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ABSTRACT

The broken ray transform (BRT) is an integral of a function along a union of two rays with a com-

mon vertex. Consider an X-ray beam scanning an object of interest. The ray undergoes attenuation

and scatters in all directions inside the object. This phenomena may happen repeatedly until the

photons either exit the object or are completely absorbed. In our work we assume the single scat-

tering approximation when the intensity of the rays scattered more than once is negligibly small.

Among all paths that the scattered rays travel inside the object we pick the one that is a union of

two segments with one common scattering point. The intensity of the ray which traveled this path

and exited the object can be measured by a collimated detector. The collimated detector is able

to measure the intensity of X-rays from the selected direction. The logarithm of such a measure-

ment is the broken ray transform of the attenuation coefficient plus the logarithm of the scattering

coefficient at the scattering point (vertex) and a known function of the scattering angle.

In this work we consider the reconstruction of X-ray attenuation coefficient distribution in a plane

from the measurements on two or three collimated detector arrays. We derive an exact local recon-

struction formula for three flat collimated detectors or three curved or pin-hole collimated detec-

tors. We obtain a range condition for the case of three curved or pin-hole detectors and provide a

special case of the range condition for three flat detectors.

We generalize the reconstruction formula to four and more detectors and find an optimal set of pa-

rameters that minimize noise in the reconstruction. We introduce a more accurate scattering model

which takes into account energy shifts due to the Compton effect, derive an exact reconstruction

formula and develop an iterative reconstruction method for the energy-dependent case. To solve

the problem we assume that the radiation source is monoenergetic and the dependence of the at-

tenuation coefficient on energy is linear on an energy interval from the minimal to the maximal
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scattered energy. We find the parameters of the linear dependence of the attenuation on energy as

a function of a point in the reconstruction plane.
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CHAPTER 1: LITERATURE REVIEW

The books [Bus02], [Pod10] are comprehensive references on the physics of medical imaging that

describe in details the Compton scattering and absorption phenomena used in our work.

Reconstruction of a function f knowing its integrals along all lines (i.e., the Radon transform

of f ) is a classical and well-investigated subject (see e.g. [Nat01]). The line integrals can be

found by transmitting narrow x-ray beams through an object and measuring the intensity of the

outgoing radiation. The main physical assumption that allows the recovery of line integrals from

such data is that scattering is neglected. Taking scattering into consideration by assuming the

single-scattering approximation is a promising idea, which has recently attracted renewed interest

(see e.g. [FSM09, MNTZ10, FMS11, TN11, Amb12] and references therein). Applications of this

idea to imaging range from optics [FSM09] to Compton scattering [BZG97, MNTZ10, TN11].

The corresponding mathematical model is the Broken-Ray transform (BRT) (also known as the

V-line transform). As opposed to the classical line transform, here we assume that we know the

integrals of f along a family of broken rays. Each broken ray is the union of two rays having a

common vertex. The family of broken rays and the corresponding integration weight depend on

the specific physical model.

The following selected publications study the inverse problem of the BRT arising in various con-

texts from optics to medical radiology.

The paper [FSM09] presents algebraic iterative reconstruction of the attenuation coefficient from

the measured scattering data assuming single scattering approximation. The authors show that the

inverse problem of BRT does not result in additional ill posedness comparing to the inversion of

the classical Radon Transform in two dimensions.
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The paper [MNTZ10] studies the application of the BRT to the emission tomography. The V-Line

transform, formulated as a two-dimensional version of the Conical Radon Transform, is defined

similarly to the Broken Ray Transform. The difference is that the integrand in the V-Line trans-

form is inversely proportional to the distance from the emission point. The authors provide two

mathematically equivalent methods of reconstruction. First reconstruction method uses Fourier

transform. Second method derives the adjoint operator and builds the reconstruction formula with

the filtered back-projection structure.

The paper [FMS11] studies the properties of the BRT in the context of single-scattering optical

tomography (SSOT). One inversion formula provided is for the spatially uniform scattering case,

when the scattering coefficient is constant inside the object. Another, more general inversion for-

mula follows for the case of non-uniform scattering.

The most recent work in the area [ZSM14] investigates reconstruction of the Star Transform —

a generalization of the Broken Ray Transform defined as a linear combination of BRTs. The

authors consider various ways of reconstruction of the Star Transform, one of which, in addition

to scattered rays, can automatically take into account the ballistic (non-scattered) rays for better

reconstruction stability. The reconstruction method given by (12) in [ZSM14] is equivalent to our

reconstruction formula (3.11) that was first published in [KK13]. In our work we make some

advances beyond [ZSM14] by handling energy-dependent attenuation and finding the formula that

minimizes noise in the reconstructed images.

Works [GKKW73, CD73, Bra83, HK87, CW11] study the physical aspects and reconstruction

methods of the scattering and attenuation coefficients from scattered rays.

The work [Bra83] studies X-rays back-scattering for reconstruction of the attenuation and scatter-

ing coefficients. Author states how challenging the problem of scattering tomography is:
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Although the system described is not medically useful because of patient dose

constraints and the insensitivity of the method to small density changes, it is believed

that the system described has industrial applications.

A noteworthy method described in the work is the original way to directly reconstruct the scatter-

ing coefficient:

Attenuation of the emerging scatter signal by overlying tissues was found to be a

significant problem, and Garnett et al. and Clarke and Van Dyk individually proposed

a two-source method for determining electron density which would be independent

of such attenuation ([GKKW73],[CD73]). In the two-source method two sources of

different energies are used, where the energy of the second source corresponds to the

Compton-scattered energy of the first source for the scattering angle of interest. Mea-

surements are made of the scattered and transmitted beams for two patient orientstions,

at the initial position and then after a 180◦ rotation, and the electron density in a scat-

tering volume can then be found, independent of overlying tissues.

Paper [HK87] studies classical coherent (Thomson) x-ray scattering imaging for reconstruction of

the scattering coefficient.

The authors use classical filtered back-projection method to reconstruct the attenuation using the

measurements from the ballistic rays. Then using measurements on the offset detectors they re-

construct the scattering coefficient distribution. The authors rely on the measurements with the

direction and energy sensitive detectors. This data acquisition method is an alternative to the col-

limated detector arrays

Paper [CW11] studies iterative reconstruction of attenuation and scattering coefficients in soft
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biological tissues.

Our work [KK13] is the first one providing the local inversion formula of BRT for the case of

three detectors which involves only first derivatives of the measured data. This yields a simple and

stable numerical reconstruction algorithm. The work [ZSM14] provides an equivalent reconstruc-

tion formula for the Star Transform — a generalization of the BRT for the case of three or more

detectors. In our current work we continue to study various approaches to inverting the BRT in

a more accurate model taking into account Compton energy shifts and allowing for the optimiza-

tion with respect to noise stability. To accommodate multiple scattering energies we use linear

approximation of the dependence of the attenuation coefficient on energy.
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CHAPTER 2: THE CASE OF THREE DETECTORS

2.1 Introduction.

Similarly to [FSM09, FMS11], we consider an experiment in which a narrow x-ray beam is in-

cident on an object. The support of the object is the closure of an open convex set U with a

piecewise-smooth boundary. The latter is denoted ∂U . The outgoing radiation is detected by two

or more collimated detectors Di (see Fig. 2.1). Thus, for each x ∈ U and each Di there is a unique

direction βi(x) such that the x-rays propagating along the ray

Ri(x) := {y ∈ R2 : y = x+ tβi(x), t ≥ 0} (2.1)

are detected by the appropriate bin on Di. Let µs and µa be the scattering and absorption coeffi-

cients of the object, respectively. Denote µtot = µs + µa. Let α be the unit vector defining the

direction of the incident beam. Under the single scattering approximation the data collected by the

ith detector are proportional to the expression

KN(α, βi)µs(x) exp

{
−
∫ ∞
0

µtot(x− tα)dt−
∫
Ri(x)

µtotdt

}
. (2.2)

Here KN(α, βi) is the Klein-Nishina function which gives the probability of scattering along any

given direction. Note that this function is known and independent of the medium.

For simplicity, our model assumes that the energy loss of the photons due to scattering is negligible.

This assumption holds if the incident photons are of relatively low energy. Otherwise, we would

have to consider two µtot: before the scattering event and after. If the detectors are positioned fairly

symmetrically with respect to the incident beam, the scattered photons will have approximately the
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same energy and the requirement that incident photons have low energy can be relaxed. Since the

proposed algorithm uses the differences between detector data, we will reconstruct µtot, which

corresponds to the energy of the scattered photons. Our model neglects also the effect of the

binding energy correction (assuming, in particular, that forward scattered photons are not detected),

see [Pod10], pp. 322-325.

Figure 2.1: Illustration of BRT-based imaging.

Assuming that µs(x) > 0, taking the logarithm of equation (2.2) written for each detector, sub-

tracting the two resulting equations, and accounting for the known factors (e.g., the Klein-Nishina

function) yields the Broken Ray Transform (BRT)

gij(x) =

∫
Ri(x)

µtotdt−
∫
Rj(x)

µtotdt (2.3)

for any pair of detectors Di, Dj . By moving the incident beam, say, from left to right parallel to

α, and by utilizing different pairs of detector bins, we can get gij(x) for all x in the support of the

object (i.e. where µs(x) > 0). To simplify the notation, in what follows we denote f(x) := µtot(x).

Let ∇i denote the directional derivative along βi.
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Similarly to [FSM09, FMS11], we suppose at the beginning that we have two detectors and they

are flat. In this case βi(x), i = 1, 2, are constants. Applying ∇1∇2 we get a first order constant

coefficient partial differential equation for f , which can be solved by the method of characteristics.

