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ABSTRACT

A proper edge-coloring of a graph G by positive integers is called an interval edge-coloring if the

colors assigned to the edges incident to any vertex in G are consecutive (i.e., those colors form

an interval of integers). The notion of interval edge-colorings was first introduced by Asratian

and Kamalian in 1987, motivated by the problem of finding compact school timetables. In 1992,

Hansen described another scenario using interval edge-colorings to schedule parent-teacher con-

ferences so that every person’s conferences occur in consecutive slots. A solution exists if and only

if the bipartite graph with vertices for parents and teachers, and edges for the required meetings,

has an interval edge-coloring.

A well-known result of Vizing states that for any simple graphG, χ′(G) ≤ ∆(G)+1, where χ′(G)

and ∆(G) denote the edge-chromatic number and maximum degree of G, respectively. A graph G

is called class 1 if χ′(G) = ∆(G), and class 2 if χ′(G) = ∆(G) + 1. One can see that any graph

admitting an interval edge-coloring must be of class 1, and thus every graph of class 2 does not

have such a coloring.

Finding an interval edge-coloring of a given graph is hard. In fact, it has been shown that deter-

mining whether a bipartite graph has an interval edge-coloring is NP-complete. In this thesis, we

survey known results on interval edge-colorings of graphs, with a focus on the progress of (a, b)-

biregular bipartite graphs. Discussion of related topics and future work is included at the end. We

also give a new proof of Theorem 3.15 on the existence of proper path factors of (3, 4)-biregular

graphs. Finally, we obtain a new result, Theorem 3.18, which states that if a proper path factor of

any (3, 4)-biregular graph has no path of length 8, then it contains paths of length 6 only. The new

result we obtained and the method we developed in the proof of Theorem 3.15 might be helpful in

attacking the open problems mentioned in the Future Work section of Chapter 5.
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CHAPTER 1: INTRODUCTION

Graph Terminology

A graph G consists of a set of vertices V (G) and a set of edges E(G), where E(G) contains

2-element subsets of V (G). In a drawing of a graph, vertices are points, and each edge is a line

between two vertices which are known as its endpoints. When an edge e has vertices u and v as

its endpoints, we say that e is incident to u and v, and write e = uv. On the other hand, since u

and v are endpoints of the same edge e, we say those vertices are adjacent. We also say that u is

a neighbor of v, and v is a neighbor of u. A simple graph is one with no loops (edges with the

same vertex for both endpoints) or parallel edges (sets of edges which share the same endpoints).

A multigraph is one which has loops or parallel edges. In this thesis, multigraphs have no loops

unless specified otherwise.

A subgraph H of a graph G, denoted H ⊆ G, is a graph with V (H) ⊆ V (G) and E(H) ⊆ E(G).

We say H is a spanning subgraph of G if H ⊆ G with V (H) = V (G). Given a vertex v ∈ V (G),

we write dG(v) to represent the degree of the vertex v – that is, the number of edges incident to v

– in G. We use δ(G) and ∆(G) to refer to the minimum and maximum degree of all vertices in G,

respectively. The neighborhood of a vertex v, written N(v), is the set of all vertices adjacent to v.

A path on n vertices, or an n-path, Pn, is a graph whose vertices can be ordered linearly as

{v1, v2, . . . , vn} such that vi and vj are adjacent if and only if they appear consecutively in the or-

dering. We define the number of edges in a path as its length. If a path P has vertices v1, v2, . . . , vt

in order, we write P = v1v2 . . . vt and say that P is a path from v1 to vt. We use v1Pvi (respec-

tively, viPvt) to denote the subpath of P with vertices v1, v2, . . . , vi (respectively, vi, vi+1, . . . , vt)

in order. The vertices v1 and vt are the end vertices or ends of P , and v2, . . . , vt−1 are called inter-
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nal vertices of P . The graph Cn := Pn + v1vn is called a cycle on n vertices. The complete graph

on n vertices, Kn, is a graph in which every pair of distinct vertices are adjacent.

Bipartite graphs can be divided into two bipartitions, which are disjoint vertex sets covering all of

the vertices in the graph, such that every edge has one endpoint in each bipartition. The complete

bipartite graph Km,n is a bipartite graph with bipartitions (X, Y ) such that xy ∈ E(G) for all

x ∈ X and y ∈ Y . Finally, an (a, b)-biregular graph is a bipartite graph with bipartition (X, Y ) in

which every vertex x ∈ X has degree a and every y ∈ Y has degree b.

We call a graph G connected if given any x, y ∈ V (G), there exists an (x, y)-path P ⊆ G (a path

with ends x and y). The distance between two vertices x and y is defined to be the minimum length

of an (x, y)-path, if one exists, and ∞ otherwise. The graph diameter, denoted diam(G), is the

maximum distance between any pair of vertices in G. A tree is a connected graph which does not

contain any cycles as subgraphs.

The cartesian product of two graphs, G and H , denoted G × H , is the graph with vertex set

V (G) × V (H) such that (u, v) is adjacent to (x, y) when either (a) u = x and vy ∈ E(H), or (b)

v = y and ux ∈ E(G).

A graph G is called planar if it has a planar embedding (a drawing of the graph on the plane

without crossed edges). In a planar drawing of a graph, the vertices and edges of the graph divide

the plane into faces, of which there is exactly one unbounded (infinite) face. Outerplanar graphs

have the property that each vertex lies on the boundary of the unbounded face. Furthermore, the

bounded faces of an outerplanar triangulation must be formed by triangles.
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Edge-Colorings

An edge-coloring of a graph G is a function c : E(G) → N, where the numbers represent col-

ors. While vertex colorings are an interesting topic of study, all colorings in this paper are edge-

colorings unless otherwise stated. We say a color is present at a vertex v under an edge-coloring

c if c assigns it to an edge incident to v. Note that the colors present at a vertex v form a subset

of integers, which we will denote c(v). We call an edge-coloring a proper edge-coloring if no two

edges incident to the same vertex are assigned the same color.

