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ABSTRACT

Since the work of John Snow, scientists and medical professionals have understood that individuals
develop cholera by means of consuming contaminated water. Despite the knowledgeof cholera’s
route of infection, many countries have experienced and still experience endemic cholera. Cholera
is caused by the Vibrio cholerae (V. cholerae) bacterium and presents with acute diarrhea and
vomiting. If untreated, infected individuals may die due to dehydration. Cholera is a disease that
most commonly affects countries with poor infrastructure and water sanitation. Despite efforts
to control cholera in such countries, the disease persists. One such example is Haiti which has
been experiencing a cholera outbreak since 2010. While there has been much research in the
field of microbiology to understand V. cholerae, there has been comparably less research in the
field of mathematical biology to understand the dynamics of V. cholerae in the environment. A
mathematical model of V. cholerae incorporating a phage population is coupled with a SIRS disease
model to examine the impact of vibrio and phage interaction. It is shown that there might exist
two endemic equilibria, besides the disease free equilibrium: one in which phage persist in the
environment and one in which the phage fail to persist. Existence and stability of these equilibria

are established. Disease control strategies based on vibrio and phage interactions are discussed.
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CHAPTER 1: INTRODUCTION

Cholera has devastated many countries throughout history. There have been seven pandemics of
cholera, the first of which originated in India in 1817 [1]. It is believed that increases in travel have
contributed to the pandemic growth of cholera [1]. Worldwide, it is estimated that there are 1.3 to 4
million cholera cases and 21,000 to 143,000 deaths due to cholera yearly [17]. In 2015, the World
Health Organization (WHO) reported that Democratic Republic of the Congo, Kenya, Malawi,
Mozambique, Nigeria, Somalia, South Sudan, Tanzania, Dominican Republic, Haiti, Afghanistan
and Iraq had been affected by cholera [16]. Despite efforts to control cholera in countries with

poor infrastructure and sanitation, cholera persists.

The bacterium V. cholerae is the etiologic agent of cholera, specifically the O1 and O139 serogroups.
V. cholerae may be found in water sources that have not been chemically treated or filtered.
Consumption of water from such sources may yield a cholera infection for the consumer. After
consumption of V. cholerae contaminated water or food, the bacteria rapidly replicate in the gut
of the effected individual, producing a cholera infection. Cholera presents with watery diarrhea
and vomiting. If left untreated, an infected individual may die within hours due to dehydration,
metabolic acidosis, and uremia [17, 5]. In less severe cases of cholera, treatment may include
oral or IV re-hydration however, in more severe cases antibiotics may also be used. An infected
individual may shed new V. cholerae bacteria into the environment by means of defecation, if waste
is not disposed of properly. An infected individual may shed up to 10" — 10° bacteria per milliliter

of fecal waste [12].

V. cholerae is a Gram negative, facultative anaerobe, non-spore forming curved rod bacterium



with a single polar flagellum. V. cholerae’s flagellum makes the bacterium highly motile. The V.
cholerae bacteria is found in rivers, lakes, oceans and estuaries [6]. In these environments, bacteria
may be found in biofilms or may be found free floating. According to Rodney M. Donlan [4], “A
biofilm is an assemblage of surface-associated microbial cells that is enclosed in an extracellular
polymeric substance matrix.” It is biologically advantageous for V. cholerae to exist in biofilms as

it helps the bacterium survive harsh environmental conditions [14].

Another mode of survival for V. cholerae is its ability to enter a viable but nonculturable (VBNC)
state. A bacterium that enters the VBNC state is a living cell that is not able to replicate on routine
media [8]. According to Li et al. [8], “VBNC cells have higher physical and chemical resistance
than culturable cells.” Though still viable cells, VBNC bacteria have a reduced metabolic rate [8].
While VBNC V. cholerae cells have a reduced metabolic rate, they remain virulent with a reduced
rate of adhesion [8, 10]. While bacteria enter a VBNC state when environmental conditions are
harsh, they may leave this state and return to a culturable state when environmental conditions are

favorable. Leaving the VBNC state and returning to a culturable state is called “resuscitation” [10].

It may seem that V. cholerae is the perfect bacterium. With all of its survival mechanisms, a
natural question that arises is, what prevents the bacteria from growing so abundant and taking
over all water sources. The answer to this question is bacteriophage. A bacteriophage (or phage) is
a virus that infects bacteria. These viruses may be lytic or lysogenic. A lytic bacteriophage enters
the bacterium and replicates. After the virus replicates, it causes the cell to lyse, or burst, which
results in more bacteriophage in the environment. A bacteriophage that is lysogenic, integrates
its DNA into the bacterium’s genome. This causes the bacterial daughter cells to also have the

bacteriophage DNA in their genome.



Bacteriophage may be purely lytic, purely lysogenic or a combination. Some bacteriophages
are lysogenic until environmental conditions are unsuitable for bacterial cell survival, at which
point they lyse the cell. One such example of a lysogenic bacteriophage is the lysogenic CTX®
bacteriophage. The CTX® bacteriophage is responsible for encoding for production of cholera
toxin which induces the cholera illness. According to Solis-Sanchez et al. [13], “since 2007, more
than 200 vibrio phages have been described.” Lytic phage help keep the bacterial populations in

check. The relationship between bacteria and bacteriophage exhibits predator-prey-like qualities.

The ability for V. cholerae to persist in the environment despite harsh conditions makes cholera
a considerable public safety concern. To better understand the relationship between bacteria and
bacteriophage, we develop a mathematical model to describe these processes as well as their impact
on disease dynamics among a human population. We use mathematical methods to analyze the

model to understand these dynamics.



CHAPTER 2: MODEL DEVELOPMENT

We devise a mathematical model to represent the bacteria-bacteriophage dynamics as well as the
impact these dynamics have on a human population. Here, we state our assumptions and build
the model. We give full biological justification and simplification justification in the section titled
“Model Limitations.” We use a compartmental model which includes compartments for susceptible
individuals (5), infected individuals (7), recovered individuals (R), bacteria (B) and bacteriophage
(P). We account for human immunity loss, so recovered individuals may return to the susceptible
compartment. We treat the encounters of bacteria and phage in a manner similar to predator-prey

dynamics described by Lotka-Volterra equations [9].

We make many simplifications in human compartments of the model in attempt to reserve complication
for bacterial and phage compartments as this is the primary interest. In order to simplify model
analysis, we assume constant human birth A. Individuals who are born, are born directly into the
susceptible compartment. We assume that the natural per-capita death rate is constant p. We also
assume no disease-related deaths occur for model simplicity as well as the relatively low cholera

related death rate seen biologically.

