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ABSTRACT

In this dissertation, identities for Hilbert series of quotients of polynomial rings by monomial

ideals are explored, beginning in the contexts of graph and hypergraph rings and later generalizing

to general monomial ideals. These identities are modeled after constructive identities from graph

theory, and can thus be used to construct Hilbert series iteratively from those of smaller algebraic

structures.
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CHAPTER 1: INTRODUCTION

This dissertation discusses identities useful for the computation of Hilbert series of quotients of

polynomial rings by monomial ideals, particularly those monomial ideals which arise as edge

ideals of graphs or hypergraphs.

1.1 Background

We begin by defining some necessary graph terminology, operations and invariants. In this disser-

tation, graphs and hypergraphs, defined below, will be assumed to never have repeated edges.

Definition 1.1.1. A graph G = (V,E) is an ordered pair of a vertex set V and a corresponding

edge set E. A vertex set is a set of indeterminants, known as vertices. Given some vertex set V,

an edge set of a graph is a set of multisets, each of which is size two and contains two (perhaps

nondistinct) elements of V . Each element of the edge set is called an edge, and vertices jointly

contained in some edge are said to be adjacent.

An edge of a graph is said to be a loop if it contains a single vertex with multiplicity two. A graph

is simple if it contains no loops.

A hypergraph H = (V,E) is an ordered pair of a vertex set V and a corresponding edge set E. A

vertex set is a set of indeterminants, known as vertices, whereas the edge set of a hypergraph is a

subset of the power set of V such that all elements of the edge set, known as edges, have size at

least two and no edge is strictly contained within another.

Some authors define a hypergraph more loosely and allow edge inclusion, and refer to our defini-

tion as that of a simple hypergraph or clutter. This definition more readily allows us to translate
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properties between graph theoretic terms and algebraic ones.

One of the main properties that will be translated is that of the edge induced sub-graph (or sub-

hypergraph) enumerating polynomial. The subgraph of H induced by some subset E of its edge

set is the smallest subgraph (in terms of both vertices and edges) of H containing every edge in E.

The edge induced subgraph enumerating polynomial of H counts and organizes how many such

subgraphs there are, separated by their numbers of vertices and edges, as defined below.

Definition 1.1.2. Let H be a graph or hypergraph. Then

SH(u, v) =
∑
i,j

Ciju
ivj (1.1)

is the edge induced subgraph enumerating polynomial of H, where Cij is the number of edge

induced sub-graphs or sub-hypergraphs of H with i vertices and j edges.

In order to present a significant result related to subgraph enumerating polynomials that will moti-

vate much of the results of this work, we first must present some graph operations and correspond-

ing notation.

Definition 1.1.3 ([4]). Let G = (V,E) be a graph and let a ∈ E. Then

(1) Ga is the graph formed by deleting the edge a by removing it from the edge set E.

(2) G[a] is the graph formed by contracting the edge a and ignoring any multiple edges. This is

done by deleting the edge a and then identifying all of the vertices formerly in a.

(3) G〈a〉 is the graph formed by deleting the vertices in the edge a and adding an isolated vertex,

often denoted by δ in this and other works, and is referred to as the extraction. Note that this

also deletes any edges incident to a vertex in a.
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a

G Ga G[a] G〈a〉

Graph Deletion Contraction Extraction

α β α β γ δ

Figure 1.1: Graph Operations

The given definition for deletion is standard, as is the definition for contraction - though some

authors resolve multiple edges differently. The extraction is less commonly defined, but may be

found alongside the other definitions in [4]. For a visual example of these operations, see Figure

1.1. The vertices in Figure 1.1 are labeled in a manner consistent with the conventions in [4].

Many of the results in this thesis involve various generalizations and translations of a theorem

found in [4], which we present here.

Theorem 1.1.4 ([4]). For any graph G = (V,E), and for every a ∈ E, we have:

(1) if a is not a loop:

SG = SGa + uvSG[a]
+ uv(u− 1)SG〈a〉 (1.2)

(2) if a is a loop:

SG = (1 + v)SGa + v(u− 1)SG〈a〉 (1.3)

1.2 Hilbert Series

The results in this dissertation center around the Hilbert series of a graded vector space with finite

dimension at each grading, which we define below in the specific case of a finitely generated graded
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commutative algebra. For more general treatments of Hilbert and Poincaré series, see [2] and [8].

Definition 1.2.1. Let S be a finitely generated graded commutative algebra over a field k.

Then, the Hilbert function of S is defined by

HFS : n 7→ dimkSn. (1.4)

The Hilbert series of S is the formal power series associated to the Hilbert function of S, that is,

HS(S) =
∞∑
n=0

HFS(n)t
n. (1.5)

As a formal power series, convergence is typically ignored, and the series may sometimes be ex-

pressed as a rational function. Fortunately, the Hilbert-Serre theorem, presented below, guarantees

a rational expression in the case of an ideal of a polynomial ring over a field. This is sufficient to

also guarantee rational expressions for quotients of polynomial rings by their ideals.

Theorem 1.2.2 ([8]). Let I ⊆ k[x1, . . . , xn] be a homogeneous ideal of a polynomial ring over a

field k. Then the Hilbert series has the form

HS(I) =
a0 + a1t+ · · ·+ amt

m

(1− t)n+1
, (1.6)

where m is a nonnegative integer and a0, a1, . . . , an ∈ Z.

1.3 Edge Ideals

The primary structure under examination will be the edge ideal of a graph or hypergraph. We will

use an altered version of the definition presented in [15] that allows for hypergraphs and for loops
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in graphs.

Definition 1.3.1 ([15]). Let A = k[x1, x2, . . . , xn] be a polynomial ring over a field k. The edge

ideal I(G) associated to the graph G is the ideal of A generated by the set of all monomials xixj

such that xi is adjacent to xj , allowing for the case where xi = xj due to a loop in the graph.

The edge ideal associated to the hypergraph H is the ideal of A generated by the set of all mono-

mials xi1xi2 . . . xim , where {xi1 , xi2 , . . . , xim} is an edge in the hypergraph.

The graph ring associated to an edge ideal I is the quotient ring A/I .