See [FMS11], where an alternative inversion formula was first derived. In this work we study

several new problems related to the BRT. In particular, we consider more general, curved detectors

that are focused at a fixed point. In other words, for each detector Di there exists a fixed point

x
(i)
0 (the focus of Di) such that all rays detected by Di belong to lines passing through x(i)0 . If

Di is concave relative to U , the vectors βi(x) point away from x
(i)
0 . If Di is convex, the vectors

βi(x) point towards x(i)0 (see Fig. 2.2). Note that such detectors are common in medical imaging.

In conventional CT the detectors are typically concave, and pin-hole cameras in nuclear imaging

correspond to convex detectors. In what follows we allow the detectors to be flat. In this case the

corresponding focus x(i)0 is the point at infinity and βi(x) is the same for all x.

Figure 2.2: Illustration of concave (D1) and convex (D2) detectors.

It is clear that in order to invert the BRT, we would like to have as much data as possible. On the

other hand, from the description of the experiment it is reasonable to assume that we know the BRT

7



only for x where f(x) > 0. In section 2.2 our assumptions are that supp f = U (the closure of U ),

f ∈ C2
0(U), and we know g12(x) for all x ∈ U . We obtain a first order partial differential equation

for f with non-constant coefficients. Similarly to the flat case, the equation can be solved by the

method of characteristics. Using that f = 0 on the boundary of U allows us to integrate along the

characteristics and recover f . From the practical standpoint, the disadvantages of this inversion

algorithm are that it requires computation a second order derivative of the data and integration

along characteristics.

In section 2.3 we relax the assumption on f and assume that f ∈ C2(U). Thus f need not go to zero

at the boundary of U . Only in this section the two detectors are flat. In addition to the BRT (2.3),

in this section we also consider another version of the BRT that was studied in [FSM09, FMS11].

In this version there is a plus between the integrals in (2.3) instead of a minus. Using the approach

based on characteristics, we obtain inversion algorithms for both BRTs that work for any convex

U . In the case of the BRT with a minus we show that there may be a subset of U where f could

not be determined in principle. The inversion formulas of [FMS11] for both BRTs were derived in

the case when U is a rectangular slab and were based on a Fourier transform approach.

As was mentioned above, inversion of the BRT in the case of two detectors has some practical

disadvantages. In section 2.4 we assume f ∈ C1(U) and consider the case of three detectors. It

turns out that having an extra detector allows us to come up with an inversion formula that involves

only the first order derivatives of the data. Moreover, the formula is purely local, i.e. it does not

involve any integration and solves the so-called interior problem. Regardless of whether there are

two detectors or three, neither the object nor the source and detectors require a rotation in order to

obtain a complete data set.

In section 2.5 we obtain a range condition and formulate a range theorem for the BRT in the case of

three detectors. For the purposes of the theorem, we assume that the data are given for all x ∈ R2,
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even though f ∈ C∞0 (U). If the data are not given for all x, our results provide a necessary

condition on the range.

Finally, some numerical experiments are presented in section 2.6.

2.2 The two-detector case

In this section we derive a first order linear partial differential equation from which f may be

found. As follows from (2.3), our data are

gij(x) =

∫ ∞
0

f(x+ tβi(x))dt−
∫ ∞
0

f(x+ tβj(x))dt, i, j = 1, 2, i 6= j, x ∈ U, (2.4)

and we assume f ∈ C2
0(U). Clearly,

∇i = cij∇j + c⊥ij∇⊥j , (2.5)

where

cij := βi · βj, c⊥ij := βi · β⊥j . (2.6)

Here ∇⊥j := ∇β⊥
j

, and β⊥j is the unit vector obtained from βj by rotating it 90◦ counterclockwise.

For simplicity, here and in what follows the dependence of cij, c⊥ij, βi, β
⊥
i on x is omitted from

notation. In the case when ∇i is applied to a vector field, it is realized as the usual directional

derivative on scalar functions applied to each component of the given vector. From the description

of the experiment it is clear that we can assume

∇iβi(x) = 0 (2.7)
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for all i. Since |βi(x)| ≡ 1, we define li(x) from the equation

∇⊥i βi(x) = −li(x)β⊥i (x). (2.8)

If the detector Di is flat, we take li(x) ≡ 0. If the detector is concave relative to U , then lj(x) =

−|x − x(j)0 |−1 (see Fig. 2.2, detector D1). If the detector is convex, then lj(x) = |x − x(j)0 |−1 (see

Fig. 2.2, detector D2). By direct calculation we obtain the following useful identity:

∇j∇⊥j −∇⊥j ∇j = lj(x)∇⊥j . (2.9)

Using (2.4) – (2.7) we obtain:

∇igij(x) =− f(x) + cijf(x)− c⊥ij∇⊥j
∫ ∞
0

f(x+ tβj)dt

=(−1 + cij)f(x)− c⊥ijJj(x),

(2.10)

where we have defined

Jj(x) := ∇⊥j
∫ ∞
0

f(x+ tβj)dt. (2.11)

Using (2.5), (2.7) and (2.8) gives

∇jcij =[∇jβi] · βj = [(cji∇i + c⊥ji∇⊥i )βi] · βj

=− c⊥jili(x)c⊥ji = −li(x)(c⊥ji)
2,

(2.12)

∇jc
⊥
ij = [∇jβi] · β⊥j = −c⊥jili(x)β⊥i · β⊥j = −li(x)c⊥jicij. (2.13)
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Applying∇j to (2.10) gives

∇j∇igij(x) =− li(x)(c⊥ji)
2f(x) + (−1 + cij)∇jf(x)

+ li(x)c⊥jicijJj(x)− c⊥ij∇jJj(x).

(2.14)

Consider the last term in (2.14). Using (2.9) and (2.11) we find

∇jJj(x) = (∇⊥j ∇j + lj(x)∇⊥j )

∫ ∞
0

f(x+ tβj)dt = −∇⊥j f(x) + lj(x)Jj(x). (2.15)

Using (2.15), solving (2.10) for Jj , and substituting into (2.14) gives

∇j∇igij(x) =− li(x)(c⊥ji)
2f(x) + (−1 + cij)∇jf(x) + c⊥ij∇⊥j f(x)

+ (li(x)c⊥jicij − c⊥ijlj(x))
(−1 + cij)f(x)−∇igij(x)

c⊥ij
.

(2.16)

After some simplifications we get a first-order partial differential equation:

(lj(x)− li(x))(1− cij)f(x) + (∇i −∇j)f(x)

=∇j∇igij(x)− (li(x)cij + lj(x))∇igij(x).

(2.17)

As in the case of flat detectors, equation (2.17) can be solved for f by the method of characteristics.

Note that the characteristics are ellipses with foci x(1)0 and x(2)0 if none of the detectors is flat. The

easiest way to see this is by using the well-known reflection property of ellipses. Indeed, let Γ be

an ellipse with foci x(1)0 and x(2)0 . Pick any x ∈ Γ. From the reflection property, β1(x) − β2(x) is

tangent to Γ at x, so∇1−∇2 differentiates along the direction tangent to Γ. Since x ∈ Γ is arbitrary,

the desired assertion follows. If one of the detectors, say D1, is flat, then the characteristics are

parabolas with the focus x(2)0 and axis R1(x
(2)
0 ). This fact can be established from the reflection

property of parabolas. If both D1 and D2 are flat, the characteristics are parallel lines. As initial

conditions, we can use that f ≡ 0 on ∂U .

11



2.3 The case when f is discontinuous across the boundary of U

Suppose that f ∈ C2(U). In this section only we also assume that both detectors are flat. Setting

i = 1, j = 2 and l1 = l2 = 0 in (2.17) we get

(∇1 −∇2)f(x) = ∇2∇1g12(x). (2.18)

In order to find f by integrating along the characteristics of (2.18) we need to know f on a non-

characteristic curve inside U . Equation (2.18) does not provide this information, because the equa-

tion was derived by differentiating the data two times and some information got lost. In this section

we show how to find f on a line segment inside U . This is done using both the first and second

derivatives of the data.

Choose the x1-axis along the characteristic direction and suppose

β1 = (cos γ, sin γ), β2 = (− cos γ, sin γ). (2.19)

Note that cos γ 6= 0, since we assume that β1 and β2 are not parallel. Then

2 cos γ
∂

∂x1
= ∇1 −∇2. (2.20)
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Figure 2.3: Illustration of the inversion algorithm in the case f ∈ C1(U).

Denote

xinf
2 := inf

x∈U
x2, x

sup
2 := sup

x∈U
x2, (2.21)

and letA,B ∈ U be two points with x2-coordinates equal to xinf
2 and xsup

2 , respectively (see Fig. 2.3,

left panel). Note that these points need not be unique. Integrating (2.18) and using (2.20) we find

f(x) = f(x1(x2), x2) +
1

2 cos γ

∫ x1

x1(x2)

∇2∇1g12(s, x2)ds, (2.22)

where x1 = x1(x2) is the equation of the line segment AB. Clearly, if we know f on the segment

AB, then we can find f everywhere inside U using (2.22). Denote

φ(x2) := f(x1(x2), x2), (2.23)

Then (2.4) can be rewritten as follows:

g12(x) =

∫ T1(x)

0

φ(x2 + t sin γ)dt−
∫ T2(x)

0

φ(x2 + t sin γ)dt+G(x), (2.24)

where Tj(x), j = 1, 2, is the value of t such that the rayRj(x) intersects ∂U , andG(x) is a function
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computable from the data (i.e. from g12) by way of (2.22). Changing variables, transform (2.24)

as follows:

g12(x) =
1

sin γ

(∫ Q1(x)

x2

φ(s)ds−
∫ Q2(x)

x2

φ(s)ds

)
+G(x)

=
1

sin γ

∫ Q1(x)

Q2(x)

φ(s)ds+G(x).

