

γi−kN δj−lN εkl + γNδN
NγNδN

j−1∑
l=1

δj−lN εil


= γNδN

N

(
1− 1

γN

)(
1− 1

δN

) i,j∑
k,l=1

γi−kN δj−lN εkl + γNδN
N

(
1− 1

γN

)
1
δN

i∑
k=1

γi−kN εkj

+ γNδN
NγN

(
1− 1

δN

) j∑
l=1

δj−lN εil + δNγN
NδNγN

εij

= 1
N

(γN − 1)(δN − 1)
i,j∑

k,l=1
γi−kN δj−lN εkl + 1

N
(γN − 1)

i∑
k=1

γi−kN εkj

+ 1
N

(δN − 1)
j∑
l=1

δj−lN εil + 1
N
εij.

Now consider the Y− process obeying the near unit root model

Yij = αNYi−1,j + βNYi,j−1 − αNβNYi−1,j−1 + µij, (4.1)

where µij = γNµi−1,j + εij, γN = ec/N , c is a parameter, and 1 ≤ i, j ≤ N .

Observe that the error term µij is assumed to be a first order autoregressive model.

Assumptions.

As before, the following assumptions are made about the Y− process

(A.1) Yij = µij = εij = 0 whenever i ∧ j ≤ 0

(A.2) αN = ea/N , βN = eb/N

27



(A.3) {εij : i, j ≥ 0} is an independent and identically distributed , mean zero, finite variance

sequence

Our aim is to extend the method used in the proof of Theorem 2.0.2 , where UN(t) =
1
N

[Nt1],[Nt2]∑
i,j=1

εij
D−→ W (t) on D2 and εij denotes the error term. Observe that in this case

∆UN = εij
N

. Extending this idea, an attempt is made here to find a process XN(t), t ∈ [0, 1]2,

such that ∆XN approximates the model error term µij
N

.

Now, let us consider µij = γNµi−1,j + εi,j. Iterating and employing (A.1), µij =
i∑

k=1
γi−kN εkj.

Denote UN(t) = 1
N

[Nt1],[Nt2]∑
i,j=1

εij and define XN(t) = γN
N

[Nt1],[Nt2]∑
i,j=1

(γ[Nt1]−i
N −1)εij, t ∈ [0, 1]2. It

follows from Lemma 4.0.1 that ∆XN = 1
N

(γN−1)
i∑

k=1
γi−kN εkj−

1
N

(γN−1)εij = (γN − 1)
N

µij−
1
N

(γN − 1)εij.

Now we are ready to state and prove one of the theorems. The following lemma is used to

prove Theorem 4.0.4.

Lemma 4.0.3. [2] Suppose the model satisfies (A.1)-(A.3) and µij = γNµi−1,j + εij. Denote

XN(t) = γN
N

[Nt1],[Nt2]∑
i,j=1

(γ[Nt1]−i
N − 1)εij; then XN(t) D−→ cK(t) on D2, where K(t) is defined in

(N.6).

Proof. Note that

XN(t) =γN
N

[Nt1],[Nt2]∑
i,j=1

(γ[Nt1]−i
N − 1)εij

= γN

[Nt1],[Nt2]∑
i,j=1

(γ[Nt1]−i
N − 1)

∫
EijN

d UN(x, y)

= γN

[Nt1],[Nt2]∑
i,j=1

∫
EijN

(γ[Nt1]−i
N − 1) d UN(x, y)
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= γN

[Nt1],[Nt2]∑
i,j=1

∫
EijN

[
ec(t1−x) − 1 +O

( 1
N

) ]
d UN(x, y)

= γN

∫
Et1t2

(ec(t1−x) − 1) d UN(x, y) + op(1)

= γN

∫
Et1t2

ec(t1−x) d UN(x, y)− γNUN(t) + op(1).

Integrating by parts, XN(t) = γNUN(t) + cγN

∫
Et1

ec(t1−x) UN(x, t2) dx − γNUN(t) + op(1).

Hence XN(t) D−→ c
∫
Et1

ec(t1−x)W (x, t2) dx = cK(t) since UN D−→ W on D2.

The first main theorem is stated and proved below.

Theorem 4.0.4. [2] Assume that the Y− process obeys model (4.1), and (A.1)-(A.3). Then
1
N4 (AN , BN) D−→ (A,B) as N →∞ on R2, where

A =
∫

[0,1]2
cos 2π(t1 + t2) M(K(t)) dt

and

B =
∫

[0,1]2
sin 2π(t1 + t2) M(K(t)) dt.

Proof. First, it is shown that 1
N4AN

D−→ A on R. Define K(t) =
∫
Et1

ec(t1−x)W (x, t2) dx and

ZN(t) = 1
N

cos 2π
N

([Nt1] + [Nt2])
[Nt1],[Nt2]∑
i,j=1

α
[Nt1]−i
N β

[Nt2]−j
N ((γN − 1)µij − (γN − 1)εij) .

It was shown in Lemma 4.0.3 that XN(t) D−→ cK(t) on D2 and, moreover
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∆XN = (γN − 1)
N

µij −
1
N

(γN − 1)εij. Hence

ZN(t) = cos 2π
N

([Nt1] + [Nt2])
[Nt1],[Nt2]∑
i,j=1

α
[Nt1]−i
N β

[Nt2]−j
N

∫
EijN

d XN(x, y)

= cos 2π(t1 + t2)
[Nt1],[Nt2]∑
i,j=1

∫
EijN

[
ea(t1−x)eb(t2−y) +O

( 1
N

) ]
dXN(x, y)

= cos 2π(t1 + t2)
∫

Et1t2

ea(t1−x)eb(t2−y) dXN(x, y) + op(1)

since XN
D−→ cK in D2. Integrating by parts,

ZN(t) = cos 2π(t1 + t2)[XN(t) + a
∫
Et1

ea(t1−x)XN(x, t2)dx

+ b
∫
Et2

eb(t2−y)XN(t1, y)dy

+ ab
∫

Et1t2

ea(t1−x)eb(t2−y)XN(x, y)dxdy] + op(1).

