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ABSTRACT

The evolution of surface waves in deep water is governed by the nonlinear Schrödinger

(NLS) equation. Spatially periodic breathers (SPBs) and rational solutions of the NLS

equation are used as typical models for rogue waves since they exhibit many features of

rogue waves.

A major component of the dissertation is the stability of solutions of the NLS equa-

tion. We address the stability of the rational solutions of the NLS equation used to model

rogue waves using squared eigenfunctions of the associated Lax Pair. This allows us to con-

trast to the existing results for SPBs. The stability of the constant amplitude solution of the

higher order NLS (HONLS) equation with additional novel perturbations, relevant to our

subsequent study on downshifting, is considered next. In addition to the higher order per-

turbations, we include linear effects and nonlinear damping of the mean flow to the HONLS

equation.

In addition to stability, we discuss rogue waves and downshifting. Permanent down-

shifting occurs when energy if permanently transferred from the initially dominant mode to

lower modes and is observed in physical experiments and field studies of deep water waves.

Although these experimental observations are well documented, neither NLS nor HONLS

equations describe this behavior. Nonlinear damping of the mean flow, included in our stud-
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ies, is shown to model permanent downshifting. We examine the interaction of rogue waves

and downshifting in a sea state with both nonlinear and linear effects. We show that there

are no rogue waves after permanent downshifting. Analytical and numerical analysis are

provided to support the findings.
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INTRODUCTION

Rogue waves have been described as large waves appearing out of no where which

then disappear. They are frequently seen as walls of water that are preceded by deep

troughs. Although we now know that they are more than legends, rogue waves were not

observed by scientific measuring devices until 1995, when a wave exceeding 25 meters in

height was recorded at a time when the average height of the largest third of the waves

was only 12 meters. The Draupner wave (or New Year’s wave) and the sea state were

numerically simulated by Trulsen, et al. to investigate the conditions that led to this unique

observation [1]. The rarity of rogue waves was quantified based on three weeks’ satellite

data collected by the European Space Agency in 2000 when at least 10 waves with height 25

meters or larger were recorded [2]. The frequency of the waves is strong evidence that rogue

waves are not formed by linear wave interactions, so the governing equation must allow for

nonlinear wave interactions.

Another interesting phenomena we peruse is that of frequency downshifting. In lab

tank experiments, Lake et al. observed that initially periodic waveforms have different long-

time behavior depending on the steepness of the initial waves [3]. When the waves had

small steepness the initial condition would reappear periodically throughout the experiment.
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When the initial waves had large steepness, however, the energy would move from the initially

dominant wave numbers into lower frequency wave numbers. The lab tank results were later

reproduced in numerical experiments [4]. Let us define the dominant wave number at a given

time as the wave number, k, with the most energy. Downshifting occurs when the dominant

mode decreases to a lower wavenumber in the course of the evolution of the solution.

Benjamin and Feir first observed solutions that have large growths despite being small

perturbations of a constant background state [5]. The phenomena is called modulational

instability (MI) and is a mechanism whereby small perturbations can lead to exponential

growth in the low frequency components. Both rogue waves and frequency downshifting are

associated with MI.

One model for describing ocean waves in deep water is the nonlinear Schrödinger

equation (NLS). Solutions of NLS exhibit the modulational instability and anomalously large,

steep waves. In particular, spatially periodic breathers (SPB) and rational solutions have

the features of rogue waves. These two model solutions have been chosen as representative

solutions that exhibit rogue waves. When investigating a model, features such as persistence

and stability are very important. In [6] the periodic model was shown to have these features.

In this work we show that although the rational solutions have the qualities of rogue waves,

they do not have the desirable features of stability to perturbation and persistence.

The initial conditions used by Lake were small perturbations of a constant back-

ground, and this type of initial condition is viewed effectively as a rogue wave regime. We

further examine the relationship between rogue waves and downshifting. This dissertation
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explores the selection of appropriate perturbations to nonlinear Schrödinger equation to get

downshifting. Earlier studies found that higher order perturbations of NLS are not suffi-

cient to cause downshifting; some form of damping is needed. Although different methods of

damping were examined to create downshifting of solutions, linear damping does not cause

downshifting. In this dissertation we include nonlinear damping of the mean flow and linear

effects from wind. Small amounts of nonlinear damping of the mean flow is shown to cause

downshifting, and the interaction of the linear and nonlinear perturbations to HONLS are

examined. After discussing the effects of various types of damping to the equation, the work

in [7] is expanded further by also including additional families of initial conditions.

The document is arranged in the following chapters:

In Chapter 1 we outline the background information on the models in considera-

tion, including history and definitions of the models. We also quantify rogue waves and

demonstrate that both spatially periodic breathers and rational solutions can have waves

that satisfy the criteria we define as having a rogue wave. We demonstrate that the rational

solution is related to the spatially periodic breather by letting the period become infinitely

large.

In Chapter 2 we discuss the the integrable nature of the governing equation and the

associated framework. We begin with solving the Zakharov-Shabot eigenvalue problem for

the eigenvalues and eigenvectors associated with a constant amplitude background state (the

plane wave). The Bäklund-Gauge transformation is presented as a way to transform not only

solutions, but also the associated eigenfunctions for the Zakharov-Shabot system.
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In Chapter 3 we offer comparison of the stability of the two model solutions and an

explanation of why we choose the spatially periodic breather for numerical implementation.

Additionally, the analytical claims are supported by comparing the numerical resolution of

the solutions.

In Chapter 4 we present the HONLS along with two different types of damping: linear

and nonlinear. Special emphasis is paid to the particular form of HONLS and its retention

of features of the zeroth order model. The topic of downshifting is introduced, and the linear

instability of the plane wave for the full equation is presented.

In Chapter 5 we show that numerical experiments exhibit the expected behavior of

each type of damping from the analytical expressions. The impact of the individual types

of damping and the combination of the two types is examined in numerical experiments

that focus on rogue waves and downshifting of solutions. The interaction between rogue

waves and downshifting is examined, but we show that rogue waves are not required for

downshifting to occur.
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CHAPTER 1

ANALYTICAL BACKGROUND

1.1 Governing Equation

The nonlinear Schrödinger equation is frequently used to model the dynamics of deep water

waves. In this section we briefly review the derivation of NLS from the water wave equations.

There are are many variations of presentation for this derivation. The core of the discussion

follows [8].

Let h be the depth of a fluid with density ρ, velocity ~v, and kinematic viscosity ν

being acted upon by body forces ~f and under pressure p. We establish a coordinate system

with vertical component z and set z = 0 as the unperturbed free surface of the air-water

interface. The displacement from the unperturbed surface is defined to be η(x, t). It is

assumed that the water cannot penetrate the lower boundary, so there is no exchange of

particles in the z direction. This coordinate system is shown in Figure 1.1.

One of the fundamental principles of fluid mechanics is the conservation of mass.

Since the fluid has density ρ and is moving with velocity ~v, the flux of the fluid is ρ~v, so the
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sea floor

h

η(x, t)

x− axis

z − axis

Figure 1.1: η(x, t) is the surface elevation as measured from the x-axis which describes the

profile of the sea surface, and h is the mean water depth.

conservation of mass equation is

∂ρ

∂t
+∇ · (ρ~v) = 0 (1.1.1)

and the conservation of momentum equation is

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇p+ ~f + ν∇2~v. (1.1.2)

From here we impose several conditions to adapt these equations to the physical

situation of ocean waves. We assume that the density of the fluid, ρ, is constant in both

space and time, and that the fluid is only undergoing irrotational motion. Because the

motion is irrotational, ∇× ~v = ~0, there is a scalar-valued potential function φ that satisfies
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~v = ∇φ. Thus (1.1.1) becomes

∇ · (ρ∇φ) = ρ∇2φ = 0 =⇒ ∇2φ = 0, (1.1.3)

which is the Laplace equation.

We also neglect viscosity for this problem (ν = 0) because we are considering surface

gravity waves. Furthermore, because these are gravity waves we see that the only external

force is due to gravity, g, and gravity only acts in the negative z direction for this problem.

Thus, we can write ~f = ∇(−gz). Combining this information with ~v = ∇φ equation (1.1.2)

becomes

∇∂φ
∂t

+∇(φ∇φ) = −1

ρ
∇p+∇(−gz),

∇
[
∂φ

∂t
+ φ∇φ

]
= ∇

[
−p
ρ
− gz

]
.

Integrating both sides with respect to the spatial variables and noting that ∇(φ2) = (∇φ)φ+

φ(∇φ) = 2φ∇φ we have

∂φ

∂t
+

1

2
∇(φ2) = −p

ρ
− gz + C(t),

where C is independent of the spatial variables but not independent of time. Shifting φ to

φ̂, where

φ̂ = φ+

∫ t

0

[
−p
ρ

+ C(t̂)

]
dt̂,

we see that φ̂t = −p
ρ

+ C(t), but the other terms in the equation stay the same. So by

choosing a particular potential function we have at the top boundary

∂φ

∂t
+

1

2
∇(φ2) + gη = 0. (1.1.4)
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For the bottom interface, note that the normal vector is −~ez = − < 0, 0, 1 >. The

boundary at z = −h is impermeable, so the velocity in the direction normal to that surface

must be zero. In other words,

−(~v · ~ez) = 0 =⇒ ∇φ · ~ez = 0 =⇒ φz = 0. (1.1.5)

At the free surface S we have S = η − z = 0. In order to have the normal velocity of

the surface match the normal velocity of the fluid we must have St = 0, or

1

|∇S|
∂S

∂t
+
∇S
|∇S| · ~v = 0,

∂S

∂t
+∇S · ~v = 0,

∂S

∂t
+∇S · ∇φ = 0,

ηt + φxηx − φz = 0.

Which brings us to the following differential equations and boundary conditions:

∇2φ = 0 −h < z < η,

φz = 0 when z = −h,

ηt + ηxφx = φz at z = η,

φt + 1
2
(∇φ)2 + gη = 0 at z = η,

(1.1.6)

where φ is the potential function for the velocity, η is the surface elevation, and g is gravity.

The particular surface gravity waves we study have small amplitude relative to the

depth of the waver and are slowly modulated. Let a be the size of the initial surface dis-

placement and K the wavenumber of the carrier (or background) wave. The steepness of
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the carrier wave with wavenumber K is aK. We require that the steepness is small, so we

set ε = aK, where ε� 1. We also require that the modulation or change to the surface has

a narrow bandwidth compared to the carrier wave. Finally, we concern ourselves only with

deep water, so we assume (Kh)−1 = O (ε).

Let θ be the phase of the carrier wave with complex amplitude A, where θ = kx−ωt.

We expand the velocity potential, φ, and surface displacement, η as

φ = ε(A(εx, εt)eiθ+kz + A∗(εx, εt)e−iθ+kz) + . . .

η = ε(B(εx, εt)eiθ+kz +B∗(εx, εt)e−iθ+kz) + . . .

Substituting these assumptions into (1.1.6) one finds the equations are not satisfied at each

order unless the following conditions are met [9]:

O (ε ) : ω2 = gk,

O
(
ε2
)

:
∂A

∂(εt)
+ cg

∂A

∂(εx)
= 0,

where cg is the “group velocity” or the speed at which the wave envelope moves. The next

order requires

O
(
ε3
)

: i∂tA+ ∂2
xA+ 2|A|2A = 0,

which is the equation that describes the complex amplitude of the surface. Renaming A to

u we have the nonlinear Schrödinger equation equation (NLS),

iqt + qxx + 2|q|2q = 0, (1.1.7)
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where q is the complex wave envelope. is the leading order approximation to the wave

dynamics which exhibit nonlinear focusing and modulational instability. The next several

chapters will be devoted to examining the general background for the equation, including

several types of solutions.

1.2 Lax pair, eigenvalue problem

The nonlinear Schrödinger equation is an integrable PDE [10] [11]. The Lax pair for (1.1.7)

is

U(q, λ) ≡

 −iλ iq

iq∗ iλ

 V (q, λ) ≡

 i|q|2 − 2iλ2 −qx + 2iλq

q∗x + 2iλq∗ −i|q|2 + 2iλ2

 , (1.2.1)

where f ∗ indicates the complex conjugate of f .

The eigenfunction φ = [φ1, φ2]T is a solution to the Lax pair if

φx = Uφ and φt = V φ.

Lemma 1.2.1. φ is continuously differentiable if, and only if, q is a solution of NLS (1.1.7).

Proof. We can write φxt and φtx as

φxt =
∂

∂t
[φx] =

∂

∂t
[Uφ] = Utφ+ Uφt = (Ut + UV )φ,

φtx =
∂

∂x
[φt] =

∂

∂x
[V φ] = Vxφ+ V φx = (Vx + V U)φ,
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so φxt = φtx if, and only if Ut − Vx = V U − UV . In this case,

Ut − Vx =

 −i (qq∗x + q∗qx) iqt − 2iλqx + qxx

iq∗t − 2iλq∗x − q∗xx i (qq∗x + u∗qx)



V U − UV =

 −i (qq∗x + q∗qx) −2|q|2q − 2iλqx

2|q|2q∗ − 2iλq∗x i (qq∗x + q∗qx)


Noting that the elements on the diagonals are equal in the two matrices we see the equality

of the off diagonal components reduces to iqt + qxx + 2|q|2q = 0, and its conjugate. That is

to say, Ut − Vx = V U − UV if, and only if, q is a solution to (1.1.7).

When u is a sufficiently simple solution, we can solve the system for φ directly. We

begin by solving the temporal part of the Lax pair, specifically the eigenfunctions φ corre-

sponding to the simplest solution to (1.1.7): the spatially independent plane-wave (Stokes

wave) qa(x, t) = ae2ia2t. In this case, φt = V φ is φ1

φ2


t

=

 ia2 − 2iλ2 −2iaλe2ia2t

−2iaλe−2ia2t −ia2 + 2iλ2


 φ1

φ2

 . (1.2.2)

Although this matrix is not time independent, it can be transformed into one that is.

Let φ1 = φ̂1e
ia2t and φ2 = φ̂2e

−ia2t. Then

(φ1)t = (φ̂1)te
ia2t + ia2φ̂1e

ia2t and (φ2)t = (φ̂2)te
−ia2t − ia2φ̂1e

−ia2t.

Substituting this into (1.2.2), the problem becomes φ̂1

φ̂2


t

=

 −2iλ2 −2iaλ

−2iaλ 2iλ2


 φ̂1

φ̂2

 . (1.2.3)
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This is a constant coefficient linear homogeneous system. The solution is of the form

φ̂j = χje
µt, where χj are constant in t (but not necessarily in x) and µ are the eigenvalues

of the coefficient matrix.∣∣∣∣∣∣∣∣
−2iλ2 − µ −2iaλ

−2iaλ 2iλ2 − µ

∣∣∣∣∣∣∣∣ = −(2iλ2 + µ)(2iλ2 − µ)− (−2iaλ)2

= 4λ4 + µ2 + 4λ2a2.

Requiring the determinant to be zero and solving for µ, the eigenvalues are found to be

µ± = ±
√
−4λ2(λ2 + a2) = ±2iλ

√
λ2 + a2 = ±2iλk, (1.2.4)

where

k ≡
√
λ2 + a2. (1.2.5)

So the solutions to (1.2.3) are

φ̂± =

 χ1e
∓2iλkt

χ2e
∓2iλkt

 ,
which implies that the solutions to (1.2.2) are

φ± =

 χ1e
ia2te∓2iλkt

χ2e
−ia2te∓2iλkt

 . (1.2.6)

where χi are independent of t but may depend on x.

Now we incorporate the spatial dependence of the eigenfunctions. Because U and V

satisfy the Lax pair, solutions to the eigenvalue problem which involves the spatial part of

12



the Lax pair are time independent (or isospectral). Thus, if the eigenfunctions satisfy the

spatial part of the Lax pair at t = 0, then they satisfy the spatial part of the Lax pair for

all t.

Since φ(x, 0) = [χ1, χ2]T , u(x, 0) = a, and u∗(x, 0) = a, the problem becomes χ1

χ2


x

=

 −iλ ia

ia iλ


 χ1

χ2

 . (1.2.7)

This is another constant coefficient linear homogeneous system. Assume the solution

has the form χj = cje
µx, where cj is constant in both x and t. Substituting this into (1.2.7)

yields  χ1

χ2


x

= µ

 χ1

χ2

 =

 −iλ ia

ia iλ


 χ1

χ2

 or,

 −iλ− µ ia

ia iλ− µ


 χ1

χ2

 =

 0

0

 . (1.2.8)

Calculating these new eigenvalues, note that∣∣∣∣∣∣∣∣
iλ− µ ia

ia −iλ− µ

∣∣∣∣∣∣∣∣ = (iλ− µ)(−iλ− µ)− (ia)2 = λ2 + µ2 + a2 = 0

Thus µ2 = −(λ2 + a2) or µ± = ±i
√
λ2 + a2 = ±ik, where k is defined as in (1.2.4). Thus

χ± are two linearly independent solutions of (1.2.8), where χ+ = ~ceikx and χ− = ~ce−ikx. In

order for χ+ to satisfy (1.2.7), c1 and c2 must satisfy −iλ∓ ik ia

ia iλ∓ ik


 c1

c2

 =

 0

0

 =⇒

 ∓i(k ± λ) ia

ia ∓i(k ∓ λ)


 c1

c2

 =

 0

0

 .

13



In other words,

c2 =
±(k ± λ)

a
c1 =

±ae∓ip
a

c1 = ±e∓ipc1,

Which gives us the eigenfunctions

ψ±(λ) =
i

2k
e∓i

π
4 e±i

p
2

 aeia
2t

±ae∓ipe−ia2t

 e±i(kx+2kλt) (1.2.9)

where the real value p is defined by

k ± λ = ae∓ip (1.2.10)

for any purely imaginary or purely real eigenvalue λ.

1.3 Linear Instability of the Stokes wave for NLS

In this section we show that the plane-wave is unstable for both the periodic and infinite

line boundary conditions in x [10] [12].

Let qs satisfy

i(qs)t + (qs)xx + 2
(
|qs|2 − a2

)
qs = 0 (1.3.1)

and define q(x, t) = qs(x, t) + v(x, t), where v is a perturbation to the solution qs. We are

interested in the behavior of the perturbation. In order to claim u is stable, we must have

that u stays near us. In other words, v cannot grow without bound. With this in mind, we

want to analyze the behavior of the perturbation, v.
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For (1.3.1), the constant amplitude solution is us = a, where a > 0. Beginning with

this solution, we examine the perturbed solution q(x, t) = a+ v(x, t). Keeping only the first

order terms in v we see that

qt = vt,

qxx = vxx,(
|q|2 − a2

)
u =

[
(a+ v)(a+ v∗)− a2

]
u

=
[
a(v + v∗) +O

(
v2
)]

(a+ v)

= a2(v + v∗) +O
(
v2
)
.

Substituting the quantities into (1.3.1) we have linearized the equation about the

solution a

ivt + ivxx + 2a2(v + v∗) = 0. (1.3.2)

To determine the behavior of v, we consider two related real-valued functions. Recall

that for any z ∈ C, z + z∗ = 2 Re(z) and z − z∗ = 2 Im(z), so if we define r and s as

r = v + v∗, is = v − v∗, (1.3.3)

then we can reconstruct v as

v = 1
2

(r + is) . (1.3.4)

The linear differential equations that these functions satisfy is based on (1.3.2) and

its complex conjugate. If we sum the equation and its conjugate, we arrive at

i(vt − v∗t ) + vxx + v∗xx + 4a2(v + v∗) = 0 =⇒ i(ist) + rxx + 4a2r = 0.
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If we subtract the conjugate of (1.3.2) from the equation, we see that

i(vt + v∗t ) + vxx − v∗xx = 0 =⇒ irt + isxx = 0.

The two linear differential equations that define the relationship between r and s are
st −rxx − 4a2r = 0,

rt +sxx = 0.

(1.3.5)

Next, we assume that r and s have Fourier series expansions in x and take the series

expansion of both equations.

For the purposes of this section, we define the Fourier Transform of a function f on

a domain D as f̂ , where

f̂(k) = Fk[f ] =

∫
D

e−ikxf(x) dx,

f(x) = F−1
x [f ] =

1

2π

∫
D

eikxf̂(k) dk.

These are spatial transforms, so the temporal information is not being altered by the trans-

formation. Note that

F [fxx] =

∫
D

e−ikxfxx(x) dx

=
[
e−ikxfxx(x)

] ∣∣∣
D

+ ik

∫
D

e−ikxfx(x) dx

=
[
e−ikxfx(x) + ikf

] ∣∣∣
D
− k2

∫
D

e−ikxf(x) dx (1.3.6)

= −k2f̂ ,
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given appropriate boundary conditions that the boundary terms are zero. In the context

of this problem we consider periodic boundary conditions in section 1.3.1 and infinite line

boundary conditions in 1.3.2.

We can now transform the system (1.3.5) into
ŝt = −(k2 − 4a2)r̂

r̂t = k2ŝ

=⇒

 r̂t

ŝt

 =

 0 k2

−k2 + 4a2 0


 r̂

ŝ

 .
This defines an autonomous (no explicit dependence on time in the coefficients) system

of first order differential equations. We seek solutions of the form exp(iΩt), which allows

us to transform the system into an eigenvalue problem in terms of Ω. To have linearly

independent solutions r̂ and ŝ we must have that the following determinant is zero:∣∣∣∣∣∣∣∣
−iΩ k2

−k2 + 4a2 −iΩ

∣∣∣∣∣∣∣∣ = −Ω2 − k2(−k2 + 4a2) = 0

=⇒ Ω2 = −k2(4a2 − k2)

Ω = ±ik
√

4a2 − k2. (1.3.7)

Note that when Ω is real, the solutions to eiΩt are periodic functions, but when Ω is

imaginary, eiΩt grows without bound for either t → ∞ or t → −∞. Since k ∈ R, the only

way for Ω /∈ R is if it is purely imaginary, which occurs when
√

4a2 − k2 ∈ R. This is only

possible when

4a2 − k2 > 0 =⇒ −2a < k < 2a.

17



Finally, we determine which wavenumber k results in the largest growth rate by

determining the maximum |Ω(k)| when Ω /∈ R. In this case,

Ωk =
√
k2 − 4a2 + k2(k2 − 4a2)−1/2 =

2k2 − 4a2

√
k2 − 4a2

=
2(k2 − 2a2)√
k2 − 4a2

,

which is zero when k = ±
√

2a, with |Ω(±
√

2a)| = 2a2, so the maximum growth rate of the

system is exp(2a2t).

The work in this section allows us to conclude that for a > 0 there are potentially

wavenumbers where the constant amplitude solution is unstable in time.

1.3.1 Periodic spatial interval

In this subsection we will confirm (1.3.6) and which wave numbers leave to instabilities in

the case where q is periodic in space. Note that if a function is periodic with period L,

then its derivatives are also periodic with period L. If u = us + v is periodic, then v is also

periodic. Furthermore, since r and s are multiples of the real and imaginary components of

the perturbation, v, they are also periodic.

Furthermore, if f(x) is periodic, so is f ′(x) since

f ′(x+ L) = lim
h→0

f(x+ L+ h)− f(x+ L)

h
= lim

h→0

f(x+ h)− f(x)

h
= f ′(x).

In this case, u(x + L, t) = u(x, t) and thus ux(x + L, t) = ux(x, t), so the conditions

in (1.3.6) are

[
e−ikxrx(x, t) + ikr(x, t)

] ∣∣∣L
0

= e−ikLrx(L, t) + ikr(L, t)− rx(0, t)− ikr(0, t)
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= e−ikLrx(L, t)− rx(0, t) = 0,

if, and only if, k = 2jπ/L where j is an integer. Under the same conditions on k,

[
e−ikxsx(x, t) + iks(x, t)

] ∣∣∣L
0

= e−ikLsx(L, t) + iks(L, t)− sx(0, t)− iks(0, t)

= e−ikLsx(L, t)− sx(0, t) = 0.

Combining this with the conclusion that the solution is unstable when −2a < k < 2a,

we conclude that

−2a <
2jπ

L
< 2a =⇒ −aL

π
< j <

aL

π
. (1.3.8)

The combined requirements that j is an integer and j satisfy (1.3.8) mean that there are a

finite number of nonnegative j values (and thus modes in the Fourier expansion) that are

unstable for a fixed pair of a and L.

1.3.2 Infinite spatial interval

In this subsection we examine which wavenumbers lead to instability in the case where u

decays to a as x → ±∞. Since v is the perturbation from the constant background state,

in this case, v → 0 as x→ ±∞. Since r and s are the real and imaginary components of v,

respectively, then we also have that r and s decay to 0 as x → ±∞, and their derivatives

also go to 0 as x→ ±∞.
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Hence, (1.3.6) becomes

[
e−ikxrx(x, t) + ikr(x, t)

] ∣∣∣∞
−∞

= 0,

[
e−ikxsx(x, t) + iks(x, t)

] ∣∣∣∞
−∞

= 0.

The wave numbers −2a < k < 2a correspond to unbounded growth of the perturba-

tion in the infinite line case.

1.4 Periodic spectral theory

If we impose periodic boundary conditions we can determine the conditions under which the

plane wave is unstable in terms of the Floquet spectral theory of the NLS equation [13].

Defining the spectrum of the spatial part of the Lax pair as the set of eigenvalues for

which the eigenvector remains bounded for all x, i.e.

σ =
{
λ ∈ C

∣∣ L~v = 0, |~v| bounded ∀x
}
.

We calculate the fundamental matrix Φ(x;x0, λ), where if ~c ∈ R2 is a vector of

arbitrary constants, any solution of φx = Uφ can be written as Φ~c and det{Φ} = 1. Note

that because of the structure of the fundamental matrix, the chosen base point, x0, does not

change the determinant, i.e. det[Φ(x; x̂0, λ)] = det[Φ(x;x0, λ)] [14], so we will use x0 = 0.

