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ABSTRACT

Nonlinear partial differential equations are difficult to solve, with many of the ap-

proximate solutions in the literature being numerical in nature. In this work, we apply the

Homotopy Analysis Method to give approximate analytical solutions to nonlinear ordinary

and partial differential equations. The main goal is to apply different linear operators, which

can be chosen, to solve nonlinear problems. In the first three chapters, we study ordinary

differential equations (ODEs) with one or two linear operators. As we progress, we apply the

method to partial differential equations (PDEs) and use several linear operators. The results

are all purely analytical, meaning these are approximate solutions that we can evaluate at

points and take their derivatives.

Another main focus is error analysis, where we test how good our approximations are.

The method will always produce approximations, but we use residual errors on the domain

of the problem to find a measure of error.

In the last two chapters, we apply similarity transforms to PDEs to transform them

into ODEs. We then use the Homotopy Analysis Method on one, but are able to find exact

solutions to both equations.
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CHAPTER 1

INTRODUCTION

Perturbation theory is a strong tool used to solve differential equations. These equations have

a small parameter that is perturbed, meaning the solution is expanded around. However,

most nonlinear DEs do not have a small parameter to perturb. In this thesis we use the

Homotopy Analysis Method to introduce a parameter to any differential equation using a

homotopy, a topic from algebraic topology. Even though it is not a “small” parameter,

we are able to perturb this homotopy parameter and use the theory to break a nonlinear

differential equation down to an infinite number of linear differential equations.

The Homotopy Analysis Method was introduced by Liao in his doctoral thesis in

1992 [14]. Since then, there have been several articles ([23] - [45], for a start) and even texts

written on the subject (see [15], [20], [1]). The purpose of this dissertation is to apply this

method to highly nonlinear partial differential equations, studying in particular the choice

of the linear operator associated with each problem.

For most nonlinear differential equations, the approximate solutions are numerical,

due to the difficulty of the problems. One of the most innovative features about the Ho-

motopy Analysis Method is that the approximation is a function. In this thesis we use the
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method to find analytical solutions that you can hold on to: evaluate at points, take their

derivatives, etc.

Suppose we are trying to solve a nonlinear differential equation N [u] = 0, where N

is a nonlinear differential operator and u is the solution to the differential equation. We

introduce a parameter using a straight-line homotopy. We use

H(u, q) = (1− q)L[u]− qhN [u], (1.1)

where H is the homotopy function, q ∈ [0, 1] is the homotopy parameter, L is the auxiliary

linear operator, and h is the convergence control parameter. We will discuss L and h below.

For now, we will set the homotopy H ≡ 0. Note that when q = 0 we are on the linear

operator, and when q = 1 we are on the nonlinear operator. It is in this way we think of the

homotopy continuously deforming the linear operator into the nonlinear operator.

So now, in the vein of perturbation, assume an expansion of the solution around the

parameter. That is, we assume

u =
∞∑

j=0

ujq
j, (1.2)

where we expand u around the homotopy parameter q. Then, we will use this in our equation

H ≡ 0 and equate powers of q. So we have

0 = (1− q)L

[ ∞∑

j=0

ujq
j

]
− qhN

[ ∞∑

j=0

ujq
j

]
, (1.3)

which leads to
∞∑

j=0

L[uj]q
j −

∞∑

j=0

L[uj]q
j+1 = qhN

[ ∞∑

j=0

ujq
j

]
, (1.4)
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after moving the linear operator through the sum. Now we re-index the left-hand side so we

can combine summations for

L[u0] +
∞∑

j=1

(
L[uj]− L[uj−1]

)
qj = qhN

[ ∞∑

j=0

ujq
j

]
. (1.5)

Matching powers of q on each side is the next step. On the right-hand side, we will expand

as a Taylor Series around q = 0. The zeroth order equation is

L[u0] = 0. (1.6)

This is the equation that will take initial and boundary conditions. The O(q) equation is

L[u1] = hN [u0]. (1.7)

For m > 1, the O(qm) equation is

L[um] = L[um−1] +
h

(m− 1)!

(
∂m−1

∂qm−1
N

[ ∞∑

j=0

ujq
j

]) ∣∣∣
q=0

. (1.8)

What we have done is take the nonlinear problem and make it infinitely many linear

problems. And since we can solve for the terms of the expansion sequentially, we are able to

get as many terms as we would like.

The auxiliary linear operator L in the homotopy (1.1) is chosen for the problem. This

can be a benefit and a drawback. The benefit is that we get to choose the type of linear

problem we can be solving. The drawback is that if we pick a linear operator that is too

trivial, our solution may not be appropriate for the problem (see below for error analysis).

On the other hand, if the linear operator is more sophisticated, the size of the terms greatly

increases. This leads to an inability to perform error analysis. See Chapter 6, for example.
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The convergence control parameter h is another part of the brilliance of the method.

This parameter, while being added to the homotopy function, propagates through the solu-

tion terms (starting with the O(q) term). This adds a degree of freedom in every homotopy

analysis problem, and allows us to choose the value of h to minimize the residual error (see

below).

How good are the approximate solutions? In previous papers in the literature, the

terms of the expansion are found. What we would like to be able to do is have a measure

of how good they are. Recall u =
∞∑

j=0

ujq
j, so we have a way to construct the solution to

our differential equation when q = 1. The convergence of u can be discussed; however, we

usually don’t need (and can’t calculate) the whole series. Once we have the first three terms

of our series, call the three-term approximation û = u0 + u1 + u2. We do not have the entire

solution u to compare it to. But, a solution is exact if it solves the differential equation, i.e.,

if N [u] = 0. If N [û] = 0, then the three-term approximation is an exact solution. If not,

then evaluating N [û](x) for x in the domain D of the problem gives the residual error at x.

To avoid cancellations if the error is negative, we square it. Then, if we can integrate on the

domain of interest, we will have the combined area of our approximation’s squared residual

error:

E(h) =

∫

D

(N [û])2 (x)dx. (1.9)

Oftentimes, there are several issues with integration. Small residuals can add up to large

amounts or error. Or, the integral over an infinite domain may not converge. In this case,
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we will take a sum

Ê(h) =
1

M

M∑

j=1

(N [û])2 (xj), (1.10)

where M is the number of points we wish to use. This allows us to find an average that

weights each point evenly.

Once we have either E(h) or Ê(h), it will be a polynomial in h that we can minimize.

The error function exists when N [û] is L2-integrable, and a minimum exists since the function

is nonnegative and continuous.

In the following Chapters, we apply the homotopy analysis method to several different

ordinary and partial differential equations, most of which only have numerical results in the

literature. Later on, we are also able to find exact solutions to some PDEs using self-similar

transforms.

The goal of this dissertation is to discover ways in which different choices of the linear

operator affect the residual error produced by the resulting analytical approximations. There

is a natural progression to the work, where more and more varied operators are used until a

strong candidate is found. Then, we find exact solutions to other PDEs through the use of

similarity transforms.

Chapter 2 covers the Ernst equation, which is used to solve the Einstein field equations

and is used as a model of axially symmetric stationary vacuum gravitational fields. In this

paper, we used a single auxiliary linear operator in the method.
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Chapter 3 covers the equation used to describe the nonlinear evolution of a vector

potential of an electromagnetic pulse propagating in an arbitrary pair plasma with temper-

ature asymmetry. In this paper, the linear operator used is the linear part of the nonlinear

operator (which does not always work).

In Chapter 4, the equation derived from a nonlinear σ model is discussed. The

nonlinear sigma model is, among other things, a tool to use field theory to describe particles.

Two different linear operators are chosen based on their solution types.

In Chapter 5, the Cahn-Hilliard equation, the nonlinear evolution equation that de-

scribes the free energy of a binary alloy, is discussed. This paper was where we really tested

a variety of different linear operators over many varying given initial data.

Chapter 6 covers a difficult PDE: the Hasegawa-Mima equation. This equation, which

takes a long time to even write down, describes the electric potential due to a drift wave in a

plasma . This was actually the first project the author ever worked on using the Homotopy

Analysis Method. The first linear operator chosen, which is just the linear part of the

problem, does not yield solutions that are valid. The second choice yielded approximations

that were too complicated to be tested. After writing the Cahn-Hilliard paper, we decided

to try a third and successful linear operator.

Chapter 7 is about the Hunter-Saxton equation, the nonlinear wave equation that is

used to study a nonlinear instability in the director field of a nematic liquid crystal. The

original research in this chapter shows that the method is not suitable for all nonlinear partial
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differential operators. Similarity transforms were used to find solutions to the equation, given

in the next chapter.

Chapter 8 is about the exact and self-similar solutions to the Hunter-Saxton equation.

We find new separable exact solutions, and a self-similar transform is used to convert the

PDE into an ODE. Homotopy Analysis is then used on this ODE, with a convenient choice

of linear operator.

Finally, we find self-similar solutions to the Khokhlov-Zabolotskaya equation, describ-

ing the propagation of a sound beam in a nonlinear medium, in Chapter 9. We are able to

find several self-similarity transforms, including one that has a travelling wave similarity in

one variable as well as a self-similarity in another. We are able to somewhat generalize the

results and get new solutions by transforming variables and reducing the equation to an

ODE. All of these lead to new exact solutions to this equation.
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CHAPTER 2

EXACT AND ANALYTIC SOLUTIONS OF THE ERNST

EQUATION GOVERNING AXIALLY SYMMETRIC

STATIONARY VACUUM GRAVITATIONAL FIELDS

The following results are taken from the paper [63].

2.1 Background

The Ernst equation is given by

Re(u)∇2u = (∇u)2 . (2.1)

If we assume axial symmetry, the Ernst equation, in cylindrical form, reads

Re(u)

(
∂2u

∂r2
+

1

r

∂u

∂r
+
∂2u

∂z2

)
=

(
∂u

∂r

)2

+

(
∂u

∂z

)2

, (2.2)

where u = u(r, z) is a complex-valued function [2]. The equation serves as a model of axially

symmetric stationary vacuum gravitational fields [3]-[6]. Harrison [7] shows that the Ernst

equation admits a Bächlund transform.
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Since (2.2) is a homogeneous quadratic equation, perturbation theory works nicely

[2]. In [8], the Ernst equation is used to completely separate the vacuum Einstein equations

for an arbitrary stationary axisymmetric space-time. In [9], the Virasoro algebra is shown

to exist in the solution space of the Ernst equation. The Ernst equation is solved as a

boundary value problem using inverse methods in [10]. Rational approximations of the flip

angle dependence of an MRI signal are derived using half-angle trigonometric substitutions in

the Ernst equation in [11]. In [117], the class of hyperelliptic solutions to the Ernst equation

are derived using Riemann-Hilbert techniques. The inverse scattering method [12] and the

algebro-geometric ideology [13] have also been discussed.

In the present paper, the Ernst equation is transformed to a real-valued system and

then simplified to a reduced Ernst equation. Then, the homotopy analysis method is used to

find approximate solutions to this reduced equation. Following this, an exact solution is found

under weaker boundary conditions. For many physical applications, approximate solutions,

while clearly less informative than exact solutions, are sufficient to describe the true solutions

(assuming that the error is sufficiently small). The method of homotopy analysis [14]-[22]

has recently been applied to the study of a number of non-trivial and traditionally hard to

solve nonlinear differential equations, for instance nonlinear equations arising in heat transfer

[23]-[26], fluid mechanics [27]-[34], solitons and integrable models [35]-[39], nanofluids [40]-

[41], the Lane-Emden equation which appears in stellar astrophysics [42]-[45], and models

frequently used in mathematical physics [46, 47], to name a few areas.

9



2.2 A real-valued system

Let us transform (2.2) into a real-valued system. To this end, let us write u = ρ+ iσ, where

ρ, σ : R2 → R. Then, (2.2) becomes

ρM [ρ] = ρ2r + ρ2z − σ2
r − σ2

z ,

ρM [σ] = 2 (ρrσr + ρzσz) ,

(2.3)

where we define the linear operator M by

M =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
. (2.4)

Taking the second equation in (2.3) and dividing by ρ3, we obtain

σrr
ρ2

+
1

r

σr
ρ2

+
σzz
ρ2

− 2ρrσr
ρ3

− 2ρzσz
ρ3

= 0 . (2.5)

Rearranging terms, we find that a solution pair (ρ, σ) satisfies the PDE

∂

∂r

(
σr
ρ2

)
+

1

r

(
σr
ρ2

)
+

∂

∂z

(
σz
ρ2

)
= 0 . (2.6)

Due to such symmetry, a self-similar solution to (2.3) may be possible. To this end, let us

consider a solution of the form

ρ(r, z) = f(η) and σ(r, z) = g(η) , (2.7)

where

η =
r

z
(2.8)

is the similarity variable. Then, (2.3) is put into the form

f

(
(1 + η2)f ′′ +

2η2 + 1

η
f ′
)

= (1 + η2)
(
f ′2 − g′

2
)
, (2.9)
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f

(
(1 + η2)g′′ +

2η2 + 1

η
g′
)

= 2(1 + η2)f ′g′ , (2.10)

where the prime denotes differentiation with respect to the similarity variable η. Observe

that equation (2.9) can be solved for g′2, and upon differentiation we obtain

g′g′′ = −1

2

d

dη

(
f

(
f ′′ +

2η2 + 1

η(1 + η2)
f ′
)
+ f ′2

)
. (2.11)

Meanwhile, (2.10) can be written in the form

g′′

g′
= − 2η2 + 1

η(1 + η2)
+ 2

f ′

f
. (2.12)

Then,

2
f ′

f
− 2η2 + 1

η(1 + η2)
=
g′′

g′
=

−1
2

d
dη

(
f
(
f ′′ + 2η2+1

η(1+η2)
f ′
)
+ f ′2

)

f
(
f ′′ + 2η2+1

η(1+η2)
f ′
)
+ f ′2

. (2.13)

Rearranging (2.13) for f and its derivatives, we obtain

f ′′′ +

{
3(2η2 + 1)

η(1 + η2)
− 5

f ′

f

}
f ′′ +

{
4

(
f ′

f

)2

− 5(2η2 + 1)

η(1 + η2)

f ′

f
+

6η2 + 1

η2(1 + η2)

}
f ′ = 0 . (2.14)

We shall refer to the ordinary differential equation (2.14) as the reduced Ernst equation.

This equation, while reduced, is still rather complicated. So, let us attempt to simplify the

form of this equation through a number of transformations. First, assuming f ̸= 0 aside

from a set of measure zero, divide (2.13) by f . Then, upon defining a new function

w(η) =
f ′(η)

f(η)
=

d

dη
ln(f(η)) , (2.15)

we reduce the order of (2.13) to obtain

w′′ +

{
3(2η2 + 1)

η(1 + η2)
− 2w

}
w′ − 2(2η2 + 1)

η(1 + η2)
w2 +

6η2 + 1

η2(1 + η2)
w = 0 . (2.16)
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Next, we make the substitution

w(η) =
v(η)

η
, (2.17)

which reduces (2.16) to

v′′ +
4η2 + 1

η(1 + η2)
v′ +

2

1 + η2
v − 2

η
vv′ − 2

1 + η2
v2 = 0 . (2.18)

Finally, let us make the substitution

v(η) =
u(
√

1 + η2)√
1 + η2

=
u(s)

s
, (2.19)

where

s =
√
1 + η2 . (2.20)

Then, (2.18) becomes

u′′ +
2s

s2 − 1
u′ − 2

s2 − 1
uu′ = 0 , (2.21)

where prime denotes differentiation with respect to s. With a solution u(s) to (2.21)-(2.24),

we may recover a solution to (2.14) by reversing the substitutions. In terms of u, a solution

f to (2.14) is given by

f(η) = f(0) exp

(∫ η

0

u(
√
1 + τ 2)

τ
√
1 + τ 2

dτ

)
. (2.22)

In terms of the original coordinate system,

ρ(r, z) = f
(r
z

)
= f(0) exp

(∫ r/z

0

u(
√
1 + τ 2)

τ
√
1 + τ 2

dτ

)
. (2.23)

In the transformed coordinates, s = 1 is the singular boundary, while a non-singular

solution would be found s > 1. We may renormalize the domain so that s ∈ [1 + ϵ,∞),
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where 0 < ϵ is a parameter. Meaningful boundary conditions are

u(1 + ϵ) = A and lim
s→∞

u(s) = 0 , (2.24)

where A is a constant.

2.3 Homotopy analysis for the reduced Ernst equation

We may apply the method of homotopy analysis to the reduced Ernst equation (2.21) with

initial data (2.24). We shall select the linear operator

L[u] = u′′ +
2s

s2 − 1
u′ . (2.25)

The order zero solution is then governed by the boundary value problem

L[u0] = 0 , u0(1 + ϵ) = A , lim
s→∞

u(s) = 0 . (2.26)

The order zero solution is then given by

u0(s) = A
ln(s+ 1)− ln(s− 1)

ln(2 + ϵ)− ln(ϵ)
. (2.27)

The following will be useful in computing the higher order terms. Consider the initial

value problem

L[U(s)] = Y (s) , U(1 + ϵ) = 0 , lim
s→∞

U(s) = 0 . (2.28)

Let us define the function

I(s; ϵ) =

∫ s

1+ϵ

1

ζ2 − 1

∫ ζ

1+ϵ

(ξ2 − 1)Y (ξ)dξdζ . (2.29)
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The solution obeying the condition at s = 1 + ϵ takes the form

U(s) = I(s; ϵ) + C

∫ s

1+ϵ

dξ

ξ2 − 1
= I(s; ϵ) +

C

2

(
ln

(
s− 1

s+ 1

)
− ln

(
ϵ

2 + ϵ

))
, (2.30)

where C is a constant to be determined. Evaluating this as s→ ∞ and using the remaining

boundary condition, we have

0 = lim
s→∞

I(s; ϵ)− C

2
ln

(
ϵ

2 + ϵ

)
, (2.31)

which gives

C =
2I(∞; ϵ)

ln
(

ϵ
2+ϵ

) , (2.32)

where the numerator is defined in the limiting sense. With this, we have the solution

U(s) = I(s; ϵ) +
I(∞; ϵ)

ln
(

ϵ
2+ϵ

)
(
ln

(
s− 1

s+ 1

)
− ln

(
ϵ

2 + ϵ

))

= I(s; ϵ)− I(∞; ϵ) +
I(∞; ϵ)

ln
(

ϵ
2+ϵ

) ln
(
s− 1

s+ 1

)
.

(2.33)

The Homotopy between the reduced Ernst equation and the auxiliary linear operator

L, given in (2.25), is

0 ≡ H[u, u0; q] = (1− q)L[U − u0]− hqN [U ], (2.34)

where u0(s) is an initial approximate solution, h is the so-called convergence control param-

eter, and

N [U ] = L[U ]− 2

s2 − 1
U
dU

ds
. (2.35)
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As q varies between 0 and 1, the Homotopy (2.34) takes the auxiliary linear operator L

(q = 0) and “continuously deforms” it into the non-linear operator N (q = 1). Note that

N [U ] = 0 is (2.21). Next, we assume that U(s) has a Taylor expansion around q:

U(s) = u0(s) +
∞∑

j=1

uj(s)q
j. (2.36)

Then the goal is to put (2.36) into (2.34) and match powers of q. Each value of q gives a

nominal deformation equation. If the series (2.36) converges when q = 1, we have succeeded.

What we will do is calculate the first few terms and show that a version of (2.36) with only

a few terms gives small error.

The zeroth order deformation equation has been solved and is (2.27).

Plugging (4.28) into (2.34), we get

L[u0] +
∞∑

j=1

(
L[uj]− (1 + h)L[uj−1]

)
qj = −qh 2

s2 − 1
UU ′. (2.37)

Through the use of (4.28), the right-hand side of (2.37) has the closed form

− qh
2

s2 − 1
UU ′ = − 2h

s2 − 1

∞∑

m=0

m∑

k=0

uk(s)u
′
m−k(s)q

m+1. (2.38)

Thus, for j ≥ 1, we have the jth order deformation equation

L[uj] = (1 + h)L[uj−1]−
2h

s2 − 1

j−1∑

m=0

m∑

k=0

uk(s)u
′
m−k(s). (2.39)

The first order deformation equation is

L[u1] = − 2h

s2 − 1
u0(s)u

′
0(s), (2.40)
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which simplifies to

L[u1] =
4hA2

ln(2+ϵ
ϵ
)2

ln

(
s+ 1

s− 1

)
1

(s2 − 1)2
(2.41)

upon using (2.27). The solution, according to (2.33), is

u1(s) = − hA2

6 ln( ϵ
2+ϵ

)2
ln

(
s− 1

s+ 1

){
ln

(
s− 1

s+ 1

)2

− ln

(
ϵ

2 + ϵ

)2
}
. (2.42)

The second order deformation equation is

L[u2] = (1 + h)L[u1]−
2h

s2 − 1
(u0(s)u

′
1(s) + u1(s)u

′
0(s)) . (2.43)

Using (2.41), (2.27), and (2.42), the solution is

u2(s) = − hA2

90 ln(2+ϵ
ϵ
)3

{
ln

(
2 + ϵ

ϵ

)(
15(1 + h)− 2Ah ln

(2 + ϵ

ϵ

))

+ 3Ah ln

(
s− 1

s+ 1

)2
}
ln

(
s− 1

s+ 1

){
ln

(
s− 1

s+ 1

)2

− ln

(
ϵ

2 + ϵ

)2
}
.

(2.44)

Therefore, the sum of the first three terms gives us the approximate solution

Û(s, h, A, ϵ) = u0(s) + u1(s) + u2(s). (2.45)

We run Û through the original nonlinear operator corresponding to (2.21), then we set ϵ = 1

and define the residual error V (s, h, A) = N [Û(s, h, A, 1)]. To get the error over the interval

[2,∞), we compute the sum of squared residual errors

E(h,A) :=

∫ ∞

2

(V (s, h, A))2ds. (2.46)

What we get is that E(h,A) is an eighth-degree polynomial in h. To get numerical esti-

mates of the error, care must be taken in using approximations in the coefficients of E(h,A)
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when actually plotting the error numerically. When using 5 or 10 digits of accuracy for the

coefficients of h, rounding errors can be very large. Upon explicit evaluation, (2.46) becomes

E(h,A) = µ8(A)h
8 + µ7(A)h

7 + · · ·+ µ0(A) , (2.47)

where

µ8(A) =0.000001560555921A8 − 1.28774467310−7A9 − 4.45989219710−9A12

+ 2.24681149510−8A10 − 2.25972420410−9A11 ,

(2.48)

µ7(A) =− 8.95576236010−8A10 − 0.00001248444737A8 + 7.72643298210−7A9

+ 1.15124225910−9A11 ,

(2.49)

µ6(A) =− 0.0003678857985A6 − 0.0001395930553A7 + 9.30879353010−8A10

+ 0.00003433785169A8 − 0.000002098971004A9 ,

(2.50)

µ5(A) =− 0.002207314791A6 − 0.0007070296652A7 + 0.00004318678092A8

− 0.000002061861306A9 ,

(2.51)

µ4(A) =0.02842111612A4 + 0.02704542242A5 − 0.0009323264697A7

+ 0.00002971091894A8 + 0.003085522661A6 ,

(2.52)

µ3(A) =− 0.0003648898599A7 + 0.1136844645A4 + 0.01132144650A6

+ 0.08113626728A5 ,

(2.53)

µ2(A) = 0.1705266967A4 + 0.08113626726A5 + 0.006396494847A6 , (2.54)

µ1(A) = 0.02704542242A5 + 0.1136844645A4 , (2.55)
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µ0(A) = 0.02842111611A4 . (2.56)

Similar forms of the sum of squared residual errors are obtained for other values of ϵ > 0;

we omit the general form here, since it is quite expansive for arbitrary positive ϵ.

From the form of (2.46), it is clear that (2.47) is non-negative for all h and all A.

As such, we can minimize the polynomial (2.47) over h ∈ R for each fixed value of A; in

particular, a finite minimizing value of h must exist. In Figure 2.1, we plot the residual

errors as a function of the convergence control parameter. For instance, when A = 1 we have

a minimum at h = −0.982. This gives the approximate solution of Û(s,−0.982, 1, 1) with

a sum of squares residual error of E(−0.982, 1) = 3.19 · 10−5. The error increases with the

value in A, however. When A = 0.1, the error is 3.46 · 10−13, but when A = 5, the error is

0.567. This makes sense: given a larger value of A, the adjustable parameter ϵ is closer to

the singularity, hence the singularity’s effect is stronger.
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(a) (b)

(c) (d)

Figure 2.1: Plot of the function of residual errors E(h,A) versus the convergence control

parameter h for (a) A = 0.1, (b) A = 0.25, (c) A = 0.5, (d) A = 1.
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To see the role increasing A has on making the solution more singular, note that the

solution to our choice of linear operator L has Laurent expansion near s = 1 of the form

U(s) =
Cγ

(s− 1)γ
+ higher order terms , (2.57)

for arbitrary γ where Cγ is the leading order coefficient. Then, applying A = u(1 + ϵ), we

have

A =
Cγ

ϵγ
(2.58)

(neglecting higher order terms, since the singularity dominates near s = 1). If ϵ is small

yet fixed, the parameter γ scales as γ ∼ ln(A). So, as A becomes large, the strength of the

singularity increases. For such strongly singular cases, the approximation method breaks

down. However, for small or moderate values of A, the three-term expansions approximate

the solutions remarkably well. In Figure 2, we plot the three term approximate solutions Û

for various values of A. Included are the residual error minimizing values of the convergence

control parameter, h.

20



Figure 2.2: Plot of the three term approximation to the reduced Ernst equation (2.21)

with initial data (2.24). We consider solutions for various values of A. The residual error

minimizing value of the convergence control parameter, h, is indicated.
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2.4 The connection between A and the singularity

The fact that the singularity present when using a homotopy solution with auxiliary linear

operator L is stronger with increasing A can mean with the method induces the singularity,

or the singularity is natural in the problem. Here we shall show that the singularity is

natural, and that the homotopy analysis method solutions pick up on it. We shall see that

for A > 2, the true solution develops an irregular singularity, while for smaller A a singularity

is regular. This is in line with what we had in the previous section: for large A, the error

in the homotopy solutions was large, while for small A, the approximate solutions gave very

small error.

Let us begin with the exact equation (2.21). We may rewrite this as

u′′

u′
+

2(s− u)

s2 − 1
= 0 . (2.59)

Integrating on the interval [1 + ϵ, s], and then exponentiating, we find

u′(s) = C(ϵ) exp

(∫ s

1+ϵ

2

t2 − 1
(u(t)− t) dt

)
. (2.60)

Here C(ϵ) is a positive constant depending on ϵ. Let us write

u(t)− t = A− t+ (u(t)− A) = A− t+ (t− 1− ϵ)Λ(t) , (2.61)

where Λ(t) is analytic. The expression u(t)−A = (t− 1− ϵ)Λ(t) follows from the fact that

u(1 + ϵ) = A. Then, (2.60) becomes

u′(s) = C(ϵ) exp

(
2

∫ s

1+ϵ

(t− 1− ϵ)Λ(t)

t2 − 1
dt

)
exp

(
2

∫ s

1+ϵ

A− t

t2 − 1
dt

)
. (2.62)
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Now,

lim
ϵ→0+

∫ s

1+ϵ

(t− 1− ϵ)Λ(t)

t2 − 1
dt =

∫ s

1

Λ(t)

t+ 1
dt , (2.63)

so the first integral in (2.62) is bounded on any compact interval since Λ(t) is analytic. Next,

consider
∫ s

1+ϵ

2(A− t)

t2 − 1
dt = (A+ 1) ln(2 + ϵ)− (A− 1) ln(ϵ) + (A− 1) ln(s− 1)− (A+ 1) ln(s+ 1)

= (A+ 1) ln

(
2 + ϵ

1 + s

)
− (A− 1) ln

(
ϵ

s− 1

)

= ln

[(
2 + ϵ

1 + s

)A+1
]
+ ln

[(
ϵ

s− 1

)1−A
]
.