With the previous model specifications in mind, we begin to construct the human compartments
of our model. Humans consume bacteria at a constant rate «. Upon consumption from bacteria
infected source, an individual contracts infection with probability f(B) = HL;B. This probability
follows a dose response curve similar to the ones used by Codeco [2]. Here, H is the quantity of
bacteria that yields fifty percent chance of infection. Humans recover at a constant rate r and lose

immunity at constant rate -y.



Now, we begin developing the bacteria and bacteriophage compartments of the model. Here, we
attempt to retain as much biological reality in the model while maintaining enough simplicity to
perform an effective model analysis. We assume that bacteria () grow exponentially in absence
of phage and human contribution. That is without phage and human contribution to the culturable
reservoir, we have B = KB where K is the intrinsic growth rate of bacteria. Here, K = v — §
where v is the bacterial “birth” rate and  is the bacterial death rate. Humans shed new bacteria into
the environment by means of defecation and vomiting at a rate 7. We consider bacteriophage to be
predators as in Lotka-Volterra equations with search efficiency b. We assume that the conversion
rate for the phage to be given by x. Phage “die” at a rate m. A comprehensive list of parameters

and parameter description is seen in table 2.1.

Table 2.1: Model parameter values, descriptions and associated units

Parameters for Bacteria-Phage Model

A human birth rate persons-days !

L human death rate days™!

o} rate of bacterial consumption days !
f(B) probability of infection upon consumption unitless

r recovery rate days~1

¥ rate in which immunity is lost days !

n rate in which infected individuals shed bacteria | bacteria-person!-days ™!

v culturable bacteria growth rate days~1

b phage attack rate days—!-phage~!

) bacterial death rate days~!

X phage gain from culturable bacteria days—!-bacteria—*

m phage death rate death™!

With the above assumptions in mind, we obtain the system of ordinary differential equations given



(

S =A+~yR—af(B)S—puS
I =af(B)S—(r+pl
IR =rl —vR— uR

B =vB+nl—6B—bBP

P =xbBP —mP.

\

This system is seen represented in the following flow diagram:

YR
wS ul uR
A s ! rl z
TS s -
I
/ xbBP
vB
0B +bBP mP

Figure 2.1: Flow diagram for model

Well known theory in ordinary differential equations give that initial value problem

(5(0),1(0), R(0), B(0), P(0)) and (2.1) has a unique solution.

2.1



CHAPTER 3: MODEL ANALYSIS

A unique disease free equilibrium, a phage present endemic equilibrium, and a phage free endemic
equilibrium are found and discussed along with stability conditions. The basic reproduction number,
Ry, is discussed as well as a new critical value Rp. It will be shown that the disease may be

controlled by R p, even in the case that Ry > 1.

3.1 Feasible Region and Boundedness of Solutions

The feasible region is given by
5 A
I'={(S,I,R,B,P)eR}:S+1+R< —}.
I

In the following lemma, it is shown that S + [ + R < % for all ¢ > 0. We denote the interior of I'

by I'°,

To show that the solutions of the model are bounded, we consider the compartments that make
up the human population together and the phage/bacteria compartments separately. That is, we

consider N =S+ 1+ Rand K = xyB + P.

Lemma 1. All solutions to (2.1) are bounded whenever § > v.

Proof. Now, N = S +1 + R = A — ;N which gives the first order problem N + uN = A.
Using the method of integrating factor, we may write this as %{e“tN } = Ae# which gives N =
% + (Nog — %)e*“t where NV is the initial human population N(0). It is seen that as ¢ — oo,
N — % If Ny < %, N increases monotonically to % and if N, > %, N decreases monotonically

to % So, N is bounded by max{Nj, %} for all ¢ > 0. From here forward, we assume Ny < %

7



without loss of generality.
We now consider £ = yB + P for the case § > v. Let ¢ = min{d — v,m}. We have
E = XB +P
=—x(0 —v)B—mP +nxP

< —e(xB+P)+nxI

= —eb +nxl
< —eb+nxN
A
< —eb+nx—
u

which gives the first order problem E+¢E < nx% which may be written as %{eetE} < ednx%

using the integrating factor e‘t. Now, integrating both sides of the inequality yields
A A
E<™A | g <A o

en )

where C is some constant. Thus £ is bounded for all ¢ > 0. O]

Boundedness of the bacterial and phage components has yet to be shown for the case § < v.

3.2 Disease Free Equilibrium (DFE)

An equilibrium point is a point where the rate of change among all components is zero. That is, an
equilibrium point gives S=I1=R=DB=P=0.Itis seen that letting / = 0 in the model (2.1),

we obtain the disease free equilibrium (DFE) Q° = (%, 0,0,0,0).



3.3 Local Stability of DFE

Stability conditions for DFE are explored and a new critical value R g is discussed. We begin by

examining the Jacobian matrix at DFE (Jprg). We have:

— 0% 0 —Hu 0
0 —(v+up r 0 0
_ al
Jpre = | 0 0 —(r+p) F  0 (3.1
0 0 n v—o 0
i 0 0 0 0 —m|
It is seen that Jppp is a block triangular matrix of the form
A * %
JorE= |0 B x
0 0 C
with
—H gl —(r+p)
A= T C:[—m]
0 —(v+n n v—19

So, the spectrum of Jprg is AM(Jprr) = A(A) U A(B) U A(C) (proof given in appendix). Since A
and C are upper triangular, their eigenvalues lie on the diagonal. So finding the eigenvalues of Jprp
is reduced to finding the eigenvalues of the 2x2 sub-matrix B. We have A(A) = {—pu, —(v+ u)}
and A\(C) = {—m}. Now, Tr(B) = —(r + p) + v — 6 and Det(B) = —(r + pu)(v — 0) — AH;?

and so the eigenvalues of B are both negative provided Tr(B) < 0 and Det(B) > 0. Tr(B) < 0



gives the condition 1 > ;== and Det(58) > 0 gives the condition 1 > % + %. Note that

Aa v v v Aan v :
Hastr) T8 > 5 2 Sreaa Sol> Tas(rip) T 5 18 necessary and sufficient to conclude that the

eigenvalues of B are negative. Denote

Aan v

Rp=——— 4 —.
5= Hustr+p) 8

The eigenvalues A\, Ay, A3, A4, A5 are all negative under the condition Rz < 1. This motivates the

following theorem.