We define the Monodromy matrix as

M(λ) = Φ(L; 0, λ), (1.4.1)
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and the Floquet discriminant as

∆ = tr[M(λ)]. (1.4.2)

The condition that the eigenvector is bounded for all x can be defined in terms of ∆ as

σ =
{
λ ∈ C

∣∣ ∆(u, λ) ∈ R, −2 ≤ ∆(u, λ) ≤ 2
}
. (1.4.3)

The continuous spectrum of curves in the complex plane, of particular interest is the discrete

periodic/antiperiodic spectrum composed of simple points of the spectrum, σs, and double

points of the spectrum, σd. These sets are countable and defined as

σs =

{
λsj
∣∣ ∆(u, λ) = ±2,

d∆

dλ
6= 0

}
, (1.4.4)

σd =

{
λdj
∣∣ ∆(u, λ) = ±2,

d∆

dλ
= 0,

d2∆

dλ2
6= 0

}
. (1.4.5)

The remainder of this section uses this methodology to determine the spectrum for the

plane-wave.

The plane wave, qa, is isospectral, meaning the spectrum does not change as the solu-

tion evolves. Assume the solution φ of φx = U(qa(0))φ has the form φ = ~ceµx. Substituting

this assumption into the equation we arrive at

∂

∂x

 φ1

φ2

 = µ

 φ1

φ2

 =

 −iλ ia

ia iλ


 φ1

φ2

 or,

µ~ceµx = A~ceµx.
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We have turned this into another eigenvalue problem, this one in terms of µ. First calculating

these new eigenvalues, we note that∣∣∣∣∣∣∣∣
−iλ− µ ia

ia iλ− µ

∣∣∣∣∣∣∣∣ = (−iλ− µ)(iλ− µ)− (ia)2 = λ2 + µ2 + a2 = 0.

Thus µ2 = −(λ2 + a2) or µ± = ±i
√
λ2 + a2. The form of the two linearly independent

solutions are φ+ = ~ceµ+x and φ− = ~ceµ−x. So we have that −iλ− µ± ia

ia iλ− µ±


 c1

c2

 = 0, i.e., c2 =
(−iλ− µ±)

ia
c1.

If we choose c1 = ia, then our eigenvectors are

φ+ =

 1

(−iλ− µ+)

 eµ+x, φ− =

 1

(−iλ− µ−)

 eµ−x,
which we can represent in matrix form as iaeµ+x iaeµ−x

(−iλ− µ+)eµ+x (−iλ− µ−)eµ−x

A =

 iaeµx iae−µx

(−iλ− µ)eµx (−iλ+ µ)e−µx

A ≡ ψA.

Since µ− = −µ+ we have simplified the expression by defining µ = µ+

If we now consider the solution vector ~x, with ~x = ψ~c, where ~c ∈ R2 is constant in

time, then ~x(0) = ψ(0)~c. We see that we can solve for ~c uniquely, if ψ(0) is invertible. We see

that |ψ| = 2iaµ for all x, thus φ(0) is invertible for µ 6= 0. Referring back to our definition

of µ we see that we require λ 6= ±ia. Supposing this criteria has been satisfied, we have

~c = ψ−1(0)~x(0) thus for any ~x we can write

~x = ψψ−1(0)~x(0) = Φ ~x0,
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where

ψ(0) =

 ia ia

(−iλ− µ) (−iλ+ µ)

 so that ψ−1(0) =
1

2iaµ

 (−iλ+ µ) −ia

(iλ+ µ) ia

 ,
and finally, we have our solution φ = Φ~c, where ~p is composed of arbitrary constants, and

Φ =
1

2iaµ

 ia(−iλ+ µ)eµx + ia(iλ+ µ)e−µx ia(−ia)eµx + ia(ia)e−µx

−(iλ+ µ)(−iλ+ µ)eµx + (iλ+ µ)(−iλ+ µ)e−µx ia(iλ+ µ)eµx + ia(−iλ+ µ)e−µx



=
1

2iaµ

 ia(−iλ+ µ)eµx + ia(iλ+ µ)e−µx ia(−ia)eµx + ia(ia)e−µx

ia(−ia)(eµx − e−µx) ia(iλ+ µ)eµx + ia(−iλ+ µ)e−µx



=
1

2µ

 −iλ(eµx − e−µx) + µ(eµx + e−µx) (−ia)(eµx − e−µx)

(−ia)(eµx − e−µx) iλ(eµx − e−µx) + µ(eµx + e−µx)

 .
Recall that 2 cos(θ) = (eθ + e−θ) and 2i sin(θ) = (eθ − e−θ) for θ ∈ R so if we define µ̃ = iµ

we have

Φ =
1

2µ

 2λ sin(µ̃x) + 2µ cos(µ̃x) 2a sin(µ̃x)

2a sin(µ̃x) −2λ sin(µ̃x) + 2µ cos(µ̃x)



=
1

µ

 λ sin(µ̃x) + µ cos(µ̃x) a sin(µ̃x)

a sin(µ̃x) −λ sin(µ̃x) + µ cos(µ̃x)

 .
Finding the trace of Φ to eventually find the Monodromy matrix, we have

trΦ =
1

µ

(
λ sin(µ̃x) + µ cos(µ̃x)− λ sin(µ̃x) + µ cos(µ̃x)

)
= − a

2µ
(2µ cos(µ̃x)) = 2 cos(µ̃x).
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For the plane wave, we find that ∆ = 2 cos(
√
λ2 + a2L). Since | cos(x)| ≤ 1 for

x ∈ R, so we require
√
λ2 + a2 ∈ R, which occurs when λ ∈ R and on the imaginary axis

λ ∈ [−ia, ia].

Taking derivatives with respect to λ we find

d∆

dλ
= −2Lλ

sin
(
L
√
a2 + λ2

)
√
a2 + λ2

, (1.4.6)

d2∆

dλ2
= −2L2λ2 cos

(
L
√
a2 + λ2

)
a2 + λ2

+
2Lλ2 sin

(
L
√
a2 + λ2

)
(a2 + λ2)3/2

− 2L sin
(
L
√
a2 + λ2

)
√
a2 + λ2

. (1.4.7)

Setting (1.4.6) to 0, we find for λ 6= 0

sin(L
√
a2 + λ2) = 0 =⇒ L

√
a2 + λ2 = jπ for j ∈ Z+

=⇒ a2 + λ2 =

(
jπ

L

)2

=⇒ λ2 =

(
jπ

L

)2

− a2. (1.4.8)

We see that for eigenvalues where d∆/dλ = 0 and λ 6= 0,

d2∆

dλ2
= −2 ((jπ)2 − (aL)2) cos (jπ)(

jπ
L

)2 = (−1)j+12L2 ((jπ)2 − (aL)2)

(jπ)2

which is nonzero for λ 6= 0. Thus λdj have algebraic multiplicity exactly 2.

For the plane wave, the single points are the endpoints of continuous bands of spec-

trum. In the case of the plane wave, σs = {−ia, ia}. The double points are discrete points

embedded in continuous spectrum. In the case of the plane wave, there are infinitely many

on the real axis, and N on the imaginary axis, where
√
λ2 + a2 = jπ/L and N = baL/πc.

An example of the spectrum for L = 4
√

2π and a = .5 is shown in Figure 1.2. Notice

that there are two double points on the positive imaginary axis (denoted with an ”x”) and
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ia

−ia

λ−plane

Figure 1.2: The spectrum of the plane wave with L = 4
√

2π and a = .5. Double points are

indicated by crossess. The simple points of the spectrum are not denoted in this figure.

N = baL/πc = b2
√

2c ≈ b2.83c = 2. As L increases, the number of complex double points

increases. Figure 1.3 shows the spectrum with N = 3 and N = 4 on the left and right,

respectively. For a fixed amplitude, the number of double points on the imaginary axis

increases as L increases. The simple points of the spectrum are not denoted in this figure.

In Figure 1.3 we see that as the length of the spatial period increases (and thus N

increases) for a fixed a more double points move onto the imaginary axis and they also move

up the imaginary axis closer to ia and −ia. For very large L the imaginary axis is densely

covered in complex double points.
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ia

−ia

λ−planeλ−plane ia

−ia

λ−planeλ−planeλ−plane

Figure 1.3: The spectrum of the plane wave with a = .5 and L = 5
√

2π (left) and a = .5

with L = 6
√

2π (right). Double points are indicated by crossess. The simple points of the

spectrum are not denoted in this figure.

1.5 Models for rogue waves in NLS

Rogue waves are anomalously large waves. To better define “large” we look to the strength

of the wave, which compares the amplitude of the wave at a given point to the other waves

occurring at the same time.

The significant wave height (SWH), Hs(t), is is 4 times the standard deviation of the

amplitude of the surface at time t. The maximum amplitude is Umax = max
x∈D
|u(x, t)|. The

ratio of these quantities is defined the strength of the waves,

S(t) =
Umax(t)

Hs(t)
. (1.5.1)

If S(t∗) > 2.2, a rogue wave occurs at time t∗. Depending on the method of calculating

the SWH, some researchers use criteria as low as a strength of 1.8 to determine rogue waves.

26



For a solution u of (1.1.7) on spatial domain D, we define the amplification factor as

Af =
max

x∈D,t∈R
|u(x, t)|

lim
t→±∞

|u(x, t)| . (1.5.2)

In the case of an analytical solution, we can use the amplification factor to quantify the

extent of the growth of the instabilities that solution permits to compare to other solutions.

The amplification factor has been used to quantify an analytical solution as a model for

rogue waves.

Although the plane wave is a solution to NLS it is not a candidate for a rogue wave

solution because it does not have the features we know rogue waves possess from real-world

observation. In this section we discuss two classes of solutions commonly used as models for

rogue waves: the spatially periodic breathers and the rational solutions.

1.5.1 Single mode spatially periodic breathers

Breather-type solutions of NLS are commonly used to model rogue wave behavior (see, for

example [15], [16], [17], [18]) because they have many of the desired features of rogue waves.

The single mode spatially periodic breather is a single-parameter solution that “breathes”

only once in time. The solution was discovered independently by Akhmediev et al. in 1987

and Ablowitz and Herbst in 1990 [15].

The spatially periodic breather is obtained in section 2.2 by applying the Bäklund

transformation to an unstable plane-wave with amplitude a and spatial period L. Recall

27



from section 1.2 that such a solution has M unstable modes, where M = baL/πc is the

largest integer less than or equal to aL/π. The formula for the single mode SPB associated

with the j-th UM of the plane-wave (for 1 ≤ j ≤M) is

U (j)(x, t) = aei(2a
2t+φ) cos 2pj − sin pj sech(ρ− σjt) cos(2πjx/L+ α) + i sin 2pj tanh(ρ− σjt)

1 + sin pj sech(ρ− σjt) cos(2πjx/L+ α)
,

(1.5.3)

where cos pj = πj/aL and ρ and α are real phase parameters for time and space, respectively,

kj = πj/L, and σj = 2kj
√
a2 − k2

j .

Note that as t→∞, sech(ρ− σjt)→ 0 and tanh(ρ− σjt)→ −1, and

U (j)(x, t)→ aei(2a
2t+φ) (cos 2pj − i sin 2pj) = aei(2a

2t+φ)e−2ipj = aei(2a
2t+φ−2pj).

Similarly, as t → −∞, U (j)(x, t) → aei(2a
2t+φ+2pj). Thus the breather decays to the original

plane wave that has a different phase shift. So the breather is localized in time and periodic

in space.

Figure 1.4 shows the amplitude of the single mode SPB, U (1)(x, t; ρ), over the plane

wave with one UM for a = .5 and L = 2
√

2π. The figure shows that the amplitude of

the solution is decaying exponentially quickly to the amplitude of the original plane-wave,

a = .5. The amplification factor of the amplitude for U (1)(x, t; ρ) in the figure, as defined in

(1.5.2) is Af ≈ 2.4.

The single mode SPB retains the same structure for various L, but as L increases

the number of unstable modes in the underlying plane-wave increases. This causes 2πj/L

to decrease, and allows the amplification factor to increase to Af,max ≈ 3.1.
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Figure 1.4: (a) Amplitude of the single mode SPB U (1)(x, t; ρ) over an unstable plane wave

with one UM: a = 0.5, L = 2
√

2π. Strength of |U (1)(x, t;−3)| with a = .5 for L = 2
√

2π,

and L = 60.

If we calculate the strength (1.5.1) of the single mode SPB for a fixed amplitude but

different interval lengths, we see that the strength increases as L increases. Based on the

criteria that S(t∗) > 2.2, the growth of the solution for L = 2
√

2π does not constitute a

rogue wave, whereas the solution for L = 60 does satisfy the criteria for a rogue wave.

1.5.2 Two mode spatially periodic breathers

We can generate a higher-order spatially periodic breather by iterating the Bäklund trans-

formation at a second double point of the periodic spectrum (see Chapter 2). Once there

are two unstable modes the separation in time of the two has a considerable impact on the

overall strength and steepness of the solution.
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are well separated (τ = −6), and (b) the modes are coalesced (τ = −3).
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Figure 1.6: Plots of the maximum strength of U (1,2)(x, t;−2, τ), as a function of τ with

a = .5, L = 4
√

2π [solid line], and L = 4(1 + .01)π [dashed line].
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Figure 1.7: The amplitude of UP (x, t) with a = .5, on the region−10 ≤ x ≤ 10−20 ≤ t ≤ 20.

1.5.3 Peregrine solution

The Peregrine solution

uP (x, t) = ae2ia2t+γ

(
−1 +

16ia2t+ 4

4a2x2 + 16a4t2 + 1

)
, (1.5.4)

which is the lowest-order rational solution of the NLS on the infinite line. The Peregrine

solution was first derived as taking the temporal period of the Ma soliton to be infinitely

large [19], [18], or by taking the spatial period of the spatially periodic breather to be

infinitely large [20]. We will only discuss this rational solution in this dissertation, so the

phrase “rational solution” will be specifically the Peregrine solution.

Because the solution does not depend on a spatial period, neither does the strength

nor the amplification factor of the solution.
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Figure 1.8: Comparison of the single-mode SPB solution for various L to the Peregrine

solution at t = 0 where a = .5 in all cases.

For γ = 0 the maximum of uP occurs at x = t = 0, which is uP (0, 0) = 3a. Also note

that as t→ ±∞, uP → ae2ia2t+γ+iπ, so Af = 3 regardless of the amplitude of the underlying

plane-wave.

In Figure 1.8 we see a comparison of the amplitude of the Peregrine solution compared

to some spatially periodic breathers for different periods. Even though the amplitude of the

underlying plane wave is the same for all four curves, the maximum amplitude is much higher

for the Peregrine than for the SPB on a small period. We see that at L increases, however,

the single-mode SPB solution becomes closer to the Peregrine solution. In fact, the curve

for the L = 50 SPB is nearly indistinguishable from that of the Peregrine away from the

maximum and minimum points.
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CHAPTER 2

CONSTRUCTING THE SPB AND RATIONAL SOLUTIONS

2.1 Bäklund-Gauge transformation for the NLS equation

We derive the Bäklund transformation (BT) by changing the scattering problem into a pair

of Riccati equations following the work of [21]. The BT transforms a known solution q with

eigenvectors φ± of a Lax pair into another solution, Q. Using the Lax pair (1.2.1) we can

write two systems of equations for the components φi of the eigenfunction ~φ. Beginning with

the spatial part we have
φ1x = −iλφ1 + iqφ2

φ2x = iq∗φ1 + iλφ2

=⇒


φ1xφ2 = −iλφ1φ2 + iqφ2

2

φ1φ2x = iq∗φ2
1 + iλφ1φ2

.

Subtracting the second equation from the first we have

φ1xφ2 − φ1φ2x = −2iλφ1φ2 + iqφ2
2 − iq∗φ2

1

and scaling by φ2
2 yields

φ1xφ2 − φ1φ2x

φ2
2

= −2iλ
φ1

φ2

+ iq − iq∗
(
φ1

φ2

)2

. (2.1.1)
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Similarly, if we let V11 = −2iλ2 + i|q|2, V12 = −qx + 2iλq, and V21 = q∗x + 2iλq∗, then

the temporal part of the Lax pair gives us the system of equations
φ1t = V11φ1 + V12φ2

φ2t = V21φ1 − V11φ2

=⇒


φ1tφ2 = V11φ1φ2 + V12φ

2
2

φ1φ2t = V21φ
2
1 − V11φ1φ2

.

Subtracting the second equation from the first we have

φ1tφ2 − φ1φ2t = 2V11φ1φ2 + V12φ
2
2 − V21φ

2
1

and scaling by φ2
2 yields

φ1tφ2 − φ1φ2t

φ2
2

= 2V11
φ1

φ2

+ V12 − V21

(
φ1

φ2

)2

. (2.1.2)

Let ξ = φ1/φ2, then

ξx =
d

dx

[
φ1

φ2

]
=
φ1xφ2 − φ1φ2x

φ2
2

and ξt =
φ1tφ2 − φ1φ2t

φ2
2

.

With this definition we can write (2.1.1) and (2.1.2) as

ξx = iq − 2iλξ − iq∗ξ2, (2.1.3)

ξt = V12 + 2V11ξ − V21ξ
2,

thus the ratio of the components of any eigenfunction with potential q and eigenvalue λ must

satisfy both of these Riccati equations.

We seek a new potential and a new eigenfunction based on the current ones. Let

ξ̂ = − 1

ξ∗
and û = −u+ 2i

ξ2ξ∗x − ξx
1− |ξ|4 .
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If these constitute a new potential and eigenfunction pair at the same λ we must have

ξ̂x = iq̂ − 2iλξ̂ − iq̂∗ξ̂2,

ξ∗x
(ξ∗)2

= i

(
−q + 2i

ξ2ξ∗x − ξx
1− |ξ|4

)
+ 2iλ

1

ξ∗
− i
(
−q∗ − 2i

(ξ∗)2ξx − ξ∗x
1− |ξ|4

)
1

(ξ∗)2
,

ξ∗x = −iq(ξ∗)2 + 2iλξ∗ + iq∗ − 2
|ξ|4ξ∗x − (ξ∗)2ξx + (ξ∗)2ξx − ξ∗x

1− |ξ|4

ξ∗x = −iq(ξ∗)2 + 2iλξ∗ + iq∗ + 2ξ∗x

ξ∗x = iq(ξ∗)2 − 2iλξ∗ − iq∗, (2.1.4)

which is the conjugate of (2.1.3) if λ∗ = −λ. So we can transform the eigenfunction and

potential at any purely imaginary eigenvalue.

We would like to write the equation for the new potential in terms of the existing

eigenfunction, ~φ. Using (2.1.3) and (2.1.4) we see that

ξ2ξ∗x − ξx = ξ2
(
iq(ξ∗)2 − 2iλξ∗ − iq∗

)
−
(
iq − 2iλξ − iq∗ξ2

)
= iq|ξ|4 − 2iλ|ξ|2ξ − iq∗ξ2 − iq + 2iλξ + iq∗ξ2

= −iq(1− |ξ|4) + 2iλξ(1− |ξ|2),

q̂ = −q + 2i

[−iq(1− |ξ|4) + 2iλξ(1− |ξ|2)

1− |ξ|4
]

= −q + 2q − 4λξ
1− |ξ|2

(1− |ξ|2)(1 + |ξ|2)
= q − 4λ

ξ

1 + |ξ|2 .

Recall that ξ = φ1/φ2, so we have

q̂ = q − 4λ

φ1
φ2

1 + |φ1|2
|φ2|2

= q − 4λ
φ1φ2φ

∗
2

φ2(|φ1|2 + |φ2|2)
= q − 4λ

φ1φ2

|φ1|2 + |φ2|2
.
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Using the Bäcklund transformation we can get a new potential by building at the

complex double-point ν1 of the spectrum

Q(x, t) = q(x, t)− 2(ν1 − ν∗1)
φ1φ

∗
2

|φ1|2 + |φ2|2
,

where φ = [φ1, φ2]T is the general linear combination of the eigenfunctions at ν1: φ =

c+ψ
+(ν1) + c−ψ

−(ν1).

To prove this transformation gives a new potential and eigenfunction we must substi-

tute these quantities into the Lax pair and show that both the spatial and temporal equations

are satisfied for all λ. We define the following quantities for convenience:

f(φ) =
|φ1|2

|φ1|2 + |φ2|2
, g(φ) =

|φ2|2
|φ1|2 + |φ2|2

, h(φ) =
φ1φ

∗
2

|φ1|2 + |φ2|2
.

Note that f(φ) and g(φ) are real-valued functions. There are also some quantities that we

will find useful in the future:

f(φ)g(φ) =
|φ1|2|φ2|2
|φ1|2 + |φ2|2

=
(φ1φ

∗
2)(φ∗1φ2)

|φ1|2 + |φ2|2
=

φ1φ
∗
2

|φ1|2 + |φ2|2
(φ1φ

∗
2)(φ1φ

∗
2)∗

|φ1|2 + |φ2|2
= h(φ)h∗(φ) = |h(φ)|2

f(φ) + g(φ) =
|φ1|2

|φ1|2 + |φ2|2
+

|φ2|2
|φ1|2 + |φ2|2

=
|φ1|2 + |φ2|2
|φ1|2 + |φ2|2

= 1

Combining these facts we have

(f + g)2 = f 2 + 2fg + g2,

1 = f 2 − 2fg + g2 + 4fg

= (f − g)2 + 4fg,

(f − g)2 = 1− 4fg = 1− 4|h|2 (2.1.5)
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Lemma 2.1.1. If φ = [φ1, φ2]T is a solution of (1.2.1) with potential q at eigenvalue ν and

f(φ) =
|φ1|2

|φ1|2 + |φ2|2
, g(φ) =

|φ2|2
|φ1|2 + |φ2|2

, h(φ) =
φ1φ

∗
2

|φ1|2 + |φ2|2
, (2.1.6)

the following equations are satisfied:
fx = −2i(ν − ν∗)|h|2 + iqh∗ − iq∗h

gx = −fx

hx = −2i(ν∗f + νg)h− iqf + iqg

. (2.1.7)

Proof. Since φ satisfies the Lax pair with eigenvalue ν, we know that
φ1x = −iνφ1 + iqφ2

φ2x = iq∗φ1 + iνφ2

Taking the conjugate of these equations we see that φ∗1x and φ∗2x must satisfy
φ∗1x = iν∗φ∗1 − iq∗φ∗2

φ∗2x = −iqφ∗1 − iν∗φ∗2.

We will need the derivatives of the following three products to proceed.

∂
∂x

[
|φ1|2

]
= φ1xφ

∗
1 + φ1φ

∗
1x

= −iν|φ1|2 + iqφ∗1φ2 + iν∗|φ1|2 − iq∗φ1φ
∗
2

= −i(ν − ν∗)|φ1|2 + iqφ∗1φ2 − iq∗φ1φ
∗
2,

∂
∂x

[
|φ2|2

]
= φ2xφ

∗
2 + φ2φ

∗
2x

= iq∗φ1φ
∗
2 + iν|φ2|2 − iqφ∗1φ2 − iν∗|φ2|2

= i(ν − ν∗)|φ2|2 + iq∗φ1φ
∗
2 − iqφ∗1φ2,
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∂
∂x

[
φ1φ

∗
2

]
= φ1xφ

∗
2 + φ1φ

∗
2x

= −iνφ1φ
∗
2 + iq|φ2|2 − iq|φ1|2 − iν∗φ1φ

∗
2

= −iq(|φ1|2 − |φ1|2)− i(ν + ν∗)φ1φ
∗
2.

Note that the denominator of each of the functions in (2.1.6) is the same, so we will define

a new function j(φ) = |φ1|2 + |φ2|2 for convenience of notation. Furthermore, we see that

∂

∂x
[|φ1|2 + |φ2|2] = −i(ν − ν∗)|φ1|2 + iqφ∗1φ2 − iq∗φ1φ

∗
2 + i(ν − ν∗)|φ2|2 + iq∗φ1φ

∗
2 − iqφ∗1φ2

= −i(ν − ν∗)(|φ1|2 − |φ2|2),

jx
j

= −i(ν − ν∗)(f − g).

Finally,

fx = −i(ν − ν∗)f + iqh∗ − iq∗h+ i(ν − ν∗)f(f − g)

= −i(ν − ν∗)f(1− f + g) + iqh∗ − iq∗h

= −i(ν − ν∗)f(2g) + iqh∗ − iq∗h since f + g = 1

= −2i(ν − ν∗)|h|2 + iqh∗ − iq∗h since fg = |h|2,

gx = i(ν − ν∗)g + iq∗h− iqh∗ + i(ν − ν∗)g(f − g)

= i(ν − ν∗)g(1 + f − g) + iq∗h− iqh∗

= 2i(ν − ν∗)|h|2 + iq∗h− iqh∗

= −
[
− 2i(ν − ν∗)|h|2 − iq∗h+ iqh∗

]
= −fx,
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and,

hx = −iq(f − g)− i(ν + ν∗)h+ ih(ν − ν∗)(f − g)

= −ih
[
(ν + ν∗)(f + g)− (ν − ν∗)(f − g)

]
− iq(f − g)

= −ih
[
(ν + ν∗ − ν + ν∗)f + (ν + ν∗ + ν − ν∗)g

]
− iq(f − g)

= −2i(ν∗f + νg)h− iq(f − g).

Lemma 2.1.2. If φ = [φ1, φ2]T is a solution of (1.2.1) with potential q at eigenvalue ν = iα

for α ∈ R and f, g, and h are as defined in (2.1.6) the following equations are satisfied:
ft = −2α(q∗h+ qh∗)− (q∗xh+ qxh

∗) + 4αf(qh∗ + q∗h)

gt = −2α(q∗h+ qh∗) + q∗xh+ qxh
∗ + 4αg(qh∗ + q∗h)

ht = 2i(2α2 + |q|2)h− 2αq + qx(f − g) + 4αh(qh∗ + q∗h)

. (2.1.8)

Proof. Since φ satisfies the Lax pair with eigenvalue ν, we know that
φ1t = (−2iν2 + i|q|2)φ1 + (2iνq − qx)φ2

φ2t = (2iνq∗ + q∗x)φ1 + (2iν2 − i|q|2)φ2

=


φ1t = (2iα2 + i|q|2)φ1 − (2αq + qx)φ2

φ2t = (−2αq∗ + q∗x)φ1 − (2iα2 + i|q|2)φ2.