(2.64)

So, this integral can become singular as ϵ→ 0+. Then, (2.62) becomes

u′(s) = C(ϵ) exp

(
2

∫ s

1+ϵ

(t− 1− ϵ)Λ(t)

t2 − 1
dt

)(
2 + ϵ

1 + s

)A+1

(s− 1)A−1ϵ1−A . (2.65)

Defining the analytic function

Θϵ(s) = C(ϵ) exp

(
2

∫ s

1+ϵ

(t− 1− ϵ)Λ(t)

t2 − 1
dt

)(
2 + ϵ

1 + s

)A+1

(s− 1)A−1 , (2.66)

(Θϵ(s) is analytic for any choice of ϵ ≥ 0) we find that (2.65) becomes

u′(s) =
Θϵ(s)

ϵA−1
. (2.67)

Now, the strength of the singularity determines whether or not it is regular. Here, we need

u′(s) ∼ ϵν where ν ≥ −1. Taking ν = −(A − 1), we see that we need A ≤ 2. Hence,

for A ≤ 2, we can have solutions with regular singular points. Meanwhile, for A > 2, the

strength of the singularity is too strong, and the solutions have irregular singular point at

s = 1.
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We have therefore determined why the analytical approximations in Section 3 have

poor error for large A: beyond A = 2, the solutions have an irregular singularity, and the

problem as stated cannot be solved by an analytical method such as homotopy analysis.

Even adding additional terms would not help for A > 2, since the analytical approximation

cannot capture the strength of such a strong singularity. When regular singular solutions do

exist (0 < A < 2), the analytical results are very good.

2.5 Exact solution for alternate boundary conditions

We’ve shown that approximate solutions with low residual error are possible for the condi-

tions (2.24). A weaker set of conditions are possible, namely

u(1 + ϵ) = A and lim
s→∞

u′(s) = A, (2.68)

where A is a constant. Under these different conditions, note that we obtain the exact

solution u(s) ≡ A to (2.21) for all s ∈ (1,∞). Then, we recover the quantities

v(η) =
A√
1 + η2

and w(η) =
A

η
√

1 + η2
. (2.69)

Then,

f ′(η)

f(η)
=

A

η
√

1 + η2
, (2.70)

which implies

ln f(η) = B + A

∫ η dξ

ξ
√

1 + ξ2
= B − A tanh−1

(
1√

1 + η2

)
. (2.71)
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Here B is another arbitrary constant. We then obtain the exact solution

f(η) = exp

{
B − A tanh−1

(
1√

1 + η2

)}
. (2.72)

Meanwhile, integrating (2.12) for g′(η), we have

ln g′(η) = C1 − ln η − ln(1 + η2)− 2A tanh−1

(
1√

1 + η2

)
. (2.73)

We find that

g(η) = C2 +

∫ η

0

exp

{
C1 − A tanh−1

(
1√
1+ξ2

)}

ξ
√
1 + ξ2

. (2.74)

Here C1 and C2 are constants. Putting these solutions back into the original coordinate

systems, we find that a solution u(r, z) = ρ(r, z) + iσ(r, z) is given by

ρ(r, z) = exp

{
B − A tanh−1

(
z√

r2 + z2

)}
(2.75)

and

σ(r, z) = C2 +

∫ r/z

0

exp

{
C1 − A tanh−1

(
1√
1+ξ2

)}

ξ
√
1 + ξ2

, (2.76)

where r > 0 and z > 0. To simplify σ(r, z), make the change of variable

ν = C1 − A tanh−1

(
1√

1 + ξ2

)
. (2.77)

Then,

σ(r, z) = C2 +
1

A

∫ ν(r/z)

−∞
eνdν = C2 +

1

A
exp

{
C1 − A tanh−1

(
z√

r2 + z2

)}
. (2.78)

In Figure 3, we plot the modulus |u(r, z)| =
√
ρ(r, z)2 + σ(r, z)2 when A = B = C1 = 1 and

C2 = 0. In the radial far-field case of r >> z (i.e., r/z → ∞), we have that ρ → eA and
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σ → C2 +
1
A
eC1 , hence the modulus is bounded and satisfies

|u(r, z)| ≈

√

e2A +

(
C2 +

1

A
eC1

)2

for r >> z . (2.79)

This relation may then be used to calibrate the arbitrary integration constants. Further,

when A = B = C1 = 1 and C2 = 0, taking r → 0+ and z > 0 fixed, we have |u(r, z)| → 0

while if we take z → 0+ and r > 0 fixed, we have |u(r, z)| →
√
2. This behavior is seen in

Figure 2.3.
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Figure 2.3: Plot of the modulus |u(r, z)| of the exact solution u(r, z) with real part ρ(r, z)

given by (2.75) and imaginary part σ(r, z) given by (2.78). Here we select the arbitrary

integration constants to satisfy A = B = C1 = 1 and C2 = 0.
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2.6 Discussion

Upon transforming the cylindrical coordinate form of the Ernst equation into a real-valued

system, we were able to apply the method of homotopy analysis to construct approximate

solutions to the relevant nonlinear singular boundary value problem. Through an appropriate

choice of the auxiliary linear operator, we were able to construct successive terms in the

approximate solution, despite difficulties arising from the singular nature of the problem.

Then, through an appropriate choice of the convergence control parameter we obtained

three-term approximate solutions which have sufficiently small residual error. In particular,

we selected the convergence control parameter so as to minimize the sum of squared residuals

over the infinite domain. This method has recently been employed in order to control the

residual error in a number of nonlinear problems [22, 48, 49, 50]. From here, the solution to

the similarity ordinary differential equation can be mapped back to a solution of the Ernst

partial differential equation, replacing s =
√
1 + η2 and then taking η = r/z.

For a related yet simpler boundary value problem (in the case where the near- and far-

field conditions exactly agree), an exact solution was found to the boundary value problem.

This solution was translated back into a solution of the full nonlinear PDE. Qualitatively,

this solution agrees with the approximate solutions, though the latter are more complicated,

owing to the more complicated boundary conditions. Both classes of solutions examined

correspond to what one would expect physically. There exists a singularity as the radius

28



approaches zero (r → 0+), while, when the radius becomes large r → ∞, the solutions

asymptotically decay in an algebraic manner to some zero or positive limiting value.

With this, we have determined the behavior of two classes of solutions to the Ernst

equation, which acts as a model of axially symmetric stationary vacuum gravitational fields,

where the two classes are differentiated from one another in their far-field behavior. Regard-

ing future work, recall that Harrison [7] showed that the Ernst equation admits a Bächlund

transform. Hence, it may be possible to generate multi-hump soliton solutions for other

reductions of the Ernst equations. Here, the exp-function, tanh or sech methods could prove

useful; see, for instance [51].
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CHAPTER 3

PEAKED SOLUTIONS FOR THE NONLINEAR EVOLUTION

OF A VECTOR POTENTIAL OF AN ELECTROMAGNETIC

PULSE PROPAGATING IN AN ARBITRARY PAIR PLASMA

WITH TEMPERATURE ASYMMETRY

The following results are from the article [112].

3.1 Background

The nonlinear wave equation

2iω0
∂A

∂t
+

(2− ϵ)

ω2
0

∂2A

∂ξ2
+
∂2A

∂x2
+
∂2A

∂y2
+ f(|A|2)A = 0 (3.1)

describes the nonlinear evolution of a vector potential of an electromagnetic pulse propagat-

ing in an arbitrary pair plasma with temperature asymmetry [52, 53]. Here A is the slowly

varying amplitude of a circularly polarized EM pulse with mean frequency ω0 and mean

wave number k0, and ξ = z− vgt is the co-moving coordinate with group velocity vg. Under
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appropriate renormalization [52], the above equation takes the form

i
∂A

∂t
+
∂2A

∂ξ2
+
∂2A

∂x2
+
∂2A

∂y2
+ f(|A|2)A = 0 . (3.2)

Appropriate forms of f include the cubic-quintic model

f(|A|2) = |A|2 − |A|4 (3.3)

and the more complicated focusing-defocusing model

f(|A|2) = |R|2
(1 + |R|2)2 . (3.4)

Making the simplifying assumptions of [52], converting (x, y) to polar coordinates (r, θ),

and taking A = R(r) exp(iλt + imθ) (where the integer m defines the topological charge of

vortices and λ is the nonlinear frequency shift) we obtain

d2R

dr2
+

1

r

dR

dr
−
(
m2

r2
+ λ

)
R + F (R) = 0 , (3.5)

where

F (R) = R3 −R5 or F (R) =
R3

(1 +R2)2
(3.6)

as needed. Natural boundary conditions are

R(0) = 0 , (3.7)

dmR

drm

∣∣∣∣
r=0

= A0 , (3.8)

lim
r→∞

R(r) = 0 . (3.9)
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Note that there are three conditions, yet our equation is of second order. We shall see that

one condition results in a restriction on the parameter regime for λ. To this end, note taking

m = 1 and considering the linearized equation

R′′
0 +

1

r
R′

0 −
(

1

r2
+ λ

)
R = 0 , (3.10)

we have the exact solution in terms of Bessel’s function of the first kind

R0(r) =
2A0√
−λ

J1(
√
−λr) (3.11)

provided that λ < 0. For λ = 0, we obtain a stationary state. The stationary state allows for

a better understanding of the nonlinear structure, as it permits us to focus on the nonlinearity

without also having to contend with stability or instability due to temporal perturbations.

So, in what follows, we shall take λ = 0.

Solitons are thought to be better than current transmission of information methods

[54]. It has been shown that the pair plasma with small temperature asymmetry is a suitable

candidate for a stable soliton structure [52]. Also, electromagnetic soliton structures have

been created due to asymmetries of different source [55]. In [53], numerical methods as well

as a variational method are used for (3.2) to study light bullets in saturating media. Pair

plasmas also have applications to astrophysics [55].

Note that (3.5) is too complicated to admit an exact solution. For many physical

applications, approximate solutions, while clearly less informative than exact solutions, are

sufficient to describe the true solutions (assuming that the error is sufficiently small). Taylor

series solutions would likely only be valid in a small region near the origin. In the present
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paper, we shall apply the method of homotopy analysis to study peaked solutions to equa-

tion (3.5) governing nonlinear evolution of a vector potential of an electromagnetic pulse

propagating in an arbitrary pair plasma with temperature asymmetry. Peaked solutions

have previously been considered in a number of applications. When working with integrable

models, such solutions are usually referred to as peakons [56]-[58].

The method of homotopy analysis [14]-[22] has recently been applied to the study

of a number of non-trivial and traditionally hard to solve nonlinear differential equations,

for instance nonlinear equations arising in heat transfer [23]-[26], fluid mechanics [27]-[34],

solitons and integrable models [35]-[39], nanofluids [40]-[41], the Lane-Emden equation which

appears in stellar astrophysics [42]-[45], and models frequently used in mathematical physics

[46, 47], to name a few areas. In the present paper, we apply a form of homotopy analysis

known as the so-called “optimal homotopy analysis method.” In this method, one chooses

the convergence control parameter so as to minimize a function of the residual error over the

domain. This method has been successfully applied to a number of problems in mathematical

physics; see [48] - [63]. Using this method, we are able to construct peaked solutions valid

over the whole semi-infinite interval corresponding to r ∈ [0,∞).
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3.2 Homotopy analysis for the cubic-quintic model with

topological charge m = 1

Here we solve the boundary value problem

d2R

dr2
+

1

r

dR

dr
− 1

r2
R +R3 −R5 = 0 , (3.12)

subject to

R(0) = 0 , R′(0) = A0 , lim
r→∞

R(r) = 0 . (3.13)

An appropriate choice of linear operator shall be

L =
d2

dr2
+

1

r

d

dr
− 1

r2
. (3.14)

Then, for arbitrary constants c1 and c2 we have

L
[
c1r +

c2
r

]
= 0 . (3.15)

Note that the conditions at r = 0 would cause c2 = 0 while the conditions at r → ∞ would

cause c1 = 0. So, the only global solution on r ∈ (0,∞) which is continuously differentiable is

the zero solution. However, if we are willing to search for continuous yet weak solutions (weak

in the sense that solutions are not continuously differentiable everywhere on the domain),

we can apply matching. To this end, consider a function

R0(r) =





c1r 0 ≤ r ≤ r∗ ,

c2
r

r > r∗ ,

(3.16)
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where r∗ > 0 is a matching point. Then, the conditions at r = 0 imply c1 = A0 while the

far-field condition R → 0 as r → ∞ is always satisfied. To ensure continuity at r = r∗, we

have

A0r∗ =
c2
r∗

⇒ c2 = A0r
2
∗ , (3.17)

hence

R0(r) =





A0r 0 ≤ r ≤ r∗ ,

A0r2∗
r

r > r∗ ,

(3.18)

is a weak solution to the linear problem L[R0] = 0 which satisfies all three boundary condi-

tions. Regarding regularity, observe that such a solution is L2((0,∞)) (L2-integrable):

∫ ∞

0

(R0(r))
2 dr =

∫ r∗

0

A2
0r

2dr +

∫ ∞

r∗

A2
0r

4
∗

r2
dr =

4

3
A2

0r
3
∗ <∞ . (3.19)

Taking the nonlinear operator

N [R] =
d2R

dr2
+

1

r

dR

dr
− 1

r2
R +R3 −R5 = L[R] +R3 −R5 , (3.20)

we construct the homotopy

H(R; q) = (1− q)L[R] + qhN [R] , (3.21)

where q ∈ [0, 1] is the embedding parameter such that H(R; 0) = 0 implies L[R] = 0

and H(R; 1) = 0 implies N [R] = 0, and h is the convergence control parameter. Setting

H(R; q) ≡ 0, and assuming a solution of the form

R(r) = R0(r) + qR1(r) + q2R2(r) + · · · , (3.22)
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we see that

L[R0] = 0 , (3.23)

subject to

R0(0) = 0 , R′
0(0) = A0 , lim

r→∞
R0(r) = 0 , (3.24)

L[R1] = (1− h)L[R0]− hR3
0 + hR5

0 = −hR3
0 + hR5

0 , (3.25)

subject to

R1(0) = 0 , R′
1(0) = 0 , lim

r→∞
R1(r) = 0 , (3.26)

L[R2] = (1− h)L[R1]− 3hR2
0R1 + 5hR4

0R1 , (3.27)

subject to

R2(0) = 0 , R′
2(0) = 0 , lim

r→∞
R2(r) = 0 . (3.28)

We see that R0(r) is the function given by (3.18). While r∗ denotes the position of the

peak, we can (with an appropriate scaling of r) select r∗ = 1, as this will greatly simplify

computations. On r ∈ (0, 1), we have

L[R1−] = −hA3
0r

3 + hA5
0r

5 , (3.29)

and therefore

R1−(r) =
hA3

0

48
r5
(
A2

0r
2 − 2

)
. (3.30)

Meanwhile, for r > 1,

L[R1+] = −hA3
0r

−3 + hA5
0r

−5 , (3.31)
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and we obtain

R1+(r) =
c2
r
+
hA3

0

2

ln r

r
+
hA5

0

8

1

r3
. (3.32)

Matching R1−(1) = R1+(1), we have

c2 = −hA
3
0

48

(
5A2

0 + 2
)
. (3.33)

Putting this together, we have

R1(r;h) =





hA3
0

48
r5 (A2

0r
2 − 2) for 0 ≤ r ≤ 1 ,

−hA3
0

48
(5A2

0 + 2) 1
r
+

hA3
0

2
ln r
r

+
hA5

0

8
1
r3

for r > 1 ,

(3.34)

We continue the process to obtain higher order terms. For the order two approximation

R(r;h) = R0(r) +R1(r;h) +R2(r;h) we calculate the residual error N [R(r;h)]. To measure

the error over the domain r ∈ [0,∞), we use the integral of squared residual errors

E(h) =

∫ ∞

0

(N [R(r;h)])2 dr

=

∫ 1

0

(N [A0r +R1−(r;h) + R2−(r;h)])
2 dr

+

∫ ∞

1

(
N [
A0

r
+R1+(r;h) +R2+(r;h)]

)2

dr.

(3.35)

We find that the error function E(h) exists when N [R(r;h)] is L2-integrable, and by con-

struction E is convex in h. So, a minimizer h∗ exists, such that E(h∗) < E(h) for all h ̸= h∗.

Taking A0 = 1, we find that h∗ = argminh∈RE(h) = 0.45014. In Figure 3.1, we plot the error

function E(h) as it depends on the convergence control parameter, h. We find that the min-

imal value is E(h∗) = 0.011. Hence, the accumulated squared residual error over the whole

domain is of order 10−2, which is very good considering the domain is infinite. In Figure
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Figure 3.1: Plot of E(h), the accumulated sum of squared residual error over the infinite

domain r ∈ [0,∞), as a function of h, the convergence control parameter. The error function

has minimum E(h∗) = 1.1× 10−2 where h∗ = 0.45014.

3.2, we plot the second order solution R(r;h) = R0(r) +R1(r;h) +R2(r;h). We observe the

peaked behavior of the continuous approximate solution. So, the homotopy analysis method

has allowed us to obtain the required weak solution, which is a piecewise-continuous peaked

solution with peak at r∗ = 1 and algebraic decay as r → ∞.
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Figure 3.2: Plot of the three-term approximate solution to R(r) when h∗ = 0.45014, for the

cubic-quintic model with topological charge m = 1. Here the initial condition is taken as

A0 = 1, and the peak occurs at r∗ = 1.

3.3 Homotopy analysis for the cubic-quintic model with

topological charge m = 2

Here we solve the boundary value problem

d2R

dr2
+

1

r

dR

dr
− 4

r2
R +R3 −R5 = 0 , (3.36)

subject to

R(0) = 0 , R′′(0) = A0 , lim
r→∞

R(r) = 0 . (3.37)

An appropriate choice of linear operator shall be

L =
d2

dr2
+

1

r

d

dr
− 4

r2
. (3.38)
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Then, for arbitrary constants c1 and c2 we have

L
[
c1r

2 +
c2
r2

]
= 0 . (3.39)

Note that the conditions at r = 0 would cause c2 = 0 while the conditions at r → ∞ would

cause c1 = 0. So, the only global solution on r ∈ (0,∞) which is continuously differentiable

is the zero solution. Allowing continuous yet weak solutions, consider a function

R0(r) =





c1r
2 0 ≤ r ≤ r∗ ,

c2
r2

r > r∗ ,

(3.40)

where again r∗ > 0 is a matching point. Then, the conditions at r = 0 imply c1 = A0/2

while the far-field condition R → 0 as r → ∞ is always satisfied. To ensure continuity at

r = r∗, we have

A0

2
r2∗ =

c2
r2∗

⇒ c2 =
A0

2
r4∗ , (3.41)

hence

R0(r) =





A0

2
r2 0 ≤ r ≤ r∗ ,

A0r4∗
2

1
r2

r > r∗ ,

(3.42)

is a weak solution to the linear problem L[R0] = 0 which satisfies all three boundary condi-

tions. Regarding regularity, observe that such a solution is L2((0,∞)) (L2-integrable):

∫ ∞

0

(R0(r))
2 dr =

∫ r∗

0

A2
0

4
r4dr +

∫ ∞

r∗

A2
0r

8
∗

4r4
dr =

2

15
A2

0r
5
∗ <∞ . (3.43)

Taking the nonlinear operator to be N [R] = L[R] + R3 − R5, we construct the

homotopy

H(h; q) = (1− h)L[R]− hqN [R]. (3.44)
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For H(h; q) ≡ 0, we assume the expansion

R(r) =
∞∑

j=0

Rj(r)q
j. (3.45)

Doing so and working this back into H(h; q) = 0 and matching powers of q yields

L[R0] = 0, R0(0) = 0, R′′
0(0) = A0, lim

r→∞
R0(r) = 0, (3.46)

L[R1] = (1 + h)L[R0] + h(R3
0 −R5

0), R1(0) = 0, R′′
1(0) = 0, lim

r→∞
R1(r) = 0,

(3.47)

and

L[R2] = (1+h)L[R1]+h
(
−5R4

0R1 + 3R2
0R1

)
, R2(0) = 0, R′′

2(0) = 0, lim
r→∞

R2(r) = 0.

(3.48)

For simplicity we take r∗ = 1. Since we already found R0(r) in (3.42), we have

R0(r) =





A0

2
r2 0 ≤ r ≤ 1 ,

A0

2r2
r > 1.

(3.49)

Next, for 0 ≤ r ≤ 1, (3.47) becomes

L[R1−] = h

(
A3

0

8
r6 − A5

0

32
r10
)
, (3.50)

which after using R1−(0) = 0 and R′
1−(0) = 0 solves to

R1−(r) =
−hA0

4480
r8
(
A2

0r
4 − 28

3

)
. (3.51)

Let R1−(1) = κ. For r > 1, we have

L[R1+] = h

(
A3

0

8r6
− A5

0

32r10

)
. (3.52)
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We want to match the functions at r = 1 for continuity, so we get the condition R1+(1) = κ

in addition to lim
r→∞

R1+(r) = 0. This gives us the two conditions we need to completely solve

and get

R1+(r) =
A3

0h

13, 440r8
(
−112r6 + 4A2

0r
6 + 140r4 − 7A2

0

)
. (3.53)

We put this together for

R1(r) =





−hA0

4480
r8
(
A2

0r
4 − 28

3

)
0 ≤ r ≤ 1 ,

A3
0h

13,440r8
(−112r6 + 4A2

0r
6 + 140r4 − 7A2

0) r > 1.

(3.54)

The work is similar to find R2(r).

Armed with the three-term expansion, we can calculate the error involved. First,

we define V (A0, r, h) := R0(r) + R1(r) + R2(r). Next, define E−(A0, h, r) := N [R0−(r) +

R1−(r)+R2−(r)] and E+(A0, h, r) := N [R0+(r)+R1+(r)+R2+(r)]. Consider the case when

A0 = 1. We calculate the sum of squared residual error

E(h) :=

∫ 1

0

E−(1, h, r)
2dr +

∫ ∞

1

E+(1, h, r)
2dr. (3.55)

The minimum value of this function is 3.14× 10−11, obtained at h∗ = −1.0018. The plot of

this error function is given in Figure 3.3, and the resulting three-term approximation with

minimizing h-value V (1, r, h∗) is given in Figure 3.4. The error here is much smaller than

in the previous section due to the fact that the coefficients of the solution are cut in half.

As these numbers are taken to higher powers through the nonlinear operator and squared to

find the error, we are getting the same degree polynomial in h over the same interval, with

much smaller coefficients.
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Figure 3.3: Plot of E(h), the accumulated sum of squared residual error over the infinite

domain r ∈ [0,∞), as a function of h, the convergence control parameter. The error function

has minimum E(h∗) = 3.14× 10−11 where h∗ = −1.0018.
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Figure 3.4: Plot of the three-term approximate solution to V (r) to R(r) when h∗ = −1.0018,

for the cubic-quintic model with topological chargem = 2. Here the initial condition is taken

as A0 = 1, and the peak occurs at r∗ = 1.
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3.4 Homotopy analysis for the cubic-quintic model with

topological charge m = 3

In this section, we consider the boundary-value problem

d2R

dr2
+

1

r

dR

dr
− 9

r2
R +R3 −R5 = 0 , (3.56)

subject to

R(0) = 0, R′′′(0) = 1, lim
r→∞

R(r) = 0. (3.57)

Considering the linear operator

L =
d2

dr2
+

1

r

d

dr
− 9

r2
, (3.58)

we observe for arbitrary constants c1 and c2 that

L
[
c1r

3 +
c2
r3

]
= 0. (3.59)

As in the previous two sections, we will consider a weak solution such as

R0(r) =





c1r
3 0 ≤ r ≤ r∗ ,

c2
r3

r > r∗.

(3.60)

To ensure continuity, we will match the values of (3.60) at r = r∗. As before, let us take

r∗ = 1 for simplicity so we have

R0(r) =





A0

6
r3 0 ≤ r ≤ 1 ,

A0

6r3
r > 1.

(3.61)
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The homotopy for equation (3.56) is

H(q;h) = (1− q)L[R]− qhN [R]. (3.62)

We will set (3.62) identically to zero and assume an expansion

R(r) =
∞∑

j=0

Rj(r)q
j. (3.63)

Plugging this into (3.62) set to zero and equating powers of q on both sides leads to the first

few equations

L[R0] = 0, R0(0) = 0, R′′′
0 (0) = A0, lim

r→∞
R0(r) = 0, (3.64)

L[R1] = h
(
R3

0 −R5
0

)
, (3.65)

subject to

R1(0) = 0, R′′′
1 (0) = 0, lim

r→∞
R1(r) = 0, (3.66)

and

L[R2] = (1 + h)L[R1] + h
(
−5R4

0R1 + 3R2
0R1

)
, (3.67)

subject to

R2(0) = 0, R′′′
2 (0) = 0, lim

r→∞
R2(r) = 0. (3.68)

We already have R0(r) given in (3.61), so we next solve (3.65). If we consider 0 ≤ r ≤ 1, we

have

L[R1−] = h

((
A0r

3

6

)3

−
(
A0r

3

6

)5
)
, (3.69)
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subject to

R1−(r) = 0, R′′′
1−(0) = 0. (3.70)

The solution is

R1−(r) = − A0hr
11

2, 177, 280

(
A2

0r
6 − 90

)
. (3.71)

To get the solution for r > 1, we let β = R1−(1) so we can match R1+(r) with R1−(r) at

r = 1. Thus we are solving

L[R1+] = h

((
A0

6r3

)3

−
(
A0

6r3

)5
)
, (3.72)

subject to

R1+(1) = β, lim
r→∞

R1+(r) = 0. (3.73)

Then we have

R1+(r) =
A3

0h

8, 709, 120r13

(
(3A2

0 − 648)r10 + 1, 008r6 − 7A2
0

)
. (3.74)

And so we have the solution to (3.65) with (3.71) and (3.74). The process is the same to

find R2(r).

With the three-term approximation, we can now estimate the error. If we define

R−(A0, r, h) = R0−(r) +R1−(r) +R2−(r) and R+(A0, r, h) = R0+(r) +R1+(r) +R2+(r), the

three-term approximation is then

M(A0, r, h) =





R−(A0, r, h) 0 ≤ r ≤ 1,

R+(A0, r, h) r > 1.

(3.75)
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We then compute the residual error N [R−(A0, r, h)] and N [R+(A0, r, h)], and calculate the

sum of squared residual errors

E(A0, h) =

∫ 1

0

N [R−(A0, r, h)]
2dr +

∫ ∞

1

N [R+(A0, r, h)]dr. (3.76)

The minimum value of E(h, 1) is found to be 8.7×10−20, and occurs at h∗ = −0.99985. The

graph of E(h, 1) is given in Figure 3.5 and the corresponding approximation M(1, r, h∗) is

given in Figure 3.6. As in the previous section, the error was better than before because we

are integrating the same-degree polynomial with much smaller coefficients. In these three

sections considering the cubic-quintic model, the sum of squared residual errors has been

a polynomial in h of degree 20. However, the leading term’s coefficient of the polynomial:

E(h) given in (3.35) was on the order of 10−8, E(h) given in (3.55) was of order 10−29, and

E(1, h) derived from (3.76) was on the order of 10−46.
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Figure 3.5: Plot of E(1, h), the accumulated sum of squared residual error over the infinite

domain r ∈ [0,∞), as a function of h, the convergence control parameter. The error function

has minimum E(1, h∗) = 8.7× 10−20 where h∗ = −0.99985.
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Figure 3.6: Plot of the three-term approximate solution M(r) to R(r) when h∗ = −0.99985,

for the cubic-quintic model with topological charge m = 3. Here the initial condition is

taken as A0 = 1, and the peak occurs at r∗ = 1.
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3.5 Homotopy analysis for the focusing-defocusing model with

topological charge m = 1

Here we solve the boundary value problem

d2R

dr2
+

1

r

dR

dr
− 1

r2
R +

R3

(1 +R2)2
= 0 , (3.77)

subject to

R(0) = 0 , R′(0) = A0 , lim
r→∞

R(r) = 0 . (3.78)

Since the only difference will be in the nonlinear operator, we take the same linear operator

as in section 2:

L =
d2

dr2
+

1

r

d

dr
− 1

r2
. (3.79)

The nonlinear operator will be

N [R] = L[R] +
R3

(1 + R2)2
. (3.80)

The homotopy for (3.77) can be set up as

H(h; q) = (1− h)L[R]− qhN [R]. (3.81)

We set H(h; q) ≡ 0 and assume the expansion

R(r) =
∞∑

j=0

Rj(r)q
j. (3.82)

Plugging (3.82) into H(h; q) ≡ 0 and matching powers of q gives the first three equations of

the expansion

L[R0] = 0, R0(0) = 0, R′
0(0) = A0, lim

r→∞
R0(r) = 0, (3.83)
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L[R1] = (1 + h)L[R0] + h

(
R3

0

(1 +R2
0)

2

)
(3.84)

subject to

R1(0) = 0, R′
1(0) = 0, lim

r→∞
R1(r) = 0, (3.85)

and

L[R2] = (1 + h)L[R1] + h

(−4R4
0R1

(1 +R2
0

+
3R2

0R1

(1 +R2
0)

2

)
(3.86)

subject to

R2(0) = 0, R′
2(0) = 0, lim

r→∞
R2(r) = 0. (3.87)

As in section 2, we will consider a weak solution

R0(r) =





c1r 0 ≤ r ≤ r∗ ,

c2
r

r > r∗,

(3.88)

for r∗ some point on the interval (0,∞). We will take r∗ = 1, and solving (3.83) we have

R0(r) =





A0r 0 ≤ r ≤ 1,

A0

r
r > 1.