Some authors refer to the graph ring associated to a graph as the edge ring associated to that graph,

but that term is also used for an algebra generated by the edges, and so we will exclusively use the

term graph ring.

The properties of the edge ideal and associated graph ring have been a subject of much recent study

(see, for instance [11]), with many results connecting the algebraic structure of the graph ring with

the graph theoretic structure of its defining (hyper)graph.

For instance, the Hilbert series of graph and hypergraph rings have been connected to edge induced

subgraph enumerating polynomials, first by Renteln [12] for graphs, then by Goodarzi [7]. As

Goodarzi’s version covers a more general case, we refrain from presenting Renteln’s.

Theorem 1.3.2 ([7]). Let I ⊂ A = k[x1, ..., xn] be a squarefree monomial ideal and H its associ-

ated hypergraph. Then

HS(A/I) =
SH(t,−1)
(1− t)n

, (1.7)

where HS(A/I) is the Hilbert Series of the ring A/I .

This relationship has been previously explored by multiple authors. In [6], Emtander explicitly
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noted the relationship between this result and the Betti numbers of Stanley-Reisner rings (which

can be understood as hypergraph rings), with particularly concise results if the ring has a linear

resolution. Moving in a different direction, Tadesse [14] extended the reconstruction results of

Borzacchini and Pulito [4] to show that subgraph enumerating polynomials for hypergraphs are re-

constructible, which naturally extends via the above theorem to Hilbert Series and Betti numbers.

The central results of this work will explicitly extend Theorem 1.1.4 to corresponding theorems for

Hilbert series in various contexts, culminating in Theorem 2.3.3. These extensions, while inspired

by the above theorem, avoid its direct use so that we may consider cases involving nonsquare-

free ideals - some of which differ from the results which would otherwise be predicted by direct

application of Theorem 1.3.2 outside its allowed context.
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CHAPTER 2: RESULTS

Most of the results in this section deal with the behavior of the Hilbert series of graphs and hy-

pergraphs when deletion, contraction, and extraction operations are applied. The results will be

presented first for graphs, then for hypergraphs, after which further generalizations and similar

techniques will be discussed.

2.1 Hilbert Series of Graphs

Most of the results in this section and the next were previously published by this author in [5].

The theorems of Renteln [12] and Goodarzi [7] relate the subgraph enumerating polynomial of a

graph to the Hilbert series of the associated graph ring. Accordingly, we may use Theorem 1.3.2 to

translate the first half of Theorem 1.1.4 into a result for Hilbert series of simple graphs. However,

we present a slightly generalized version that allows for loops within the graph through the use of

a more algebraic proof.

Theorem 2.1.1 ([5]). Let G be a graph without multiple edges with an edge a = {α, β} which is

not a loop. Let R,Ra, R[a], and R〈a〉 be the graph rings corresponding to G,Ga, G[a], and G〈a〉,

respectively. Then,

If there is a loop at at most one of α and β,

HS(R) = HS(Ra)− t
(
HS(R[a])

1− t
−HS(R〈a〉)

)
. (2.1)
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If there are loops at both α and β,

HS(R) = HS(Ra)− t
(
HS(R[a])− (1− t)HS(R〈a〉)

)
. (2.2)

Before beginning the proof in earnest, it is useful to establish a connecting lemma.

Lemma 2.1.2 ([5]). Let G be a graph without multiple edges with an edge a = {α, β} which is

not a loop (i.e. α 6= β), and assume that there is a loop at at most one of α and β. Let Ra and R[a]

be the graph rings corresponding to Ga and G[a], respectively. Define γ to be the vertex created by

the identification of α and β in the contraction, and let δ be an indeterminate with no relations in

R. Then, the ring homomorphism

R[a][δ]

(0 :R[a][δ] γ)

γ 7→α−−−−→
δ 7→β

Ra

(0 :Ra αβ)
(2.3)

is a (grade preserving) isomorphism.

Alternatively, if there are loops at both α and β,

R[a]

(0 :R[a][δ] γ)

γ 7→α−−−→ Ra

(0 :Ra αβ)
(2.4)

is a (grade preserving) isomorphism.

Proof. The reader may wish to note that, while δ solely serves as an extra isolated vertex within

this lemma, it will later refer to the isolated vertex resulting from the extraction of the edge a. The

map is understood to be the identity on any elements containing neither γ nor δ.

First, we note that, given the structure of the edge ideal, the colon ideal (0 :R[a][δ] γ) is generated

by the neighbors of γ in G[a][δ]. If some vertex v is adjacent to γ in G[a][δ], then {v, γ} is an
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edge in G[a][δ], so vγ = 0 in the corresponding ring. Thus v ∈ (0 :R[a][δ] γ). If a monomial

m ∈ (0 :R[a][δ] γ), then mγ is equal to zero in R[a][δ]. Then, mγ must be divisible by some degree

two monomial equal to zero in that ring, as I[a], an ideal of an integral domain, is generated by

degree two monomials. If that degree two monomial is divisible by γ, then it must correspond to

an edge incident to γ, implying thatm is divisible by an indeterminate corresponding to a neighbor

of γ, and thus m is in the ideal generated by those neighbors. If that degree two monomial is not

divisible by γ, then m is already equal to zero in R[a][δ] prior to multiplication by γ, and trivially

also in the ideal generated by the neighbors of γ.

As γ can be understood as the identification of α and β in Ga, a vertex x is adjacent to γ in G[a] if

and only if x is adjacent to α or β in Ga. If there is a loop at a vertex, it is considered adjacent to

itself.

Since the generators of the edge ideal of a graph are of degree two, and α and β are not neighbors

in the edge-deleted graph Ga, the colon ideal (0 :Ra αβ) = (0 :Ra α) + (0 :Ra β) is generated by

the neighbors of α and β.

The quotients in the domain and codomain, then, correspond to deletion or isolation of all neigh-

bors of γ, α, and β, either deleting them or leaving them as isolated vertices depending on whether

there is a loop at each vertex. As the graphs G[a] and Ga differ only in whether or not the iden-

tification of α and β has been made and related differences in edges incident to α, β, or γ, this

deletion results in graphs that are only not isomorphic in that one of the two graphs may have one

more isolated vertex than the other. This occurs exactly when there is a loop at at most one of α

and β. Adjoining an indeterminate to R[a] is tantamount to adding an extra isolated vertex, solving

this problem in that case.