Taking the conjugate of these equations we see that φ∗1x and φ∗2x must satisfy
φ∗1t = −(2iα2 + i|q|2)φ∗1 − (2αq∗ + q∗x)φ

∗
2

φ∗2t = (−2αq + qx)φ
∗
1 + (2iα2 + i|q|2)φ∗2.

Note that the denominator of each of the functions in (2.1.6) is the same, so we will define

a new function j(φ) = |φ1|2 + |φ2|2 for convenience of notation. To determine ft, gt, and ht
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we work out the following derivatives:

∂

∂t

[
|φ1|2

]
= φ1tφ

∗
1 + φ1φ

∗
1t

= (2iα2 + i|q|2)|φ1|2 − (2αq + qx)φ
∗
1φ2 − (2iα2 + i|q|2)|φ1|2 − (2αq∗ + q∗x)φ1φ

∗
2

= −(2αq + qx)φ
∗
1φ2 − (2αq∗ + q∗x)φ1φ

∗
2,

∂

∂t

[
|φ2|2

]
= φ2tφ

∗
2 + φ2φ

∗
2t

= (−2αq∗ + q∗x)φ1φ
∗
2 − (2iα2 + i|q|2)|φ2|2 + (−2αq + qx)φ

∗
1φ2 + (2iα2 + i|q|2)|φ2|2

= (−2αq∗ + q∗x)φ1φ
∗
2 + (−2αq + qx)φ

∗
1φ2,

∂

∂t

[
φ1φ

∗
2

]
= φ1tφ

∗
2 + φ1φ

∗
2t

= (2iα2 + i|q|2)φ1φ
∗
2 − (2αq + qx)|φ2|2 + (−2αq + qx)|φ1|2 + (2iα2 + i|q|2)φ1φ

∗
2

= −2αq(|φ1|2 + |φ2|2)− qx(|φ2|2 − |φ1|2) + 2(2iα2 + i|q|2)φ1φ
∗
2.

Furthermore, we see that

∂

∂t
[|φ1|2 + |φ2|2] = −(2αq + qx)φ

∗
1φ2 − (2αq∗ + q∗x)φ1φ

∗
2 − (2αq∗ − q∗x)φ1φ

∗
2 − (2αq − qx)φ∗1φ2

= −4αqφ∗1φ2 − 4αq∗φ1φ
∗
2,

jt
j

= −4αqh∗ − 4αq∗h = −4α(qh∗ + q∗h).

Finally, we conclude that

ft = −(2αq + qx)h
∗ − (2αq∗ + q∗x)h− f

jt
j

= −2α(q∗h+ qh∗)− (q∗xh+ qxh
∗) + 4αf(qh∗ + q∗h),

gt = (−2αq∗ + q∗x)h+ (−2αq + qx)h
∗ − g jt

j
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= −2α(q∗h+ qh∗) + q∗xh+ qxh
∗ + 4αg(qh∗ + q∗h),

ht = −2αq(f + g)− qx(g − f) + 2(2iα2 + i|q|2)h− hjt
j

= −2αq + qx(f − g) + 2i(2α2 + |q|2)h+ 4αh(qh∗ + q∗h).

The Gauge matrix for the φ at a new eigenvalue λ which is a double point of the

spectrum is

G(λ; ν, φ) ≡ N

 −λ+ ν 0

0 −λ+ ν∗

N−1, where N ≡

 φ1 −φ∗2

φ2 φ∗1

 , so that

det(N) = φ1φ
∗
1 + φ∗2φ2 = |φ1|2 + |φ2|2, and N−1 =

1

|φ1|2 + |φ2|2

 φ∗1 φ∗2

−φ2 φ1

 .
Then, we can see in this form that if ν = iα for α ∈ R,

G =

 −λ+ νf(φ) + ν∗g(φ) (ν − ν∗)h(φ)

(ν − ν∗)h∗(φ) −λ+ νg(φ) + ν∗f(φ)

 =

 −λ+ iα
(
f − g

)
2iαh

2iαh∗ −λ− iα
(
f − g

)
 .

Theorem 2.1.3. Let φ = [φ1, φ2]T be a general linear combination of two linearly indepen-

dent eigenfunctions φ+ and φ− with potential q at the eigenvalue ν. If ψ is any solution to

the Lax pair with the potential u and eigenvalue λ, i.e. ψ1

ψ2


x

=

 −iλ iq

iq∗ iλ


 ψ1

ψ2

 = U(q, λ)ψ,
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 ψ1

ψ2


t

=

 i|q|2 − 2iλ2 −qx + 2iλq

q∗x + 2iλq∗ −i|q|2 + 2iλ2

 = V (q, λ)ψ,

then Ψ = G(λ; ν, φ)ψ is a solution to the Lax pair with the potential Q and eigenvalue λ,

where the new potential Q(x, t) is

Q(x, t) = q(x, t)− 2(ν − ν∗) φ1φ
∗
2

|φ1|2 + |φ2|2
. (2.1.9)

Proof. Using the definition of h in (2.1.6), the new potential can be written as

Q = q − 2(ν − ν∗)h(φ).

The new eigenfunction is Ψ = G(λ; ν, φ)ψ, where ψ is a solution to the spatial part

of the Lax pair at the potential q and eigenvalue λ, i.e. ψx = U(q;λ)ψ. Thus,

Ψx = Gx(ν, φ)ψ +G(λ; ν, φ)ψx

= Gx(ν, φ)ψ +G(λ; ν, φ)U(q;λ)ψ

=
(
Gx(ν, φ) +G(λ; ν, φ)U(q;λ)

)
ψ

U(Q;λ)Ψ = U(Q;λ)G(λ; ν, φ)ψ

Ψx = U(Q;λ)Ψ ⇐⇒ Gx(ν, φ) +G(λ; ν, φ)U(q;λ) = U(Q;λ)G(λ; ν, φ)

for all ψ such that ψx = U(q; ν)ψ. We temporarily define M as

M ≡ U(Q;λ)G(λ; ν, φ)−G(λ; ν, φ)U(q;λ)

so we seek to show that Gx = M . Because of the structure of the Lax pair, the main diagonal

components will end up being of opposite sign, but identical otherwise, and the off diagonal
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components will be complex conjugates of each other. For this reason, we only present the

verification of the (1, 1) and (1, 2) components. To simplify the presentation we also only

present the case where ν is pure imaginary, i.e. ν = iα for α ∈ R.

For the left hand side we have

Gx =

 νfx(φ) + ν∗gx(φ) (ν − ν∗)hx(φ)

(ν − ν∗)h∗x(φ) νgx(φ) + ν∗fx(φ)

 = 2iα

 fx hx

h∗x −fx

 ,
so Gx is not a function of λ (recall that φ1 and φ2 are already evaluated at ν so f , g, and h

are independent of λ).

Looking at the (1,1) component of M we see

M(1,1) = U(Q)(1,1)G(1,1) + U(Q)(1,2)G(2,1) − U(q)(1,1)G(1,1) − U(q)(2,1)G(1,2)

=
[
U(Q)(1,1) − U(q)(1,1)

]
G(1,1) + U(Q)(1,2)G(2,1) − U(q)(2,1)G(1,2)

=
[
− iλ+ iλ

]
G(1,1) + iQ(2iαh∗)− iq∗(2iαh)

= 2iα
[
i(q − 4iαh)h∗ − iq∗h

]
= 2iα

[
iqh∗ − iq∗h+ 4α|h|2

]
.

Using (2.1.7) we see fx when ν = iα is

fx = 4iα|h|2 + iqh∗ − iq∗h,

so M(1,1) = 2iαfx as desired.

Proceeding with the off diagonal component, M(1,2) we have

M(1,2) = U(Q)(1,1)G(1,2) + U(Q)(1,2)G(2,2) − U(q)(1,2)G(1,1) − U(q)(2,2)G(1,2)
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=
[
U(Q)(1,1) − U(q)(2,2)

]
G(1,2) + U(Q)(1,2)G(2,2) − U(q)(1,2)G(1,1)

= −2iλ(2iαh) + iQ
[
− λ− iα(f − g)

]
− iq

[
− λ+ iα(f − g)

]
= −2iλ(2iαh)− iλ(Q− q) + α(f − g)(Q+ q)

= 4αλh− iλ(−4iαh) + α(f − g)(2q − 4iαh)

= −2iα(f − g)(iq + 2αh)

Using (2.1.7) we see hx when ν = iα is

hx = −(f − g)(2αh+ iq),

so M(1,2) = 2iαhx as desired.

Since the left and right sides are equal, the new potential and eigenfunction pair

satisfy Ψx = U(Q, λ)Ψ.

Now for the temporal part we define

M ≡ V (Q;λ)G(λ; ν, φ)−G(λ; ν, φ)V (q;λ)

and

Gt =

 νft(φ) + ν∗gt(φ) (ν − ν∗)ht(φ)

(ν − ν∗)h∗t (φ) νgt(φ) + ν∗ft(φ)

 = 2iα

 iα(ft − gt) 2iαht

2iαh∗t −iα(ft − gt)

 .
Looking at the (1,1) component we have

M(1,1) = V (Q)(1,1)G(1,1) + V (Q)(1,2)G(2,1) − V (q)(1,1)G(1,1) − V (q)(2,1)G(1,2)

=
[
V (Q)(1,1) − V (q)(1,1)

]
G(1,1) + V (Q)(1,2)G(2,1) − V (q)(2,1)G(1,2)

44



= (−λ+ iα(f − g))(−2iλ2 + i|Q|2 + 2iλ2 − i|q|2)

+ 2iα (2iλh∗Q− h∗Qx − 2iλhq∗ + hq∗x)

= (−iλ− α(f − g))
(
|Q|2 − |q|2

)
− 4αλ (h∗Q− hq∗)− 2iα (h∗Qx + hq∗x)

= −[iλ+ α(f − g)]
[
4iα(qh∗ − q∗h) + 16α2|h|2

]
− 4αλ

(
h∗q − 4iα|h|2 − hq∗

)
− 2iα (h∗qx − 4iαh∗hx + hq∗x)

= 4αλ(qh∗ − q∗h)− 16iα2|h|2λ− 16α3(f − g)|h|2 − 4αλ(qh∗ − q∗h) + 16iα2|h|2λ

− 2iα(h∗qx + hq∗x)− 8α2h∗hx − 4iα2(f − g)(qh∗ − q∗h)

= −16α3(f − g)|h|2 − 2iα(h∗qx + hq∗x) + 8α2(f − g)(2α|h|2 + iqh∗)

− 4iα2(f − g)(qh∗ − q∗h) + 4iα2(f − g)(q∗h− qh∗)

= −2iα(h∗qx + hq∗x) + 4iα2(f − g)(q∗h+ qh∗)

= iα [4α(f − g)(q∗h+ qh∗)− 2(h∗qx + hq∗x)] .

We need to show that this matches iα [ft − gt]. Indeed, using Lemma 2.1.2 we see

ft − gt = −2α(q∗h+ qh∗)− (q∗xh+ qxh
∗) + 4αf(qh∗ + q∗h)

+ 2α(q∗h+ qh∗)− (q∗xh+ qxh
∗)− 4αg(qh∗ + q∗h)

= 4α(f − g)(qh∗ + q∗h)− 2(q∗xh+ qxh
∗).

So we have M(1,1) = iα [ft − gt].

Looking at the (1,2) component we have

M(1,2) = V (Q)(1,1)G(1,2) + V (Q)(1,2)G(2,2) −
(
G(1,1)V (q)(1,2) +G(1,2)V (q)(2,2)

)

45



= G(1,2)

(
V (Q)(1,1) − V (q)(2,2)

)
+ V (Q)(1,2)G(2,2) − V (q)(1,2)G(1,1)

= 2iαh
(
−2iλ2 + i|Q|2 − 2iλ2 + i|q|2

)
+ (2iλQ−Qx) (−λ− iα(f − g))

− (2iλq − qx) (−λ+ iα(f − g))

= −2αh
(
−4λ2 + |Q|2 + |q|2

)
− λ (2iλQ−Qx − 2iλq + qx)

− iα(f − g) (2iλQ−Qx + 2iλq − qx)

= 8αλ2h− 2αh
[
2|q|2 + 4iα(qh∗ − q∗h) + 16α2|h|2

]
− λ [2iλ(−4iαh)− (−4iαhx)]

− iα(f − g) [4iλq + 2λ(4αh)− 2qx − (−4iαhx)]

= 8αλ2h− 4α|q|2h− 8iα2h(qh∗ − q∗h)− 32α3h|h|2 − 8λ2αh− 4iαλhx

+ 4αλ(f − g)q − 8iα2λh(f − g) + 2iα(f − g)qx + 4α2(f − g)hx

= 8αλ2h− 4α|q|2h− 8iα2h(qh∗ − q∗h)− 32α3h|h|2 − 8λ2αh+ 4iαλ(f − g)(2αh+ iq)

+ 4αλ(f − g)q − 8iα2λh(f − g) + 2iα(f − g)qx − 4α2(f − g)2(2αh+ iq)

= 8αλ2h− 4α|q|2h− 8iα2(qh∗ − q∗h)h− 32α3h|h|2 − 8λ2αh+ 8iα2λ(f − g)h

− 4αλ(f − g)q + 4αλ(f − g)q − 8iα2λh(f − g) + 2iα(f − g)qx

− 4α2
(
(1− 4|h|2

)
(2αh+ iq)

= −4α|q|2h− 8iα2(qh∗ − q∗h)h− 32α3h|h|2 + 2iα(f − g)qx − 8α3h

+ 32α3h|h|2 − 4iα2q + 16iα2|h|2q

= −4α|q|2h+ 8iα2(qh∗ + q∗h)h+ 2iα(f − g)qx − 8α3h− 4iα2q.

Furthermore, from Lemma 2.1.2 we have

2iαht = 2iα
[
2i(2α2 + |q|2)h− 2αq + qx(f − g) + 4αh(qh∗ + q∗h)

]
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= 2α
[
− 2(2α2 + |q|2)h− 2iαq + iqx(f − g) + 4iαh(qh∗ + q∗h)

]
= −8α3h− 4α|q|2h− 4iα2q + 2iα(f − g) + 8iα2h(qh∗ + q∗h)

so we have shown 2iαht = M(1,2) as desired. Since the left and right sides are equal, the new

potential and eigenfunction pair satisfy Ψt = V (Q, λ)Ψ.

The work in this proof shows that the eigenfunction Ψ satisfies the Lax pair (1.2.1)

with eigenvalue λ and solution Q.

2.2 Bäcklund-Gauge transformation for spatially periodic boundary conditions

Let ν be a purely imaginary point of the spectrum. We define the relationship between

ν and the wave number k as ±k − ν = ±ae∓ip. The arbitrary linear combination of the

eigenfunctions evaluated at ν is φ, i.e.

φ =

 φ1

φ2

 = c+φ
+(ν) + c−φ

−(ν) (2.2.1)

= c−
(
eρeiβφ+(ν) + φ−(ν)

)
=
iac−
2k


(
eρeiβe−i

π
4 ei

p
2 ei(kx+2kνt) + ei

π
4 e−i

p
2 e−i(kx+2kνt)

)
eia

2t

(
eρeiβe−i

π
4 e−i

p
2 ei(kx+2kνt) − eiπ4 ei p2 e−i(kx+2kνt)

)
e−ia

2t


The Gauge matrix is

G(λ; ν, φ) =

 −λ+ ν |φ1|2
|φ1|2+|φ2|2 + ν∗ |φ2|2

|φ1|2+|φ2|2 (ν − ν∗) φ1φ∗2
|φ1|2+|φ2|2

(ν − ν∗) φ∗1φ2
|φ1|2+|φ2|2 −λ+ ν |φ2|2

|φ1|2+|φ2|2 + ν∗ |φ1|2
|φ1|2+|φ2|2
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=

 −λ+ iα |φ1|
2−|φ2|2

|φ1|2+|φ2|2 iα
2φ1φ∗2

|φ1|2+|φ2|2

iα
2φ∗1φ2

|φ1|2+|φ2|2 −λ− iα |φ1|2−|φ2|2|φ1|2+|φ2|2

 since ν = iα is purely imaginary,

If we define A and B as

A =
|φ1|2 − |φ2|2
|φ1|2 + |φ2|2

= f − g and B =
2φ1φ

∗
2

|φ1|2 + |φ2|2
= 2h (2.2.2)

then we can rewrite the Gauge matrix as

G(λ; ν, φ) =

 −λ+ iαA iαB

iαB∗ −λ− iαA

 (2.2.3)

Recall that φ1 and φ2 are already evaluated at ν so they are independent of λ. Let σ = −4ikν.

Since k ∈ R and ν is purely imaginary, σ ∈ R. We need to compute the sum and difference

of |φ1|2 and |φ2|2 to proceed. First, we calculate |φ1|2.

φ1 =
iac−
2k

(
eρeiβe−i

π
4 ei

p
2 ei(kx+2kνt) + ei

π
4 e−i

p
2 e−i(kx+2kνt)

)
eia

2t

φ∗1 =
−iac∗−

2k

(
eρe−iβei

π
4 e−i

p
2 e−i(kx−2kνt) + e−i

π
4 ei

p
2 ei(kx−2kνt)

)
e−ia

2t

|φ1|2 =
a2|c−|2

4k2

(
e2ρe4ikνt + eρeiβe−i

π
2 eipe2ikx + eρe−iβei

π
2 e−ipe−2ikx + e−4ikνt

)
=
a2|c−|2

4k2
eρ
(
eρe4ikνt + eipei(2kx+β−π

2
) + e−ipe−i(2kx+β−π

2
) + e−ρe−4ikνt

)
=
a2|c−|2

4k2
eρ
(
eρ−σt + eipei(2kx+β−π

2
) + e−ipe−i(2kx+β−π

2
) + e−(ρ−σt)) .

Next, we follow the same method but construct |φ2|2.

φ2 =
iac−
2k

(
eρeiβe−i

π
4 e−i

p
2 ei(kx+2kνt) − eiπ4 ei p2 e−i(kx+2kνt)

)
e−ia

2t

φ∗2 =
−iac∗−

2k

(
eρe−iβei

π
4 ei

p
2 e−i(kx−2kνt) − e−iπ4 e−i p2 ei(kx−2kνt)

)
eia

2t
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|φ2|2 =
a2|c−|2

4k2

(
e2ρe4ikνt − eρeiβe−iπ2 e−ipe2ikx − eρe−iβeiπ2 eipe−2ikx + e−4ikνt

)
=
a2|c−|2

4k2
eρ
(
eρe4ikνt − e−ipei(2kx+β−π

2
) − eipe−i(2kx+β−π

2
) + e−ρe−4ikνt

)
=
a2|c−|2

4k2
eρ
(
eρ−σt − e−ipei(2kx+β−π

2
) − eipe−i(2kx+β−π

2
) + e−(ρ−σt)) .

Looking at the sum of these two quantities we have

|φ1|2 + |φ2|2 =
a2|c−|2

4k2
eρ
[
2eρ−σt +

(
eip − e−ip

) (
ei(2kx+β−π

2
) − e−i(2kx+β−π

2
)
)

+ 2e−(ρ−σt)]
=
a2|c−|2

4k2
eρ
[
2
(
eρ−σt + e−(ρ−σt))+ 2i sin(p)

(
ei(2kx+β−π

2
) − ei(2kx+β−π

2
)
)]

=
a2|c−|2
k2

eρ [cosh (ρ− σt) + sin(p) cos(2kx+ β)] .

The difference of the two quantities is

|φ1|2 − |φ2|2 =
a2|c−|2

4k2
eρ
[(
eip + e−ip

) (
ei(2kx+β−π

2
) + ei(2kx+β−π

2
)
)]

=
a2|c−|2
k2

eρ cos(p) cos (2kx+ β − π

2
)

=
a2|c−|2
k2

eρ cos(p) sin (2kx+ β).

To compute B we need to know φ1φ
∗
2. This product evaluates to

2φ1φ
∗
2 =

a2|c−|2
2k2

eρ
[
eρeipe4ikνt − eiβe−iπ2 e2ikx + e−iβei

π
2 e−2ikx − e−ρe−ipe−4ikνt

]
=
a2|c−|2
k2

eρ
[
sinh (ρ− σt+ ip)− i sin

(
2kx+ β − π

2

)]
=
a2|c−|2
k2

eρ [cosh (ρ− σt) sinh(ip) + sinh (ρ− σt) cosh(ip) + i cos (2kx+ β)]

=
a2|c−|2
k2

eρ [i sin(p) cosh (ρ− σt) + cos(p) sinh (ρ− σt) + i cos (2kx+ β)]

We can now construct both A and B from these pieces of information as follows:

A =
|φ1|2 − |φ2|2
|φ1|2 + |φ2|2
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=
cos(p) sin (2kx+ β)

cosh (ρ− σt) + sin(p) cos(2kx+ β)
(2.2.4)

B =
2φ1φ

∗
2

|φ1|2 + |φ2|2

= e2ia2t i sin(p) cosh (ρ− σt) + cos(p) sinh (ρ− σt) + i cos (2kx+ β)

cosh (ρ− σt) + sin(p) cos(2kx+ β)
(2.2.5)

So the new eigenfunctions are

χ±(λ; ν, φ) = G(λ; ν, φ)φ±(λ) (2.2.6)

=
ia

2k̂
e∓i

π
4 e±i

p̂
2

 −λ+ νA νB

νB∗ −λ− νA


 eia

2t

±e∓ip̂e−ia2t

 e±i(k̂x+2k̂λt) (2.2.7)

where k̂(λ)± λ = ae±ip̂.

We now construct the new solution. First, note that

ν − ν∗ = (k + ν)− (k + ν∗) = (k + ν)− (k − ν) = ae−ip − aeip = −a(eip − e−ip) = −2ia sin(p),

we have

Q(x, t) = q(x, t)− 2(ν − ν∗) φ1φ
∗
2

|φ1|2 + |φ2|2

= q(x, t) + 2ia sin(p)B

= ae2ia2t + 2ia sin(p)e2ia2t cos p sinh(τ) + i sin p cosh(τ) + i cos(2kx+ β)

cosh(τ) + sin p cos(2kx+ β)

= ae2ia2t

(
1 +

2i sin p cos p sinh(τ)− 2 sin2 p cosh(τ)− 2 sin p cos(2kx+ β)

cosh(τ) + sin p cos(2kx+ β)

)
= ae2ia2t

(
2i sin p cos p sinh(τ) + (1− 2 sin2 p) cosh(τ)− sin p cos(2kx+ β)

cosh(τ) + sin p cos(2kx+ β)

)
= ae2ia2t

(
i sin (2p) sinh(τ) + cos (2p) cosh(τ)− sin p cos(2kx+ β)

cosh(τ) + sin p cos(2kx+ β)

)
,
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where the trig identities 2 sin(x) cos(x) = sin(2x) and 1− sin2(x) = cos(2x) have been used.

Dividing by cosh(τ) in the numerator and denominator we arrive at

Q(x, t) = ae2ia2t

(
i sin (2p) tanh(τ) + cos (2p)− sin p cos(2kx+ β) sech(τ)

1 + sin p cos(2kx+ β) sech(τ)

)
, (2.2.8)

which is precisely the form of the spatially periodic breather in [20] and [22].

2.3 Deriving the Peregrine Solution from the breather

To analyze the infinite line case in the same manner as the periodic case, we need the

eigenfunctions and new potential for the infinite line boundary conditions. We acquire these

elements by allowing the spatial period to become infinite for a fixed background amplitude.

Although a single eigenfunction at a fixed eigenvalue has been calculated for the Pere-

grine solution in [18], the method used in that work does not allow for multiple eigenfunctions

nor eigenfunctions at any other eigenvalue. We derive a family of eigenfunctions dependent

on λ that are linearly independent for λ 6= ±ia.

2.3.1 Function expansions

We will expand in the case where ρ = β = 0. But, because
c+

c−
= eρeiβ, ρ = β = 0 occurs

if, and only if, c+ = c−, which does not allow φ to be an arbitrary linear combination of
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the eigenfunctions, but rather a very specific one. Then, χ̃± will be eigenfunctions with the

Peregrine solution as the potential.

Let kj = 2πj/L. Then when L→∞, kj → 0 and νj → ic. Expansions for the terms

in the expressions for A and B as kj → 0 are:

cos(pj) =
kj
2a
,

σj = 2akj − k2
j + . . . ,

cos(2pj) = 2 cos2(pj)− 1 = −1 +
k2
j

2a2
+ . . . ,

sin(2pj) = 2 sin(pj) cos(pj) = −kj
a

+ . . . ,

sin(pj) = −
√

1− cos2(pj) = −1 +
k2
j

8a2
+ . . . ,

sin(kjx) = kjx+ . . . ,

cos(kjx) = 1− k2
jx

2

2
+ . . . ,

sech(σjt) = 1− 2k2
ja

2t2 + . . . ,

tanh(σjt) = 2kjat+ . . . ,

which leads to

sin pj cos(kjx) sech(σjt) =

(
−1 +

k2
j

8a2

)(
1− k2

jx
2

2

)(
1− 2k2

ja
2t2
)

+ . . .

=

(
−1 +

k2
jx

2

2
+ 2k2

ja
2t2 +

k2
j

8a2

)
+ . . .

= −1 +

(
x2

2
+ 2a2t2 +

1

8a2

)
k2
j + . . .

= −1 +
(
4a2x2 + 16a4t2 + 1

) k2
j

8a2
+ . . . ,

sin(2pj) tanh(σjt) =

(
−kj
a

)
(2kjat) + . . . = −2tk2

j + . . . ,
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cos(pj) sin(kjx) sech(σjt) =
kj
2a

(kjx)
(
1− 2k2

ja
2t2
)

+ . . . =
x

2a
k2
j + . . . .