Theorem 2. [f Rp < 1, then the disease free equilibrium is locally stable.

3.4 Global Stability of DFE

Theorem 3. If R < 1, then the disease free equilibrium is globally asymptotically stable in T'.

Proof. Suppose Rp < 1. We have

Aan v
Rp=—F—"—+—=-<1
BT us(r+p)H 8
Aan v
- ——— =+t <=—1<0
wo(r+u)H 6
Aan
— ———+rv—-0<0
(r+p)pH
. Aa+(r+u)(v—5)<0.
pt n

Consider the function L = [ + TJFTMB + %P. Clearly L > 0. Now,

10



— af(B)S — (r + )1 + HTM(UI v —0B—bBP)+ T;—XM(XbBP —mP)

P AT URL P Ty

B+ H n nx
§a§£+(7’+u)(v—5)B_m(r+u)P
u H n nx
Hp n nx

So L is a Lyapunov function.

Now, when L= 0, it is required that B = P = 0. But, from (2.1), itis clear that / = 0, R = 0, and
S = % So, {Q"} is the largest invariant subset where L = 0. Therefore, by LaSalle’s invariance

principle [7], Q is globally asymptotically stable in I'.

3.5 Basic Reproduction Number

The basic reproduction number, denoted by R, is described by the average new infections a single
infected host will induce, in an entirely susceptible population, in it’s entire infectious life [3]. The
procedure of constructing the next generation matrix outlined by O. Diekmann, J.A.P. Heesterbeek
and M.G. Roberts [3] is followed to obtain R, for the model (2.1). Consider the sub-system

consisting of compartments of infection and those that contribute to infection, that is the infectious

11



compartment / and bacterial compartment B. The sub-system is given by

B =(v—08B—-bBP+nl
(3.2)

I =az258—(r+p)l

Now, linearizing at the DFE gives the linearized system

v—20 n
T = x

o —(r+p)
where 2 = [B, IT. The linearized system may be written as

v -0 0
T-%= "5

ot 0 0 —(r+p)

The transmission matrix consists of all terms that directly contribute to new infections and is given

by
v
T = 7
al
uH 0

The transition matrix consists of changes in infectious state and is given by

12



Now, the next generation matrix NGM is given by K = —T~!. The NGM is therefore

v n
K — 1) T'—‘ry,
al
woH 0

The basic reproduction number is then given by

n 1/_2+ dvaln )
62 (r+p)udH’

We know that if Ry < 1, the disease dies out (DFE is stable) and if Ry > 1, the disease persists

(DFE is unstable).

We now prove that the stability conditions of the DFE given by R 3 and R are equivalent.

Lemmad4. Rp<1(Rp>1) < Rp<1(Rp>1).

Proof. We have:

P e
2 0(r+ p)pdH b 6
nal v
= — =
(r+p)Hp =3
A
— Rp= il Y <1

13



3.6 Endemic Equilibria

We determine that there may exist two distinct endemic equilibria. One equilibrium has a zero
phage population while the other has a positive phage population. We call the equilibrium with
a zero phage population the phage free endemic equilibrium (PFEE) and denote it by Qprpp =
(S, I, R., B,,0). We call the equilibrium with a positive phage population the phage persistent
endemic equilibrium (PPEE) and denote it by Qpprr = (5%, [*, R*, B*, P*). It is shown that

there are two critical values Rz and R p that determine both the existence and stability of Qprpp

and QpppE.

3.6.1 Phage Free Endemic Equilibrium (PFEE)

Letting S=I=R=B=P=0,the system

;

S =A+~vR—af(B)S—puS=0

I =af(B)S—(r+mpI=0

R =rI—yR—puR=0 (3.3)
B =vB+nl —6B—bBP =0

P =xbBP—-mP =0

\

14



is obtained. Clearly P = 0 satisfies P = 0. So the system becomes

A+~R —af(B)S — S =0 (3.4)
af(B)S — (r+p)l =0 (3.5)

rl —(y+p)R=0 (3.6)

(v —6)B +nl =0. 3.7)

Now, (3.7) gives B, = 5= 1, and so it is required that § > v to ensure B, > 0. It is also seen that
(3.6) gives R, = ﬁl* and (3.5) gives S, = T%‘(%H + I*). Clearly R, is positive whenever
I, is positive and S, is positive whenever § > v and I, is positive. Using B,, S, and R, described

above in (3.4),

r plr+p) 0 —v n

AN —IL —(r+upl, — . H+ —I1,)=0 3.8
) o HEi ) (3.8)
is obtained. Equation (3.8) can be rearranged as
Aan — 0—v)H
an — p(r+p)(6 —v)H _ Lt p(r +/w))' (3.9)
an v+ u o}

It is clear that for 7, to be positive, it is required that the left hand side of (3.9) must be positive.

That is Aan — p(r + ) (6 —v)H > 0. This gives Rp = % + % > 1. Solving for I, in (3.9)

gives
v+ p)[Aan — pHo(r + p) + pH(r + p)]

(
l= n(rpo+ po(y + ) + p(r + ) (v + )

(3.10)

This motivate the following theorem.

Theorem 5. There exists an endemic equilibrium point without phage, Q) pr g, under the condition

Rpg>1landd > v.

15



3.6.2  Local Stability of PFEE

The stability of Q) prpg is now discussed. Another critical value R p is obtained and it is shown

that Q) prpg is stable for Rp < 1. The critical value R p is defined by

b Aanx (v + p)

rpem + prom(7y + 1) + pxOH (r + p) (v + p) + mu(r + p) (v + p
Theorem 6. The phage free endemic equilibrium Qprpg is locally stable whenever Rp < 1 <

Rp.

Proof. Consider the case where Rz > 1 and Rp < 1. It is clear from the definition of R p that

Rp < 1implies v < ¢ and so under these conditions, existence of () prgp is guaranteed.