As the map, then, can be understood to be the identity up to relabeling of isolated vertices, it is a

grade-preserving isomorphism.
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We may now prove the preceding theorem.

Proof of Theorem 2.1.1. The bulk of the proof consists of noting that the following diagrams con-

nect two short exact sequences via the appropriate isomorphism from the above lemma.

In the case where there is a loop at at most one of α and β:

0
R[a][δ]

(0:γ)
(−2) R[a][δ](−1) R〈a〉(−1) 0

0 Ra
(0:αβ)

(−2) Ra R 0

·γ

∼=

γ 7→ 0

·αβ αβ 7→ 0

(2.5)

In the case where there is a loop at both α and β,

0
R[a][δ]

(0:γ)
(−2) R[a][δ](−1) R〈a〉(−1) 0

0 Ra[δ]
(0:αβ)

(−2) Ra[δ] R[δ] 0

·γ

∼=

γ 7→ 0

·αβ αβ 7→ 0

(2.6)

A shift is made in the first sequence in order to make the isomorphism a degree zero homomor-

phism.

The only difficulty in the construction of these sequences is the map from R[a][δ] to R〈a〉. Graphi-

cally, the map deletes the vertex γ created from the contraction, leaving the remainder of the graph

and an extra isolated vertex δ. As this is exactly how graph extraction is defined, the surjectivity is

clear.

First, assume that there is a loop at at most one of α and β, including the case where there is a loop

at neither.
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Appealing to the fact that Hilbert series satisfy an additive relation on exact complexes, we can

collect the following equations:

t2HS

(
R[a][δ]

(0 : γ)

)
= tHS

(
R[a][δ]

)
− tHS

(
R〈a〉

)
, and (2.7)

t2HS

(
Ra

(0 : αβ)

)
= HS (Ra)−HS (R) . (2.8)

Invoking the grade perserving isomorphism,

HS (R) = HS (Ra)− t
(
HS

(
R[a][δ]

)
−HS

(
R〈a〉

))
(2.9)

= HS (Ra)− t

(
HS

(
R[a]

)
1− t

−HS
(
R〈a〉

))
. (2.10)

The proof follows in a similar manner in the case where there are loops at both α and β.

Theorem 1.1.4 included an identity for subgraph enumerating polynomials in the case where the

specified edge a was a loop. However Theorem 1.3.2 is unable to directly translate this theorem

into an identity for Hilbert series, as the edge ideal of a graph with loops is not squarefree. In

fact, the identity that Theorem 1.3.2 would predict is false - substituting −1 for v in Equation 1.3

completely eliminates any dependence on the edge deleted graph. Considering, for example, the

graph consisting of a single vertex with a single loop quickly shows that identity to be incorrect.

However, we can imitate the techniques of the previous proof in order to reproduce a similar result
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in the case where a is a loop.

Theorem 2.1.3. Let G be a graph without multiple edges with a loop a at the vertex α. Let R,Ra,

and R〈a〉 be the graph rings corresponding to G,Ga, and G〈a〉, respectively. Then,

HS(R) = (1− t)HS(Ra) + t(1− t)HS(R〈a〉) (2.11)

Proof. Note that, for a loop, contraction and deletion are identical by our definitions, and thus

induce the same graph rings. This justifies the isomorphism in the following diagram, and also

allows the contraction to be replaced by the deletion within the final identity.

0
R[a][δ]

(0:α)
(−2) R[a][δ](−1) R〈a〉(−1) 0

0 Ra[δ]
(0:α)

(−2) Ra[δ] R[δ] 0

·γ

∼=

γ 7→ 0

·α2 α2 7→ 0

(2.12)

The rest follows in a manner similar to the previous proof.

2.2 Hilbert Series of Hypergraphs

In order to extend the results of the previous section to our notion of hypergraphs (which some

authors would refer to as clutters or simple hypergraphs), the edges of which may contain multiple

vertices, we must first extend our definitions accordingly.

Definition 2.2.1. Let H = (V,E) be a hypergraph and let a ∈ E. Then

(1) Ha is the hypergraph formed by deleting the edge a by removing it from the edge set E.

(2) H[a] is the hypergraph formed by contracting the edge a and ignoring any multiple edges.

This is done by deleting the edge a and identifying all vertices formerly in a. In the case that
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this introduces edges strictly contained within one another, we only keep the edges minimal

under inclusion so that the result remains a hypergraph.

(3) H〈a〉 is the hypergraph formed by deleting all of vertices in the edge a and adding an isolated

vertex, and is referred to as the extraction. Note that this also deletes any edges incident to a

vertex in a.

As before, we will first establish an isomorphism lemma, then use that to create a version of

Theorem 1.1.4 for Hilbert series, but for hypergraphs. The intuition behind this lemma is that, if

vertex contraction (see [13]) is applied to each vertex within an edge, the result would be the same

even if the edge had been contracted or deleted first.

Lemma 2.2.2 ([5]). Let H be a hypergraph with an edge a = {δ1, δ2, . . . , δn}. Let Ra and R[a]

be the hypergraph rings corresponding to Ha and H[a], respectively. Let the vertex created by the

contraction of the edge a retain the name δ1. Then, the ring homomorphism

R[a][δ2, . . . , δn]

(0 :R[a]
δ1)

i−−−−→ Ra

(0 :Ra δ1 · · · δn)
(2.13)

is a (grade preserving) isomorphism.

Proof. Let S be a polynomial ring over a field with an indeterminate for each vertex of H , and let

Ia and I[a] be the edge ideals for Ra and R[a]. Then

R[a][δ2, . . . , δn]

(0 :R[a]
δ1)

∼=
S
I[a]

(0 :R[a]
δ1)
∼=

S
I[a]

(I[a]:Sδ1)

I[a]

∼=
S

(I[a] :S δ1)
(2.14)

13



and

Ra

(0 :Ra δ1 · · · δn)
∼=

S
Ia

(0 :Ra δ1 · · · δn)
∼=

S
Ia

(Ia:Sδ1···δn)
Ia

∼=
S

(Ia :S δ1 · · · δn)
. (2.15)

Thus, it suffices to show that (I[a] :S δ1) = (Ia :S δ1 · · · δn).