We use χ′(G) to denote the chromatic index of a graph G, which is the minimum number of colors

that may be used to properly color the edges of G. Note that for any graph G, χ′(G) ≥ ∆(G),

as each vertex v ∈ V (G) must have dG(v) distinct colors present. A well-known theorem of

Vizing [35] states that χ′(G) ≤ ∆(G) + 1; as a result, graphs may be either of class 1 (when

χ′(G) = ∆(G)), or class 2 (when χ′(G) = ∆(G) + 1).

A proper edge-coloring c : E(G) → N of a graph G is called an interval edge-coloring if for

every vertex v ∈ V (G), the colors present at v form an interval of positive integers. Such colorings

have also been referred to as consecutive and compact edge-colorings. Asratian and Kamalian

[3] introduced the topic of interval edge-colorings in 1987 (in English as [5]), and completed

foundational work along with Hansen [17]. Recent work has addressed the existence of these

colorings in certain classes of graphs, as well as the number of colors that may be used.

We take an interval t-coloring of a graphG to be an interval edge-coloring c : E(G)→ {1, 2, . . . , t}.

Finally, we can characterize the existence of an interval edge-coloring in terms of deficiency. Given

a graph G, the deficiency of a coloring c at a vertex v is the minimum number of colors which must

be added to c(v) in order to form an interval of integers. Similarly, the deficiency of a coloring c

is the sum of the deficiencies at each vertex in G. Lastly, the deficiency of a graph G is the min-
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imum deficiency over all proper edge-colorings of G. By this definition, a graph has an interval

edge-coloring if it has deficiency zero.

Applications

Asratian and Kamalian [4] described the use of interval edge-colorings in the creation of compact

school timetables, in which classes are scheduled so that neither lecturers nor groups of students

experience gaps in the schedule. Hansen described a similar application in which conferences be-

tween parents and teachers are scheduled without waiting periods [10, 17]. More generally, Giaro,

Kubale, and Malafiejski [14] frame the problem in terms of scheduling zero-one time operations

in an “open shop.” Here “jobs” are scheduled for work among a collection of “processors,” at

which each operation takes either zero or one unit of time. In each case, the two groups (lecturers

and classes; parents and teachers; jobs and processors) are represented as bipartitions of a bipartite

graph. A consecutive scheduling is represented by an interval edge-coloring of such a graph.

While bipartite graphs are a large focus of study, interval edge-colorings have applications related

to non-bipartite graphs as well. Axenovich [7] described the situation in which a group of people

wish to schedule conferences with others in the group. Given that all of the conferences are the

same length of time, a consecutive schedule is once again represented by an interval edge-coloring

of a graph representing the scheduling problem.

Topics of Study

Not all graphs have interval edge-colorings – a small example is the triangle K3, as shown in

Figure 1.1 – and finding them is not simple. The existence of such colorings for various classes

of general graphs is the focus of Chapter 2. Since bipartite graphs represent many scheduling
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Figure 1.1: Triangle K3 with a partial edge-coloring.

applications, we explore this area separately in Chapter 3. Beyond existence, the maximum and

minimum number of colors for which an interval edge-coloring exists is another interesting prob-

lem. In Chapter 4, we consider lower and upper bounds on the number of colors used in interval

edge-colorings for several classes of graphs.

There are a number of generalizations and related topics. Graphs may have near interval edge-

colorings, in which the set of colors present at any vertex would be an interval with the addition

of a single color. They may also have cyclic interval edge-colorings, in which the colors at each

vertex form an interval modulo the total number of colors. Both are discussed in Chapter 5, along

with a brief note on the computational runtimes of algorithms related to interval edge-colorings.
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CHAPTER 2: GENERAL GRAPHS

In this chapter we consider interval edge-colorings of general and some special classes of graphs.

A large amount of work on bipartite and biregular graphs is considered in Chapter 3.

As mentioned in Chapter 1, not all graphs have interval edge-colorings. In fact, there are many

graphs which do not have such colorings. Asratian and Kamalian [5] proved the following:

Proposition 2.1. If a multigraph G has an interval edge-coloring, then χ′(G) = ∆(G).

As a result, all class 2 graphs are known not to have interval colorings. The complete graph on

three vertices, K3, is such a graph (see Figure 1.1). In fact, K2n+1 has no interval edge-coloring

for any n ∈ N.

While a large number of graphs do not have interval edge-colorings, there are many graphs that

do. Asratian and Kamalian [4] showed:

Proposition 2.2. A tree T has an interval ∆(T )-coloring.

Such a coloring can be obtained by induction on the number of vertices of T , or by searching

through the tree and assigning the next-lowest integer color which maintains an interval of colors

on the source vertex. Asratian and Kamalian [5] proved:

Corollary 2.3. A k-regular multigraph G has an interval k-coloring if and only if χ′(G) = k.

Casselgren and Toft [10] explain that in this case, E(G) consists of k perfect matchings, which

may be colored accordingly. Giaro and Kubale [13] considered the cartesian product of graphs and

proved the following:

Theorem 2.4. If a graphG has an interval ∆(G)-coloring, then the graph cartesian productsG×Pk

and G× C2k also have interval edge-colorings for any positive integer k.
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Figure 2.1: Examples of outerplanar triangulations with (1) and without (2) separating triangles.

As a result, grids Pn1×Pn2×· · ·×Pni
, bipartite cylinders C2n×Pm, and bipartite torii C2n×C2k

(for m,n, n1, n2, . . . , ni positive integers) all have interval edge-colorings.