Now, examining the Jacobian matrix at () prgg given by

—af(B)-n 0 y e
af(B,)  —(r+p) 0 B 0
JprEE = 0 r —(v+ ) 0 0 )
0 n 0 v—290 —bB,
i 0 0 0 0 XbBy —m|

16



C *

it is seen that Jpppr = with
0 xbB.,—m
—af(B)—n 0 o o
s_| of@B)  —(r+p 0 Al
0 r —(v+n) 0
I 0 n 0 v—20 |

So, the eigenvalues of Jprgp are given by \s = xbB, — m and A\(C) = {1, A2, A3, A}

We now consider A5 = xybB, — m. Using the equilibrium equations, we write

A5 = xbB, —m

__n _
_5—u]*Xb m
_xb ((7+u)[/\an—uﬂ5(r+u)+WH(T+M)])_m

60 —v\ rpa+paly+p)+plr+ p)(y+p)

So, in order for () prpE to be stable, it is necessary that A5 < 0. That is

xb <(v+u)[Aan—uH5(T+u) +HVH(7’+M)]) <0
0 —v\  rpa+ paly 4 ) 4+ p(r 4+ p)(y + p) '

We have,

xb ((7+u)[Aan—uH5(7“+u)+WH(T+M)]> <0
6 —v\  rpa+ pa(y+p) + p(r+ p)(y+ p)

. Xb(y + w)[Aan — pHo(r + p) + prHr + ]
rpam + pom(y + p) + pm(r + p) (v + p)

17



—> Aanxb(y + p) + prHxb(r + p) (v + p) + vK < S[K + pxbH (r + p) (v + )]

(where K = ruam + pam(y + 1) + pm(r + p)(y + 1))

. L b(Aanx(y + ) + prHx(r + Wy +p)) + Kv_
0 K+ pwHx(r + p)(v + 1)
b v Aamx (v + 1)
= Rp=—-(-+ <L
P 5(b mam+uam(v+ﬂ)+u><bH(r+u)(v+u)+mu(r+u)(v+u))

Now, it must be shown that under the stated conditions above, A1, Ay, A3, A4 have negative real

parts. To do this, examine det(C' — t1); calculation of det(C — ¢I) is shown in appendix. We have

det(C —tl) = (n+ 1) {t3+(r+2u+’y+§—y+af(B*))t2

# (B +r 0 =)+ ()40

H(r+u)(5—u))t

+(r+2u+7)(6 —v) - T+

+ )+ )6 —v)+af(B)(y+r+p)(d —v)

3 H(T+u)(5—V)(v+u)}
H + B, '

Clearly t = —pu is a zero of the above polynomial and so we must now determine whether the
third degree factor has zeros with negative real parts. To make this determination, we utilize the
Routh-Hurwitz criterion. By Routh-Hurwitz criterion, a third degree polynomial p(t) = agt® +
ait? + ast + ag with ag, ay, as,az > 0, and ajay > apas, has roots with negative real parts. We

now verify these conditions for

18



pt) =+ (r+2u+vy+6—v+af(B.))t?

- (ozf(B*)(7+7‘+u+5—V)+(7+,u)(r+,u)

H(r+p)(6 —v)
)

+(r+2u+7)(6—v)—

+(y+ )+ )6 —v)+af(B)ly+r+p)d—v)

H(r+p)(0 —v)(y +p)
H + B, '

‘We have

apg=1>0

ag =y+2u+r+0—v+af(B,) >0
H(r+p)(6—v)

as=af(B)y+r+p+o—v)+(y+p)r+p)+r+2u+y)(0—v)—

H + B,
:af(B*)(fy+r+u+5—y)+(7+M)(r+u+5_y)+B*(r;i)j(i—u) -
as = (v+m)(r+p) 0 —v)+af(B)(y+r+p)(d—v)— H(T+N;}5+—Bi)(v+u)

B(r+p)(0 —v)(y + )

> 0.
H+ B,

= af(B)(y+ 7+ )0~ )+

and
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amag = (y+2u+71+0 —v+af(B))|af(B)(y+7r+p+d—v)

Bi(r 4 p)(0 — V)}
H + B,

+ v+ +p+d—v)+

= af(B)(y+r+p+d =)y +2u+7+5—v+af(B)

+ O+ +p+o—v)(y+2u+r+d-v+af(B))

n Bi(r+p)(0 —v)(y+2u+r+d—v+af(B.))

>af(B)(y+r+p+o—v)(vy+2u+r+i—v+af(B))

N B.(r+wpw)(d—v)(y+2u+r+0—v+af(B))
H + B,
B.(r+ W0 —v)(y + 1)
H + B,

>af(B)(y+r+p)(0—v)+

= apas.

So, by the Routh-Hurwitz criterion, det(C' — tI) has roots with negative real parts. Thus the

equilibrium point () pr g is stable under the above assumptions. O

From the work above, it is clear that when Rp > 1, A5 > 0 and so under this condition () prgg is

unstable if it exists.
The following lemma provides a comparison between the two critical values Rz and R p.

Lemma7. Rp < Rp
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Proof.

Ry §<3 N Aanx(y + ) )
0 b rpam 4 pam(y + p) 4+ pxbH (r + p) (v + p) +mp(r + @) (v + p)
_ 9(5 Aanx (v + p) )
0 b pxbH(r + p)(v+ p)
b v Aan
B 5(3 * ubH(r—l—u))

_ Aan+vp(r +p)H R
e+ wH P

3.6.3 Global Stability of PFEE Without Loss of Immunity

We now discuss the global stability of the PFEE for the case where recovered individuals do not
become susceptible again (v = 0). With the above assumptions in mind, we obtain the system

which is given by

S =A-af(B)S—uS

~.

=af(B)S—(r+ml

=rl —uR (3.11)

R
B =vB+nl—6B—bBP
P

= xbBP — mP.

Before stating and proving global stability of the PFEE, recall the comparison of the geometric
and arithmetic mean of non-negative numbers 1, o, ..., x,, which is given by z; + zo + --- +

Tp >N Y129 - -z, This will be used in the proof of the following theorem.
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Lemma 8. Suppose x,x, > 0. Then v — x, — x, ln(%) > 0.

Proof. Consider the function g() = 6 — In(6). Now, ¢'(6) = % and ¢”(6) = 4. We have that
0 = 1 is a critical value of g and ¢” > 0 and so # = 1 corresponds to a minimum of g. We have
g(1) = 1 and so we have g(f) = 0 — In(¢) > 1. Letting § = =, we obtain -~ — In(;-) > 1 which

gives r — x, — x, ln(i) > () as desired. O
Theorem 9. For the case v = 0, the phage free endemic equilibrium Q) prpg is globally asymptotically

stable in T° whenever Rp < 1 < Rp.