Hence

ZN(t) D−→ c cos 2π(t1 + t2)[K(t) + a
∫
Et1

ea(t1−x)K(x, t2)dx+ b
∫
Et2

eb(t2−y)K(t1, y)dy

+ ab
∫

Et1t2

ea(t1−x)eb(t2−y)K(x, y)dxdy].

Therefore ZN(t) D−→ c cos 2π(t1 + t2)M(K(t)) and thus∫
[0,1]2

ZN(t) dt D−→ c
∫

[0,1]2
cos 2π(t1 + t2)M(K(t)) dt as N −→∞ on R. Further ,
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∫
[0,1]2

ZN(t)dt = 1
N

[Nt1],[Nt2]∑
i,j=1

∫
[0,1]2

cos 2π
N

([Nt1] + [Nt2])α[Nt1]−i
N β

[Nt2]−j
N

(
(γN − 1)µij − (γN − 1)εij

)
dt

= 1
N

N∑
k,l=1

∫
EklN

[Nt1],[Nt2]∑
i,j=1

cos 2π
N

([Nt1] + [Nt2])α[Nt1]−i
N β

[Nt2]−j
N

((γN − 1)µij − (γN − 1)εij) dt

= 1
N3

N∑
k,l=2

k−1,l−1∑
i,j=1

cos 2π
N

(k + l − 2)αk−1−i
N βl−1−j

N ((γN − 1)µij − (γN − 1)εij)

= 1
N3

N−1∑
k,l=1

k,l∑
i,j=1

cos 2π
N

(k + l)αk−iN βl−jN ((γN − 1)µij − (γN − 1)εij) .

Thus,

∫
[0,1]2

ZN(t)dt =
(γN − 1

N3

)
AN−1 −

(γN − 1
N3

) N−1∑
k,l=1

k,l∑
i,j=1

cos 2π
N

(k + l)αk−iN βl−jN εij.

Since
(γN − 1

N3

)
= c

N4 (1 + o(1)) and 1
N3

N∑
k,l=1

k,l∑
i,j=1

cos 2π
N

(k+ l)αk−iN βl−jN εij
D−→

∫
[0,1]2

cos 2π(t1 +

t2)J(t) dt, it follows that c

N4 AN
D−→ c

∫
[0,1]2

cos 2π(t1 + t2)M(K(t)) dt.

Likewise, c

N4BN
D−→ c

∫
[0,1]2

sin 2π(t1 + t2)M(K(t)) dt as N −→ ∞ on R. An application of

the Cramer-Wold device shows that 1
N4 (AN , BN) D−→ (A,B) on R2.
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In the next theorem, we consider a model which has an autoregressive error structure in

both i and j components. In other words, consider the Y− process obeying the near unit

root model

Yij(N) = αNYi−1,j + βNYi,j−1 − αNβNYi−1,j−1 + µij, (4.2)

where µij = γNµi−1,j + δNµi,j−1 − γNδNµi−1,j−1 + εij, 1 ≤ i, j ≤ N, γN = ec/N , δN = ed/N

and c and d are parameters.

Assumptions.

Just as before, the same assumptions are considered here. The Y− process obeys

(A.1) Yij = µij = εij = 0 whenever i ∧ j ≤ 0

(A.2) αN = ea/N , βN = eb/N

(A.3) {εij : i, j ≥ 0} is an independent and identically distributed , mean zero, finite variance

sequence

Now let µij = γNµi−1,j+δNµi,j−1−γNδNµi−1,j−1+εij. Employing (A.1), µij =
i,j∑

k,l=1
γi−kN δj−lN εkl,

and in this case define

XN(t) =γNδN
N

[Nt1],[Nt2]∑
i,j=1

(γ[Nt1]−i
N δ

[Nt2]−j
N − 1)εij

− γN
N

[Nt1],[Nt2]∑
i,j=1

(γ[Nt1]−i
N − 1)εij −

δN
N

[Nt1],[Nt2]∑
i,j=1

(δ[Nt2]−j
N − 1)εij.

Using Lemma 4.0.2 and simplifying, ∆XN = 1
N

(1 − γN)(1 − δN)µij −
(γNδN − 1)

N
εij −

(1− γN)
N

εij −
(1− δN)

N
εij and thus

∫
EijN

d XN(x, y) = ∆XN .
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This next lemma establishes the convergence of XN(t) defined above.

Lemma 4.0.5. [2] Assume that the model obeys (A.1)-(A.3) and µij = γNµi−1,j +δNµi,j−1−

γNδNµi−1,j−1 + εij. Define

XN(t) =γNδN
N

[Nt1],[Nt2]∑
i,j=1

(γ[Nt1]−i
N δ

[Nt2]−j
N − 1)εij

− γN
N

[Nt1],[Nt2]∑
i,j=1

(γ[Nt1]−i
N − 1)εij −

δN
N

[Nt1],[Nt2]∑
i,j=1

(δ[Nt2]−j
N − 1)εij;

then XN(t) D−→ cd L(t) as N →∞ on D2, where L(t) is defined in (N.7).