Planar Graphs

Several interesting results relate specifically to planar graphs. In this section, we review important

terminology and survey results concerning the existence of interval edge-colorings in these graphs.

Bounds on the number of colors used will be explored in Chapter 4.

A separating triangle is a bounded (triangular) face of an outerplanar triangulation which does not

share any edges with the unbounded face. An edge e = xy is said to be assigned an extremal color,

say α, if α is either the maximum or minimum of the set of all colors which are assigned to edges

incident to x or y. A multigraph G is constructed from two multigraphs G1 and G2 by attaching

them along an edge e = xy if

(a) V (G) = V (G1) ∪ V (G2),

(b) E(G) = E(G1) ∪ E(G1),
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(c) V (G1) ∩ V (G2) = {x, y}, and

(d) e ∈ E(G1) ∩ E(G2).

In this case, we write G = G1eG2. If e does not have any parallel edges in G1 and G2, we have

E(G1) ∩ E(G2) = {e}. Finally, an edge e in a graph G is called a dividing edge for an interval

edge-coloring c if G = G1eG2 for some subgraphs G1 and G2, and e receives extremal colors in

G1 and G2 under c.

One simple example of a planar graph is the wheel Wn, constructed from a cycle Cn by adding a

central vertex adjacent to each vertex on the cycle. Axenovich [7] showed:

Theorem 2.5. The wheel Wn has an interval edge-coloring if and only if n = 3, 6, 9.

Giaro, Kubale, and Malafiejski [15] described wheels in terms of deficiency. They proved that the

wheel Wn has deficiency zero for n = 3, 6, 9, one for n = 2, 4, 5, 7, 8, 10, 11, and two for n ≥ 12.

Interval edge-colorings for W3,W6,W9 are depicted in Figure 2.2.

Petrosyan [30] worked with outerplanar graphs, and proved:

Theorem 2.6. If G is a 2-connected outerplanar graph with maximum degree at most 3, and is not

an odd cycle, then it has an interval edge-coloring.

Furthermore, Petrosyan [30] demonstrated outerplanar graphs with maximum degree 4 which do

not have interval edge-colorings. Related results concerning the number of colors used in such

colorings are included in Chapter 4.

One particular subclass of planar graphs is the outerplanar triangulation. Note that K3 is an outer-

planar triangulation, so not all such graphs have interval edge-colorings. Axenovich [7] proved:

Theorem 2.7. An outerplanar triangulation on at least four vertices, without a separating triangle,

has an interval edge-coloring.

8



Figure 2.2: Interval edge-colorings of the wheels W3, W6, and W9 [7].

As a corollary, all outerplanar bipartite graphs have interval edge-colorings. Petrosyan [30] proved

that the condition of having no separating triangle is sufficient, but not necessary, for the existence

of such a coloring. In order to prove the result about outerplanar triangulations, Axenovich [7] also

showed the following two results:

Theorem 2.8. If two graphsG1 andG2 have interval edge-colorings which give an edge e extremal

colors, then G1eG2 has an interval edge-coloring.

Lemma 2.9. If a graph G has an interval edge-coloring, then the graph obtained by removing any

number of dividing edges also has an interval edge-coloring.

Thus Theorem 2.7 can be extended to include outerplanar triangulations on at least four vertices,

without separating triangles, which are missing one or more dividing edges.
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CHAPTER 3: BIPARTITE GRAPHS

In this chapter we focus on bipartite graphs. Since many scheduling problems relate to meetings

between two separate groups (e.g. parents and teachers), bipartite graphs are a topic of particular

interest. If the colors assigned to edges of a graph represent meeting times, an interval edge-

coloring of such a graph represents a schedule in which each participant has consecutive meetings.

General Bipartite Graphs

Not every bipartite graph has an interval edge-coloring; Sevastjanov [33] provided the first example

of a bipartite graph without such a coloring. Since then, a number of smaller examples of bipartite

graphs have been found [21]. Before giving one such example, we need some notation. A finite

projective plane of order q consists of a set of q2 + q + 1 points and a set of q2 + q + 1 lines such

that (a) each point belongs to q + 1 lines, (b) each line contains q + 1 points, and (c) each pair of

lines meet at exactly one point.

Example 3.1. Jensen and Toft [21] related an example of a bipartite graph without an interval

edge-coloring created by Paul Erdős. The construction of the graphG is based on a finite projective

plane, P , of order q ≥ 3. Let one bipartition, X , be the set of q2 + q + 1 points in P . Let the

other bipartition, Y , be the set of q2 + q + 1 lines in P . Given any point x ∈ X and line y ∈ Y ,

x is adjacent to y in G if x lies on y in P . At this point, dG(v) = q + 1 for all v ∈ V (G). The

final step is to add a new vertex, z, which is adjacent to all vertices in Y . Prior to the addition of

the final vertex, this graph is (q + 1)-regular and bipartite. By Observation 3.3, it has an interval

edge-coloring. The addition of the final vertex causes no interval edge-coloring to exist.
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The smallest known example of a bipartite graph without an interval edge-coloring, which has

19 vertices, was reportedly found by Mirumyan in 1989 [24], but remained unpublished. Giaro,

Kubale, and Malafiejski [16] discovered the graph independently. On the other hand, Giaro [11]

previously demonstrated that bipartite graphs on at most 14 vertices have interval edge-colorings,

and Khachatrian and Mamikonyan [24] showed that every bipartite graph on 15 vertices has an

interval edge-coloring. Whether a bipartite graph G with 16 ≤ |V (G)| ≤ 18 has an interval

edge-coloring remains open.

We next state results on several classes of bipartite graphs which are known to have interval edge-

colorings. Asratian and Kamalian [4] showed:

Lemma 3.2. The complete bipartite graph Ka,b has an interval (a+ b− 1)-coloring.