Proof. The condition Rp < 1 < Rp guarantees the existence of Qprpp by Theorem 6. Now,

consider the function

S I
L:S—S*—S*ln(g*) +I—I*—ln(]—*)
T+ p B ) T+ p
+ B - B, — B.In(— + P
n ( H(B*) nx

We see that L > 0 by Lemma 8, and L(Qprgr) = 0. Now, using the equilibrium equations

af(By)S. — uS. = A
(r+ p) L = af (B.)S.

(v —0)B, = —nl,

in the derivative of L, we obtain

. S . [ r+u, - B
L=5=S5,+1—-=1, B - —B,
S * T n ( B )+ nx

7"—}—,up
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AS,
S

=A—af(B)S—puS — + af(B)S, + puSs +af(B)S — (r+p)l

~ O‘f(lj)S]* o+l + Tj;u((u—é)BJrnI—bBP— (v—5)B, — "];)* 1+ bB.P)
+ TR (wBP — mP)
X
af(B.)S. + S, — uS — af(B*)S*% - us*% + af(B)S, + ps, — LSBT
+af(B)S.+ (v - 6)B —bBP — (v — 6)B, - ”if* +bB,P)
+ L (wBP - mP)
X
e S S S, f(B)SL _ f(B)
—45.2= g = g) +el(BIS.C g = Fphe T T Ty
+ " ()~ 8)B —bBP — (v — 6)B, — "I;* +bB,P) +T;F—XM(XbBP—mP)
S, S, f(B)SL.  f(B)
=1 (2= = ) Al BIS.C =g — wE ST T B,

I (W= 6)B — (v — 6)B. + bB.P) — (r + w122 — P p

1 B nx
S S, Si  J(B)SL.  [f(B)
1S, (2 — 5 - g) +af(B.)S.(2 - S f(B)S.I f(B*))
4+ 7; E((v = 6)B+bB.P) + af(B,)S. — (r+ u)f%% - T;;(Mmp
S S, S.  f(B)SL.  f(B) 1B,
1S (2 — o g) + af(B.)S.(3 - S T FBISI (B I*B)
T ij“ (x(v = 0)B + XbB.P — mP)
s s S. f(B)SL.  f(B) IB.
= uS.(2 o F) +af(B.)S.(3 - S T F(B.S.I + f(B,) I*B)
r+u B r+upu
M GRS ke (xbB. —m)
- s S _S. _f(B) B [f(B)SL. B.
=uS(2- g~ ) +ef(B)S. (3~ 7 + F(B.)  B. [(B.)S.I BI,)
+ TJX"( bB, — m)P
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So, we must show

. Se S S,

T+
nx

+

(XbB* — m)P <0.

From the comparison of the geometric and arithmetic means inequality, we have

| ®

S
'
S

%+§>2.
S ST

S S

and so 2 — g* — — < 0. Now consider

*

3

S, f(B) B f(B)SI. B.I
"5 "B B f(BJSI  BL
4B B (BB
f(B.)  B. [f(B)B.
(B,)B  f(B)SI, B.I
(B)B, f(B,)S.I BI,

i
-2 -3

Again using the comparison of the geometric and arithmetic means inequality, we see

S.  J(BJB _J(B)SL B _ [5. [(B)B [(B)SL B.I _
s VBB, T fByST " BL -\ S f(B)B. f(B.)S.I BL

S, f(B)B f(B)SI, B.I
S f(B)B. f(B.)S.I BI,

< (0. Now observe
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L BB BB
f(B) " B. " f(B)B.

_ , . B+HB B B+H

B B+HB B, B.+H
.(B+H)B,+H)+B(B,+H)(B.,+H

- srmm - e )+ BB, + H)(B. + H)

— B(B + H)(B. )+B*(B+H)(B+H)>

—H
= B.* - 2BB, + B*
BB T HB T\ +5)
—H(B, — B)?

<0.

" BB+ H)(B. + H)

o S, f(B) B f(B)SI, B.I
5 _ b — <0.
With this, we have that 3 5 + f(B.) B, f(B)S. BIL = 0

Now,

b
bB, —m =2,
o0—v

_ xb[Aon — pHO(r + p) + prH(r + p)]
(6 —v)(ra+ po+ p(r + p))

<0

= xb[Aan — pHS(r + p) + pvH(r + p)] < m(6 — v)(ra + po+ p(r + p))

b v Aanxp
< Rp=—-(++
P 5(6 ruozm—i—,uozm,u—l—,ubu(r—i-,u),u—i-mu(r—l—u)u)

< 1.

Thus, we conclude that under the specified conditions, L < 0. That is L is a Lyapunov function.

Now, L =0 implies that S = S,, B = B,, I = I,, and P = 0. From (3.3), it is then seen
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that R = R,.. So {Qprgg} is the largest invariant subset where L=0. Therefore, by LaSalle’s

invariance principle [7], Qpreg is globally asymptotically stable in T'°.

3.6.4 Phage Persistent Endemic Equilibrium (PPEE)

Here, we discuss the existence of a third equilibrium point. The phage persistent endemic equilibrium

(PPEE) exists under the condition Rp > 1. We discuss global stability of the PPEE for the case

where v = 0.

We proceed finding the PPEE by letting S =1=R=B=P=0.So we obtain the system

S=A+~R—af(B)S —uS =0
I=af(B)S—(r+ml=0

R=rl—vR—uR=0

B=vB+nl—6§B—bBP =0

P = ybBP —mP = 0.

(3.12)
(3.13)
(3.14)
(3.15)

(3.16)

Now, instead of letting P = 0 for the equation xybB*P* — mP* = 0, we consider P* # 0 and so

B* = % which is always feasible. Using this in (3.14) gives the equation

+nl* =P =0

or P* = @ + XI* which is only feasible and distinct from the PFEE when @ + X[ > 0.

Now, using B* in (3.12), we have obtain S* = T%‘ (% + 1)] * which is feasible whenever I* is

feasible. From (3.13), it is clear that R* = ——I* which is feasible whenever [* is feasible. Now,

Y+p
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using R*, B* and 5™ in (3.11), we obtain the equation

yr
A ——T — (r+ p)I* —
P (r+ I = p——= (=~

which, upon solving for I*, yields

Aam(y + p)

I = :
ruam + p(y + p)am + p(r + w)(y + w)xbH + mu(r + p)(y + p)

Clearly, I* > 0 and so [* is always feasible. Thus the only condition on the PPEE comes from the

v=9)

inequality = + “XJ* > (. Using I* in this inequality gives the inequality

(v —9) 4 X Aam(vy + p)

JA > 0.
b m rpam + pu(y + p)am + p(r + p) (v + p)xbH + mpu(r + ) (v + 1)

Upon rearranging terms in this inequality, we obtain the equivalent condition

v Aamx (v + 1)
-+
b rpam + pam(y + p) + pxbH (r + p) (v + p) + mp(r + p) (v + p)

b
RP:S( )>1

This motivates the following theorem.
Theorem 10. There exists a second endemic equilibrium (PPEE) to the system when Rp > 1.