(3.89)

For 0 ≤ r ≤ 1, (3.84) becomes

L[R1−] = h

(
(A0r)

3

(1 + (A0r)2)2

)
. (3.90)

Using the first two conditions in (3.85), this solves to

R1−(r) =
h {(A2

0r
2 + 2) ln(1 + A2

0r
2)− 2A2

0r
2}

4A3
0r

. (3.91)

Note that lim
r→0

R1−(r) = 0 so the boundary condition is satisfied.
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As in previous sections, for the function R1+(r) defined for r ∈ (1,∞), we will match

up the value at r∗ = 1 to the value of R1−(1) = ρ. Then solving

L[R1+] = h




(
A0

r

)3
(
1 +

(
A0

r

)2)2


 (3.92)

subject to

R1+(1) = ρ, lim
r→∞

R1+(r) = 0, (3.93)

we have the solution

R1+(r) =
h (−A6

0 ln(r
2 + A2

0) + (2 + A2
0 + 2A6

0) ln(1 + A2
0)− 2A2

0)

4A3
0r

. (3.94)

The same process is used to develop R2−(r) and R2+(r), and we can find the three-term

approximation. Let us define M(A0, r, h) = R0(r) + R1(r) + R2(r). For r in the interval

[0, 1], we define R−(A0, r, h) = R0−(r) + R1−(r) + R2−(r). And for r ∈ (1,∞), we define

R+(A0, r, h) = R0+(r) +R1+(r) +R2+(r). In what follows, let us take A0 = 1 and so we will

define Rm(r, h) = R−(1, r, h) and Rp(r, h) := R+(1, r, h). In the cubic-quintic model, we were

able to integrate to find the sum of squared residual errors and minimize accordingly with

respect to h. This is difficult in the focusing-defocusing model with the rational functions

involved in the approximation. Instead of performing the integration

∫ 1

0

N [Rm(r, h)]
2dr +

∫ ∞

1

N [Rp(r, h)]
2dr, (3.95)

we use a finite number of values for r on the domain and compute a sum. This allows

us to accumulate the error through the use of absolute value, rather than squaring. The

accumulated error is then divided by the number of points used to weight each point evenly.
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Taking a geometric spread of points, we first calculate

E1(h) =
1

50

{
|N [Rm(0.25, h)|+

49∑

j=1

∣∣N
[
Rp

(
0.25 + 1.1j, h

)]∣∣
}
. (3.96)

This polynomial in h has a minimum value of 1.6478× 10−2 occuring at h1 = −0.39997.

If we want to use more points that lie in our approximation for r ∈ [0, 1], we can use

E2(h) =
1

50

{
20∑

j=1

∣∣∣∣N
[
Rm

(
j

20
, h

)]∣∣∣∣+
30∑

j=1

∣∣N
[
Rp(1.5

j, h)
]∣∣
}
. (3.97)

This gives an error of 6.185× 10−3 at h2 = −0.8772.

Doubling the number of points, we have the counterparts to E1(h) and E2(h):

E3(h) =
1

100

{
|N [Rm(0.25, h)|+

99∑

j=1

∣∣N
[
Rp

(
0.25 + 1.1j, h

)]∣∣
}
, (3.98)

with a minimum of 8.24× 10−3 at h3 = −0.39958, and

E4(h) =
1

100

{
40∑

j=1

∣∣∣∣N
[
Rm

(
j

40
, h

)]∣∣∣∣+
60∑

j=1

∣∣N
[
Rp(1.5

j, h)
]∣∣
}
, (3.99)

with a minimum of 3.229× 10−3 obtained at h4 = −0.9238.

To get an even spread over r ∈ [1, 100] as well as values up to r = 100 + 1.1100 ≈

13, 880, we define

E5(h) =
1

200

{
|N [Rm(1, h)]|

99∑

j=1

|N [Rp(j, h)]|+
100∑

j=1

|N [Rp(100 + 1.1j, h)]|
}
, (3.100)

which gives a minimum of 2× 10−3 at h5 = −0.423.

The largest r-domain covered, having size 3×1010, is by E4(h). So to get a geometric

spread over an r-domain of size 4× 1052, we define

E6(h) =
1

300

{
|N [Rm(1, h)]|+

299∑

j=1

|N [Rp(1.5
j, h)]|

}
, (3.101)
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which gives an error of 7.83× 10−4 at h6 = −0.6192.

The graphs of these error functions are given in Figures 3.7 - 3.12. The correspond-

ing h value giving the least error, h6, is used in a graph of the corresponding three-term

approximation M(1, r, h6) in Figure 3.13.
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Figure 3.7: Plot of E1(h), the error along a geometric sequence of 50 values of r as a function

of h. This function has minimum E(h1) = 1.6478× 10−2 where h1 = −0.3997.
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Figure 3.8: Plot of E2(h), the error using 20 evenly spaced values for r ∈ [0, 1] and 30

more along a geometric sequence for r > 1, as a function of h. This function has minimum

E2(h2) = 6.185× 10−3 where h2 = −0.8772.
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Figure 3.9: Plot of E3(h), the error along a geometric sequence of 100 values of r as a function

of h. This function has minimum E3(h3) = 8.24× 10−3 where h3 = −0.39958.
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Figure 3.10: Plot of E4(h), the error the error using 40 evenly spaced values for r ∈ [0, 1]

and 60 more along a geometric sequence for r > 1, as a function of h. This function has

minimum E4(h4) = 3.229× 10−3 where h4 = −0.9238.
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Figure 3.11: Plot of E5(h), the error the error using 100 evenly spaced values for r ∈ [0, 100]

and 100 more along a geometric sequence for r > 1 up to r ≈ 13, 880, as a function of h.

This function has minimum E5(h5) = 2× 10−3 where h5 = −0.423.
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Figure 3.12: Plot of E6(h), the error along a geometric sequence of 300 values of r up to

r ≈ 4 × 1052, as a function of h. This function has minimum E6(h) = 7.83 × 10−4 where

h6 = −0.6192.
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Figure 3.13: Plot of the three-term approximate solution M(A0, r, h) to R(r) when

h = h6 = −0.6192, for the focus-defocusing model with topological charge m = 1. Here

the initial condition is taken as A0 = 1, and the peak occurs at r∗ = 1.
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3.6 Discussion

In this paper we considered the equation that governs the vector potential of an electromag-

netic pulse. We sought to find analytical solutions through the use of the Homotopy Analysis

Method. Under a stationary assumption, the linear part of the resulting equation yielded

solutions that did not satisfy the boundary conditions. So a solution was assumed to the

linear operator in the guise of a piece-wise defined function. On the first part the conditions

at zero are satisfied, and for the far-field part of the equation the condition at infinity in

satisfied. This created a weak solution, in that we could match the two different functions

at a certain point r∗ to obtain continuity, but the solution would not be differentiable there.

For the cubic-quintic model the error decreased quickly because of the topological

charge as we moved up in cases where m = 1, 2, 3. There was a geometric decrease in error

as m = 1 yielded error on the order of 10−2, m = 2 on the order of 10−11, and m = 3 on the

order of 10−20.

The technique of computing the residual error and finding the sum of squared residual

errors proved to be difficult for the focusing-defocusing model. The structure of the equation

does not lend itself well to integration. However, some estimates using sums show that these

analytic approximations are still viable. The error was less than three decimal places using

300 points along a geometric progression of values.

Originally when writing this paper, we considered the case where λ ̸= 0, which yielded

a solution of the linear operator in terms of Bessel functions. This proved to be unwieldy,
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and was abandoned due to lack of results. Perhaps a different linear operator could be used

to generalize the results given here.

Physically, these results demonstrate the existence of peaked pulse solutions in the

pair plasma model. Such solutions are shown to decay algebraically from the peak, and

the analysis demonstrates that such solutions are valid for multiple values of the topological

charge m. Furthermore, the peaked structures exist for multiple forms of the nonlinearity

F (R). However, the nonlinearity will determine how such peaked pulses propagate and

decay.

64



CHAPTER 4

EXACT AND ANALYTICAL SOLUTIONS FOR A

NONLINEAR SIGMA MODEL

The following results are from the paper [113].

4.1 Background

We consider the nonlinear σ-model

vxt + (vx · vt)v = 0 , (4.1)

where v : R2 → R
n is assumed to be C2(R2). As we are interested in travelling wave solutions

to (4.1), we assume a solution of the form v(x, t) = V(z) where z = x− ct and c ̸= 0. Under

such an assumption, (4.1) becomes

V′′ + (V′ ·V′)V = 0 , (4.2)

where prime denotes differentiation with respect to z. Note that the travelling wave equation

is invariant under c. Let us write V component-wise as V = (f1, f2, . . . , fn), where each
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fk ∈ C2(R) for all k = 1, 2, . . . , n. Then, (4.2) results in the n dimensional system

f ′′
k +

(
n∑

j=1

f ′
j
2

)
fk = 0 , (4.3)

for all k = 1, 2, . . . , n.

As a remark on the structure of this system, let us define the operator L by

L[U ] = U ′′ +

(
n∑

j=1

f ′
j
2

)
U . (4.4)

Then, (4.3) implies that for any linear combination α1f1 + α2f2 + · · ·+ αnfn, we have that

L [α1f1 + α2f2 + · · ·+ αnfn] = 0 . (4.5)

In physics, nonlinear σ models are a tool to use field theory to describe particles [64].

Sigma model methods are extended to spin ladders in [65], which leads to the analysing of the

magnetic and electronic structure of (V O)2P2O7 vanadyl pyrophosphate [66]. The nonlinear

σ model is used over the linear σ model in [67], where the nonlinear σ model incorporates

a σ particle (whereas the linear σ model does not) and is used in a Padé calculation of ππ

phase shifts. Also in particle physics, the nonlinear σ model is used in [68] to present a

unified view of the two-dimensional half-filled Hubbard model at low temperature for any

value of the Coulomb repulsion. Mass generation is retained in using the noncommutative

supersymmetric O(N) nonlinear σ model [69]. In relativity, the nonlinear σ model shares

similar behavior with some black hole critical phenomena [64]. The nonlinear σ model is also

used in string theory [70]-[72]. In string theory, the modified O(N) σ model has a non-trivial

fixed point, which presents interesting consequences [73].
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The goal of this paper will be to provide exact (when possible) and analytical solu-

tions to the system (4.3) governing the propagation of waves in the nonlinear σ-model (4.1).

For the analytical solutions, we apply the homotopy analysis method, as it provides a clear

way by which we may control the error in approximate solutions. In particular, making use

of two distinct auxiliary linear operators, we are able to demonstrate that differing linear

operators permit differing rates of convergence of the solutions. Furthermore, the conver-

gence control parameter is selected in such a manner so as to minimize the residual errors

arising in the approximate solutions. We observe that the optimal value of the convergence

control parameter is actually dependent on the choice of linear operator selected. Finally,

the qualitative behavior of the approximate solutions agree nicely with the exact solutions

valid in a specific case.

For many physical applications, approximate solutions, while clearly less informative

than exact solutions, are sufficient to describe the true solutions (assuming that the error

is sufficiently small). The method of homotopy analysis [14]-[22] has recently been applied

to the study of a number of non-trivial and traditionally hard to solve nonlinear differential

equations. Examples include nonlinear equations arising in heat transfer [23]-[26], fluid

mechanics [27]-[34], solitons and integrable models [35]-[39], nanofluids [40]-[41] and the

Lane-Emden equation which appears in stellar astrophysics [42]-[45], to name a few areas.
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4.2 The one-dimensional case: an exact solution

In the case of a one-dimensional model, (4.3) reduces to the nonlinear ODE

f ′′ + f ′2f = 0 . (4.6)

Dividing through by f ′ and integrating, we arrive at the first integral

ln f ′ +
1

2
f 2 = lnC , (4.7)

where C > 0 is a constant of integration. Separating variables we have

exp

(
1

2
f 2

)
f ′ = C , (4.8)

and integrating once we recover
∫ f

0

e
1

2
ξ2dξ = Cz . (4.9)

We may write this relation as

erf

(√
2if

2

)
=

2Ci√
2π
z . (4.10)

Here erf(q) denotes the error function. The inverse error function is given by

erf−1(q) =
∞∑

k=0

αk

2k + 1

(√
π

2
q

)2k+1

, (4.11)

where

α0 = 1 and αk =
k−1∑

m=0

αmαk−1−m

(m+ 1)(2m+ 1)
. (4.12)

From this representation, it is clear that erf−1(q) is an odd function. Inverting (4.10), we

have

g(z) = − i√
2
erf−1

(
2Ci√
2π
z

)
, (4.13)
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which is a real-valued function. We have the natural boundary conditions f(0) = 0 and

f ′(0) = C.

4.3 Results for the general n-dimensional system

Let f1, f2, . . . , fn be a set of solutions to (4.3) satisfying fk(0) = 0 and f ′
k(0) = Ak. If

we construct a Taylor series solution for each, we find that the solutions all take the form

fk(z) = AkF (z), where F (0) = 0 and F ′(0) = 1. Then, (4.3) is reduced to

F ′′ +
(
A2

1 + A2
2 + · · ·+ A2

n

)
F ′2F = 0 . (4.14)

For simplicity, we introduce the scaling

g(z) =
√
A2

1 + A2
2 + · · ·+ A2

nF (z) (4.15)

so that

g′′ + g′
2
g = 0 . (4.16)

Applying the results of the previous section, with g(0) = 0 and

g′(0) =
√
A2

1 + A2
2 + · · ·+ A2

n . (4.17)

From (4.10), we may write the solution to (4.16) as

erf

(√
2ig(z)

2

)
=

2
√
A2

1 + A2
2 + · · ·+ A2

ni√
2π

z , (4.18)
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or, upon inversion,

g(z) = − i√
2
erf−1

(
2
√
A2

1 + A2
2 + · · ·+ A2

ni√
2π

z

)
. (4.19)

Then, F (z) is given by

F (z) = − i√
2
√
A2

1 + A2
2 + · · ·+ A2

n

erf−1

(
2
√
A2

1 + A2
2 + · · ·+ A2

ni√
2π

z

)
(4.20)

and each fk(z) reads

fk(z) = − Aki√
2
√
A2

1 + A2
2 + · · ·+ A2

n

erf−1

(
2
√
A2

1 + A2
2 + · · ·+ A2

ni√
2π

z

)
. (4.21)

This is an exact relation for the solution to (4.1) under the travelling wave assumption;

V(z) = (f1(z), f2(z), . . . , fn(z)) where V(0) = 0 and V′(0) = (A1, A2, . . . , An).

4.4 Homotopy analysis for obtaining accurate approximations

While we can arrive at exact implicit relations and series solutions for the the nonlinear

sigma model, note that these solutions are computable in terms of Taylor series, which can

converge rather slowly depending upon the domain of definition. As such, alternate methods

for obtaining approximate solutions to the travelling wave system for the nonlinear sigma

model are of interest.

Here we apply the method of homotopy analysis to the initial value problem

g′′ + g′
2
g = 0 , g(0) = 0 , and g′(0) = A . (4.22)

70



With an approximate solution g(z) to this equation, we will be able to recover the approxi-

mate solutions to the travelling wave system (4.3).

The first step is to determine a suitable linear operator for the homotopy. Looking

at (4.13), we see

g(z) ≈ erf−1(z) =

√
π

2
z +

1

6

(√
π

2
z

)3

+ · · · . (4.23)

So g(z) ≈
√
π
2
z+O(z3), and g′(z) ≈

√
π
2
+O(z2). Then we can write (4.22) as g′′+(g′g)g′ = 0,

and plugging in the approximations we get g′g ≈ π
4
z (we drop the larger order terms now).

And so one choice of a linear operator is

L1[U ] = U ′′ +
π

4
zU ′. (4.24)

Using the method of complete differential matching [21], another choice is

L2[U ] = U ′′ + U ′. (4.25)

For both linear operators, the corresponding nonlinear operator is

N [U ] = U ′′ + U ′2U. (4.26)

Note that (4.22) is just N [g] = 0. In the following subsections, we consider separate homo-

topies for each auxiliary linear operator.
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4.4.1 The operator L1

The homotopy for this operator is

0 ≡ H1[U, u0; q] = (1− q)L1[U − u0]− qhN [U ], (4.27)

where u0 is the solution to the initial auxiliary operator equation, q is the homotopy param-

eter that lies in the interval [0, 1], and h is the convergence control parameter. When q = 0

we start with the linear operator, and as q moves from 0 to 1, we obtain a continuous de-

formation of the linear operator into the nonlinear operator. When q = 1, we will have only

the nonlinear operator left, and the convergence control parameter h will help us minimize

the error obtained.

Next we assume a series expansion about q. That is, we assume

U(z) = u0(z) +
∞∑

j=0

uj(z)q
j. (4.28)

So if convergence occurs when q = 1, we recover the solution to (4.22). Now we will plug in

(2.36) into (4.27) and match powers of q. This produces an infinite number of linear PDEs,

but we will be able to find the error only computing a small number of terms.

4.4.1.1 Deformation equations associated to L1

From (4.27), we have

(1− q)L1[U − u0] = qhN [U ], (4.29)
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which becomes

(1− (1 + h)q)L1[U ]− L1[u0] = qh
(
U ′2U − π

4
zU ′
)
. (4.30)

Using (2.36), the left-hand side of (4.30) becomes

L1[u0] +
∞∑

j=1

(
L1[uj]− (1 + h)L1[uj−1]

)
qj. (4.31)

The right-hand side of (4.30) can be expanded as

h
∞∑

j=1

N1
j−1[u0, ..., uj]q

j, (4.32)

where each N1
j is a function of u0(z), ..., uj(z). Putting (4.30) back together, we match up

powers of q on each side. And we have the zeroth order deformation equation is

L1[u0] = 0, u0(0) = 0, u′0(0) = A, (4.33)

and the jth order deformation equation (j ≥ 1) is

L1[uj] = (1 + h)L1[uj−1] + hN1
j [u0, ...uj], (4.34)

subject to uj(0) = 0, u′j(0) = 0.

Now we are able to start solving these equations. We find that (4.33) has the solution

u0(z) = A

∫ z

0

e−
π

8
t2dt. (4.35)

Before solving the other deformation equations, consider that we will be solving some-

thing in the form

L1[uj] = k(z). (4.36)
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Making the substitution y = u′j, we have

y′ +
π

4
zy = k(z). (4.37)

Then solving and substituting back in u′j, we have

u′j(z) = e−
π

8
z2
∫ z

0

k(t)e
π

8
t2dt. (4.38)

Integrating again, we obtain the general form of the solution

uj(z) =

∫ z

0

e−
π

8
y2
∫ y

0

k(t)e
π

8
t2dtdy. (4.39)

For example, the first order deformation equation is

L1[u1] = h
(
u0(z)u

′
0(z)

2 − π

4
zu′0(z)

)
, (4.40)

which comes out to

L1[u1] = h

(
A3

√
2erf

(√
2π

4
z

)
e−

π

4
z2 − π

4
Aze−

π

8
z2

)
. (4.41)

Since this is in the form (4.36), the solution prescribed by (4.39) is

u1(z) =
1

6
Ah



3ze−

π

8
z2 − 3

√
2erf

(√
2π

4
z

)
+ 2A2

√
2erf

(√
2π

4
z

)3


 . (4.42)

The second order deformation equation is

L[u2] = (1 + h)L[u1] + h
(
u′20 u1 + 2u′0u

′
1u0 −

π

4
zu′1

)
. (4.43)

The solution, using the same method as above, is

u2(z) = −1

8
h2A3πz2e−

π

8
z2erf

(√
2π

4
z

)
. (4.44)
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4.4.1.2 Error Analysis on L1

Now that we have the first three terms of the expansion (2.36), we can consider the error

associated with it. Let

Û(z, h, A) = u0(z) + u1(z) + u2(z). (4.45)

Next we run this back through (4.26) to compute the residual error N [Û ]. To study the

error on the semi-infinite interval [0,∞), we construct the sum of squared residual errors

E1(h,A) =

∫ ∞

0

(
N [Û(z, h, A)]

)2
dz. (4.46)

E1(h,A) is a twelfth-degree polynomial in h. The minimum value of E1(h,
1
10
) is 3.2858×10−3

at h = −0.6034. However, the minimum value of E1(h, 1) is 0.058486 at h = −0.4352. The

plots of squared residual error are given for A = 1
10

and A = 1 in Figures 4.1 and 4.2,

respectively. Each is plotted with the corresponding graph of E2(h,A) (the error associated

with the second linear operator, L2).
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Figure 4.1: The plot of E1(h, 0.1) and E2(h, 0.1) over h. The minimum value of E1(h, 0.1) is

3.2858× 10−3 which occurs at h = −0.6034. The minimum value of E2(h, 0.1) is 1.77× 10−3

which occurs at h = −1.065. Hence, the auxiliary linear operator L2 is superior to L1 in

terms of allowing us to control error.
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Figure 4.2: The plot of E1(h, 1) and E2(h, 1) over h. The minimum value of E1(h, 1) is

0.058486 which occurs at h = −0.4352. The minimum value of E2(h, 1) is 0.010556 which

occurs at h = −0.727. Again, the auxiliary linear operator L2 gives us more freedom to

control residual error than does L1.
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4.4.2 The operator L2

Now, we consider the simpler linear operator L2 that was given by complete differential

matching in (4.25). The homotopy for this operator is

0 ≡ H2[V, v0; q] = (1− q)L2[V − v0]− qhN [V ], (4.47)

where v0 is the solution to L2[v0] = 0, q ∈ [0, 1] is the homotopy parameter, h is the

convergence control parameter, and

V (z) = v0(z) +
∞∑

m=1

vm(z)q
m. (4.48)

4.4.2.1 Deformation equations associated to L2

Simplifying (4.47) as before, we have

(1− q)L2[V ] = qhN [V ], (4.49)

which can be written as

(1− (1 + h)q)L2[V ] = qh(−V ′ + V ′2V ). (4.50)

Again we see that (4.50) can be written as

L2[v0] +
∞∑

m=1

(
L2[vm]− (1 + h)L2[vm−1]

)
= h

∞∑

m=1

N2
m−1[u0, ...um]q

m, (4.51)
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where each N2
m is a nonlinear function of u0(z), ..., um(z). Matching powers of q, we find the

mth order deformation equation (m ≥ 1) to be

L2[vm] = (1 + h)L2[vm−1] + hN2
m[u0, ..., um]. (4.52)

Now, the zeroth order is

L2[v0] = 0, v0(0) = 0, v′0(0) = A. (4.53)

This is the ordinary differential equation v′′0 + v′0 = 0, which gives

v0(z) = A(1− e−z). (4.54)

Let us briefly mention that for the higher-order equations, we are solving something of the

form

v′′m(z) + v′m(z) = k(z), (4.55)

which solves to

vm(z) =

∫ z

0

e−y

∫ y

0

etk(t)dtdy. (4.56)

The first order deformation equation is

L[v1] = h
(
v′0(z)

2v0(z)− v′0(z)
)
. (4.57)

This simplifies to

L[v1] = −hA
(
e−z − A2e−2z + A2e−3z

)
. (4.58)

The solution, according to (4.56), is

v1(z) = −1

6
Ah
{
A2e−3z − 3A2e−2z + (3A2 − 6z − 6)e−z + 6− A2

}
. (4.59)
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The second order deformation equation is

L[v2] = (1 + h)L[v1] + h
(
v′20 v1 − v′1 + 2v′0v

′
1v0
)
, (4.60)

which has solution governed by (4.56). We have

v2(z) =
1

120
Ah(7hA4 − 40A2h+ 20A2 − 120)

− 1

24
Ah
{
12hz2 − 12(A2h+ 2)z + 7hA4 + 12A2(1− 2h)− 24

}
e−z

+
1

12
A3h(−12hz + 7A2h− 12h+ 6)e−2z − 1

12
A3h(−6hz + 7A2h− 4h+ 2)e−3z

+
7

24
h2A5e−4z − 7

120
h2A5e−5z.

(4.61)

4.4.2.2 Error Analysis on L2

As in the last error section, we will run the first few terms of our homotopy expansion back

into the ODE to get the residual error. We will square this, integrate on [0,∞), and find

the value of h that minimizes this sum of squared residual errors.

So let us define

V̂ (z, h, A) = v0(z) + v1(z) + v2(z). (4.62)

Then the residual error is N [V̂ ]. Integrating its square, we obtain the sum of squared residual

errors

E2(h,A) =

∫ ∞

0

(
N [V̂ (z, h, A)]

)2
dz. (4.63)
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As before, E2(h,A) is a polynomial of degree 12 in h. We find that E2

(
h, 1

10

)
has a minimum

value of 1.77× 10−3 which occurs at h = −1.065. Also E2(h, 1) has a minimum of 0.010556

at h = −0.727. The graphs of E2(h,A) are given for A = 0.1 and A = 1 in Figures 1 and 2,

respectively. Also, the plots of the three-term approximate solution V̂ (z, h, A) are given for

A = 0.1 and A = 1 in Figure 4.3. We take this to be the candidate approximate solution,

since the error was better than Û(z, h, A) for all comparable values of A. Note that the plots

in Figure 4.3 agree qualitatively with what we would expect from the one-dimensional exact

solution.
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Figure 4.3: Plot of V̂ (z,−1.065, 0.1) and V̂ (z,−0.727, 1) over z. Both approximations have

better error than their Û counterparts.
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4.5 Discussion

In the case of one-dimension, the nonlinear σ model was solved exactly in terms of the in-

verse error function. Under a traveling-wave assumption, this solution was extended to n

dimensions. However, such exact solution formulas involve the inversion of error functions,

which can be computationally demanding. As such, we then considered approximate ana-

lytical solutions to the nonlinear σ model in n dimensions via homotopy analysis. In order

to demonstrate the effectiveness of the method, we selected two different linear operators,

one which would seemingly approximate the physical model, and then another which was

selected by the method of complete differential matching as discussed in [21].

We found that the linear operator constructed through complete differential matching

resulting in solutions with lower residual error (hence, the resulting solutions were more

accurate). In order to find error-minimizing solutions, we treated the convergence control

parameter as an unknown, and minimized the sum of squared residual errors. This is a useful

method in controlling the error inherent in finite term approximations of PDEs by homotopy

analysis, and had been employed recently on nonlinear PDEs [48, 50]. Indeed, through such

a method, we are able to obtain accurate expressions which have relatively few terms, which

means that our expansions will be very computationally efficient for the level of error control

that they provide.