(2.25)

Here Qj(x) is the x2-coordinate of the point of intersection of the ray Rj(x) and ∂U . See Fig. 2.3,

where the construction of Q1(x) is illustrated. Clearly,

∇jQj(x) = 0, j = 1, 2, (2.26)

so (2.25) implies

∇1(g12(x)−G(x)) = −∇1Q2(x)

sin γ
φ(Q2(x)),

∇2(g12(x)−G(x)) =
∇2Q1(x)

sin γ
φ(Q1(x)).

(2.27)

By construction,

c12 = − cos(2γ), c⊥12 = sin(2γ). (2.28)

Using (2.5), (2.26) and (2.28) gives

∇1Q2(x) = c⊥12∇⊥2 Q2(x) = sin(2γ)∇⊥2 Q2(x),

∇2Q1(x) = −c⊥12∇⊥1 Q1(x) = − sin(2γ)∇⊥1 Q1(x).

(2.29)

Hence (2.29) becomes

φ(Qj(x)) =
∇i(g12(x)−G(x))

−2 cos γ[∇⊥j Qj(x)]
, i = 1, j = 2 or i = 2, j = 1. (2.30)
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We assumed that U is convex, hence ∇⊥j Qj(x) 6= 0 for all x ∈ U such that Qj(x) < xsup
2 .

Equations (2.25) and (2.30) show that φ(x2) can be recovered only inside the interval

x2 ∈ ( inf
x∈U

min{Q1(x), Q2(x)}, sup
x∈U

max{Q1(x), Q2(x)}). (2.31)

If 0 < γ < π/2, then x2 < min{Q1(x), Q2(x)}, so

xinf
2 ≤ inf

x∈U
min{Q1(x), Q2(x)}, xsup

2 = sup
x∈U

max{Q1(x), Q2(x)}. (2.32)

In other words, there may be a ‘shadow’ zone near the bottom of U where φ(x2) cannot be deter-

mined (see Fig. 2.3, right panel). Similarly, if −π/2 < γ < 0, then x2 > max{Q1(x), Q2(x)} and

xinf
2 = inf

x∈U
min{Q1(x), Q2(x)}, xsup

2 ≥ sup
x∈U

max{Q1(x), Q2(x)}, (2.33)

i.e. the shadow zone may now be near the top of U . If γ = 0, i.e. the two detectors are opposite

each other, then (2.18) implies that all of f inside U can be determined by an obvious formula:

f(x) = −1

2
∇1g12(x), x ∈ U. (2.34)

Using the same approach, we can obtain an inversion algorithm for another BRT considered in

[FSM09, FMS11]:

g̃12(x) :=

∫ ∞
0

f(x+ tβ1(x))dt+

∫ ∞
0

f(x+ tβ2(x))dt, x ∈ U. (2.35)

In [FSM09, FMS11] the set U is an infinite strip. Here, as in the rest of the work, we assume that
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U is an open convex set with a piecewise smooth boundary. Similarly to (2.18),

(∇1 +∇2)f(x) = ∇2∇1g̃12(x). (2.36)

We introduce the coordinate system such that (2.19) holds and the characteristics of (2.36) are

parallel to the x2-axis. Thus,

2 sin γ
∂

∂x2
= ∇1 +∇2. (2.37)

Denote

xinf
1 := inf

x∈U
x1, x

sup
1 := sup

x∈U
x1, (2.38)

and let A,B ∈ U be two points with x1-coordinates equal to xinf
1 and xsup

1 , respectively. Let

x2 = x2(x1) be the equation of the line segment AB. As before, appealing to the method of

characteristics, finding f in U reduces to finding f on AB. Denote also

φ(x1) := f(x1, x2(x1)). (2.39)

Similarly to (2.22),

f(x1, x2) = φ(x1) +
1

2 sin γ

∫ x2

x2(x1)

∇2∇1g̃12(x1, s)ds. (2.40)

Hence

g̃12(x) =

∫ T1(x)

0

φ(x1 + t cos γ)dt+

∫ T2(x)

0

φ(x1 − t cos γ)dt+ G̃(x)

=
1

cos γ

(∫ S1(x)

x1

φ(s)ds+

∫ x1

S2(x)

φ(s)ds

)
+ G̃(x)

=
1

cos γ

∫ S1(x)

S2(x)

φ(s)ds+ G̃(x),

(2.41)
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where G̃(x) is a function computable from the data, Tj’s are the same as before, Sj(x) is the

x1-coordinate of the point of intersection of the ray Rj(x) and ∂U , and we have used (2.19).

Differentiation gives

∇1(g̃12(x)− G̃1(x)) = −∇1S2(x)

cos γ
φ(S2(x)),

∇2(g̃12(x)− G̃2(x)) =
∇2S1(x)

cos γ
φ(S1(x)),

(2.42)

and it is easy to see that the coefficients in (2.42) are finite and not equal zero. Moreover, since U is

convex, for any x1 ∈ (xinf
1 , x

sup
1 ) there is a point x ∈ U such that either x1 = S1(x) or x1 = S2(x).

This proves that f(x) can be computed for all x ∈ U . Since the proof is constructive, this also

gives an algorithm for computing f .

Strictly speaking, since ∂U is piecewise smooth, the derivatives on the right in (2.30) may not exist

for those x and j such that the ray Rj(x) passes through a point where ∂U is not smooth. On the

other hand, φ(Qj(x)) is continuous. Hence at these exceptional points the right-hand side of (2.30)

can be understood as a one-sided limit. The same argument applies to (2.42).

2.4 Three detectors

Suppose now we have three detectors Dj, j = 1, 2, 3. In this section we assume that f ∈ C1(U).

Applying (2.10) twice we get

∇1g12(x) =(−1 + c12)f(x)− c⊥12J2(x),

∇3g32(x) =(−1 + c32)f(x)− c⊥32J2(x).

(2.43)
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Solving (2.43) for f after some transformations leads to an inversion formula:

f(x) = −c
⊥
32∇1g12(x) + c⊥21∇3g32(x)

c⊥32 + c⊥21 + c⊥13
. (2.44)

Similarly to section 2.3, at the points where R2(x) contains a point where ∂U is not smooth, the

corresponding derivative∇jgj2, j = 1 or 2, is understood as a one-sided limit. Using the following

identity, which can be checked by direct verification,

c⊥32∇1 + c⊥21∇3 + c⊥13∇2 ≡ 0, (2.45)

we can write (2.44) in a more symmetric form

f(x) = −c
⊥
32∇1g1(x) + c⊥21∇3g3(x) + c⊥13∇2g2(x)

c⊥32 + c⊥21 + c⊥13
. (2.46)

2.5 A range condition

In this section we assume that f ∈ C∞0 (U) and the data are given for all x ∈ R2. Our goal is

to describe the range of the BRT. We start with deriving a necessary condition. Then we state a

theorem, which provides the desired range characterization.

It is convenient to denote

Σ := c⊥32 + c⊥21 + c⊥13. (2.47)
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Similarly to (2.12) we get the following useful relations:

∇iβi = 0, ∇⊥i βi = −liβ⊥i ,

∇iβj = −c⊥ijljβ⊥j , ∇⊥i βj = −cijljβ⊥j ,

∇iβ
⊥
i = 0, ∇⊥i β⊥i = liβi, (2.48)

∇iβ
⊥
j = c⊥ijljβj, ∇⊥i β⊥j = cijljβj, i, j = 1, 2, 3, i 6= j.

Some of these relations have already been used before, but they are collected here for convenience.

Solving (2.43) for J2 we get

J2(x) =
(1− c32)∇1g12(x)− (1− c12)∇3g32(x)

Σ
. (2.49)

Applying∇2 on both sides of (2.49) and using (2.15) with j = 2 we find

−∇⊥2 f(x) + l2(x)J2(x) = ∇2
(1− c32)∇1g12(x)− (1− c12)∇3g32(x)

Σ
. (2.50)

Using (2.44) and (2.49) in (2.50) leads to a range condition

∇⊥2
c⊥32∇1g12(x) + c⊥21∇3g32(x)

Σ
+ l2(x)

(1− c32)∇1g12(x)− (1− c12)∇3g32(x)

Σ

= ∇2
(1− c32)∇1g12(x)− (1− c12)∇3g32(x)

Σ
.

(2.51)

Denoting φ1 := ∇1g12 and φ3 := ∇3g32, rewrite (2.51) as follows:

{
∇⊥2

c⊥32φ1(x)

Σ
+ l2(x)

(1− c32)φ1(x)

Σ
−∇2

(1− c32)φ1(x)

Σ

}
+

{
∇⊥2

c⊥21φ3(x)

Σ
− l2(x)

(1− c12)φ3(x)

Σ
+∇2

(1− c12)φ3(x)

Σ

}
= 0.

(2.52)
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After some manipulations, we can rewrite (2.52) in the form

(∇3 −∇2)φ1 + (∇2 −∇1)φ3

Σ
+
A1φ1 + A3φ3

Σ2
= 0, (2.53)

where

A1 = Σ2

[
∇⊥2

(
c⊥32
Σ

)
+ l2(x)

1− c32
Σ

−∇2

(
1− c32

Σ

)]
,

A3 = Σ2

[
∇⊥2

(
c⊥21
Σ

)
− l2(x)

1− c12
Σ

+∇2

(
1− c12

Σ

)]
.

(2.54)

Using (2.48), we obtain after lengthy calculations:

A1 = (c12 − c13)(c⊥13 + c⊥21)l1 + (1− c23)(c⊥21 + c⊥32)l2 + (c23 − 1)(c⊥13 + c⊥32)l3,

A3 = (1− c12)(c⊥13 + c⊥21)l1 + (c12 − 1)(c⊥21 + c⊥32)l2 + (c13 − c23)(c⊥13 + c⊥32)l3.