To construct such a coloring, we may enumerate the vertices of each partite set as {x1, . . . , xa}

and {y1, . . . , yb}. An edge xiyj receives color i + j − 1 for 1 ≤ i ≤ a and 1 ≤ j ≤ b. As we will

see in Chapter 4, many values of a and b may allow the use of fewer colors. Since every k-regular

bipartite graph is of class 1, it follows from Corollary 2.3 that:

Observation 3.3. Every k-regular bipartite multigraph has an interval k-coloring.

In this case the graph can be decomposed into k perfect matchings, which are colored accordingly.

Furthermore, Hansen [17] showed:

Theorem 3.4. All bipartite graphs with maximum degree at most 3 have interval 4-colorings.

Finally, a doubly convex bipartite graph G is one in which both bipartite sets can be enumerated

such that for all v ∈ V (G), the neighbors of v are consecutively numbered. Kamalian [22] showed

that doubly convex bipartite graphs have interval edge-colorings.
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Biregular Graphs

Let a and b be positive integers. An (a, b)-biregular graph G is a bipartite graph with bipartition

(X, Y ) such that dG(x) = a for all x ∈ X and dG(y) = b for all y ∈ Y . Complete and reg-

ular bipartite graphs are common examples of biregular graphs. The following is a well-known

conjecture on interval edge-colorings of biregular graphs [21, 34]:

Conjecture 3.5. Every (a, b)-biregular multigraph has an interval edge-coloring.

In the following, we review known results for several values of a and b; the smallest values without

a general solution are a = 3 and b = 4, which will be explored separately.

Since (1, b)-biregular graphs are forests consisting of stars (which are trees), such graphs have

interval edge-colorings. Hansen [17] showed that (2, b)-biregular multigraphs have such colorings

when b is even. Furthermore, he noted that this is equivalent to a result by Petersen [28]: every

2k-regular graph has a decomposition into 2-regular edge-disjoint subgraphs. Casselgren and Toft

[10] noted that these graphs can always be colored such that the vertices of degree 2 receive colors

2j − 1 and 2j for some positive integer j. In other words, the lesser of the two colors appearing at

each vertex of degree 2 is odd. Hanson and Loten [19] later proved the existence of interval edge-

colorings of (2, b)-biregular multigraphs for the case when b is odd (a result obtained independently

by Kostochka [25]). Thus we have:

Theorem 3.6. Every (2, b)-biregular multigraph has an interval edge-coloring.

Additionally, Hanson and Loten [19] showed that such colorings exist with any given edge re-

ceiving a specified color. In application, this means that a schedule can be created with any one

meeting time predetermined.

Casselgren and Toft [10] proved the following two results related to (3, 6)-biregular graphs:

12



Theorem 3.7. Every (3, 6)-biregular graph has an interval 7-coloring.

Remark 3.8. A (3, 6)-biregular graph has an interval 6-coloring if and only if it has a 3-regular

subgraph covering all vertices of degree 6.

They also demonstrated a (3, 6)-biregular graph without such a 3-regular subgraph, and therefore

no interval 6-coloring. Thus the use of 7 colors is a best-possible general result. Using this, they

proceeded to show:

Corollary 3.9. Every (3, 9)-biregular graph containing a 3-regular subgraph which covers all ver-

tices of degree 9 has an interval 10-coloring.

Moreover, Casselgren and Toft [10] showed that a (3, 9)-biregular graph has an interval 9-coloring

if and only if it can be decomposed into three 3-regular edge-disjoint subgraphs. Note that this

result does not preclude a (3, 9)-biregular graph without such a subgraph from having an interval

edge-coloring with a greater number of colors.

Additionally, Casselgren and Toft [10] found conditions for the existence of an interval edge-

coloring of (4, 6)- and (4, 8)-biregular graphs. They showed:

Proposition 3.10. A (4, 6)-biregular graph with bipartitions (X, Y ) has an interval 8-coloring if

X = X1 ∪X2 ∪X3 and Y = Y1 ∪ Y2 such that either

(i) G[Xi ∪ Yj] is 2-regular for any i = 1, 2, 3 or j = 1, 2, or

(ii) G[X2 ∪ Yi] is 2-regular for any i = 1, 2 while G[X1 ∪ Y1] and G[X3 ∪ Y2] are both 4-regular.

Due to Theorem 4.14, the use of 8 colors is best-possible for all (4, 6)-biregular graphs. They

further note that (4, 6)-biregular graphs not satisfying this criteria exist. Thus we expect that it is

not a necessary condition for the existence of an interval edge-coloring. Finally, they demonstrated:
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Figure 3.1: Interval 6-coloring of K3,4.

Proposition 3.11. A (4, 8)-biregular graph has an interval 8-coloring if and only if it contains a

4-regular subgraph which covers all vertices of degree 8.

Results drawing from regular subgraphs which cover one of the bipartitions are noticeably com-

mon. We will see this again when we consider the (3, 4)-biregular case in the next section.

(3, 4)-Biregular Graphs

As mentioned previously, the smallest unsolved case of Conjecture 3.5 is that of (3, 4)-biregular

multigraphs. The simplest such graph is the complete bipartite graph K3,4, which has an interval

6-coloring as given in Figure 3.1. As we will see in Chapter 4, the number 6 is best-possible.

While a general result for (3, 4)-biregular multigraphs is not known, several special cases are

known to have interval edge-colorings. Pyatkin [32] showed the following sufficient condition:

Theorem 3.12. Every (3, 4)-biregular graph which contains a “full” 3-regular subgraph (one which

covers the vertices of degree 4) has an interval 6-coloring.