Dividing by cosh(ρ− σt) and setting ρ = β = 0 in (2.2.4), we have

A =
cos pj sin(kjx) sech(σjt)

1 + sin pj cos(kjx) sech(σjt)
.

Letting kj → 0 we arrive at

Ã = lim
kj→0

 x
2a
k2
j

(4a2x2 + 16a4t2 + 1)
k2j
8a2

+ . . .

 =
4ax

4a2x2 + 16a4t2 + 1
. (2.3.1)

Similarly, dividing by cosh(ρ− σt) and setting ρ = β = 0 in (2.2.5)

B = e2ia2t− cos(pj) tanh(σjt) + i sin(pj) + i cos(kjx) sech(σjt)

1 + sin pj cos(kjx) sech(σjt)
.

Letting kj → 0 we obtain the expression

B̃ = e2ia2t lim
kj→0

− kj
2a

(2kjat) + i
(
−1 +

k2j
8a2

)
+ i
(

1− k2jx
2

2
− 2k2

ja
2t2
)

(4a2x2 + 16a4t2 + 1)
k2j
8a2

+ . . .


= e2ia2t−8a2t+ i (1− 4a2x2 − 16a4t2)

4a2x2 + 16a4t2 + 1
= e2ia2t

( −8a2t+ 2i

4a2x2 + 16a4t2 + 1
− i
)
. (2.3.2)

Recall the spatially periodic breather (1.5.3)

Q = ae2ia2t

(−i sin (2pj) tanh(σjt) + cos (2pj)− sin pj cos(kjx) sech(σjt)

1 + sin pj cos(kjx) sech(σjt)

)

Q̃ = ae2ia2t lim
kj→0

2itk2
j +

(
−1 +

k2j
2a2

)
−
(
−1 + (4a2x2 + 16a4t2 + 1)

k2j
8a2

)
(4a2x2 + 16a4t2 + 1)

k2j
8a2

+ . . .


= ae2ia2t2it+ 1

2a2
− (4a2x2 + 16a4t2 + 1) 1

8a2

(4a2x2 + 16a4t2 + 1) 1
8a2

= ae2ia2t16ia2t+ 4− (4a2x2 + 16a4t2 + 1)

(4a2x2 + 16a4t2 + 1)
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= ae2ia2t

(
−1 +

16ia2t+ 4

4a2x2 + 16a4t2 + 1

)
. (2.3.3)

Note that λ and k do not depend on L, so taking the limit as L → ∞ (which is to

say kj → 0) changes only A and B in the eigenfunctions. Thus, the limit eigenfunctions are

χ̃± =
i

2k
e∓i

π
4 e±i

p
2

 λ+ iaÃ iaB̃

iaB̃∗ λ− iaÃ


 aeia

2t

±ae∓ipe−ia2t

 e±i(kx+2kλt)

=
i

2k
e∓i

π
4 e±i

p
2

 aeia
2t
(
λ+ iaÃ

)
± ae∓ipe−ia2t

(
iaB̃

)
aeia

2t
(
iaB̃∗

)
± ae∓ipe−ia2t

(
λ− iaÃ

)
 e±i(kx+2kλt)

=
ia

2k
e∓i

π
4 e±i

p
2

 λeia
2t + iaeia

2tÃ± iae∓ipe−ia2tB̃

±λe∓ipe−ia2t + iaeia
2tB̃∗ ∓ iae∓ipe−ia2tÃ

 e±i(kx+2kλt)

=
ia

2k
e∓i

π
4 e±i

p
2


eia

2t

(
λ+ ia4cx

m
± iae∓ip−8a2t+i(1−4a2x2−16a4t2)

m

)
e−ia

2te∓ip
(
±λ+ iae±ip

−8a2t−i(1−4a2x2−16a4t2)
m

∓ ia4ax
m

)
 e±i(kx+2kλt),

(2.3.4)

where p and a are real constants, and m = 4a2x2 + 16a4t2 + 1.

2.4 Eigenfunction verification

Although we have previously verified the limit of the single-mode SPB is the rational solution,

it remains to be shown that the limit eigenfunctions satisfy the Lax pair (1.2.1) at the limited

potential.
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2.4.1 Temporal component of the Lax pair

In this section we show that the eigenfunction χ̃+ satisfies the time portion of the Lax pair

(1.2.1). Recall the following definitions from earlier sections:

χ̃±t = V (Q, λ)χ̃±, where V (Q, λ) =

 i|Q|2 − 2iλ2 2iλQ−Qx

Q∗x + 2iλQ∗ 2iλ2 − i|Q|2

 ,
Q = ae2ia2t

(
−1 +

16ia2t+ 4

m

)
= Q̄e2ia2t, where Q̄ = −a+

16ia3t+ 4a

m
,

k ± λ = ae∓ip,

where p and a are real constants, and m = 4a2x2 + 16a4t2 + 1.

We rewrite the components of the eigenfunction in the following manner to simplify

the portions that need to be carried around for the rest of the calculation.

χ̃+ =
ia

2k
e−i

π
4 ei

p
2


eia

2t

(
−λ+ ia4ax

m
+ iae−ip

−8a2t+i(1−4a2x2−16a4t2)
m

)
e−ia

2te−ip
(
−λ+ iaeip

−8a2t−i(1−4a2x2−16a4t2)
m

− ia4ax
m

)
 ei(kx+2kλt)

≡ ia

2k
e−i

π
4 ei

p
2

 eia
2tY1

e−ia
2tY2

 ei(kx+2kλt),

where,

Y1 = −λ+
4ia2x

m
+ e−ip

(−8ia3t− 2a

m
+ a

)
Y2 = e−ip

[
−λ− 4ia2x

m
+ eip

(−8ia3t+ 2a

m
− a
)]
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= e−ip
(
−λ− 4ia2x

m

)
+
−8ia3t+ 2a

m
− a. (2.4.1)

With these new definitions we see that the left hand side of the equation is

(
χ̃+
)
t

=
ia

2k
e−i

π
4 ei

p
2

 (ia2Y1 + 2ikλY1 + Y1t) e
ia2t

(−ia2Y2 + 2ikλY2 + Y2t) e
−ia2t

 ei(kx+2kλt), (2.4.2)

and the right hand side is

V (Q, λ)χ̃+ =
ia

2k
e−i

π
4 ei

p
2

 i|Q|2 − 2iλ2 2iλQ−Qx

Q∗x + 2iλQ∗ 2iλ2 − i|Q|2


 Y1

Y2

 ei(kx+2kλt)

=
ia

2k
e−i

π
4 ei

p
2


{(
i|Q̄|2 − 2iλ2

)
Y1 +

(
2iλQ̄− Q̄x

)
Y2

}
eia

2t

{(
Q̄∗x + 2iλQ̄∗

)
Y1 +

(
2iλ2 − i|Q̄|2

)
Y2

}
e−ia

2t

 ei(kx+2kλt).

(2.4.3)

We see that the constants, exp {±ia2t}, and exp {i(kx+ 2kλt)} are common to both

(2.4.2) and (2.4.3), so they are equal if and only if ia2Y1 + 2ikλY1 + Y1t

−ia2Y2 + 2ikλY2 + Y2t

 =

 i|Q̄|2Y1 − 2iλ2Y1 + 2iλQ̄Y2 − Q̄xY2

2iλQ̄∗Y1 + Q̄∗xY1 + 2iλ2Y2 − i|Q̄|2Y2

 .
We need |Q̄|2 and Q̄x before we start multiplying things out.

|Q̄|2 = a2

[(
−1 +

4

m

)2

+

(
16a2t

m

)2
]

= a2 − 8a2

m
+

16a2

m2
+

256a6t2

m2
,

and

Q̄x =

(
−16ia3t+ 4a

m2
mx

)
= −128ia5xt

m2
− 32a3x

m2
.
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Next, we consider the derivative of Y1 with respect to t:

Y1t =
∂

∂t

[
λ+

4ia2x

m
+ e−ip

(−8ia3t− 2a

m
+ a

)]
= −4ia2x

m2
mt + e−ip

(
−8ia3

m
− −8ia3t− 2a

m2
mt

)
= −128ia4xt

m2
+ e−ip

(
−8ia3

m
+

256ia5t2 + 64a3t

m2

)
. (2.4.4)

The following products are length, but necessary for the remainder of the work.

i|Q̄|2Y1 = i

(
a2 − 8a2

m
+

16a2

m2
+

256a6t2

m2

)
Y1

= ia2Y1 − λ
[
−8ia2

m
+

16ia2

m2
+

256ia6t2

m2

]
+

32a4x

m2
− 64a4x

m3
− 1024a8xt2

m3

+ eip
(
−64a5t

m2
+

32ia3

m2
− 16ia3

m
+

128a5t

m3
− 32ia3

m3
− 256ia7t2

m3

)
.

Next, we look at the 2ikλY1 term, but since we need ikY1 for the spatial verification as well,

we work that separately. Note that both k = ae−ip − λ and k = aeip + λ are used to avoid

introducing new powers of eip while clearing the factor of k that appears on the left hand

side, but not the right hand side.

kY1 = k

(
−λ+

4ia2x

m

)
+ ake−ip

(
−8ia2t

m
− 2

m
+ 1

)
=
(
ae−ip − λ

)(
−λ+

4ia2x

m

)
+
(
aeip + λ

)
ae−ip

(
−8ia2t

m
− 2

m
+ 1

)
= −λ

(
−λ+

4ia2x

m

)
+ ae−ip

(
−λ+

4ia2x

m

)
+ a2

(
−8ia2t

m
− 2

m
+ 1

)
+ λae−ip

(
−8ia2t

m
− 2

m
+ 1

)
= −λY1 + ae−ip

[
λ+

4ia2x

m
− λ16ia2t

m
− λ 4

m

]
+ a2

(
−8ia2t

m
− 2

m
+ 1

)
, (2.4.5)

57



2ikλY1 = −2iλ2Y1 + ae−ip
[
2iλ2 + 2iλ

4ia2x

m
− 2iλ2 16ia2t

m
− 2iλ2 4

m

]
+ 2ia2λ

(
−8ia2t

m
− 2

m
+ 1

)
. (2.4.6)

Because only the denominator of Q depends on x, Q̄x is two terms and consequently

Q̄xY2 is one of the shortest products we require for this verification.

−Q̄xY2 = −
(
−128ia5xt

m2
− 32a3x

m2

)(
e−ip

[
−λ− 4ia2x

m

]
− 8ia3t

m
+

2a

m
− a
)

= −e−ip
[
−λ
(
−128ia5xt

m2
− 32a3x

m2

)
− 512a7x2t

m3
+

128ia5x2

m3

]
+

1024a8xt2

m3
− 32a4x

m2
+

64a4x

m3
− 128ia6xt

m2

= e−ip
[
λ

(
−128ia5xt

m2
− 32a3x

m2

)
+

512a7x2t

m3
− 128ia5x2

m3

]
+

1024a8xt2

m3
− 32a4x

m2
+

64a4x

m3
− 128ia6xt

m2

We will use Q̄Y2 for both the spatial and temporal verification, so we solve it separately

and then multiply by the appropriate coefficient of 2iλ for the temporal part.

Q̄Y2 = a

(
−1 +

16ia2t

m
+

4

m

)[
e−ip

(
−λ− 4ia2x

m

)
+ a

(
−8ia2t

m
+

2

m
− 1

)]
= ae−ip

(
−1 +

16ia2t

m
+

4

m

)(
−λ− 4ia2x

m

)
+ a2

(
−1 +

16ia2t

m
+

4

m

)(
−8ia2t

m
+

2

m
− 1

)
= ae−ip

[
λ

(
1− 16ia2t

m
− 4

m

)
+

4ia2x

m
+

64a4xt

m
− 16ia2x

m

]
+ a2

[
−8ia2t

m
− 6

m
+ 1 +

128a4t2

m2
+

8

m2

]
, (2.4.7)

2iλQ̄Y2 = ae−ip
[
2iλ2

(
1− 16ia2t

m
− 4

m

)
+ 2iλ

(
64a4xt

m
− 12ia2x

m

)]
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+ 2ia2λ

[
−8ia2t

m
− 6

m
+ 1 +

128a4t2

m2
+

8

m2

]
.

Summing (2.4.4) and (2.4.6) we have

LHS = e−ip
(
λ2

{−32a3t+ 8ia

m
− 2ia

}
− λ8a3x

m
− 8ia3

m
+

256ia5t2 + 64a3t

m2

)
+ ia2Y1 + 2iλ2Y1 + λ

(
16a4t− 4ia2

m
+ 2ia2

)
− 128ia4xt

m2
.

The λ and λ2 terms on both side of the equation match, and the λ0 terms are verified

similarly.

2.4.2 Spatial component of the Lax pair

In this section we show that the eigenfunction χ̃+ satisfies the time portion of the Lax pair

(1.2.1). We seek to show that χ̃+ satisfies

χ̃±x = U(Q, λ)χ̃±, where U(Q, λ) =

 −iλ iQ

iQ∗ iλ


Using the definitions of Y1 and Y2 from (2.4.1) the two sides of the equation can be

formulated as

(
χ̃+
)
x

=
ia

2k
e−i

π
4 ei

p
2

 ikY1 + Y1x

ikY2 + Y2x

 ei(kx+2kλt), (2.4.8)

and

U(Q, λ)χ̃+ =
ia

2k
e−i

π
4 ei

p
2

 −iλ iQ

iQ∗ iλ


 Y1

Y2

 ei(kx+2kλt)
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=
ia

2k
e−i

π
4 ei

p
2

 −iλY1 + iQY2

iQ∗Y1 + iλY2

 ei(kx+2kλt). (2.4.9)

We see that the constants and exp {i(kx+ 2kλt)} are common to both (2.4.8) and

(2.4.9), so they are equal if and only if

 ikY1 + Y1x

ikY2 + Y2x

 =

 −iλY1 + iQY2

iQ∗Y1 + iλY2



Y1x =

(
ia
d

dx

[
4ax

m

]
+ iae−ip

d

dx

[−8a2t+ 2i

m
− i
])

= ia

(
4a

m
− 32a3x2

m2
+ e−ip

[
64a4xt

m2
− 16ia2x

m2

])
Using (2.4.5) we see that

ikY1 = −iλY1 + ia

{
e−ip

[
λ

(
1− 16ia2t

m
− 4

m

)
+

4ia2x

m

]
+ a

(
−8ia2t

m
− 2

m
+ 1

)}

Y1x + ikY1 = −iλY1 + iae−ip
[
λ

(
1− 16ia2t

m
− 4

m

)
+

64a4xt

m2
− 16ia2x

m2
+

4ia2x

m

]
+ ia2

[
1− 2

m
− 8iat

m
+

4

m
− 32a2x2

m2

]
= −iλY1 + ia

[
λ

(
1− 16ia2t

m
− 4

m

)
+

64a4xt

m2
− 16ia2x

m2
+

4ia2x

m

]
+ ia2

[
1− 6

m
− 8ia2t

m
+

8(m− 4a2x2)

m2

]
= −iλY1 + ia

[
λ

(
1− 16ia2t

m
− 4

m

)
+

64a4xt

m2
− 16ia2x

m2
+

4ia2x

m

]
+ ia2

[
1− 6

m
− 8ia2t

m
+

8(1 + 16a4t2)

m2

]
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= −iλY1 + iQ̄Y2 by (2.4.7)

Now that we have the transformed eigenfunctions and potential for the infinite line

case we can proceed to determining the stability for both solutions.
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CHAPTER 3

STABILITY

In this chapter we study the stability of the classes of solutions we have chosen as rogue

wave models as discussed in section 1.5. We have already considered the linear instability

of the Stokes’ wave in section 1.3. Recall that we linearized about the solution and we were

able to determine the growth rates of the instabilities. With more complicated solutions

that technique and determining the growth rate of the instabilities precisely are much more

difficult. Instead, we now look at the behavior of certain quantities related to the scattering

problem as they are evolved by the linearized PDE.

Using this technique we show that the single-mode SPB is stable if it is on an interval

that only allows one complex double point, but that any solution with a (a, L) combination

that permits two or more complex double points has a λ which allows for unbounded growth

of the perturbation, so the solution is unstable. Recall that for a fixed a, as the length of the

period increases the number of complex double points increases. From this, we conjecture

that the rational solution is unstable, and in fact we show this is true in the final section of

the chapter.
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3.1 Squared eigenfunctions and linearized stability

Rather than solving the linearized NLS (3.1.2) directly, which can be challenging with more

complicated solutions, we exploit the connection between the solutions of the linearized NLS

and the squared components of the eigenfunctions of the Lax pair [23] [24]. We use the

transformed eigenfunctions to construct squared eigenfunctions that satisfy the linearized

NLS. Since we know the perturbation to the solution solves the linearized NLS the growth of

the squared eigenfunctions, or lack thereof, tells us the instability or stability of the perturbed

solution.

Let u = ua(1 + ε), where ε(x, t) is a complex-valued function with small magnitude.

We are interested in determining the behavior of this perturbation to the solution ua. If ε

stays small for all t, then the perturbed solution is near to the original solution, so we say

the original solution is stable to small perturbations. If the perturbation is initially small

but grows as t changes, we say the original solution is unstable.

Note that if we substitute u = ua(1+ ε) into (1.1.7) and keeping only the linear terms

in ε we see that the required terms in the equation are

ut = (ua)t(1 + ε) + uaεt

= 2ia2ua(1 + ε) + uaεt

uxx = (ua)xx(1 + ε) + 2(ua)xεx + uaεxx

= uaεxx since ua is independent of x,
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|u|2u = |ua|2ua(1 + ε+ ε∗)(1 + ε)

= ua(a
2 + 2a2ε+ a2ε∗ +O

(
ε2
)
)

Substituting these into NLS we have

ua(−2a2 − 2a2ε+iεt + εxx + 2a2 + 4a2ε+ 2a2ε∗) = 0 (3.1.1)

iεt + εxx + 2a2(ε+ ε∗), (3.1.2)

which is the linearized NLS equation.
iut = −uxx + 2u2r

irt = rxx − 2r2u

. (3.1.3)

Notice that in order to make the first equation match the form of NLS we are using (1.1.7)

we need to have r = −u∗. In this case, a Lax pair for NLS can be rewritten as a Lax pair

for the system of equations as

U(u, r, λ) =

 −iλ u

r iλ

 V (u, r, λ) =

 −iur − 2iλ2 −ux + 2iλu

−rx − 2iλr iur + 2iλ2

 . (3.1.4)

We say that φ is an eigenfunction associated with λ if φx = U(u, r, λ)φ and φt = V (u, r, λ)φ.

Let ũ = u + w and r̃ = r + v, where u and r satisfy the NLS system. Substituting

this into (3.1.3) and keeping only the first order terms in v and w we have
iwt = −wxx + 2u2v + 4urw

ivt = vxx − 2r2w − 4urv

(3.1.5)
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Next, we define the squared components of interest. Let φ = [φ1, φ2]T and ψ =

[ψ1, ψ2]T be eigenfunctions associated with the eigenvalue λ. These two solutions do not

have to be distinct.

We define f , g, and h as
f

g

h

 =


1
2

(φ1ψ2 + φ2ψ1)

φ1ψ1

−φ2ψ2


and we translate the coupled Lax pair (3.1.4) to a system in terms of the squared components

of the eigenfunctions. We begin by examining the behavior of the spatial derivatives of f, g,

and h.

2fx = φ1xψ2 + φ1ψ2x + φ2xψ1 + φ2ψ1x

= (−iλφ1 + iuφ2)ψ2 + φ1(−irψ1 + iλψ2) + (−irφ1 + iλφ2)ψ1 + φ2(−iλψ1 + iuψ2)

= −iλφ1ψ2 + iuφ2ψ2 − irφ1ψ1 + iλφ1ψ2 − irφ1ψ1 + iλφ2ψ1 − iλφ2ψ1 + iuφ2ψ2

= 2iuφ2ψ2 − 2irφ1φ2 = −2iuh− 2irg

fx = −irg − iuh

gx = φ1xψ1 + φ1ψ1x

= −iλφ1ψ1 + iuφ2ψ1 − iλφ1ψ1 + iuφ1ψ2

= −2iλφ1ψ1 + 2iu
[

1
2
(φ1ψ2 + φ2ψ1)

]
= −2iλg + 2iuf

−hx = φ2xψ2 + φ2ψ2x
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= −irφ1ψ2 + iλφ2ψ2 − irφ2ψ1 + iλφ2ψ2

= 2iλφ2ψ2 − 2ir
[

1
2
(φ1ψ2 + φ2ψ1)

]
hx = 2irf + 2iλh

So that 
f

g

h


x

=


0 −ir −iu

2iu −2iλ 0

2ir 0 2iλ




f

g

h

 .

We follow the same procedure for the time derivatives.

2ft = φ1tψ2 + φ1ψ2t + φ2tψ1 + φ2ψ1t

= −i(ur + 2λ2)φ1ψ2 − (ux − 2iλu)φ2ψ2 + (−2iλr − rx)φ1ψ1 + i(2λ2 + ur)φ1ψ2

+ (−2iλr − rx)φ1ψ1 + i(2λ2 + ur)φ2ψ1 − i(ur + 2λ2)φ2ψ1 − (ux − 2iλu)φ2ψ2

= 2(−2iλr − rx)φ1ψ1 − 2(ux − 2iλu)φ2ψ2

= 2(−2iλr − rx)g + 2(ux − 2iλu)h

ft = (−2iλr − rx)g + (ux − 2iλu)h

gt = φ1tψ1 + φ1ψ1t

= −i(2λ2 + ur)φ1ψ1 − (ux − 2iλu)φ2ψ1 − i(2λ2 + ur)φ1ψ1 − (ux − 2iλu)φ1ψ2

= −(ux − 2iλu)(φ1ψ2 + φ2ψ1)− 2i(2λ2 + ur)φ1ψ1

= −2(ux − 2iλu)f − 2i(2λ2 + ur)g

−ht = φ2tψ2 + φ2ψ2t
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= −(rx + 2iλr)φ1ψ2 + i(2λ2 + ur)φ2ψ2 − (rx + 2iλr)φ2ψ1 + i(2λ2 + ur)φ2ψ2

= −(rx + 2iλr)(φ1ψ2 + φ2ψ1)− 2i(2λ2 + ur)(−φ2ψ2)

ht = 2(rx + 2iλr)f + 2i(2λ2 + ur)h

Collecting these into a system, the time derivatives of the squared eigenfunctions form the

linear system of differential equations
f

g

h


t

=


0 −(2iλr + rx) (ux − 2iλu)

2(2iλu− ux) −2i(2λ2 + ur) 0

2(rx + 2iλr) 0 2i(2λ2 + ur)




f

g

h


Lemma 3.1.1. w = g, v = h solves (3.1.5).

Proof. This claim can be rewritten as a verification that
igt + gxx = 2u2h+ 4urg

iht − hxx = −2r2g − 4urh

We know gt and ht from the work above. To find gxx and hxx we begin with gx and

hx and use the other spatial derivatives we have already calculated.

igt = −2i(ux − 2iλu)f + 2(2λ2 + ur)g

= −2iuxf − 4λuf + 4λ2g + 2urg

gxx = ∂
∂x

(−2iλg + 2iuf)

= −2iλgx + 2iuxf + 2iufx

= −2iλ(−2iλg + 2iuf) + 2iuxf + 2iu(−irg − iuh)
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= −4λ2g + 4λuf + 2iuxf + 2urg + 2u2h

=⇒ igt + gxx = 4urg + 2u2h

iht = 2i(rx + 2iλr)f − 2(2λ2 + ur)h

= 2irxf − 4λrf − 4λ2h− 2urh

hxx = ∂
∂x

(2iλh+ 2irf)

= 2iλhx + 2irxf + 2irfx

= 2iλ(2irf + 2iλh) + 2irxf + 2ir(−irg − iuh)

= −4λrf − 4λ2h+ 2irxf + 2r2g + 2urh

=⇒ iht − hxx = −2urh− (2r2g + 2urh) = −2r2g − 4urh

Hence, both equations are satisfied, so w = g, v = h solves (3.1.5).

Lemma 3.1.2. Let u be one of the following particular sums of the squared components of

the eigenfunctions: q = φ1ψ1 + φ∗2ψ
∗
2, or q = i (φ1ψ1 − φ∗2ψ∗2). Then q solves

iqt + qxx + 2u2q∗ + 4|u|2q = 0.

Proof. To use the work in Lemma 3.1.1, we translate this problem into the variables we have

been using. Recall that r = −u∗, so r∗ = −u, (r∗)2 = u2 and (ur)∗ = u∗(−u) = u(−u∗) = ur.

The equation we seek to verify is iqt + qxx + 2u2q∗ − 4urq = 0, and the first claim is that
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q = g − h∗ is a solution. Note that

iqt + qxx = igt − ih∗t + gxx − h∗xx

= (igt + gxx) + (−ih∗t − h∗xx)

= (igt + gxx) + (iht − hxx)∗

= 4urg + 2u2h+ (−2r2g − 4urh)∗

= 4urg + 2u2h− 2u2g∗ − 4urh∗

= −2u2(g − h∗)∗ + 4ur(g − h∗)

= −2u2q∗ + 4urq.

The other solution we seek to verify is q = i(g + h∗). Note that

iqt + qxx = i [igt + ih∗t + gxx + h∗xx]

= i [(igt + gxx)− (−ih∗t − h∗xx)]

= i [(igt + gxx)− (iht − hxx)∗]

= i
[
4urg + 2u2h− (−2r2g − 4urh)∗

]
= i
[
4urg + 2u2h+ 2u2g∗ + 4urh∗

]
= −2iu2(g + h∗)∗ + 4iur(g + h∗)

= −2u2q∗ + 4urq.

In both cases the proposed solution solves the linearized NLS equation.
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3.2 Investigating the stability of the single-mode SPB

The work on squared eigenfunctions for the single-mode SPB has been done in [6] for the

NLS, albeit for a different Lax pair. Let ν be an imaginary double point of the spectrum of

the plane-wave, i.e. ν = jπ/L for some j ∈ Z. We examine the transformed eigenfunctions

built at ν and as a function of another complex double point of the spectrum of the plane-

wave, λ. We consider two distinct cases: (i) λ = ν, and (ii) λ 6= ν. We define the relationship

between ν and the wave number k as ±k − λ = ±ae∓ip. The arbitrary linear combination

of the eigenfunctions evaluated at ν is φ, i.e.