(2.55)

In addition, with the help of (2.9) we find that

∇i∇j −∇j∇i = −c⊥ij(li∇⊥i + lj∇⊥j ). (2.56)

Using (2.55), (2.56), and the identity

−(∇3 −∇2)∇1 − (∇2 −∇1)∇3

= (∇1 −∇3)∇2 + [(∇1∇3 −∇3∇1) + (∇2∇1 −∇1∇2) + (∇3∇2 −∇2∇3)],

(2.57)

we can rewrite (2.53) in a more symmetric way (see appendix for additional details):

(∇3 −∇2)∇1g1 + (∇1 −∇3)∇2g2 + (∇2 −∇1)∇3g3

+
A1∇1g1 + A2∇2g2 + A3∇2g2

Σ
= 0,

(2.58)
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where

A2 = (c13 − 1)(c⊥13 + c⊥21)l1 + (c23 − c12)(c⊥21 + c⊥32)l2 + (1− c13)(c⊥13 + c⊥32)l3, (2.59)

and gj, j = 1, 2, 3, are any three C1 functions such that gij = gi − gj for all pairs i, j. Let us note

that if all the detectors are flat, i.e. li = 0 for all i, then the range condition simplifies as follows:

(∇3 −∇2)∇1g1 + (∇1 −∇3)∇2g2 + (∇2 −∇1)∇3g3 = 0. (2.60)

Using condition (2.58) we can formulate the following range theorem.

Theorem 2.5.1. Given three functions gi ∈ C∞(R2), i = 1, 2, 3, define gij = gi − gj , i 6= j.

Let U ⊂ R2 be an open convex set, and all the foci x(i)0 be outside the closure of U . There exists

f ∈ C∞0 (U) such that

gij(x) =

∫
Ri(x)

fdt−
∫
Rj(x)

fdt, 1 ≤ i, j ≤ 3, i 6= j, (2.61)

if and only if

1. for all 1 ≤ i, j ≤ 3, i 6= j, and x 6∈ U we have:

(a) gij(x) = 0 if Ri(x) and Rj(x) do not intersect U ;

(b) ∇igij(x) = 0 if Ri(x) intersects U , but Rj(x) does not intersect U ;

(c) c⊥ik∇jgjk(x) + c⊥kj∇igik(x) = 0, where k 6= i, j, if both Ri(x) and Rj(x) intersect U ;

2. condition (2.58) is satisfied.

Remark 1. Note that the theorem does not establish the equalities gi(x) =
∫
Ri(x)

fdt. Instead the

range characterization is formulated in terms of the differences gij .
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Remark 2. In the theorem we assume that the functions gi (and the differences gij) are known for

all x ∈ R2. If they are known only for x ∈ supp f (i.e. where µs(x) > 0, cf. the Introduction), then

(2.58) becomes a necessary range condition. This condition is local, so it can be verified for all x

where the data are known.

Proof. Define f(x) using (2.44) and g12, g32 (or, using (2.46) and all the gi). Clearly, f ∈ C∞.

Conditions 1.a–1.c guarantee that f vanishes outside U . By construction, (2.58) is equivalent to

(2.51). Equation (2.51) implies that the function J2(x) defined by the right-hand side of (2.49)

satisfies (2.15), where f is given by (2.44). Pick any x and consider the point y = x + tβ2(x).

Using conditions 1.a or 1.b, we see that the right-hand side of (2.49) is zero at a point y when t > 0

is large enough. Since f = 0 outside of U , integrating (2.15) along R2(x) from t =∞ to t = 0 we

see that (2.11) holds for all x and j = 2, where f is given by (2.44). This implies that equations

(2.43) hold for all x. Recall that equations (2.43) can be written in the form

∇i

{
gij(x)−

[∫
Ri(x)

fdt−
∫
Rj(x)

fdt

]}
, (2.62)

where i = 1, 3 and j = 2. By symmetry, equations (2.62) hold for all 1 ≤ i, j ≤ 3, i 6= j. Hence

all the differences

gij(x)−

[∫
Ri(x)

fdt−
∫
Rj(x)

fdt

]
, 1 ≤ i, j ≤ 3, i 6= j, (2.63)

are constants. Since U is convex and the foci x(j)0 are outside of U , for each pair i, j we can choose

a point x such that both Ri(x) and Rj(x) do not intersect U . From 1.a, gij = 0 for such x. Clearly,∫
Ri(x)

fdt =
∫
Rj(x)

fdt = 0 for such x as well. Hence all the differences in (2.63) are identically

zero, and the theorem is proven.

22



2.6 Numerical experiments

The main purpose of this section is to provide preliminary numerical testing of the new three-

detector inversion formula. Hence we use neither a challenging phantom nor the most realistic

simulation parameters. Instead, we simulate a simplified set-up that still resembles the experiment

described in section 2.1. Let e1 and e2 be the unit vectors along the x1- and x2-axes, respectively.

We assume that the primary beam is along e2, and the measurement at each detector is the function

gi(x) =

∫
Ri(x)

fdt+

∫ ∞
0

f(x− te2)dt, 1 ≤ i ≤ 3. (2.64)

Clearly, with this choice of gi we still have gij = gi − gj , where gij satisfy (2.61). In view of the

discussion in the Introduction, we assume that the data (2.64) are given only for those x where

f > 0. The native coordinates in our set-up are ui, i = 1, 2, 3, and x1. Here ui is either a linear

coordinate along the detector if Di is flat, or an angular variable – if Di is curved. The variable

x1 describes the x1-coordinate of the primary beam. Let Gi(x1, ui) denote the data function gi

expressed in terms of the native coordinates. Notice that in (2.46) each gi is differentiated only

along βi. As is easily seen,

∇igi(x) = (βi · e1)
∂Gi(x1, ui)

∂x1
, (2.65)

where it is assumed that the coordinates (x1, ui) correspond to the point x on the left side of (2.65).

In the experiments presented below we assume that the data are given in native coordinates

Gi(m∆x1, n∆ui), i = 1, 2, 3. First, the derivatives are computed using (2.65) and finite differ-

ences. Then they are interpolated to a required rectangular grid for use in (2.46). The phantom is

the superposition of disks of different radii and attenuation f (see Fig. 2.4). The largest disk is of

radius 100 and attenuation f = 1.The three top disks inside are of radii 20, 16, 10 and attenuation

0.4, -0.2, 0.6, respectively (from left to right). The bottom disk is of radius 30 and attenuation 0.2.
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In both experiments ∆x1 = 0.5.

Figure 2.4: Illustration of the phantom used in numerical experiments.

Fig. 2.5 shows the reconstruction results with three flat detectors with ∆ui = 0.5 for each of them.

The corresponding directions are given by βi = (cos θi, sin θi), where θ1 = 0◦, θ2 = 45◦, and

θ3 = 135◦. The left panel shows the reconstruction from noise-free data, and the right panel shows

the reconstruction from noisy data. Noise was simulated as a Gaussian random variable with the

standard deviation of 10−3 times the maximum value in the sinogram. For improved noise stability,

images reconstructed by applying inversion formula (2.46) were smoothed. Cross-sections through

the reconstructions are shown in Fig. 2.6. Fig. 2.7 shows the corresponding (noise-free) detector

data.
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Figure 2.5: Reconstruction results when the detectors are flat. Left panel - reconstruction from
noise-free data, right panel - reconstruction from noisy data.
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Figure 2.6: Cross-sections through the results shown in Fig 2.5. Left panel - horizontal cross-
section through the centers of the three smaller balls, right panel - vertical cross-section through
the center. Blue - original profile, red - profile reconstructed from exact data, green - profile
reconstructed from noisy data.
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Figure 2.7: Detector data in the case of three flat detectors with directions determined by θ1 = 0◦,
θ2 = 45◦, and θ3 = 135◦ (from left to right). The horizontal axis corresponds to the position of the
incident beam, and the vertical axis is the variable along the face of detector.

Fig. 2.8 shows the results with three curved detectors. We assumed that the detectors are convex,

and their foci are located at the points r(cos θi, sin θi), where r = 256 and θ1 = 0◦, θ2 = 45◦,

and θ3 = 135◦. Clearly, the actual radius of the detector surface is irrelevant. We assumed that

the surface of each detector covers an arc of 1 radian, which is symmetric about the line segment

connecting the origin and the focus. There were 512 detector elements, so the step-size along the

detector angular variable turned out to be ∆ui = 1.953 ·10−3rad for all i. The left panel of Fig. 2.8

shows the reconstruction from noise-free data, and the right panel shows the reconstruction from

noisy data. Noise was simulated as a Gaussian random variable with the standard deviation of 10−3

times the maximum value in the sinogram. For improved noise stability, images reconstructed by

applying inversion formula (2.46) were smoothed. Cross-sections through the reconstructions are

shown in Fig. 2.9. Fig. 2.10 shows the corresponding (noise-free) detector data.
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Figure 2.8: Reconstruction results when the detectors are convex. Left panel - reconstruction from
noise-free data, right panel - reconstruction from noisy data.
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Figure 2.9: Cross-sections through the results shown in Fig 2.8. Left panel - horizontal cross-
section through the centers of the three smaller balls, right panel - vertical cross-section through
the center. Blue - original profile, red - profile reconstructed from exact data, green - profile
reconstructed from noisy data.
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Figure 2.10: Detector data in the case of three curved detectors located at θ1 = 0◦, θ2 = 45◦, and
θ3 = 135◦ (from left to right). The horizontal axis corresponds to the position of the incident beam,
and the vertical axis is the angular variable along the face of the detector.
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CHAPTER 3: TWO GENERALIZATIONS: ENERGY-DEPENDENT

ATTENUATION AND MORE THAN THREE DETECTORS.

3.1 Introduction.

In this chapter we continue to study various approaches to inverting the BRT. In addition to the sin-

gle scattering approximation, another key assumption on which the BRT is based is that the attenu-

ation coefficient of the medium before and after scattering remains the same (see [KK13, ZSM14]).