From the solution provided, one may plot the solution to the n dimensional model

using a transform similar to (4.21). In particular, for each wave profile fk(z) with initial
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value f ′
k(0) = Ak, we have

fk(z) =
Ak√

A2
1 + · · ·+ A2

n

g(z) , (4.64)

where g(z) is the normalized homotopy solution developed in the previous section. For

instance, consider the three wave system with initial amplitudes f ′
1(0) = 1, f ′

2(0) = 2,

f ′
3(0) = 3. We plot the dynamics for this system in Figure 4.4. Then, in Figure 4.5, we plot

the dynamics for the four wave system f ′
1(0) = 1, f ′

2(0) = 2, f ′
3(0) = 3, f ′

4(0) = 4.
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Figure 4.4: Plot of the three wave solution to the nonlinear sigma model with f ′
1(0) = 1,

f ′
2(0) = 2, f ′

3(0) = 3.
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Figure 4.5: Plot of the four wave solution to the nonlinear sigma model with f ′
1(0) = 1,

f ′
2(0) = 2, f ′

3(0) = 3, f ′
4(0) = 4.
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CHAPTER 5

ON THE CHOICE OF AUXILIARY LINEAR OPERATOR IN

THE OPTIMAL HOMOTOPY ANALYSIS OF THE

CAHN-HILLIARD INITIAL VALUE PROBLEM

The following results are from the paper [87].

5.1 Background

The Cahn-Hilliard equation

ut = △(u3 − u−△u), (5.1)

held subject to the initial data

u(x̃, 0) = f(x̃), (5.2)

(where u : Rn × R+ → R and x̃ ∈ R
n) is a nonlinear evolution equation that describes the

free energy of a binary alloy [74]. In 1958, Cahn and Hilliard re-derived the Van der Waals

argument that a compressible fluid has its free energy at constant temperature dependent

density gradient, while obtaining results on the interfacial energy between phases [75]. The
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corresponding boundary value problem, wherein 0 < x < L, t > 0, and n = 1, subject to

uxxx(x, 0) = uxxx(L, 0) = 0 has its global existence or finite time blow up studied in [76].

If we consider the case when n = 1, then (5.1) becomes

ut = 6uu2x + 3u2uxx − uxx − uxxxx, (5.3)

subject to

u(x, 0) = f(x). (5.4)

Numerical results exist in the literature. For instance, in [77], the Galerkin finite

element method is used to study the corresponding boundary value problem. In [78], the

asymptotics for the three-dimensional case has been considered. Existence and uniqueness

of numerical solutions obtained using the finite element method are studied in [79]. A

conservative finite difference scheme is employed, using a splitting potential with explicit

and implicit time parts, along with free boundary conditions in [80].

In the present paper, we apply a type of optimal homotopy analysis method to obtain

approximate analytical solutions to the nonlinear Cahn-Hilliard PDE and associated initial

value problem given by (5.3)-(5.4). The method of homotopy analysis [14, 15, 16, 17, 18,

19, 20, 21, 81, 22] has recently been applied to the study of a number of non-trivial and

traditionally hard to solve nonlinear differential equations, for instance nonlinear equations

arising in heat transfer [23, 24, 25, 26], fluid mechanics [27, 28, 29, 30, 31, 32, 33, 34], solitons

and integrable models [35, 36, 37, 38, 39], nanofluids [40, 41], the Lane-Emden equation which
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appears in stellar astrophysics [42, 43, 44, 45], and models frequently used in mathematical

physics [46, 51, 47], to name a few areas.

In order to best achieve our goals, we consider multiple types of auxiliary linear

operators, so as to find an operator which permits rapid convergence of iterations. This,

in turn, ensures computational efficiency, since we are able to obtain accurate results in

relatively few iterations. We also make extensive use of the convergence control parameter,

which we use to minimize the accumulated L2-norm of the residual errors. This method

has been employed to study optimal approximations for a number of nonlinear problems

[48, 50, 49, 59, 60, 61, 62, 63]. To apply this method efficiently, we also provide a variety of

different kinds of approximations to the L2-norm, since approximate discrete sums are far

easier to compute than square-integrals.

In each of the cases considered, we are able to pick the best auxiliary linear operator

and the error minimizing convergence control parameter to obtain an accurate analytical

approximation. In particular, we choose from three auxiliary linear operator:

(i) L[U ] = Ut + U ;

(ii) L[U ] = Ut − Uxx;

(iii) L[U ] = Ut + Ux + U .

In doing so, it is seen that although complicated auxiliary linear operators provide

a greater fit to the original equation, they may slow the convergence of iterations while

increasing the computational complexity of the problem. The latter observation follows from
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the fact that more complicated linear operators are hard to invert, hence more computation

time is needed to construct the higher order terms in the homotopy expansion.

We find that the optimal convergence control parameter is strongly influenced by

the form of the auxiliary linear operator chosen. We present the results for various initial

conditions, starting with the simple condition u(x, 0) = 1, and then progressing to far more

complicated conditions like u(x, 0) = sin(x), u(x, 0) = exp(−x2) and even u(x, 0) = sech (x).

Despite such complicated initial conditions, we are still able to obtain accurate and physically

reasonable analytical approximations which model the Cahn-Hilliard time-evolution of such

initial data.

5.2 Preliminaries

The choice of linear operator is crucial in obtaining decent results with the Homotopy Anal-

ysis Method. Looking at equation (5.3), several choices arise. We could use operators

depending only on t, like ∂
∂t

+ 1. We could mix the two independent variables and use an

example of the diffusion equation, like ∂
∂t
− ∂2

∂x2 , or something simpler, like ∂
∂t
+ ∂

∂x
+ 1.

The homotopy for general auxiliary linear operator L[U ] is

0 ≡ H(U, u0; q) = (1− q)L[U − u0]− qhN [U ], (5.5)

where

N [U ] = Ut + Uxx + Uxxxx − 6UU2
x − 3U2Uxx, (5.6)
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q ∈ [0, 1] is the homotopy parameter, u0 is the solution to L[u0] = 0, and h is the convergence

control parameter. Note that when q = 0 in (5.5) we obtain L[U ] = 0, and when q = 1 we

obtain N [U ] = 0, which is (5.3). The idea is that the homotopy will continuously deform

the linear operator into the nonlinear operator as q moves through the interval [0, 1].

Next, we assume an expansion of U(x, t) around q, such as

U(x, t) =
∞∑

j=0

uj(x, t)q
j. (5.7)

We move things around in (5.5) and make the substitution (5.7) to get

(1− q)
∞∑

j=0

L[uj(x, t)]q
j = hqN

[ ∞∑

j=0

uj(x, t)q
j

]
. (5.8)

Re-indexing the sums on the left-hand side gives

L[u0] +
∞∑

j=1

(L[uj − uj−1]) q
j = hqN

[ ∞∑

j=0

uj(x, t)q
j

]
. (5.9)

Making the substitution in the initial condition (5.4) yields

u0(x, 0) + u1(x, 0)q + u2(x, 0)q
2 + · · · = f(x). (5.10)

This, of course, implies that

u0(x, 0) = f(x) and uk(x, 0) = 0 for k ≥ 1 . (5.11)

If we expand the right-hand side of (5.9) around q as a Taylor Series, we will match

powers of q on each side of this equation. Every term on the right-hand side of (5.9) will

have a q, so the O(1) equation is

L[u0] = 0, (5.12)
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subject to

u0(x, 0) = f(x). (5.13)

For m ≥ 1, we get the O(qm) equation to be

L[um] = L[um−1] +
h

(m− 1)!

(
∂m−1

∂qm−1
N

[ ∞∑

j=0

ujq
j

]) ∣∣∣
q=0

, (5.14)

subject to

um(x, 0) = 0. (5.15)

Each instance of an equation like (5.14) is a so-called deformation equation. We mentioned

before that when q = 1 we have the solution to N [U ] = 0. When q = 1 in the expansion

(5.7), the solution is

U(x, t) =
∞∑

j=0

uj(x, t). (5.16)

If this sum converges, it will be a solution to our PDE. Note that the solution of every

deformation equation (5.14) depends on the one prior to it. This means we can solve the

deformation equations sequentially, and form an approximation to (5.16) with a finite number

of terms. We can then perform error analysis on the approximation until we are satisfied

with the results.

First, in section 3, we consider about the simple auxiliary linear operator L[U ] =

Ut +U , which permits basis functions involving decaying exponentials in t. Next, in section

4, we discuss the auxiliary linear operator L[U ] = Ut − Uxx, which is the linear operator

affiliated with the heat equation. Finally, in section 5, we discuss the operator L[U ] =

Ut + Ux + U , which typically describes solutions along characteristic curves. For each of
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these, we shall determine the influence of the linear operator in the approximate analytical

solutions obtained via homotopy analysis.

As we shall observe, another crucial choice is the initial data. In each section, multiple

forms of initial data are considered for the function f(x) given in (5.13). We find that the

solutions process is highly dependent on the initial data, and that some auxiliary linear

operators are better than others for specific forms of initial data.

5.3 Homotopy Analysis with linear operator L[U ] = Ut + U

For the operator

L[U ] = Ut + U, (5.17)

we begin by solving (5.12). This is

u0t + u0 = 0, (5.18)

subject to (5.13). The solution is

u0(x, t) = f(x)e−t. (5.19)

Considering higher-order deformation equations, we are solving an equation of the form

L[um] = gm(x, t), (5.20)

subject to um(x, 0) = 0. This equation has solution

um(x, t) = e−t

∫ t

0

gm(x, s)e
sds. (5.21)
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Specifically, we have by (5.14), that

L[u1] = h
{
u0t + u0xx + u0xxxx − 6u0u

2
0x − 3u20u0xx

}
. (5.22)

Using (5.19), we are solving

L[u1] = h
{
A(x)e−t − 3B(x)e−3t

}
, (5.23)

where

A(x) = f (4)(x) + f ′′(x)− f(x) (5.24)

and

B(x) = f ′′(x)f 2(x) + 2f(x)f ′(x)2. (5.25)

By (5.21), the solution is

u1(x, t) = he−t

∫ t

0

(
A(x)− 3B(x)e−2s

)
ds. (5.26)

Upon integrating, we find that

u1(x, t) = he−t

{
3

2
B(x)e−2t + A(x)t− 3

2
B(x)

}
. (5.27)

We will compute one more term. By (5.14), we have

L[u2] = L[u1] + h

(
∂

∂q
N
[
u0 + u1q +O(q2)

]) ∣∣∣
q=0

. (5.28)

By (5.23), this is

L[u2] = h
{
A(x)e−t − 3B(x)e−3t

}

+ h
{
u1t + u1xxxx + u1xx − 3u1xxu

2
0 − 6u1u0u0xx − 12u1xu0xu0 − 6u1u

2
0

}
.

(5.29)
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Using (5.19) and (5.27), this becomes

L[u2] = C(x)e−5t +D(x)te−3t + E(x)e−3t + F (x)te−t +G(x)e−t, (5.30)

where

C(x) = −9h2

2

{
f(x)2B′′(x) + 2f ′(x)2B(x) + 4f(x)f ′(x)B′(x) + 2f(x)f ′′(x)B(x)

}
,

D(x) = −3h2
{
f(x)2A′′(x) + 4f(x)f ′(x)A′(x) + 2f(x)f ′′(x)A(x) + 2h2f ′′(x)2A(x)

}
,

E(x) =
3

2

{
h2B(4)(x) + 6h2f(x)f ′′(x)B(x) + 3h2f(x)2B′′(x) + 12h2f(x)f ′(x)B′(x)

+ 6h2f ′(x)2B(x)− 3h2B(x) + h2B′′(x)− 2hB(x)
}
,

F (x) = h2(A(4)(x) + A′′(x)− A(x)),

G(x) = −3h2

2

(
B(4)(x) + B′′(x) + B(x)

)
+ h2A(x) + hA(x).

(5.31)

Finally, solving (5.30), we obtain

u2(x, t) = −1

4
C(x)e−5t +

(
−1

4
D(x)− 1

2
E(x)

)
e−3t − 1

2
D(x)t3e−t

+
1

2
F (x)t2e−t +G(x)te−t +

(
1

4
C(x) +

1

4
D(x) +

1

2
E(x)

)
e−t.

(5.32)

5.3.1 Error analysis of the case with initial condition f(x) = sech x

Here we take the initial data u0(x, 0) = f(x) = sech(x)

u0(x, t) = e−tsech x. (5.33)

Let us call the three-term approximation

A(x, t;h) = u0(x, t) + u1(x, t) + u2(x, t). (5.34)
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Normally when computing error, we define the residual error

V (x, t;h) = N [A(x, t;h)], (5.35)

where N was defined in (5.6). To get a sense of how good the error is, we usually compute

the sum of squared residual error

∫ ∞

0

∫ ∞

−∞
V (x, t;h)2dxdt. (5.36)

There are two reasons why we do not use this formulation of the error. First, the integration

of the sum of squared residual error is very difficult, if possible at all. More importantly, the

temporal domain is infinite, so small residuals can lead to arbitrarily large error as t→ ∞.

There are alternatives to integrating. We will use a sum of the form

K∑

k=1

J∑

j=1

|V (α(j), β(k);h)|
KJ

, (5.37)

where α and β are chosen below. There are two benefits of using summations, and one

drawback. The first benefit being that we can now use absolute value instead of squaring

in our error. This is computationally less demanding. The second benefit is that we are

considering x and t in a compact subset of R
2. Thus we are guaranteed the sum will

converge, meaning the sum written above will be a function of h. Not only a function, but a

sum of absolute values of polynomials in h. Thus (5.37) can be minimized by the convergence

control parameter h at some particular h∗.

The drawback is the lack of information we can use. We are limited by the number

of points we can handle. Then there is the question of how spread apart the x-values and

t-values should be.
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Looking at the form of the solution to the deformation equations (5.21), we see that

each term in the approximation (and therefore the error) will have a factor of e−t. It stands

to reason that large t-values will contribute negligibly to the error calculation.

For our first sum, we will define

E1(h) =
1

25

5∑

k=1

5∑

j=1

|V (j, k;h)|. (5.38)

This error function uses 25 points close to the origin. It has minimum value 4.06 × 10−2,

obtained at h1 = 2.13396× 10−3. Its plot is given in Figure 5.1.

For x- and t-values in a geometric progression, we can take

E2(h) =
1

25

5∑

k=1

5∑

j=1

|V (5j, 5k;h)|. (5.39)

This yields an error of 3.7977× 10−13 at h2 = −4.055× 10−2. The plot of E2(h) is given in

Figure 5.2.
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Figure 5.1: Plot of E1(h), the sum of absolute residual error over 25 points in the square

x ∈ [1, 5], t ∈ [1, 5] as a function of h, the convergence control parameter. The error function

has minimum E1(h1) = 4.06× 10−2 where h1 = 2.13396× 10−3.
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Figure 5.2: Plot of E2(h), the sum of absolute residual error over 25 points in a geometric x

and t progression as a function of h, the convergence control parameter. The error function

has minimum E2(h2) = 3.7977× 10−13 where h2 = −4.055× 10−2.
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The previous function used positive x-values, so the corresponding negative x-value

summation is

E3(h) =
1

25

5∑

k=1

5∑

j=1

|V (−5j, 5k;h)|. (5.40)

The minimum value of this function is 5.1038×10−13, occurring at h3 = −4.055×10−2. The

plot is given in Figure 5.3. It may be the case that E3 and E2 are symmetric functions. This

would follow from the fact that sech x is an even function, and the operations taken in the

homotopy analysis preserve this property. Looking at equation (5.3), if U(x, t) is a solution,

then U(−x, t) is a solution. The differences in the error between the functions E2(h) and

E3(h) would then be explained by machine error on Maple. Note that h2 = h3.

We can take more points in our error calculations. If we use a spread of 100 points

with x-values on the interval [−1024, 3125] and t-values in [5, 3125], we have

E4(h) =
1

100

5∑

k=1

5∑

j=−4

|V (j5, k5;h)| (5.41)

The minimum is 2.895 × 10−2 found at h4 = −8.067 × 10−4. The plot of E4(h) is

given in Figure 5.4.
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Figure 5.3: Plot of E3(h), the sum of absolute residual error over 25 points in negative

x geometric progression as a function of h, the convergence control parameter. The error

function has minimum E3(h3) = 5.1038× 10−13 where h3 = −4.055× 10−2.
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Figure 5.4: Plot of E4(h), the sum of absolute residual error over 100 points with

x ∈ [−1024, 3125] and t ∈ [5, 3125] as a function of h, the convergence control parame-

ter. The error function has minimum E4(h4) = 2.895 × 10−2 where h4 = −8.067 × 10−4.
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For the last approximation, we take a large spread of x-values, with small t-values.

This computation is to see how large we can make the error using 100 points with small

t-values. We define

E5(h) =
1

100

4∑

k=0

5∑

j=−4

|V (j5, k;h)|. (5.42)

We indeed have the most error of 0.1785 obtained at h5 = −4.4× 10−4.

The plot of the three-term approximation, A(x, t;h5), is given in Figure 5.5.
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Figure 5.5: Plot of A(x, t;h5), the three-term approximation to (5.3) using u(x, 0) = sech x

and linear operator L[U ] = Ut + U .
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5.3.2 Error analysis of the case with initial condition f(x) = 1

We now consider the case when u(x, 0) = f(x) = 1. Here

u0(x, t) = e−t, (5.43)

u1(x, t) = −hte−t, (5.44)

and

u2(x, t) = te−t

(
1

2
h2t− h2 − h

)
. (5.45)

We define B(x, t;h) = u0(x, t) + u1(x, t) + u2(x, t), and let Y (x, t;h) = N [B(x, t)].

Let us begin by using the same error functions as in the previous section. The function

E6(h) =
1

25

5∑

k=1

5∑

j=1

|Y (j, k;h)|. (5.46)

gives a minimum error 8.178× 10−2 at h6 = 0.4142.

Since Y (x, t) is only a function of t, we can consider t-values separated by a large

margin, such as

E7(h) =
1

25

5∑

k=1

5∑

j=1

|Y (j, k5;h)|. (5.47)

This function is not quite symmetric (see Figure 5.6) and has minimum 4.14 × 10−10 at

h7 = 1.4142.
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Figure 5.6: Plot of E7(h), the sum of absolute residual error over 25 points in a geometric

t progression as a function of h, the convergence control parameter. The error function has

minimum E7(h7) = 4.14× 10−10 where h7 = 1.4142.
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The residual error Y (x, t;h) is simple enough to integrate in the temporal variable,

giving rise to

E8(h) =

∫ ∞

0

Y (x, t;h)2dt. (5.48)

This yields a polynomial in h, and we can get an idea of what the error is for x lying in a

compact set. Suppose x lies in a compact set with diameter M . Then the sum of squared

residual error is

E9(h;M) =M(E8(h)) =M

(
3

16
h4 +

3

4
h3 +

5

4
h2 + h+

1

2

)
. (5.49)

For example, if M = 1, the minimum value of the polynomial is 0.1875 at h8 = −1. Since

these calculations are much simpler, we can arrive at higher order terms in the approximation.

In fact,

u3(x, t) = −1

6
hte−t

(
h2t2 − 6h(h+ 1)t+ 12h+ 6

)
. (5.50)

If we run the four-term approximation through the nonlinear operator, let us call the result

Y1(x, t;h) = N [u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t)]. (5.51)

The resulting sum of squared residual error is

E10(h;M) =M

∫ ∞

0

Y1(x, t;h)
2dt, (5.52)

where again we can only consider x in a compact set of diameterM . In the case whereM = 1,

we obtain a minimum error of 0.15625 at h = −1. Notice that going to the next term did

not decrease the error significantly. The reason for this was given in the previous section. If
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we integrate over an infinite domain, even if we have convergence, small contributions can

add up leading to an undesirable error.

However, if we consider the sums as in (5.46) and (5.47), the corresponding values

for the four-term approximation are more reasonable. The error function

E11(h) =
1

25

5∑

k=1

5∑

j=1

|Y1(j, k;h)| (5.53)

has a minimum value of 0.07759 at h = 0.2624. The function

E12(h) =
1

25

5∑

k=1

5∑

j=1

|Y1(j, k5;h)| (5.54)

obtains its minimum 6.651×10−11 at h = 0.71167. The plots of E11(h) and E12(h) are given

in Figures 5.7 and 5.8, respectively.
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Figure 5.7: Plot of E11(h), the sum of absolute residual error over 25 points in the square

x ∈ [1, 5], t ∈ [1, 5] as a function of h, the convergence control parameter. The error function

has minimum E11(h) = 0.07759 where h = 0.2624.
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Figure 5.8: Plot of E12(h), the sum of absolute residual error over 25 points in a geometric

t progression as a function of h, the convergence control parameter. The error function has

minimum E12(h) = 6.651× 10−11 at h = 0.71167.
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The ease of this case also affords being able to use more points to get an idea of what

convergence control parameter to use when making a plot of our four-term approximation.

We have

E13(h) =
1

1000

100∑

k=1

10∑

j=1

∣∣∣∣Y1
(
j,
k

5
;h

)∣∣∣∣ (5.55)

giving a minimum value of 0.04377 at h∗ = 0.116. The plot of E13(h) is given in Figure 5.9,

and the plot of the four-term approximation Y1(x, t;h
∗) is given in Figure 5.10.
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Figure 5.9: Plot of E13(h), the sum of absolute residual error over 1000 points with x ∈ [1, 10],

t ∈
[
1
5
, 20
]
as a function of h, the convergence control parameter. The error function has

minimum E13(h
∗) = 4.377× 10−2 where h∗ = 0.116.
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Figure 5.10: Plot of Y1(x, t;h
∗), the three-term approximation to (5.3) subject to u(x, 0) = 1

and using linear operator L[U ] = Ut + U .
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5.3.3 Error analysis of the case with initial condition f(x) = e−x2

In this section we look at the case of initial data

u(x, 0) = e−x2

. (5.56)

We have

u0(x, t) = e−x2−t (5.57)

and

u1(x, t) = 16h

{
te−x2−t

(
x4 − 11

4
x2 +

9

16

)
+

9

8
e−3x2 (

e−3t − e−t
)(

x2 − 1

6

)}
. (5.58)

Again we will call A(x, t;h) = u0(x, t)+u1(x, t)+u2(x, t), and the residual error V (x, t;h) =

N [A(x, t;h)].

The function

E14(h) =
1

25

5∑

k=1

5∑

j=1

|V (j, k;h)| (5.59)

returns a minimum error of 0.14 at h = −0.0032. However, the function

E15(h) =
1

25

5∑

k=1

5∑

j=1

|V (5j, 5k;h)| (5.60)

has minimum error 1.84 × 10−15 at h = −0.0002, and its plot is 5.11. To try and strike

a balance between these vastly different error calculations, we use more data. Note again

that the initial data (5.56) sits inside our approximation, and so contributes to the error.

The highest error is close to the origin. So consider 200 lattice points relatively close to the
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origin. The function

E16(h) =
1

200

20∑

k=1

5∑

j=−4

|V (j, k;h)| (5.61)

has a minimum error 0.06657 at h0 = −0.000976. The plot of the three-term approximation

A(x, t;h0) is given in Figure 5.12.
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Figure 5.11: Plot of E15(h), the sum of absolute residual error over 25 points in a geometric

x and t progression as a function of h, the convergence control parameter. The error function

has minimum E15(h) = 1.84× 10−15 where h = −2× 10−4.
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Figure 5.12: Plot of A(x, t;h0), the three-term approximation to (5.3) with initial condition

u(x, 0) = e−x2

using linear operator L[U ] = Ut + U .
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5.3.4 Error analysis of the case with initial condition f(x) = sin x

We noted in section 2.1 that the solution to the original PDE (5.3) had to be symmetric in

x, and that our homotopy approximation was then symmetric in x. So now we consider a

case with inital datum that does not carry the same symmetry. We use

f(x) = sin x. (5.62)

We have

u0(x, t) = e−t sin x, (5.63)

and

u1(x, t) = −1

2
h sin x

{
3e−3t(1− 3 cos2 x) + 2te−t + 9e−t cos2 x

}
. (5.64)

Let us define the three-term approximation

A(x, t;h) = u0(x, t) + u1(x, t) + u2(x, t). (5.65)

Then we consider the residual error

V (x, t;h) = N [A(x, t;h)]. (5.66)

We have the error function

E17(h) =
1

25

5∑

k=1

5∑

j=1

|V (j, k;h)|. (5.67)

This function has a minimum 0.0777 at h = −0.002486. If we use the points that are spread

out in a polynomial sequence, the function

E18(h) =
1

25

5∑

k=1

5∑

j=1

|V (j5, k5;h)|. (5.68)
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gives an error of 0.0348 at h = −0.0067. Its plot is Figure 5.13. To use 100 points, we

consider the function

E19(h) =
1

100

10∑

k=1

5∑

j=−4

|V (10j, k;h)|. (5.69)

It has minimum 0.0337 obtained at h9 = −0.00475. The plot of the three-term approximation

V (x, t;h9) is given in Figure 5.14.
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Figure 5.13: Plot of E18(h), the sum of absolute residual error over 25 points in a geometric

x and t progression as a function of h, the convergence control parameter. The error function

has minimum E18(h) = 3.48× 10−2 where h = −6.7× 10−3.
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Figure 5.14: Plot of V (x, t;h9), the three-term approximation to (5.3) with u(x, 0) = sin x

using linear operator L[U ] = Ut + U .
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5.4 Homotopy Analysis with linear operator L[U ] = Ut − Uxx

The diffusion operator L[U ] = Ut −Uxx is a natural choice since we know how to solve L[U ]

set equal to zero (for the zeroth order deformation equation), as well as when L[U ] is set

equal to some inhomogeneity (for the higher-order deformation equations). The solution to

L[u0] = 0 subject to u0(x, 0) = f(x) is

u0(x, t) =
1√
4πt

∫ ∞

−∞
exp

(−(x− y)2

4t

)
f(y)dy. (5.70)

Looking at the higher order deformation equations, we see they are equivalent to solving the

diffusion equation with a source,

unt − unxx = fn(x, t), (5.71)

subject to initial conditions un(x, 0) = 0. This equation has solution

un(x, t) =

∫ t

0

∫ ∞

−∞

1

2
√
π(t− s)

exp

(−(x− y)2

4(t− s)

)
fn(y, s)dyds. (5.72)

5.4.1 Error analysis of the case f(x) = sin x

Using the initial condition f(x) = sin x, we find

u0(x, t) = e−t sin x, (5.73)

u1(x, t) = h sin x

{(
3

8
− 3

2
cos2 x

)
e−9t +

3

2
e−3t cos2 x+ te−t − 3

8
e−t

}
, (5.74)

and u2(x, t) similarly using (5.72).
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We call the approximation up to O(q2) by a(x, t;h) = u0(x, t) + u1(x, t) + u2(x, t).

The residual error found by running through the original nonlinear operator is V (x, t;h) =

N [a(x, t;h)].

The function

G(h) =
1

25

5∑

k=1

5∑

j=1

|V (j, k;h)| (5.75)

has minimum error 0.074 found at h10 = −0.37. If we use points spread out in a geometric

sequence to approximate the error, we get a small result. The function

G1(h) =
1

25

5∑

k=1

5∑

j=1

|V (5j, 5k;h)| (5.76)

has a minimum error of 1.88× 10−3 at h = 1.388× 10−17. The plot is given in Figure 5.15.

If we use 100 points close to the origin in a 10 by 2 rectangle, we get an undesirable result.