φ =

 φ1

φ2

 = c+φ
+(ν) + c−φ

−(ν) (3.2.1)

= c−
(
eρeiβφ+(ν) + φ−(ν)

)
=
iac−
2k


(
eρeiβe−i

π
4 ei

p
2 ei(kx−2kνt) + ei

π
4 e−i

p
2 e−i(kx−2kνt)

)
eia

2t

(
eρeiβe−i

π
4 e−i

p
2 ei(kx−2kνt) − eiπ4 ei p2 e−i(kx−2kνt)

)
e−ia

2t

 .
The Gauge matrix,

G(λ; ν, φ) =

 λ− ν |φ1|2
|φ1|2+|φ2|2 − ν

∗ |φ2|2
|φ1|2+|φ2|2 −(ν − ν∗) φ1φ∗2

|φ1|2+|φ2|2

−(ν − ν∗) φ∗1φ2
|φ1|2+|φ2|2 λ− ν |φ2|2

|φ1|2+|φ2|2 − ν
∗ |φ1|2
|φ1|2+|φ2|2



=

 λ− ν |φ1|2−|φ2|2|φ1|2+|φ2|2 − 2νφ1φ∗2
|φ1|2+|φ2|2

− 2νφ∗1φ2
|φ1|2+|φ2|2 λ+ ν |φ1|

2−|φ2|2
|φ1|2+|φ2|2

 ,
transforms the eigenfunctions φ± for the solution q into the new eigenfunctions, χ± for the

new solution Q found by using the Bäcklund transformation. If we define A and B as in
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(2.2.2) then we can rewrite the Gauge matrix as

G(λ; ν, φ) =

 λ− νA −νB

−νB∗ λ+ νA

 . (3.2.2)

Recall that φ1 and φ2 are already evaluated at ν so they are independent of λ.

We now construct the new eigenfunctions for the spatially periodic breather solution

using the eigenfunctions of the plane-wave. To do so, we need to evaluate the Gauge matrix

so we must find A and B. To do so, we need the components |φ1|2, |φ2|2, and φ1φ
∗
2. Let

σ = −4ikν. Since k ∈ R and ν is purely imaginary, σ ∈ R. Then,

φ1 =
iac−
2k

(
eρeiβe−i

π
4 ei

p
2 ei(kx−2kνt) + ei

π
4 e−i

p
2 e−i(kx−2kνt)

)
eia

2t,

φ∗1 =
−iac∗−

2k

(
eρe−iβei

π
4 e−i

p
2 e−i(kx+2kνt) + e−i

π
4 ei

p
2 ei(kx+2kνt)

)
e−ia

2t,

|φ1|2 =
a2|c−|2

4k2

(
e2ρe−4ikνt + eρeiβe−i

π
2 eipe2ikx + eρe−iβei

π
2 e−ipe−2ikx + e4ikνt

)
.

Next,

φ2 =
iac−
2k

(
eρeiβe−i

π
4 e−i

p
2 ei(kx−2kνt) − eiπ4 ei p2 e−i(kx−2kνt)

)
e−ia

2t,

φ∗2 =
−iac∗−

2k

(
eρe−iβei

π
4 ei

p
2 e−i(kx+2kνt) − e−iπ4 e−i p2 ei(kx+2kνt)

)
eia

2t,

|φ2|2 =
a2|c−|2

4k2

(
e2ρe−4ikνt − eρeiβe−iπ2 e−ipe2ikx − eρe−iβeiπ2 eipe−2ikx + e4ikνt

)
=
a2|c−|2

4k2
eρ
(
eρe−4ikνt − ei(2kx+β−p−π

2
) − e−i(2kx+β−p−π

2
) + e−ρe4ikνt

)
=
a2|c−|2

4k2
eρ
(
eρ−σt − 2 cos(2kx+ β − p− π

2
) + e−(ρ−σt)) .

Now the denominator of both A and B is

|φ1|2 + |φ2|2 =
a2|c−|2

4k2

[
2e2ρe−4ikνt +

(
eip − e−ip

)
eρeiβe−i

π
2 e2ikx
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−
(
eip − e−ip

)
eρe−iβei

π
2 e−2ikx + 2e4ikνt

]
=
a2|c−|2

2k2
eρ
[
eρe−4ikνt + e−ρe4ikνt + i sin(p)

(
ei(2kx+β−π

2
) − ei(2kx+β−π

2
)
)]

=
a2|c−|2

2k2
eρ
[
eρ−σt + e−(ρ−σt) − 2 sin(p) sin(2kx+ β − π

2
)
]

=
a2|c−|2
k2

eρ [cosh (ρ− σt) + sin(p) cos(2kx+ β)] .

For the numerator of A we find

|φ1|2 − |φ2|2 =
a2|c−|2

4k2

[
eρeiβe−i

π
2

(
eip + e−ip

)
e2ikx + eρe−iβei

π
2

(
eip + e−ip

)
e−2ikx

]
=
a2|c−|2

2k2
eρ cos(p)

[
eiβe−i

π
2 e2ikx + e−iβei

π
2 e−2ikx

]
=
a2|c−|2
k2

eρ cos(p) cos (2kx+ β − π

2
)

=
a2|c−|2
k2

eρ cos(p) sin (2kx+ β),

and for the numerator of B we have

2φ1φ
∗
2 =

a2|c−|2
4k2

[
e2ρeipe2ikνt − eρeiβe−iπ2 e2ikx + eρe−iβei

π
2 e−2ikx − e−ipe4ikνt

]
=
a2|c−|2

2k2
eρ
[
eρ−σt+ip − ei(2kx+β−π

2 ) + e−i(2kx+β−π
2 ) − e−(ρ−σt+ip)

]
=
a2|c−|2
k2

eρ
[
sinh (ρ− σt+ ip)− i sin

(
2kx+ β − π

2

)]
=
a2|c−|2
k2

eρ [cosh (ρ− σt) sinh(ip) + sinh (ρ− σt) cosh(ip) + i cos (2kx+ β)]

=
a2|c−|2
k2

eρ [i sin(p) cosh (ρ− σt) + cos(p) sinh (ρ− σt) + i cos (2kx+ β)] .

Finally, we construct A and B as

A =
|φ1|2 − |φ2|2
|φ1|2 + |φ2|2

=
cos(p) sin (2kx+ β)

cosh (ρ− σt) + sin(p) cos(2kx+ β)
,
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B =
2φ1φ

∗
2

|φ1|2 + |φ2|2

= e2ia2t i sin(p) cosh (ρ− σt) + cos(p) sinh (ρ− σt) + i cos (2kx+ β)

cosh (ρ− σt) + sin(p) cos(2kx+ β)
.

So the new eigenfunctions are

χ±(λ; ν, φ) = G(λ; ν, φ)φ±(λ)

=
ia

2k̂
e∓i

π
4 e±i

p̂
2

 λ− νA −νB

−νB∗ λ+ νA


 eia

2t

±e∓ip̂e−ia2t

 e±i(k̂x+2k̂λt)

where k̂(λ)± λ = ae∓ip̂.

3.2.1 Case 1: repeated eigenvalue

Note that when λ = ν, the Gauge matrix reduces to

G(ν; ν, φ) =

 ν − ν |φ1|2−|φ2|2|φ1|2+|φ2|2 − 2νφ1φ∗2
|φ1|2+|φ2|2

− 2νφ∗1φ2
|φ1|2+|φ2|2 ν + ν |φ1|

2−|φ2|2
|φ1|2+|φ2|2



=
2ν

|φ1|2 + |φ2|2

 |φ2|2 −φ1φ
∗
2

−φ∗1φ2 |φ1|2

 . (3.2.3)

When we take the determinant of (3.2.3) we see that

det
(
G(ν; ν, φ)

)
=

2ν

|φ1|2 + |φ2|2

∣∣∣∣∣∣∣∣
|φ2|2 −φ1φ

∗
2

−φ∗1φ2 |φ1|2

∣∣∣∣∣∣∣∣
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=
2ν

|φ1|2 + |φ2|2
(
|φ1|2|φ2|2 − (φ1φ

∗
2)(φ∗1φ2)

)
=

2ν

|φ1|2 + |φ2|2
(
|φ1|2|φ2|2 − |φ1|2|φ2|2

)
= 0.

Recall that the new eigenfunctions, χ± are formed as

χ±(ν; ν, φ) = G(ν; ν, φ)φ±(ν).

Since det
(
G(ν; ν, φ)

)
= 0, χ+ and χ− are linearly dependent. Therefore, it is sufficient to

examine only one of the eigenfunctions, we look at the behavior of χ+. In the case of using

a repeated eigenvalue we have

χ+(ν; ν, φ) =
2ν

|φ1|2 + |φ2|2

 |φ2|2 −φ1φ
∗
2

−φ∗1φ2 |φ1|2


 φ+

1

φ+
2



=
2ν

|φ1|2 + |φ2|2

 |φ2|2φ+
1 − φ1φ

∗
2φ

+
2

−φ∗1φ2φ
+
1 + |φ1|2φ+

2



=
2ν

|φ1|2 + |φ2|2

 φ∗2
(
φ2φ

+
1 − φ1φ

+
2

)
−φ∗1

(
φ2φ

+
1 + φ1φ

+
2

)
 .

Recall that φ is the linear combination of φ+ and φ− as formed in (3.2.1), so the

quantity in parenthesis above can be rewritten as

φ2φ
+
1 − φ1φ

+
2 =

(
c+φ

+
2 + c−φ

−
2

)
φ+

1 −
(
c+φ

+
1 + c−φ

−
1

)
φ+

2

= c+φ+
1 φ

+
2 + c−φ

+
1 φ
−
2 − c+φ

+
1 φ

+
2 − c−φ−1 φ+

2

= c−
(
φ+

1 φ
−
2 − φ−1 φ+

2

)
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= c−det


 φ+

1 φ+
2

φ−1 φ−2




= c−det

([
φ1 φ2

])
= c−W [φ1, φ2],

where W [M ] is the Wronskian of the matrix M .

Since φ± are the eigenfunctions of the plane wave, we see that

W [φ1, φ2] = φ+
1 φ
−
2 − φ−1 φ+

2

=

(
ia

2k

)2 [
eia

2t(−eipe−ia2t)− (e−ipe−ia
2t)eia

2t
]

=
a

4k2

[
aeip + ae−ip

]
=

a

4k2
[k + ν + k − ν]

=
a

2k
.

Namely, W [φ1, φ2] is constant in space and time, so the effect of this term on the behavior

of the eigenfunction remains unchanged.

With this information we can rewrite χ+ at ν as

χ+(ν; ν, φ) =
2c−νW [φ1, φ2]

|φ1|2 + |φ2|2

 φ∗2

−φ∗1



=
aνc−
k


φ∗2

|φ1|2+|φ2|2

−φ∗1
|φ1|2+|φ2|2

 . (3.2.4)
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The quantities φ∗2 and |φ1|2 + |φ2|2 have already been computed for evaluating B, we

see that

φ∗2
|φ1|2 + |φ2|2

= − ik

ac−

e
ρ
2

(
e−iβei

π
4 ei

p
2 e−ikxe

ρ
2 e2ikνt − e−iπ4 e−i p2 eikxe− ρ2 e−2ikνt

)
eρ
(
eρe−4ikνt + e−ρe4ikνt + i sin(p) sin(2kx+ β − π

2
))
)

= − ik

ac−
e−

ρ
2
e−iβei

π
4 ei

p
2 e−ikxe(ρ−σt)/2 − e−iπ4 e−i p2 eikxe−(ρ−σt)/2

eρ−σt + e−(ρ−σt) + 2 sin(p) cos(2kx+ β)
.

So as t→ ±∞, the behavior is exponential in both the numerator and denominator, but the

denominator grows more quickly, so the function goes to 0 as t→ ±∞ and the eigenfunction

does not have exponential growth.

If the underlying plane-wave has only one unstable mode, N = 1, then there are

no other potential sources of growth since λ and ν must be chosen to be complex double

points and there is only on double point from which to chose. If N ≥ 2, however, we must

separately address the behavior at the other complex double points. We show in section

3.2.2 that the other double points correspond to growth of the perturbation.

3.2.2 Case 2: distinct eigenvalues

In the case that N ≥ 2 we have shown in the previous case that ν does not contribute growth

of the perturbation, but we show in this section that other eigenvalues do cause growth. We

are interested in finding the behavior of the bounded functions that form a portion of the

components of χ± so we can look at the behavior of the squared eigenfunctions.
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Let

χ±(λ; ν, φ) =
ia

2k̂
e∓i

π
4 e±i

p̂
2

 B±1 (λ; ν, φ)eia
2t

B±2 (λ; ν, φ)e−ia
2t

 e±i(k̂x+2k̂λt)

Then

B+
1 =

[
λ− νe−ip̂ i sin(p) cosh (ρ− σt) + cos(p) sinh (ρ− σt)

cosh (ρ− σt) + sin(p) cos(2kx+ β)

−νe−ip̂ cos(p) sin (2kx+ β)eip̂ + i cos (2kx+ β)

cosh (ρ− σt) + sin(p) cos(2kx+ β)

]
B+

2 = e−ip̂
[
λ+ νeip̂

i sin(p) cosh (ρ− σt)− cos(p) sinh (ρ− σt)
cosh (ρ− σt) + sin(p) cos(2kx+ β)

+ν
cos(p) sin (2kx+ β) + ieip̂ cos (2kx+ β)

cosh (ρ− σt) + sin(p) cos(2kx+ β)

]

We are interested in behavior for large t, so taking the limit as t→∞ we find

lim
t→∞

B+
1 (λ; ν, φ) = λ− νe−ip̂ lim

t→∞

[
i sin(p) + cos(p) tanh (ρ− σt)

1 + sin(p) cos(2kx+ β) sech(ρ− σt)

]
= λ− νe−ip̂ (cos(p) + i sin(p))

= λ− νe−i(p̂−p)

lim
t→∞

B+
2 (λ; ν, φ) = e−ip̂

(
λ+ νeip̂ lim

t→∞

[
i sin(p)− cos(p) tanh (ρ− σt)

1 + sin(p) cos(2kx+ β) sech(ρ− σt)

])
= e−ip̂

(
λ+ νeip̂ (i sin(p)− cos(p))

)
= e−ip̂

(
λ− νeip̂ (cos(−p) + i sin(−p))

)
= e−ip̂

(
λ− νei(p̂−p)

)
.

Letting λ = ν we have

lim
t→∞

B+
1 (ν; ν, φ) = ν − νe−ipeip = ν − ν = 0,
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lim
t→∞

B+
2 (ν; ν, φ) = e−ip̂

(
ν − νeipe−ip

)
= e−ip̂ (ν − ν) = 0.

Furthermore, one of the squared eigenfunctions we are looking for requires us to

examine (B+
1 )2 − (B+∗

2 )2

(B+
1 )2 − (B+∗

2 )2 →
(
λ− νe−i(p̂−p)

)2 −
(
eip̂
(
λ∗ + νe−i(p̂−p)

))2

=
(
λ− νe−i(p̂−p)

)2 − e2ip̂
(
λ− νe−i(p̂−p)

)2

= (1− e2ip̂)
(
λ− νe−i(p̂−p)

)2
,

which is fixed for a fixed λ. Furthermore, this quantity is nonzero for λ 6= ν (and thus p̂ 6= p).

If we let φ = ψ = χ+, then one of the squared eigenfunctions is

g + h∗ =
(
χ+

1

)2 −
(
χ+∗

2

)2

= − a2

4k̂2
e−i

π
2 eip̂e2ik̂x

[(
B+

1 (x, t)eia
2tei2kλt

)2

−
(
B+∗

2 (x, t)eia
2tei2kλt

)2
]

= − a2

4k̂2
e−i

π
2 eip̂e2ik̂x

[(
B+

1 (x, t)
)2 −

(
B+∗

2 (x, t)
)2
]
e2ia2te4ik̂λt,

which is the product of quantities bounded in x and t for λ 6= ν with the factor exp{4ik̂λt}

that grows exponentially in time since k̂ ∈ R and λ ∈ C is a complex double point of the

spectrum. Because the squared eigenfunctions satisfy the linearized NLS, this exponential

growth indicates that the perturbation to the plane wave will grow exponentially in NLS.

Note that the limit in t would be indeterminate in the case when λ = ν, which is precisely

the case in section 3.2.1.

In conclusion, the spatially periodic breather is stable if, and only if, the background

plane wave has exactly one unstable mode (N = 1).
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3.3 Peregrine stability

Recall that we have already determined the behavior of A and B as L→∞. From equations

(2.3.1) and (2.3.2) we know

Ã =
4cx

4c2x2 + 16c4t2 + 1
,

B̃ = e−2ia2t

( −8c2t+ 2i

4c2x2 + 16c4t2 + 1
− i
)

= e−2ia2tB̃.

and the new eigenfunctions are constructed as

χ̃± =
i

2k
e∓i

π
4 e±i

p
2

 λ+ iaÃ iaB̃

iaB̃∗ λ− iaÃ


 aeia

2t

±ae∓ipe−ia2t

 e±i(kx+2kλt)

=
ia

2k
e∓i

π
4 e±i

p
2


(
λ+ iaÃ

)
± e∓ipiaB̃e−ia2t

iaB̃∗e−ia
2t ± e∓ip

(
λ− iaÃ

)
e−ia

2t

 e±i(kx+2kλt)

=
ia

2k
e∓i

π
4 e±i

p
2


(
λ+ iaÃ± e∓ipiaB̃

)
eia

2t(
iaB̃∗ ± e∓ip(λ− iaÃ)

)
e−ia

2t

 e±i(kx+2kλt)

=
ia

2k
e∓i

π
4 e±i

p
2

 B̃±1 e
ia2t

B̃±2 e
−ia2t

 e±i(kx+2kλt).

Since

lim
t→∞

Ã = lim
t→∞

4cx

4c2x2 + 16c4t2 + 1
= 0,

and lim
t→∞

B̃ =

( −8c2t+ 2i

4c2x2 + 16c4t2 + 1
− i
)

= −i,

we know that

lim
t→∞

B̃±1 = λ± e∓ipia(−i) = λ± ae∓ip,
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lim
t→∞

B̃±2 = ia(i)± λe∓ip = −a± λe∓ip.

Assume λ is purely imaginary, i.e. λ = iα for α ∈ R. Then as t→∞,

(
B+
∞1

)2 −
(
B+∗
∞2

)2 →
(
λ+ ae−ip

)2 −
((
e−ip(λ− aeip)

)∗)2

=
(
iα + ae−ip

)2 −
(
eip(ia2t− ae−ip)

)2

=
(
λ+ ae−ip

)2 − e2ip
(
iα + ae−ip

)2

=
(
1− e2ip

) (
iα + ae−ip

)2
.

For α 6= a, eip 6= i, and this quantity is bounded away from 0.

Looking at one of the squared eigenfunctions,

g + h∗ =
(
χ+
∞1

)2 −
(
χ+∗
∞2

)2

= − a2

4k2
e−i

π
2 eipe2ikx

[(
B+
∞1(x, t)eia

2tei2kλt
)2

−
(
B+∗
∞2(x, t)eia

2tei2kλt
)2
]

= − a2

4k̂2
e−i

π
2 eip̂e2ikx

[(
B+
∞1(x, t)

)2 −
(
B+∗
∞2(x, t)

)2
]
e2ia2te4ikλt.

Since k ∈ R is the wave number, the squared eigenfunction grows as t → ∞ for purely

imaginary λ. Thus the solution is unstable.

3.3.1 Conclusions

In this chapter we have carried out a comprehensive investigation of the linear stability of the

Peregrine solution of the NLS equation. Viewing the Peregrine soliton as the singular limit
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of the one mode SPB, we obtained general eigenfunctions of the Peregrine solution by taking

the limit of the eigenfunctions for the one mode SPB. We verified the Peregrine solution and

corresponding eigenfunctions satisfy the Lax pair. The main theorem used to study stability

is that, for a given solution u(x, t) of the NLS equation, its associated squared eigenfunctions

satisfy the linearized equation about u(x, t). As a result the question of stability is resolved

by examining the behavior in time of the squared eigenfunctions f(x, t) and g(x, t).

Using the squared eigenfunction approach, we constructed a λ-parametrized family

of solutions of the linearization of NLS equation about the Peregrine soliton. This produces

a fairly general family of such solutions. To satisfy the boundary conditions in the spatial

variable x, i.e. the solutions are required to be bounded in x and to decay polynomially as

x → ±∞, λ is limited to be in the imaginary band [-ia, ia]. Finally, we found that for any

such λ there are solutions of the linearization that exhibit exponential in time behavior, thus

showing the Peregrine soliton has infinitely many (in fact a continuum of) linear instabilities.
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CHAPTER 4

ROGUE WAVES AND DOWNSHIFTING

4.1 Higher order NLS

Recently, Gramstad and Trulsen derived a version of the higher order NLS equation (HONLS)

with periodic boundary conditions, i.e. u(x, t) = u(x+L, t) [25]. We add damping and wind

effects as follows:

iut + uxx + 2|u|2u+ iΓu+ iε̂
(

1
2
u3x − 8|u|2ux − 2ui(1 + iβ)

[
H
(
|u|2
)]
x

)
= 0, (4.1.1)

where H (f) is the Hilbert transform of f , and β > 0 is the nonlinear damping of the mean

flow, and Γ is the effect due to wind. When β = Γ = 0, we refer to (4.1.1) as the HONLS

equation.

4.2 Wave energy and Flux

The total wave energy, E, and the momentum or total energy flux, P for a solution u(x, t)

of the HONLS equation are given by

E(t) =

∫ L

0

|u|2 dx. (4.2.1)
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To examine how the perturbation affects the wave energy, we examine dE
dt

.

Lemma 4.2.1. The wave energy changes in time as

dE

dt
= −2

∫ L

0

|u|2
(
Γ + 2εβ

[
H(|u|2)

]
x

)
dx. (4.2.2)

Proof. Note that the integral in (4.2.1) is with respect to x, so we can pass the time derivative

through the integral. Furthermore, (4.1.1) solved for ut and its conjugate are

ut = iuxx + 2i|u|2u− Γu− ε
(

1
2
u3x − 8|u|2ux − 2iu(1 + iβ)

[
H
(
|u|2
)]
x

)
, (4.2.3)

u∗t = −iu∗xx − 2i|u|2u∗ − Γu∗ − ε
(

1
2
u∗3x − 8|u|2u∗x + 2iu∗(1− iβ)

[
H
(
|u|2
)]
x

)
. (4.2.4)

Since |u|2 = uu∗, we have

d|u|2
dt

= utu
∗ + uu∗t

=
[
iuxx + 2i|u|2u− Γu− ε

(
1
2
u3x − 8|u|2ux − 2iu(1 + iβ)

[
H
(
|u|2
)]
x

)]
u∗

+
[
−iu∗xx − 2i|u|2u∗ − Γu∗ − ε

(
1
2
u∗3x − 8|u|2u∗x + 2iu∗(1− iβ)

[
H
(
|u|2
)]
x

)]
u

= iuxxu
∗ + 2i|u|2uu∗ − Γuu∗ − ε

(
1
2
u3xu

∗ − 8|u|2uxu∗ − 2iuu∗(1 + iβ)
[
H
(
|u|2
)]
x

)
− iu∗xxu− 2i|u|2u∗u− Γu∗u− ε

(
1
2
u∗3xu− 8|u|2u∗xu+ 2iu∗u(1− iβ)

[
H
(
|u|2
)]
x

)
= iuxxu

∗ + 2i|u|4 − Γ|u|2 − ε
(

1
2
u3xu

∗ − 8|u|2uxu∗ − 2i|u|2(1 + iβ)
[
H
(
|u|2
)]
x

)
− iu∗xxu− 2i|u|4 − Γ|u|2 − ε

(
1
2
u∗3xu− 8|u|2u∗xu+ 2i|u|2(1− iβ)

[
H
(
|u|2
)]
x

)
= iuxxu

∗ + 2i|u|4 − Γ|u|2 − ε
(

1
2
u3xu

∗ − 8|u|2uxu∗ − 2i|u|2(1 + iβ)
[
H
(
|u|2
)]
x

)
− iu∗xxu− 2i|u|4 − Γ|u|2 − ε

(
1
2
u∗3xu− 8|u|2u∗xu+ 2i|u|2(1− iβ)

[
H
(
|u|2
)]
x

)
= −ε

[
1
2
(u3xu

∗ + u∗3xu)− 8|u|2(uxu
∗ + u∗xu) + 4|u|2β

[
H
(
|u|2
)]
x

]

83



+ iuxxu
∗ − iu∗xxu− 2Γ|u|2

= −2|u|2
(
Γ + 2εβ

[
H
(
|u|2
)]
x

)
+ r(u(x, t)),

where,

r(u(x, t)) ≡ iuxxu
∗ − iu∗xxu− ε

[
1
2
(u3xu

∗ + u∗3xu)− 8|u|2(uxu
∗ + u∗xu)

]
.

Note that

uxxu
∗ − u∗xxu =

d

dx
[uxu

∗ − uu∗x] ,

uxu
∗ + uu∗x =

d

dx
[uu∗] ,

u3xu
∗ + uu∗3x =

d

dx
[u2xu

∗ − uxu∗x + uu∗2x] .,

so we can rewrite r(u(x, t)) as

r(u(x, t)) =
d

dx

[
i(uxu

∗ − uu∗x)− ε
2
(u2xu

∗ − uxu∗x + uu∗2x)− 8ε|u|2(uu∗)
]

=
d

dx
[R(u(x, t))] .

Since u is periodic, so is u∗, ux, u
∗
x, etc. Thus,

∫ L

0

r(u(x, t)) dx =

∫ L

0

d

dx
[R(u(x, t))] dx = R(u(L, t))−R(u(0, t)) = 0.