Lemma 11. Ifv > §, then Qpprg exists, Q prir does not exist and Q° is unstable.

Proof. Clearly when v > 4, the conditions for existence of () prgg are not satisfied and so it does
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not exist. Now,

Rp =

v Aanx(y + p)

G+ bH )
rpam + pam(y + p) + pxbH (r + p) (v + ) + mup(r + p) (v + p)

Sl Aanx(y + p)

0 rpam + pam(y + p) + pxbH (r 4+ p) (v + 1) +mpu(r + p) (v + p)

|

> 1.

So, QpprE exists and by Lemma 7, 1 < Rp < Rp which gives that the DFE Q° is unstable. [

3.6.5 Global Stability of PPEE Without Loss of Immunity

We now discuss the global stability of the PP E E under the condition v = 0.

Theorem 12. For the case where v = 0, whenever QQpppgp exists, it is globally asymptotically

stable.

Proof. Suppose Qpppr = (S*,I*, R*, B*, P*) exists. That is, Rp > 1. Now, consider the
function

L:S—S*—S*ln(%)+I—I*—1n([)

I

= (B—B Bln(B*))+ o (P P Pln(P*))
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We see that L > 0 by lemma 8. Now, we use the equilibrium equations

af(B*)S* —uS*=A
(r+p)I*=af(B*)S”

(v—0)B*+nl* =bB*P*

xbB*P* = mP*
in the derivative of L to obtain
.S o] r+u,. B r+up,. P
=S —-—=-5"+I-=I" B — —B* P _ _p*
S * I * n ( B )+ 77)(( P )

:A—af(B)S—uS—A_af<§)S_MSS*+af(B)S—(r+u)]
_asS—(r )I* r+p v—0)B+nl—-bBP

: ) (v —8)B + i —bBP - ¢ - BY)
I G wBp - mp — XPBE P by
nx P
B* 5*2 5*2 B)ST*
zaf(B*)S*+uS*—uS—af<S) —’“‘S +af(B)S*+uS*—%
1B*
+(r+u)1*+r+7“((u—5)3—(u—a)B*—"B +bB*P)
+ T (P — \bBP* + mP?)
X
st S S*  f(B) af(B)SI*
—puSt(2- 2 -2 S (1- 2 Br)sr — S22
=nS" (2= g =) Tl (B = 5+ ) +af(B) 7
LI —sB - (s~ D +bBP)+%( mP — xbBP* + mP")
S8 S*  f(B) f(B)SI*, r+u
—uSt(2- 2 -2 “(2- 2 . — 5B
—T+“(y—6)B*—(r+,u)]B L e T p I g T pr
U B U nx U nx
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S8 S*  f(B)  f(B)SI*

=pS"(2- = - o) +af(B)S(2 - D f<B*)S*I)+ (v—6)B

T B — a1 T e TR p Ty ppe TR R b
n B nx nx n nx
I N wa(y S0 fB)  fB)SITy  r4p,
=pS(2- < - ) +af(B)(2- 5 B f(B*)S*I)+ ; (v—0)B
rtp " B r by e T e

=pS"(2- = - ) +af(B)S <2_§+f(3*) —f<B*)S*I)—§af(B )S
+af(BYS* — (r+ u)llg

o s S o S* f(B) B  f(B)SI* B*I*

o st 5 oy o s f(B) B [f(B)SI" o B

—,LLS (2—§—§)+Oéf(B )S <3_§+W_§_W)_af(3 )S BI*

o s S o S« f(BY B  f(B)SI* B*I

=18 (2= g ) Haf(B)SE - g+ f(B) B f(BHST B

So, we must show

— S s S* f(BY B f(B)SI* B

Similar calculations to those in Theorem 8, show 2 — S— — E < 0Oand 3 — S— + f(B)

S S S f(B*) B*
B)SI*  B*I .
ff((B*>)S*] - B < 0andso L < 0. Thatis L is a Lyapunov function.

Now, L = 0 implies S = S*, [ = I*, and B = B*. Equation (3.14) then implies R = R* while
(3.15) implies P = P*. So {Qpppr} is the largest invariant subset where L=0. Therefore, by

LaSalle’s invariance principle [7], Q pprr is globally asymptotically stable in ',
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CHAPTER 4: CHOLERA CONTROL STRATEGIES

We consider different strategies for controlling cholera. The strategies are broke into two categories;
conventional control strategies and unconventional control strategies. The conventional strategies
include practices that are currently being implemented while unconventional strategies consider
controlling cholera by means of vibrio-phage interactions. Conventional strategies include decreasing
intake of V. cholerae contaminated water as well as decreasing bacterial shedding into the environment.
We see that all conventional control strategies aim to reduce R below 1. While this theoretically
would eradicate the disease, unconventional strategies may reduce the disease to tolerable levels
without the need to have R, < 1. That is, the unconventional strategies allow for disease control

despite Ry > 1.

4.1 Disease Impact of Vibrio Control

The basic reproduction number R gives a threshold value that determines if the disease persists
or dies out. The basic reproduction number R is also a measure of control needed to prevent a
disease outbreak where all infectious types are targeted equally. The target reproduction number is
a threshold value used to measure effort needed to prevent a disease outbreak when targeting only
certain infectious types. We follow the notation and methods used in [11]. The target reproduction
number 7; ; targets the (i, j) entry of the next generation matrix K. This is interpreted as the effect
on the infections that type 7 causes on type <. If we wish to target multiple entries of K, then we
consider a target set S which consists of entries in K. Then the infectious effect on this set is 7.
The target reproduction number 75 on a target set S is given by Tg = p(Ks(I — K + Kg)™1)

where [Kg]; ; = [K];; if (i, j)€S and 0 otherwise.
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Now, recall the next generation matrix

v n
K — 1) T‘—‘ru
al
woH 0

We consider the target sets S = {(2,1)}, S = {(1,2)}, and S = {(2,1),(1,2)}. That is
we target the (2,1) entry, (1,2) entry, and (2,1),(1,2) entries together. We do not consider
the strategies that target the (1,1) entry or the (2,2) entry as these are not considered feasible
strategies. That is because the targeting the (1, 1) entry considers the impact bacteria have on
themselves (bacterial growth) and the (2, 2) entry considers the impact infectious humans have on

themselves (transmission from human-to-human contacts) which this model does not consider.