The function

G2(h) =
1

100

10∑

k=1

5∑

j=−4

∣∣∣∣V
(
j,
k

5
;h

)∣∣∣∣ (5.77)

returns a minimum error of 0.46799 occurring at h = −0.2985. To get an idea of what our

three-term approximation looks like, we use h10, the minimizer for equation (5.75) in the

plot. So a(x, t;h10) is given in Figure 5.16. Compare this with Figure 14.
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Figure 5.15: Plot of G1(h), the sum of absolute residual error over 25 points in a geometric x

and t progression as a function of h, the convergence control parameter. The error function

has minimum G1(h) = 1.88× 10−3 where h = 1.388× 10−17.
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Figure 5.16: Plot of a(x, t;h10), the three-term approximation to (5.3) with initial condition

u(x, 0) = sin x and linear operator L[U ] = Ut − Uxx.
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5.4.2 Comment on the f(x) = 1 case

We are primarily interested in solutions which decay to zero as t→ ∞. While other solutions

exist, the solutions exhibiting temporal decay can more readily be studied in the context

of the framework provided here, since the residual error of such solutions necessarily decays

to zero as t → ∞, as well. Some operators are compatible with this type of solution, for

appropriate initial data.

Now, when f(x) = 1, the present choice of linear operator results in order zero term

u0(x, t) =
1√
4πt

∫ ∞

−∞
exp

(−(x− y)2

4t

)
dy = 1 (5.78)

for all t > 0. Yet, N [u0(x, t)] = N [1] = 0, hence u0(x, t) is an exact solution to the original

problem. This is simply the constant solution u(x, t) = 1. From the form of the Cahn-

Hilliard equation, we see that any function of the form u(x, t) = C, where C is a real-valued

constant, is a solution. However, such a solution does not decay as t → ∞. Obviously, for

such solutions, we do not require the homotopy analysis method in the first place. Still, it is

nice to see that, in certain trivial cases, the homotopy analysis solution at order zero reduces

the the exact trivial solution of the form u(x, t) = C.
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5.5 Homotopy Analysis with linear operator L[U ] = Ut + Ux + U

In this section we consider L[U ] = Ut + Ux + U . Solving

ut + ux + u = 0 (5.79)

yields

u(x, t) = e−xφ(t− x), (5.80)

where φ is an arbitrary function defined along a characteristic. If we use the initial condition

u(x, 0) = f(x), (5.81)

we find that the arbitrary function φ satisfies φ(x) = e−xf(−x) and therefore

u0(x, t) = e−tf(x− t). (5.82)

Suppose we want to solve the nth order equation

L[un] = unt + unx + un = gn(x, t). (5.83)

The solution is then given by

un(x, t) = e−x

{
φ(t− x) +

∫
exgn(x, ν + x)dx

}
, (5.84)

where φ is an arbitrary function and ν is a parameter in the integral along which we consider

the characteristic curve. After the integration is complete, we take ν = t − x. To use the

initial condition toward finding φ, let us call

j(x, t) =

∫
exgn(x, ν + x)dx, (5.85)
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which will return to being a function of both x and t after the integration. The initial

condition for n ≥ 1 is that

un(x, 0) = 0, (5.86)

so we have

0 = e−x(φ(−x) + j(x, 0)), (5.87)

so φ(x) = −j(−x, 0). So our solution is

un(x, t) = e−x (−j(x− t, 0) + j(x, t)) . (5.88)

This outlines the general method of inverting the operator L using characteristics. We shall

make use of these results in the following subsections, where we consider specific initial data.

5.5.1 Error analysis of the case f(x) = e−x2

If we consider the initial data u(x, 0) = f(x) = e−x2

, then we recover the zeroth order

approximation

u0(x, t) = e−t−(x−t)2 . (5.89)

The first order approximation reads

u1(x, t) = 16h

{
t

(
t− x+

1

2

)
e−t2+(2x−1)t−x2

{
t3 −

(
3x+

1

2

)
t2

+

(
3x2 + x− 5

2

)
t− x3 − 1

2
x2 +

5

2
x+

9

8

}

+
9

8

(
t2 + x2 − 2xt− 1

6

)(
e−3t2+(6x−3)t−3x2 − e−3t2+(6x−1)t−3x2

)}
,

(5.90)
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and u2(x, t) can be found similarly using (5.88).

We will call the three-term approximation a(x, t;h) = u0(x, t)+u1(x, t)+u2(x, t), and

the resulting residual error V (x, t;h) = N [a(x, t;h)]. We next see how this approximation

stands up to our first error function, that given by

J1(h) =
1

25

5∑

k=1

5∑

j=1

|V (j, k;h)|. (5.91)

For this measure of the error, we obtain a minimum error value of 0.38 at h = 9.66× 10−4.

If we take a geometric sequence of points for x ∈ [5, 55], t ∈ [5, 55], we have

J2(h) =
1

25

5∑

k=1

5∑

j=1

|V (5j, 5k;h)|. (5.92)

This function has minimum 1.548× 10−3 at h = 3.73× 10−4, and is plotted in Figure 5.17.

To get an idea of how strong the error is, we can take 100 points close to the origin, as in

J3(h) =
1

100

10∑

k=1

5∑

j=−4

|V (j, k;h)|. (5.93)

This function has minimum 0.132 at h11 = −0.001. Figure 5.18 gives the plot of our three-

term approximation a(x, t;h11).
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Figure 5.17: Plot of J2(h), the sum of absolute residual error over 25 points in a geometric

progression in x and t as a function of h, the convergence control parameter. The error

function has minimum J2(h) = 1.548× 10−3 where h = 3.73× 10−4.
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Figure 5.18: Plot of a(x, t;h11), the three-term approximation to (5.3) with u(x, 0) = e−x2

and linear operator L[U ] = Ut + Ux + U .
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5.5.2 Error analysis of the case f(x) = sin x

We have

u0(x, t) = e−t sin(x− t), (5.94)

u1(x, t) = hxe−t (sin(t− x)− cos(t− x))− he−t

((
x− t− 9

2
cos2(t− x) +

3

2

)
sin(t− x)

+ (t− x) cos(t− x)

)
− 3

8
he−3t (3 sin(3t− 3x)− sin(t− x)) .

(5.95)

We can find u2(x, t) similarly, and set a(x, t;h) = u0(x, t) + u1(x, t) + u2(x, t). The residual

error is again V (x, t;h) = N [a(x, t;h)]. Using our first error function

P1(h) =
1

25

5∑

k=1

5∑

j=1

|V (j, k;h)|, (5.96)

we have a minimum error of 0.107 at h12 = 1.558× 10−3. If we use 25 points in a geometric

progression in x and t, the function

P2(h) =
1

25

5∑

k=1

5∑

j=1

|V (5j, 5k;h)| (5.97)

returns an error of 1.66×10−3 at h = −2.266×10−3. Figure 5.19 is P2(h). We plot a(x, t;h12)

in Figure 5.20.
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Figure 5.19: Plot of P2(h), the sum of absolute residual error over 25 points in a geometric x

and t progression as a function of h, the convergence control parameter. The error function

has minimum P2(h) = 1.66× 10−3 where h = −2.266× 10−3.
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Figure 5.20: Plot of a(x,t;12), the three-term approximation to (5.3) with initial condition

u(x, 0) = sin x using linear operator L[U ] = Ut + Ux + U .
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5.5.3 Errror analysis of the case f(x) = 1

In the case u(x, 0) = 1, we have

u0(x, t) = e−t, (5.98)

u1(x, t) = −hte−t, (5.99)

and

u2(x, t) =
1

2
h

{(
(t2 − 2t+ 3)h− 2t

)
e−t − 6h

(
t+

1

2

)
e−3t

}
. (5.100)

Use a(x, t;h) = u0(x, t) + u1(x, t) + u2(x, t), and the residual error V (x, t;h) = N [a(x, t;h)].

As in section 3.2, the residual error is square-integrable in the t variable. So if we

take x to be in some compact set with diameter M , then

Q(h;M) =M

∫ ∞

−∞
V (x, t;h)2dt (5.101)

is the sum of squared residual error. This function has minimum value 0.225 at h = −0.531.

This is because we are integrating over the entire temporal domain. If we instead use 1,000

points to approximate the function over x ∈ [1, 10], t ∈ [1
5
, 20], we have the function

Q1(h) =
1

1000

100∑

k=1

10∑

j=1

∣∣∣∣V
(
j,
k

5
;h

)∣∣∣∣ . (5.102)

Here we have a minimum of 4.385 × 10−2 at h13 = 0.18. The plot of Q1(h) is Figure 5.21.

The plot of a(x, t;h13) is given in Figure 5.22.

For reference, we include the sum using just 25 points in the square:

Q2(h) =
1

25

5∑

k=1

5∑

j=1

|V (j, k;h)|. (5.103)

The function Q2(h) has minimum value 8.12× 10−2 occurring when h = 0.519.
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Figure 5.21: Plot of Q1(h1), the sum of absolute residual error over 1000 points with x in

the interval [1, 10] and t in the interval
[
1
5
, 20
]
as a function of h, the convergence control

parameter. The error function has minimum Q1(h13) = 4.385× 10−2 where h13 = 0.18.
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Figure 5.22: Plot of a(x, t;h13), the three-term approximation to (5.3) with u(x, 0) = 1 and

linear operator L[U ] = Ut + Ux + U .
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5.6 Discussion

We have applied an optimal form of the homotopy analysis method to obtain analytical

approximations to the Cahn-Hilliard equation (5.3) with various forms of initial data. In

constructing the homotopy, we have great freedom to select the auxiliary linear operator,

and we demonstrate this by selecting three types of operators. It was shown that for different

types of initial data, some operators allow us to obtain more accurate low-order approxima-

tions than others. However, there was no one operator that performed better than others.

This makes sense, because for different kinds of initial conditions, we have different time

evolution properties. Although the time evolution of the initial data is governed by the

Cahn-Hilliard equation, drastically different initial data can induce various types of time

evolution, since the right hand side of (5.3) involves not only f(x) = u(x, 0) but also various

derivatives of f(x). Hence, it follows that various types of auxiliary operators pick up the

different manners of time evolution induced by the initial data.

One point to be made is the fact that L[U ] = Ut + U gave reasonable results every

time it was used as the auxiliary linear operator in the method. However, when using initial

data u(x, 0) = 1, the three-term approximation under L[U ] = Ut + Ux + U gave almost the

same error (the difference was in the ten-thousandths place) as the four -term approximation

using L[U ] = Ut + U . See (5.55) and (5.102). Thus, it appears as though simple auxiliary

linear operators such as L = Ut + U are reliable at giving solutions. More complicated
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auxiliary operators can be used to obtain better solutions, but only some of the time (when

they are efficient to use).

When working on an infinite domain, it is difficult to accurately measure how accurate

an approximate solution is. For instance, let us compare the results of (5.59) and (5.60),

where points used closer to the origin yield a marked difference in the error. Hence, in order

to obtain more accurate measures of error, we should increase the number of points used, so

that we get something like (5.61), which shows that the approximate solution is reasonable.

The trade off is that, by using more points, we are forced to undertake more computations,

which can become increasingly demanding as the number of terms used in the approximation

increases.

What these results suggest is that, in addition to the form of the original nonlinear

operator, it can prove fruitful to consider the form of the initial data when selecting the

type of auxiliary nonlinear operator used. Note that this issue is particular to initial value

problems for PDEs. When working with ODEs, the initial data is of course constant, so

such considerations do not matter. Such considerations are of course important, since by

selecting a proper auxiliary linear operator, we can greatly reduce the residual error inherent

in a low-order homotopy approximation. This in turn is useful, since calculating higher

order terms in the homotopy expansion of PDEs becomes very complicated, particularly in

the case of strongly nonlinear PDEs.
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CHAPTER 6

OPTIMAL ANALYTIC METHOD FOR THE NONLINEAR

HASEGAWA-MIMA EQUATION

The following results are from the paper [114].

6.1 Background

The Hasegawa-Mima equation is a second order nonlinear partial differential equation that

describes the electric potential due to a drift wave in a plasma [82, 83]. The equation reads

(1−△)tU − [U,△U ] + κUy + νUyy − β[U,Uy] + T [U ] = 0 , (6.1)

where the operator [·, ·] is defined by

[U, V ] = UxVy − UyVx , (6.2)

the operator (1−△)t is given by

(1−△)tU = Ut − Uxxt − Uyyt , (6.3)

△ is the Laplacian operator on two space variables (△U = Uxx + Uyy), and the operator

T [U ] equals −δ△3U or δ△2U depending on whether we consider the case of hyper-viscous
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damping or viscous dissipation, respectively. The terms−Ut−[U,△U ] in the Hasegawa-Mima

equation, which appear in the Navier Stokes equation, are the terms introduced by adding

the polarization drift. In the limit where the wavelength of a perturbation of the electric

potential is much smaller than the gyroradius based on the sound speed, the Hasegawa-Mima

equations become the same as the two-dimensional incompressible fluid [82, 83].

The equation can be defined over the domain D × [0,∞), where D ⊂ R
2. In the

present paper, we shall be interested in rectangular domains. Of course, with an appropriate

scaling we can then take D to be a square of unit area. The equation is held subject to the

initial condition

U(x, y, 0) = Φ(x, y) (6.4)

and the boundary conditions

U(0, y, t) = 0 = U(1, y, t) ,

U(x, 0, t) = Ψ(x) = U(x, 1, t) .

(6.5)

Here Φ(x, y) is the sufficiently smooth initial data, and Ψ(x) is a sufficiently smooth function

which constitutes a periodic boundary condition. (The boundary condition is periodic in the

sense that we may glue multiple copies of D = [0, 1] × [0, 1] together in order to obtain

a continuous solution over a larger domain.) In order to maintain consistency, we restrict

ourselves to initial data Φ satisfying

Φ(0, y) = 0 = Φ(1, y) ,

Φ(x, 0) = Ψ(x) = Φ(x, 1) .

(6.6)
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There are few solutions of this equations in the literature, owning to both the nonlin-

earity and the number of terms in the equation. In the present paper, we apply the method

of homotopy analysis to the study of the Hasegawa-Mima equation. The method of homo-

topy analysis [14]-[22] has recently been applied to the study of a number of non-trivial and

traditionally hard to solve nonlinear differential equations, for instance nonlinear equations

arising in heat transfer [23]-[26], fluid mechanics [27]-[34], solitons and integrable models

[35]-[39], nanofluids [40]-[41] and the Lane-Emden equation which appears in stellar astro-

physics [42]-[45], to name a few areas. In applying this type of method, we obtain analytical

approximations to the Hasegawa-Mima equation over a bounded domain. This is important,

since obtaining analytical approximations to such equations gives us some insight into the

behavior of the solutions.

Interestingly, in order to obtain accurate appoximations, we needed to generalize one

aspect of the method. One important feature of the homotopy analysis method is that

it allows us to control the manner of convergence and the error of obtained approximate

solutions through the so-called convergence control parameter. Choosing the convergence

control parameter by using it it minimize residual error, we effectively perform what is known

as “optimal homotopy analysis” and this method has recently been employed to great effect

on a number of nonlinear equations [48]-[50]. However, we also find that it is possible to

perform this type of optimization over a family of auxiliary linear operators parameterized

by a constant. This parameter may also be used to minimize residual error. The parameter

has the interpretation of being the decay rate of the solutions in time.
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Interestingly, we obtain a method with two free parameters, both of which can be

used to minimize residual errors due to the analytical approximations. For many examples

considered, the sum of squared residual errors over the domain is less than order 10−15,

which is very good considering that we take a small number of terms in the homotopy

expansion. A small number of terms increases the efficiency of the method, since for many

complicated nonlinear partial differential equations the construction of higher-order terms

in the homotopy solutions is computationally demanding. We consider five distinct concrete

examples in order to demonstrate the utility of the method.

Using the analytical homotopy solutions, we show that the solutions to the Hasegawa-

Mima equation (6.1) are rather localized, decaying for large time values. This is physically

reasonable, and suggests that initial disturbances to the electric potential described by the

model gradually decay in the cases we consider. This occurs for both the hyper-viscous

damping and the viscous dissipation cases.

6.2 Preliminaries and homotopy analysis for the

Hasegawa-Mima equation

In applying the method of homotopy analysis, suppose we take the term with the time

derivative to be our linear operator. That is, suppose L[U ] = (1 − △)tU . Then in the

zeroth order deformation equation, we would be solving the homogeneous case L[U ] = 0.
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Let V = Ut to get (△− 1)V = 0. Then the solution is some V ∗(x, y), and solving back for

U we see that U(x, y, t) = V ∗(x, y)t + c(x, y). This diverges as t → ∞, even if the desired

solution is bounded. Thus, we should avoid the seemingly obvious choice of the auxiliary

linear operator.

Define the linear part of the nonlinear partial differential equation (6.1) by

L[U ] = (1−△)tU . (6.7)

Furthermore, for notational simplicity, we define the operators

M [U ] = κUy + νUyy , (6.8)

N [U ] = −[U,△U ]− β[U,Uy] , (6.9)

so that

Ω[U ] = L[U ] +N [U ] +M [U ] + T [U ] (6.10)

is the original nonlinear operator. That is to say (6.1) is then equivalent to Ω[U ] = 0. Note

that N [U ] has the nonlinear contribution. In many cases, κ = ν = 0, which means that

M [U ] = 0. This is why we separate L and M : even though both are linear, L will always

remain in the equation, whereas M will be omitted in some cases.

The homotopy H between the Hasegawa-Mima equation and the auxiliary linear

operator L (which in general is distince from the linear part of Ω given by L) is then

0 ≡ H = (1− q)L[U − u0]− qhΩ[U ] . (6.11)
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Here, u0 is an initial approximation to the solution and h is the so-called convergence control

parameter. For all values of q ∈ [0, 1], (6.11) defines a partial differential equation for U .

When q = 0, we have U = u0, while when q = 1, we recover the original nonlinear partial

differential equation Ω[U ] = 0. As is standard, we shall assume that

U(x, y, t) = u0(x, y, t) +
∞∑

m=1

um(x, y, t)q
m , (6.12)

Thus, we have a Taylor series representation for U in powers of q, where the coefficients are

arbitrary functions which must be determined. If this expansion converges at q = 1, then it

is a solution to Ω[U ] = 0, which is what we desire.

6.3 Appropriate selection of the auxiliary linear operator, L

We first explored taking L = L, the linear part of Ω. However, this resulted in solutions

which were bad in two ways. First of all, the resulting solutions are very complicated to

obtain (we had to use a Green’s function approach to solve each iterate um in the method,

which became very complicated in light of the form of the nonlinearity in Ω). Secondly, once

such solutions were obtained, they were found to have very poor error properties.

To remedy this, we looked for simpler auxiliary linear operators. We attempted

L[U ] = Ut, however this resulted in solutions which grew as polynomials in time. Yet, a

natural (physical) solution to the equation (6.1) should be finite in time, in many instances
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exhibiting decay as time increases. So, such a simple auxiliary linear operator was not very

effective, either.

We next considered an operator of the form L[U ] = Ut+U , which results in solutions

that exponentially decay in time. With this we were on the right track, since the solutions

ought to remain bounded in time. However, the residual errors were still rather high. As it

turns out, for this choice of operator, we effectively prescribe the decay rate of the solutions

in advance, since by choosing L[U ] = Ut + U we have a rule of solution expression [15] that

takes base functions of the form e−t, e−2t, e−3t, . . . .

To account for the poor error in these approximations, we tried a similar type of

operator, of the form L = Lα, where

Lα[U ] = Ut + αU. (6.13)

Operators similar to this have been shown to produce decently accurate results that are

computationally less severe [87]. Introducing another parameter α is just another way to

tailor our approximation by minimizing residual errors. Since α effects the rule of solution

expression, giving base functions e−αt, e−2αt, e−3αt, . . . , it is clear that α can be used to change

the rate of decay. We then used an approach analogous to the “optimal homotopy analysis

method” (where one typically selects the convergence control parameter h by minimizing the

residual errors), where we used both α and h to minimize residual errors.

If we consider single-mode initial data, then we assume

U(x, 0, t) = U(x, 1, t) = 0, U(0, y, t) = U(1, y, t) = 0, (6.14)
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and the initial condition is

U(x, y, 0) = f(x, y) (6.15)

If we create a homotopy as before, we have

0 ≡ H(U, q) = (1− q)Lα[U ]− qhΩ[U ]. (6.16)

Assuming a series expansion of U(x, y, t) around q gives

U(x, y, t) =
∞∑

j=0

uj(x, y, t)q
j. (6.17)

Expanding this in our homotopy (6.16), we have

(1− q)Lα

[ ∞∑

j=0

uj(x, y, t)q
j

]
= qhΩ

[ ∞∑

j=0

uj(x, y, t)q
j

]
. (6.18)

This can be written as

∞∑

j=0

Lα[uj(x, y, t)]q
j =

∞∑

j=0

Lα[uj(x, y, t)]q
j+1 + qhΩ

[ ∞∑

j=0

uj(x, y, t)q
j

]
. (6.19)

Equating powers of q on each side, the zeroth order deformation equation is

Lα[u0] = 0, u0(x, y, 0) = f(x, y), (6.20)

and the mth order deformation equation is

Lα[um] = Lα[um−1] +
h

(m− 1)!

(
∂m−1

∂qm−1
Ω

[ ∞∑

j=0

ujq
j

]) ∣∣∣
q=0

, (6.21)

subject to

um(0, y, t) = um(1, y, t) = 0, um(x, 0, t) = um(x, 1, t) = 0, (6.22)
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and

um(x, y, 0) = 0. (6.23)

The solution to (6.20) is

u0(x, y, t;h, α) = f(x, y)e−αt. (6.24)

If we consider the right-hand side of (6.21) as some gm(x, y, t), then the solution of (6.21) is

um(x, y, t;h, α) = e−αt

∫ t

0

eαξgm(x, y, ξ)dξ. (6.25)

We have the general three-term approximation when q = 1 in (6.16):

û(x, y, t;h, α) = u0(x, y, t;h, α) + u1(x, y, t;h, α) + u2(x, y, t;h, α). (6.26)

We will use this information below by considering different single-mode initial data and

computing residual errors for their approximations (6.26).

6.4 Error analysis

The Hasegawa-Mima equation is a complicated nonlinear partial differential equation, and

as such we do not have the luxury of comparing approximate solutions with exact solutions.

As such, we need to have some way of analysing the error inherent in our approximations.

For any fixed combination of parameters and initial / boundary conditions, we shall consider

a three-term approximation

û(x, y, t) = u0(x, y, t) + u1(x, y, t;h) + u2(x, y, t;h) . (6.27)
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Placing (6.27) into Ω, we obtain the residual error at a point:

Res(x, y, t;h) = Ω[û(x, y, t;h)] . (6.28)

The spatial domain is compact, so it makes sense to integrate the absolute value of the

residuals over D in order to determine the accumulated residual error over the domain. The

time domain in unbounded, hence even small residuals can result in infinite accumulated

error as t→ ∞. So, we should count the residuals up until some terminal point t = tfinal. It

will be most practical to approximate the temporal integral with a sum. We then have the

accumulated residual error

ϵ(h) =

tfinal∑

i=0

∫ 1

0

∫ 1

0

|Res(x, y, i;h)|dydxδt , (6.29)

where δt denotes the temporal step-size. Since the integration may be too challenging to

perform, we consider two alternate formulations. First, instead of performing the spatial in-

tegration, we could consider approximating the integral with sums. We have the approximate

residual error

Ê(h) =

tfinal∑

i=0

J∑

j=0

K∑

k=0

|Res(k, j, i;h)| δt
(J + 1)(K + 1)

. (6.30)

Meanwhile, we may be able to compute the integral of the squared residuals, so we define

the second error, the sum of squared residual error, by

E(h) =

∫ tfinal

0

∫ 1

0

∫ 1

0

(Res(x, y, i;h))2dydxdt . (6.31)

The choice of the individual method of estimating the residual error will usually be dictated

by the form of the approximate solutions. Note that both measures of error depend on the
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choice of h, the convergence control parameter. In order to minimize error, we should then

determine the value of h∗ such that

h∗ = argminh∈RÊ(h) (6.32)

or

h∗ = argminh∈RE(h) , (6.33)

depending on the choice of error (6.30) or (6.31), respectively.

6.5 Analytical approximations to (6.1) for several specific cases

In this section, we finally apply our method in order to construct residual error minimizing

approximations to the equation (6.1) for various values of the model parameters and bound-

ary data. By optimally selecting both α (the decay rate of solutions) and h (the convergence

control parameter), we demonstrate that the error due to the approximations is rather small

for most cases.

6.5.1 The case f(x, y) = sin(πx) sin(πy) with ν = κ = β = 0, T [U ] = △2U

First we consider viscous dissipation by taking the nonlinear operator of the form

Ω[U ] = Ω1[U ] = (1−△)tU − [U,△U ] +△2U (6.34)
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under the initial condition

f(x, y) = sin(πx) sin(πy). (6.35)

Then by (6.24)

u0(x, y, t;h, α) = sin(πx) sin(πy)e−αt. (6.36)

By (6.25)

u1(x, y, t;h, α) = h(4π4 − 2π2α− α) sin(πx) sin(πy)te−αt, (6.37)

and

u2(x, y, t;h, α) =
h

2
(4π4−2π2α−α) sin(πx) sin(πy)(2+2h+4hπ2+4htπ4−2hπ2αt−hαt)te−αt.

(6.38)

Then using the three-term approximation û(x, y, t;h, α) we compute the squared residual

error

E(h, α) =

∫ ∞

0

∫ 1

0

∫ 1

0

Ω1[û(x, y, t;h, α)]
2dxdydt. (6.39)

This function has minimum 2.0379 × 10−17 at h = −4.8238 × 10−2, α = 18.7875. The plot

of E(h, α) is given in Figure 6.1. The plot of û(x, y, t;−4.8238, 18.7875) for four different

values of t is given in Figure 6.2.

We see that the accumulated residual error over the domain is actually very small,

even though we consider an infinite time domain. This suggests that the method of optimally

selecting both the convergence control parameter, h, and the decay rate parameter, α, is

highly useful. Note that the value of h is rather small. This indicates that relatively small
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corrections are needed to the initial approximation u0, since the higher-order terms all depend

on powers of h.
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Figure 6.1: Plot of E(h, α), the squared residual error as a function of h and α, the conver-

gence control parameter and the exponential coefficient. The error function has minimum

E(h, α) = 2.0379× 10−17 obtained at h = −4.8238× 10−2, α = 18.7875.
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(a) (b)

(c) (d)

Figure 6.2: Plot of the approximate solution û(x, y, t, h, α), the three-term approximation

to Ω1[u] = 0 with initial condition f(x, y) = sin(πx) sin(πy). The minimizing values of

h = −4.8238× 10−2 and α = 18.7875 have been plugged in. We have taken the solution at

various times: (a) t = 0, (b) t = 0.025, (c) t = 0.05, (d) t = 0.075.

154



6.5.2 The case f(x, y) = sin(πx) sin(πy) with ν = κ = β = 0, T [U ] = −△3U

Suppose we consider the case of hyper-viscous damping, where

Ω[U ] = Ω2[U ] = (1−△)tU − [U,△U ]−△3U (6.40)

subject to the same initial condition (6.35). The zeroth order term, according to (6.24), is

u0(x, y, t;h, α) = sin(πx) sin(πy)e−αt. (6.41)

The first-order term is

u1(x, y, t;h, α) = h(8π6 − 2π2α− α) sin(πx) sin(πy)te−αt, (6.42)

and the second-order term is

u2(x, y, t;h, α) =
h

2
(4hπ2+2+2h+8hπ6t−αht−2αhπ2t)(8π6−2π2α−α) sin(πx) sin(πy)te−αt.

(6.43)

With the sum of these three terms û(x, y, t;h, α) we have the squared residual error

E(h, α) =

∫ ∞

0

∫ 1

0

∫ 1

0

Ω2[û(x, y, t;h, α)]
2dxdydt. (6.44)

The minimum of this function is 4.88× 10−18 and occurs at h = −4.821× 10−2, α = 370.85.

The plot of E(h, α) is given in Figure 6.3. The plot of û(x, y, t;−4.821 × 10−2, 370.85) for

four different values of t is given in Figure 6.4.

Again, the method is very effective. Note that in the case of hyper-viscous damping,

the decay rate is much larger, so the solutions should decay much faster. This behavior is

seen when one compares the solution for the hyper-viscous damping (Figure 4) with that of

the previous case (viscous dissipation, as shown in Figure 6.2).