Finally, we can compute

dE

dt
=

∫ L

0

(
− 2|u|2

(
Γ + 2εβ

[
H
(
|u|2
)]
x

)
+ r(u(x, t))

)
dx

=

∫ L

0

−2|u|2
(
Γ + 2εβ

[
H
(
|u|2
)]
x

)
dx+

∫ L

0

r(u(x, t)) dx

= −2

∫ L

0

|u|2
(
Γ + 2εβ

[
H(|u|2)

]
x

)
dx.
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When dE
dt

= 0 for all t, the wave energy remains unchanged from the initial state.

Note the wave energy is conserved for the NLS (ε = β = Γ = 0) and the HONLS (β = Γ = 0)

equations. To see how the change in the wave energy depends on β and Γ, expand u(x, t)

and |u(x, t)|2 in the following Fourier series,

u(x, t) =
∞∑

k=−∞

ûk(t)e
ikx |u(x, t)|2 =

∞∑
k=0

(αk(t)e
ikx + α∗k(t)e

−ikx), (4.2.5)

and substitute these expansions into (4.2.2), to arrive at

dE

dt
= −2L

[
Γ

∞∑
k=−∞

|ûk|2 + 2εβ
∞∑
k=1

k|αk|2
]
. (4.2.6)

Notice that when Γ = 0, the effect due to β is damping for β > 0. Similarly, when ε = 0 the

Γ > 0 removes energy from the system and Γ < 0 adds energy to the system.

For β ≥ 0: 1) If Γ ≥ 0 then dE
dt
≤ 0 for all time and the total energy is dissipated

or constant. 2) If the wind is pumping energy into the system, Γ < 0, then for a given

β the total energy can transition in time between being damped and being forced. In

this dissertation we only examine damped forced regimes, i.e. (β,Γ) pairs, where damping

eventually dominates on the time frame examined, i.e where for t ≥ t∗ E(t)/E(0) ≤ 1 and

E(t) is generally decreasing.

The Fourier expansion of the momentum can be written as

P = −2L
∞∑
−∞

k|ûk|2 = 2L
∞∑
k=1

k
(
|û−k|2 − |ûk|2

)
,
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which measures the asymmetry of the Fourier modes. The evolution of the momentum for

the damped forced HONLS is

dP

dt
= −2i

∫ L

0

(u∗ux − uu∗x)
[
Γ + 2εβ

(
H
(
|u|2
))
x

]
dx. (4.2.7)

The total energy flux, P for a solution u(x, t) of the HONLS equation is given by

P (t) = i

∫ L

0

(u∗ux − uu∗x) dx, (4.2.8)

and the Hamiltonian is

H =

∫ L

0

{
−i|ux|2 + i|u|4 − ε

4
(uxu

∗
xx − u∗xuxx) + 2ε|u|2(u∗ux − uu∗x)

}
dx. (4.2.9)

It should be noted that the momentum is conserved for the HONLS equation whereas

for the HONLS equation, an earlier extensively used higher order NLS equation, the momen-

tum oscillates in time [7]. Thus for the HONLS equation there are three conserved quantities

to monitor in the numerical experiments: the wave energy, momentum and Hamiltonian.

4.3 Measuring downshifting: the spectral peak and spectral center

Different diagnostics have been developed to address downshifting of the sea state. Tradi-

tionally, downshifting has been considered to be a shift down in the spectral peak, kpeak,

or dominant mode. Here kpeak is defined as the wave number k for which |ûk| achieves its

maximum.
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As an alternative, one may consider the spectral center km of the spectrum. In analogy

with the analysis of u(x, t) on an infinite domain where Parseval’s theorem and generalized

mean value theorem yield,

E(t) = L

∫ L

0

|û|2 dk and P (t) = −2Lkm

∫ L

0

|û|2 dk,

Uchiyama and Kawahara [26] defined the spectral center or mean wave number as

km = −1

2

P

E
=

∑∞
−∞ k|ûk|2∑∞
−∞ |ûk|2

. (4.3.1)

Note that for the NLS and HONLS equations where the energy and momentum are conserved,

km is also invariant.

Permanent downshift of a wave train is considered to occur when the spectral peak

kpeak moves permanently to a lower mode [1]. The spectral center and spectral peak can be

different. When the Fourier coefficients are sufficiently concentrated about kpeak, then km ≈

kpeak and in this case the condition k̇m < 0 has been used to indicate downshifting. In all the

numerical experiments we monitor both the spectral peak and the spectral center. We use

the spectral center to provide a qualitative understanding of the downshifting mechanism and

a necessary condition for permanent downshift, i.e. k̇m < 0. Examining the spectral center

alone does not yield information on the time at which the downshift becomes permanent.

As a result, the time at which permanent downshifting occurs is determined using kpeak.

Although temporary downshifts occur in the NLS and HONLS numerical experiments (see

sec 5.2), a permanent downshift does not occur since km is constant.
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Figure 4.1: The percentage of experiments with asymptotic kpeak listed in the first column

for experiments with nonlinear damping that settled into a single mode by the end of the

experiment (table, left). The average time that settled experiments ceased exhibiting spectral

activity (figure, right). The experiments presented are for the data in earlier experiments.

The downshifting mechanism for solutions with both nonlinear damping and linear

damping or linear forcing behaves similarly to those without a linear term. As shown in sec-

tion 5.5, if the experiment has linear forcing, the energy may increase early in the timeseries,

but in all of the presented cases the nonlinear damping is dominant causing the energy to

decrease. At the same time, the momentum is increasing so the spectral center decreases

in a manner similar to the cases with no linear term. We will show the inclusion of linear

damping causes the spectral center to decrease less for a given value of β whereas linear

forcing causes a larger decrease in the spectral center for a given β value.

We show in section 5.5 that experiments with linear damping or forcing still experi-

ence downshifting if the nonlinear term is dominant. Unlike the case with no linear term,
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experiments with linear damping or linear forcing have multiple stages of downshifting. Af-

ter permanent downshift to a lower mode, the spectral peak may continue to move among

the lower modes or even move to higher modes (upshift). An experiment may or may not

then settle permanently into a single lower mode, which we define as kasym once the ongoing

downshifting mechanism ceases.

4.4 Linear Instability of the Stokes wave for nonlinear damped HONLS

In this section we study the stability of the Stokes wave for the nonlinear damped HONLS

equation, which is (4.1.1) with Γ = 0.

LetA1, A2 ∈ R, u(x, t) = ae2ia2t, φ(x, t) = exp i(kx− Ωt), φ∗(x, t) = exp−i(kx− Ω∗t)

and construct an ε perturbation of the solution u of (4.1.1) as

ũ = u (1 + ε(A1φ+ A2φ
∗)) . (4.4.1)

This allows us to expand (4.1.1) about the solution u. With u, φ, φ∗ as given we have

ut = 2ia2u φt = −iΩφ φ∗t = iΩ∗φ∗

ux = 0 φx = ikφ φ∗x = −ikφ∗

uxx = 0 φxx = −k2φ φ∗xx = −k2φ∗

u3x = 0 φ3x = −ik3φ φ∗3x = ik3φ∗

Then we can express each term of (4.1.1) linearly in terms of ε as follows:

ũt = ut [1 + ε(A1φ+ A2φ
∗)] + u [ε(A1φt + A2φ

∗
t )]
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= 2ia2u [1 + ε(A1φ+ A2φ
∗)] + u [ε(A1φt + A2φ

∗
t )]

= 2ia2u+ εu
[
A1(2ia2φ+ φt) + A2(2ia2φ∗ + φ∗t )

]
ũx = ux [1 + ε(A1φ+ A2φ

∗)] + u [ε(A1φx + A2φ
∗
x)]

= εu [A1φx + A2φ
∗
x]

ũxx = ux [1 + ε(A1φx + A2φ
∗
x)] + u [ε(A1φxx + A2φ

∗
xx)]

= εu [A1φxx + A2φ
∗
xx]

ũ3x = ux [1 + ε(A1φxx + A2φ
∗
xx)] + u [ε(A1φ3x + A2φ

∗
3x)]

= εu [A1φ3x + A2φ
∗
3x]

|ũ|2 = |u|2 [1 + ε(A1φ+ A2φ
∗)] [1 + ε(A1φ

∗ + A2φ)]

= a2 (1 + ε [A1(φ+ φ∗) + A2(φ+ φ∗)])

|ũ|2ũ = a2u [1 + ε(A1φ+ A2φ
∗)] (1 + ε [A1(φ+ φ∗) + A2(φ+ φ∗)])

= a2u+ εu
[
A1(2a2φ+ a2φ∗) + A2(a2φ+ 2a2φ∗)

]
|ũ|2ũx = a2u (1 + ε [A1(φ+ φ∗) + A2(φ+ φ∗)]) [ε(A1φx + A2φ

∗
x)]

= εua2 [A1φx + A2φ
∗
x]

H
(
|ũ|2
)

= a2ε(A1 + A2)H (φ+ φ∗)

= a2ε(A1 + A2)(−iφ+ iφ∗)

ũ
[
H
(
|ũ|2
)]
x

= εu
[
a2(A1 + A2)(iφx − iφ∗x)

]
[1 + ε(A1φ+ A2φ

∗)]

= εu
[
A1a

2(−iφx + iφ∗x) + A2a
2(−iφx + iφ∗x)

]
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Next, the correct coefficients from (4.1.1) are applied to each term.

iũt = −2a2u+ εu
[
A1(−2a2φ+ iφt) + A2(−2a2φ∗ + iφ∗t )

]
ũxx = εu [A1φxx + A2φ

∗
xx]

2|ũ|2ũ = 2a2u+ εu
[
A1(4a2φ+ 2a2φ∗) + A2(2a2φ+ 4a2φ∗)

]
1
2
iε̂ũ3x = εu

[
A1

i
2
ε̂φ3x + A2

i
2
ε̂φ∗3x

]
−8iε̂|ũ|2ũx = εu

[
A1(−8ia2ε̂)φx + A2(−8ia2ε̂)φ∗x

]
2ε̂ũ(1 + iβ)

[
H
(
|ũ|2
)]
x

= εu
[
A12a2ε̂(1 + iβ)(−iφx + iφ∗x) + A22a2ε̂(1 + iβ)(−iφx + iφ∗x)

]
The two terms without ε are opposite, so substituting these expression into (4.1.1)

leaves only terms which are multiplied by εu. Canceling out this factor and grouping the

terms according to A1, A2 yields

iũt + ũxx + 2|ũ|2ũ+ iε̂
(

1
2
ũ3x − 8|ũ|2ũx − 2ũi(1 + iβ)

[
H
(
|ũ|2
)]
x

)
= iũt + ũxx + 2|ũ|2ũ+ 1

2
iε̂ũ3x − 8iε̂|ũ|2ũx + 2ε̂ũ(1 + iβ)

[
H
(
|ũ|2
)]
x

=A1

[
−2a2φ+ iφt + φxx + 4a2φ+ 2a2φ∗ + i

2
ε̂φ3x − 8ia2ε̂φx + 2a2ε̂(1 + iβ)(−iφx + iφ∗x)

]
+ A2

[
−2a2φ∗ + iφ∗t + φ∗xx + 2a2φ+ 4a2φ∗ + i

2
ε̂φ∗3x − 8ia2ε̂φ∗x + 2a2ε̂(1 + iβ)(−iφx + iφ∗x)

]
=A1

[
iφt + φxx + 2a2φ+ 2a2φ∗ + i

2
ε̂φ3x − 8ia2ε̂φx + 2a2ε̂(1 + iβ)(−iφx + iφ∗x)

]
+ A2

[
iφ∗t + φ∗xx + 2a2φ+ 2a2φ∗ + i

2
ε̂φ∗3x − 8ia2ε̂φ∗x + 2a2ε̂(1 + iβ)(−iφx + iφ∗x)

]
=A1

[
Ωφ− k2φ+ 2a2φ+ 2a2φ∗ + 1

2
ε̂k3φ+ 8a2ε̂kφ+ 2a2ε̂(1 + iβ)(kφ+ kφ∗)

]
+ A2

[
−Ω∗φ∗ − k2φ∗ + 2a2φ+ 2a2φ∗ − 1

2
ε̂k3φ∗ − 8a2ε̂kφ∗ + 2a2ε̂(1 + iβ)(kφ+ kφ∗)

]
=A1

[(
Ω− k2 + 2a2 + 1

2
ε̂k3 + 10a2ε̂k + 2ia2kε̂β

)
φ+

(
2a2 + 2a2kε̂+ 2ia2kε̂β

)
φ∗
]
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+ A2

[(
−Ω∗ − k2 + 2a2 − 1

2
ε̂k3 − 6a2ε̂k + 2ia2kε̂β

)
φ∗ +

(
2a2 + 2a2kε̂+ 2ia2kε̂β

)
φ
]

so we can write the linearized equation as

A1 [(Ω + C +B)φ+ (D +B)φ∗] + A2 [(−Ω∗ + E +B)φ∗ + (D +B)φ] = 0 (4.4.2)

where

B = 2ia2kε̂β

C = −k2 + 2a2 + 1
2
ε̂k3 + 10a2ε̂k

D = 2a2 + 2a2kε̂

E = −k2 + 2a2 − 1
2
ε̂k3 − 6a2ε̂k

Noting that A1, A2, C,D,E ∈ R, while B∗ = −B we see that the equation conjugate to

(4.4.2) is

A1 [(Ω∗ + C −B)φ∗ + (D −B)φ] + A2 [(−Ω + E −B)φ+ (D −B)φ∗] = 0. (4.4.3)

Simultaneously satisfying (4.4.2) and (4.4.3) yields the system (Ω + C +B)φ+ (D +B)φ∗ (D +B)φ+ (−Ω∗ + E +B)φ∗

(C +B)φ+ (Ω∗ + C −B)φ∗ (−Ω + E −B)φ+ (D −B)φ∗


 A1

A2

 =

 0

0

 .
(4.4.4)

To have a nontrivial solution to (4.4.4), the determinant must be zero, i.e.

[(Ω + C +B)φ+ (D +B)φ∗] [(−Ω + E −B)φ+ (D −B)φ∗]
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− [(D −B)φ+ (Ω∗ + C −B)φ∗] [(D +B)φ+ (−Ω∗ + E +B)φ∗] = 0

(Ω + C +B)(−Ω + E −B)φ2 + [(D −B)(−Ω + E +B) + (−Ω + E −B)(D +B)] |φ|2

+ (D +B)(D −B)(φ∗)2 − (D −B)(D +B)φ2 − (Ω∗ + C −B)(−Ω∗ + E +B)(φ∗)2

− [(D −B)(−Ω∗ + E +B) + (D +B)(Ω∗ + C −B)] |φ|2 = 0

[(Ω + C +B)(−Ω + E −B)− (D −B)(D +B)]φ2

+ [(D +B)(D −B)− (Ω∗ + C −B)(−Ω∗ + E +B)] (φ∗)2

+ [(D −B)(−Ω + Ω∗) + (−Ω + Ω∗ + E + C)(D +B)] |φ|2 = 0

A sufficient condition for the system to have a nontrivial solution is for the coefficients of

φ2, (φ∗)2, and |φ|2 = 1 to be zero. Isolating just the the φ2 terms we have

(Ω + C +B)(−Ω + E −B)− (D −B)(D +B)

= −Ω2 + (E − 2B − C)Ω + CE − CB +BE −D2

= −(Ω2 − B̂Ω− Ĉ) (4.4.5)

where,

B̂ = E − 2B − C,

Ĉ = (CE − CB +BE −D2).

For the (φ∗)2 terms, we have

(D +B)(D −B)− (−Ω∗ + E −B)(Ω∗ + C +B)

= (Ω∗)2 − (E + 2B − C)Ω∗ − CE − CB +BE +D2
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= (Ω∗)2 − (E + 2B − C)Ω∗ − (CE + CB −BE −D2)

= (Ω∗)2 − B̂∗Ω∗ − Ĉ∗

=
(

Ω2 − B̂Ω− Ĉ
)∗
. (4.4.6)

Noting that (4.4.6) is the conjugate of (4.4.5), the conditions on the system(4.4.4)

imposed by the (φ∗)2 terms are consistent with those for the φ2 terms.

Proceeding with the coefficients of (4.4.5) we calculate:

B̂ = (E − C)− 2B = −k2 + 2a2 − 1
2
ε̂k3 − 10a2ε̂k + 4ia2kε̂β + k2 − 2a2 − 1

2
ε̂k3 − 6a2kε̂

= −ε̂k3 − 16a2ε̂k − 4ia2kε̂β

= −2kε̂(1
2
k2 + 8a2 + 2ia2β)

B̂2 = (E − 2B − C)2 = (ε̂k)2(k2 + 16a2 + 4ia2β)(k2 + 16a2 + 4ia2β)

= 4(ε̂k)2
[

1
4
k4 + 8a2k2 + 2ia2k2β + 64a4 + 32ia4β − 4a4β2

]
Calculating the components of Ĉ we have

CE = (−k2 + 2a2 + 1
2
ε̂k3 + 10a2ε̂k)(−k2 + 2a2 − 1

2
ε̂k3 − 6a2ε̂k)

= k4 − 4a2k3ε̂+ 4a4 + 8a4kε̂− 1
4
ε̂2k6 − 8a2k4ε̂2 − 60a4k2ε̂2 − 4a2k2

B(E − C) = −2ia2kε̂β(ε̂k3 + 16a2ε̂k)

−D2 = −(2a2 − 2a2kε̂)(2a2 − 2a2kε̂)

= −4a4 − 8a4kε̂− 4a4k2ε̂2

CE −D2 = k4 − 4a2k3ε̂− 1
4
ε̂2k6 − 8a2k4ε̂2 − 64a4k2ε̂2 − 4a2k2
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Ĉ = CE −D2 +B(C − E)

= k4 − 4a2k2 − 4a2k3ε̂+ (ε̂k)2
[
−1

4
k4 − 8a2k2 − 2ia2k2β − 64a4 − 32ia4β

]
So that

B̂2 + 4Ĉ = 4
[
−4a4ε̂2k2β2 + k4 − 4a2k2 − 4a2k3ε̂

]
= −4k2

[
4a4ε̂2β2 − k2 + 4a2 + 4a2kε̂

]
Since (4.4.5) is quadratic in Ω, we have

Ω = 1
2

(
B̂ ±

√
B̂2 + 4Ĉ

)
= ε̂(−1

2
k3 − 8a2k − 2ia2kβ)± ik

√
4a2 − k2 + 4a4ε̂2β2 + 4a2kε̂

In Figure 4.2 we see the growth rates of the sidebands for the NLS, HONLS, and

nonlinear damped HONLS. In particular, we see that the nonlinear damped HONLS has

growth rates similar to that of HONLS without damping, and the largest kj that grows

is nearly indistinguishable for the two equations. The HONLS equation, both with and

without nonlinear damping, has a larger growth rate for many of the kj that grow than the

NLS equation. There are also more kj that correspond to growth for HONLS than for NLS.
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Figure 4.2: Growth rates, σj, of the sidebands for the NLS (ε = β = 0), HONLS (ε = 0.05,

β = 0), and nonlinear damped HONLS (ε = 0.05, β = .7) equations as a function of kj for

a = .5, L = 4
√

2π.
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4.5 Linear Instability of the Stokes wave for nonlinear damped HONLS with

linear effects

When considering the full equation with linear damping the methodology of determining

the stability of the solutions stays the same, but the Stokes’ wave is no longer a solution to

(4.1.1). Consequently, we must expand about a solution of the full equation. There is still a

solution that is independent of space, so we begin by proving that solution satisfies the PDE

with additional linear effects.

Theorem 4.5.1. NLS with the addition of linear effects,

iut + uxx + 2|u|2u+ iΓu = 0, (4.5.1)

has the solution

u(t) = Ae−Γt exp {2i|A|2 1− e−2Γt

2Γ
}.

Proof. Using the product rule, we have

ut = A
d

dt

(
e−Γt

)
+ Ae−Γt d

dt

(
exp {2i|A|2 1− e−2Γt

2Γ
}
)

= −AΓe−Γt exp {2i|A|2 1− e−2Γt

2Γ
}+ 2i|A|2Ae−Γt exp {2i|A|2 1− e−2Γt

2Γ
} d
dt

(−e−2Γt

2Γ

)
= (−Γ + 2i|A|2e−2Γt)u

=⇒ iut = −(iΓ + 2|A|2e−2Γt)u.

Note that u is independent of x, so uxx = 0. Next, we examine |u|2.

|u|2 = |Ae−Γt exp {2i|A|2 1− e−2Γt

2Γ
}|2
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= |A|2|e−Γt|2| exp {2i|A|2 1− e−2Γt

2Γ
}|

= |A|2e−2Γt,

since |eiθ| = 1 for θ ∈ R. So we have

iut + uxx + 2|u|2u+ iΓu = −(iΓ + 2|A|2e−2Γt)u+ 0 + 2|A|2e−2Γtu+ iΓu = 0,

as desired.

Corollary 4.5.2. The spatially-independent function

u(t) = Ae−Γt exp {2i|A|2 1− e−2Γt

2Γ
}

is a solution to

iut + uxx + 2|u|2u+ iΓu = −iε̂
(

1

2
uxxx − 6|u|2ux + u2u∗x − 2iu(1 + iβ)

[
H
(
|u|2
)]
x

)
,

where H (f) is the Hilbert transform of the function f .

Proof. Since u is independent of x, uxxx = ux = u∗x = 0. Additionally,

H (f) (t) = p.v.− 1

2π

∫ ∞
−∞

f(τ)

t− τ dτ

Thus if we take a derivative in space we again get no contribution. So none of the terms

on the RHS survive the derivative in space. Hence, by the previous problem u(t) is also a

solution to this perturbation of the equation.

Now that we have a solution to the PDE, we can proceed with linearizing about this so-

lution. To simplify the calculations, we first change variables. Let ψ(x, t) = µ(x, t) exp (−2t).
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So that

iψt = iµte
−2t − 2iµe−2t

ψxx = µxxe
−2t

|ψ|2ψ = |µ|2e−4tµe−2t = |µ|2µe−6t

2iψ = 2iµe−2t

ψ3x = µ3xe
−2t

|ψ|2ψx = |µ|2µxe−6t

H
(
|ψ|2

)
= H

(
|µ|2e−4t

)
= e−4tH

(
|µ|2
)

ψH
(
|ψ|2

)
x

= µe−6tH
(
(|µ|2)x

)
Canceling the common e−2t in each term, the governing equation becomes

iµt + µxx + 2|µ|2µe−4t + iε̂

(
1

2
µ3x + e−4t

[
−8|µ|2µx − 2(1 + iβ)µH

(
(|µ|2)x

)])
= 0

Next, we expand about a solution. Let µ0(t) = exp {2iA2
(

1−e−4t

4
+ i arg(A)

)
}, and

µ(x, t) = exp

{
2i|A|2

(
1− e−4t

4

)
+ i arg(A)

}(
|A|+ εu(x, t) + iεv(x, t) +O

(
ε2
))

= µ0

(
|A|+ εu+ iεv +O

(
ε2
))

where u and v are real-valued functions. Then

|µ0|2 = 1, since

[
2|A|2

(
1− e−4t

4

)
+ arg(A)

]
∈ R.

Also,

d

dt
(µ0) =

d

dt

[
2i|A|2

(
1− e−4t

4

)
+ i arg(A)

]
µ0 = 2i|A|2e−4tµ0.
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We now substitute our form of µ into the transformed governing equation. We have

the following:

µt =
d

dt
(µ0)(|A|+ εu+ iεv) + µ0(εut + iεvt)

= µ0

[
2i|A|2e−4t(|A|+ εu+ iεv) + εut + iεvt

]
µxx = µ0 [εuxx + iεvxx]

|µ|2 = |µ0|2||A|+ εu+ iεv|2

= (|A|+ εu+ iεv)(|A|+ εu− iεv)

= (|A|2 + |A|εu− i|A|εv + |A|εu+ i|A|εv +O
(
ε2
)
)

= (|A|2 + 2|A|εu+O
(
ε2
)
)

|µ|2µ = µ0

[
(|A|2 + 2|A|εu+O

(
ε2
)
)(|A|+ εu+ iεv)

]
= µ0

[
|A|3 + |A|2εu+ i|A|2εv + 2|A|2εu+O

(
ε2
)]

= µ0

[
|A|3 + 3|A|2εu+ i|A|2εv +O

(
ε2
)]

µ3x = µ0 [εu3x + iεv3x]

|µ|2µx = µ0

(
|A|2εux + i|A|2εvx

)
H
(
(|µ|2)x

)
= 2|A|2εH (ux)

µH
(
(|µ|2)x

)
= 2ε|A|2µ0H (ux)

With the appropriate coefficients we have

iµt = µ0

[
−2e−4t|A|3 − 2e−4t|A|2εu− 2ie−4t|A|2εv + iεut − εvt

]
µxx = µ0 [εuxx + iεvxx]
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2e−4t|µ|2µ = µ0

[
2e−4t|A|3 + 6e−4t|A|2εu+ i2e−4t|A|2εv

]
−8iε̂e−4t|µ|2µx = µ0

(
−8i|A|2εε̂e−4tux + 8|A|εε̂e−4tvx

)
iε̂

1

2
µ3x = µ0

[
εiε̂

1

2
u3x − εε̂

1

2
v3x

]
2ε̂(1 + iβ)e−4tµH

(
(|µ|2)x

)
= µ04(1 + iβ)εε̂|A|2e−4tH (ux)

Summing these at O (ε0) we have

µ0

[
−2e−4t|A|3 + 2e−4t|A|3

]
= 0

which is satisfied because µ0 is a solution to the equation.

Canceling the common factor of µ0, at O (ε) we have

−2e−4t|A|2u− 2ie−4t|A|2v + iut − vt + uxx + ivxx + 6e−4t|A|2u+ i2e−4t|A|2v

− 8i|A|2ε̂e−4tux + 8|A|2ε̂e−4tvx + iε̂
1

2
u3x − ε̂

1

2
v3x

+ 4iβε̂|A|2e−4tH (ux) + 4ε̂|A|2e−4tH (ux) = 0.

