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ABSTRACT

Since the work of John Snow, scientists and medical professionals have understood that individuals

develop cholera by means of consuming contaminated water. Despite the knowledgeof cholera’s

route of infection, many countries have experienced and still experience endemic cholera. Cholera

is caused by the Vibrio cholerae (V. cholerae) bacterium and presents with acute diarrhea and

vomiting. If untreated, infected individuals may die due to dehydration. Cholera is a disease that

most commonly affects countries with poor infrastructure and water sanitation. Despite efforts

to control cholera in such countries, the disease persists. One such example is Haiti which has

been experiencing a cholera outbreak since 2010. While there has been much research in the

field of microbiology to understand V. cholerae, there has been comparably less research in the

field of mathematical biology to understand the dynamics of V. cholerae in the environment. A

mathematical model of V. cholerae incorporating a phage population is coupled with a SIRS disease

model to examine the impact of vibrio and phage interaction. It is shown that there might exist

two endemic equilibria, besides the disease free equilibrium: one in which phage persist in the

environment and one in which the phage fail to persist. Existence and stability of these equilibria

are established. Disease control strategies based on vibrio and phage interactions are discussed.
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CHAPTER 1: INTRODUCTION

Cholera has devastated many countries throughout history. There have been seven pandemics of

cholera, the first of which originated in India in 1817 [1]. It is believed that increases in travel have

contributed to the pandemic growth of cholera [1]. Worldwide, it is estimated that there are 1.3 to 4

million cholera cases and 21,000 to 143,000 deaths due to cholera yearly [17]. In 2015, the World

Health Organization (WHO) reported that Democratic Republic of the Congo, Kenya, Malawi,

Mozambique, Nigeria, Somalia, South Sudan, Tanzania, Dominican Republic, Haiti, Afghanistan

and Iraq had been affected by cholera [16]. Despite efforts to control cholera in countries with

poor infrastructure and sanitation, cholera persists.

The bacterium V. cholerae is the etiologic agent of cholera, specifically the O1 and O139 serogroups.

V. cholerae may be found in water sources that have not been chemically treated or filtered.

Consumption of water from such sources may yield a cholera infection for the consumer. After

consumption of V. cholerae contaminated water or food, the bacteria rapidly replicate in the gut

of the effected individual, producing a cholera infection. Cholera presents with watery diarrhea

and vomiting. If left untreated, an infected individual may die within hours due to dehydration,

metabolic acidosis, and uremia [17, 5]. In less severe cases of cholera, treatment may include

oral or IV re-hydration however, in more severe cases antibiotics may also be used. An infected

individual may shed new V. cholerae bacteria into the environment by means of defecation, if waste

is not disposed of properly. An infected individual may shed up to 107− 109 bacteria per milliliter

of fecal waste [12].

V. cholerae is a Gram negative, facultative anaerobe, non-spore forming curved rod bacterium
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with a single polar flagellum. V. cholerae’s flagellum makes the bacterium highly motile. The V.

cholerae bacteria is found in rivers, lakes, oceans and estuaries [6]. In these environments, bacteria

may be found in biofilms or may be found free floating. According to Rodney M. Donlan [4], “A

biofilm is an assemblage of surface-associated microbial cells that is enclosed in an extracellular

polymeric substance matrix.” It is biologically advantageous for V. cholerae to exist in biofilms as

it helps the bacterium survive harsh environmental conditions [14].

Another mode of survival for V. cholerae is its ability to enter a viable but nonculturable (VBNC)

state. A bacterium that enters the VBNC state is a living cell that is not able to replicate on routine

media [8]. According to Li et al. [8], “VBNC cells have higher physical and chemical resistance

than culturable cells.” Though still viable cells, VBNC bacteria have a reduced metabolic rate [8].

While VBNC V. cholerae cells have a reduced metabolic rate, they remain virulent with a reduced

rate of adhesion [8, 10]. While bacteria enter a VBNC state when environmental conditions are

harsh, they may leave this state and return to a culturable state when environmental conditions are

favorable. Leaving the VBNC state and returning to a culturable state is called “resuscitation” [10].

It may seem that V. cholerae is the perfect bacterium. With all of its survival mechanisms, a

natural question that arises is, what prevents the bacteria from growing so abundant and taking

over all water sources. The answer to this question is bacteriophage. A bacteriophage (or phage) is

a virus that infects bacteria. These viruses may be lytic or lysogenic. A lytic bacteriophage enters

the bacterium and replicates. After the virus replicates, it causes the cell to lyse, or burst, which

results in more bacteriophage in the environment. A bacteriophage that is lysogenic, integrates

its DNA into the bacterium’s genome. This causes the bacterial daughter cells to also have the

bacteriophage DNA in their genome.
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Bacteriophage may be purely lytic, purely lysogenic or a combination. Some bacteriophages

are lysogenic until environmental conditions are unsuitable for bacterial cell survival, at which

point they lyse the cell. One such example of a lysogenic bacteriophage is the lysogenic CTXΦ

bacteriophage. The CTXΦ bacteriophage is responsible for encoding for production of cholera

toxin which induces the cholera illness. According to Solis-Sanchez et al. [13], “since 2007, more

than 200 vibrio phages have been described.” Lytic phage help keep the bacterial populations in

check. The relationship between bacteria and bacteriophage exhibits predator-prey-like qualities.

The ability for V. cholerae to persist in the environment despite harsh conditions makes cholera

a considerable public safety concern. To better understand the relationship between bacteria and

bacteriophage, we develop a mathematical model to describe these processes as well as their impact

on disease dynamics among a human population. We use mathematical methods to analyze the

model to understand these dynamics.
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CHAPTER 2: MODEL DEVELOPMENT

We devise a mathematical model to represent the bacteria-bacteriophage dynamics as well as the

impact these dynamics have on a human population. Here, we state our assumptions and build

the model. We give full biological justification and simplification justification in the section titled

“Model Limitations.” We use a compartmental model which includes compartments for susceptible

individuals (S), infected individuals (I), recovered individuals (R), bacteria (B) and bacteriophage

(P ). We account for human immunity loss, so recovered individuals may return to the susceptible

compartment. We treat the encounters of bacteria and phage in a manner similar to predator-prey

dynamics described by Lotka-Volterra equations [9].

We make many simplifications in human compartments of the model in attempt to reserve complication

for bacterial and phage compartments as this is the primary interest. In order to simplify model

analysis, we assume constant human birth Λ. Individuals who are born, are born directly into the

susceptible compartment. We assume that the natural per-capita death rate is constant µ. We also

assume no disease-related deaths occur for model simplicity as well as the relatively low cholera

related death rate seen biologically.

With the previous model specifications in mind, we begin to construct the human compartments

of our model. Humans consume bacteria at a constant rate α. Upon consumption from bacteria

infected source, an individual contracts infection with probability f(B) = B
H+B

. This probability

follows a dose response curve similar to the ones used by Codeço [2]. Here, H is the quantity of

bacteria that yields fifty percent chance of infection. Humans recover at a constant rate r and lose

immunity at constant rate γ.
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Now, we begin developing the bacteria and bacteriophage compartments of the model. Here, we

attempt to retain as much biological reality in the model while maintaining enough simplicity to

perform an effective model analysis. We assume that bacteria (B) grow exponentially in absence

of phage and human contribution. That is without phage and human contribution to the culturable

reservoir, we have Ḃ = KB where K is the intrinsic growth rate of bacteria. Here, K = ν − δ

where ν is the bacterial “birth” rate and δ is the bacterial death rate. Humans shed new bacteria into

the environment by means of defecation and vomiting at a rate η. We consider bacteriophage to be

predators as in Lotka-Volterra equations with search efficiency b. We assume that the conversion

rate for the phage to be given by χ. Phage “die” at a rate m. A comprehensive list of parameters

and parameter description is seen in table 2.1.