We will proceed by constructing generating sets for both ideal quotients, and noting that they are

the same generating set.

As S is an integral domain, note that

(I[a] :S δ1) =
1

δ1

(
I[a] ∩ (δ1)

)
, and (2.16)

(Ia :S δ1 · · · δn) =
1

δ1 · · · δn
(
I[a] ∩ (δ1 · · · δn)

)
(2.17)

Division by δ1, etc., is here defined to be reduction of the power of δ1 in a given monomial by one,

so long as it is divisible by δ1. It remains undefined otherwise.

An intersection of monomial ideals of a polynomial ring over a field is generated by the least

common multiples of the generators of the ideals being intersected. In the case of I[a] and (δ1),

this is straightforward: take the typical list of generators of I[a] formed from the edges of H[a]

and multiply any generators not yet in (δ1) by δ1. We then find a generating set for (I[a] : δ1) by

dividing each of these by δ1. The combination of these processes results in taking the edges in I[a]

and removing δ1 from them if necessary. Finally, remove any monomials which are products of a

smaller degree monomial, and thus unnecessary.
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Similarly, to find a generating set for (Ia :S δ1 . . . δn), we apply the same technique and arrive at

a generating set of monomials constructed by removing any copies of δ1, δ2, . . . , δn present in the

edges of Ia. As before, remove any unnecessary monomials.

Since the edges of the contraction H[a] are simply the edges of the edge deletion Ha after identify-

ing the vertices in the specified edge a, removing the vertices incident to a (or contracted to via a)

removes any differences in the edge lists, up to removing edges that strictly contain another edge.

Therefore, we have constructed two identical generating sets, and the ideal quotients in question

are indeed equal.

We may now proceed to the main theorem of this section.

Theorem 2.2.3 ([5]). Let H be a hypergraph with an edge a = {δ1, δ2, . . . , δn}. Let R,Ra, R[a],

and R〈a〉 be the hypergraph rings corresponding to H,Ha, H[a], and H〈a〉, respectively. Let the

vertex created by either the contraction or extraction of the edge a retain the name δ1. Then,

HS(R) = HS(Ra)−
tn−1

(1− t)n−2

(
HS(R[a])

1− t
−HS(R〈a〉)

)
. (2.18)

Proof.

0→ R[a][δ2,...,δn]

(0:δ1)
(−n) R[a][δ2, . . . , δn](1−n) R〈a〉[δ2, . . . , δn−1](1−n)→ 0

0→ Ra
(0:δ1...δn)

(−n) Ra R 0

·δ1

∼=

δn 7→δ1
δ1 7→ 0

·δ1...δn δ1...δn 7→0

(2.19)

Again, the Hilbert series result follows after some simple computation. The rows of the diagram

are the usual short exact sequences for multiplication by a ring element, after noting that deleting
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the contracted vertex in G[a][δ2, . . . , δn] results in the extraction with a few extra isolated vertices,

after borrowing one of the isolated vertices already present. The map connecting the rows is from

Lemma 2.2.2.

For an example using this theorem to iteratively build the Hilbert series of a hypergraph, see Ex-

ample 3.1.3.

2.3 Hilbert Series of Monomial Ideals

In this section, the ideas of the preceding sections are generalized beyond graph theoretic contexts

to the quotient of a polynomial ring by any (perhaps non-squarefree) monomial ideal. As the

Hilbert series associated to a quotient by a polynomial ideal is equal to that of the quotient by its

initial ideal [9], this functionally gives a generalization to polynomial ideals as well.

As before, we will make definitions inspired by those from the preceding sections.

Definition 2.3.1. Let I ⊂ k[x1, . . . , xn] be a monomial ideal with a minimal generating set of

monomials that contains the monomial m. Then,

1. The deletion Ĩm of I by m is the ideal of k[x1, . . . , xn] created by removing m from the list

of generators of I . That is, Ĩm is the smallest ideal such that Ĩm + (m) = I

2. The extraction Ĩ〈m〉 of I by m is the ideal of k[x1, . . . , xn] such that

Ĩ〈m〉 =
(
Ĩm ∩ k[xi : xi /∈ supp(m)]

)
k[x1, . . . , xn] (2.20)
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3. The contraction Ĩ[m] of I by m is the ideal of k[x1, . . . , xn, γ] such that

Ĩ[m] = Ĩ〈m〉k[x1, . . . , xn, γ] + γ
((
Ĩm : m

)
k[x1, x2, . . . , xn, γ]

)
(2.21)

To avoid unnecessary clutter, when the ideal I is understood, R, R̃m, R̃[m], and R̃〈m〉 will refer to

the quotient of the appropriate polynomial ring by I , Ĩm, Ĩ[m], and Ĩ〈m〉, respectively.

Intuitively, the deletion by m simply removes m from the list of generators, the contraction by m

removes any common factors with m from remaining generators of the deletion (leaving behind an

extra indeterminate γ when there is a nontrivial common factor to remove), and the extraction by

m entirely removes any monomials that have nontrivial common factors with m. These definitions

largely agree with the definitions in [5] and [4] when the ideal I is squarefree, with the exception

that indeterminates are not removed from the polynomial ring when contracting or extracting. This

only leads to extra factors of (1 − t) in the denominator of the Hilbert series, so the change is

minor. In particular, the generators of the ideal agree exactly. While this leads to some ambiguity

in naming conventions (deletion, contraction, and extraction), the notation corresponding to the

definitions from this section has been slightly altered for clarity.

In addition, the definitions here similarly almost agree (up to extra indeterminates with no relations)

with the results of polarizing the ideal (defined in [10]) and then using the definitions from [5] on

the resultant squarefree monomial ideal before removing the polarization. However, polarization

is typically inefficient and overall impractical as a tool for computation [10].