As is well known, x-rays loose their energy after Compton scattering. Note that Compton scatter-

ing is the most prevalent type of scattering for a range of energies common in medical imaging

[Pod10]. Moreover, the energy loss depends on the scattering angle [Pod10]. Since the attenua-

tion coefficient µ depends on the energy of x-rays, the values of µ before and after scattering are

different. In [KK13, ZSM14] the benefits of having more than two detectors are discussed. It is

easy to see that when there are three or more detectors one should distinguish not only between µ’s

that are “seen” by x-rays before and after scattering, but also between µ’s that are “seen” by x-rays

traveling towards different detectors.

The main thrust of this work is inversion of the BRT with N ≥ 3 detectors under the assumption

that the attenuation coefficient is a linear function of energy in the range of relevant energies. When

the number of detectors is greater than four, we derive a family of inversion formulas. We also find

the optimal formula, which provides the best stability with respect to noise in the data. If N = 4,

the family collapses into a single formula and no optimization is possible. If the dependence of

µ on energy is neglected, our family is analogous to the one obtained in [ZSM14]. In this case

the minimum number of detectors sufficient for inversion is three. When µ is independent of

energy and N = 3, we recover the formula that was first found in [KK13]. Besides inversion
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formulas, we develop iterative reconstruction algorithms that are based on minimizing a functional

which consists of a data fidelity term and a regularizer. Our motivation is that the presence of a

regularizer will improve further the noise stability of BRT inversion.

The work is organized as follows. In Section 3.2 we introduce the BRT with energy-dependent

attenuation and derive a family of inversion formulas. In Section 3.2.2 we discuss how to find the

formula, which is the most stable with respect to noise in the data. In Section 3.2.3 we consider a

particular case when µ does not depend on energy. Even though in this case the resulting inversion

formulas are similar to those obtained in [ZSM14], optimization with respect to noise is new.

Iterative reconstruction algorithms are described in Section 3.3. We start with reconstruction from

a complete data set and consider energy independent and energy dependent µ’s in Section 3.3.1.

In Section 3.3.2 we consider reconstruction of the region of interest (ROI) from local data when

µ is energy independent. Results of testing of the inversion formulas and iterative algorithms are

reported in Section 2.6. Note that the numerical experiments presented in this work are by no

means exhaustive, and are designed only as a proof-of-principle study. More detailed experiments

should be performed in the future. Finally, some generalizations and directions for future research

are discussed in Section 4.

3.2 Energy-dependent reconstruction of BRT

3.2.1 Inversion Formula

Consider an x-ray source moving along the positive direction of the x-axis. The position of the

source is denoted by A. We assume that the source emits an infinitely thin x-ray beam in the

positive direction of the y-axis. At every point of its path inside the object the beam is scattered in

all directions. Suppose that there are N detectors Dj , j = 1, . . . , N , which are flat and collimated.
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This means that each Dj detects radiation propagating along a fixed direction βj . Pick any source

positionA and any pointDj ∈ Dj . By construction, the pair (A,Dj) determines a unique scattering

point B such that the radiation propagating along the broken ray ABDj is detected at the location

Dj (see Figure 3.1).

A

B

D2

θ2

D1

D2

D3

θ3

θ1

y

x

β1

β2β3

D3

D1

h

Δu

Figure 3.1: Illustration of parallel beam geometry.

The energy of the scattered photons depends on the scattering angle θ and the energy Esrc of the

incident x-ray beam according to the Compton formula (formula [3-3] in [Bus02])

E(θ) =
Esrc

1 +
Esrc

mec2
(1− cos(θ))

, (3.1)

where me is the electron rest mass and c is the speed of light. Let θj denote the angle between the

positive direction of the y-axis and ~βj (see Figure 3.1). Let the minimal and maximal energy of
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scattered photons observed by the detectors be Emin and Emax, respectively:

Emin = min
j=1,...,N

E(θj), Emax = max
j=1,...,N

E(θj). (3.2)

To take Compton energy shifts into account in the reconstruction algorithm we assume that the

dependence of the attenuation coefficient µ(B,E) on energy E is linear at every point B inside

the object (or, inside the region of interest (ROI)) for all E ∈ [Emin, Emax]. Choose some E0 ∈

(Emin, Emax) and consider the linear approximation:

µ(B,E) ≈ µ(B) + (E − E0) · ν(B), E ∈ (Emin, Emax), (3.3)

where µ(B) is the attenuation coefficient at the energy E0.

Let Jin(A) be the intensity of the incoming beam and ∆Ej := E(θj) − E0. The intensity of

radiation measured at a point D ∈ Dj equals

Jout(D) =Jin(A) ·K(θj) · µs(B,Esrc)

× exp

(
−
∫
AB

µ(x,Esrc)dx−
∫
BD

[µ(x) + ∆Ejν(x)]dx

)
, (3.4)

where µs(B,Esrc) is the scattering coefficient at the point B for the energy Esrc, and K(θ) is the

normalized Klein-Nishina function (see e.g. (7.95) in [Pod10] or [FSM09, FMS11, KK13]). We

assume that µs(B,Esrc) is positive at every point inside the object (or, inside the ROI). Denoting

I0 =

∫
AB

µ(x,Esrc)dx, Gj(B) = − ln(Jout(Dj)/[Jin(A)K(θj)]), (3.5)
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we get from (3.4)

Gj(B) =

∫
BDj

µ(x)dx+ ∆Ej

∫
BDj

ν(x)dx+ I0(B)− lnµs(B). (3.6)

Since Jout(Dj) is measured, Jin(A), K(θj) are known, and B is uniquely determined from A and

Dj , we can view the function Gj(B) as our data.

Let ∇j denote the derivative in the direction ~βj . Applying ∇j to (3.6) and using that θj does not

change along the direction βj , we get

∇jGj = −µ(B)−∆Ejν(B) + ∇j(I0(z)− lnµs(z))|z=B . (3.7)

Take a linear combination of (3.7) for all j = 1, . . . , N

∑
ξj∇jGj = −µ(B)

∑
ξj − ν(B)

∑
ξj∆Ej +

∑
ξj ∇j(I0(z)− lnµs(z))|z=B , (3.8)

where ξj are some coefficients. The last term on the right in (3.8) is unknown. To get rid of it we

can find ξj such that
∑
ξj∇j = 0. Let βj1 and βj2 be the projections of βj onto the x- and y-axes,

respectively. Clearly,∇j = βj1∂x + βj2∂y, so the constraints on {ξj} become:

∑
ξjβj1 = 0,

∑
ξjβj2 = 0. (3.9)

Next we can solve (3.8) for µ and ν. Set

∑
ξj∆Ej = 0,

∑
ξj = 1, (3.10)

and let the solution of (3.9) and (3.10) be denoted ξ1 = C1, . . . , ξN = CN . The inversion formula
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for µ is

µ(B) = −
∑

Cj∇jGj. (3.11)

Alternatively, we set ∑
ξj∆Ej = 1,

∑
ξj = 0. (3.12)

Let the solution of (3.9) and (3.12) be denoted ξ1 = B1, . . . , ξN = BN . The inversion formula for

ν is given by

ν(B) = −
∑

Bj∇jGj. (3.13)

In principle, the system of equations (3.9) together with either (3.10) or (3.12) may have no solution

in certain cases. In our experience, this never happened for reasonable detector positions and

typical energies in the 50 KeV–1.5 MeV range.

3.2.2 Noise Minimization

When there are more than four detectors, the systems that determine Cj and Bj are underdeter-

mined. In this case we can use the available degrees of freedom to optimize with respect to noise

stability. Consider reconstructing the attenuation function at an energy E = E0 + ∆E at some

point B inside the object. In all formulas in this section we assume that the point B is fixed, so it

is omitted from notation. Using (3.3) and equations (3.11), (3.13) we have

µ(E) = µ(E0) + ν∆E = −
∑

Cj∇jGj −∆E
∑

Bj∇jGj

= −
∑

(Cj + ∆EBj)∇jGj. (3.14)

Let the k-th source position be Ak = A0 + kh, where h is the source step size (see Figure 3.1).
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Let the l-th detection point on Dj be Djl = Dj0 + l∆u, where ∆u is the size of the detector

pixel. For simplicity we assume that all detectors have the same resolution ∆u. Let Gj(k, l) be

the measurement of Gj at the l-th detector pixel for the k-th source position. Consider a two-point

finite difference approximation of the directional derivative∇j:

∇jGj(k +
1

2
, l) ≈ Gj(k + 1, l)−Gj(k, l)

h
sin(θj). (3.15)

The actual data Gj(k, l) can be written in the form:

Gj(k, l) = G
(0)
j (k, l) + εjkl, (3.16)

where G(0)
j (k, l) is the exact value of the BRT, and εjkl represents noise. We assume that εjkl

are independent, normally distributed, with zero mean and standard deviation σ̂jkl. The random

variable defined by the right-hand side of (3.15) has variance

σ2
jkl =

σ̂2
j,k+1,l + σ̂2

j,k,l

h2
sin2(θj) (3.17)

Since the reconstruction point B is fixed, the values of k and l in (3.17) are fixed as well. Note

also that the values of k and l in (3.17) do not depend on the value of j. Hence, for simplicity, in

this section we drop the subscripts k and l from notation. Assuming that the standard deviation

σj of noise in ∇jGj is known and using the linearity of (3.14), the variance of the error in the

reconstruction of µ(E) is given by

σ2(E) = (µrec(E)− µexact(E))2 =
∑

(Cj + ∆EBj)
2σ2

j . (3.18)

Here µrec(E) and µexact(E) are the reconstructed and exact values of the attenuation coefficient at
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the energy E, respectively, and the overbar denotes taking expectation.