Table 2.1: Model parameter values, descriptions and associated units

Parameters for Bacteria-Phage Model

Λ human birth rate persons·days−1

µ human death rate days−1

α rate of bacterial consumption days−1

f(B) probability of infection upon consumption unitless

r recovery rate days−1

γ rate in which immunity is lost days−1

η rate in which infected individuals shed bacteria bacteria·person−1·days−1

ν culturable bacteria growth rate days−1

b phage attack rate days−1·phage−1

δ bacterial death rate days−1

χ phage gain from culturable bacteria days−1·bacteria−1

m phage death rate death−1

With the above assumptions in mind, we obtain the system of ordinary differential equations given
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by



Ṡ = Λ + γR− αf(B)S − µS

İ = αf(B)S − (r + µ)I

Ṙ = rI − γR− µR

Ḃ = νB + ηI − δB − bBP

Ṗ = χbBP −mP.

(2.1)

This system is seen represented in the following flow diagram:

S I R

B P

Λ
αf(B)S

rI

ηI

µS µRµI

δB + bBP

νB

γR

χbBP

mP

Figure 2.1: Flow diagram for model

Well known theory in ordinary differential equations give that initial value problem

(S(0), I(0), R(0), B(0), P (0)) and (2.1) has a unique solution.
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CHAPTER 3: MODEL ANALYSIS

A unique disease free equilibrium, a phage present endemic equilibrium, and a phage free endemic

equilibrium are found and discussed along with stability conditions. The basic reproduction number,

R0, is discussed as well as a new critical value RP . It will be shown that the disease may be

controlled byRP , even in the case thatR0 > 1.

3.1 Feasible Region and Boundedness of Solutions

The feasible region is given by

Γ = {(S, I, R,B, P ) ∈ R5
+ : S + I +R ≤ Λ

µ
}.

In the following lemma, it is shown that S + I + R ≤ Λ
µ

for all t ≥ 0. We denote the interior of Γ

by Γ0.

To show that the solutions of the model are bounded, we consider the compartments that make

up the human population together and the phage/bacteria compartments separately. That is, we

consider N = S + I +R and E = χB + P .

Lemma 1. All solutions to (2.1) are bounded whenever δ > ν.

Proof. Now, Ṅ = Ṡ + İ + Ṙ = Λ − µN which gives the first order problem Ṅ + µN = Λ.

Using the method of integrating factor, we may write this as d
dt
{eµtN} = Λeµt which gives N =

Λ
µ

+ (N0 − Λ
µ

)e−µt where N0 is the initial human population N(0). It is seen that as t → ∞,

N → Λ
µ

. If N0 <
Λ
µ

, N increases monotonically to Λ
µ

and if N0 >
Λ
µ

, N decreases monotonically

to Λ
µ

. So, N is bounded by max{N0,
Λ
µ
} for all t ≥ 0. From here forward, we assume N0 <

Λ
µ

7



without loss of generality.

We now consider Ė = χḂ + Ṗ for the case δ > ν. Let ε = min{δ − ν,m}. We have

Ė = χḂ + Ṗ

= −χ(δ − ν)B −mP + ηχP

≤− ε(χB + P ) + ηχI

= −εE + ηχI

≤− εE + ηχN

≤− εE + ηχ
Λ

µ

which gives the first order problem Ė + εE ≤ ηχΛ
µ

which may be written as d
dt
{eεtE} ≤ eεtηχΛ

µ

using the integrating factor eεt. Now, integrating both sides of the inequality yields

E ≤ ηχΛ

εµ
+ Ce−εt ≤ ηχΛ

εµ
+ C

where C is some constant. Thus E is bounded for all t ≥ 0.

Boundedness of the bacterial and phage components has yet to be shown for the case δ < ν.

3.2 Disease Free Equilibrium (DFE)

An equilibrium point is a point where the rate of change among all components is zero. That is, an

equilibrium point gives Ṡ = İ = Ṙ = Ḃ = Ṗ = 0. It is seen that letting I = 0 in the model (2.1),

we obtain the disease free equilibrium (DFE) Q0 = (Λ
µ
, 0, 0, 0, 0).
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3.3 Local Stability of DFE

Stability conditions for DFE are explored and a new critical value RB is discussed. We begin by

examining the Jacobian matrix at DFE (JDFE). We have:

JDFE =



−µ γ 0 − αΛ
Hµ

0

0 −(γ + µ) r 0 0

0 0 −(r + µ) αΛ
Hµ

0

0 0 η ν − δ 0

0 0 0 0 −m


. (3.1)

It is seen that JDFE is a block triangular matrix of the form

JDFE =


A ∗ ∗

0 B ∗

0 0 C


with

A =

−µ γ

0 −(γ + µ)

 , B =

−(r + µ) αΛ
Hµ

η ν − δ

 , C =

[
−m

]

So, the spectrum of JDFE is λ(JDFE) = λ(A) ∪ λ(B) ∪ λ(C) (proof given in appendix). Since A

and C are upper triangular, their eigenvalues lie on the diagonal. So finding the eigenvalues of JDFE

is reduced to finding the eigenvalues of the 2×2 sub-matrix B. We have λ(A) = {−µ,−(γ + µ)}

and λ(C) = {−m}. Now, Tr(B) = −(r + µ) + ν − δ and Det(B) = −(r + µ)(ν − δ) − Λαη
Hµ

and so the eigenvalues of B are both negative provided Tr(B) < 0 and Det(B) > 0. Tr(B) < 0

9



gives the condition 1 > ν
r+µ+δ

and Det(B) > 0 gives the condition 1 > Λαη
Hµδ(r+µ)

+ ν
δ
. Note that

Λαη
Hµδ(r+µ)

+ ν
δ
> ν

δ
> ν

δ+r+µ
. So 1 > Λαη

Hµδ(r+µ)
+ ν

δ
is necessary and sufficient to conclude that the

eigenvalues of B are negative. Denote

RB =
Λαη

Hµδ(r + µ)
+
ν

δ
.

The eigenvalues λ1, λ2, λ3, λ4, λ5 are all negative under the condition RB < 1. This motivates the

following theorem.

Theorem 2. IfRB < 1, then the disease free equilibrium is locally stable.

3.4 Global Stability of DFE

Theorem 3. IfRB < 1, then the disease free equilibrium is globally asymptotically stable in Γ.

Proof. SupposeRB < 1. We have

RB =
Λαη

µδ(r + µ)H
+
ν

δ
< 1

=⇒ Λαη

µδ(r + µ)H
+
ν

δ
− 1 < 0

=⇒ Λαη

(r + µ)µH
+ ν − δ < 0

=⇒ Λα

µH
+

(r + µ)(ν − δ)
η

< 0.

Consider the function L = I + r+µ
η
B + r+µ

ηχ
P . Clearly L ≥ 0. Now,

10



L̇ = İ +
r + µ

η
Ḃ +

r + µ

ηχ
Ṗ

= αf(B)S − (r + µ)I +
r + µ

η
(ηI + ν − δB − bBP ) +

r + µ

ηχ
(χbBP −mP )

= α
B

B +H
S +

(r + µ)(ν)− δ
η

B − m(r + µ)

ηχ
P

≤ α
Λ

µ
·B
H

+
(r + µ)(ν − δ)

η
B − m(r + µ)

ηχ
P

=
(Λα

Hµ
+

(r + µ)(ν − δ)
η

)
B − m(r + µ)

ηχ
P ≤ 0.

So L is a Lyapunov function.

Now, when L̇ = 0, it is required thatB = P = 0. But, from (2.1), it is clear that I = 0, R = 0, and

S = Λ
µ

. So, {Q0} is the largest invariant subset where L̇ = 0. Therefore, by LaSalle’s invariance

principle [7], Q0 is globally asymptotically stable in Γ.

3.5 Basic Reproduction Number

The basic reproduction number, denoted byR0, is described by the average new infections a single

infected host will induce, in an entirely susceptible population, in it’s entire infectious life [3]. The

procedure of constructing the next generation matrix outlined by O. Diekmann, J.A.P. Heesterbeek

and M.G. Roberts [3] is followed to obtain R0 for the model (2.1). Consider the sub-system

consisting of compartments of infection and those that contribute to infection, that is the infectious
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compartment I and bacterial compartment B. The sub-system is given by


Ḃ = (ν − δ)B − bBP + ηI

İ = α B
H+B

S − (r + µ)I.