Lemma 2.3.2. The ring homomorphism

k[x1, . . . , xn, γ]

(Ĩ[m] : γ)

i−−−−→ k[x1, . . . , xn]

(Ĩm : m)
[γ] (2.22)

is a degree zero isomorphism.
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Proof. Since the polynomial rings only differ in that one includes γ as an indeterminate and one

does not, it is sufficient to show that

(
Ĩ[m] : γ

)
=
(
Ĩm : m

)
k[x1, x2, . . . , xn, γ]. (2.23)

Recall that Ĩ[m] = Ĩ〈m〉k[x1, . . . , xn, γ] + γ
((
Ĩm : m

)
k[x1, x2, . . . , xn, γ]

)
, and that Ĩ〈m〉 contains

no interactions with γ and consequently (Ĩ〈m〉 : γ) = Ĩ〈m〉. Therefore,

(Ĩ[m] : γ) =
([
Ĩ〈m〉k[x1, . . . , xn, γ] + γ

((
Ĩm : m

)
k[x1, x2, . . . , xn, γ]

)]
: γ
)

(2.24)

=
(
Ĩ〈m〉 + (Ĩm : m)

)
k[x1, x2, . . . , xn, γ] (2.25)

= (Ĩm : m)k[x1, x2, . . . , xn, γ], (2.26)

where the last step holds as Ĩ〈m〉 ⊆ Ĩm.

Note that this proof is much simpler than the equivalents in the preceding sections, and reproduces

their results in a more general case up to a few small changes in definition.

Theorem 2.3.3. Let m be a member of a minimal generating set of monomials for a monomial

ideal I ⊂ k[x1, . . . , xn]. Let deg(m) represent the degree of the monomial m. Then,

HS(R) = HS(R̃m)− (1− t)tdeg(m)−1
(
HS(R̃[m])−HS(R̃〈m〉)

)
(2.27)

Proof. The bulk of the proof involves examining a pair of short exact sequences connected by the
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previous lemma.

0→ k[x1,...,xn,γ]

(Ĩ[m]:γ)
(−deg(m)) R̃[m](1−deg(m)) R̃〈m〉(1−deg(m))→ 0

0→ k[x1,...,xn]

(Ĩm:m)
[γ](−deg(m)) R̃m[γ] R[γ] 0

·γ

∼=

γ 7→0

·m m7→0

(2.28)

Note that the top sequence has undergone a shift in grading and the bottom sequence has had the

indeterminate γ adjoined solely to facilitate the isomorphism from the lemma.

As in previous sections, since Hilbert Series satisfy an additive relation on exact sequences and are

preserved under degree zero isomorphisms, the following equations hold:

tdeg(m)HS

(
k[x1, . . . , xn, γ]

(I[m] : γ)

)
= tdeg(m)−1HS(R[m])− tdeg(m)−1HS(R〈m〉), and (2.29)

tdeg(m)HS

(
k[x1, . . . , xn]

(Im : m)
[γ]

)
=

1

1− t
HS(Rm)−

1

1− t
HS(R) (2.30)

Using Lemma 2.3.2, the equations can be combined and simplified.

tdeg(m)−1HS(R[m])− tdeg(m)−1HS(R〈m〉) =
1

1− t
HS(Rm)−

1

1− t
HS(R) (2.31)

HS(R) = HS(Rm)− tdeg(m)−1(1− t)
(
HS(R[m] −HS(R〈m〉)

)
, as desired. (2.32)

For an example using the preceding theorem to construct the Hilbert series associated to a family
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of quotients by monomial ideals, see Examples 3.2.4 and 3.2.5.

2.4 Subgraph Contraction

In the preceding two sections, an identity for graphs was generalized by moving into more com-

plicated structures - hypergraphs and general monomial ideals. In this section, we generalize in

a different manner. In particular, we delete, contract, and extract entire vertex-induced subgraphs

simultaneously. Consequently, we first define what these operations mean in this context and fix

notation accordingly.

Definition 2.4.1. Let G be a simple graph with a vertex-induced subgraph H . Let R be the graph

ring of G. Then

(1) GH is the graph formed by deleting the edges of G which are also in its subgraph H , and RH

is its associated graph ring.

(2) G[H] is the graph formed by contracting every edge in H , thus identifying all vertices in H

to a single vertex, and R[H] is its associated graph ring.

(3) G〈H〉 is the graph formed by deleting all of vertices in the graph G which are shared with

its subgraph H, referred to as the extraction, and R〈H〉 is its associated graph ring. This is

equivalent to deleting the contracted vertex in G[H].

This generalization, however, has a nontrivial cost to the simplicity of the results, which will also

require the following definitions

Definition 2.4.2. Let G be a simple graph with a vertex-induced subgraph H . Let H have vertex

set V (H) = {δ0, δ1, . . . , δn}, n ≥ 1. Then,
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(1) JH is the ideal of RH defined by

JH = 〈δiδj : δi and δj are adjacent in H〉 (2.33)

(2) KH is the ideal of RH defined by

KH = 〈δi − δ0 : δi ∈ V (H)〉 ∩ JH (2.34)

Note that this definition of JH is similar to that of the edge ideal for H , but it is an ideal of a

different ring.

Theorem 2.4.3. Let G be a simple graph with a vertex-induced subgraph H . Assume that H

contains at least two vertices and label the vertices of G within H as {δ0, δ1, . . . , δn}, n ≥ 1. Let

the vertex created by the contraction of H retain the name δ0. Then,

HS(R) = HS(RH)− tHS(R[H]) + tHS(R〈H〉)−HS(KH). (2.35)

Proof.

KH

0 JH RH R 0

0 δ20R[H] R[H](−1) R〈H〉(−1) 0

i

i

∀i≤n δi−δ0 7→0

JH 7→0

φ δ0 7→0

(2.36)

A few of the listed maps need some explanation or justification. First, the map φ reduces the

exponent of the indeterminate δ0 by one. Since G and H are simple, both (0 :R[H]
δ0) and (0 :R[H]

δ20) are generated by the neighbors of δ0 outside of H , and therefore they are equal. Consequently,

21



φ is just the typical inclusion accompanied by a shift in grading. Secondly, since identifying the

vertices of H within GH graphically results in G[H], the codomain of the map connecting the two

short exact sequences is appropriate. KH is the kernel of the map connecting the two short exact

sequences simply because it contains exactly what is simultaneously within the domain of the

map and what is explicitly sent to zero by the map. The Hilbert Series result follows from rote

computation.