Proof. Using the notations defined above,

XN(t) =γNδN
[Nt1],[Nt2]∑
i,j=1

(γ[Nt1]−i
N δ

[Nt2]−j
N − 1)

∫
EijN

d UN(x, y)

− γN
[Nt1],[Nt2]∑
i,j=1

(γ[Nt1]−i
N − 1)

∫
EijN

d UN(x, y)

− δN
[Nt1],[Nt2]∑
i,j=1

(δ[Nt2]−j
N − 1)

∫
EijN

d UN(x, y)

= γNδN

∫
Et1t2

(ec(t1−x)ed(t2−y) − 1) d UN(x, y)− γN
∫

Et1t2

(ec(t1−x) − 1) d UN(x, y)

− δN
∫

Et1t2

(ed(t2−x) − 1) d UN(x, y) + op(1)

= γNδN

∫
Et1t2

ec(t1−x)ed(t2−y) d UN(x, y)− γN
∫

Et1t2

ec(t1−x) d UN(x, y)

− δN
∫

Et1t2

ed(t2−x) d UN(x, y)− γNδNUN(t) + γNUN(t) + δNUN(t) + op(1).
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Integrating by parts,

XN(t) = γNδN [UN(t) + c
∫
Et1

ec(t1−x)UN(x, t2)dx+ d
∫
Et2

ed(t2−y)UN(t1, y)dy

+ cd
∫

Et1t2

ec(t1−x)ed(t2−y)UN(x, y)dxdy]− γN [UN(t) + c
∫
Et1

ec(t1−x)UN(x, t2)dx]

− δN [UN(t) + d
∫
Et2

ed(t2−y)UN(t1, y)dy]− γNδNUN(t) + γNUN(t) + δNUN(t) + op(1)

= γNδN
[
c
∫
Et1

ec(t1−x)UN(x, t2)dx+ d
∫
Et2

ed(t2−y)UN(t1, y)dy

+ cd
∫

Et1t2

ec(t1−x)ed(t2−y)UN(x, y)dxdy
]
− γNc

∫
Et1

ec(t1−x)UN(x, t2)dx

− δNd
∫
Et2

ed(t2−y)UN(t1, y)dy + op(1)

= γNδNcd
∫

Et1t2

ec(t1−x)ed(t2−y)UN(x, y)dxdy + γN(δN − 1)c
∫
Et1

ec(t1−x)UN(x, t2)dx

+ δN(γN − 1)d
∫
Et2

ed(t2−y)UN(t1, y)dy + op(1).

Since UN
D−→ W in D2 and γN(δN − 1) = O( 1

N
), δN(γN − 1) = O( 1

N
), it follows that

XN(t) D−→ cd L(t) as N −→∞ on D2.

The second theorem is stated and proved below.

Theorem 4.0.6. [2] If the Y− process satisfies model (4.2), and (A.1)-(A.3). Then
1
N5 (AN , BN) D−→ (A,B) as N −→∞ on R2, where

A =
∫

[0,1]2
cos 2π(t1 + t2) M(L(t)) dt
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and

B =
∫

[0,1]2
sin 2π(t1 + t2) M(L(t)) dt.

Proof. Recall that with XN(t) defined in Lemma 4.0.5, we obtain that

∆XN = 1
N

(1− γN)(1− δN)µij + (1− γNδN)
N

εij −
(1− γN)

N
εij −

(1− δN)
N

εij

by Lemma 4.0.2.

Define ZN(t) = cos 2π
N

([Nt1] + [Nt2])
[Nt1],[Nt2]∑
i,j=1

α
[Nt1]−i
N β

[Nt2]−j
N ∆XN ; then

ZN(t) = cos 2π
N

([Nt1] + [Nt2])
[Nt1],[Nt2]∑
i,j=1

α
[Nt1]−i
N β

[Nt2]−j
N

∫
EijN

d XN(x, y)

= cos 2π(t1 + t2)
∫

Et1t2

ea(t1−x)eb(t2−y) dXN(x, y) + op(1).

Integrating by parts,

ZN(t) = cos 2π(t1 + t2)[XN(t) + a
∫
Et1

ea(t1−x)XN(x, t2)dx

+ b
∫
Et2

eb(t2−y)XN(t1, y)dy

+ ab
∫

Et1t2

ea(t1−x)eb(t2−y)XN(x, y)dxdy] + op(1).

Hence using Lemma 4.0.5, we obtain that ZN(t) D−→ cd cos 2π(t1 + t2)M(L(t)) and since

integration is continuous, we get
∫

[0,1]2
ZN(t) dt D−→ cd

∫
[0,1]2

cos 2π(t1 + t2)M(L(t)) dt as

N −→∞ on R.
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Further,

∫
[0,1]2

ZN(t)dt =
N∑

k,l=1

∫
EklN

[Nt1],[Nt2]∑
i,j=1

cos 2π
N

([Nt1] + [Nt2])α[Nt1]−i
N β

[Nt2]−j
N ∆XN dt

= 1
N2

N−1∑
k,l=1

k,l∑
i,j=1

cos 2π
N

(k + l)αk−iN βl−jN ∆XN

= (γN − 1)(δN − 1)
N3 AN−1 + op(1).

Moreover, (γN − 1)(δN − 1)
N3 = cd

N5 (1 + o(1)), and thus

cd

N5AN
D−→ cd

∫
[0,1]2

cos 2π(t1 + t2)M(L(t)) dt

as N −→∞ on R.

Likewise,
cd

N5BN
D−→ cd

∫
[0,1]2

sin 2π(t1 + t2)M(L(t)) dt

on R, and application of the Cramer-Wold device shows that 1
N5 (AN , BN) D−→ (A,B) on

R.

Just as in the case of the moving average errors, we verify some results on the boundary.