(3.2)

Now, linearizing at the DFE gives the linearized system

ẋ =

ν − δ η

αΛ
µH

−(r + µ)

x
where x = [B, I]T . The linearized system may be written as

T − Σ =

 ν η

αΛ
µH

0

+

−δ 0

0 −(r + µ)

 .
The transmission matrix consists of all terms that directly contribute to new infections and is given

by

T =

 ν η

αΛ
µH

0

 .
The transition matrix consists of changes in infectious state and is given by

Σ =

−δ 0

0 −(r + µ)

 .

12



Now, the next generation matrix NGM is given by K = −TΣ−1. The NGM is therefore

K =

 ν
δ

η
r+µ

αΛ
µδH

0

 .
The basic reproduction number is then given by

R0 = ρ(K) =
1

2

(ν
δ

+

√
ν2

δ2
+

4ναΛη

(r + µ)µδH

)
.

We know that if R0 < 1, the disease dies out (DFE is stable) and if R0 > 1, the disease persists

(DFE is unstable).

We now prove that the stability conditions of the DFE given byRB andR0 are equivalent.

Lemma 4. R0 < 1 (R0 > 1) ⇐⇒ RB < 1 (RB > 1).

Proof. We have:

R0 =
1

2

(ν
δ

+

√
ν2

δ2
+

4ναΛη

(r + µ)µδH

)
< 1

⇐⇒ ν

δ
+

√
ν2

δ2
+

4ναΛη

(r + µ)µδH
< 2

⇐⇒ ν2

δ2
+

4ναΛη

δ(r + µ)µδH
< 4− 4

ν

δ
+
ν2

δ2

⇐⇒ ηαΛ

(r + µ)Hµ
< (1− ν

δ
)

⇐⇒ RB =
Λαη

δ(r + µ)µH
+
ν

δ
< 1.
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3.6 Endemic Equilibria

We determine that there may exist two distinct endemic equilibria. One equilibrium has a zero

phage population while the other has a positive phage population. We call the equilibrium with

a zero phage population the phage free endemic equilibrium (PFEE) and denote it by QPFEE =

(S∗, I∗, R∗, B∗, 0). We call the equilibrium with a positive phage population the phage persistent

endemic equilibrium (PPEE) and denote it by QPPEE = (S∗, I∗, R∗, B∗, P ∗). It is shown that

there are two critical valuesRB andRP that determine both the existence and stability of QPFEE

and QPPEE .

3.6.1 Phage Free Endemic Equilibrium (PFEE)

Letting Ṡ = İ = Ṙ = Ḃ = Ṗ = 0, the system



Ṡ = Λ + γR− αf(B)S − µS = 0

İ = αf(B)S − (r + µ)I = 0

Ṙ = rI − γR− µR = 0

Ḃ = νB + ηI − δB − bBP = 0

Ṗ = χbBP −mP = 0

(3.3)
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is obtained. Clearly P = 0 satisfies Ṗ = 0. So the system becomes

Λ + γR− αf(B)S − µS = 0 (3.4)

αf(B)S − (r + µ)I = 0 (3.5)

rI − (γ + µ)R = 0 (3.6)

(ν − δ)B + ηI = 0. (3.7)

Now, (3.7) gives B∗ = η
δ−ν I∗ and so it is required that δ > ν to ensure B∗ ≥ 0. It is also seen that

(3.6) gives R∗ = r
γ+µ

I∗ and (3.5) gives S∗ = r+µ
α

(
δ−ν
η
H + I∗

)
. Clearly R∗ is positive whenever

I∗ is positive and S∗ is positive whenever δ > ν and I∗ is positive. Using B∗, S∗ and R∗ described

above in (3.4),

Λ +
γr

γ + µ
I∗ − (r + µ)I∗ −

µ(r + µ)

α
·δ − ν
η

(
H +

η

δ − ν
I∗
)

= 0 (3.8)

is obtained. Equation (3.8) can be rearranged as

Λαη − µ(r + µ)(δ − ν)H

αη
= I∗

( rµ

γ + µ
+ µ+

µ(r + µ)

α

)
. (3.9)

It is clear that for I∗ to be positive, it is required that the left hand side of (3.9) must be positive.

That is Λαη− µ(r+ µ)(δ− ν)H > 0. This givesRB = Λαη
Hµδ(r+µ)

+ ν
δ
> 1. Solving for I∗ in (3.9)

gives

I∗ =
(γ + µ)[Λαη − µHδ(r + µ) + µνH(r + µ)]

η(rµα + µα(γ + µ) + µ(r + µ)(γ + µ))
. (3.10)

This motivate the following theorem.

Theorem 5. There exists an endemic equilibrium point without phage,QPFEE , under the condition

RB > 1 and δ > ν.
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3.6.2 Local Stability of PFEE

The stability of QPFEE is now discussed. Another critical value RP is obtained and it is shown

that QPFEE is stable forRP < 1. The critical valueRP is defined by

RP :=
b

δ

(ν
b

+
Λαηχ(γ + µ)

rµαm+ µαm(γ + µ) + µχbH(r + µ)(γ + µ) +mµ(r + µ)(γ + µ)

)
.

Theorem 6. The phage free endemic equilibrium QPFEE is locally stable whenever RP < 1 <

RB.

Proof. Consider the case where RB > 1 and RP < 1. It is clear from the definition of RP that

RP < 1 implies ν < δ and so under these conditions, existence of QPFEE is guaranteed.

Now, examining the Jacobian matrix at QPFEE given by

JPFEE =



−αf(B∗)− µ 0 γ −H(r+µ)(δ−ν)
η(H+B∗)

0

αf(B∗) −(r + µ) 0 H(r+µ)(δ−ν)
η(H+B∗)

0

0 r −(γ + µ) 0 0

0 η 0 ν − δ −bB∗

0 0 0 0 χbB∗ −m


,
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it is seen that JPFEE =

C̄ ∗

0 χbB∗ −m

 with

C̄ =



−αf(B∗)− µ 0 γ −H(r+µ)(δ−ν)
η(H+B∗)

αf(B∗) −(r + µ) 0 H(r+µ)(δ−ν)
η(H+B∗)

0 r −(γ + µ) 0

0 η 0 ν − δ


.

So, the eigenvalues of JPFEE are given by λ5 = χbB∗ −m and λ(C̄) = {λ1, λ2, λ3, λ4}.

We now consider λ5 = χbB∗ −m. Using the equilibrium equations, we write

λ5 = χbB∗ −m

=
η

δ − ν
I∗χb−m

=
χb

δ − ν

(
(γ + µ)[Λαη − µHδ(r + µ) + µνH(r + µ)]

rµα + µα(γ + µ) + µ(r + µ)(γ + µ)

)
−m.

So, in order for QPFEE to be stable, it is necessary that λ5 < 0. That is

χb

δ − ν

(
(γ + µ)[Λαη − µHδ(r + µ) + µνH(r + µ)]

rµα + µα(γ + µ) + µ(r + µ)(γ + µ)

)
−m < 0.

We have,

χb

δ − ν

(
(γ + µ)[Λαη − µHδ(r + µ) + µνH(r + µ)]

rµα + µα(γ + µ) + µ(r + µ)(γ + µ)

)
−m < 0

=⇒ χb(γ + µ)[Λαη − µHδ(r + µ) + µνH(r + µ)]

rµαm+ µαm(γ + µ) + µm(r + µ)(γ + µ)
+ ν < δ
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=⇒ Λαηχb(γ + µ) + µνHχb(r + µ)(γ + µ) + νK < δ[K + µχbH(r + µ)(γ + µ)]

(where K = rµαm+ µαm(γ + µ) + µm(r + µ)(γ + µ))

=⇒ 1

δ
·b(Λαηχ(γ + µ) + µνHχ(r + µ)(γ + µ)) +Kν

K + µνHχ(r + µ)(γ + µ)
< 1

=⇒ RP =
b

δ

(ν
b

+
Λαηχ(γ + µ)

rµαm+ µαm(γ + µ) + µχbH(r + µ)(γ + µ) +mµ(r + µ)(γ + µ)

)
< 1.