Targeting the (2,1) entry of K considers the consumption of bacteria by humans. An example
of a control strategy considering this entry would be the implementation of water purification or

drinking bottled water. The target reproduction number 75 ; is given by 751 = %

Targeting the (1,2) entry of K considers the shedding of bacteria into the environment by humans.
An example of a control strategy considering this entry would be the implementation of sanitary
waste disposal methods such as the use of latrines that do not contaminate water sources. The

target reproduction number is given by 712 = 7o 1.

Targeting the set S = {(2, 1), (1,2)} considers all feasible strategies for the given model. We have

0 Ul
Ts =p(Ks(I — K+ Ks)™') = p< ah ;M > R % = /T2 Itis clear that
pH(6—v)

Rs < lifandonlyif 715 =Ty < 1.
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So, all three strategies give the same threshold. Furthermore, we see

Aan
Ton = <1
Y Hp(r +p)(5—v)
A
— 2 5y
Hu(r + p)
Aan v
— Rp=——""——-+-<1.
P Hu(r+p)s 6

This combined with Lemma 3, shows that the threshold values R g, R, Ts, and 71 2 = 7T are all

equivalent.

4.2 Disease Impact of Phage Control

We now turn to discuss unconventional control strategies. We discuss the impact the presence
of phage have on an infected population and how the disease may be managed by environmental

factors. To do this, we examine the bacterial and infectious components of the PPEE. That is, recall

m
B*=—
bx
and
Aam(y + p)

I =

rpam + p(y + p)am + p(r + p) (v + p)xbH + mpu(r + p) (v + p)
We now consider B* and I* as functions of m. That is B*(m) and I*(m) are functions of the phage

death rate m. It is clear that B*(m) is an increasing function. Now, computing the derivative of

I*(m) yields

ar- Aa(y + wu(r + p)(y + p)xbH =0

dm— (rpom + p(y + p)om + p(r + 1) (y + pxbH +mp(r + 1) (y + 1))*

33



and so [*(m) is also an increasing function. Since B*(m) and [*(m) are increasing functions; as

m — 07, B* — 0 and I* — 0. That is, bacteria and infection may be made arbitrarily small given

Aan

a sufficiently small m. Moreover, Rp — P

+ % = Rp asm — 07. With this in mind, we

present the following lemma.
Lemma 13. Suppose Rg > 1 and 6 > v. Then, there exists my > 0 such that Rp = 1 and

I*(my), I, coincide.

Proof. Suppose Rp > 1 and § > v. This implies that () prpg exists. So

I (v + w)[Aan — (6 — v)u(r 4+ p)H] .

n(r + poc+ p(p A+ )+ p(r =+ ) (y + 1)

So, Aan — (6 — v)u(r + p)H > 0. This along with the condition > v guarantee

xb(y + ) [Aan — (6 — v)u(r + p)H|

(0 —v)[r+ po+ p(p+ Yo+ p(r + p)(y + p) -0

mo =

We have Rp(mg) = 1 and I*(mg) = I.. O
Theorem 14. Suppose Rg > 1 and 6 > v. Then I*(m) < I, whenever 0 < m < my.

Proof. Assume Rp > 1 and § > v. Since Rp is a monotone decreasing function in m, for
0 < m < my we have Rp(m) > Rp(mp) = 1. This guarantees existence of /*(m). Now, since
I* is monotone increasing in m, I*(m) < I*(myg) = I, whenever 0 < m < my. O
This theorem leads to an important corollary.

Corollary 15. Suppose Rp > 1 and § > v. Then for any € > 0, there exists 0 < m. < mg such

that I*(m*) < € whenever 0 < m < m..

34



A natural question to ask then, is how might the phage “death” rate be effected in reality? The
addition of phage would effectively modify the “death” rate of the phage. Indeed, consider an
addition of phage to P compartment that is proportional to the current phage population. That is,
the new equation for P would become P = xYbBP — mP + kP = xbBP — (m — k)P. Now

clearly m — k < m effectively reducing the phage death rate.

Biologically, this corollary states that the disease may be brought down to an acceptable level
provided the phage population is large enough. A small phage death rate obviously favors the
phage population in the environment. In fact, looking at the equation P = xbBP — mP, we see

that if m = 0, then the phage population has a positive growth rate for all time.
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CHAPTER 5: BIOLOGICAL IMPLICATIONS AND MODEL
LIMITATIONS

5.1 Biological Implications

We now turn the discussion to the biological meaning of the previously described mathematical
results. Understanding how cholera is contracted and how the bacteria behave in the environment
may aid in determining strategies to get the disease under control. The mathematical model
discussed previously sheds light on how phage and vibrios interact and how this affects the disease

dynamics.

We have seen that if the critical number R g is less than 1, then the disease free equilibrium is
globally asymptotically stable. That is, if Rz < 1, then the disease will die out over time. This is

the ideal case as it ensure the disease does not persist in the given population.

Under the condition R g > 1, the disease free equilibrium is unstable. That is, the disease persists
in the population. If this is the case, we saw that there are two possibilities. These possibilities are

the scenario where Rp < 1 and Rp > 1.

In the scenario Rp < 1 < Rp, we saw that an endemic equilibrium exists and is stable. This
equilibrium was absent of phage. For Rp < 1, it is necessary the have the bacterial death rate
to exceed the bacterial “birth” rate (6 > r). That is the natural death rate of the bacteria exceeds
the natural birth rate of the bacteria. This explains how the bacteria do not grow without bound.
Biologically, the death rate of the bacteria is large enough to prevent the bacterial population from
getting too out of control. In this case, the endemic equilibrium @) prpg is locally stable and so

solutions starting near () prpp tend to Q preg.
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In the scenario 1 < Rp < Rp, we saw that a second endemic equilibrium exists. In this
equilibrium, () ppgE, the phage population is nonzero. If 6 > v, then (Qprgp exists along with
Qpprr Whereas if 0 < v, Qppgg is the only endemic equilibrium that exists. In this scenario, it
was shown that () pppp is globally asymptotically stable under the restriction v = 0. Biologically
speaking, v = 0 means that once a human has recovered from an infection, they will never become

susceptible to infection again.