Suppose that the hypothesis listed in Theorem 4.0.4 hold. Due to difficulty in computing

variances, choose a = b = 0. Only the parameter c in the error structure remains. In this case,

Var A, Var B, and cov(A,B) are given in Chapter 6 below. It follows that Var A ∼ e2c

16π2c5 ,

Var B ∼ 3e2c

16π2c5 , and cov(A,B) ∼ e2c

4πc6 . Define φ(c) = c5/2

ec
and note that Var φ(N) A −→

1
16π2 , Var φ(N) B −→ 3

16π2 , and cov (φ(N) A, φ(N) B) ∼ φ2(N) e2N

4πN6 = 1
4πN −→ 0 as
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N −→∞. It follows that N
5/2

eN
(A,B) D−→ N(0,Σ) as N −→∞, where Σ =


1

16π2 0

0 3
16π2

.
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CHAPTER 5: VERIFICATION OF FUNCTIONAL CENTRAL

LIMIT THEOREM AND EXAMPLES

Donsker’s Theorem 1951 is known as the functional central limit theorem since it

extends the central limit theorem to random variables taking values in the Skorohod space

D[0, 1]. Sufficient conditions for a specific class of random variables taking values in D2 and

obeying the functional central theorem are discussed in this section.

The following assumptions are made on the error structure {εij : i, j ∈ Z} with autocovari-

ance function γ :

(B.1) {εij : i, j ∈ Z} is a second order, mean zero, stationary Gaussian process

(B.2) γ(i, j) = γ(i,−j) for all i, j ∈ Z

(B.3) there exists a d = (d1, d2), 0 < d1, d2 <
1
2 , and b 6= 0 such that

(i)
N∑
k=1

k∑
i=1

γ(i, 0) = O(N2d1+1) as N −→∞, j ≥ 0 fixed

(ii)
N∑
l=1

l∑
j=1

γ(0, j) = O(N2d2+1) as N −→∞, i ≥ 0 fixed

(iii)
M,N∑
k,l=1

k,l∑
i,j=1

γ(i, j) ∼ bM2d1+1N2d2+1 as M ∧N −→∞.

Sufficient conditions for assumption (B.3) to hold are given below.

Lemma 5.0.1. Given that 0 < d1, d2 <
1
2 , let γ denote the covariance function of a second

order, mean zero, stationary process {εij : i, j ∈ Z}. Assume that γ possesses the following

properties:
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(G.1) γ(i, j) ∼ ej(i2d1−1) as i −→∞, for each fixed j ≥ 0

(G.2) γ(i, j) ∼ fi(j2d2−1) as j −→∞, for each fixed i ≥ 0

(G.3) γ(i, j) ∼ bi2d1−1j2d2−1 as i ∧ j −→∞, b 6= 0.

Then γ obeys condition (B.3) given above.

Proof. Denote bij = |b|i2d1−1j2d2−1, i ≥ 1, j ≥ 1. It follows from (G.1) that
N∑
k=1

k∑
i=1

γ(i, j) ∼

ej
N∑
k=1

k∑
i=1

i2d1−1 ∼ ejN
2d1+1

2d1(2d1 + 1) as N −→∞ , for each fixed j ≥ 0. Then (i) and (ii) of (B.3)

are satisfied. It remains to verify (iii) of (B.3). Let aij = |γ(i, j)| for i ≥ 1, j ≥ 1. First, it is

shown that
k,l∑
i,j=1

aij ∼
k,l∑
i,j=1

bij as k ∧ l −→∞. Given 0 < δ < 1, according to (G.3), there ex-

ists c0 > 0 such that 1−δ < aij
bij

< 1+δ, and thus (1−δ)
k,l∑

i,j=c0
bij <

k,l∑
i,j=c0

aij < (1+δ)
k,l∑

i,j=c0
bij

for all i ∧ j ≥ c0. Moreover, employing (G.1)-(G.3), (1 − δ) <
k,l∑
i,j=1

aij

/
k,l∑

i,j=c0
bij < (1 + δ)

for all k, l sufficiently large. Similarly,
1

1 + δ
<

k,l∑
i,j=c0

bij

/
k,l∑
i,j=1

aij <
1

1− δ , and thus

1
1 + δ

<
k,l∑
i,j=1

bij

/
k,l∑
i,j=1

aij <
1

1− δ for all k ∧ l sufficiently large.

Therefore, Akl =
k,l∑
i,j=1

aij ∼
k,l∑
i,j=1

bij = Bkl as k ∧ l −→∞.

Again, given δ > 0, there exist c0 such that 1− δ < Akl
Bkl

< 1 + δ, and thus (1− δ)
M,N∑
k,l=c0

Bkl <

M,N∑
k,l=c0

Akl < (1 + δ)
M,N∑
k,l=c0

Bkl for all M ∧ N ≥ c0. Observe that
M∑
k=1

Ak1 =
M∑
k=1

k∑
i=1

ai1 ∼

e1
M∑
k=1

k∑
i=1

i2d1−1 ∼ e1M
2d1+1

2d1(2d1 + 1) as M −→∞, and thus it follows that
M∑
k=1

Ak1

/
M,N∑
k,l=c0

Bkl −→

0 as M∧N −→∞. Continuing this process, 1−δ <
M,N∑
k,l=1

Akl

/
M,N∑
k,l=c0

Bkl < 1+δ for all M∧N

sufficiently large. Likewise, 1
1 + δ

<
M,N∑
k,l=1

Bkl

/
M,N∑
k,l=c0

Akl <
1

1− δ for all M ∧ N sufficiently
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large, and thus
M,N∑
k,l=1

Akl ∼
M,N∑
k,l=1

Bkl ∼
|b|M2d1+1N2d2+1

4d1d2(2d1 + 1)(2d2 + 1) as M ∧ N −→ ∞. Hence

condition (B.3) is valid.