Now, it must be shown that under the stated conditions above, λ1, λ2, λ3, λ4 have negative real

parts. To do this, examine det(C̄ − tI); calculation of det(C̄ − tI) is shown in appendix. We have

det(C̄ − tI) = (µ+ t)

[
t3 + (r + 2µ+ γ + δ − ν + αf(B∗))t

2

+

(
αf(B∗)(γ + r + µ+ δ − ν) + (γ + µ)(r + µ)

+ (r + 2µ+ γ)(δ − ν)− H(r + µ)(δ − ν)

H +B∗

)
t

+ (γ + µ)(r + µ)(δ − ν) + αf(B∗)(γ + r + µ)(δ − ν)

− H(r + µ)(δ − ν)(γ + µ)

H +B∗

]
.

Clearly t = −µ is a zero of the above polynomial and so we must now determine whether the

third degree factor has zeros with negative real parts. To make this determination, we utilize the

Routh-Hurwitz criterion. By Routh-Hurwitz criterion, a third degree polynomial p(t) = a0t
3 +

a1t
2 + a2t + a3 with a0, a1, a2, a3 > 0, and a1a2 > a0a3, has roots with negative real parts. We

now verify these conditions for
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p(t) = t3 + (r + 2µ+ γ + δ − ν + αf(B∗))t
2

+

(
αf(B∗)(γ + r + µ+ δ − ν) + (γ + µ)(r + µ)

+ (r + 2µ+ γ)(δ − ν)− H(r + µ)(δ − ν)

H +B∗

)
t

+ (γ + µ)(r + µ)(δ − ν) + αf(B∗)(γ + r + µ)(δ − ν)

− H(r + µ)(δ − ν)(γ + µ)

H +B∗
.

We have

a0 = 1 > 0

a1 = γ + 2µ+ r + δ − ν + αf(B∗) > 0

a2 = αf(B∗)(γ + r + µ+ δ − ν) + (γ + µ)(r + µ) + (r + 2µ+ γ)(δ − ν)− H(r + µ)(δ − ν)

H +B∗

= αf(B∗)(γ + r + µ+ δ − ν) + (γ + µ)(r + µ+ δ − ν) +
B∗(r + µ)(δ − ν)

H +B∗
> 0

a3 = (γ + µ)(r + µ)(δ − ν) + αf(B∗)(γ + r + µ)(δ − ν)− H(r + µ)(δ − ν)(γ + µ)

H +B∗

= αf(B∗)(γ + r + µ)(δ − ν) +
B∗(r + µ)(δ − ν)(γ + µ)

H +B∗
> 0.

and
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a1a2 = (γ + 2µ+ r + δ − ν + αf(B∗))
[
αf(B∗)(γ + r + µ+ δ − ν)

+ (γ + µ)(r + µ+ δ − ν) +
B∗(r + µ)(δ − ν)

H +B∗

]
= αf(B∗)(γ + r + µ+ δ − ν)(γ + 2µ+ r + δ − ν + αf(B∗))

+ (γ + µ)(r + µ+ δ − ν)(γ + 2µ+ r + δ − ν + αf(B∗))

+
B∗(r + µ)(δ − ν)(γ + 2µ+ r + δ − ν + αf(B∗))

H +B∗

> αf(B∗)(γ + r + µ+ δ − ν)(γ + 2µ+ r + δ − ν + αf(B∗))

+
B∗(r + µ)(δ − ν)(γ + 2µ+ r + δ − ν + αf(B∗))

H +B∗

> αf(B∗)(γ + r + µ)(δ − ν) +
B∗(r + µ)(δ − ν)(γ + µ)

H +B∗

= a0a3.

So, by the Routh-Hurwitz criterion, det(C̄ − tI) has roots with negative real parts. Thus the

equilibrium point QPFEE is stable under the above assumptions.

From the work above, it is clear that when RP > 1, λ5 > 0 and so under this condition QPFEE is

unstable if it exists.

The following lemma provides a comparison between the two critical valuesRB andRP .

Lemma 7. RP < RB
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Proof.

RP =
b

δ

(ν
b

+
Λαηχ(γ + µ)

rµαm+ µαm(γ + µ) + µχbH(r + µ)(γ + µ) +mµ(r + µ)(γ + µ)

)
<
b

δ

(ν
b

+
Λαηχ(γ + µ)

µχbH(r + µ)(γ + µ)

)
=
b

δ

(ν
b

+
Λαη

µbH(r + µ)

)
=

Λαη + νµ(r + µ)H

µδ(r + µ)H
= RB

3.6.3 Global Stability of PFEE Without Loss of Immunity

We now discuss the global stability of the PFEE for the case where recovered individuals do not

become susceptible again (γ = 0). With the above assumptions in mind, we obtain the system

which is given by



Ṡ = Λ− αf(B)S − µS

İ = αf(B)S − (r + µ)I

Ṙ = rI − µR

Ḃ = νB + ηI − δB − bBP

Ṗ = χbBP −mP.

(3.11)

Before stating and proving global stability of the PFEE, recall the comparison of the geometric

and arithmetic mean of non-negative numbers x1, x2, ..., xn which is given by x1 + x2 + · · · +

xn≥n· n
√
x1x2· · ·xn. This will be used in the proof of the following theorem.
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Lemma 8. Suppose x, x∗ > 0. Then x− x∗ − x∗ ln( x
x∗

) ≥ 0.

Proof. Consider the function g(θ) = θ − ln(θ). Now, g′(θ) = θ−1
θ

and g′′(θ) = 1
θ2

. We have that

θ = 1 is a critical value of g and g′′ > 0 and so θ = 1 corresponds to a minimum of g. We have

g(1) = 1 and so we have g(θ) = θ − ln(θ) ≥ 1. Letting θ = x
x∗

, we obtain x
x∗
− ln( x

x∗
) ≥ 1 which

gives x− x∗ − x∗ ln( x
x∗

) ≥ 0 as desired.

Theorem 9. For the case γ = 0, the phage free endemic equilibriumQPFEE is globally asymptotically

stable in Γ0 wheneverRP < 1 < RB.

Proof. The condition RP < 1 < RB guarantees the existence of QPFEE by Theorem 6. Now,

consider the function

L = S − S∗ − S∗ln
( S
S∗

)
+ I − I∗ − ln

( I
I∗

)
+
r + µ

η

(
B −B∗ −B∗ln

( B
B∗

))
+
r + µ

ηχ
P

We see that L ≥ 0 by Lemma 8, and L(QPFEE) = 0. Now, using the equilibrium equations

αf(B∗)S∗ − µS∗ = Λ

(r + µ)I∗ = αf(B∗)S∗

(ν − δ)B∗ = −ηI∗

in the derivative of L, we obtain

L̇ = Ṡ
Ṡ

S
S∗ + İ − İ

I
I∗ +

r + µ

η

(
Ḃ − Ḃ

B
B∗
)

+
r + µ

ηχ
Ṗ
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= Λ− αf(B)S − µS − ΛS∗
S

+ αf(B)S∗ + µS∗ + αf(B)S − (r + µ)I

− αf(B)SI∗
I

+ (r + µ)I∗ +
r + µ

η

(
(ν − δ)B + ηI − bBP − (ν − δ)B∗ −

ηIB∗
B

+ bB∗P
)

+
r + µ

ηχ

(
χbBP −mP

)
= αf(B∗)S∗ + µS∗ − µS − αf(B∗)S∗

S∗
S
− µS∗

S∗
S

+ αf(B)S∗ + µS∗ −
αf(B)SI∗

I

+ αf(B∗)S∗ +
r + µ

η

(
(ν − δ)B − bBP − (ν − δ)B∗ −

ηIB∗
B

+ bB∗P
)