This sufficient condition is not necessary for the existence of an interval edge-coloring, as Asratian,

Casselgren, Vandenbussche, and West [6] demonstrated a graph (Figure 3.2) with an interval edge-
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Figure 3.2: A (3, 4)-biregular graph which does not have a “full” 3-regular subgraph, but does
have a proper path factor, given by the red and blue edges [6].

coloring that does not have such a subgraph. They also discovered an alternative sufficient con-

dition for the existence of an interval edge-coloring. We define a path factor of a (3, 4)-biregular

multigraph to be a spanning subgraph in which each component is a path with two endpoints in

the bipartition of degree 3 vertices. A proper path factor is a path factor in which each path has

length 2, 4, 6, or 8. An example of a proper path factor is given by the red and blue edges in

Figure 3.2. Casselgren [9] proved the following result in his thesis, and later Asratian, Casselgren,

Vandenbussche, and West [6] gave a shorter proof:

Theorem 3.13. Let G be a (3, 4)-biregular multigraph. If G has a proper path factor, then it has

an interval 6-coloring.

Note that not every (3, 4)-biregular multigraph has a proper path factor [6], even if it has a “full”

3-regular subgraph as in Figure 3.3. Thus, for multigraphs, neither the presence of a proper path

factor nor the presence of a “full” 3-regular subgraph imply the other. This changes when we

consider simple graphs, however. In fact, Asratian, Casselgren, Vandenbussche, and West [6]

made the following conjecture:

Conjecture 3.14. Every simple (3, 4)-biregular graph has a proper path factor.
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Figure 3.3: A (3, 4)-biregular multigraph which does not have a proper path factor, but does have
a “full” 3-regular subgraph.

To state the progress on Conjecture 3.14, we need some definitions. Let G be a (3, 4)-biregular

multigraph. A spanning subgraph F of G is called a pseudo path factor of G if each component of

F is a path with two ends of degree 3 in G. Note that these paths may be single vertices of degree

3 inG. Pseudo path factors are easier to find than proper path factors; however, they remain useful.

Below is a result due to Asratian and Casselgren [2]. The original proof is algorithmic; we give a

new proof here.

Theorem 3.15. Let G be a (3, 4)-biregular graph with bipartition (X, Y ), so that each x ∈ X has

degree 3 and each y ∈ Y has degree 4 in G. Let F be a pseudo path factor of G. Then there exists

a path factor P of G such that no path in P is longer than the longest path in F .

Proof. Let G = (X, Y ) and F be as given in the statement. We may assume that F is not a path

factor, otherwise we are done. Given a pseudo path factor F of G, let maxF := max{|E(P )| :

P ∈ F} and VF := {x ∈ X : dF (x) ≥ 1}. We shall proceed by contradiction.

Suppose that no such path factor P exists. Let F ∗ be a pseudo path factor of G, with VF ∗ ⊇ VF

and maxF ∗ ≤ maxF , such that |X \ VF ∗| is minimum. Notice that X \ VF ∗ 6= ∅ (otherwise F ∗

would be a desired path factor) and each vertex in X \VF ∗ is a path of length zero in F ∗. Since F ∗

is a spanning subgraph of G and each path in F ∗ has its ends in X , we see that each vertex in Y is
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Figure 3.4: Transformation of F when x0 is adjacent to a path of length greater than 2 in F .

an internal vertex of some path in F ∗. Let x0 ∈ X \VF ∗ . Then NG(x0) ⊆ Y , and so each neighbor

of x0 is an internal vertex of some path in F ∗. We claim that each vertex in NG(x0) is the middle

vertex of a 3-path in F ∗.

Suppose, to the contrary, that x0 is adjacent to an internal vertex y of a path P ∈ F ∗ with length

greater than 2. Let dP (u, v) denote the distance between two vertices u, v ∈ V (P ) along P . Let

a, b be the two ends of P with dP (a, y) ≤ dP (y, b), and let F ′ = (F ∗ \ P ) ∪ {x0yPa, dPb},

where d is the neighbor of y on the subpath yPb. Then F ′ is a pseudo path factor of G with

VF ′ ⊇ VF ∗ ∪ {x0} and maxF ′ ≤ maxF ∗, contrary to the choice of F ∗. Thus each neighbor of x0

is the middle vertex of a 3-path in F ∗, as claimed.

Let Q1 ∈ F ∗ be a 3-path with vertices x1, y1, z1 in order such that x0y1 ∈ E(G). We claim that

neither x1 nor z1 can be adjacent to any internal vertex of a path with length greater than 2 in F ∗.

Suppose otherwise. Without loss of generality we may assume that z1 is adjacent to an interval

vertex, say y, of a path P ∈ F ∗ with length greater than 2. In this case, we may construct a new

pseudo path factor F ′, with VF ′ ⊇ VF ∪ {x0} and maxF ′ ≤ maxF , by splitting Q1 and P in the

same manner as described previously (see Figure 3.5), again contrary to the choice of F ∗.

Let Q1, Q2, . . . , Qs be a maximal sequence of vertex-disjoint 3-paths Qi = xiyizi in F ∗ such that

x0y1 ∈ E(G), and for each 2 ≤ i ≤ s, the vertex yi has a neighbor in {x0, x1, z1, . . . , xi−1, zi−1}.
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Figure 3.5: Transformation of F when x1 or z1 is adjacent to a path of length greater than 2 in F .

Using an argument similar to that used with Q1, we see that the ends of each Qi cannot be adjacent

to an internal vertex of a path in F ∗ with length greater than 2. LetA = {x0, x1, z1, . . . , xs, zs} and

B = {y1, y2, . . . , ys}. Then |A| = 2s + 1 and |B| = s. Note that s ≥ 3 as x0 has three neighbors

in G. One can see that N(A) ⊆ B by the maximality of s.