This next result is an extension of Donsker’s theorem from the time series context. Theorem

5.0.2 below is used to prove this specific functional central limit theorem in the spatial

setting.

Theorem 5.0.2. (Bickel and Wichura, 1971)[9]. Suppose that {VN : N ≥ 1} is a sequence

of random elements in D2 which vanishes on the lower boundary of [0, 1]2, and let V be

another random element in D2. Moreover, assume that

(i) the finite-dimensional distributions of {VN} converges in distribution to those of V

(ii) there exist constants γ1, γ1, β1, β2 and a finite measure µ on [0, 1]2 having continuous

marginals such that for each pair (s, t] and (p, q] of neighbors,

E[|VN(s, t]|γ1|VN(p, q]|γ2 ] ≤ (µ(s, t])β1(µ(p, q])β2 ,

for all N ≥ 1, where γ1 + γ2 > 0 and β1 + β2 > 1.

Then VN
D−→ V in D2.

Theorem 5.0.3. Assume that the ε−process obeys axioms (B.1)-(B.3) listed above, and

define

XN(t) = 1
Nd1+d2+1

[Nt1],[Nt2]∑
i,j=1

εij, t ∈ [0, 1]2,

where 0 ≤ di <
1
2 , i = 1, 2. Then XN

D−→ Wd in D2, where Wd is a fractional Brownian sheet

with constant c = b.
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Proof. Given d = (d1, d2), 0 < d1, d2 <
1
2. Denote e1 = 2d1+1 and e2 = 2d2+1 and let XN(t)

be defined as above. Theorem 5.0.2 is used to show that XN
D−→ Wd in D2. First, it is shown

that the finite-dimensional distributions of {XN(s, t) : s, t ∈ I} converge in distribution. Let

VN = (XN(s1, t1), XN(s1, t2), . . . , XN(sa, tb)) be a random vector in Rab. Since VN is a mean

zero, Gaussian random vector, its characteristic function is ΦVN
(θ11, θ12, . . . , θab) = e−

1
2 θ

′ΣNθ,

where ΣN = VarVN . Then {VN} converge in distribution to N(0,Σ) iff ΣN −→ Σ as

N −→ ∞. In particular, it must be shown that {cov(XN(s1, t1), XN(s2, t2)} converges as

N −→∞. It follows from (B.2) that

N1∑
i,i′=1

N2∑
j,j′=1

γ(i− i′, j − j′) = N1N2γ(0, 0) + 2N1

N2−1∑
l=1

l∑
j=1

γ(0, j)

+ 2N2

N1−1∑
k=1

k∑
i=1

γ(i, 0) + 4
N1−1∑
k=1

N2−1∑
l=1

k∑
i=1

l∑
j=1

γ(i, j).
(5.1)

Employing (B.3) and the assumption that 0 < d1, d2 <
1
2,

1
N e1+e2

[Ns]∑
i,i′=1

[Nt]∑
j,j′=1

γ(i− i′, j − j′) = [Ns]e1 [Nt]e2

N e1+e2
·

1
[Ns]e1

1
[Nt]e2

[Ns]∑
i,i′=1

[Nt]∑
j,j′=1

γ(i− i′, j − j′) −→ 4bse1te2

(5.2)

as N −→∞.

Observe that in order to apply (5.2), the upper bounds for i, i′ (j, j′) must be equal, respec-

tively.
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Given (s1, t1) and (s2, t2) ∈ [0, 1]2 ; assume that s1 ≤ s2 and t1 ≤ t2. Applying (B.1) and

(B.2),

N e1+e2cov(XN(s1, t1), XN(s2, t2)) =
[Ns1],[Ns2]∑
i,i′=1

[Nt1],[Nt2]∑
j,j′=1

γ(i− i′, j − j′)

= 1
2

 [Ns1]∑
i,i′=1

[Nt1],[Nt2]∑
j,j′=1

γ(i− i′, j − j′)

+
[Ns2]∑
i,i′=1

[Nt1],[Nt2]∑
j,j′=1

γ(i− i′, j − j′)

−
[Ns2]−[Ns1]∑

i,i′=1

[Nt1],[Nt2]∑
j,j′=1

γ(i− i′, j − j′)


=: 1
2(JN +KN + LN).

(5.3)

Likewise,

JN = 1
2

 [Ns1]∑
i,i′=1

[Nt1]∑
j,j′=1

γ(i− i′, j− j′) +
[Ns1]∑
i,i′=1

[Nt2]∑
j,j′=1

γ(i− i′, j− j′)−
[Ns1]∑
i,i′=1

[Nt2]−[Nt1]∑
j,j′=1

γ(i− i′, j− j′)
,

and thus it follows from (5.2) that,

1
N e1+e2

JN −→ 2b
[
se1

1 t
e2
1 + se1

1 t
e2
2 − se1

1 (t2 − t1)e2
]

as N −→∞.

A similar argument shows that 1
N e1+e2

KN −→ 2b
[
se1

2 t
e2
1 + se1

2 t
e2
2 − se1

2 (t2 − t1)e2
]

and

1
N e1+e2

LN −→ 2b
[
(s2 − s1)e1te2

1 + (s2 − s1)e1te2
2 − (s2 − s1)e1(t2 − t1)e2

]
as N −→∞.
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Combining these results with (5.3), we obtain

cov(XN(s1, t1), XN(s2, t2)) = 1
2N e1+e2

(JN +KN − LN) −→

b[se1
1 t

e2
1 + se1

1 t
e2
2 − se1

1 (t2 − t1)e2

+ se1
2 t

e2
1 + se1

2 t
e2
2 − se1

2 (t2 − t1)e2

− (s2 − s1)e1te2
1 − (s2 − s1)e1te2

2 + (s2 − s1)e1(t2 − t1)e2 ]

= b[se1
1 + se1

2 − (s2 − s1)e1 ] · [te1
1 + te2

2 − (t2 − t1)e2 ]

as N −→∞, whenever s1 ≤ s2 and t1 ≤ t2.