+
r + µ

ηχ

(
χbBP −mP

)
= µS∗

(
2− S

S∗
− S∗
S

)
+ αf(B∗)S∗

(
2− S∗

S
− f(B)SI∗
f(B∗)S∗I

+
f(B)

f(B∗)

)
+
r + µ

η

(
(ν − δ)B − bBP − (ν − δ)B∗ −

ηIB∗
B

+ bB∗P
)

+
r + µ

ηχ

(
χbBP −mP

)
= µS∗

(
2− S

S∗
− S∗
S

)
+ αf(B∗)S∗

(
2− S∗

S
− f(B)SI∗
f(B∗)S∗I

+
f(B)

f(B∗)

)
+
r + µ

η

(
(ν − δ)B − (ν − δ)B∗ + bB∗P

)
− (r + µ)I

B∗
B
− r + µ

ηχ
mP

= µS∗
(
2− S

S∗
− S∗
S

)
+ αf(B∗)S∗

(
2− S∗

S
− f(B)SI∗
f(B∗)S∗I

+
f(B)

f(B∗)

)
+
r + µ

η

(
(ν − δ)B + bB∗P

)
+ αf(B∗)S∗ − (r + µ)I

B∗
B
·I∗
I∗
− r + µ

ηχ
mP

= µS∗
(
2− S

S∗
− S∗
S

)
+ αf(B∗)S∗

(
3− S∗

S
− f(B)SI∗
f(B∗)S∗I

+
f(B)

f(B∗)
− IB∗
I∗B

)
+
r + µ

ηχ

(
χ(ν − δ)B + χbB∗P −mP

)
= µS∗

(
2− S

S∗
− S∗
S

)
+ αf(B∗)S∗

(
3− S∗

S
− f(B)SI∗
f(B∗)S∗I

+
f(B)

f(B∗)
− IB∗
I∗B

)
+
r + µ

η
(ν − δ)B∗

B

B∗
+
r + µ

ηχ

(
χbB∗ −m

)
= µS∗

(
2− S∗

S
− S

S∗

)
+ αf(B∗)S∗

(
3− S∗

S
+
f(B)

f(B∗)
− B

B∗
− f(B)SI∗
f(B∗)S∗I

− B∗I

BI∗

)
+
r + µ

ηχ

(
χbB∗ −m

)
P
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So, we must show

L̇ = µS∗
(
2− S∗

S
− S

S∗

)
+ αf(B∗)S∗

(
3− S∗

S
+
f(B)

f(B∗)
− B

B∗
− f(B)SI∗
f(B∗)S∗I

− B∗I

BI∗

)
+
r + µ

ηχ

(
χbB∗ −m

)
P ≤ 0.

From the comparison of the geometric and arithmetic means inequality, we have

S∗
S

+
S

S∗
≥ 2·

√
S∗
S
· S
S∗

= 2

and so 2− S∗
S
− S

S∗
≤ 0. Now consider

3− S∗
S

+
f(B)

f(B∗)
− B

B∗
− f(B)SI∗
f(B∗)S∗I

− B∗I

BI∗

= −1 +
f(B)

f(B∗)
− B

B∗
+
f(B∗)B

f(B)B∗

+ 4− S∗
S
− f(B∗)B

f(B)B∗
− f(B)SI∗
f(B∗)S∗I

− B∗I

BI∗
.

Again using the comparison of the geometric and arithmetic means inequality, we see

S∗
S

+
f(B∗)B

f(B)B∗
+
f(B)SI∗
f(B∗)S∗I

+
B∗I

BI∗
≥ 4· 4

√
S∗
S
·f(B∗)B

f(B)B∗
· f(B)SI∗
f(B∗)S∗I

·B∗I
BI∗

= 4

and so 4− S∗
S
− f(B∗)B

f(B)B∗
− f(B)SI∗
f(B∗)S∗I

− B∗I

BI∗
≤ 0. Now observe
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− 1 +
f(B)

f(B∗)
− B

B∗
+
f(B∗)B

f(B)B∗

= −1 +
B∗ +H

B +H
· B
B∗
− B

B∗
+
B +H

B∗ +H

=
1

B∗(B +H)(B∗ +H)

(
−B∗(B +H)(B∗ +H) +B(B∗ +H)(B∗ +H)

−B(B +H)(B∗ +H) +B∗(B +H)(B +H)

)
=

−H
B∗(B +H)(B∗ +H)

(
B∗

2 − 2BB∗ +B2
)

=
−H(B∗ −B)2

B∗(B +H)(B∗ +H)
≤ 0.

With this, we have that 3− S∗
S

+
f(B)

f(B∗)
− B

B∗
− f(B)SI∗
f(B∗)S∗I

− B∗I

BI∗
≤ 0.

Now,

χbB∗ −m =
χbη

δ − ν
I∗ −m

=
χb[Λαη − µHδ(r + µ) + µνH(r + µ)]

(δ − ν)
(
rα + µα + µ(r + µ)

) −m

< 0

⇐⇒ χb[Λαη − µHδ(r + µ) + µνH(r + µ)] < m(δ − ν)
(
rα + µα + µ(r + µ)

)
⇐⇒ RP =

b

δ

(ν
b

+
Λαηχµ

rµαm+ µαmµ+ µχbH(r + µ)µ+mµ(r + µ)µ

)
< 1.

Thus, we conclude that under the specified conditions, L̇ ≤ 0. That is L is a Lyapunov function.

Now, L̇ = 0 implies that S = S∗, B = B∗, I = I∗, and P = 0. From (3.3), it is then seen
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that R = R∗. So {QPFEE} is the largest invariant subset where L̇ = 0. Therefore, by LaSalle’s

invariance principle [7], QPFEE is globally asymptotically stable in Γ0.

3.6.4 Phage Persistent Endemic Equilibrium (PPEE)

Here, we discuss the existence of a third equilibrium point. The phage persistent endemic equilibrium

(PPEE) exists under the condition RP > 1. We discuss global stability of the PPEE for the case

where γ = 0.

We proceed finding the PPEE by letting Ṡ = İ = Ṙ = Ḃ = Ṗ = 0. So we obtain the system

Ṡ = Λ + γR− αf(B)S − µS = 0 (3.12)

İ = αf(B)S − (r + µ)I = 0 (3.13)

Ṙ = rI − γR− µR = 0 (3.14)

Ḃ = νB + ηI − δB − bBP = 0 (3.15)

Ṗ = χbBP −mP = 0. (3.16)

Now, instead of letting P = 0 for the equation χbB∗P ∗ −mP ∗ = 0, we consider P ∗ 6= 0 and so

B∗ = m
χb

, which is always feasible. Using this in (3.14) gives the equation (ν−δ)m
χb

+ηI∗− m
χ
P ∗ = 0

or P ∗ = (ν−δ)
b

+ ηχ
m
I∗ which is only feasible and distinct from the PFEE when (ν−δ)

b
+ ηχ

m
I∗ > 0.

Now, using B∗ in (3.12), we have obtain S∗ = r+µ
α

(
χbH
m

+ 1
)
I∗ which is feasible whenever I∗ is

feasible. From (3.13), it is clear that R∗ = r
γ+µ

I∗ which is feasible whenever I∗ is feasible. Now,
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using R∗, B∗ and S∗ in (3.11), we obtain the equation

Λ +
γr

γ + µ
I∗ − (r + µ)I∗ − µr + µ

α

(χbH
m

+ 1
)
I∗ = 0

which, upon solving for I∗, yields

I∗ =
Λαm(γ + µ)

rµαm+ µ(γ + µ)αm+ µ(r + µ)(γ + µ)χbH +mµ(r + µ)(γ + µ)
.

Clearly, I∗ > 0 and so I∗ is always feasible. Thus the only condition on the PPEE comes from the

inequality (ν−δ)
b

+ ηχ
m
I∗ > 0. Using I∗ in this inequality gives the inequality

(ν − δ)
b

+
ηχ

m

Λαm(γ + µ)

rµαm+ µ(γ + µ)αm+ µ(r + µ)(γ + µ)χbH +mµ(r + µ)(γ + µ)
> 0.