155



Figure 6.3: Plot of E(h, α), the squared residual error as a function of h and α, the conver-

gence control parameter and the exponential coefficient. The error function has minimum

E(h, α) = 4.88× 10−18 obtained at h = −4.821× 10−2, α = 370.85.
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(a) (b)

(c) (d)

Figure 6.4: Plot of the approximate solution û(x, y, t, h, α), the three-term approximation

to Ω2[u] = 0 with initial condition f(x, y) = sin(πx) sin(πy). The minimizing values of

h = −4.821 × 10−2 and α = 370.85 have been plugged in. We have taken the solution at

various times: (a) t = 0, (b) t = 0.0025, (c) t = 0.005, (d) t = 0.0075. In the figure labels,

γ = 0.0025 is a scaling factor.
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6.5.3 The case f(x, y) = sin(2πx) sin(2πy) with ν = κ = β = 0, T [U ] = △2U

Suppose we consider viscous dissipation (Ω = Ω1[U ]) with the initial condition

f(x, y) = sin(2πx) sin(2πy). (6.45)

Such a solution then consists of four extreme points, as opposed to one (as was the case in

the previous initial conditions). The zeroth order term (6.24) is

u0(x, y, t;h, α) = sin(2πx) sin(2πy)e−αt. (6.46)

The first order term, according to (6.25), is

u1(x, y, t;h, α) = h(64π48π2α− α) sin(2πx) sin(2πy)te−αt, (6.47)

and the second order term is

u2(x, y, t;h, α) =
h

2
(16hπ2 + 2h+ 2− 8αhπ2t− αht+ 64hπ4t)(64π48π2α

− α) sin(2πx) sin(2πy)te−αt.

(6.48)

With the sum of these three terms û(x, y, t;h, α), we can take the squared residual error

E(h, α) =

∫ ∞

0

∫ 1

0

∫ 1

0

Ω1[û(x, y, t;h, α)]
2dxdydt. (6.49)

The function E(h, α) has minimum 4.753× 10−16 at h = 1.125× 10−2, α = 77.97. The plot

of E(h, α) is given in Figure 6.5. The plot of û(x, y, t; 1.125× 10−2, 77.97) is given in Figure

6.6.

Even with the marginally more complicated initial condition, the method is still very

accurate. Interestingly, the decay rate for the initial condition with four extreme points is
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much greater than that which we found for the case where the initial condition with only

one extreme point.
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Figure 6.5: Plot of E(h, α), the squared residual error as a function of h and α, the conver-

gence control parameter and the exponential coefficient. The error function has minimum

E(h, α) = 4.753× 10−16 obtained at h = 1.125× 10−2, α = 77.97.
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(a) (b)

(c) (d)

Figure 6.6: Plot of the approximate solution û(x, y, t, h, α), the three-term approximation

to Ω1[u] = 0 with initial condition f(x, y) = sin(2πx) sin(2πy). The minimizing values of

h = 1.125×10−2 and α = 77.97 have been plugged in. We have taken the solution at various

times: (a) t = 0, (b) t = 0.025, (c) t = 0.05, (d) t = 0.075.
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6.5.4 The case f(x, y) = sin(πx) sin(2πy) with ν = κ = β = 0, T [U ] = △2U

Now consider the case of viscous dissipation when the period in x is double the period in y.

Let us take Ω[U ] = Ω1[U ] with initial condition

f(x, y) = sin(πx) sin(2πy). (6.50)

Then the first two terms are

u0(x, y, t;h, α) = sin(πx) sin(2πy)e−αt, (6.51)

u1(x, y, t;h, α) = h(25π4 − 5π2α− α) sin(πx) sin(2πy)e−αt, (6.52)

and u2(x, y, t;h, α) is given similarly. With û(x, y, t;h, α) being the sum of the first three

terms of our approximation, the squared residual error is

E(h, α) =

∫ ∞

0

∫ 1

0

∫ 1

0

Ω1[û(x, y, t;h, α)]
2dxdydt. (6.53)

The minimum of E(h, α) is 1.4029× 10−17, occurring at h = 1.985× 10−2, α = 48.368. The

plot of E(h, α) is given in Figure 6.7, and the plots of the approximation for four values of

t are Figure 6.8.

Again, the method performs very well. It appears as though the decay rate increases

proportionally tot he complexity of the initial condition. The condition used here has two

extreme points, and the decay rate is faster than that of the case where the initial condition

had one extreme point, yet slower than the cases where the initial condition had four extreme

points. This suggests that the more complicated the initial condition, the less stable the
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solutions are, with more complicated initial conditions decaying much more rapidly to zero

as time increases.
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Figure 6.7: Plot of E(h, α), the squared residual error as a function of h and α, the conver-

gence control parameter and the exponential coefficient. The error function has minimum

E(h, α) = 1.4029× 10−17 obtained at h = 1.985× 10−2, α = 48.368.

164



(a) (b)

(c) (d)

Figure 6.8: Plot of the approximate solution û(x, y, t, h, α), the three-term approximation

to Ω1[u] = 0 with initial condition f(x, y) = sin(πx) sin(2πy). The minimizing values of

h = 1.985 × 10−2 and α = 48.368 have been plugged in. We have taken the solution at

various times: (a) t = 0, (b) t = 0.025, (c) t = 0.05, (d) t = 0.075.
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6.5.5 The case f(x, y) = sin(πx) sin(πy) ν = κ = β = 1, T [U ] = △2U

Finally, we consider the case where the model is as nonlinear as possible (ν = κ = β = 1)

with viscous dissipation so that

Ω[U ] = Ω3[U ] = (1−△)tU − [U,△U ] + Uy + Uyy − [U,Uy] +△2U. (6.54)

We take the initial condition given in (6.35). If we take the first three terms of the ap-

proximation, call their sum û(x, y, t;h, α). The residual error is given by Ω3[û(x, y, t;h, α)].

Squaring this and integrating is challenging, so instead we will evaluate the absolute value

of this function at 125 points in its domain. Consider the sum of absolute residual error

Ê(h, α) =
1

125

4∑

p=0

4∑

k=0

4∑

j=0

∣∣∣∣Ω3

[
û

(
j

4
,
k

4
, p;h, α

)]∣∣∣∣ . (6.55)

We obtain a minimum of 4.08359 × 10−2 at h = −2.8 × 10−2 and α = 18.3115. The plot

of Ê(h, α) is given in Figure 6.9, and the plots of the approximation for four values of t is

given in Figures 6.10.

Note that the error in this case is still relatively small (it is residual error, not absolute

error), and is good up to plotting accuracy. For more accuracy, one would want to use more

terms. We keep three terms so that the error in this case may be compared to error in

the previous cases. We see that, due to added nonlinear effects, the rate of convergence of

the homotopy solutions is slower. If one does not wish to compute more terms, then one

would likely need to look fro a different auxiliary linear operator L. It is possible that for

such solutions, the manner to time evolution is not a general exponential decay. A different
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class of auxiliary linear operators which promote such time evolution would then have to be

found, which is not always easy.
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Figure 6.9: Plot of Ê(h, α), the absolute residual error over 125 points as a function of h and

α, the convergence control parameter and the exponential coefficient. The error function has

minimum Ê(h, α) = 4.08359× 10−2 where h = −2.8× 10−2 and α = 18.3115.
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(a) (b)

(c) (d)

Figure 6.10: Plot of the approximate solution û(x, y, t, h, α), the three-term approximation

to Ω3[u] = 0 with initial condition f(x, y) = sin(πx) sin(πy). The minimizing values of

h = −2.8 × 10−2 and α = 18.3115 have been plugged in. We have taken the solution at

various times: (a) t = 0, (b) t = 0.025, (c) t = 0.05, (d) t = 0.075.
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6.6 Discussion

The purpose of this article is to apply the homotopy analysis method to obtain analytical

approximation to the Hasegawa-Mima equation (6.1). When using the homotopy analysis

method to solve a differential equation, one conjecture about an auxiliary linear operator to

use is the one that most resembles the linear portion of said differential equation. However,

trying to manufacture convergence of the approximation and being able to calculate integrals

or sums of evaluations at several points can lead to lengthy (nearly impossible) computa-

tions. A new idea that has surfaced [87] is to use simpler linear operators, but introduce

another parameter to the problem in order to control error. This makes the terms of the

approximations more manageable, which further reduces the complications in the residual

error.

Yet with the Hasegawa-Mima equation, taking even the simple operator Lα[U ] =

Ut + αU in the method can yield approximations with many terms. The case with initial

data f(x, y) = sin(πx) sin(πy) yields very nice results as long as the constants α, β, κ, and δ

are small. However, as soon as we allow the extra terms in the computations, we are forced

to result to sums to get a look at the residual error. The closer we got to using the original

Ω[U ] given in (6.10), the more complicated the terms in our approximation get. Moreover,

taking a sum of two terms like f(x, y) = sin(πx) sin(πy) + sin(2πx) sin(πy) in the initial

condition leads to much longer computations.
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This is not to say that the operator L[U ] = Ut + αU worked well in all cases, either.

Considering initial f(x, y) = sin(2πx) sin(3πy) gave undesirable error. Using the initial

condition f(x, y) = x(1 − x)y(1 − y) we found the squared residual error by integrating

and obtained 0.29, which is rather high. The conclusion, then, is that when applicable, the

operator L = Lα = Ut + αU gives very good residual error (less than 10−15), while in other

cases it is not so useful.

In a way, this makes sense. We mentioned in Section 3 that due to the rule of solution

expression, α is essentially a decay rate of the solutions. So, for cases where this operator is

useful, the parameter α actually does realistically act in such a way. Clearly, this is useful

when the manner of decay is exponential in nature, like e−αt. On the other hand, when the

manner of decay is not exponential, L = Lα = Ut + αU should not give solutions which

converge quickly. For such cases, perhaps solutions decay in another manner, perhaps like

e−αt2 . For such cases, more complicated techniques may be required; see [49].

In terms of the physics of the model (6.1), we find that the analytical approximations

decay in time, as shown in Figures 2, 4, 6, 8, and 10. This tells us that the solutions we

obtain for the Hasegawa-Mima equation (6.1) are highly locallized in time. The solutions

decay rapidly, but note that here time is non-dimensional. Generally, the solutions maintain

much of the shape of the initial profile, yet decay as they evolve in time. In other words, for

the solutions considered here, the initial structure of a perturbation to the electric potential

due to a drift wave is maintained even though the perturbation collapses in time.
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We should note that there are other methods to determine the best value of the

convergence control parameter, h. Turkyilmazoglu [88] uses new method to give an upper

bound on the error of a homotopy series solution (see equation (5.13) in [88]). Similarly,

given a homotopy solution

U(x, y, t;h) = U0(x, y, t) + U1(x, y, t;h) + · · ·Uk(x, y, t;h) + Uk+1(x, y, t;h) + · · · ,

if one can show that there exists 0 < r < 1 with |Uk+1(x, y, t;h)| < r|Uk(x, y, t;h)| for all

(x, y, t) in the domain and sufficiently large k (given a restricted range of h) for an appropriate

norm |u| =
∫
(x,y,t)∈Domain

|u|dxdydt, then then quantity

βk(h) =
|Uk+1(x, y, t;h)|
|Uk(x, y, t;h)|

should be bounded above by r. The quantity βk(h) determines the rate of geometric con-

vergence of the homotopy series. One can then pick h so as to minimize the function βk(h)

(given that k is fixed). Not that this value of h will not, in general, correspond to the error-

minimizing value h∗ [46]. However, for some examples, the values can be close. For several

examples of ODEs and some PDEs for which the method of minimizing βk(h) was used in

order to find h, see [46].

For very complicated PDEs, like the Hasegawa-Mima equation, computing very many

terms in the homotopy expansion becomes too computationally demanding, so the method

of minimizing βk(h) in [46] is not particularly efficient. Additionally, it is not a simple

matter to show that |Uk+1(x, y, t;h)| < |Uk(x, y, t;h)|; actually, it is not in general true for

PDEs. Furthermore, since from the error plots we see that the residual errors are rather
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sensitive to the specific choice of h, the approximation from instead minimizing βk(h) may

result in larger residual errors. That said, while the method is not suited for the present

problem, it is likely to work well for a number of other problems, namely those for which

many terms in the homotopy series can be computed, and cases for which one can show

|Uk+1(x, y, t;h)| < |Uk(x, y, t;h)| for all (x, y, t). Therefore, the method presents a rather

promising possible direction in terms of future work. Several studies have considered this

manner of convergence of homotopy solutions [89, 90, 91].
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CHAPTER 7

OPTIMAL SELECTION OF THE AUXILIARY LINEAR

OPERATOR IN THE HOMOTOPY ANALYSIS OF THE

HUNTER-SAXTON BOUNDARY VALUE PROBLEM

The following chapter is original research.

7.1 Background

The orientation of molecules in liquid crystals is described by a field of unit vectors n(x, t) ∈

S2. If this field is nematic, it means the crystals are invariant under an inversion: n → −n.

In this case, n is called a director field [92]. The Hunter-Saxton equation

(ut + uux)x =
1

2
u2x, (7.1)

or

uxt + uuxx +
1

2
u2x = 0, (7.2)

is a nonlinear wave equation that is used to study a nonlinear instability in the director field

of a nematic liquid crystal [92]. The equation is the asymptotic model of waves moving in
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one direction that satisfy the variational principle

δ

∫ t2

t1

∫ ∞

−∞

{
ψ2
t − c2(ψ)ψ2

x

}
dxdt = 0, (7.3)

where c is the wave speed. The Euler-Lagrange equation derived from (7.3) is

ψtt = c(ψ) {c(ψ)ψx}x . (7.4)

If there is a perturbation in ψ about some constant ψ = ψ0 and x is a space variable

corresponding to a reference frame that moves with the linear velocity, then the Euler-

Lagrange equation for the variational principle

δ

∫ t2

t1

∫ ∞

−∞

(
utux + uu2x

)
dxdt = 0

is simply (7.1).

The Hunter-Saxton equation was shown to have solutions that break down in finite

time, but are, however, smooth [92]. The initial value problem

u(x, 0) = f(x) (7.5)

with boundary condition

lim
x→∞

u(x, t) = 0 (7.6)

is considered physically relevant in [92]. In [93], the inverse scattering solutions to the

Hunter-Saxton equation are studied. The Hunter-Saxton equation models the geodesic flow

on a spherical manifold, and the properties of this manifold are studied in [94].

In the present paper, we consider the method of homotopy analysis to provide analytic

approximations to the solution to (7.1) with various initial data, including some considered
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in the literature. This is an improvement since presently only numerical solutions exist in

the literature. The method of homotopy analysis [14]-[22] has been applied to the study of

a number of non-trivial and traditionally hard to solve nonlinear differential equations, with

applications arising in heat transfer [23]-[26], fluid mechanics [27]-[34], solitons and integrable

models [35]-[39], nanofluids [40]-[41] and the Lane-Emden equation which appears in stellar

astrophysics [42]-[45].

Using the homotopy analysis method, we shall be able to do two things to find the

“best” approximation at a fixed order. First, we shall use the so-called optimal homotopy

analysis method, where one chooses the convergence control parameter in order to minimize

residual errors [48]-[50]. We shall dive a detailed error analysis in order to demonstrate this

approach. Secondly, we shall optimally select the auxiliary linear operator from a family

of operators indexed by a free parameter. By selecting both the free parameter and the

convergence control parameter, we shall be able to obtain accurate approximate solutions

after very few iterations of the method.

7.2 Optimal auxiliary operator selection

First we consider the nonlinear operator

N [u] = uxt + uuxx +
1

2
u2x. (7.7)

176



We can write the homotopy as

0 ≡ H(u, q) = (1− q)L[u]− qhN [u]. (7.8)

Here q ∈ [0, 1] is the homotopy parameter, h is the convergence control parameter, and L is

some linear operator that can be chosen. Note that when q = 0 in (7.8) we have L[u] = 0,

and when q = 1 we have N [u] = 0, which is (7.2). The homotopy is continuously deforming

the linear operator L into the nonlinear operator N as q moves from 0 to 1. We assume an

expansion of u(x, t) around q:

u(x, t) =
∞∑

j=0

uj(x, t)q
j. (7.9)

We use our expansion (7.9) in (7.8) and we have

(1− q)
∞∑

j=0

L[uj]q
j = qhN

[ ∞∑

j=0

ujq
j

]
. (7.10)

The nonlinear operator we will choose to use is the ODE operator

L[u] = ut + αu. (7.11)

This operator has shown to provide not only ease in finding solutions to the corresponding

linear equations, but also with decent accuracy when α = 1 [87]. In this paper, what we will

do is use α as an extra parameter to decrease residual error, resulting in a higher accuracy

of our analytical approximation.

Using our auxiliary linear operator (7.11) in the homotopy (7.10), we equate powers

of q on both sides of the equation. This turns the nonlinear problem (7.1) into infinitely
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many linear problems. Then, up to O(q2), we have the so-called deformation equations

L[u0] = 0, u0(x, 0) = f(x), (7.12)

L[u1] = h

{
u0xt + u0u0xx +

1

2
u20x

}
, u1(x, 0) = 0, (7.13)

and

L[u2] = L[u1] + h {u1xt + u1u0xx + u0xu1x + u0u1xx} , u2(x, 0) = 0. (7.14)

Note that each new equation in uj is a linear problem in the functions u0, ..., uj−1 that came

before it. So these equations can be solved sequentially until a desired number of terms are

found, or it is too computationally difficult to manage.

The solution to the zeroth order deformation equation (7.12) is

u0(x, t;α) = f(x)e−αt. (7.15)

The solution of higher-order deformation equations

unt + αun = gn(x, t), un(x, 0) = 0, (7.16)

is

un(x, t) = e−αt

∫ t

0

eαygn(x, y)dy. (7.17)

If we write the first term out, we obtain

u1(x, t;h, α) = A(x, h, α)e−2αt + B(x, h, α)te−αt − A(x, h, α)e−αt, (7.18)

where

A(x, h, α) = −h
α

(
f(x) · f ′′(x) +

1

2
f ′(x)2

)

B(x, h, α) = −hαf ′(x).

(7.19)
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For the second-order term, we have

u2(x, t;h, α) = E(x, h, α)e−3αt + F (x, h, α)te−2αt +G(x, h, α)e−2αt

+H(x, h, α)t2e−αt + I(x, h, α)te−αt + J(x, h, α)e−αt,

(7.20)

where

E(x, h, α) =
h2

α2

(
1

2
f 2f (4) + 2f ′′′f ′f +

3

2
f ′′2f +

5

4
f ′′f ′2

)
,

F (x, h, α) = h2f · f ′′′ + 2h2f ′′f ′,

G(x, h, α) = − h

2α
f ′2 − 2h2

α
f ′′f ′ − h2

α2
f 2f (4) − 5h2

2α2
f ′′f ′2 − h2

α
f ′′′f

− 3h2

α2
f ′′2f − 4h2

α2
f ′′′f ′ − h

α
f ′′f,

H(x, h, α) =
h2α2

2
f ′′,

I(x, h, α) = −2h2f ′′f ′ − h2f ′′′f − hαf ′ − h2αf ′′,

J(x, h, α) =
h

2α
f ′2 +

h

α
f ′′f +

h2

α
f ′′′f +

h2

2α2
f 2f (4) +

3h2

2α2
f ′′2f

5h2

4α2
f ′′f ′2 +

2h2

α2
f ′′′f ′f +

2h2

α
f ′′f ′.

(7.21)

We have the general three-term approximation when q = 1 in (7.9):

û(x, t;h, α) = u0(x, t;α) + u1(x, t;h, α) + u2(x, t;h, α). (7.22)

7.2.1 Note on error analysis - optimal selection of the convergence control pa-

rameter

Using the initial condition

u(x, 0) = f(x) (7.23)

179



we can find the first three terms of our expansion (7.9) when q = 1. So we call it

û(x, t;h) = u0(x, t) + u1(x, t) + u2(x, t). (7.24)

To get a sense of how good this approximation is, we need to calculate some function of

error. We do not have the exact solution to compare to. One way of obtaining error is

calculating the residual error N [û(x, t;h)]. If we get a residual error of 0 for all x and t, then

the solution is exact. To see how close to zero the residual error is we can take a sum of

values of the residual error at different values of x and t. We take the absolute value of each

of the evaluations, or square the residual error depending on the ease of calculation. So we

will have sums of the form

E(h) =
1

mn

m∑

k=0

n∑

j=0

(N [û(j, k;h)])2, Ê(h) =
1

mn

m∑

k=0

n∑

j=0

|N [û(j, k;h)]| (7.25)

We have divided the sum by the number of points to weight each point evenly. Note that

(7.25) is a function of h. In fact, it is a sum of nonnegative polynomials in h. Since the

function (7.25) is positive, it will necessarily have a global minimum at some h∗. We then

have our approximation û(x, t;h∗).

7.2.2 Hyperbolic Tangent

In [92], one initial condition studied is

u(x, 0) = f(x) = 1− tanh

(
10x− 20

3

)
(7.26)

180



We can take the three-term approximation (7.22) and call it û(x, t;h, α). To test the residual

error, we define the function

Ê(h, α) =
1

25

4∑

k=0

4∑

j=0

∣∣∣∣N
[
û

(
j

4
, k;h, α

)]∣∣∣∣ . (7.27)

Now we have a function of two variables, which we can minimize. Graphing Ê(h, α) as in

Figure 7.1, we have a minimum of 0.015 reached at h = 0.037484, α = 30.5655. The resulting

three-term approximation û(x, t;h, α) is graphed in Figure 7.2.
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Figure 7.1: Plot of Ê(h, α), the sum of absolute residual error over 25 points in the

square x ∈ [0, 1], t ∈ [0, 4] as a function of h and α, the convergence control parameter

and the exponential coefficient. The error function has minimum Ê(h, α) = 0.015 where

h = 0.037484, α = 30.5655.
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Figure 7.2: Plot of û(x, t;h, α), the three-term approximation to the solution of

(7.1) under initial condition (7.26) with minimizing h- and α-value plugged in, where

h = 0.037484, α = 30.5655.
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7.2.3 Gaussian

Let û(x, t;h, α) be the three-term approximation using the initial condition

u(x, 0) = e−x2

. (7.28)

Then the function

Ê(h, α) =
1

25

4∑

k=0

2∑

j=−2

∣∣∣∣N
[
û

(
j

2
, k;h, α

)]∣∣∣∣ (7.29)

has minimum 0.022559 obtained at h = −0.075, α = 20. The plot of the error Ê(h, α) is

Figure 7.3 and the plot of û(x, t;h, α) is Figure 7.4.
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Figure 7.3: Plot of Ê(h, α), the sum of absolute residual error over 25 points in the square

x ∈ [−1, 1], t ∈ [0, 4] as a function of h and α, the convergence control parameter and the

exponential coefficient. The error function has minimum has minimum Ê(h, α) = 0.022559

obtained at h = −0.075, α = 20.
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Figure 7.4: Plot of û(x, t;h, α), the three-term approximation to the solution of (7.1) under

initial condition (7.28) with minimizing h- and α-value plugged in, where h = −0.075, α = 20.
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7.2.4 Decaying exponential

If we use the initial condition

u(x, 0) = e−x, (7.30)

then call the three-term approximation (7.22) by û(x, t;h, α). Then the function

E(h, α) =
1

625

24∑

k=0

24∑

j=0

(
N

[
û

(
j

24
, k;h, α

)])2

. (7.31)

has minimum 8.27× 10−3 at h = 0.772, α = 5.959. The graph of the error E(h, α) is given

in Figure 7.5 and the plot of the three-term approximation û(x, t;hm, αm) is given in Figure

7.6.
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Figure 7.5: Plot of E(h, α), the sum of absolute residual error over 625 points in the square

x ∈ [0, 1], t ∈ [0, 24] as a function of h and α, the convergence control parameter and the ex-

ponential coefficient. The error function has minimum has minimum E(h, α) = 8.2725×10−3

obtained at h = 0.772, α = 5.959.
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Figure 7.6: Plot of û(x, t;h, α), the three-term approximation to the solution of

(7.1) under initial condition (7.30) with minimizing h- and α-value plugged in, where

h = 0.772, α = 5.959.
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7.2.5 Constant initial condition and trivial exact solutions

If the initial condition is a constant u(x, 0) = c, then the homotopy expansion of infinite

terms converges immediately to u0(x, t) = ce−αt. And the residual error for this function is

zero. So the homotopy analysis method has detected an exact solution. In point of fact, any

function of just the temporal variable is an exact solution to the Hunter-Saxton equation.

Meanwhile, if we wanted a function of just the spatial variable, assume u(x, t) = f(x).

Then the PDE (7.2) becomes

f(x)f ′′(x) +
1

2
f ′(x)2 = 0. (7.32)

If we add and subtract a factor of
1

2
f ′(x)2, then our equation (7.32) becomes f(x)f ′′(x) +

f ′(x)2 − 1
2
f ′(x)2 = 0, or better yet,

(f(x)2)′ − (f ′(x))2 = 0. (7.33)

This equation has a solution in f(x) = ce2x, where c is a constant. Thus u(x, t) = ce2x is a

function of just the spatial variable and an exact solution of the Hunter-Saxton equation.

7.2.6 Identity function

Let’s take the initial condition u(x, 0) = x. Then the zeroth order term is u0(x, t;α) = xe−αt.

Note that every term in the nonlinear operator (7.7) having an x derivative will eliminate
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the spatial variable in the equation for u1(x, t;h, α). And so

u1(x, t;h, α) = − h

2α
e−2αt − hαte−αt +

h

2α
e−αt. (7.34)

Furthermore, since every term of (7.7) has a partial with respect to x in it, every term of the

expansion of N
[∑∞

j=0 ujq
j
]
will make every deformation equation have spatial derivatives

in it. So the right-hand side of every equation will be L[uj] = L[uj−1] = L[u1] = −αhe−αt +

h
2
e−2αt for j ≥ 2. So every term of our expansion will be the same as u1(x, t) (7.34). This

is an example where the infinite series (7.9) will diverge when q = 1 unless h = 0; but, then

our approximation is just u0(x, t;α), and upon minimizing this with respect to α, we get

α = 0 and a trivial solution. That being said, since the terms are redundant after the O(q)

term, let us only take the two-term approximation û(x, t, h, α) = u0(x, t;α) + u1(x, t;h, α).

Even with the h in the u1 term, we still lose h when we find the residual error because

u1 is just a function of t and α. In fact, we have

R(x, t;h, α) = (N [û(x, t;h, α)])2 = α2e−2αt − αe−3αt +
1

4
e−4αt. (7.35)

We can integrate this on [0,∞), and take a sum of points for the x coordinates to get

E1(α) =
1

M

M∑

j=0

∫ ∞

0

R(j, t;h, α)dt =
1

2
α +

1

16α
− 1

3
. (7.36)

The minimum value of E1(α) is 0.02022 and occurs at α = 0.353553.

Now, if we find the residual error using a double sum (instead of integrating) of 100

points for t ∈ [0, 2], we get

E2(α) =
1

100M

99∑

k=0

M∑

j=0

R

(
j,
k

50
;h, α

)
. (7.37)
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This function has a minimum of 2.9557× 10−3 occurring at α = 0.380018.

So we can choose h to be whatever we want, and as long as we take a finite number

of terms in our approximation (7.9), we will still get the same global residual error.

Thus, even with the accumulation of infinite integration we still get an error that is

good: 0.02. But if we take the discrete sum of 100 points that error goes down further by

almost a factor of 10 to 0.0029557.