This result simplifies notably in the case where H is connected to the remainder of G by a bridge,

as discussed below:

Corollary 2.4.4. Let G be a simple graph composed of two subgraphs connected by a bridge, and

let H be one of the subgraphs. Assume that H contains at least two vertices and label the vertices

of G within H as {δ0, δ1, . . . , δn}, n ≥ 1 with the bridge incident to δ0. Let the vertex created by

the contraction of H retain the name δ0. Then,

HS(R) = (1− t(1− t)n)HS(RH) + tHS(R〈H〉)−HS(KH). (2.37)

Proof. The proof amounts to noting that contraction of the subgraphH to an endpoint of the bridge

only differs in result from the deletion of H in that the deletion contains n isolated vertices: all of

the vertices of H excepting δ0. Consequently,

HS(R[H]) = (1− t)nHS(RH). (2.38)

Substituting this into the result of Theorem 2.4.3 yields the result.
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2.5 Hilbert Series of Graph Complements

The following theorem gives a brief, elementary description of how Hilbert series behave with

regards to graph complements.

Theorem 2.5.1. Let G be a simple graph on n vertices with graph ring R, and let R represent the

graph ring of the complement of G. Let Kn and Kn represent the graph rings of the complete and

empty graphs on these vertices, respectively. Define I to be a function which maps a graph ring to

its corresponding edge ideal understood as a module of its vertex ring. Then,

HS(R) +HS(R) = HS(Kn) +HS(Kn) +HS(I(R) ∩ I(R)). (2.39)

Alternatively, this is equivalent to

HS(R) +HS(R) = HS(I(R) ∩ I(R)) + 1 + (1− t)n−1(1 + (n− 1)t)

(1− t)n
(2.40)

Proof. Consider the following exact complex:

0 I(R) ∩ I(R) Kn R⊕R Kn 0,i φ π (2.41)

where

φ : x 7→ (x, x) + I(R)⊕ I(R) (2.42)

π : (x, y) + I(R)⊕ I(R) 7→ x− y + I(Kn). (2.43)

Note that π is well defined, as I(R) ⊆ I(Kn) and I(R) ⊆ I(Kn).

Exactness is clear by inspection except perhaps at R ⊕ R. Let (x, y) + I(R) ⊕ I(R) ∈ kerπ.
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Then there exists some k ∈ I(Kn) such that x = y + k. As I(Kn) is generated by monomials

corresponding to all possible edges on the vertices of G, we can write k as a linear combination of

these generators. By perhaps reordering these generators so they are grouped by correspondence

to either edges in G or G, we can write k = kR + kR, where kR ∈ I(R) and kR ∈ I(R). Then

(x, y) + I(R)⊕ I(R) = (y + k, y) + I(R)⊕ I(R) (2.44)

= (y + kR + kR, y) + I(R)⊕ I(R) (2.45)

= (y + kR, y + kR) + (kR,−kR) + I(R)⊕ I(R) (2.46)

= (y + kR, y + kR) + I(R)⊕ I(R) (2.47)

= φ(y + kR). (2.48)

Thus the kernel of π is within the range of φ. The reverse inclusion is clear.

The Hilbert series result follows from rote computation.
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CHAPTER 3: EXAMPLES

3.1 A Hypergraph Example

In [13], Schrijver notes an example, denoted Jn, of a minimally non-ideal hypergraph, minimal

under vertex contraction and vertex deletion. In this section, we will use the main result of Section

2.2 to compute the Hilbert series for this example. This example was also published as part of [5].

Definition 3.1.1. Let Jn refer to the hypergraph with vertex set V = {δ0, δ1, . . . , δn} and edge set

E = {{δ1, δ2, . . . , δn}, {δ0, δ1}, {δ0, δ2}, . . . , {δ0, δn}}.

· · ·

Jn
δ0

δ1 δ2 δ3 δn

a

· · ·

(Jn)a = K1,n

δ0

δ1 δ2 δ3 δn

δ1

δ0

(Jn)[a] = K1,1

δ1

δ0

(Jn)<a> = K2

Figure 3.1: Jn and a contraction, deletion, and extraction.
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Note, then, that if we pick the edge a = {δ1, δ2, . . . , δn},

(Jn)a = Sn = K1,n (3.1)

(Jn)[a] = K2 = K1,1 (3.2)

(Jn)〈a〉 = K2 (3.3)

For the sake of notational brevity, we will define the Hilbert series of a hypergraph to be the Hilbert

series of its associated hypergraph ring.

The Hilbert series for K1,1 and Kn are easily understood from the definition of the Hilbert series,

and thus their formal calculations are omitted. In particular, HS(K1,1) = 1+t
1−t and HS(Kn) =

1
(1−t)n .

We begin by building the Hilbert series of K1,n inductively to help illustrate the results of this

thesis, though it could also be determined combinatorially.

Lemma 3.1.2. Let n ≥ 1. The Hilbert series of the hypergraph ring associated to K1,n, the star

with n edges, is

HS(K1,n) =
1 + t(1− t)n−1

(1− t)n
. (3.4)

Proof. The case when n = 1 is trivial, as mentioned above. Assume the Lemma holds at n = k.

By Theorem 2.2.3,

HS(K1,k+1) =
HS(K1,k)

1− t
− t
(
HS(K1,k)

1− t
−HS(Kk+1)

)
(3.5)

=
1 + t(1− t)k−1

(1− t)k+1
− t
(
1 + t(1− t)k−1

(1− t)k+1
− 1

(1− t)k+1

)
(3.6)

HS(K1,k+1) =
1 + t(1− t)k

(1− t)k+1
, as desired. (3.7)
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Thus, the lemma holds by induction.