Upon rearranging terms in this inequality, we obtain the equivalent condition

RP =
b

δ

(ν
b

+
Λαηχ(γ + µ)

rµαm+ µαm(γ + µ) + µχbH(r + µ)(γ + µ) +mµ(r + µ)(γ + µ)

)
> 1.

This motivates the following theorem.

Theorem 10. There exists a second endemic equilibrium (PPEE) to the system whenRP > 1.

Lemma 11. If ν > δ, then QPPEE exists, QPFEE does not exist and Q0 is unstable.

Proof. Clearly when ν > δ, the conditions for existence of QPFEE are not satisfied and so it does
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not exist. Now,

RP =
b

δ

(ν
b

+
Λαηχ(γ + µ)

rµαm+ µαm(γ + µ) + µχbH(r + µ)(γ + µ) +mµ(r + µ)(γ + µ)

)
> 1 +

b

δ
· Λαηχ(γ + µ)

rµαm+ µαm(γ + µ) + µχbH(r + µ)(γ + µ) +mµ(r + µ)(γ + µ)

> 1.

So, QPPEE exists and by Lemma 7, 1 < RP < RB which gives that the DFE Q0 is unstable.

3.6.5 Global Stability of PPEE Without Loss of Immunity

We now discuss the global stability of the PPEE under the condition γ = 0.

Theorem 12. For the case where γ = 0, whenever QPPEE exists, it is globally asymptotically

stable.

Proof. Suppose QPPEE = (S∗, I∗, R∗, B∗, P ∗) exists. That is, RP > 1. Now, consider the

function

L = S − S∗ − S∗ln
( S
S∗
)

+ I − I∗ − ln
( I
I∗
)

+
r + µ

η

(
B −B∗ −B∗ln

( B
B∗
))

+
r + µ

ηχ

(
P − P ∗ − P ∗ln

( P
P ∗
))
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We see that L ≥ 0 by lemma 8. Now, we use the equilibrium equations

αf(B∗)S∗ − µS∗ = Λ

(r + µ)I∗ = αf(B∗)S∗

(ν − δ)B∗ + ηI∗ = bB∗P ∗

χbB∗P ∗ = mP ∗

in the derivative of L to obtain

L̇ = Ṡ − Ṡ

S
S∗ + İ − İ

I
I∗ +

r + µ

η

(
Ḃ − Ḃ

B
B∗
)

+
r + µ

ηχ

(
Ṗ − Ṗ

P
P ∗
)

= Λ− αf(B)S − µS − Λ− αf(B)S − µS
S

S∗ + αf(B)S − (r + µ)I

− αS − (rµ)I

I
I∗ +

r + µ

η

(
(ν − δ)B + ηI − bBP − (ν − δ)B + ηI − bBP

B
B∗
)

+
r + µ

ηχ

(
χbBP −mP − χbBP −mP

P
P ∗
)

= αf(B∗)S∗ + µS∗ − µS − αf(B∗)S∗2

S
− µS∗2

S
+ αf(B)S∗ + µS∗ − αf(B)SI∗

I

+ (r + µ)I∗ +
r + µ

η

(
(ν − δ)B − (ν − δ)B∗ − ηIB∗

B
+ bB∗P

)
+
r + µ

ηχ

(
−mP − χbBP ∗ +mP ∗

)
= µS∗

(
2− S∗

S
− S

S∗
)

+ αf(B∗)S∗
(
1− S∗

S
+

f(B)

f(B∗)

)
+ αf(B∗)S∗ − αf(B)SI∗

I

+
r + µ

η

(
(ν − δ)B − (ν − δ)B∗ − ηIB∗

B
+ bB∗P

)
+
r + µ

ηχ

(
−mP − χbBP ∗ +mP ∗

)
= µS∗

(
2− S∗

S
− S

S∗
)

+ αf(B∗)S∗
(
2− S∗

S
+

f(B)

f(B∗)
− f(B)SI∗

f(B∗)S∗I

)
+
r + µ

η
(ν − δ)B

− r + µ

η
(ν − δ)B∗ − (r + µ)I

B∗

B
+
r + µ

η
bB∗P − r + µ

ηχ
mP − r + µ

η
bBP ∗ +

r + µ

ηχ
mP ∗
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= µS∗
(
2− S∗

S
− S

S∗
)

+ αf(B∗)S∗
(
2− S∗

S
+

f(B)

f(B∗)
− f(B)SI∗

f(B∗)S∗I

)
+
r + µ

η
(ν − δ)B

− r + µ

η
(ν − δ)B∗ − (r + µ)I

B∗

B
+
r + µ

ηχ
χbB∗P − r + µ

ηχ
mP − r + µ

η
bBP ∗ +

r + µ

ηχ
mP ∗

= µS∗
(
2− S∗

S
− S

S∗
)

+ αf(B∗)S∗
(
2− S∗

S
+

f(B)

f(B∗)
− f(B)SI∗

f(B∗)S∗I

)
+
r + µ

η
(ν − δ)B

− r + µ

η
(ν − δ)B∗ − (r + µ)I

B∗

B
− r + µ

η
bBP ∗ +

r + µ

η
bB∗P ∗

= µS∗
(
2− S∗

S
− S

S∗
)

+ αf(B∗)S∗
(
2− S∗

S
+

f(B)

f(B∗)
− f(B)SI∗

f(B∗)S∗I

)
− B

B∗
αf(B∗)S∗

+ αf(B∗)S∗ − (r + µ)I
B∗

B

= µS∗
(
2− S∗

S
− S

S∗
)

+ αf(B∗)S∗
(
3− S∗

S
+

f(B)

f(B∗)
− B

B∗
− f(B)SI∗

f(B∗)S∗I

)
− (r + µ)I

B∗I∗

BI∗

= µS∗
(
2− S∗

S
− S

S∗
)

+ αf(B∗)S∗
(
3− S∗

S
+

f(B)

f(B∗)
− B

B∗
− f(B)SI∗

f(B∗)S∗I

)
− αf(B∗)S∗

B∗I

BI∗

= µS∗
(
2− S∗

S
− S

S∗
)

+ αf(B∗)S∗
(
3− S∗

S
+

f(B)

f(B∗)
− B

B∗
− f(B)SI∗

f(B∗)S∗I
− B∗I

BI∗
)
.

So, we must show

L̇ = µS∗
(
2− S∗

S
− S

S∗
)

+ αf(B∗)S∗
(
3− S∗

S
+

f(B)

f(B∗)
− B

B∗
− f(B)SI∗

f(B∗)S∗I
− B∗I

BI∗
)
≤ 0.

Similar calculations to those in Theorem 8, show 2− S∗

S
− S

S∗
≤ 0 and 3− S∗

S
+
f(B)

f(B∗)
− B

B∗
−

f(B)SI∗

f(B∗)S∗I
− B∗I

BI∗
≤ 0 and so L̇ ≤ 0. That is L is a Lyapunov function.

Now, L̇ = 0 implies S = S∗, I = I∗, and B = B∗. Equation (3.14) then implies R = R∗ while

(3.15) implies P = P ∗. So {QPPEE} is the largest invariant subset where L̇ = 0. Therefore, by

LaSalle’s invariance principle [7], QPPEE is globally asymptotically stable in Γ0.
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CHAPTER 4: CHOLERA CONTROL STRATEGIES

We consider different strategies for controlling cholera. The strategies are broke into two categories;

conventional control strategies and unconventional control strategies. The conventional strategies

include practices that are currently being implemented while unconventional strategies consider

controlling cholera by means of vibrio-phage interactions. Conventional strategies include decreasing

intake of V. cholerae contaminated water as well as decreasing bacterial shedding into the environment.

We see that all conventional control strategies aim to reduce R0 below 1. While this theoretically

would eradicate the disease, unconventional strategies may reduce the disease to tolerable levels

without the need to have R0 < 1. That is, the unconventional strategies allow for disease control

despiteR0 > 1.