Or,

4e−4t|A|2u+ iut − vt + uxx + ivxx − 8i|A|2ε̂e−4tux + 8|A|2ε̂e−4tvx

+ iε̂
1

2
u3x − ε̂

1

2
v3x + 4iβε̂|A|2e−4tH (ux) + 4ε̂|A|2e−4tH (ux) = 0.

We assume that u and v have the form
u(x, t) = U(k, ω, t)eikx + c.c

v(x, t) = V (k, ω, t)eikx + c.c

,
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where c.c. is the complex conjugate of the term, we have

4e−4t|A|2Ueikx + iUte
ikx − Vteikx + U(ik)2eikx + iV (ik)2eikx

− 8i|A|2ε̂e−4t(ik)Ueikx + 8|A|2ε̂e−4tV (ik)eikx + iε̂
1

2
(ik)3Ueikx

− ε̂1
2

(ik)3V eikx + 4iβε̂|A|2e−4tkUeikx + 4ε̂|A|2e−4tkUeikx = 0.

Simplifying

4e−4t|A|2U + iUt − Vt − k2U − ik2V + 12|A|2ε̂e−4tkU + i8|A|2ε̂e−4tkV + ε̂
1

2
k3U

+ iε̂
1

2
k3V + 4iβε̂|A|2e−4tkU = 0.

Grouping by real and imaginary coefficients we have
4e−4t|A|2U − Vt − k2U + 12|A|2ε̂e−4tkU + ε̂1

2
k3U = 0

Ut − k2V + 8|A|2ε̂e−4tkV + ε̂1
2
k3V + 4βε̂|A|2e−4tkU = 0

Vt = 4e−4t|A|2U − k2U + 12|A|2ε̂e−4tkU + ε̂1
2
k3U

Ut = k2V − 8|A|2ε̂e−4tkV − ε̂1
2
k3V − 4βε̂|A|2e−4tkU

Vt =
[
4e−4t|A|2 − k2 + 12|A|2ε̂e−4tk + ε̂1

2
k3
]
U

Ut =
[
k2 − 8|A|2ε̂e−4tk − ε̂1

2
k3
]
V − 4βε̂|A|2e−4tkU

.

Taking another derivative of Ut and substituting in Vt we arrive at

Utt =

[
k2 − 8|A|2ε̂e−4tk − ε̂1

2
k3

]
Vt − 4βε̂|A|2e−4tkUt

Utt + 4βε̂|A|2e−4tkUt

−
[
k2 − 8|A|2ε̂e−4tk − ε̂1

2
k3

] [
4e−4t|A|2 − k2 + 12|A|2ε̂e−4tk + ε̂

1

2
k3

]
U = 0
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Let

B(t) = 4βε̂|A|2e−4tk,

C(t) = C1(t)C2(t),

C1(t) = k2 − 8|A|2ε̂e−4tk − ε̂1
2
k3,

C2(t) = 4e−4t|A|2 − k2 + 12|A|2ε̂e−4tk + ε̂
1

2
k3.

So the differential equation can be rewritten as

Utt +B(t)Ut − C(t)U = 0. (4.5.2)

An integrating factor is utilized in order to get the differential equation into Sturm-Liouville

form. Note that (4.5.2) can be rewritten as

e
∫
B(t) dtUtt +B(t)e

∫
B(t) dtUt − C(t)e

∫
B(t) dtU = 0.

=⇒ d

dt

[
e
∫
B(t) dtUt

]
− C(t)e

∫
B(t) dtU = 0.

Letting K(t) = e
∫
B(t) dt and G(t) = C(t)K(t), equation (4.5.2) has the Sturm-Liouville form

d

dt

[
K
dU

dt

]
−GU = 0.

Now, we consider the signs of K and G. Since B(t) ∈ R, and moreover, B(t) ≥ 0, we

have that K(t) ≥ 1 for all t. The sign of G(t) = C(t)K(t) is determined by the sign of C(t).

G(t) ≥ 0 if C(t) ≥ 0, so C1(t) and C2(t) must have the same sign.
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First, we address the case where both functions are negative. If C1(t) < 0 then

k2 − 8|A|2ε̂e−4tk − ε̂1
2
k3 < 0

=⇒ k2 < ε̂
(

8|A|2e−4tk +
1

2
k3
)
.

However, when ε̂ = 0, this implies that k2 < 0, which is a contradiction. Hence, the only

situation where the function has non-oscillatory solutions is when both C1(t) and C2(t) are

positive.

If C1(t) > 0, then we have k2 > ε̂
(

8|A|2e−4tk + 1
2
k3
)

. We must also have

C2(t) = 4e−4t|A|2 − k2 + 12|A|2ε̂e−4tk + ε̂
1

2
k3 > 0

=⇒ k2 < 4e−4t|A|2 + ε̂
(

12|A|2e−4tk +
1

2
k3
)
.

Notice, that when C1 and C2 are evaluated at ε̂ = 0, our conclusion is consistent with

Segur’s conclusions for the linearly damped NLS [9]. Nonlinear damping of the mean flow

was also not considered in that work.

These requirements mean that we have

ε̂
(

8|A|2e−4tk +
1

2
k3
)
< k2 < 4e−4t|A|2 + ε̂

(
12|A|2e−4tk +

1

2
k3
)

ε̂
(

8|A|2e−4tk +
1

2
k3
)
< k2 < 4e−4t|A|2(1 + ε̂) + ε̂

(
8|A|2e−4tk +

1

2
k3
)
.

Hence the instability region has width 4e−4t|A|2(1 + ε̂), and as t → ∞, the width of this

region goes to 0.
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CHAPTER 5

NUMERICAL EXPERIMENTS

5.1 Setup of numerical experiments

The initial data used in the numerical experiments are small perturbations of the unstable

plane wave, i.e.

u(x, 0) = a
(

1 + δ cos(2πx/L)
)
, (5.1.1)

where δ << 1 and the amplitude a and period L are chosen so that baL/πc = N = 1, 2, 3.

Initial data (5.1.1) is referred to as the N unstable mode (UM) “regime” as the

background plane wave has N unstable modes initially. The solutions are approximated

numerically using a very accurate smoothing exponential integrator. The integrator combines

a Fourier-mode decomposition in space with a fourth-order exponential Runge-Kutta method

in time which uses Padé approximations of the matrix exponential terms. The integrator

was implmented using 256 Fourier modes for L = 4
√

2π and a time step of ∆t = 10−3

for 9 < t < 200. Each of the applicable conserved quantities for the HONLS equation are

conserved to an order of O (10−4) for the experiments presented here. See the Appendix for

further details.
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5.2 Rogue waves and downshifting in HONLS

In this section we compare the development of rogue waves in the NLS and HONLS equations.

We begin with modulated plane wave initial data (5.1.1) in the one UM regime, which can

be characterized by fixing L = 2
√

2π and varying the amplitude, 0.4 ≤ a ≤ .67, with

modulation δ = .0001. Figure 5.1(a) shows the maximum strength, Smax(a), attained with

the NLS and HONLS equations for 0 ≤ t ≤ 40. For all values of a, the maximum strengths

of the HONLS waves are greater than those of the NLS waves. Even so, whether using

modulated plane wave or single mode SPB initial data, Figures 5.1(a-b) show rogue waves

are not obtained in either the NLS or the HONLS experiments in the one UM regime. In

general, Smax increases with the initial amplitude; close to the upper bound for one UM

Smax(.67) ≈ 2.15 for the HONLS equation. As such, it may be possible to obtain rogue

waves in the HONLS equation for initial data in the one UM regime by using larger values

of ε, which would introduce another UM. However, none were observed for the range of ε

considered in our numerical experiments, (ε ≤ 0.05) .

Figure 5.2(a) shows the surface amplitude |u(x, t)| for initial data (5.1.1) in the two

UMs regime, i.e. a = 0.5, δ = 0.1, and L = 4
√

2π for 0 < t < 200. Shortly after a

rogue waves appears at t ≈ 8 the solution becomes chaotic. The evolution of the strength

S(t), Figure 5.2(b), shows rogue waves occur intermittently throughout the time series. The

larger rogue waves have strengths, S(t) > 2.6 at t ≈ 8 and at t ≈ 173, are due to partial

coalescence of the modes in the chaotic sea state, and are greater than the strengths of the
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Figure 5.1: (a) Smax(a) for the NLS (ε = 0) and HONLS (ε = 0.05) equations using initial

data (5.1.1) with δ = .0001 and L = 2
√

2π, (b) HONLS evolution of the single mode SPB

initial data, U1(x, 0;−2), L = 2
√

2π, ε = 0.05, β = Γ = 0, for 0 ≤ t ≤ 40.

well separated two mode SPBs (see Figure 1.6(a)). However, the HONLS wave strengths

are typically smaller than Smax for the coalesced two mode SPB as the higher order terms

in the HONLS equation break symmetry and prevent a complete spatial coalescence of the

nonlinear modes.

A temporary downshift in the spectral peak occurs with each large wave. Figure 5.2(c)

shows the time evolution of the main Fourier modes |Ak(t)| for k = 0,±1, . . . ,±4. During

each of the modulation stages the zeroth mode loses energy as the upper and lower higher

harmonics become excited. For the HONLS equation the total energy and the total energy

flux are constant. This allows the energy to flow back to the zeroth mode keeping the spectral

center constant (in the numerical simulation the spectral center was conserved O(10−12)).
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Figure 5.2: HONLS equation with ε = 0.05, Γ = β = 0. Evolution of the (a) surface

amplitude |u(x, t)|, (b) strength S(t), (c) main Fourier modes, and (d) spectral peak using

initial data (5.1.1) with a = 0.5, L = 4
√

2π, δ = 0.1 for 0 < t < 200.

The plot of kpeak in Figure 5.2(d) confirms that a permanent frequency downshift does not

occur.

To compare the behavior of the waves for the HONLS (ε = 0.05,Γ = β = 0) and the

NLS equations in the two UMs regime, a set of numerical experiments was carried out by

varying the amplitude and parameter τ in the two mode SPB initial data U (2)(x, 0;−5, τ)
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with L = 4
√

2π. For each of the eleven values of a used, 0.4 ≤ a ≤ 0.5, twenty one τ values

were chosen, −9 ≤ τ ≤ −4, to include the effects of varying the time difference between the

two modes in the SPB. For each value of a, the diagnostics are averaged over τ . The exact

two-mode SPBs are evaluated at each (x, t) to provide the NLS solutions.

At most two rogue waves occur in the exact SPB solution depending on whether

the modes are coalesced or not. In contrast, rogue waves generically emerge and occur

intermittently throughout the entire HONLS time series. Figure 5.3 shows the (a) maximum

strength and (b) lifetime of rogue waves for two mode SPB initial data as a function of the

amplitude. The exact two mode SPB solutions of the NLS equation are given by the solid

line, while HONLS solutions for short times and long times are given by the dashed line

(0 < t < 40) and by the dash-dot line (0 < t < 400), respectively.

Figure 5.3(a) shows, on average, the maximum strength of the HONLS waves is larger

than for the NLS waves as additional focusing occurs in the HONLS equation. The lifetime

and number of rogue waves is greater in the HONLS equation than in the NLS (or the

damped HONLS equations). Figure 5.3(b) shows that the difference in lifetime increases as

the experiment length is increased. This is to be expected since rogue waves occur throughout

the entire HONLS experiment. As a result, the likelihood of obtaining rogue waves with the

HONLS equation is greater than with the NLS equation.
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Figure 5.3: The (a) maximum strength and (b) lifetime of rogue waves obtained using two

mode SPB initial data U (2)(x, 0;−5, τ) for the NLS equation (solid line) and HONLS equation

for short time, 0 < t < 40, (dashed line) and long times, 0 < t < 400, (dash-dot line).

5.3 Rogue waves and downshifting in linear damped HONLS

Equation (4.2.6) for the rate of change of the wave energy clearly shows that linear damping

(Γ > 0 and β = 0) of the HONLS equation results in a uniform damping of the individual

Fourier modes (e.g. see Figure 5.4(c)). Permanent downshifting is not expected for the linear

damped HONLS equation since km is constant in time. This is confirmed with both km and

kpeak in the numerical experiments. Figure 5.4 shows the evolution of (a) the strength, (b) the

spectral peak, and (c) the Fourier modes of the solution of (4.1.1) with ε = 0.05, Γ = 0.01,

β = 0, using initial condition (5.1.1) with a = .65, L = 4
√

2π and δ = 0.1. In Figure 5.4(b)

kpeak continues to return to the original dominant mode throughout the evolution. The
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Figure 5.4: HONLS with linear damping, ε = 0.05, Γ = 0.01, β = 0. Evolution of (a) the

strength, (b) the spectral peak, and (c) the Fourier modes using initial condition (5.1.1) with

a = .65, L = 4
√

2π and δ = 0.1.
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Figure 5.5: Strength S(t) (solid line) and |u|max (dashed line) for (a) HONLS Equation

ε = 0.05; (b) HONLS Equation with Linear Damping, ε = 0.05, Γ = 0.005, β = 0, for IC

u0 = 0.5(1 + 0.01 cosµx), with L = 4
√

2π.

spectral center is conserved within integrator accuracy, O(10−11), of zero (not shown) and a

permanent downshift does not occur.

Surprisingly, for short time evolutions, more rogue waves may appear in the damped

HONLS equation than in the undamped HONLS equation. Figure 5.5 provides the wave

strength S(t) (solid line) and |U |max(t) (dotted line) for (a) the undamped HONLS equation

(ε = 0.05) and (b) the linear damped HONLS equation (ε = 0.05, Γ = .005, and β = 0)

for initial condition (5.1.1) with a = 0.5, δ = 0.01 and L = 4π
√

2. On this time frame the

linear damped HONLS has two rogue waves while the undamped HONLS has only one. The

damping alters the excitation time of the modes, allowing the modes to partially coalesce

at t ≈ 30 and produce the second rogue wave (Figure 5.5(b)). However, this is atypical
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and with damping the average strength and lifetime of rogue events decreases, which we

subsequently address more fully.

In the linear damped HONLS experiments, 0 < t < 100, we use initial data (5.1.1)

with δ = 0.1, L = 4
√

2π, and where the amplitudes ak vary in the three cases, k = 1, 2, 3

UMs regimes initially, i.e. we let .25 ≤ a1 ≤ .3, .45 ≤ a2 ≤ .5, and .6 ≤ a3 ≤ .65. The

perturbation parameters for the evolution equation are ε = 0.05, β = 0, and 0 < Γ ≤ 0.1.

For each value of Γ = .002 ∗ j, j = 0, ..., 50, five numerical experiments were carried out

by varying the amplitude ak in the initial condition for each of the three cases. For each

value of Γ the data for the strength and lifetime of the rogue waves was averaged over the

five numerical experiments for each k. Figure 5.6(a) shows the maximum strength Smax(Γ)

attained for 0 < t < 100. The maximum strengths decrease to the strength of the initial

plane-wave as linear damping is increased. This indicates there exists a Γ∗ such that for

Γ > Γ∗ linear damping stabilizes the modulational instability on the time frame examined

and prevents exponential growth. Figure 5.6(b) shows that the lifetime of rogue waves are

generally decreasing in those experiments that have rogue waves in the undamped cases

(N ≥ 2 UMs initially). For Γ sufficiently large, rogue waves do not develop in the time

series: this occurs at approximately Γ = .01 when averaged over the experiments initially

in the two UMs regime and Γ = .03 when averaged over the experiments initially in the

three UMs regime. Similarly, the number of rogue waves and the time of the last rogue are

generally decreasing as linear damping is increased (not shown).
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Figure 5.6: The (a) maximum strength, and the (b) lifetime of rogue waves as a function of

Γ for the linear damped HONLS with ε = 0.05, β = 0, and 0 < Γ < 0.1 using the initial

condition u(x, 0) = ak(1 + 0.1 cosµx) and 0 < t < 100.

5.4 Rogue waves and downshifting in nonlinear damped HONLS

Nonlinear damping has quite a different effect on the Fourier spectrum than linear damping.

Instead of being uniformly damped, equation (4.2.6) shows when β 6= 0 and Γ = 0, the

individual Fourier modes are damped at different rates causing kpeak to shift to a lower mode.

To demonstrate the basic mechanism by which the nonlinear damping induces a permanent

downshift in the spectrum, consider the solution of equation (4.1.1) with ε = 0.05, β = 0.6

and Γ = 0, for initial data (5.1.1) with a = 0.45 and δ = 0.01, 0 < t < 200. The amplitude

of the surface |u(x, t)| and the strength S(t) are shown in Figures 5.7(a-b). Only one rogue

wave appears in the time series at t ≈ 25. The onset of downshifting occurs when the first

large wave (albeit not a rogue wave) appears at t ≈ 16 which produces an abrupt decay
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Figure 5.7: Nonlinear damped HONLS with β = .6, Γ = 0, ε = 0.05, using initial condition

(5.1.1) with a = .45, δ = 0.01, L = 4
√

2π. The (a) amplitude of the surface, (b) maximum

strength, (c) energy, (d) flux, (e) spectral center, and (f) spectral peak.
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Figure 5.8: HONLS with nonlinear damping, ε = 0.05, β = 0.15, Γ = 0. The (a) strength

and (b) the spectral peak kpeak obtained using u(x, 0) = 0.45(1+0.01 cosµx), with µ = 2π/L,

L = 4
√

2π, for 0 < t < 200.

in the energy seen in Figure 5.7(c) and growth in the flux as seen in Figure 5.7(d). This

results in a rapid downward shift in the spectral center km and the spectral peak, kpeak at

t ≈ 16, Figures 5.7(e-f). The energy and flux vary only slightly until the rogue wave is

excited at t ≈ 25. This triggers a further rapid decay in the energy and growth in the flux.

Figure 5.7(f) shows kpeak is active until the third large wave occurs at t ≈ 38, at which time

the spectrum permanently downshifts.

The time of permanent downshift, tPDS, is determined using kpeak, i.e. tPDS is the

last time kpeak = 0. The subsequent numerical experiments are presented on the timeframe

0 < t < 200; however each experiment was run for 0 < t < 250 to ensure kpeak achieved its

asymptotic state. The smaller the value of β, the slower the change in the energy and the

flux, delaying a permanent downshift. As a case in point, Figure 5.8 shows the (a) strength
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and (b) spectral peak of the solution of the nonlinear damped HONLS equation (ε = 0.05,

β = 0.15) for the same initial data as in Figure 5.7. For β = 0.15 the spectral peak, kpeak,

permanently downshifts at t ≈ 127, in contrast with the permanent downshift at t ≈ 27 for

β = 0.6. Further, for β = 0.15 the last rogue wave appears at t ≈ 67, much later than for

β = 0.6.

Downshifting does not occur for initial data which are perturbations of stable plane

waves. To explore the dependence of downshifting and rogue waves on β we use initial data

(5.1.1) with δ = 0.1 in both the (a) one UM regime (L = 2
√

2π, .5 ≤ a1 ≤ .625) and the

(b) two UM regime (L = 4
√

2π, .4 ≤ a2 ≤ .48). The parameters for the evolution equation

are ε = 0.05, Γ = 0, and 0 < β ≤ 0.75. For each of fourteen values of β, five experiments

were conducted in each of the one and two UMs regimes by varying the amplitude ak in the

initial condition.

Figure 5.9 (a-b) provides the time of permanent downshift (x) and the time of the last

rogue wave (square) averaged over the amplitudes in the a) one UM regime and b) two UMs

regime. The plots for a single amplitude a are qualitatively the same. Significantly, in the

set of experiments summarized in Figure 5.9 we find : 1) Permanent downshift is observed

in all the experiments for all β > 0 and for all modulated unstable plane wave initial data

(N ≥ 1 UMs regimes). 2) The time of permanent downshift is a decreasing function of β,

occurring rapidly for larger values of β. 3) A downshifted sea-state does not allow for any

further rogue waves. Rogue waves typically do not develop after permanent downshifting

occurs.
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Several comments are in order. First, although rogue waves do not occur in the one

UM regime, the data in Figure 5.9(a) shows that the wave strengths are sufficient to trigger

a permanent downshift for all β. Second, in 94% of the experiments in the two UM regime

the last rogue wave occurs before permanent downshifting (Figure 5.9(b)). Of the remaining

4 experiments (6%), the last rogue wave occurs either almost simultaneously with the time

of permanent downshift or else the rogue waves is already forming. That is, given the time

required for the instability to saturate or grow to its maximum amplitude, tSAT , for these

four experiments tLRW − tPDS < tSAT . Finally, unlike the linear damped HONLS (as shown

in Figure 5.6), it is not possible for nonlinear damping alone to cause the solution to settle

into a nearly steady state. In Figure 5.10(b) we see that even for an extremely large nonlinear

damping parameter (β = 100) the maximum strength is still approximately 1.1, indicating

there is always initial growth in the timeseries. The same behavior can be seen for initial

conditions with only one UM in Figure 5.10(c).

5.4.1 Characteristic features of the nonlinear damped evolution

Further features of the nonlinear damped evolution can be extracted from the previous set

of experiments described in Figure 5.9. Figure 5.11(a) shows the effect of β on the terminal

spectral center, i.e. km(200), for different amplitudes in the one UM regime. In the plots the

solid curve is the average over the amplitudes. For each amplitude, km(200) is a decreasing

function of β. Further, for fixed β as the amplitude of the initial condition increases the
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Figure 5.9: Time of permanent downshift (x) and time of last rogue wave (square) for one

and two UM initial conditions in nonlinear damped HONLS with various β, and Γ = 0, using

the initial condition u(x, 0) = a(1 + 0.1 cosµx) with µ = 2π/L, ε = 0.05 in Trulsen (4.1.1)

for 0 < t < 250, averaged over 5 amplitudes with initial conditions in the (a) one UM regime

(L = 2
√

2π, .5 ≤ a ≤ .625 (b) two UM regime L = 4
√

2π, .4 ≤ a ≤ .48.

terminal spectral center km decreases. Figure 5.11(b) shows for each initial amplitude in

the one UM regime the maximum strength maxt∈[0,200]S(t) is a strictly decreasing function

of β. Similarly, for fixed β, the maximum strength is a strictly decreasing function of the

amplitude. This is in contrast to the behavior observed for N ≥ 2 UMs (see Fig 5.12(b))

where due to a chaotic sea state averaged quantities must be examined.

For initial amplitudes in the two UMs regime, 0.5 < a < 0.625, Figure 5.12 shows the

effects of β on: (a) the terminal spectral center km, (b) the maximum strength maxt∈[0,200]S(t),

(c) the time of the last rogue wave and d) the lifetime of rogue waves for 0 < t < 200. Fig-

ure 5.12(a) shows the terminal spectral center behaves similarly in the one and two UMs
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Figure 5.10: (a)The maximum strength of the two UMs initial condition u(x, 0) = .4(1 +

0.1 cosµx), L = 4
√

2π, evolved by nonlinear damped HONLS ε = 0.05, 0 ≤ β ≤ 100, Γ = 0,

for 0 < t < 200 as a function of β; (b) the surface amplitude for β = 100, 0 < t < 50; and

(c) the maximum strength of the one UM initial condition u(x, 0) = .25(1 + 0.1 cosµx) with

the same parameter values as (a).
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Figure 5.11: One UM initial condition in nonlinear damped HONLS, ε = 0.05, 0 ≤ β ≤ .75,

Γ = 0, for 0 < t < 400. The (a) terminal spectral center and the (b) maximum strength

obtained using initial condition (5.1.1) with L = 2
√

2π, δ = 0.1, and specified amplitudes in

the one UM regime. The solid line is the average over the amplitudes.
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regimes. Namely, for fixed amplitude, the km(200) is a decreasing function of β while for

fixed β, km(200) is a decreasing function of the amplitude.

Figure 5.12(b) shows the smaller values of β can be thought of as providing a nonlinear

“underdamping” of the waves since the maximum strength, as a function of β, has several

critical points before it relaxes to its final state. Recall one may obtain larger waves when

small damping is present due to changes in the focusing times and coalescence of the modes,

as is illustrated in Figure 5.6. However, for a given amplitude a and for the average over the

amplitudes, there exists a critical β∗ for which the maximum strength decreases for β > β∗.

In the earlier study of the effects of nonlinear damping on a carefully selected coalesced three

mode rogue wave, significant damping of the maximum strength occurred since the largest

rogue wave was typically not the first large wave excited [7]. For N ≤ 2 UMs the maximum

strength does not decrease as strikingly since the strength of the first large wave, which is

needed to trigger the nonlinear damping, is typically the maximum strength in the time

series. For all values of the initial amplitude, the first rogue wave is only slightly delayed

(t ≈ 6) for all β considered (not shown). Averaging the data over the amplitudes in the

N = 2 UMs regime, Figures 5.12(c-d) show as β increases the time of the last rogue wave

→ 20 and the average lifetime and number (not shown) of rogue waves decreases.
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Figure 5.12: Two UMs initial condition in nonlinear damped HONLS, ε = 0.05, 0 ≤ β ≤ .75,

Γ = 0, for 0 < t < 200. The (a) terminal spectral center, (b) the maximum strength

obtained, (c) the time of the last rogue wave on this time frame, (d) the lifetime of rogue

events on this time frame, and (e) the number of rogue waves. using initial condition (5.1.1)

with L = 4
√

2π, δ = 0.1, and specified amplitudes in the two UMs regime. The solid line is

the average over the amplitudes. [90 experiments]
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5.4.2 The effect of proximity to instabilities on rogue waves

In this section we examine how altering the proximity of the initial data to the plane wave

and its instabilities affects the characteristic features of the solution. Significantly, we show

that as the initial data gets closer to the plane wave, the maximum strength of the waves

as well as the number and lifetime of rogue waves increase on average while the time of

permanent downshift decreases.