A similar argument is valid for the other orderings, and thus it follows that the finite-

dimensional distributions of {XN} converge in distribution to those of Wd.

It remains to verify that {XN} satisfies the tightness condition listed in Theorem 5.0.2 (ii).

Assume that (s, t] and (p, q] are neighbors in [0, 1]2, where

s = (s1, s2), t = (t1, t2), p = (p1, p2) and q = (q1, q2). Suppose that the line segment joining

p and t is the common boundary of the neighbors as shown in Figure 5.1 below.
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Figure 5.1: Increment

Observe that the increment of XN over (s, t] is 1
Nd1+d2+1

[Nt1]∑
i=[Ns1]+1

[Nt2]∑
j=[Ns2]+1

εij, and thus by

the strict stationarity of the ε−process,

XN(s, t] D= 1
Nd1+d2+1

[Nt1]−[Ns1]∑
i=1

[Nt2]−[Ns2]∑
j=1

εij.

Similarly, XN(p, q] D= 1
Nd1+d2+1

[Nq1]−[Np1]∑
i=1

[Nq2]−[Np2]∑
j=1

εij, and thus it follows from Cauchy’s in-

equality that E|XN(s, t] ·XN(p, q]| ≤
(

VarXN(s, t] · VarXN(p, q]
)1

2 .

Employing (5.2) and the boundedness of (B.3), there exists an M1 > 0 such that for all

N ≥ 1,
[Nt1]−[Ns1]∑

i,i′=1

[Nt2]−[Ns2]∑
j,j′=1

γ(i − i′, j − j′) ≤ M1([Nt1] − [Ns1])e1([Nt2] − [Ns2])e2 . Hence

VarXN(s, t] ≤M1

(
[Nt1]− [Ns1]

N

)e1( [Nt2]− [Ns2]
N

)e2

for all N ≥ 1.

According to Bickel and Wichura (1971, p.1665)[9], it suffices to verify Theorem 5.0.2(ii)

for each TN = {( k
N
,
l

N
) : 0 ≤ k, l ≤ N, k, l integers}. However, if s, t ∈ TN , then
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[Nt1]− [Ns1]
N

= t1 − s1, and thus,

VarXN(s, t] ≤M1(t1 − s1)e1(t2 − s2)e2 ≤M1(λ(s, t])e1∧e2 ,

where λ denotes the Lebesgue measure on [0, 1]2. It follows that there exists an M > 0

such that E|XN(s, t] ·XN(p, q]| ≤ M
[
λ(s, t] · λ(p, q]

] e1∧e2
2 , for all N ≥ 1. Since e1 ∧ e2 > 1,

Theorem 5.0.2(ii) is satisfied, and thus XN
D−→ Wd in D2.

5.1 Example

An illustration of an error process which satisfies (B.1)-(B.3) is given below.

The results in this section have been published by this author in [1].

Example 5.1.1. [1] Assume that {δij : i, j ∈ Z} is a two sided sequence of i.i.d. random

variables with δij ∼ N(0, 1). Further, suppose that {ai : i ≥ 0} and {bj : j ≥ 0} are

two sequences of real numbers for which
∞∑
i=0

a2
i < ∞ and

∞∑
j=0

b2
j < ∞. For each integer

t ≥ 0, denote St =
t∑

i,j=0
aibjδm−i,n−j and define εmn := lim

t−→∞
St =

∞∑
i,j=0

aibjδm−i,n−j, m, n ∈ Z.

It is shown below that the series
∞∑

i,j=0
aibjδm−i,n−j converges almost surely and thus εmn is

well-defined. For each i ≥ 0, j ≥ 0, denote Xij = δm−i,n−j and define Ft = σ(Xij : 0 ≤

i, j ≤ t), t ≥ 0. Observe that E[St+1 | Ft] = St + E[
( t∑
j=0

at+1bjXt+1,j +
t∑
i=0

aibt+1Xi,t+1 +

at+1bt+1Xt+1,t+1
)
| Ft] = St and thus (St,Ft, t ≥ 0) is a martingale. Moreover, E(S2

t ) ≤
∞∑
i=0

a2
i ·
∞∑
j=0

b2
j <∞ for each t ≥ 0. Then (St,Ft, t ≥ 0) is an L2-bounded martingale and hence

St −→ εmn almost surely and in L2. Since each St is normally distributed, it follows that

{εmn : m,n ∈ Z} is a Gaussian process.
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The ε− process is also stationary. Indeed, assume that k and l are fixed integers; it suffices

to verify that cov(εm+k,n+l, εmn) depends only on k, l, for all m,n ∈ Z.

Shifting indices i −→ i− k, j −→ j − l,

εmn =
∞∑

i,j=0
aibjδm−i,n−j

=
∞∑
i=k

∞∑
j=l

ai−kbj−lδm+k−i,n+l−j.

Since εm+k,n+l =
∞∑

i,j=0
aibjδm+k−i,n+l−j, it follows that

cov(εm+k,n+l, εmn) =
∞∑

i=0∨k

∞∑
j=0∨l

aiai−kbjbj−l,

which depends only on k and l.