4.1 Disease Impact of Vibrio Control

The basic reproduction number R0 gives a threshold value that determines if the disease persists

or dies out. The basic reproduction number R0 is also a measure of control needed to prevent a

disease outbreak where all infectious types are targeted equally. The target reproduction number is

a threshold value used to measure effort needed to prevent a disease outbreak when targeting only

certain infectious types. We follow the notation and methods used in [11]. The target reproduction

number Ti,j targets the (i, j) entry of the next generation matrix K. This is interpreted as the effect

on the infections that type j causes on type i. If we wish to target multiple entries of K, then we

consider a target set S which consists of entries in K. Then the infectious effect on this set is TS .

The target reproduction number TS on a target set S is given by TS = ρ(KS(I − K + KS)−1)

where [KS]i,j = [K]i,j if (i, j)∈S and 0 otherwise.
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Now, recall the next generation matrix

K =

 ν
δ

η
r+µ

αΛ
µδH

0

 .
We consider the target sets S = {(2, 1)}, S = {(1, 2)}, and S = {(2, 1), (1, 2)}. That is

we target the (2, 1) entry, (1, 2) entry, and (2, 1), (1, 2) entries together. We do not consider

the strategies that target the (1, 1) entry or the (2, 2) entry as these are not considered feasible

strategies. That is because the targeting the (1, 1) entry considers the impact bacteria have on

themselves (bacterial growth) and the (2, 2) entry considers the impact infectious humans have on

themselves (transmission from human-to-human contacts) which this model does not consider.

Targeting the (2,1) entry of K considers the consumption of bacteria by humans. An example

of a control strategy considering this entry would be the implementation of water purification or

drinking bottled water. The target reproduction number T2,1 is given by T2,1 = Λαη
Hµ(r+µ)(δ−ν)

.

Targeting the (1,2) entry of K considers the shedding of bacteria into the environment by humans.

An example of a control strategy considering this entry would be the implementation of sanitary

waste disposal methods such as the use of latrines that do not contaminate water sources. The

target reproduction number is given by T1,2 = T2,1.

Targeting the set S = {(2, 1), (1, 2)} considers all feasible strategies for the given model. We have

TS = ρ(KS(I −K +KS)−1) = ρ
( 0 η

r+µ

αΛ
µH(δ−ν)

0

) =
√

Λαη
µH(r+µ)(δ−ν)

=
√
T1,2. It is clear that

RS < 1 if and only if T1,2 = T2,1 < 1.
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So, all three strategies give the same threshold. Furthermore, we see

T2,1 =
Λαη

Hµ(r + µ)(δ − ν)
< 1

⇐⇒ Λαη

Hµ(r + µ)
< δ − ν

⇐⇒ RB =
Λαη

Hµ(r + µ)δ
+
ν

δ
< 1.

This combined with Lemma 3, shows that the threshold valuesRB,R0, TS , and T1,2 = T2,1 are all

equivalent.

4.2 Disease Impact of Phage Control

We now turn to discuss unconventional control strategies. We discuss the impact the presence

of phage have on an infected population and how the disease may be managed by environmental

factors. To do this, we examine the bacterial and infectious components of the PPEE. That is, recall

B∗ =
m

bχ

and

I∗ =
Λαm(γ + µ)

rµαm+ µ(γ + µ)αm+ µ(r + µ)(γ + µ)χbH +mµ(r + µ)(γ + µ)
.

We now considerB∗ and I∗ as functions ofm. That isB∗(m) and I∗(m) are functions of the phage

death rate m. It is clear that B∗(m) is an increasing function. Now, computing the derivative of

I∗(m) yields

dI∗

dm
=

Λα(γ + µ)µ(r + µ)(γ + µ)χbH(
rµαm+ µ(γ + µ)αm+ µ(r + µ)(γ + µ)χbH +mµ(r + µ)(γ + µ)

)2 > 0
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and so I∗(m) is also an increasing function. Since B∗(m) and I∗(m) are increasing functions; as

m→ 0+, B∗ → 0 and I∗ → 0. That is, bacteria and infection may be made arbitrarily small given

a sufficiently small m. Moreover, RP → Λαη
µδ(r+µ)H

+ ν
δ

= RB as m → 0+. With this in mind, we

present the following lemma.

Lemma 13. Suppose RB > 1 and δ > ν. Then, there exists m0 > 0 such that RP = 1 and

I∗(m0), I∗ coincide.

Proof. SupposeRB > 1 and δ > ν. This implies that QPFEE exists. So

I∗ =
(γ + µ)

[
Λαη − (δ − ν)µ(r + µ)H

]
η(r + µα + µ(µ+ γ)α + µ(r + µ)(γ + µ))

> 0

So, Λαη − (δ − ν)µ(r + µ)H > 0. This along with the condition δ > ν guarantee

m0 =
χb(γ + µ)

[
Λαη − (δ − ν)µ(r + µ)H

]
(δ − ν)

[
r + µα + µ(µ+ γ)α + µ(r + µ)(γ + µ)

] > 0.

We haveRP (m0) = 1 and I∗(m0) = I∗.

Theorem 14. SupposeRB > 1 and δ > ν. Then I∗(m) < I∗ whenever 0 < m < m0.

Proof. Assume RB > 1 and δ > ν. Since RP is a monotone decreasing function in m, for

0 < m < m0 we have RP (m) > RP (m0) = 1. This guarantees existence of I∗(m). Now, since

I∗ is monotone increasing in m, I∗(m) < I∗(m0) = I∗ whenever 0 < m < m0.

This theorem leads to an important corollary.

Corollary 15. Suppose RB > 1 and δ > ν. Then for any ε > 0, there exists 0 < mε < m0 such

that I∗(m∗) < ε whenever 0 < m < mε.

34



A natural question to ask then, is how might the phage “death” rate be effected in reality? The

addition of phage would effectively modify the “death” rate of the phage. Indeed, consider an

addition of phage to P compartment that is proportional to the current phage population. That is,

the new equation for Ṗ would become Ṗ = χbBP − mP + kP = χbBP − (m − k)P . Now

clearly m− k < m effectively reducing the phage death rate.

Biologically, this corollary states that the disease may be brought down to an acceptable level

provided the phage population is large enough. A small phage death rate obviously favors the

phage population in the environment. In fact, looking at the equation Ṗ = χbBP −mP , we see

that if m = 0, then the phage population has a positive growth rate for all time.
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CHAPTER 5: BIOLOGICAL IMPLICATIONS AND MODEL

LIMITATIONS

5.1 Biological Implications

We now turn the discussion to the biological meaning of the previously described mathematical

results. Understanding how cholera is contracted and how the bacteria behave in the environment

may aid in determining strategies to get the disease under control. The mathematical model

discussed previously sheds light on how phage and vibrios interact and how this affects the disease

dynamics.

We have seen that if the critical number RB is less than 1, then the disease free equilibrium is

globally asymptotically stable. That is, if RB < 1, then the disease will die out over time. This is

the ideal case as it ensure the disease does not persist in the given population.

Under the condition RB > 1, the disease free equilibrium is unstable. That is, the disease persists

in the population. If this is the case, we saw that there are two possibilities. These possibilities are

the scenario whereRP < 1 andRP > 1.

In the scenario RP < 1 < RB, we saw that an endemic equilibrium exists and is stable. This

equilibrium was absent of phage. For RP < 1, it is necessary the have the bacterial death rate

to exceed the bacterial “birth” rate (δ > ν). That is the natural death rate of the bacteria exceeds

the natural birth rate of the bacteria. This explains how the bacteria do not grow without bound.

Biologically, the death rate of the bacteria is large enough to prevent the bacterial population from

getting too out of control. In this case, the endemic equilibrium QPFEE is locally stable and so

solutions starting near QPFEE tend to QPFEE .
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In the scenario 1 < RP < RB, we saw that a second endemic equilibrium exists. In this

equilibrium, QPPEE , the phage population is nonzero. If δ > ν, then QPFEE exists along with

QPPEE whereas if δ < ν, QPPEE is the only endemic equilibrium that exists. In this scenario, it

was shown that QPPEE is globally asymptotically stable under the restriction γ = 0. Biologically

speaking, γ = 0 means that once a human has recovered from an infection, they will never become

susceptible to infection again.