Let m be the number of edges between the sets A and B. We have 3|A| ≤ m, as each vertex in A

has degree 3 and N(A) ⊆ B. Also, m ≤ 4s, as each vertex in B has degree 4. As a result,

3(2s+ 1) ≤ m ≤ 4s

and thus

s ≤ −3

2
.

This is a contradiction, as s ≥ 3. We conclude that such a path factor P must exist.

Using this result, Casselgren [8] showed:

Theorem 3.16. Every simple (3, 4)-biregular graph has a path factor in which the maximum length

of a path is at most 22.

Improving the maximum length from 22 to 8 would confirm Conjecture 3.14 and thus show that

every (3, 4)-biregular graph has an interval 6-coloring. Asratian, Casselgren, Vandenbussche, and
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West [6] gave sufficient conditions for the existence of a proper path factor. For (3, 4)-biregular

graphs with a “full” 3-regular subgraph, they defined various types of transversal sets based on the

neighborhoods of degree 3 vertices included in the subgraph. The existence of a mixed transversal

is sufficient for the existence of a proper path factor. On the other hand, they showed:

Theorem 3.17. A (3, 4)-biregular graph G with bipartition (X, Y ) has a proper path factor into

7-paths with ends in X if G has a (2, 4)-biregular subgraph covering X .

Asratian, Casselgren, Vandenbussche, and West [6] note that many, though not all, graphs have

such a P7-factor. This is not surprising when we consider the degree requirements of paths in

(3, 4)-biregular graphs. We have the following new result.

Theorem 3.18. Let P be any proper path factor of a (3, 4)-biregular graph G with t2 number of

paths of length 2, t4 number of paths of length 4, t6 paths of length 6, and t8 paths of length 8.

Then 2t2 + t4 = t8. In particular, if P has no path of length 8, then P has paths of length 6 only,

namely, P is a P7-factor.

Proof. Let (X, Y ) be the bipartition of G such that dG(x) = 3 for all x ∈ X and dG(y) = 4 for all

y ∈ Y . By counting the number of edges in G, we obtain

3 · |X| = |E(G)| = 4 · |Y |.

We proceed by counting the number of vertices contributed to X and Y by each type of path.

Since the ends of each path lie in X , each copy of P3 contributes two vertices to X and one to

Y . Similarly, each copy of P5 contributes three vertices to X and two to Y . Each copy of P7

contributes four to X and three to Y , while each copy of P9 contributes five to X and four to Y .
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Since the proper path factor P is a spanning path factor, we have

2t2 + 3t4 + 4t6 + 5t8 = |X|

and

t2 + 2t4 + 3t6 + 4t8 = |Y |.

Hence we find

6t2 + 9t4 + 12t6 + 15t8 = 3 · |X| = 4 · |Y | = 4t2 + 8t4 + 12t6 + 16t8

and, simplifying,

2t2 + t4 = t8

for any proper path factor P . Note that each t2, t4, t6, t8 are nonnegative integers. We conclude

if P does not contain P9, so that t8 = 0, it must be the case that t2 = t4 = 0. Thus P can only

contain paths P7.

Note that the quantity t6, the number of paths of length 6 in a proper path factor, cannot be con-

trolled using this method. There is one final sufficient condition for the existence of an interval

edge-coloring in a (3, 4)-biregular graph. Yang and Li [36] showed:

Theorem 3.19. A (3, 4)-biregular graph G with bipartition (X, Y ) which can be decomposed into

two edge-disjoint (2, 3)-biregular subgraphs G1 with bipartition (Y,X1) and G2 with bipartition

(Y,X2), where X1 ∪X2 = X and X1 ∩X2 = ∅, has an interval 6-coloring.
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CHAPTER 4: BOUNDS ON THE NUMBER OF COLORS

Beyond the question of whether an interval edge-coloring exists, we are also interested in the

number of colors that may be used if such a coloring exists. In this chapter, we assume that a graph

G of a particular type has an interval edge-coloring, and investigate the values of t for which an

interval t-coloring of G exists. We may assume G is connected; otherwise we consider connected

components of G separately.

General Graphs

There are several results concerning the number of colors used in an interval edge-coloring of a

general graph. Asratian and Kamalian [4] showed that if a graph G has an interval t-coloring, then

t ≤ 2|V (G)|−1. Their proof uses a bound for bipartite graphs (see Theorem 4.10) by constructing

a bipartite graph from G. Kamalian [22] improved their bound by showing that if a graph G on at

least two vertices has an interval t-coloring, then t ≤ 2|V (G)| − 3. Giaro, Kubale, and Malafiejski

[15] improved the previous bound one step further as follows:

Theorem 4.1. If a graph G on at least 3 vertices has an interval t-coloring, then t ≤ 2|V (G)| − 4.

Kamalian and Petrosyan [23] obtained a better bound for k-regular graphs:

Theorem 4.2. If G is a k-regular graph on at least 2k+ 2 vertices with an interval t-coloring, then

t ≤ 2|V (G)| − 5.

Bounds of this form, 2|V (G)| − a, may improve in the constant term a due to further study. How-

ever, Petrosyan [29] showed below that the linear term in |V (G)| cannot be improved.

21



Theorem 4.3. For any small parameter ε > 0, there exists a graph G such that the maximum

number of colors which can be used in an interval edge-coloring of G is at least (2− ε)|V (G)|.

Note that graphs satisfying the condition of Theorem 4.3 for any particular ε may require a large

number of vertices. Thus far, each of the results has been an upper bound related to the number

of vertices in the graph. We can also express bounds in terms of other properties. For example,

Giaro, Kubale, and Malafiejski [15] used the set of simple paths (ones without repeated vertices)

in G to obtain an upper bound for the number of colors used in an interval edge-coloring.