Hence the ε− process is stationary.

It is shown that for each m,n ∈ Z, γ(−m,n) = γ(m,n).

Note that ε−m,n =
∞∑

i,j=0
aibjδ−m−i,n−j, ε0,0 =

∞∑
i,j=0

aibjδ−i,−j, and shifting indices i −→ i + m,

j −→ j − n gives ε0,0 =
∞∑

i=−m

∞∑
j=n

ai+mbj−nδ−m−i,n−j. Hence

cov(ε−m,n, ε0,0) =
∞∑

i=0∨−m

∞∑
j=0∨n

ai+maibj−nbj,

and replacing −m with m gives

cov(εmn, ε0,0) =
∞∑

i=0∨m

∞∑
j=0∨n

ai−maibj−nbj.
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Shifting indices i −→ i+m,

cov(εmn, ε0,0) =
∞∑

i=(0∨m)−m

∞∑
j=0∨n

aiai+mbj−nbj

=
∞∑

i=0∨−m

∞∑
j=0∨n

aiai+mbj−nbj.

Therefore γ(−m,n) = γ(m,n) for all m,n ∈ Z. This implies that

γ(m,n) = γ(−m,n) = γ(m,−n) = γ(−m,−n)

for all m,n ∈ Z.

Particular choices for {ai} and {bj} are as follows:

Choose ai = id1−1 and bj = jd2−1, where 0 < d1, d2 <
1
2 , i ≥ 1, j ≥ 1, and define a0 = b0 = 1.

As shown above, for m ≥ 0, n ≥ 0,

γ(m,n) =
∞∑

i=0∨m

∞∑
j=0∨n

ai−maibj−nbj

=
∞∑

i,j=0
aiai+mbjbj+n

=
∞∑
i=0

aiai+m ·
∞∑
j=0

bjbj+n.

According to Whitt (2002, p. 124)[37],
∞∑
i=1

id1−1(i + m)d1−1 ∼ c1m
2d1−1 as m −→ ∞, and

thus γ(m,n) ∼ Cm2d1−1n2d2−1 as m ∧ n −→∞.

Likewise, if n ≥ 0 is fixed, γ(m,n) =
∞∑
i=0

aiai+m·
∞∑
j=0

bjbj+n ∼ enm
2d1−1 as m −→∞. Similarly,

if m ≥ 0 is fixed, γ(m,n) ∼ fmn
2d2−1 as n −→ ∞. This shows that the ε-process above

47



obeys assumptions (G.1)-(G.3). In particular, whenever {ak} and {bk} are chosen as above,

1
Nd1+d2+1

[Nt1],[Nt2]∑
i,j=1

∞∑
k,l=0

akblδi−k,j−l
D−→ Wd

in D2 as N −→∞. �

Remark 5.1.2. It should be mentioned that the proofs of Theorem 1.2.2, Theorem 1.2.3,

and Theorem 1.2.4 are valid under assumptions weaker than (A.3). The proofs given of

Theorems 1.2.3 and Theorem 1.2.4 are valid whenever (A.3) is replaced by (A.3)′ : {εij :

i, j ≥ 0} is a mean zero, finite variance sequence which satisfies 1
N

[Nt]∑
i,j=1

εij
D−→ W (t) in D2.

In addition to (A.3)′, the assumption that {εij : i, j ≥ 0} is an uncorrelated sequence is

needed in the proof of Theorem 1.2.2.

Example 5.1.3. [2] Based on Remark 5.1.2, an example is given to illustrate that the

conclusions of Theorem 1.2.3 and 1.2.4 may still be valid whenever (A.3) fails. Let {δij : i, j ∈

Z} denote an i.i.d., mean zero sequence obeying E|δij|p < ∞ for some p > 4. Choose any

sequence {akl : k, l ∈ Z} of real numbers satisfying ∑
k,l∈Z
|akl| <∞. Define the linear sequence

εkl = ∑
i,j∈Z

aijδk−i,l−j, k ≥ 1, l ≥ 1. It follows from Theorem 2(i) of Machkouri , Volný, and

Wu (2013) [18] that {εkl : k, l ∈ Z} obeys 1
N

[Nt]∑
i,j=1

εij
D−→ σ2W (t) on D2. In particular,

1
N

[Nt]∑
i,j=1

1
σ2 εij

D−→ W (t). According to Remark 5.1.2, the conclusions of Theorem 1.2.3 and

Theorem 1.2.4 are valid even though {εij/σ2 : i, j ≥ 0} may not be i.i.d. Example 5.1.1 is a

special case of Example 5.1.3 since {δij : i, j ∈ Z} was required to be i.i.d. with distribution

N(0, 1). �
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CHAPTER 6: CONCLUSION AND FUTURE WORK

Assuming that the error structure satisfies (E.1) - (E.3) and {Yij : i, j ≥ 1} obeys (1.2),

consider the testing problem H0 : α = β = 1 vs HA : |α| < 1, |β| < 1. Define the test

statistics ΦN,d = 1
N2g+6 IN , where g = d1 + d2 and IN = A2

N + B2
N is the periodogram

ordinate of the Y−process. Reject H0 whenever ΦN,d is sufficiently small. The critical

region can be determined from the asymptotic result ΦN,d
D−→ σ11(d)U1 + σ22(d)U2 proved

in Theorem 2.0.2 (i) whenever H0 is valid. Moreover, at a sequence of local Pitman-type

alternatives H1 : αN = ea/N , βN = eb/N , where a < 0 and b < 0, Theorem 2.0.2 (ii)

shows that ΦN,d
D−→ λ1U1 + λ2U2, for eigenvalues λ1 = λ1(d, a, b) and λ2 = λ2(d, a, b)

of Σ1. Hence the asymptotic power of ΦN,d at the sequence αN = ea/N , βN = eb/N is

Pa,d,b(x) = P{λ1U1 + λ2U2 ≤ x}, for x > 0. It is of course more difficult to attain a large

value of the power function at a sequence of alternatives that approach H0 than at a fixed

alternative in HA.