We have discussed control strategies that are implemented in areas of endemic cholera and how

they impact the disease. More than this, we have seen that the presence of phage plays a large

role in controlling the bacteria population in the environment. We have seen that infectious human

populations may be made arbitrarily small for sufficiently small values of m. The phage death rate

may be effectively reduced by adding phage into the environment in an amount that is proportional

to the phage population. That is, an environment that is favorable to the persistence of phage is

also favorable to an infectious population.

5.2 Model Limitations

While this model may give a mathematical backing to previously known biology, it is not perfect

and makes many simplifications. Realistically, humans lose immunity after a period of time and so

the case γ = 0 is not the most biologically reasonable scenario. Moreover, humans will shed new

phage into the environment by means of defecation/vomiting which this model does not consider.

This model also does not consider the ability for bacteria to enter the state of dormancy, VBNC

state, discussed in the introduction. While these simplifications were necessary for an effective

model analysis they are important factors to consider when considering the accuracy of biological

implications.
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To reconcile these simplifications among others, we propose a new more accurate (read mathematically

cumbersome) model in the next section as well as some conjectures about the model discussed in

previous sections.
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CHAPTER 6: OPEN PROBLEMS AND FUTURE WORK

6.1 Open Problems

Some results presented have not been proven in the most general context. Here, we state the

conjectures:

Conjecture 16. All trajectories are bounded.

We have shown in section 3.1 that all trajectories are bounded given the restricted case δ > ν. It

remains to be shown for ν ≥ δ.

Conjecture 17. IfRP < 1 < RB, then QPFEE is globally asymptotically stable in Γ0.

The global stability of QPFEE has not been shown under these conditions.

Conjecture 18. IfRP > 1, then QPPEE is locally stable.

Conjecture 19. IfRP > 1, then QPPEE is globally asymptotically stable in Γ0.

The global stability of QPPEE and QPFEE was proven for the case γ = 0. It remains to show

global stability for γ 6= 0. As discussed in the previous chapter, the case γ = 0 does not make the

most biological sense as a cholera infection yields a temporary immunity to the individual. After

the period of temporary immunity, they return to the susceptible compartment. The local stability

of QPPEE has yet to be shown due to the complexity of determining the sign of the eigenvalues of

a rank 5 matrix.
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6.2 Future Work

As discussed in the previous chapter, the model presented is a substantial simplification of an

incredibly complex interaction of humans, bacteria, phage and environmental factors. The assumption

that bacteria grow exponentially in absence of phage and human shedding may not be the most

accurate as well as the lack of a human shedding term into the phage compartment. More over

the process of bacteria entering a viable but not culturable state (VBNC) as discussed in the

introduction was ignored and all bacteria were treated the same. To remedy these simplifications a

more realistic (read more complicated) model is proposed.

In this model, bacteria are “born” into the culturable bacteria compartment where they grow

logistically in absence of shedding and in absence of transition between bacteria compartments.

Bacteria move to a non-culturable state at a rate τ and non-culturable bacteria move back to a

culturable state at rate σ. Phage “attack” culturable bacteria at a rate of b and non-culturable

bacteria at a rate d. The phage have a gain of χ from the culturable bacteria and a gain of ω from

non-culturable bacteria. Humans shed phage into the environment at a rate of ζ . Moreover, bacteria

only experience natural death from the non-culturable compartment at a rate of δ.

With these additional assumptions in mind the proposed model is given by
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

Ṡ = Λ + γR− αf(BC +BNC)S − µS

İ = αf(BC +BNC)S − (r + µ)I

Ṙ = rI − γR− µR

ḂC = νBC(1− BC

K
) + ηI + σBNC − τBC − bBCP

ḂNC = τBC − σBNC − δBNC − dBNCP

Ṗ = χbBCP + ζI + ωdBNCP −mP.

S I R

BNC BC

P

Λ
αf(B)S

rI

ηI

µS µRµI

τBC

σBNC

bBCPdBNCP

χbBCP
ωdBNCP

νBC(1− BC

K
)δBNC

mP

γR

Figure 6.1: Flow diagram for proposed future model

A rigorous mathematical analysis on the proposed future model would provide further insight into

the dynamics of cholera as influenced by the interaction between vibrios and phage.
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APPENDIX
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A 1. CALCULATION OF det(C̄ − tI) IN PROOF OF THEOREM 6

det(C̄ − tI) = det

(


−αf(B∗)− µ− t 0 γ −H(r+µ)(δ−ν)
η(H+B∗)

αf(B∗) −(r + µ)− t 0H(r+µ)(δ−ν)
η(H+B∗)

0 r −(γ + µ)− t 0

0 η 0 ν − δ − t


)

= det

(


−µ− t −(r + µ)− t γ 0

αf(B∗) −(r + µ)− t 0 H(r+µ)(δ−ν)
η(H+B∗)

0 r −(γ + µ)− t 0

0 η 0 ν − δ − t


)

= (−µ− t) det

(
−(r + µ)− t 0 H(r+µ)(δ−ν)

η(H+B∗)

r −(γ + µ)− t 0

η 0 ν − δ − t


)

− αf(B∗) det

(
−(r + µ)− t γ 0

r −(γ + µ)− t 0

η 0 ν − δ − t


)

= (−µ− t)(−(γ + µ)− t) det

(−(r + µ)− t H(r+µ)(δ−ν)
η(H+B∗)

η ν − δ − t

)

− αf(B∗)(ν − δ − t) det

(−(r + µ)− t γ

r −(γ + µ)− t

)
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= (µ+ µ)(γ + µ+ t)
[
(r + µ+ t)(t+ δ − ν)− H(r + µ)(δ − ν)

H +B∗

]
+ αf(B∗)(t+ δ − ν)

[
(r + µ+ t)(γ + µ+ t)− γr

]
= (µ+ t)

[(
(γ + µ)(r + µ) + (γ + µ)t+ (r + µ)t+ t2

)
(t+ δ − ν)

− H(r + µ)(δ − ν)(γ + µ)

H +B∗
− H(r + µ)(δ − ν)

h+B∗
t
]

+ αf(B∗)(t+ δ − ν)
(
(µ+ t)γ + (µ+ t)2 + r(µ+ t)

)
= (µ+ t)

[
t3 +

(
r + 2µ+ γ + δ − ν + αf(B∗)

)
t2

+
(
αf(B∗)(γ + r + µ+ δ − ν) + (γ + µ)(r + µ)

+ (r + 2µ+ γ)(δ − ν)− H(r + µ)(δ − ν)

H +B∗

)
t

+ (γ + µ)(r + µ)(δ − ν) + αf(B∗)(γ + r + µ)(δ − ν)

− H(r + µ)(δ − ν)(γ + µ)

h+B∗

]
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A 2. EIGENVALUES OF BLOCK UPPER-TRIANGULAR MATRICES

Consider an n×n square matrix of the form

M =

A ∗

0 B


where A is an m×m square matrix and B is an (n−m)×(n−m) square matrix. Suppose φ is an

eigenvalue of A with corresponding eigenvector v, and θ is an eigenvalue of B with corresponding

eigenvector u. Now, A ∗

0 B


v

0

 =

Av
0

 =

φv
0

 = φ

v
0


So, φ is an eigenvalue of M . Recalling that MT and M have the same eigenvalues, we have

A 0

∗ B


0

u

 =

 0

Bu

 =

 0

θu

 = θ

0

u


and so θ is an eigenvalue of MT . Since MT and M have the same eigenvalues, θ is an eigenvalue

of M . Now noting that |λ(M)| = n = m + n −m = |λ(A)| + |λ(B)|, we deduce that λ(M) =

λ(A) ∪ λ(B).
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