Now that we know the Hilbert series of the contraction, deletion, and extraction of a specified edge

of Jn, we can easily find the Hilbert series of Jn itself:

Example 3.1.3. Let n ≥ 1. The Hilbert series of the hypergraph ring associated to Jn is

HS(Jn) =
1− tn + t(1− t)n−1

(1− t)n
(3.8)

Proof. By Theorem 2.2.3,

HS(Jn) = HS(K1,n)−
tn−1

(1− t)n−2

(
HS(K1,1)

1− t
−HS(K2)

)
(3.9)

=
1 + t(1− t)n−1

(1− t)n
− tn−1

(1− t)n−2

(
1 + t− 1

(1− t)2

)
(3.10)

=
1− tn + t(1− t)n−1

(1− t)n
(3.11)

3.2 A Monomial Ideal Example

In [3], an example of a family of monomial ideals with maximal decomposition cost for the al-

gorithm then used by CoCoA[1] to compute Hilbert series is given. Our techniques allow for the

quick computation of a recursive formula for the Hilbert series of these ideals, which can then be

used to inductively prove a direct formula.

Definition 3.2.1. Let m and n be positive integers.
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If n is even, define

Im,n = (x01x
m
2 x

0
3x

m
4 . . . x

0
n−1x

m
n , . . . , x

i
1x

m−i
2 xi3x

m−i
4 . . . xin−1x

m−i
n , . . . , xm1 x

0
2x

m
3 x

0
4 . . . x

m
n−1x

0
n)

(3.12)

If n is odd, define

Im,n = (x01x
m
2 x

0
3x

m
4 . . . x

0
n, . . . , x

i
1x

m−i
2 xi3x

m−i
4 . . . xin, . . . , x

m
1 x

0
2x

m
3 x

0
4 . . . x

m
n ) (3.13)

To better organize the computation, it is useful to first consider the results of deleting, extracting,

and contracting Im,n by the first monomial listed in its definition.

Lemma 3.2.2. Let n > 1 be even and define u = x01x
m
2 x

0
3x

m
4 . . . x

0
n−1x

m
n . Then,

(Im,n)u = x1x3 . . . xn−1Im−1,n (3.14)

(Im,n)〈u〉 = (xm1 x
0
2x

m
3 x

0
4 . . . x

m
n−1x

0
n) (3.15)

(Im,n)[u] = (x1x3 . . . xn−1γ, x
m
1 x

0
2x

m
3 x

0
4 . . . x

m
n−1x

0
n) (3.16)

Let n > 1 be odd and define u = x01x
m
2 x

0
3x

m
4 . . . x

0
n. Then,

(Im,n)u = x1x3 . . . xnIm−1,n (3.17)

(Im,n)〈u〉 = (xm1 x
0
2x

m
3 x

0
4 . . . x

m
n ) (3.18)

(Im,n)[u] = (x1x3 . . . xnγ, x
m
1 x

0
2x

m
3 x

0
4 . . . x

m
n ) (3.19)
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Proof. Let n > 1 be even and define u accordingly. Then,

(Im,n)u = (x11x
m−1
2 . . . xm−1n , . . . , xi1x

m−i
2 . . . xm−in , . . . , xm1 x

0
2 . . . x

0
n) (3.20)

= x1x3 . . . xn−1(x
0
1x

m−1
2 . . . xm−1n , . . . , xi−11 xm−i2 . . . xm−in , . . . , xm−11 x02 . . . x

0
n) (3.21)

= x1x3 . . . xn−1Im−1,n (3.22)

Also, since supp(u) = {x2, x4, . . . , xn} and the only monomial in (Im,n)u divisible by only inde-

terminates outside the support of u is xm1 x
0
2x

m
3 x

0
4 . . . x

m
n−1, we have that

(Im,n)〈u〉 = (xm1 x
0
2x

m
3 x

0
4 . . . x

m
n−1). (3.23)

Finally,

(Im,n)[u] = (Im,n)〈u〉 + γ ((Im,n)u : f) (3.24)

= (xm1 x
0
2x

m
3 x

0
4 . . . x

m
n−1) + γ(x1x3 . . . xn−1) (3.25)

= (x1x3 . . . xn−1γ, x
m
1 x

0
2x

m
3 x

0
4 . . . x

m
n−1x

0
n) (3.26)

The proofs when n is odd are identical up to small changes in indices.

Note that the Hilbert series for both the extraction and the contraction become easily available via

direct computation, regardless of whether n is even or odd. To handle the deletion, we make use of

its relation to Im−1,n in the following lemma.

Lemma 3.2.3. Let n > 1 and let Rm,n refer to the quotient of the polynomial ring k[x1, . . . , xn] by

Im,n. Then,

HS((Rm,n)u) = td
n
2 eHS(Rm−1,n) +

1− td
n
2 e

(1− t)n
(3.27)
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Proof. As before, we will provide the proof in the case when n is even. The only difference in the

case when n is odd is a change in a shift in grading.

Define v = x1x3 . . . xn−1 and consider the following short exact sequence:

0→ k[x1,...,xn]
((Im,n)u:v)

(−n
2
) (Rm,n)u

k[x1,x2,...,xn]
(v)

→ 0·v v 7→0 (3.28)

Since (Im,n)u = x1x3 . . . xn−1Im−1,n = vIm−1,n, it is clear that ((Im,n)u : v) = Im−1,n, so we can

alter our sequence accordingly. This yields

0→ Rm−1,n (−n
2
) (Rm,n)u

k[x1,x2,...,xn]
(v)

→ 0·v v 7→0 (3.29)

Therefore, we can construct the following Hilbert series relation

HS((Rm,n)u) = t
n
2HS(Rm−1,n) +HS

(
k[x1, x2, . . . , xn]

(v)

)
(3.30)

The result for when n is even then follows from the fact that the degree of v is n
2
.

We may now continue to form a recursive relation for the Hilbert series of Rm,n and use it to

inductively verify a direct computation of the Hilbert series. We will proceed separately in the

cases where n is even and odd.