In order to minimize the error in the reconstruction of µ over the entire range [Emin, Emax] and

using the linearity of expectation, we minimize the functional

σ2 = σ2(Emax) + σ2(Emin)

=
∑{

(Cj + ∆E1Bj)
2 + (Cj + ∆E2Bj)

2
}
σ2
j

=
∑{

2C2
j + 2CjBj(∆E1 + ∆E2) +B2

j (∆E
2
1 + ∆E2

2)
}
σ2
j , (3.19)

where ∆E1 = Emax − E0 and ∆E2 = Emin − E0.

The systems (3.9), (3.10) and (3.9), (3.12) can be written in vector form as

~C ·~b1 = 0 ~B ·~b1 = 0 (3.20)

~C ·~b2 = 0 ~B ·~b2 = 0 (3.21)

~C ·~1 = 1 ~B ·~1 = 0 (3.22)

~C · ~E = E0
~B · ~E = 1, (3.23)

where (~b1)j = βj1, (~b2)j = βj2, ~1 = (1, . . . , 1)T and ~E = (E(θ1), . . . , E(θN)). The two systems

(3.20)–(3.23) can be written jointly as a single vector equation

Q~p = ~r, (3.24)
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where

Q =



b1,1 . . . b1,N 0 . . . 0

b2,1 . . . b2,N 0 . . . 0

1 . . . 1 0 . . . 0

E1 . . . EN 0 . . . 0

0 . . . 0 b11 . . . b1,N

0 . . . 0 b21 . . . b2,N

0 . . . 0 1 . . . 1

0 . . . 0 E1 . . . EN



, ~p =



C1

...

CN

B1

...

BN


, ~r =



0

0

1

E0

0

0

0

1



. (3.25)

In terms of this notation (3.19) becomes

σ2 = 〈A~p, ~p〉 → min. (3.26)

Here A is a symmetric matrix given by

A =

A1 A2

A2 A3

 , (3.27)

where A1 = diag(2σ2
j ), A2 = diag([∆E1 + ∆E2]σ

2
j ), A3 = diag([∆E2

1 + ∆E2
2 ]σ2

j ) for j =

1, . . . , N .

Let R by any square matrix such that A = RTR. Since ∆E1 6= ∆E2 and all σj > 0, (3.19)

immediately implies that A is non-singular. Thus R is non-singular as well. Denoting ~t := R~p, we

rewrite (3.26) and (3.24) as follows:

σ2 = ‖~t‖2 → min, (QR−1)~t = ~r. (3.28)
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The solution to (3.28) is given by the pseudoinverse

~topt = Q̃T (Q̃Q̃T )−1~r, Q̃ := QR−1. (3.29)

Simplifying we find after elementary transformations:

~popt = R−1~topt = Q+~r, (3.30)

where we denoted Q+ = A−1QT (QA−1QT )−1. Also, we obtain

σ2
opt = 〈A~popt, ~popt〉 =

〈
AQ+~r, Q+~r

〉
=
〈
(QA−1QT )−1~r, ~r

〉
. (3.31)

3.2.3 The case of energy-independent attenuation

If the detectors are placed in such a way that all the scattering angles θj are small or if the atten-

uation growth rate ν is negligibly small in the range [Emin, Emax], then we can neglect the energy

shift ∆E in (3.4) and the following formulas. In this case the reconstruction formula (3.11) re-

mains the same. The only difference is that we do not need to use the first equation in (3.10). This

reduces the number of conditions on Cj by one, and the minimum number of detectors that allows

exact reconstruction is three. The resulting family of inversion formulas is equivalent to the one in

[ZSM14].

When there are more than three detectors, we can use the technique from Section 3.2.2 to minimize

noise in the reconstruction. Note that this time we do not have the first equation in (3.23). The
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system to determine the coefficients Cj becomes

Q1
~C = ~r1, Q1 :=


b1,1 . . . b1,N

b2,1 . . . b2,N

1 . . . 1

 , ~r1 =


0

0

1

 . (3.32)

Again, making the assumption that noise in the data is independent and normally-distributed, the

variance of noise in the reconstructed µ(B) is given by

σ2 =
∑

C2
j σ

2
j = ‖ΣC‖22 , (3.33)

where Σ = diag(σj). Denoting ~t = Σ1/2 ~C and arguing similarly to (3.28)–(3.31) we obtain that

the vector ~C that minimizes (3.33) and satisfies (3.32) is given by:

~Copt = Σ−2QT
1 (Q1Σ

−2QT
1 )−1~r1. (3.34)

We note that in the case of only three detectors the formula above reduces to

~Copt = Q1
−1~r1. (3.35)

This is a unique solution, and no optimization is possible. The corresponding inversion formula is

equivalent to the one in [KK13].
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3.3 Iterative Reconstruction

It turns out that the sensitivity of the exact method (3.11) to noise in the data is still high even

when the optimal constants Cj are used. To reduce the noise sensitivity we develop an iterative

reconstruction algorithm based on functional minimization. We choose this approach because of

its ability to include a regularization functional.

3.3.1 Global Reconstruction

In this section we assume that the global data are known, i.e. any broken ray with the scattering

point B inside the object is measured. Consider first the case of energy-independent attenuation.

Using that the values K(θj) are known in (3.6) and setting ν ≡ 0 in (3.6), we obtain from (3.5)

and (3.6) that our data are

G̃j(A,Dj) =

(∫
AB

+

∫
BDj

)
µ(x)dx− lnµs(B). (3.36)

As opposed to the previous section, now the data are parametrized by “native coordinates” (A,Dj),

and not by interior points B. Note also another difference between the approaches in this and

the preceding sections. In the preceding section by choosing the coefficients ξj appropriately,

we eliminated the need to compute lnµs(B). In this section we need to recover both µ(B) and

lnµs(B) for all B inside the object.

Our method is based on minimizing the functional

F (u, v) =
1

2

∥∥P (1)u+ P (2)v − b
∥∥2
2

+ λuR(u) + λvR(v). (3.37)
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Here u = (u1, . . . , uN)T and v = (v1, . . . , vN)T are the vectors that represent the values of µ(B)

and lnµs(B), respectively, on a regular grid covering the object, N is the total number of grid

nodes, P (1), P (2) are projection matrices, b represents the data, R is a regularization functional,

and λu, λv > 0 are some constants.

In the experiments we assume that the attenuation coefficient µ(B) and the scattering coefficient

µs(B) both equal zero when B is outside the object. Clearly, if A and Dj are such that µs(B) = 0

for the corresponding vertex B, equation (3.36) does not apply. Fortunately, these “unacceptable”

broken rays can be detected, because in their case the original data in (3.4) equals zero. Thus, at the

very beginning of the algorithm we detect all broken rays whose vertex B is outside the object and

exclude the corresponding components of the vectors u and v from the optimization problem. In

other words, we first find the support of the object and then discard the grid nodes located outside

the object. In what follows, N denotes the number of remaining nodes.

For a pair of indices m,n, P (1)
mn is the weight with which the image element un contributes to

the projection data along the m-th broken ray. P (1)
mn is computed using bilinear interpolation and

integrating along the section of the m-th broken ray that is affected by the corresponding im-

age element. Similarly, P (2)
mn is the weight with which the image element vn contributes to the

projection data along the m-th broken ray. P (2)
mn equals (-1) times the value of the n-th bilinear

interpolating function (i.e., the function which is centered at the n-th grid node) computed at the

vertex B of the m-th broken ray. To summarize, given two row-vectors P (1)
m and P (2)

m , the value〈
P

(1)
m , u

〉
+
〈
P

(2)
m , v

〉
is the result of forward projecting the pair (u, v) along the m-th broken ray.

The vector b contains the data, and
∥∥P (1)ũ+ P (2)ṽ − b

∥∥
2

is a measure of how well the simulated

data corresponding to an intermediate image (ũ, ṽ) approximates b.

For computations we use a regularizer based on total variation. To compute R(u), we regard u

as a two-dimensional array Ui,j and use a conventional formula for discrete total variation in two
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dimensions (see e.g. [Get12]):

R(u) =
∑
i,j

{
(Ui+1,j − Ui,j)2 + (Ui,j − Ui−1,j)2

+ (Ui,j+1 − Ui,j)2 + (Ui,j − Ui,j−1)2 + ε
}1/2

,

(3.38)

where the summation is over all interior nodes of the grid. Here ε is a small positive number, which

ensures the differentiability of R(u). The computation of R(v) is done in an analogous manner.

To minimize the functional in (3.37) numerically (note that F (u, v) is convex) we use the method of

gradient descent with exact line search. Inversion formula (3.11) and the discussion in Section 3.2.3

show that µ(B) can be uniquely reconstructed from the data. Once µ(B) is known, lnµs(B) can

be found as well by substituting µ(B) into (3.36). Hence the data G̃j(A,Dj) are sufficient for

the recovery of both µ(B) and lnµs(B), and by minimizing the functional in (3.37) we can find

reasonable approximations to those functions.

In the case of energy-dependent attenuation, a similar iterative algorithm can be derived. To reduce

the number of unknowns we assume that the linear dependence of attenuation on energy holds over

the entire interval [Emin, Esrc] and substitute E0 = Esrc in (3.3). Using (3.6) we may assume that

our data are

G̃j(A,Dj) =

(∫
AB

+

∫
BDj

)
µ(x)dx+ (Ej − Esrc)

∫
BDj

ν(x)dx− lnµs(B). (3.39)

The analogue of (3.37) becomes

F (u, v, w) =
1

2

∥∥P (1)u+ P (2)v + P (3)w − b
∥∥2
2

+ λuR(u) + λvR(v) + λwR(w). (3.40)

Here u, v, P (1), P (2) are the same as in (3.37), the vector w represents the values of ν(B) on the

grid, and the projection matrix P (3) discretizes the second integral in (3.39).
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Since the typical values of ν are several orders of magnitude smaller than the typical values for

µ, straightforward discretization of the integral
∫
BDj

ν(x)dx leads to a very slow convergence of

the gradient descent method. To accelerate convergence, the components of the vector w are taken

to be the values of κν for some constant κ. This constant is chosen so that the vectors v and w

are approximately of the same magnitude. Of course, the elements of the matrix P (3) are adjusted

accordingly.