The plots of the error functions E1(α) and E2(α) are given in Figures 7.7 and 7.8,

respectively. The plot of the approximation û(x, t;h, α) is given in Figure 7.9 with minimizing

α = 0.380018 and arbitrary h = 1 plugged in.
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Figure 7.7: The plot of E1(α), the function of the integral of the squared residual error on

t ∈ [0,∞) for the initial condition u(x, 0) = x. The function has a minimum value of 0.02022

when α = 0.353553.
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Figure 7.8: The plot of E@(α), the sum of 100 points for t in the interval [0, 2] for the

initial condition u(x, 0) = x. The function has a minimum value of 2.9557 × 10−3 when

α = 0.380018.
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Figure 7.9: The plot of û(x, t;h, α), the three term approximation to (7.2) under the initial

condition u(x,0) = x. The minimizing value α = 0.380018 is used along with an arbitrary

h = 1.
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7.2.7 Sine function

Now we will take the initial condition

u(x, 0) = sin x. (7.38)

With the three term approximation û(x, t;h, α), we have the sum of squared residual error

function

E(h, α) =
1

100

9∑

k=0

9∑

j=0

N

[
û

(
j

9
,
k

5
, h, α

)]2
. (7.39)

The minimum value of E(h, α) is 0.0275, occurring at h = −0.1772538, α = 0.423. The graph

of E(h, α) is Figure 7.10, and the graph of the approximation û(x, t;−0.1772538, 0.423) is

Figure 7.11.
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Figure 7.10: The plot of E(h, α), the sum of 100 points in the rectangle [0, 1] × [0, 2] as a

function of the convergence control parameter h and operator parameter α. The minimum

value is 0.0275 when h = −0.1772538, α = 0.423.
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Figure 7.11: The plot of the three-term approximation û(x, t;h, α)to the solution of (7.2)

with initial condition u(x, 0) = sin x, where minimizing values h = −0.1772538 and α = 0.423

are used.
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7.3 Discussion

We have applied the optimal homotopy analysis method to the Hunter-Saxton PDE under

relevant boundary conditions. Interestingly, we have kept the equation as a PDE, as opposed

to transforming it into an ODE, since the boundary conditions are relevant for a PDE

formulation. In addition to presenting the general method for the approximate analytical

solution of this equation, we have considered several specific examples of relevant boundary

data. Some of these conditions were studied numerically studied in the original paper by

Hunter and Saxton [92].

Nonlinear partial differential equations, in particular, are difficult to apply the homo-

topy method to. Much work has been done on ordinary differential equations, but not nearly

as much has been done with PDEs. For example, picking the linear operator is a difficult

choice. The linear deformation equations may become too unwieldy if the operator is too

complicated. But if it is too trivial (just ∂
∂t
) then the outcome can be unsatisfactory due to

a lack of accuracy in the approximations.

The operator ∂
∂t

+ 1 has been used before in some degree of success [87]. However,

some cases, like the hyperbolic tangent as initial data (7.26), lead to much higher error when

this operator is selected. To get around this, we consider adding an additional parameter in

the auxiliary linear operator. We consider operators of the form ∂
∂t
+α, and we were able to

pick α > 0 so that the residual error inherent in the solutions was minimal. For all examples
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considered, this approach reduced the residual error (compared with the standard optimal

homotopy analysis method).

The method employed allowed us to construct approximate analytical solutions after

few terms were calculated. As had been discussed elsewhere, for nonlinear PDEs calculating

the additional higher-order terms becomes very complicated. So, it is advantageous to be

able to obtain accurate approximations with few terms. The error results obtained here are

impressive, if one notes that they measure global error (that is, the error accumulated over

the domain) as opposed to simple error at a point.

The results obtained here suggest the method of optimally selecting the auxiliary

linear operator in the homotopy analysis method is a viable way to obtain approximate

analytical solutions to nonlinear partial differential equations and related nonlinear boundary

value problems. In the future, we shall apply this method to other complicated integrable

and non-intergrable nonlinear wave equations.
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CHAPTER 8

SEVERAL TYPES OF SIMILARITY SOLUTIONS FOR THE

HUNTER-SAXTON EQUATION

The following results are from the article [115].

8.1 Background

The orientation of molecules in liquid crystals is described by a field of unit vectors n(x, t) ∈

S2. If this field is nematic, it means the crystals are invariant under an inversion: n → −n.

In this case, n is called a director field [92]. The Hunter-Saxton equation

(ut + uux)x =
1

2
u2x, (8.1)

or, equivalently,

uxt + uuxx +
1

2
u2x = 0, (8.2)

is a nonlinear wave equation that has been used to study a nonlinear instability in the

director field of a nematic liquid crystal [92]. The equation is an asymptotic model of waves
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moving in one direction that satisfy the variational principle

δ

∫ t2

t1

∫ ∞

−∞

{
ψ2
t − c2(ψ)ψ2

x

}
dxdt = 0. (8.3)

Here c is the constant wave speed. The Euler-Lagrange equation derived from (8.3) is

ψtt = c(ψ) {c(ψ)ψx}x . (8.4)

If there is a perturbation in ψ about some constant ψ = ψ0 and x is a space variable

corresponding to a reference frame that moves with the linear velocity, then the Euler-

Lagrange equation of the variational principle

δ

∫ t2

t1

∫ ∞

−∞

(
utux + uu2x

)
dxdt = 0

is exactly (8.1).

The Hunter-Saxton equation was shown to have a class of solutions that break down

in finite time, but are, however, smooth [92]. The initial value problem is typically [92]

u(x, 0) = f(x) (8.5)

with boundary condition

lim
x→∞

u(x, t) = 0 . (8.6)

For other situations, it may be more reasonable to enforce a boundary condition

lim
t→∞

u(x, t) = 0 , (8.7)

which yields a solution that decays for large time. Mathematically, the Hunter-Saxton

equation is interesting, in that it is a rather simple nonlinear partial differential equation that
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admits a variety of solutions. In [93], the inverse scattering solutions to the Hunter-Saxton

equation were studied. In addition to the application mentioned above, the Hunter-Saxton

equation models the geodesic flow on a spherical manifold [94]. Therefore, solutions of (8.1)

are interesting and useful for a variety of reasons. A Lie group symmetry analysis of the

Hunter-Saxton equation (8.1) was recently carried out[95], and some exact solutions were

obtained. Therefore, it makes sense that self-similar solutions should exist for a rather

general variety of physical scenarios. We discuss similarity solutions in two contexts. First,

we consider some exact solutions. While interesting, the applicability of such solutions can

be narrow. Secondly, we consider approximate analytical solutions to the nonlinear ordinary

differential equation governing the self-similar solutions of the Hunter-Saxton equation.

To be specific, the present paper is devoted to describing two classes of solutions to

the Hunter-Saxton equation (8.1). We first consider solutions under a separability condition

on the temporal and spatial variables. Such solutions can be found which satisfy boundary

conditions of the form (8.7). A family of exact separable solutions are found. The second

class of solutions are self-similar solutions. These solutions are parameterized by a constant

which gives an indication of the strength of a zero (or a pole) at some finite value of time. In

the case where there is a pole, we obtain solutions which would blow-up at finite time. Both

exact and analytical solutions are found within this class of solutions: the exact solutions

correspond to specific narrow cases, hence an analytical technique is required in order to

study most of the solutions. We use a method known as homotopy analysis, which has

been applied to a number of nonlinear partial differential equations. In particular, the
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method gives a simple way for one to minimize the residual error inherent in the analytical

approximations. By doing so, we obtain rather accurate approximations to the self-similar

solutions after considering relatively few terms. As it turns out, the separable solutions are

really a type of special case reduction of the self-similar solutions, corresponding to the case

where there is a pole in the time variable of order unity.

In this paper we present several elegant exact solutions, of the self-similar variety,

to a nonlinear partial differential equation. Of course, it is true that such exact solutions

to complicated nonlinear partial differential equations are of course interesting in their own

right. However, such solutions have other practical uses, as well. For instance, these types of

solutions can be useful in verifying numerical solution techniques for such nonlinear partial

differential equations. This give a good check to numerical methods which can then be used to

solve for solutions in more complicated regimes where exact solutions are not possible (or are

not feasible). Additionally, these exact solutions obtained here demonstrate that the Hunter-

Saxton equation (8.1) admits a variety of solutions, even when we restrict our attention

to solutions satisfying certain symmetry properties (i.e., self-similarity). For instance, if

solutions tend to zero as t → ∞, then the solutions are localized in time, meaning that

such similarity solutions gradually dissipate as time becomes large. On the other hand, if

solutions decay as |x| → ∞, this means that the solutions are localized in space. Examples

of such solutions would be solitary waves.

To obtain the approximate analytical solutions, we shall apply the homotopy analysis

method [14]-[22], since it gives one the ability to adjust and control the convergence of the
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solutions. Through an appropriate choice of the convergence control parameter, we are able

to obtain residual error minimizing approximations to the solutions. This method is often

referred to as the optimal homotopy analysis method, since it allows one to “optimally” select

the convergence control parameter in order to minimize errors. We discuss the behavior of

solutions obtained using this approach. This technique allows one to obtain many solutions

which can not be written in explicit exact form.

8.2 Separable solutions

Suppose u(x, t) splits into functions l(t) and k(x) as

u(x, t) = l(t)k(x). (8.8)

Then plugging this into (8.2), we obtain l′(t)k′(x) + l(t)2k′′(x)k(x) + 1
2
l(t)2k′(x)2 = 0, which

can be written as

k′′(x)k(x) + 1
2
k′(x)2

k′(x)
= − l′(x)

l(x)2
= λ. (8.9)

This yields the system of equations





l′(t) + λl(t)2 = 0,

k′′(x)k(x) + 1
2
k′(x)2 − λk′(x) = 0.

(8.10)

Then we will take

l(t) =
1

λt+ c0
, (8.11)
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where λ, c0 > 0. Without loss of generality, set c0 = 1. At t = 0, we recover u(x, 0) = k(x).

Meanwhile, note that as t → ∞, we should have u → 0 (provided that k(x) is sufficiently

bounded). Therefore,

u(x, t) =
k(x)

1 + λt
(8.12)

is an exact solution to the boundary value problem





uxt + uuxx +
1
2
u2x = 0,

u(x, 0) = k(x), lim
t→∞

u(x, t) = 0 .

(8.13)

There is a consistency condition, namely that any initial data k(x) must satisfy (8.10).

Therefore, while a variety of solutions are possible, one is not free to select any function k(x)

as initial data.

8.2.1 Exact separable solutions

Let us assume that a solution k(x) takes the form k(x) = µx+ ν for constants µ > 0 and ν.

Then, (8.10) implies 1
2
µ2 − λµ = 0, hence µ = 2λ. Therefore, for each λ > 0, the function

k(x) = 2λx + ν is always an exact solution to (8.10). For any t ≥ 0, we therefore have the

family of exact solutions

u(x, t) =
2λx+ ν

1 + λt
(8.14)

which are parameterized by the constants λ > 0 and ν ∈ R. The parameter ν can be taken

to zero, since it does not effect the qualitative structure of the solution. Let us define a
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function

u(x, t) =
x

1 + t
. (8.15)

Then, we may represent a separable solution u in terms of the fundamental solution u by

u(x, t) = u(2λx, λt). This gives an infinite family of solutions, all of which are really just

scalings of the fundamental solution u(x, t).

In the narrow case when λ = 0, the solutions become static solutions, and u(x, t) =

k(x) where k′′(x)k(x)+ 1
2
k′(x)2 = 0. The general solution is found to be u(x, t) = (c1x+c0)

2/3.

Interestingly, the spatial derivatives of u(x, t) become singular at x = 0, although the function

itself is always continuous. Therefore, the solution u(x, t) = (c1x+ c0)
2/3 is an example of a

weak solution.

Other exact solutions may be possible, but the method of finding them would be

adhoc. One could prescribe desired initial or boundary conditions on k(x) in order to seek

such solutions numerically. The solution family we found corresponds to the initial conditions

k(0) = ν, k′(0) = 2λ.

8.3 Self-similar solutions

The separable solution discussed in the previous section is essentially a specific case of a more

general type of solution, namely a self-similar solution. While the Hunter-Saxton equation

has received attention on the literature, self-similar solutions of the equation have not been
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fully explored. Note that from the Lie group symmetry analysis of [95], it makes sense that

self-similar solutions should exist for a rather general variety of physical scenarios. Some

special exact solutions were found in [95] in this regard. As we shall see, it is often the case

that such solutions cannot be expressed in any exact closed-form. For this reason, we later

consider an analytical approximation method in order to study such solutions.

We begin with the Hunter-Saxton equation (8.2), and assume a self-similar solution

u(x, t) = (1 + t)aU(η) , where η = x(1 + t)b (8.16)

is a similarity variable for constant parameters a and b (which are to be determined). This

puts the PDE (8.2) into the form

{
bηta+b−1 + t2a+2bU

} d2U
dη2

+
1

2
t2a+2b

(
dU

dη

)2

+ (a+ b)ta+b−1dU

dη
= 0 . (8.17)

Then, if we require a+ b− 1 = 2a+ 2b, or a+ b = −1, a similarity solution exists. We have

selected the factor 1 + t to avoid a singularity for t ≥ 0. However, the methods applied here

will work for any factor of the form t0 + t, where t0 is an arbitrary constant. Let us write

a = −1 − b so that our solutions will be written in terms of one parameter. Note that the

separable case of the previous section corresponds to a = −1 and b = 0. We find, setting

a = −1− b, that the unknown function U satisfies the equation

(U + bη)
d2U

dη2
+

1

2

(
dU

dη

)2

− dU

dη
= 0. (8.18)

In general, a self-similar solution will correspond to

u(x, t) =
U(x(1 + t)b)

(1 + t)1+b
. (8.19)
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Next we apply the boundary conditions. At t = 0, we have u(x, 0) = U(x).

Instead of a condition corresponding to t→ ∞, some applications call for a condition

when x→ ∞. As x→ ∞ for (8.6), we consider

0 = lim
x→∞

u(x, t) = lim
x→∞

U(x(1 + t)b)

(1 + t)1+b
, (8.20)

so we require lim
x→∞

U(x(1 + t)b) = 0. That is, we require

lim
η→∞

U(η) = 0. (8.21)

Therefore, any solution U(η) to the boundary value problem





(U + bη)
d2U

dη2
+

1

2

(
dU

dη

)2

− dU

dη
= 0

lim
η→∞

U(η) = 0,

(8.22)

yields a solution to the boundary value problem





uxt + uuxx +
1
2
u2x = 0,

u(x, 0) = U(x), lim
x→∞

u(x, t) = 0,

(8.23)

of the form

u(x, t) =
U(x(1 + t)b)

(1 + t)1+b
. (8.24)

Once again, there will be one free parameter to choose for (8.22). We will take a condition

at η = 0, U(0) = α for some constant α.
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8.3.1 Exact self-similar solutions

Let us ignore the condition (8.20) for the moment. Then, some exact solutions are possible.

If we assume U(η) = ηr in the ODE (8.22), we obtain

(ηr + bη)r(r − 1)ηr−2 +
1

2
r2η2r−2 − rηr−1 = 0. (8.25)

After simplification, we can write this as

η2r−2

(
3

2
r2 − r

)
= ηr−1

(
−br2 + br + r

)
. (8.26)

Note the case when r = 0 implies U(η) is constant, so our solution u(x, t) is only a function

of the temporal variable. Any function of t is a trivial solution to (8.2). On the other hand,

if r = 2
3
, this implies that b = −3 and we obtain a solution that is only a function of the

spatial variable:

u(x, t) = x
2

3 . (8.27)

It is interesting to note that this is exactly the type of solution obtained in Section 2, which

we called a stationary solution (the solution does not change in time).

If we assume b = 0, observe that we recover the exact solutions of Section 2.1.

Another interesting note is that the Homotopy Analysis Method can be used to

discover an exact solution. First we find the three-term approximation û(η;h, b). Next, we

take the squared residual error

Ê(h, β) =
1

500

500∑

j=1

(N [û(j;h, b)])2 . (8.28)
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The plot of this function is given in Figure 8.1. Note the residual error along β = 3 is

zero, indicating an exact solution. Also, at β = 3, the squared residual error is E(h, 3) =

2.5× 10−5h4, giving a minimum when h = 0.
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Figure 8.1: Plot of Ê(h, b), the sum of squared residual error over 500 points in the interval

η ∈ [1, 500] as a function of h and b, the convergence control parameter and the scale of t in

the self-similarity. The error is zero along b = 3.
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8.4 Analytical-numerical computation of self-similar solutions

While some exact self-similar solutions can be obtained for rather narrow restrictions of

initial data, most of the time no exact solutions can be found. Therefore, we shall have

to resort to approximate methods. In the present section, we shall apply an analytical-

numerical method in order to obtain self-similar solutions. In particular, we will obtain an

analytical approximation to the solution of the ODE (8.22) using the homotopy analysis

method, and then we shall numerically optimize the convergence control parameter which

ensures that residual errors are minimized.

We take the condition at zero to be of the form U(0) = α. An example of a homotopy

in topology is a continuous deformation of one curve into another, and the homotopy analysis

method proceeds similarly. In the method, one constructs a homotopy between the original

differential operator and an auxiliary operator that is easier to solve. For details of the

method, see [14]-[22]. The nonlinear differential operator is

N [U ] = (U + bη)
d2U

dη2
+

1

2

(
dU

dη

)2

− dU

dη
, (8.29)

where we will note that N [U ] = 0 is equivalent to (8.22). With an auxiliary linear operator

L[U ], we can write a homotopy between L and N as

0 ≡ H(U, q) = (1− q)L[U ]− qhN [U ]. (8.30)

Here, q ∈ [0, 1] is the homotopy parameter, H is the homotopy function, and h is the

convergence control parameter that allows us to customize a function of error later. The
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homotopy gives us a differential equation of the same degree as the original equation (8.22).

A solution to this differential equation is of the form U = U(η; q), where we highlight the

dependence on the embedding parameter, q. If u(η; 1) exists and converges, then it is a

solution of (8.22); see Liao [15]. We will use the auxiliary linear operator

L[U ] =
d2U

dη2
+
dU

dη
. (8.31)

Next, we will expand U(η; q) as a Taylor series in q. We propose that

U(η; q) =
∞∑

j=0

uj(η)q
j. (8.32)

We circumvent the question of the convergence of this series representation for U(η; q) when

q = 1 by showing that only taking a few terms of this sum is a good way to approximate

the solution to (8.22). This will yield an approximate solution to the problem. However,

note that the homotopy (8.30) includes a parameter h ̸= 0. This parameter can be used to

control and modify the convergence of the homotopy solution. In a more modern approach,

referred to as the optimal homotopy analysis method, one chooses the parameter h so that

the residual errors due to such an approximation are minimized. This technique has been

used to obtain solutions for a number of nonlinear ordinary and partial differential equations,

see the references [96, 97, 98, 99, 100, 101] for several successful examples.

Placing the solution form (8.32) into the homotopy (8.30) yields

(1− q)L

[ ∞∑

j=0

ujq
j

]
= qhN

[ ∞∑

j=0

ujq
j

]
. (8.33)
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By the linearity of L, this yields

∞∑

j=0

L[uj]q
j =

∞∑

j=0

L[uj]q
j+1 + qhN

[ ∞∑

j=0

ujq
j

]
. (8.34)

Similarly, the initial data become

∞∑

j=0

uj(0)q
j = α, lim

η→∞

∞∑

j=0

uj(η)q
j = 0. (8.35)

Now, expanding the right-hand side of (8.34) around q, and equating powers of q on each

side, we can write the order zero equation

L[u0] = 0. (8.36)

Expanding the conditions out and matching powers of q, we see (8.36) is subject to

u0(0) = α, lim
η→∞

u0(η) = 0. (8.37)

The O(qm) equation is, for m ≥ 1,

L[um] = L[um−1] +
h

(m− 1)!

(
∂m−1

∂qm−1
N

[ ∞∑

j=0

ujq
j

]) ∣∣∣
q=0

, (8.38)

subject to

um(0) = 0, lim
η→∞

um(η) = 0. (8.39)

Note that (8.38) is recursive in that the solution of um(η) depends upon the functions

u0(η), ..., um−1(η). So we can compute up to the order of term that gives a tolerable error,

and then obtain our approximation. We will show in what follows that very few terms

are needed to obtain a decent approximation. Below, we take the first three terms in the
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homotopy expansion,

u∗(η;h, b, α) = u0(η;α) + u1(η;h, b, α) + u2(η;h, b, α) (8.40)

and compute the corresponding squared residual error

E(h, b, α) =
1

500

499∑

j=0

(
N

[
u∗
(
j

50
;h, b, α

)])2

. (8.41)

We take the discrete approximation to the residual error, since this formulation speeds

up computation. The alternative is to integrate over the squared residuals, but such an

approach is far more computationally demanding. We include the argument h to highlight

the functional dependence, where relevant. We may minimize E(h, b) for fixed values of the

initial condition, U(0) = α, and the similarity parameter, b. That is, for fixed α and v, we

seek

h∗(α, b) = argminh ̸=0E(h, b, α) =
1

500

499∑

j=0

(
N

[
u∗
(
j

50
;h, b, α

)])2

. (8.42)

To demonstrate the method, let us consider two cases. First, we assume U(0) = 1 in

(8.37). Then the solution to the order-zero equation (8.36) subject to (8.37) is u0(η) = e−η.

The solution to the O(q) equation is found to be

u1(η;h, b) =

(
1

2
bhη2 + bhη − hη +

1

4
h

)
e−η − 1

4
he−2η. (8.43)

We find u2(η;h, b) in a similar way using (8.38). As a sample, E(h, b) is plotted for b = 0.28

in Figure 8.2. The minimum error is 2.098 × 10−4 and this occurs when h = −2.3089. Of

course, one can improve upon this error by adding more terms to the homotopy approxima-

tion. However, we find that a three-term approximation is more than sufficient for plotting
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Figure 8.2: Plot of E(h, 0.28), the sum of squared residual error over 500 points for η ∈ [0, 10]

as a function of h, the convergence control parameter. The error function has minimum

2.0298× 10−4 obtained at h = −2.3089. We consider the initial condition U(0) = 1.

accuracy. The corresponding three-term approximations u∗(η;h, b) for b = −0.5, 0.1, 0.28

and 1, evaluated at the minimizing convergence control parameter values, h, are all plotted

in Figure 8.3.

Next, consider the case α = 1
2
in (8.37). The solution to the order-zero equation

(8.36) subject to (8.37) is u0(η) =
1
2
e−η, while the solution to the first order equation is

u1(η;h, b) =

(
1

4
bhη2 − 1

2
hη +

1

2
bhη +

1

16
h

)
e−η − 1

16
he−2η. (8.44)

The third term in the approximation is found similarly. The plot of E(h, b) for b = 0.28

is given in Figure 8.4. The minimum error is 2.915 × 10−4, occurring at h = −3.497.
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Figure 8.3: Plot of u∗(η;h, b), the three-term approximation to the solution of (8.22) assum-

ing U(0) = 1, for four values of b with solutions evaluated at the residual error minimizing

value of the convergence control parameter, h.
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Figure 8.4: Plot of E(h, 0.28), the sum of squared residual error over 500 points for η ∈ [0, 10]

as a function of h, the convergence control parameter. The error function has minimum

2.915× 10−4 obtained at h = −3.497. We consider the initial condition U(0) = 1
2
.
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Figure 8.5: Plot of u∗(η;h, b), the three-term approximation to the solution of (8.22) assum-

ing U(0) = 1
2
, for four values of b with solutions evaluated at the residual error minimizing

value of the convergence control parameter, h.
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The corresponding three-term approximations u∗(η;h, b) for b = −0.5, 0.1, 0.28, and 1, with

minimizing h-values plugged in, are all plotted in Figure 8.5.

From the solution plots, it is clear that while all solutions satisfy the far-field condition

U → 0 as η → ∞, and therefore the solutions u(x, t) satisfy the condition (8.6), the value

of b (the similarity parameter) strongly influences the behavior of the solution profiles for

small enough η. Interestingly, the influence of b does not result in a steady trend in the

solution curves, highlighting the importance of considering specific cases for the similarity

parameter separately. To see why this might be, let us consider the function V (η), where we

set U(η) = V (η)− bη. The (8.22) is put into the form

V
d2V

dη
+

1

2

(
dV

dη

)2

− (1 + b)
dV

dη
+ b+

1

2
b2 = 0 . (8.45)

The 1 + b factor of dV
dη

is a simple scaling, but the inhomogeneous term b+ 1
2
b2 tells us that

solutions should depend on the parameter function χ(b) = b+ 1
2
b2. Since this is a nonlinear

combination of the similarity parameter, it is natural that solutions should themselves depend

nonlinearly on b.

There is sometimes a linear solution to (8.45). Let us assume that V (η) = µη + ν,

where µ and ν are real-valued constants. Then, a necessary and sufficient condition for the

existence of such a solution is found (by substitution) to be

1

2
µ2 − (1 + b)µ+ b+

1

2
b2 = 0 . (8.46)

This gives solutions µ = b and µ = 2+ b. Therefore, V (η) = bη+ ν and V (η) = (b+ 2)η+ ν

are two distinct linear solutions. In the first case, we find U(η) = ν, a constant. In the
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second case, we find U(η) = 2η + ν. We therefore have two distinct solutions, which implies

that multiple solutions are possible in some parameter regimes. Putting these solutions back

into natural variables, we have the exact solutions

u(x, t) =
ν

(1 + t)1+b
(8.47)

and

u(x, t) =
2x

1 + t
+

ν

(1 + t)1+b
, (8.48)

respectively.

8.5 Discussion

We have studied separable and self-similar solutions of the Hunter-Saxton wave equation.

We were able to obtain exact solutions for both cases in closed form, under some relevant

assumptions. In the case where u(x, t) → 0 as t → ∞, the separable solutions give us a

solution with algebraic decay,

u(x, t) =
k(x)

1 + λt
, (8.49)

where k(x) satisfies a suitable ordinary differential equation. We show that such separable

solutions are essentially special cases of self-similar solutions. The self-similar solutions allow

us to consider other boundary conditions, such as u(x, t) → 0 as x → ±∞. The type of

self-similarity inherent in the Hunter-Saxton equation is

u(x, t) =
U(x(1 + t)b)

(1 + t)1+b
. (8.50)
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Note that the separable solutions correspond to b = 0. For other values of b, solutions

correspond to differing initial conditions. This is interesting, as for a number of other partial

differential equations, the form of the similarity variable η = x(1+ t)b is fixed. For instance,

in the case of many nonlinear wave equations, one often obtains the unique similarity variable

η = x/
√
t [102]. So, we have obtained a general family of such solutions, all parameterized

by the similarity parameter b.

While exact solutions are possible in some narrow cases, for the physically interesting

case of u(x, t) → 0 as x → ±∞, we should have U(η) → 0 as η → ∞. To study such

solutions, we applied an analytical-numerical method, the so-called optimal homotopy anal-

ysis. The primary benefit of this method is that it permits one to obtain accurate analytical

approximations to solutions of nonlinear differential equations after relatively few terms are

computed. We obtain error on the order of 10−4 after only three terms are considered. The

existence of such self-similar solutions is completely consistent with what one would expect

from the Lie group analysis presented in [95]. From the present results, it is clear that the

value of the similarity parameter, b, strongly influences the behavior of the solutions.

We have obtained a number of solutions for the Hunter-Saxton equation, which il-

lustrates the rich variety of solutions possible for this equation. For other initial-boundary

value conditions, perhaps other more exotic solution forms can be constructed.
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CHAPTER 9

EXACT SIMILARITY SOLUTIONS OF THE

KHOKHLOV-ZABOLOTSKAYA EQUATION

The following results are from the paper [116].

9.1 Background

The Khokhlov-Zaboloskaya (KZ) equation is used to describe the propagation of a sound

beam in a nonlinear medium [103]. The Khokhlov-Zabolotskaya equation is give by

uxt − (uux)x − uyy = 0, (9.1)

or, equivalently,

uxt − uuxx − u2x − uyy = 0. (9.2)

The Lie Symmetries and conservation laws of the KZ equation are discussed in a

paper by Chowdhury and Naskar [104]. The conservation laws are used in the analysis of the

dispersion of the sound beam throughout its propagation [104]. All the similarity reductions

of the Lie Point Symmetries of the KZ equation are derived by Zhang, Zhu, and Lin [105].
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These symmetries reduce the KZ equation to a lower dimensional PDE [105]. Non-classical

symmetries of the KZ equation, as well as exact solutions in transformed coordinate systems

are given in [106]. The paper by Sanchez [107] studies the existence of solutions to the

KZ equation. Morozov [108] studied multi-valued solutions of the KZ equation using the

Maurer-Cartan forms of its symmetry group. Dispersionless Lax equations, of which the KZ

equation is one, are studied by Krichever in [109].