Example 3.2.4. Let n > 1 be even, m a positive integer, and let Rm,n refer to the quotient of the

polynomial ring k[x1, . . . , xn] by Im,n. Then,

HS(Rm,n) = t
n
2HS(Rm−1,n) +

(1− tn2 )(1− tmn2 )

(1− t)n
when m > 1 (3.31)
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and

HS(Rm,n) =
1− (m+ 1)t

mn
2 +mt

(m+1)n
2

(1− t)n
. (3.32)

Proof. We begin by proving the recursive relation. By applying Theorem 2.3.3 to Rm,n using

the monomial u = xm1 x
0
2x

m
3 x

0
4 . . . x

m
n−1 and then performing some calculations and simplifications

using Lemma 3.2.2 and Lemma 3.2.3, we can see that

HS(Rm,n) = HS((Rm,n)u)− (1− t)t
mn
2
−1 (HS((Rm,n)[u])−HS((Rm,n)〈u〉)

)
(3.33)

= t
n
2HS(Rm−1,n) +

1− tn2
(1− t)n

(3.34)

− (1− t)t
mn
2
−1
(
HS

(
k[x1, . . . , xn, γ]

(x1x3 . . . xn−1γ, xm1 x
m
3 . . . x

m
n−1)

)
−HS

(
k[x1, . . . , xn]

(xm1 x
m
3 . . . x

m
n−1)

))
= t

n
2HS(Rm−1,n) +

1− tn2
(1− t)n

− (1− t)t
mn
2
−1
(
1− tn2+1 − tmn2 + t

mn
2

+1

(1− t)n+1
− 1− tmn2

(1− t)n

)
(3.35)

= t
n
2HS(Rm−1,n) +

(1− tn2 )(1− tmn2 )

(1− t)n
(3.36)

Now, we use this relation to inductively build the direct formula. Note that for any positive, even

n,

HS(R1,n) = HS

(
k[x1, . . . , xn]

(x1x3 . . . xn−1, x2x4 . . . xn)

)
(3.37)

=
(1− tn2 )(1− tn2 )

(1− t)n
(3.38)

=
1− 2t

n
2 + tn

(1− t)n
, (3.39)

so the result holds for m = 1. Next, assume that the result holds when m = i for some fixed i ≥ 1.
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We will consider m = i+ 1 and apply the recursion relation.

HS(Ri+1,n) = t
n
2HS(Ri,n) +

(1− tn2 )(1− t
(i+1)n

2 )

(1− t)n
(3.40)

= t
n
2
1− (i+ 1)t

in
2 + it

(i+1)n
2

(1− t)n
+

1− tn2 − t
(i+1)n

2 + t
(i+2)n

2

(1− t)n
(3.41)

=
1− (i+ 2)t

(i+1)n
2 + (i+ 1)t

(i+2)n
2

(1− t)n
, (3.42)

as desired. Therefore the result holds for all positive integers m when n is an even positive integer.

Now, we imitate the above steps when n is odd. However, the reader will note that this case

provides extra complications. This largely occurs due to the lack of symmetry in Im,n as compared

to when n is even.

Example 3.2.5. Let n ≥ 1 be odd, m a positive integer, and let Rm,n refer to the quotient of the

polynomial ring k[x1, . . . , xn] by Im,n. Then,

HS(Rm,n) = t
n+1
2 HS(Rm−1,n) +

(1− tn+1
2 )(1− t

m(n−1)
2 )

(1− t)n
when m > 1 (3.43)

and

HS(Rm,n) =
1− t− t

m(n−1)
2 + t

m(n+1)
2

+1 + t
(m+1)(n−1)

2
+1 − t

(m+1)(n+1)
2

(1− t)n+1
. (3.44)

Proof. As before, we begin by constructing the recursive relation using Theorem 2.3.3 alongside

Lemmas 3.2.2 and 3.2.3.
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HS(Rm,n) = HS((Rm,n)u)− (1− t)t
m(n−1)

2
−1 (HS((Rm,n)[u])−HS((Rm,n)〈u〉)

)
(3.45)

= t
n+1
2 HS(Rm−1,n) +

1− tn+1
2

(1− t)n
(3.46)

− (1− t)t
m(n−1)

2
−1
(
HS

(
k[x1, . . . , xn, γ]

(x1x3 . . . xnγ, xm1 x
m
3 . . . x

m
n )

)
−HS

(
k[x1, . . . , xn]

(xm1 x
m
3 . . . x

m
n )

))
= t

n+1
2 HS(Rm−1,n) +

1− tn+1
2

(1− t)n
(3.47)

− (1− t)t
m(n−1)

2
−1

(
1− tn+1

2
+1 − t

m(n+1)
2 + t

m(n+1)
2

+1

(1− t)n+1
− 1− t

m(n+1)
2

(1− t)n

)

= t
n+1
2 HS(Rm−1,n) +

(1− tn+1
2 )(1− t

m(n−1)
2 )

(1− t)n
(3.48)

Therefore, the recursive formula holds.

Let n be a positive odd number. Then,

HS(R1,n) = HS

(
k[x1, . . . , xn]

(x1x3 . . . xn, x2x4 . . . xn−1)

)
(3.49)

=
(1− tn+1

2 )(1− tn−1
2 )

(1− t)n
(3.50)

=
1− t− tn−1

2 + t
n+1
2

+1 + tn − tn+1

(1− t)n+1
, (3.51)

so the direct result holds when n is odd and m = 1. Now assume that it holds for some odd n and
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some fixed m = i. Then,

HS(Ri+1,n) = t
n+1
2 HS(Ri,n) +

(1− tn+1
2 )(1− t

(i+1)(n−1)
2 )

(1− t)n
(3.52)

= t
n+1
2
1− t− t

i(n−1)
2 + t

i(n+1)
2

+1 + t
(i+1)(n−1)

2
+1 − t

(i+1)(n+1)
2

(1− t)n+1
(3.53)

+
1− tn+1

2 − t
(i+1)(n−1)

2 + t
(i+2)(n−1)

2
+1

(1− t)n

=
1− t− t

(i+1)(n−1)
2 + t

(i+1)(n+1)
2

+1 + t
(i+2)(n−1)

2
+1 − t

(i+2)(n+1)
2

(1− t)n+1
, (3.54)

as desired. Thus, the result holds for all m ≥ 1 by induction.
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