3.3.2 Interior Reconstruction

Let U be an open convex set inside the object, we call U the region of interest (ROI). Sometimes

one is interested in reconstructing µ(B) only inside the ROI from local data. The latter is defined

as a collection of integrals (3.4) along the broken rays with the vertex inside the ROI. In this section

we construct an iterative algorithm for computing µ(B), B ∈ U . We will consider only the case of

energy-independent attenuation.
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Figure 3.2: Illustration of geometry of local iterative reconstruction.

Consider Figure 3.2, where the ROI is shown as a small disc with checkerboard pattern. Pick any

broken ray ABDj , Dj ∈ Dj , with the vertex B inside U . We introduce the following notations:

L and M are the points where the incoming x-ray beam AB enters the object and the ROI, re-

spectively; Pj and Qj are the points where the scattered beam BDj exits the ROI and the object,

respectively. Clearly, given A and Dj , the points L,M,Pj, Qj are determined uniquely.

Rewrite (3.36) in the form

G̃j(A,Dj) =

∫
LM

µ(x)dx+

(∫
MB

+

∫
BPj

)
µ(x)dx+

∫
PjQj

µ(x)dx− lnµs(B). (3.41)

In addition to the unknowns µ(B) and lnµs(B), B ∈ U , that we had to find in the global case, we

have to determine the unknowns ψin(A) :=
∫
LM

µ(x)dx and ψout(Dj) :=
∫
PjQj

µ(x)dx. As is seen

from Figure 3.2, ψin depends only on the position of the source A, and ψout depends only on the
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detection point Dj . The corresponding functional is completely analogous to the one in (3.37). We

just add two projection matrices corresponding to ψin and ψout and two TV-based regularization

terms. Since ψin and ψout depend on a single variable (A or Dj), these regularization terms use

one-dimensional TV. Likewise, the corresponding projection matrices are computed using linear

(rather than bi-linear) interpolation.

Note that the inversion formula (3.11) is local, i.e. one can recover µ(B) uniquely from the local

data. The remaining unknowns: lnµs(B), ψin, and ψout can no longer be recovered, so our iterative

algorithm guarantees accurate values only for µ, but not for the other quantities.

To speed up the convergence, we reconstruct κin(A)ψin(A) and κout(Dj)ψout(Dj) instead ofψin(A)

and ψout(Dj). Here κin(A) and κout(Dj) are some pre-selected functions that equalize the magni-

tudes of the unknowns. We tried several candidates: identical 1, the reciprocal of the length of the

segments LM and PjQj , respectively, etc. Experimentally, in the case of a disk-shaped ROI, the

fastest convergence was observed when the weights were around 1/5th of the radius of the ROI.

3.4 Numerical experiments

In this section all linear sizes are given in arbitrary (but fixed) units. For the numerical experiments

we use a 4-in-1 disc phantom similar to the one in [KK13], see Figure 3.3. The phantom is a

superposition of a bigger background disk and four smaller disks of various sizes. For the bigger

disk the radius equals R = 100, µ = 1.0 and ν = 6.8 · 10−6. The radii of the three smaller disks on

top are 20, 16 and 10 (left-to-right), and their values of µ are 1.4, 0.8, and 1.6 respectively. For the

lower disk R = 30 and µ = 1.2. The value of ν for the four smaller disks is 10−6. In those cases

when the attenuation coefficient depends on energy, we assume that this dependence is linear and

the values of µ given here are at the energy of the incident beam Esrc=1.25MeV.
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Figure 3.3: 4-in-1 disk phantom. Left panel – distribution of µ at Esrc, right panel – distribution of
ν. The values of ν are multiplied by 106 for convenience.

Since the scattering coefficient is not important for reconstruction of the attenuation coefficient as

long as it is positive, its value is taken to be equal to 1. In the cases of energy-independent and

energy-dependent attenuation, the data are simulated using (3.36) and (3.39), respectively. The

simulated detectors are all of length 256 with 256 detector elements each. The source path range

is also of length 256, and the source step size equals 1. Thus, ∆u = h = 1 (see Figure 3.1).

In some experiments we use four detectors, and in others – five. When there are four detectors,

they are located at -90, -45, 45 and 135 degrees. When there are five detectors, they are located at

-135, -90, -45, 45 and 135 degrees. These are the values of θ1, . . . , θN , cf. Figure 3.1. Using (3.1)

we find that in both cases the range of energies of scattered photons registered by the detectors is

[Emin, Emax], where Emin ≈ 242KeV and Emax ≈ 729KeV.

In the experiments with noisy data we simulate noise as an additive, independent, normally dis-

tributed random variable N (0, σ̂j) with standard deviation σ̂j = c · Fj . Here Fj is the maximum

value of the noiseless measurements on the jth detector:

Fj = max
k,l

G̃j(k, l), (3.42)
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where k and l are the indices describing the source and detector element positions, respectively

(see the paragraph following (3.14)), and c is a constant that controls the strength of noise. If, for

example, c = 0.001, we say that the data are contaminated by 0.1% noise.

The reconstructions are done on a 256x256 grid with step-size 1 along each axis.

3.4.1 Noise minimization when attenuation is energy-independent.

To test the noise minimization technique derived in Section 3.2.3 we make a reconstruction of the

4-in-1 disc phantom in the case of four detectors. The data are contaminated by the 0.1% noise.

We choose the coefficient C4 as a free parameter and make a series of reconstructions for different

values of C4 in a small range around its optimal value. Note that in the case of four detectors, once

one of the coefficients Cj is fixed, the other three are determined uniquely. For each value of C4

we make a series of reconstructions for M = 20 different data sets. Each of the M data sets is

contaminated by a different randomly generated noise sample {εjkl}. See Figure 3.4, where one of

the M reconstructions for a few values of C4 are shown.
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Figure 3.4: Reconstructions from noisy data for different values of the coefficient C4 in the case
of four detectors and energy-independent attenuation. From left to right and from top to bottom:
C4=0, 0.2, 0.4, 0.6, 0.8, 1.0.

To estimate the standard deviation of noise in the reconstructed image we use the following pro-

cedure. Let R be the radius of the background disk in the phantom. For all nodes Bij of the

reconstruction grid that are located inside the disk with radius R0 = 0.8 · R, we compute sample

standard deviation

σ(Bij) =

(
1

M − 1

M∑
m=1

(µm(Bij)− µ̄(Bij))
2

)1/2

, (3.43)

where µm(Bij) is the reconstructed attenuation for the m-sample at the point Bij , and

µ̄(Bij) =
1

M

M∑
m=1

µm(Bij). (3.44)

Then the observed standard deviation of noise in the reconstructed image σ̄ is taken to be the
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average of the estimates (3.43).

We also compute theoretically predicted standard deviation σ using the formula (3.33). Note that

(3.33) applies for a given grid node Bij only if Bij coincides with the vertex of the broken ray

determined by a source positionAk+1/2 and detection pointDl ∈ Dj (cf. (3.15)–(3.17)). Otherwise

we have to use interpolation, which affects noise. In our case the reconstruction grid is aligned

with the direction of the primary beams (the y-axis), and all the nodes are located precisely at the

midpoints between neighboring primary beams. Thus, no interpolation along the source direction

is neeed. The only interpolation that is performed during reconstruction is along the detector

direction. In the worst case, when all Bij project precisely onto the detection points, noise level

in the image is the highest and is given by (3.33). In the best case, when all Bij project precisely

onto the midpoints between the detection points, noise level in the image is the lowest and can

be obtained by dividing the right-hand side of (3.33) by
√

2. In our experiments we assume that

the standard deviation of noise σ̂j,k,l is independent of k and l (cf. (3.17)), which justifies the

factor 1/
√

2. In practice, since we average σ(Bij) over many points, the final value of σ̄ should be

somewhere between the two extremes.

In Figure 3.5 we show the noise estimates for different values of C4 by vertical blue intervals.

The top point for each interval is computed using (3.33) for all Bij inside the disk of radius R0

and averaging, and the bottom point is obtained by dividing the top one by
√

2. The red curve

represents the observed noise levels σ̄. As is seen, the experimentally observed curve is in good

agreement with theoretical estimates. Formula (3.30) gives the optimal value Copt
4 ≈ 0.37, which

agrees well with the results in Figures 3.4 and 3.5. A reconstruction using the optimal set of Cj’s

is shown in Figure 3.6. Two cross-sections through the reconstructions with the optimal C4 = 0.37

and non-optimal C4 = 1 are shown in Figure 3.7.
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Figure 3.5: Theoretical and measured standard deviations σ(C4) and σ̄(C4) in the reconstructed
image in the case of four detectors and energy-independent attenuation.

Figure 3.6: Optimal reconstruction in the case of four detectors. The attenuation coefficient µ is
independent of energy.
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Figure 3.7: Cross-sections through the density plots of the attenuation coefficient along the lines
shown on the right. The exact curve is blue, reconstruction with optimal parameters is shown in
green, and reconstruction with non-optimal parameters – in red. The case of four detectors and
energy-independent µ.

3.4.2 Exact inversion formula, energy-dependent µ.

As before, we assume that there are four detectors. In this case noise optimization is not possible

and the coefficients {Cj} and {Bj} are obtained by solving (3.24). The data are simulated using

(3.39).

In Figure 3.8 we show the reconstructions from noise-free data for the energies E = 250KeV,

490KeV, and 720KeV. The horizontal and vertical cross-sections through the three reconstruction

of Figure 3.8 are shown in Figure 3.9.
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Figure 3.8: Reconstructions with the exact inversion formula (3.11) for a few energies in the range
[Emin, Emax], where Emin ≈ 242KeV and Emax ≈ 729KeV, in the case of four detectors. Left to
right: E = 250KeV, 490KeV, and 720KeV.
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Figure 3.9: Cross-sections through the density plots of the reconstructions shown in Figure 3.8
along the lines shown on the right. The exact curves are blue, and the curves reconstructed using
the inversion formula (3.11) – red. The case of four detectors.
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3.4.3 Noise minimization in the case of energy-dependent attenuation.