For the nonlinear damped HONLS equation with ε = 0.05, β = .15, Γ = 0, Figure 5.13

shows the evolution of the (a) strength S(t) and (b) spectral peak kpeak for initial condition

u(x, 0) = .45(1 + δ cosµx) with δ = .0005, µ = 2π/L, L = 4
√

2π, 0 < t < 200. Notice

this experiment differs only in δ, the perturbation of the plane wave, from the experiment

in Figure 5.8 where δ = 0.01.

Although for δ = 0.0005 spectral activity continues until t ≈ 110, kpeak permanently

downshifts from the zeroth mode at t ≈ 90.2 and the last rogue wave occurs at t = 88. In

contrast, for δ = 0.01 kpeak permanently downshifts from the zeroth mode at t = 127 and

the last rogue wave occurs at t = 66. These experiments illustrate the trend that decreasing

the perturbation from the plane wave in the initial condition decreases the length of time

it takes for the solution to permanently downshift. Restated, larger δ values in the initial

condition take longer to downshift, and smaller δ values (which are closer to the plane wave)

downshift sooner.
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Figure 5.13: Nonlinear damped HONLS with ε = 0.05, β = .15, Γ = 0. Evolution of the (a)

strength S(t) and (b) spectral peak kpeak for initial condition u(x, 0) = .45(1+ δ cosµx) with

δ = .0005, µ = 2π/L, L = 4
√

2π, 0 < t < 200.

In Figure 5.14 we see how the proximity to the plane wave affects many of the features

of the nonlinear damped HONLS solution ( ε = 0.05, β = 0.1, Γ = 0) discussed thus far in

this paper. The initial data for the set of experiments in the two UMs regime is obtained by

choosing for each of nine values of the amplitude in (5.1.1) , 0.4 ≤ a ≤ 0.48, L = 4
√

2π 15

values of the modulation parameter δ in the range 0.01 ≤ δ ≤ 0.1.

The result of a single experiment is displayed as a data point. The solid line represents

the average of the (a) lifetime, (b) maximum strength, (c) number of rogue waves, and (d)

terminal spectral center obtained over 15 uniform bins in the aδ range. We see that on

average, as aδ increases, the lifetime, maximum strength and number of rogue waves decrease.

Additionally, the time of the last rogue wave and the time of the maximum strength is slightly

delayed (not shown).

125



0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
1

2

3

4

5

6

7

8

9

aδ

L
if
e

ti
m

e

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

aδ
M

a
x
im

u
m

 s
tr

e
n
g
th

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
2

4

6

8

10

12

aδ

N
u

m
b

e
r 

o
f 

R
W

s

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
−0.12

−0.11

−0.1

−0.09

−0.08

−0.07

−0.06

−0.05

aδ

S
p

e
c
tr

a
l 
c
e

n
te

r

Figure 5.14: Nonlinear damped HONLS, ε = 0.05, β = .1, and Γ = 0, for 0 < t < 600

with fifteen δ values, 0.01 ≤ δ ≤ 0.1, and nine initial amplitudes, 0.4 ≤ a ≤ 0.48 in (5.1.1).

The amplitude and modulation parameter δ in initial condition are varied in the two UMs

regime. The solid line represents the average of the (a) lifetime, (b) maximum strength, (c)

number of rogue waves, and (d) terminal spectral center. [135 experiments]
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5.4.3 The effect of wave strength on the time of permanent downshift

Alternatively one may ask how the time of permanent downshift is affected by rogue wave

activity. Recall Figure 5.13 and Figure 5.7 provide an example of two experiments, differing

only by their initial perturbation from the plane wave, which yielded different maximum

strengths. Further the solution with the larger maximum strength downshifted more quickly.

This raises the question of how the time of permanent downshift depends upon features of

the waves such as their maximum strength or lifetime and number of rogue waves.

To address this question a set of experiments was carried out using the nonlinear

damped HONLS equation, ε = 0.05, Γ = 0 for β = 0.1, β = 0.2, and β = 0.4. Nine values of

the amplitude in initial condition (5.1.1) are chosen in the two UMs regime, 0.4 ≤ a ≤ 0.48,

L = 4
√

2π, and for each amplitude nine values of the modulation parameter δ are chosen,

10−3 ≤ δ ≤ 10−1. Similarly, nine values of the amplitude in initial condition (5.1.1) are

chosen in the three UMs regime, 0.57 ≤ a ≤ 0.65, L = 4
√

2π, and for each amplitude nine

values of the modulation parameter δ are chosen, 10−3 ≤ δ ≤ 10−1.

Figure 5.15 provides the time of permanent downshift for the nonlinear damped

HONLS, ε = 0.05, Γ = 0, and β = .1 (circle), β = .2 (square), or β = .4 (triangle), as

a function of the average maximum strength (a) in the two UMs regime and (b) in the three

UMs regime. The average is computed by binning the data over 10 uniform bins.

For the smaller value β = 0.1 the average time of permanent downshift, in general,

decreases as the strength of the wave increases in both the two and three UMs regimes. As β
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Figure 5.15: Two and three UMs initial condition (5.1.1) in nonlinear damped HONLS,

ε = 0.05, Γ = 0, and β = .1 (circle), β = .2 (square), or β = .4 (triangle) for 0 < t < 450

with experiments required to downshift by t = 400. The time of permanent downshift as a

function of the maximum strength in the (a) two UMs regime, 0.4 ≤ a ≤ 0.48 and (b) three

UMs regime, 0.57 ≤ a ≤ 0.65. [81 experiments]
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increases, the dependence of the time of permanent downshift on the strength is less striking

in the two UMs regime. In the three UMs regime the time of permanent downshift is almost

uniform as the strength increases.

5.5 Rogue waves and downshifting in the linear and nonlinear damped

HONLS

In this section we explore the combined effects of wind and nonlinear damping on the HONLS

evolution. Initial data (5.1.1) is used with δ = 0.1 and an appropriate amplitude and period

for each of the N = 1, 2, 3 UMs regimes. For each initial condition, seventy-five experiments

were carried out by selecting five values of β, i.e. β = 0.1, ..., 0.5, where for each value of

β fifteen values of Γ are considered where the linear term is active in the experiment for

differing lengths of time (Twind) as specified in the figure labels. The ranges in Γ, chosen to

ensure stability of the forced experiments, depend on the number of nearby unstable modes.

For each Twind, the lines presented are the averages over the five β values considered.

Figure 5.16 provides the (a) terminal spectral center, km(200), and the (b) maximum

strength obtained for the HONLS equation with ε = 0.05 and various (Twind, Γ) pairs using

initial data in the one UMs regime, u(x, 0) = 0.3(1 + 0.1 cosµx), µ = 2π/L, L = 4
√

2π for

0 < t < 200 . Figure 5.16(a) shows that for a given Twind the terminal spectral center is

an increasing function of Γ. We also see in the individual experiments for a given β, the

frequency downshift (from zero) decreases as Γ increases (not shown). Moreover, as Twind
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increases, linear forcing causes the terminal spectral center to decrease more, and linear

damping causes the terminal spectral to decrease less. Thus linear damping inhibits the

downshifting effect of the nonlinear damping, while linear forcing enhances the downshifting

effects of the nonlinear damping. Figure 5.16(b) shows the maximum strength is a decreasing,

approximately linear, function of Γ for each Twind. The same behavior is seen for individual β

values (not shown). In the one UM regime there are no rogue waves in the HONLS evolution.

Similarly, for the β, Γ, and Twind values considered in the damped/forced HONLS evolution,

there are also no rogue waves in the one UM regime.
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Figure 5.16: One UM initial condition (5.1.1) with a = 0.3, δ = 0.1, and L = 4
√

2π in

the nonlinear damped HONLS (ε = 0.05, β = .1, .2, .3, .4, .5, −0.007 ≤ Γ ≤ 0.007) for

0 < t < 200 with linear forcing for 0 < t < Twind: (a) the terminal spectral center, and (b)

the maximum strength obtained averaged over five β values.

When there are N ≥ 2 unstable modes nearby, the inclusion of linear forcing results

in a more striking enhancement of downshifting. Figure 5.17 shows the terminal spectral
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center for the HONLS equation, with ε = 0.05 and various β, Γ, and Twind, for 0 < t < 200,

using initial conditions (a) u(x, 0) = 0.48(1 + 0.1 cosµx) with µ = 2π/L, L = 4
√

2π (two

UMs regime), and (b) u(x, 0) = 0.67(1 + 0.1 cosµx) with µ = 2π/L, L = 4
√

2π, (three UMs

regime). The solid curve represents the averages over β for a given Twind. In Figures 5.17(a)

and 5.17(b), the behavior of each initial condition shows that linear forcing causes the spectral

center to decrease further, whereas linear damping yields results that have decreased less than

in the cases with no linear term. The experiments for a given Twind also demonstrate that for

each β the terminal spectral center is an increasing function of Γ (not shown). Clearly, as in

the one UM regime, for a given β, the addition of linear forcing enhances the downshifting

effect, whereas linear damping diminishes the downshifting effect of the nonlinear damping.

As discussed previously, when only nonlinear damping is present, one could expect

that features of the rogue events such as strength, number of events, lifetime would increase

with linear forcing and decrease with linear damping. However, for a given β, this is not

always the case for the small variations in Γ examined. The additional damping changes the

focusing time and coalescence of the modes. However, when averaged over β, the maximum

strength of rogue events are generally decreasing across the Γ ranges examined in the two and

three UMs regimes as seen in Figures 5.18(a-b). Figure 5.18(c-d) shows that the dynamics

are more complicated when considering the lifetime of rogue events.

The number of rogue waves is a decreasing function of Γ for each β in the two UMs

and three UMs cases (not shown). Linear damping causes fewer rogue waves in most cases

shown, whereas linear forcing causes an increase in the number of rogue waves. This effect
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is seen more starkly in the case of three UMs, but is also present in the two UMs case when

comparing to the cases with no linear effects (Γ = 0).

The time of the last rogue wave is much later for the smaller β values when linear

forcing is included (not shown). This indicates that rogue waves are continuing to occur

when the experiment terminates. For the larger values of β however, increasing the amount

of linear forcing in this range has little impact on the time of last rogue wave. For Γ > 0,

rogue waves cease earlier than they do for Γ = 0 in nearly all of the experiments in both two

UMs and three UMs regimes.

The behavior of the system is determined largely by whether the linear term is damp-

ing or enhancing the waveform. In general, we see that the forcing of two UMs allows for a

larger number of rogue waves that occur later in the time series and are, on average, stronger

(not shown). The maximum strength is also larger, in general, and the downshifting effects

of the nonlinear damping term are enhanced by linear forcing. For longer lengths of Twind,

the maximum strength is larger when linear forcing is applied. Interestingly, this does not

vary much for the larger lengths of Twind. The lifetime of rogue events in the two UMs case

is longer for Twind = 200 when Γ < 0 and shorter when Γ < 0. Similarly, the smallest length

of linear term, Twind is shortest when Γ < 0 and largest when Γ > 0. This illustrates further

that as Twind increases, the change from the Γ term also increases.

Unlike the two UMs case in Figure 5.18(a-b), the three UMs case (seen in Fig-

ure 5.18(c-d)) shows comparatively little change as Twind changes. For these experiments,

the maximum strength occurs early in the timeseries. The large wave early in the exper-
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Figure 5.17: The terminal spectral center for the two and three UMs initial conditions in

the damped HONLS, with ε = 0.05 and various β and Γ, for 0 < t < 200 with linear term

applied until 0 < t < Twind, using initial condition (5.1.1) with δ = 0.1, L = 4
√

2π: (a)

a = 0.48, and (b) a = 0.67 averaged over the five β values for each Twind.

iment causes the nonlinear term to act strongly to lessen the likelihood of further waves

of the same strength. Consequently, the maximum strength changes proportional to the Γ

term as long as it acts until the first large wave is formed. We still see that the inclusion

of linear forcing causes the maximum strength to increase whereas linear damping causes

the maximum strength to decrease. The lifetime for the three UMs cases behaves similarly.

There is a slight increase, on average, as Γ is more largely negative, and a slight decrease in

the lifetime as Γ increases in the positive direction.
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Figure 5.18: Nonlinear damped HONLS with various Γ applied for 0 < t < Twind averaged

over five β values using initial condition (5.1.1) with δ = 0.1, L = 4
√

2π, ε = 0.05 for

0 < t < 200: (a) the maximum strength and (b) the lifetime of rogue events for two UMs

(a = .48); (c) the maximum strength and (d) the lifetime of rogue events for three UMs

(a = .67).
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5.5.1 Time of permanent downshift and time of the last rogue wave

In section 5.4 it was shown permanent downshifting occurs ∀β > 0 when Γ = 0 (for N ≥ 1

UMs) and that rogue waves do not occur after permanent downshifting in the two and

three UMs regimes. Here we examine this issue when both nonlinear damping and linear

damping/forcing are present. Figure 5.19 presents the time of permanent downshift (x) and

the time of the last rogue wave (square) for fourteen values of β in the range of 0 < β ≤ .75,

Γ = ±0.005, in (4.1.1) with initial condition (5.1.1) for 5 different initial amplitudes in the

two UMs regime (.4 ≤ a ≤ .48) and 5 different initial amplitudes in the three UMs regime

(.57 ≤ a ≤ .65). Figure 5.19 provides the times averaged over the relevant amplitudes. The

plots for a single amplitude a are qualitatively the same.

When Γ = .005 for the two UMs initial conditions, 65 of the 65 experiments down-

shifted. Recall the nonlinear damping term is O(εβ). As a result, linear damping interferes

with the downshift mechanism for the smallest β considered, β = 0.10, so they are not

considered. The last rogue wave occurs before the time of permanent downshifting in 62 of

the 65 (95%) downshifted cases. In the two cases where the last rogue wave occurred after

the last time the spectral peak returned to the zeroth mode, the last rogue wave occurred

before the spectral peak ceased activity. Figure 5.19(a) shows these results averaged over

the different initial amplitudes in the experiment set. As β increases, the time of permanent

downshifting and the time of the last rogue wave move closer.
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The behavior was similar in the three UMs experiments, with 61 of the 70 experi-

ments experiencing permanent downshifting, 58 of those experiments doing so after the last

rogue wave and one additional experiment having its last rogue wave just after the time

of permanent downshifting (98%). In the three UMs experiments, there were experiments

which had a rogue wave long after the time of permanent downshifting ( 21.5 and 28 time

units later).

When the waves are forced, Γ = −.005, permanent downshifting occurred on the

timeframe considered in 46 of the 65 numerical experiments, primarily for the larger values

of β. Only one of the downshifted experiments did not have its last rogue wave before the

time of permanent downshift, but the instability that caused the last rogue wave in that

case had already begun growing at the time of permanent downshift. With the exception

of this single experiment, the remainder of the experiments that experienced permanent

downshifting the permanent downshifting occurred after the last rogue wave (98%).

For the three UMs initial conditions, 68 of the 70 experiments permanently down-

shifted on this timeframe, 59 of which had their last rogue wave before permanent down-

shifting and 7 further that had a rogue wave which formed before the time of permanent

downshifting occur shortly after the time of permanent downshift (97%). From this set,

two experiments had a rogue wave approximately 21 time units after the time of permanent

downshifting.
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Figure 5.19: Time of downshifting (x) and time of last rogue wave (square) in the nonlinear

damped and linear damped/forced HONLS with various β, and Γ, using initial condition

(5.1.1) with δ = 0.1, L = 4
√

2π, ε = 0.05 for 0 < t < 200 with the linear term active for

0 < t < 20. The figures are (a) the downshifted cases for Γ = 0.005 and (b) the downshifted

cases for Γ = −0.005 averaged over 6 amplitudes in the two UMs regime .4 ≤ a ≤ .48,

and (c) the downshifted cases for Γ = 0.005 and (d) the downshifted cases for Γ = −0.005

averaged over 6 amplitudes in the three UMs regime .57 ≤ a ≤ .65.
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Figure 5.20: A sufficient amount of nonlinear damping to prevent the formation of any rogue

waves on the timeframe for a given Γ in nonlinear damped HONLS (ε = 0.05, 0 ≤ β ≤ 2,

−.005 ≤ Γ ≤ .005) with initial condition (5.1.1) , with a = 0.4, and L = 4
√

2π for 0 < t <

200.

5.5.2 Eliminating rogue waves

The initial condition (5.1.1) with δ = 0.1 is a small perturbation of the plane wave. The

initial condition has two UM for a = 0.1 with L = 4
√

2π. These instabilities quickly grow,

which typically forms a rogue wave early in the timeseries. In figure 5.6 we showed that

linear damping can cause the initial growth to not be a rogue wave, and furthermore that

no rogue waves occur later. Figure 5.20 extends this idea to the cases including nonlinear

damping and allowing for the cases with linear forcing. For each Γ in the range, β∗ is the

first β value that was able to prevent all rogue waves from forming. Because the experiment
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set is run for β values in steps of .025, the β∗ indicated is sufficient to prevent all rogue

waves, but it may not be the minimal such β value.
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APPENDIX

NUMERICAL INTEGRATOR
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1 The exponential integrator

The governing equation (4.1.1) is solved numerically using a very accurate smoothing expo-

nential integrator [27]. The integrator combines Fourier-mode decomposition in space with

a fourth-order exponential Runge-Kutta method in time which uses Padé approximations of

the matrix exponential terms.

Break down the equation into linear and nonlinear components:

ut = (L+N )u,

where

Lu = iuxx + iΓu− ε

2
uxxx

Nu = 2i|u|2u+ 8ε|u|2ux + 2iεu(1 + iβ)
[
H
(
|u|2|

)]
x
.

Let F(u) = û be the Fourier transform in space. Then,

ût = F(Lu+Nu)

=
[
i(ik)2 + iΓ− ε

2
(ik)3

]
F(u) + F (N (u))

=
(
−ik2 + iΓ + i

ε

2
k3
)
û+ F (N (u))

= −Aû+ F (t),

where

A = ik2 − iΓ− i ε
2
k3 F (t) = F (N (u)) .
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Using an integrating factor we see that

ût + Aû = F (t)

eAtût + AeAtû = eAtF (t)

∂

∂t

[
eAtû

]
= eAtF (t)[

eAtû
] ∣∣∣tn+1

tn
=

∫ tn+1

tn

eAtF (t) dt.

Evaluating the integral we have

eA(tn+∆t)û(tn + ∆t)− eAtnû(tn) =

∫ ∆t

0

eA(tn+τ)F (tn + τ) dτ

eAtneA∆tû(tn + ∆t)− eAtnû(tn) = eAtn
∫ ∆t

0

eAτF (tn + τ) dτ

û(tn + ∆t) = e−A∆tû(tn) + e−A∆t

∫ ∆t

0

eAτF (tn + τ) dτ.

But now we need to evaluate the resulting integral. Because the integral cannot typically be

evaluated exactly, we approximate.

The simplest approximation is assuming F is piece-wise constant, i.e. assume F (t) =

Fn for tn ≤ t ≤ tn+1. Then,

∫ ∆t

0

eAτF (tn + τ) dτ ≈ Fn

∫ ∆t

0

eAτ dτ =
Fn
A

[
eA∆t − 1

]
.

Given u0 = u(x, 0) we can now step forward in time.

û(tn+1) = e−A∆tû(tn) +
Fn
A

[
1− e−A∆t

]
.

With this assumption, the error at each time step is O ((∆t)2).
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In application, we can achieve much better accuracy. In this work we implement a

fourth-order Runge-Kutta method. In general, if y′(t) = g(y(t), t), then we can approximate

the solution at the next time step, tn+1 = tn + ∆t by

y(tn+1) = y(tn) +
∆t

6

(
k1 + 2(k2 + k3) + k4

)
,

where

k1 = g(y(tn), tn),

k2 = g(an, tn + ∆t
2

), an = y(tn) + k1
∆t
2
,

k3 = g(bn, tn + ∆t
2

), bn = y(tn) + k2
∆t
2
,

k4 = g(cn, tn + ∆t), cn = y(tn) + k3∆t.

In our case, y(t) = eAtû, and g(y(t), t) = eAtF (t). Approximating the matrix expo-

nential introduces many problems. Following the work of [28], we use a Padé approximation

to help minimize some of the issues. In general, a Padé approximation, Rm,n(z) to a function

h(z) is a rational function of polynomials whose numerator degree is m ≥ 0 and denomina-

tor degree is n ≥ 1 with the requirement that h(k)(z0) = R
(k)
m,n(z0). In this case, we need to

expand ez around z = 0, and we find

e−z ≈ R2,2(z) ≡ 1 + 1
2
(−z) + 1

12
(−z)2

1− 1
2
(−z) + 1

12
(−z)2

=
12− 6z + z2

12 + 6z + z2
,

e−z/2 ≈ R̃2,2(z) ≡ 1 + 1
2
(− z

2
) + 1

12
(− z

2
)2

1− 1
2
(− z

2
) + 1

12
(− z

2
)2

=
48− 12z + z2

48 + 12z + z2
.

In our case, we are interested in finding ûn+t, not simply y(tn+1), so the coefficients

on ûn+t must be moved to the other side after approximating. We end up at the system

ûn+1 = R2,2(A∆t)ûn + P1(A∆t)F (ûn, tn) + P2(A∆t)
[
F (ân, tn + ∆t

2
) + F (̂bn, tn + ∆t

2
)
]
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+ P3(A∆t)F (ĉn, tn + ∆t).

where,

ân = R̃2,2(A∆t)ûn + P̃ (A∆t)F (un, tn),

b̂n = R̃2,2(A∆t)ûn + P̃ (A∆t)F (un, tn + ∆t
2

),

ĉn = R̃2,2(A∆t)ûn + P̃ (A∆t)
[
F (bn, tn + ∆t

2
)− F (un, tn)

]
,

P1(M) = ∆t

(
2I −M

12I + 6M +M2

)
,

P2(M) = ∆t

(
4

12 + 6M +M2

)
,

P3(M) = ∆t

(
2I +M

12 + 6M +M2

)
.

The final step is to invert the Fourier transform using the Fast Fourier Transform (FFT).

The accuracy of the integrator for the HONLS used in this document was compared

to another state of the art methods in [29]. Specifically, they compared the accuracy and the

computational efficiency of this method to the split-step method and found the exponential

time differencing method to be more computationally efficient than the split-step method

when trying to obtain a specific accuracy by comparing to exact solutions.
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2 Accuracy

The initial data used in the numerical experiments are small perturbations of the unstable

plane wave, i.e.

u(x, 0) = a (1 + δ cos 2πx/L) ,

where δ << 1 and the amplitude a and period L are chosen so that baL/πc = N = 1, . . . , 3.

Initial data (5.1.1) is referred to as the N unstable mode (UM) “regime” as the background

plane wave has N unstable modes initially. It is also close to initial data for the N-mode

SPB solutions of the NLS equation.

The number of Fourier modes and the time step used in the experiments depends on

the complexity of the solution. For example, for initial data in the two UMs regime, typically

L = 4
√

2π and N = 256 Fourier modes are used with time step ∆t = 10−3. This space - time

resolution allows for the three global invariants of the conservative HONLS equation, the

energy E, momentum P , and Hamiltonian H, to be conserved with an accuracy of O(10−12),

O(10−11), O(10−11), respectively for 0 < t < 200. For the linear perturbed HONLS, km = −P
2E

is invariant and, in the case of linear damping, is conserved with an accuracy of at least

O(10−11) for experiments in the N = 1, 2, 3 UMs regimes for 0 < t < 200.

The spectral center, E, P , and H are not invariant for the HONLS equation with

nonlinear damping and linear forcing. As a result, we appeal to error results for the linear

forced HONLS equation to provide an upper bound on the error in the numerical experiments

which also include nonlinear damping. That is, when both nonlinear damping and linear
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forcing are present we use the space-time mesh and parameter range in Γ that allows for an

acceptable conservation in the spectral center for the linear forced HONLS equation.

To determine the accuracy in the linear forced HONLS experiments for 0 < t < 200

with wind acting until Twind = 25, for each of nine values of Γ, −0.007 ≤ Γ ≤ 0.001, five

experiments using different amplitudes in the initial data were carried out in each of the

N = 1, 2, 3 UMs regimes, (a) .25 ≤ a ≤ .33, (b) .4 ≤ a ≤ .48, (c) .57 ≤ a ≤ .65, respectively.

For each value of Γ the terminal spectral center km(200) is averaged over the five experiments

in each of the regimes. Figure A.21 shows that for Twind = 25, the maximum error in the

spectral center at T = 200 is O(10−12), O(10−10), and O(10−4) for initial data in the N =

1,2,3 UMs regimes, respectively. The error in the spectral center decreases as Twind decreases

(not shown).

We have decided based on previous short-time forcing experiments to consider−.007 ≤

Γ for forcing times of TFORCED = 10, 20, 25. Figure A.21 displays that for this range, when

run to TMAX = 200 as we do in the experiments.

Most of the experiments are over the timeframe 0 < t < 200. Key experiments, e.g.

those relating the time of permanent downshift and the time of the last rogue wave, are run

longer than presented, to ensure the validity of the results. To avoid aliasing we eliminate

the high frequency modes at every time step, e.g. when N = 256 Fourier modes are used we

let ûk = 0 for |k| > 120. This does not have a significant effect on the exchange of energy

between the dominant low wave number modes and thus does not change our results related

to frequency downshifting and rogue waves (it was also verified that varying the number of
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Figure A.21: Nonlinearly damped HONLS, ε = 0.05, β = 0, −0.007 ≤ Γ ≤ 0.001, Tmax = 200

with linear forcing until Tforced = 10, 20, 25, as specified in the labels. The terminal spectral

center averaged over (a) 5 initial amplitudes .25 ≤ a ≤ .33, (b) 9 initial amplitudes .4 ≤ a ≤

.48, (c) 5 initial amplitudes .57 ≤ a ≤ .65 using initial condition u(x, 0) = a(1 + 0.1 cosµx)

with L = 4
√

2π. [45,81,45 experiments per forcing time]

frequencies being eliminated does not change the behavior). Additionally, the behavior of

the solution and of the dominant modes does not change when the mesh is refined.
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