An in-depth study of the history of the KZ equation is given by Rudenko in [110]. This

paper also talks about an equation similar to the KZ equation, the Khokhlov-Zabolotskaya-

Kuznetsov (KZK) equation. The KZK equation is the KZ equation with a dissipative term

[110]. In [111], Rozanova derives the KZK equation from the Navier-Stokes system and

studies the existence, uniqueness, and stability of the solution.

In this paper, many self-similar solutions to the KZ equation are studied and some

exact solutions are found. In section 2, we consider a self-similar transformation which

reduces the PDE (9.2) to an ODE. Exact solutions are found for this ODE. In section 3, we

transform the self-similar ODE obtained in Section 2 into an integral equation. This allows

us to ascertain certain interesting properties of self-similar solutions of the KZ equation.

Following this, we discuss a second distinct type of self-similar solution to the KZ equation

in Section 4. An exact solution is recovered, and this solution has the interesting property

that it is stationary in time. Based on the solutions obtained in Sections 2-4, we are led to

consider a method of reducing the KZ equation into a new, lower-dimensional PDE in Section

5. As we shall demonstrate, certain additively separable solutions of this new PDE result in
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exact solutions of the type obtained in the earlier sections. This therefore gives one a nice

framework in which to study the possible exact self-similar solutions to the KZ equation.

Finally, in Section 6 we consider a type of hybrid self-similar traveling wave solution.

While exact solutions to complicated nonlinear partial differential equations are of

course interesting in their own right, there are other practical uses for such exact solutions.

One may use such exact solutions in order to calibrate numerical solution techniques for the

KZ equation. Secondly, such exact solutions demonstrate the variety of behaviors possible

when we are studying the KZ equation. Indeed, we find that the various exact solutions

will have different asymptotic properties. For instance, we see that some of the solutions

remain bounded as t → ∞, while other solutions exhibit unbounded growth in this limit.

Additionally, some solutions may be well-behaved for all finite time, yet other solutions will

exhibit finite time blow-up. The rich variety of structures possible in our exact solutions

demonstrates the diverse collection of possible solutions of the KZ equation.

9.2 First self-similar solutions to the Khokhlov-Zabolotskaya

equation

In this section, we will group the x and t together to get a self-similar transform, and then

we will group t and y to get an ODE. This way it is easy to keep track of the similarity
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variables. We begin by assuming u(x, y, t) = taR(ξ, y), where ξ = xtb. Then

ux = ta+bRξ,

uxt =
{
(a+ b)Rξ + bξRξξ

}
ta+b−1,

(uux)x = t2a+2b(RRξξ +R2
ξ),

uyy = taRyy.

(9.3)

Plugging this into our original PDE (9.1) we obtain

{
(a+ b)Rξ + bξRξξ

}
ta+b−1 − t2a+2b(RRξξ +R2

ξ)− taRyy = 0. (9.4)

The similarity transform exists if a = −2 and b = 1. So our PDE has become

RRξξ +R2
ξ +Ryy − ξRξξ +Rξ = 0. (9.5)

Next, we will group together the t and y variables by assuming R(ξ, y) = yaU(η), where

η = ξyb. After necessary preparation, the equation (9.5) becomes

y2a+2b
{
U ′′U+U ′2

}
+a(a−1)ya−2U+(2ab+b2−b)ya−2ηU ′+b2ya−2η2U ′′−ya+bηU ′′+ya+bU ′ = 0.

(9.6)

We see that if a = 2 and b = −2, then we can write

(4η2 − η + U(η))
d2U

dη2
+

(
dU

dη

)2

+ (1− 2η)
dU

dη
+ 2U(η) = 0. (9.7)

If we write our solutions in standard coordinates, we have

u(x, y, t) =
1

t2
R(xt, y) =

y2

t2
U

(
xt

y2

)
. (9.8)
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Since this is a second-degree equation, we assume a quadratic solution

U(η) = αη2 + βη + γη, (9.9)

where α, β, γ are constants.

We find one solution if α = 0, and get

U(η) = βη − 1

2
(β + β2). (9.10)

In standard coordinates, this is

u(x, y, t) = β
x

t
− 1

2
(β + β2)

y2

t2
. (9.11)

We also find another solution using the assumption above (9.9) if α = −1, in which

case U(η) = γ − η2. In standard coordinates this becomes

u(x, y, t) = γ
y2

t2
− x2

y2
. (9.12)

9.3 A transform of the similarity ODE to an integral equation

Consider our self-similar ODE (9.7). Let us define a function V (η) such that

U(η) = V (η)− 4η2 + η. (9.13)

Then, we can put the ODE (9.7) into the form

V V ′′ + V ′2 + 3(1− 6η)V ′ − 6V + 2(1− 6η)2 = 0. (9.14)
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Let us write

V (η) =
1

24
w(τ), where τ =

√
2(1− 6η). (9.15)

Then by the Chain Rule,

dV

dη
=
dV

dτ

dτ

dη
= −

√
2

4
w′(τ),

d2V

dη2
= −

√
2

4
w′′(τ)(−6

√
2) = 3w′′(τ).

(9.16)

From here our ODE becomes

1

24
w(τ) (3w′′(τ)) +

1

8
w′(τ)2 +

3√
2
τ

(
−
√
2

4

)
w′(τ)− 1

4
w + τ 2 = 0, (9.17)

which simplifies to

ww′′ + w′2 − 6τw − 2w + 8τ 2 = 0. (9.18)

We can write this as

(w2)′′ − 12τw′ − 4w + 16τ 2 = 0. (9.19)

If we can solve this equation, then we have a solution

U(η) =
1

24
w(τ)− 4η2 + η =

1

24
w
(√

2(1− 6η)
)
− 4η2 + η. (9.20)

Integrating our transformed ODE (9.19) from 0 to τ gives

(w2)′ − 12τw(τ) + 8

∫ τ

0

w(s)ds+
16

3
τ 3 = 2w(0)w′(0). (9.21)

Integrating again, we obtain

w(τ)2 − 12

∫ τ

0

sw(s)ds+ 8

∫ τ

0

∫ s

0

w(σ)dσds+
4

3
τ 4 = 2w(0)w′(0). (9.22)
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Here we use the fact that

∫ τ

0

∫ σ

0

w(s)dsdσ =

∫ τ

0

(τ − s)w(s)ds (9.23)

to simplify this to

w(τ)2 +

∫ τ

0

(8τ − 20s)w(s)ds+
4

3
τ 3 = 2w(0)w′(0)τ + w(0)2. (9.24)

Therefore, the nonlinear ODE for w(τ) can be put into the form of a nonlinear integral

equation.

We may use the ODE to find the local curvature of w(τ) near τ = 0. Considering the

ODE (9.19) at τ = 0, this gives

w(0)w′′(0) + w′(0)2 − 2w(0) = 0, (9.25)

hence

w′′(0) = 2− w′(0)2

w(0)
. (9.26)

The signed curvature of the graph of w(τ) is then

κ(t) =
w′′(τ)

(1 + w′(τ)2)3/2
, (9.27)

so

κ(τ) =

(
2− w′(0)2

w(0)

)(
1 + w′(0)2

)−3/2
, (9.28)

for τ ≈ 0. The minimum of the curvature is when w′′(0) = 0, and it is zero there. And

using (9.26) this happens when w′(0) = ±
√

2w(0), provided w(0) > 0. If w(0) < 0, then
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curvature is not zero at τ = 0, because w′′(0) ≥ 2 in that case. Note that w(0) ̸= 0 is

required throughout the above discussion.

If we construct a series solution, we can see the need for the restriction w(0) ̸= 0.

To demonstrate this, let us consider the case where w′(0) = 1. We find (treating w(0) as a

parameter)

w(τ) = w(0) + τ +
1

2

(
2w(0)− 1

w(0)

)
τ 2 +

1

6

(
2w(0) + 3

w(0)2

)
τ 3 − 5

24

(
2w(0) + 3

w(0)3

)
τ 4

+
7

24

(
2w(0) + 3

w(0)4

)
τ 5 − 7

16

(
2w(0) + 3

w(0)5

)
τ 6 +

11

16

(
2w(0) + 3

w(0)6

)
τ 7 · · · .

(9.29)

Note we pick up our exact solution if we assume w(0) = −3
2
. Then the series expansion

(9.29) becomes

U(η) =
1

24

(
8

3
(1− 6η)2 +

√
2(1− 6η)− 3

2

)
− 4η2 + η

= −
(
1

3
+

√
2

4

)
η +

7

144
−

√
2

24
.

(9.30)

Observe that this is just (9.10) with β = −
(

1
3
+

√
2

24

)
.

So for very small |w(0)|, the series terms (9.29) become arbitrarily large, while when

|w(0)| is very large, the terms in the series become arbitrarily small. Consider the case when

|w(0)| is very large, so that w(τ) ≈ w(0) + τ + τ 2. Then

U(η) ≈ 1

24

(
w(0) +

√
2(1− 6η) + 2(1− 6η)2

)
− 4η2 + η

= −η2 −
√
2

4
η +

1

24
(w(0) +

√
2 + 2),

(9.31)

for small enough τ (i.e., for small enough |1− 6η|).
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9.4 A second self-similar solution to the Khokhlov-Zabolotskaya

equation

In this section we will try a more general self-similar solution

u(x, y, t) = xaybU(η), (9.32)

where

η = xcydt. (9.33)

Plugging our assumption (9.32) into the original PDE (9.2) and simplifying, we obtain

{
cxc+a−1yb+dη − c2x2a−2y2bη2U(η)− d2xayb−2η2

}
U ′′(η) +

{
axa+c−1yb+d + cxa+c−1yb+d

− acx2a−2y2bηU(η)− c(a+ c− 1)x2a−2y2bηU(η)− c2x2a−2y2bη2U ′(η)

− 2acx2a−2y2bηU(η)− bdxayb−2η − d(b+ d− 1)xayb−2η
}
U ′(η)

−
{
a(a− 1)x2a−2y2bU(η) + a2x2a−2y2bU(η) + b(b− 1)xayb−2

}
U(η) = 0.

(9.34)

It follows that there is a self-similarity when a = 2, b = −2, c = 1, and d = −2. Using these

values, our ODE becomes

{
η−η2U(η)−4η2

}
U ′′(η)+

{
3−η2U ′(η)−8ηU(η)−14η

}
U ′(η)−

{
6U(η)+6

}
U(η) = 0. (9.35)

Although highly nonlinear, this is still a second-order equation. If we assume a quadratic

solution U(η) = αη2 + βη + γ, then plugging this into the equation (9.35) we get a trivial

solution U(η) = 0 or the constant solution U(η) = −1. In the standard coordinates this
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solution becomes

u(x, y, t) = −x
2

y2
. (9.36)

Unlike other solutions discussed above, this solution has the property that it is time-

independent, or stationary. Therefore, the solution exhibits no blow-up for either t→ ∞ or

t→ 0.

9.5 A PDE method for an exact solution to the KZ equation

Let us begin with the original PDE (9.2). Based on solutions we found earlier, as in (9.11),

(9.12), and (9.36), we decide to try an assumption that u(x, y, t) = V (α, β), where

α =
y2

t2
, β =

x2

y2
. (9.37)
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Then

∂V

∂x
= Vααx + Vββx =

2x

y2
Vβ,

∂2V

∂x∂t
=

2x

y2
(Vβααt + Vβββt)

=
2x

y2

(
−2y2

t3
Vαβ

)
= −4x

t3
Vαβ,

∂2V

∂x2
=

2

y2
Vβ +

2x

y2
(Vβααx + Vβββx) =

2

y2
Vβ +

2x

y2

(
2x

y2
Vββ

)
=

2

y2
Vβ +

4x2

y4
Vββ,

∂V

∂y
= Vααy + Vββy =

2y

t2
Vα − 2x2

y3
Vβ,

∂2V

∂y2
=

2

t2
Vα +

2y

t2
(Vαααy + Vβαβy) +

6x2

y4
Vβ −

2x2

y3
(Vβααy + Vβββy)

=
2

t2
Vα +

2y

t2

(
2y

t2
Vαα − 2x2

y3
Vαβ

)
+

6x2

y4
Vβ −

2x2

y3

(
2y

t2
Vαβ −

2x2

y3
Vββ

)

=
2

t2
Vα +

6x2

y4
Vβ +

4y2

t4
Vαα +

4x4

y6
Vββ −

8x2

y2t2
Vαβ.

(9.38)

Now plugging V (α, β) into (9.2) we have

− 4x

t3
Vαβ−

2

y2
VβV − 4x2

y4
VββV − 4x2

y4
(Vβ)

2− 2

t2
Vα−

6x2

y4
Vβ−

4y2

t4
Vαα−

4x4

y6
Vββ+

8x2

y2t2
Vαβ = 0.

(9.39)

Multiplication by y2 gives

(
8x2

t2
− 4xy2

t3

)
Vαβ−2VβV − 4x2

y2
VββV − 4x2

y2
(Vβ)

2− 2y2

t2
Vα−

6x2

y2
Vβ−

4y4

t4
Vαα−

4x4

y4
Vββ = 0.

(9.40)

Let us now use (9.37) along with the fact that αβ =
x2

t2
to get

(8αβ−4α
√
αβ)Vαβ−2VβV −4βVββV −4β(Vβ)

2−2αVα−6βVβ−4α2Vαα−4β2Vββ = 0. (9.41)

The exact solution was a sum of α and β, so we suppose that V has the form

V (α, β) = F (α) +G(β). (9.42)
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Then Vα = F ′(α), Vβ = G′(β), etc., and we have

− 2G′(F +G)− 4βG′′(F +G)− 4β(G′)2 − 2αF ′ − 6βG′ − 4α2F ′′ − 4β2G′′ = 0. (9.43)

After dividing by −2, we can simplify this as

F (G′ + 2βG′′) +G′G+ 2βG′′G+ 2β(G′)2 + αF ′ + 3βG′ + 2α2F ′′ + 2β2G′′ = 0. (9.44)

If the terms including both F and G in the above equation (9.44) would vanish, we might be

able to split this equation. So if we further assume that G′(β) + 2βG′′(β) = 0, the solution

is G(β) = c1
√
β + c2. Plugging this function back into (9.44) yields

αF ′ + 2α2F ′′ +
1

2
c21 + c1

√
β = 0. (9.45)

At this point, there are two cases. Case 1 is if c1 = 0. This means that G(β) is constant,

and the equation (9.45) becomes αF ′ + 2α2F ′′ = 0, which has solution F (α) = c1
√
α. Then

in standard coordinates, our solution becomes

u(x, y, t) = c1
y

t
+ c2. (9.46)

The second case is if c1 ̸= 0. Here, (9.45) will have no solution since F is a function

of only α. But now we are free to assume

G′(β) + 2βG′′(β) ̸= 0, (9.47)

so we may divide by it to solve for F in (9.44). Doing so, we obtain

F (α) =
−G′G− 2βG′′G− 2β(G′)2 − αF ′ − 3βG′ − 2α2F ′′ − 2β2G′′

G′ + 2βG′′ . (9.48)
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To try and get an equation that will split, let us take the derivative of both sides of (9.48)

to get

F ′(α) =
(−F ′ − αF ′′ − 4αF ′′ − 2α2F ′′′) (G′ + 2βG′′)

(G′ + 2βG′′)2
=

−F ′ − 5αF ′′ − 2α2F ′′′

G′ + 2βG′′ . (9.49)

If we assume F ′(α) ̸= 0, we have

G′ + 2βG′′ =
−F ′ − 5αF ′′ − 2α2F ′′′

F ′ . (9.50)

This equation is split, and now we can assume both sides are equal to λ, where λ ̸= 0. So

we have a system 



G′(β) + 2βG′′(β) = λ,

2α2F ′′′(α) + 5αF ′′(α) + (1 + λ)F ′(α) = 0.

(9.51)

These two equations have solutions

F (α) = c1α
1

4
+ 1

4

√
1−8λ + c2α

1

4
− 1

4

√
1−8λ + c6, (9.52)

and

G(β) = λβ + c3
√
β + c4. (9.53)

By definition, α is nonnegative. So if we allow non-real exponents for α, there is no restriction

on λ. However, plugging the solutions (9.52) and (9.53) back into V (α, β) = F (α) + G(β)

and then back into the original PDE (9.2), what is left is

−(2λc4 + c23)y
2 − 6c3(λ+ 1

3
)xy − 6λ(1 + λ)x2

y4
. (9.54)
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In order to get this to be zero, we must have either λ = 0 or λ = −1. If λ = 0, then we must

also have c3 = 0 and our solution in standard coordinates is

u(x, y, t) = c1
y

t
+ c5. (9.55)

If, however, λ = −1, then c3 = c4 = 0 and our solution is

V (α, β) = F (α) +G(β) = c1α +
c2√
α
− β. (9.56)

In standard coordinates, our solution is

u(x, y, t) = c1
y2

t2
+ c2

t

y
− x2

y2
. (9.57)

Note that our solution (9.11) had a factor of
x

t
that was not picked up in the above

exact solution (9.57), hence by using different methods we are able to find additional solu-

tions. However, the specific solution (9.12) is equivalent to our solution (9.57) (upon setting

c2 = γ). Our exact solution (9.36) corresponds to (9.57) in the case where c1 = c2 = 0.

Therefore, the exact solution obtained here through a PDE approach allows us to recover

some, but not all, of the solutions obtained through some ODE approaches. The PDE

approach is this section is perhaps a more unified way to view these solutions.

Note that, depending on the choice of c1 and c2, the family of solutions (9.57) can be

calibrated to satisfy various asymptotic conditions. For instance, if we seek solutions which

remain bounded as t→ ∞, we can select c2 = 0. Meanwhile, if we wish to avoid blow-up of

solutions in finite time, we select c1 = 0 so that solutions remain finite when t→ 0.
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9.6 Wave similarity

All of the previous solutions and solution methods discussed in this paper have involved the

search for various self-similar forms of solutions. Of course, other solution forms are possible.

Standard traveling wave solutions of the equation (9.1) are relatively simple to obtain. What

is perhaps more interesting would be the case where solutions are simultaneously wave-like

in a pair of variables while self-similar in a grouping of the resulting wave variable with

the remaining space variable. Therefore, instead of a self-similarity, we now investigate the

possibility of a translational similarity in x and t, and a self-similarity in t and y. Suppose

z = x− ct, where c is a constant. Then the equation (9.1) becomes

cQzz +Q2
z +QQzz +Qyy = 0. (9.58)

Now we will impose the self-similarity of Q(z, t) = yaq(ψ), where ψ = zyb. Then

Qzz = ya+2bq′′(ψ) (9.59)

and

Qyy = a(a− 1)ya−2q(ψ) + y2a+2bq(ψ)q′′(ψ) + {ab+ b(a+ b− 1)} ya−2q′(ψ). (9.60)

So now our PDE becomes

cya+2bq′′(ψ) + y2a+2bq′(ψ)2 + y2a+ 2bq(ψ)q′′(ψ) + a(a− 1)ya−2q(ψ)

+ {ab+ b(a+ b− 1)} ya−2ψq′(ψ) + b2ya−2ψ2q′′(ψ) = 0.

(9.61)
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The similarity occurs when a − 2 = a + 2b = 2a + 2b, or when a = 0 and b = −1. So the

ODE above (9.61) becomes

{
ψ2 + c+ q(ψ)

}
q′′(ψ) + q′(ψ)2 + 2ψq′(ψ) = 0. (9.62)

Once ψ is known, we have

u(x, y, t) = q

(
z

y

)
= q

(
x− ct

y

)
. (9.63)

For a first solution, we can assume

q(ψ) = A0 + A1ψ + A2ψ
2. (9.64)

If we use this in the above equation (9.62), then we find that A0 = −c, A1 = 0, and A2 = −1.

Thus the solution is q(ψ) = −ψ2 − c. In the original coordinates, we find

u(x, y, t) = −(x− ct)2

y2
− c (9.65)

to be another exact solution to the Khokhlov-Zabolotskaya equation. This is another solution

with the presence of the −x
2

y2
term. Therefore, in the case where the wave reduces to a

standing wave (c = 0), we recover the exact solution of Section 4.

For any fixed value of y, say y = y0, this solution has a global maximal value at

x = ct. This maximal value is equal to −c and is invariant of the choice of y0. We have

u(x, y, t) ≤ u(ct, y, t) = −c , (9.66)

thus the maximal value of u does not depend on time. The peak of the wave moves along

the x-axis, with the value of y contributing only to the shape of the wave (but not to the

position or the maximal value of the wave).
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9.7 Discussion

We have found several exact solutions to the Khokhlov-Zabolotskaya equation through the

use of self-similar transforms. Our first self-similarity transform helped us find two unique

solutions (9.11) and (9.12) in Section 2. These solutions constitute rate exact solutions to a

nonlinear PDE. We also found an integral equation (9.24) in Section 3 that we derived from

our self-similar ODE (9.7) obtained in Section 2, and we demonstrated various properties of

a family of self-similar solutions.

In Section 4, we tried a more general self-similar transform, and wound up with a

more difficult equation to solve, (9.35). However, despite the complications in this equation,

under appropriate assumptions we were able to recover the solution (9.36) which is equivalent

(after scaling) to one of the exact solutions that had been found earlier in Section 2, (9.12).

Noticing the variety of solutions found thus far, we performed a change of variables

on the original PDE in section 5, which reduced the original PDE in three variables into

a new PDE in two variables, α = y2/t2 and β = x2/y2. The resulting PDE, while more

complicated than the original PDE, permits a nice separation of variables. While multiple

forms of solutions are possible, we decided to assume a solution that was additively separable

in each of the transformed variables α and β. This lead to the new exact solutions (9.55)

and (9.57), which hold some of the previously investigated solutions as special cases.

Finally, we assumed a similarity-wave type of solution in Section 6. We supposed

that x and t were related through a traveling wave, and that y and t were related through a
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self-similarity. Using this ODE, we then found another exact solution (9.65). This family of

solutions would model one specific type of traveling sound beam in a nonlinear medium. In

the limit where the wave speed tends to zero, the solution gives a standing wave which takes

the form of the solution found in Section 4. Therefore, one can view the stationary solution

of Section 4 as a type of standing wave.

With this, we have described a number of exact similarity solutions to the Khokhlov-

Zabolotskaya equation, and we have highlighted a number of techniques for finding such

solutions. The results show that the Khokhlov-Zabolotskaya equation admits a variety of

self-similar structures. The particular structure of physical relevance would be dictated by

any asymptotic or initial conditions. For instance, solutions which tend toward zero or finite

values as t→ ∞ are useful for studying waves or perturbations in the Khokhlov-Zabolotskaya

equation. On the other hand, solutions giving blow-up at finite time (say, t = 0) help us

better understand when singularities may arise in such mathematical models.
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CHAPTER 10

CONCLUSIONS

In this dissertation, the Homotopy Analysis Method is used to find approximate analytical

solutions to nonlinear differential equations.

The choice of the linear operator has been the main focus of the author’s work. The

method begins with a nonlinear operator N [u] and asks the user to find a suitable linear

operator L[u]. An obvious first choice is to use the linear part of the nonlinear operator.

This is done successfully in Chapters 2 and 3 with the reduced Ernst Equation (2.21) and

the simplified optical vortex equation (3.10). In using the method on the reduced Ernst

equation (2.21), the solution form of the ODE was given in (2.33). Note the convergence

of the terms to zero as the independent variable increases without bound. This structure is

key to being able to perform error analysis on the resulting approximation. In Chapter 3,

the linear part of the nonlinear operator (3.14) was again a good choice for L. The type of

nonlinearity depended on which model was used.

However, this method of linearizing the nonlinear operator does not always yield

tractable results. Consider the nonlinear sigma model in Chapter 4, where we were solving

the ODE (4.22). The linear part of the nonlinear operator is L =
d2

dz2
. The solutions to
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L[g] = 0 are linear functions that would yield undesirable error on an infinite domain. This

is where we decided to try two different linear operators: one that yielded solutions like the

error function, and one that yielded solutions that decay exponentially.

After this, we studied the Cahn-Hilliard equation in Chapter 5. This is a partial

differential equation. Prior to this, the Homotopy Analysis Method had been mostly used to

solve ODEs. On a PDE, especially an evolution equation, linearizing the nonlinear operator

is usually a bad choice due to the presence of only one partial derivative with respect to

the temporal variable. So, a large undertaking of three different linear operators and many

varying initial data were used.

In Chapter 6, the Hasegawa-Mima equation is studied. Here, again, the linear part

of the problem is not a good choice for L. What becomes clear here is the choice of linear

operator is a delicate one. A linear operator that gave complicated expressions for the first

three terms of the expansion was used next, and these terms proved impossible to test in

error analysis under any (non-trivializing) simplifying assumption. Finally, we settled on the

linear operator that itself gives another parameter to the problem: L[U ] = Ut + αU . This

parameter α provides another way to tailor the approximation to our needs. For instance, if

just using the linear operator L[U ] = Ut+U , we get solutions that decay on the order of e−t.

All of the data found in this Chapter had α being approximately 18, 77, or 390 (see Figures

6.1, 6.3, 6.5)! Structurally the exponential decay is there, but think of the differences in the

residual error for t ∈ [0, 1] for e−t versus e−370t: e−0.1 ≈ 0.9, but e−370·0.1 ≈ 8.5× 10−17.
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The Hunter-Saxton equation, in Chapter 7, was vexing. The equation, while much

simpler to write out than previous equations (like the Hasegawa-Mima equation), yielded

only lukewarm results when tested using the linear operators we have previously used. The

residuals found were on the order of 10−2, which is not ideal. We would like to see something

more along the lines of 10−3 or better. What this shows is that no single choice of linear

operator is good enough for all partial differential equations.

In Chapter 8, we found separable and exact solutions to the Hunter-Saxton equation.

By turning the PDE to an ODE using a self-similar transform, we were then able to use the

Homotopy Analysis Method to get error on the order of 10−4 (see Figure 8.2). Note that we

used an exponential decay producing linear operator, which was not just the linear portion

of the nonlinear operator.

In Chapter 9, we did not need the Homotopy Analysis Method to find approximate

solutions, because all of the solutions we found were exact.

The question remains: is there a linear operator that works best? Based on the results

obtained, specifically in Chapters 6 and 7, we did not find one particular operator (or family

of operators) that works best. This is still an interesting topic for future work, discussed

below.

Next, we would highlight the usefulness of the Homotopy Analysis Method. Most

importantly, we are able to get functions as solutions– not just data. Having the plot of the

approximate solution can give information about how certain properties of the solution can

be retained using different initial data. Also, consider the nonlinear σ model with a slowly
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converging exact solution (4.13). This is a Maclaurin series, so taking a finite number of

terms would not give good residual error for large values in the domain. Through homotopy

analysis, we are able to find an approximate solution that is good an a semi-infinite interval.

The method sometimes finds exact solutions. For example, in the Cahn-Hilliard equation

the method detects an exact solution that is constant (5.78). Also, in the self-similar case of

the Hunter-Saxton equation, the method finds an exact solution. See Figure 8.1.

Future work includes applying the method to more problems. This has been one of

the main goals of this report. But still, more successful cases should be documented so that

general results can be synthesized. Also, the problem of finding the best linear operator for

a class of nonlinear operators should be addressed. This is a problem that requires working

in generalities. Simply taking a even a simple nonlinear ODE operator and trying a general

linear operator leads to unwieldy algebra. And then trying to perform error analysis on an

approximation (with how many terms?) is near impossible. The author is inclined to think

that perhaps some functional analysis is in order, where we can study operators that depend

on a parameter. Also, more information could certainly be gained by delving deeper into

the topology of the problem. Finally, computer algebra systems are also a limiting factor

in the work. More efficient coding can be implemented to do the evaluations of the squared

residual error more efficiently.
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