To test the noise minimization technique described in Section 3.2.2 we suppose that there are five

detectors. The data are simulated using (3.39) and contaminated by 0.1% noise.

To illustrate the reduction of noise provided by the approach in Section 3.2.2, we pick two energies

E1,2 ∈ [Emin, Emax], and compare two reconstructions for each of the energies. One reconstruction

uses optimal coefficients described by (3.30). The other reconstruction uses non-optimal coeffi-

cients. Note that if the Cj’s are known, the formula (3.14) allows us to compute µ(E0) without

using Bj’s. Thus, for the non-optimal reconstruction of µ(E1) we set E0 = E1 in (3.20)–(3.23),

choose a non-optimal C5, solve the rest of the equations for C1, . . . , C4, and then use formula

(3.14). Reconstruction of µ(E2) is done the same way.

We selectedE1 = 400KeV andE2 = 500KeV. In the case of optimal reconstruction, µ is computed

using the combination Cj + ∆EBj as coefficients (cf. (3.14)). In the non-optimal case, we use

only Cj’s. Thus, to make the comparison of optimal and non-optimal coefficients meaningful, we

list in Table 3.1 the values of Cj + ∆EBj in the optimal case, and of Cj’s – in the non-optimal

case.

Table 3.1: Reconstruction coefficients in the inversion formula (3.14). The case of five detectors.

Optimal (Cj + ∆EBj) Non-optimal (Cj)
400 KeV (-0.172, 0.698, -0.172, 0.322, 0.322) (-1.049, 0.698, 0.706, -0.555, 1.20)
500 KeV (0.323, -0.120, 0.323, 0.238, 0.238) (-0.640, -0.120, 1.285, -0.725, 1.20)

The results of four reconstructions are shown in Figure 3.10. As expected, optimal parameters lead

to a reduction in noise compared to non-optimal ones. Cross-sections through the reconstructions

at E1 = 500KeV are shown in Figure 3.11.

53



Optimal Non-optimal

400 KeV

500 KeV

Figure 3.10: Reconstructions based on the inversion formula with optimal and non-optimal coeffi-
cients from five-detector data contaminated by 0.1% noise at 400 KeV(top) and 500 KeV(bottom).
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Figure 3.11: Cross-sections through the density plots of the reconstructions at 500 KeV of Fig-
ure 3.10 along the lines shown on the right. Exact curves are blue, reconstruction with optimal
parameters – green, and non-optimal reconstruction – red. The case of five detectors.
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The standard deviation of noise in the reconstructed image as a function of energy is shown in

Figure 3.12. Theoretical estimates of the predicted standard deviation σ and observed values of

σ̄ are computed for several E ∈ [Emin, Emax] using the approach of Section 3.4.1. Again, the

observed curve and the prediction are in good agreement.
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Figure 3.12: Theoretical (min/max σ) and measured (σ̄) standard deviations of noise in the re-
constructed image as functions of energy. The case of five detectors, the data are contaminated by
0.1% noise.

3.4.4 Iterative reconstruction

The first experiment in this subsection is with four detectors and energy-independent attenuation.

Since the main advantage of iterative methods is improved noise stability, we consider reconstruc-

tions only from noisy data. In Figure 3.13 we see the effect of noise level in the data on image

quality. One set of reconstructions is done with the iterative method of Section 3.3.1. The other set

is done using the inversion formula (3.35).
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Figure 3.13: Reconstructions from four-detector data contaminated by noise of various levels,
energy-independent attenuation. Left - iterative algorithm, right - inversion formula (3.11) with
optimal Cj, j = 1, . . . , 4 (cf. (3.34)).

Note that the reconstruction grid step-sizes in both directions are equal to 1, so the projection

matrices P (1) and P (2) have entries of approximately the same magnitude. Therefore, in (3.37) we

chose for simplicity λu = λv =: λ. Then, for reconstruction presented below, we use an optimal

value of λ: λ = 1 for noise levels 0.1% and 0.5%, and λ = 2 – for noise level 1%. These values

are found experimentally by minimizing ‖µ(B;λ)− µtrue(B)‖ for each noise level. Here µ(B;λ)
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is the result of iterative reconstruction for the given λ, and µtrue(B) is the correct distribution of

the attenuation coefficient shown in Figure 3.3. In practice such optimization is never possible,

but it is useful anyway since it allows investigation of the dependence of regularization parameters

on noise level. Besides, our experiments showed that the results of reconstructions are not too

sensitive to changes in λ.

The results of local iterative reconstruction from four detector data contaminated by different levels

of noise in the case of energy-independent attenuation are shown in Figure 3.14. The radius of the

ROI equals 50. We use the algorithm in Section 3.3.2. First we find the weights that equalize the

magnitudes of all the unknowns, and then use the same regularization weight λ in front of all the

TV terms. We use the same values of λ as in the case of global reconstruction described above.

Figure 3.14: Local iterative reconstruction from four detector noisy data in the case of energy-
independent attenuation. Left to right: 0.1% noise, 0.5% noise, 1% noise.

Finally, the performance of the algorithm based on (3.40) in the case of five detectors and energy-

dependent attenuation is illustrated by the results in Figure 3.15. As before, we first find the

weights that equalize the magnitudes of all the unknowns, and then use the same regularization

weight λ in front of all the TV terms. We use the same values of λ for each noise level as in the

energy-independent case. The reconstructed µ at three energies E = 250KeV, E = 490KeV, and

E = 720KeV are shown in Figures 3.15 and 3.16.
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Figure 3.15: Iterative reconstruction from five-detector data contaminated by different levels of
noise. Energy-dependent µ.
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Figure 3.16: Cross-sections through the density plots of the reconstructions of Figure 3.15 cor-
responding to 0.1% noise along the lines shown on the right. Exact µ – blue, reconstructed µ –
red.
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CHAPTER 4: CONCLUSION

We derived a local inversion formula (3.11) of BRT for the case with four or more detectors that

allows noise minimization in the reconstruction. The inversion formula involves only the first

derivative of the measured data which leads to a simple and stable numerical reconstruction algo-

rithm. In the case when the noise minimization is not necessary, the inversion formula requires

only three detectors.

We generalized the exact inversion formula to accommodate Compton energy shifts for the case

of four or more detectors. To take multiple scattering energies into account we used linear ap-

proximation to the dependence of the attenuation on energy. We developed an algorithm for noise

minimization in the reconstruction which requires five or more detectors for the case when the

attenuation depends on energy.

We developed an iterative reconstruction algorithm that has higher noise stability, can solve an

interior problem and works in the case of energy-dependent attenuation.

We note that all the algorithms developed in this work can be generalized to curved detectors with a

fixed focus. Indeed, our key starting point is differentiation of the equation (3.6) along the direction

βj to obtain (3.7). The same step can be made when Dj is focused at a single point, because the

angle between the primary beam AB and scattered beam BDj remains constant when applying

∇j . This, however, no longer holds for fan beam geometry. In this case the source is fixed, the

angle between AB and BDj is not constant, and application of∇j to (3.6) leads to the appearance

of additional terms not present in (3.7).

The numerical experiments presented in this work are by no means exhaustive, and are designed

only as a proof-of-principle study. This is why we use one of the simplest optimization methods
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and do not discuss many practical issues like computational complexity, number of iterations,

etc. In the future, faster convergent algorithms based e.g. on Nesterov acceleration or conjugate

gradients can be used, and more detailed experiments should be performed.
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APPENDIX : SYMMETRY PROPERTIES OF COEFFICIENTS cij
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Using (2.56) we obtain that the differential operator in brackets on the right of (2.57) is given by

[·] = −(l1(c
⊥
13 + c⊥21)∇⊥1 + l2(c

⊥
21 + c⊥32)∇⊥2 + l3(c

⊥
13 + c⊥32)∇⊥3 ). (A.1)

Then we write g12 = g1 − g2, g32 = g3 − g2, and expand the differential operators acting on g2

with respect to ∇2 and ∇⊥2 (cf. (2.5)). In (2.58) there are no terms containing ∇⊥2 g2, hence they

must cancel. Since l1, l2 and l3 are independent of each other, we should show that all the terms

containing li∇⊥2 g2 cancel for i = 1, 2, 3. Consider, for example, the coefficient in front of l1∇⊥2 .

Using (2.55) and (A.1) we compute that this coefficient is indeed zero:

(c12 − c13)(c⊥13 + c⊥21)(−c⊥21) + (1− c12)(c⊥13 + c⊥21)c
⊥
32 + (c⊥13 + c⊥21)Σc12

= (c⊥13 + c⊥21)[c13c
⊥
21 + c⊥32 + c12c

⊥
13] = (c⊥13 + c⊥21)[c

⊥
32 − c⊥32] = 0.

(A.2)

The other two coefficients can be handled in a similar fashion. To establish (2.59) we have to

compute the coefficients in front of li∇2, i = 1, 2, 3. Consider, for example, the case i = 1.

− (c12 − c13)(c⊥13 + c⊥21)c12 − (1− c12)(c⊥13 + c⊥21)c23 − (c⊥13 + c⊥21)Σc
⊥
21

= −(c⊥13 + c⊥21)[1 + c23 − c13c12 + c⊥21c
⊥
13 − c12c23 + c⊥21c

⊥
32]

= −(c⊥13 + c⊥21)[1 + c23 − c23 − c13] = (c⊥13 + c⊥21)[c13 − 1],

(A.3)

which coincides with the appropriate term in (2.59). The other terms can be evaluated in a similar

fashion.
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