Proposition 4.4. If a graph G has an interval t-coloring, then

t ≤ 1 + max
P∈P

∑
v∈V (P )

(dG(v)− 1),

where P is the set of all simple paths in G.

They further mentioned the following corollary to Proposition 4.4 in terms of the maximum degree

and diameter of the graph:

Proposition 4.5. If a graph G has an interval t-coloring, then t ≤ (diam(G) + 1)(∆(G)− 1) + 1.

To describe the relationship between vertex degrees and the number of colors required, Asratian

and Kamalian [4] noted the following corollary as well:

Corollary 4.6. If a graph G has the property that dG(x) + dG(y) ≥ |V (G)| − 1 for every pair of

nonadjacent vertices x, y ∈ V (G), and G has an interval t-coloring, then t ≤ 3∆(G)− 2.

We have seen upper bounds related to the number of colors used in an interval edge-coloring of a

general graph if such a coloring exists. Axenovich [7] investigated bounds for planar graphs, and

obtained the following:

Theorem 4.7. If G is a planar graph with an interval t-coloring, then t ≤ 11
6
|V (G)|.
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Furthermore, based on the methods used in the proof of Theorem 4.7, Axenovich [7] conjectured:

Conjecture 4.8. If G is a planar graph with an interval t-coloring, then t ≤ 3
2
|V (G)|.

Theorem 2.6 concerns 2-connected outerplanar graphs. Petrosyan [30] also noted:

Theorem 4.9. Let G be a 2-connected outerplanar graph with maximum degree at most 3 which

is not an odd cycle. If |V (G)| is even, then the minimum number of colors used is 3. If |V (G)| is

odd, the minimum number of colors used is 4.

As a final note, for any interval t-coloring of a graph G, t ≥ ∆(G). This follows directly from the

definition of an interval edge-coloring.

Bipartite Graphs

Asratian and Kamalian [4] showed the following bound for triangle-free graphs:

Theorem 4.10. If G is a triangle-free graph with an interval t-coloring, then t ≤ |V (G)| − 1.

Since bipartite graphs do not contain any odd cycles, including triangles, this result serves as an

upper bound for interval edge-colorings of bipartite graphs. Asratian and Kamalian [4] pointed out

that this bound is tight for complete bipartite graphs Km,n. They also obtained a bound based on

the maximum degree and diameter of the graph:

Corollary 4.11. If G is a bipartite graph with an interval t-coloring, then

t ≤ diam(G)(∆(G)− 1) + 1.

Giaro, Kubale, and Malafiejski [15] pointed out that this bound is tight in the case of complete

regular bipartite graphs Kn,n.
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A lower bound based strictly upon the maximum degree of a graph would be useful, however

Asratian and Kamalian [4] demonstrated that such a bound is not possible for bipartite graphs:

Proposition 4.12. For any positive integer p, there exists a bipartite graph G such that the mini-

mum number of colors required in an interval edge-coloring is at least ∆(G) + p.

Thus we can always find a bipartite graph which violates a proposed lower bound on the number

of colors used in an interval edge-coloring based on the maximum degree alone.

Biregular Graphs

Several results relate specifically to biregular bipartite graphs. In this section, gcd(x, y) is the

greatest common divisor of integers x and y. The special structure of biregular graphs give us

an improvement to the upper bound for triangle-free graphs (see Theorem 4.10). Asratian and

Casselgren [1] showed the following:

Theorem 4.13. If G is an (a, b)-biregular graph on at least 2(a + b) vertices with an interval

t-coloring, then t ≤ |V (G)| − 3.

They further note that any (a, b)-biregular graph with gcd(a, b) = 1 which is not Ka,b satisfies the

conditions of Theorem 4.13. Moreover, they show that the bound in Theorem 4.13 is tight.

Kamalian [22] previously showed that a complete bipartite graph Ka,b with an interval t-coloring

must have t ≥ a+ b− gcd(a, b). Hanson and Loten [18] extended this result for biregular graphs:

Theorem 4.14. If G is an (a, b)-biregular graph with an interval t-coloring, then

t ≥ a+ b− gcd(a, b).
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Note that Theorem 4.14 shows the interval 6-coloring of K3,4 demonstrated in Figure 3.1 is best-

possible in terms of the number of colors. Hanson and Loten [18] note that this lower bound cannot

always be achieved in a particular (a, b)-biregular graph.
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CHAPTER 5: RELATED TOPICS

We have explored the existence of interval edge-colorings, as well as the number of colors which

can be used, with scheduling applications in mind. Since not all graphs have such colorings, a

number of generalizations have been developed. In this chapter we examine those generalizations,

study the computational complexity of interval edge-coloring problems, and consider future work.

Near Interval Edge-Colorings

As mentioned previously, the existence of an interval edge-coloring of a graph G is equivalent to

having a coloring with zero deficiency. Thus a natural generalization is to look at graphs with low

deficiency. A near interval edge-coloring is one in which the deficiency at any vertex is at most

one. Petrosyan, Arakelyan, and Baghdasaryan [31] studied the topic under the name interval (t, 1)

coloring, and provided examples of graphs which do not have such colorings. In application, a

near interval edge-coloring might represent a schedule in which each individual has at most one

“gap” between consecutive meetings. One can easily see that every (3, 4)-biregular graph has a

near-interval 4-coloring. Casselgren and Toft [10] proved the following:

Proposition 5.1. If G is a bipartite graph with δ(G) = n − 1 and ∆(G) = n for some n, then G

has a near interval n-coloring.

This notably covers many cases of (a, b)-biregular graphs directly (i.e. when b = a+ 1). Working

with this result allowed Casselgren and Toft [10] to show the following cases as well:

Corollary 5.2. Every (3, 5)-biregular graph has a near interval 6-coloring.