We have discussed control strategies that are implemented in areas of endemic cholera and how
they impact the disease. More than this, we have seen that the presence of phage plays a large
role in controlling the bacteria population in the environment. We have seen that infectious human
populations may be made arbitrarily small for sufficiently small values of m. The phage death rate
may be effectively reduced by adding phage into the environment in an amount that is proportional
to the phage population. That is, an environment that is favorable to the persistence of phage is

also favorable to an infectious population.

5.2 Model Limitations

While this model may give a mathematical backing to previously known biology, it is not perfect
and makes many simplifications. Realistically, humans lose immunity after a period of time and so
the case v = 0 is not the most biologically reasonable scenario. Moreover, humans will shed new
phage into the environment by means of defecation/vomiting which this model does not consider.
This model also does not consider the ability for bacteria to enter the state of dormancy, VBNC
state, discussed in the introduction. While these simplifications were necessary for an effective
model analysis they are important factors to consider when considering the accuracy of biological

implications.
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To reconcile these simplifications among others, we propose a new more accurate (read mathematically
cumbersome) model in the next section as well as some conjectures about the model discussed in

previous sections.
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CHAPTER 6: OPEN PROBLEMS AND FUTURE WORK

6.1 Open Problems

Some results presented have not been proven in the most general context. Here, we state the

conjectures:

Conjecture 16. All trajectories are bounded.

We have shown in section 3.1 that all trajectories are bounded given the restricted case o > v. It

remains to be shown for v > 4.

Conjecture 17. If Rp < 1 < Rp, then Qprgg is globally asymptotically stable in T°.

The global stability of () prgr has not been shown under these conditions.
Conjecture 18. If Rp > 1, then Q) ppgg is locally stable.

Conjecture 19. If Rp > 1, then Qppry is globally asymptotically stable in T'°.

The global stability of Qpprr and Q) prrpr Was proven for the case v = 0. It remains to show
global stability for v # 0. As discussed in the previous chapter, the case v = 0 does not make the
most biological sense as a cholera infection yields a temporary immunity to the individual. After
the period of temporary immunity, they return to the susceptible compartment. The local stability
of Q) pprE has yet to be shown due to the complexity of determining the sign of the eigenvalues of

a rank 5 matrix.
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6.2 Future Work

As discussed in the previous chapter, the model presented is a substantial simplification of an
incredibly complex interaction of humans, bacteria, phage and environmental factors. The assumption
that bacteria grow exponentially in absence of phage and human shedding may not be the most
accurate as well as the lack of a human shedding term into the phage compartment. More over
the process of bacteria entering a viable but not culturable state (VBNC) as discussed in the
introduction was ignored and all bacteria were treated the same. To remedy these simplifications a

more realistic (read more complicated) model is proposed.

In this model, bacteria are “born” into the culturable bacteria compartment where they grow
logistically in absence of shedding and in absence of transition between bacteria compartments.
Bacteria move to a non-culturable state at a rate 7 and non-culturable bacteria move back to a
culturable state at rate 0. Phage “attack” culturable bacteria at a rate of b and non-culturable
bacteria at a rate d. The phage have a gain of y from the culturable bacteria and a gain of w from
non-culturable bacteria. Humans shed phage into the environment at a rate of . Moreover, bacteria

only experience natural death from the non-culturable compartment at a rate of ¢.

With these additional assumptions in mind the proposed model is given by
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S =A++vR—af(Bc+ Bne)S — uS

I =af(Bc+Bye)S— (r+p)l
R =rl —vR— uR
BC :VBc(l—B—;)—f-nl—i—o‘BNc—TBc—bBcp

Bye =7Be — 0Bye — 0Bne — dByeP

P = \bBcP + ¢I + wdBycP — mP.

\

Figure 6.1: Flow diagram for proposed future model

A rigorous mathematical analysis on the proposed future model would provide further insight into

the dynamics of cholera as influenced by the interaction between vibrios and phage.
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APPENDIX
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A 1. CALCULATION OF det(C — tI) IN PROOF OF THEOREM 6

—af(B.) —p—t 0 o — Hra)
_ af(B. —(r4p) —t oHCEWO—)
det(C—tI):det< f(5.) r+ ) nH+5.) )
0 r —(y+p)—t 0
0 n 0 v—90—t
—pu—t —(r+mup —t v 0
H(r o—v
:det< af(B.) —(r+p) —t 0 Alraesn) )
0 r —(y+p) -t 0
0 n 0 v—0—t
—(r+p)—t 0 %
:(—u—t)det( r —(y+p)—t 0 )
n 0 v—9—t
—(r+p) —t 0l 0
n 0 -0 —
()t et
= (= (=G ) — ) et .
n vV —
—(r+p) —t
—af(B*)(z/—(S—t)det< r+u)
r —(y+n) —t
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H(r+u)(6—u)]
H + B,

=(u+my+p+t)[r+p+t)t+0—-v)—

+af(B)(t+0=v)[(r+p+ ) +p+t) =]

=+ [((v+ ) +p) + (v +t+ (r+pt+ ) (E+6—v)
CHr+ )6 —v)(y+p) H(T+#)(5—V)ﬂ

H+ B, h + B,

+af(B)t+0—v)((m+t)y+ (n+1t)? +r(n+t))
=+t [+ (r+2u+v+6—v+af(B))t

+ (af(B)(y+r+p+06—v)+ (v +p)(r+ p)

H(r+ ) —v),,

(2@ —v) - )

+ () + ) —v)+af(B)ly+r+p)(d —v)

B H(r+u)(5—V)(’y+u)]
h+ B,
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A 2. EIGENVALUES OF BLOCK UPPER-TRIANGULAR MATRICES

Consider an nxXn square matrix of the form

where A is an m xm square matrix and B is an (n — m)x (n — m) square matrix. Suppose ¢ is an

eigenvalue of A with corresponding eigenvector v, and 6 is an eigenvalue of B with corresponding

eigenvector u. Now,

A x| |v Av ov v
=0

0 B| |0 0 0 0

So, ¢ is an eigenvalue of M. Recalling that MT and M have the same eigenvalues, we have

and so 6 is an eigenvalue of M 7. Since M7T and M have the same eigenvalues, 6 is an eigenvalue

of M. Now noting that |A(M)| =n =m+n—m = |AN(A)| + |A(B)|, we deduce that A(M) =

A(A) UA(B).
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