In practice, the long memory parameter d = (d1, d2) needs to be estimated in the error

structure. A regression method to estimate d = (d1, d2) for model (1.2) is given by Ghodsi and

Shitan (2009)[20] whenever the observable Y−process has long memory, and the errors form

a white noise process. Based on simulation results, it is shown that the Mean Square Errors

of estimates using the regression method are smaller than those obtained from Whittle’s

estimate. The regression method is based on using the observed Yij’s and assumed model to

find the µij’s.

Open Problem: Is the asymptotic power of test ΦN,d at a sequence of αN = ea/N , βN = eb/N

of alternatives one?
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An affirmative answer can be proved in the AR(1) time series model with independent and

identically distributed errors.

Also considering Theorem 4.0.4, observe that H0 : α = β = 1 under the assumption of

model (1.2) is equivalent to a = b = 0 in model (1.1). Since a = b = 0, M(K(t)) = K(t) =∫
Et1

ec(t1−x) W (x, t2) dx and observe that E (K(t)) = 0. Using A and B defined in Theorem

4.0.4,

cov(A,B) = cov

 ∫
[0,1]2

cos 2π(s1 + s2)K(s) ds ,
∫

[0,1]2
sin 2π(t1 + t2)K(t) dt


=

∫
[0,1]4

cos 2π(s1 + s2) sin 2π(t1 + t2)cov (K(s), K(t)) ds dt.

(6.1)

Further, cov (K(s), K(t)) = cov

 ∫
Es1

ec(s1−x) W (x, s2) dx,
∫
Et1

ec(t1−y) W (y, t2) dy



= (s2 ∧ t2)
∫

Es1t1

ec(s1−x)ec(t1−y)(x ∧ y) dx dy.

After calculations,

cov (K(s), K(t)) = s2 ∧ t2
c2

(
ec(s1+t1) + ec|s1−t1|

2c

)
+ 1
c2 (s1 ∧ t1)(s2 ∧ t2)

+ 1
c3 (s2 ∧ t2)(1− ecs1 − ect1).

(6.2)

Substituting (6.2) into (6.1) and using Mathematica to integrate, one obtains

cov(A,B) = e−c(−1 + ec)2(2 + ec)
4c2π(c2 + 4π2)2 . Likewise,
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Var A = e−c(−1 + ec)2(c2(1 + ec) + 12(−1 + ec)π2)
16c3π2(c2 + 4π2)2 and

Var B = e−c(−1 + ec)2(3c2(1 + ec) + 4(−1 + ec)π2)
16c3π2(c2 + 4π2)2 .

Since cov(A,B) 6= 0, let Q denote the orthogonal matrix such that QΣQ′ = diag (λ1, λ2)

, where λ1, λ2 are the eigenvalues of Σ = Var

A
B

. Define ZN = Q

AN
BN

 and note that

1
N4 ZN

D−→ N(0, diag(λ1, λ2)) implies that 1
N8 IN = 1

N8 (A2
N +B2

N) = 1
N8Z

′
N ZN

D−→ λ1V1 +

λ2V2, where V1 and V2 are independent chi-square random variables each having one degree

of freedom. The preceding limit can be used to form a test in terms of the periodogram

ordinate by rejecting the null hypothesis whenever 1
N8 IN is sufficiently small.

However, one needs to estimate c in the error structure µij = γNµi−1,j+εij, where γN = ec/N .

Under the assumption of H0, model (1.2) can be used to find µij, 1 ≤ i, j ≤ N. The least

squares estimator of γN is γ̂N =
N∑
i=1

µijµi−1,j
/ N∑
i=1

µ2
i−1,j = γN +

N∑
i=1

εijµi−1,j
/ N∑
i=1

µ2
i−1,j. Since(

1
N

[Nt]∑
k=1

γ
[Nt]−k
N εkj

)2
D−→ J2(t) ∈ D([0, 1]), it follows that

1
N3

N∑
s=1

(
s−1∑
k=1

γs−1−k
N εkj

)2
D−→

∫
[0,1]

J2(t) dt.

Recall that µi−1,j =
i−1∑
k=1

γi−1−k
N εkj ; then the above implies that 1

N3

N∑
i=1

µ2
i−1,j

D−→
∫

[0,1]

J2(t) dt

as N −→ ∞ on R. It easily follows that the sequence {εijµi−1,j : i, j ≥ 1} is uncorrelated

and thus Var
N∑
i=1

εijµi−1,j = σ4
N∑
i=1

i−1∑
k=1

γ
2(i−1−k)
N = O(N2). Then

N∑
i=1

εijµi−1,j = Op(N) and

γ̂N = γN + 1
N3

N∑
i=1

εijµi−1,j
/ 1
N3

N∑
i=1

µ2
i−1,j
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= γN +Op

( 1
N2

)
= 1 + c

N
+Op

( 1
N2

)
.

Hence N(γ̂N − 1) P−→ c as N −→ ∞ and N(γ̂N − 1) is consistent estimator of c. Since this

estimator is based on a fixed 1 ≤ j ≤ N , a more efficient estimator is formed by averaging

over 1 ≤ j ≤ N .

Finally, another open problem is to extend our results when considering an error structure

having long range dependence in one component, but an alternative error structure such as

a moving average or autoregressive in the other component.
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