Theorem 5.3. Every (4, 6)-biregular graph has a near interval 7-coloring.
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Figure 5.1: Triangle K3 with a cyclic interval edge-coloring.

They note that both of these results are best-possible in terms of the number of colors used.

Note that all interval edge-colorings are also near interval edge-colorings. As a result, Conjec-

ture 3.5 can be weakened to state that every (a, b)-biregular multigraph has a near interval edge-

coloring. It is unknown whether this weakened conjecture is true.

Cyclic Interval Edge-Colorings

Another generalization is the cyclic interval edge-coloring, in which the colors present at each

vertex form an interval modulo the total number of colors used. For example, K3 has a cyclic

interval edge-coloring as depicted in Figure 5.1; the sets {1, 2}, {2, 3}, and {3, 1} each form an

interval modulo 3. Nadolski [27] demonstrated graphs which do not have such a coloring.

Casselgren and Toft [10] found a result that is similar to Proposition 5.1:

Proposition 5.4. If G is a bipartite graph with δ(G) = n− 1 and ∆(G) = n, then G has a cyclic

interval n-coloring.

Once again, this covers many cases of (a, b)-biregular graphs (i.e. when b = a + 1). They also

showed the following:

Theorem 5.5. Every (4, 8)-biregular graph has a cyclic interval 8-coloring.
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Since all interval edge-colorings are also cyclic interval edge-colorings, we can again weaken

Conjecture 3.5 to state that every (a, b)-biregular multigraph has a cyclic interval edge-coloring.

Furthermore, Casselgren and Toft [10] note that every interval edge-coloring of a graph G can

be transformed into a cyclic interval ∆(G)-coloring by taking colors modulo ∆(G). Thus the

following conjecture is also a consequence of Conjecture 3.5:

Conjecture 5.6. Every (a, b)-biregular multigraph has a cyclic interval max{a, b}-coloring.

Casselgren and Toft [10] note that the smallest unsolved case of Conjecture 5.6 is that of (3, 5)-

biregular multigraphs. They also cite sufficient conditions for the existence of such a coloring in

preparation for future work.

Computational Complexity

In this section we address the computational difficulty of answering various questions which are

posed throughout this thesis.

Proposition 2.1 states that all multigraphs G with interval edge-colorings have χ′(G) = ∆(G).

Holyer [20] showed that deciding whether a graph is of class 1 is NP-complete. Giaro, Kubale, and

Malafiejski [15] conclude that the general problem of deciding whether an interval edge-coloring

exists for a given graph is NP-complete. Similarly, Asratian and Kamalian [4] proved that the prob-

lem of determining whether a k-regular graph has an interval edge-coloring is also NP-complete.

Sevastjanov [33] proved that determining whether a bipartite graph has an interval edge-coloring

is NP-complete. Giaro [12] showed that deciding whether a bipartite graph G with ∆(G) ≥ 4 has

an interval 4-coloring occurs in polynomial time; however, it is NP-complete to decide whether a

bipartite graph G with ∆(G) ≥ 5 has an interval 5-coloring. Kubale and Nadolski [26] showed

that determining whether a bipartite graph has a cyclic interval edge-coloring is also NP-complete.
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Proofs of the results obtained in [10] yield polynomial-time algorithms for finding such colorings:

interval 7-colorings of (3, 6)-biregular graphs, interval 10-colorings of (3, 9)-biregular graphs with

3-regular subgraphs covering the vertices of degree 9, near interval 6-colorings of (3, 5)-biregular

graphs, near interval 7-colorings of (4, 6)-biregular graphs, and finally cyclic interval 8-colorings

of (4, 8)-biregular graphs.

On the other hand, Asratian and Casselgren [1] showed that the problem of determining whether

a (3, 6)-biregular graph has a 3-regular subgraph covering all vertices of degree 6 is NP-complete.

Therefore, deciding whether a (3, 6)-biregular graph has an interval 6-coloring is NP-complete

[10]. This implies that determining the existence of a 3-regular subgraph covering all vertices of

degree 9 (and therefore, the existence of an interval 9-coloring) of a (3, 9)-biregular graph is also

NP-complete. Finally, the problem of deciding whether a (4, 8)-biregular graph has a 4-regular

subgraph covering the vertices of degree 8 is NP-complete, and therefore so is determining the

existence of an interval 8-coloring.

Concerning (3, 4)-biregular graphs, Pyatkin [32] showed that the problem of determining whether

such a graph has a “full” 3-regular subgraph is NP-complete. Finally, Asratian and Casselgren [1]

proved that the problem of determining the existence of an interval t-coloring of an (a, b)-biregular

graph with b > a ≥ 3 in which a is a divisor of b is NP-complete.

Future Work

In this thesis, we have mentioned several conjectures. The most immediate topic for future work

involves Conjecture 3.14, that every simple (3, 4)-biregular graph has a proper path factor (and

therefore an interval 6-coloring). Reducing the maximum length of a path in Theorem 3.16 from

22 to 8 is sufficient to confirm the conjecture, and a topic of particular interest for future work.
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Partial results for graphs of certain order (e.g. those on at most 50 vertices) might be obtained

using Theorem 3.18, which we obtained in this thesis.

Notably, this is not sufficient to confirm the existence of an interval edge-coloring for all (3, 4)-

biregular graphs, particularly multigraphs. Another topic of future study is whether every (3, 4)-

biregular graph has either a proper path factor or a “full” 3-regular subgraph. The method we

developed in the new proof of Theorem 3.15 might be helpful in solving this problem.

Of course, the case of (3, 4)-biregular graphs is only the smallest unsolved case of Conjecture 3.5.

Further work may confirm or disprove Conjecture 3.5 for other cases.
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