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eBiomechanics Lab, Division of Orthopaedic Surgery, Oslo University Hospital, Oslo, Norway

ABSTRACT
Background: Lower limb amputation (LLA) alters the sensorimotor control systems. Despite the
self-reports of increased attention during mobility, the interaction between mobility and cognitive
control mechanisms is not fully understood.
Objective: Concurrently evaluate walking performance and prefrontal cortical (PFC) activity in
persons with and without LLA during different walking conditions.
Methods: Thirty-nine persons with LLA and thirty-three able-bodied controls participated.
Walking performance was evaluated using the Figure-of 8-walk-test during three conditions: 1)
UW (Usual walking with self-selected walking speed); 2) WCT (walking and carrying a tray with two
cups filled with water); and 3) WUT (walking on uneven terrain). PFC activity was assessed using
functional near-infrared spectroscopy (fNIRS). Linear mixed models were used to detect changes
between groups and between walking conditions within each group.
Results: Between-group comparisons showed increased PFC activity in persons with LLA during
UW and WUT, and a significant decrease in walking performance during WCT and WUT compared
to controls. Within-group comparisons showed increased PFC activity during WUT compared with
UW and WCT and an overall difference in walking performance between the conditions (WU >
WUT > WCT) in both groups. However, the effect of walking condition on PFC activity and walking
performance was not modified by group (P > .1).
Conclusion: The results suggest that persons with LLA have increased attentional demands
during walking but choose the same cognitive-mobility strategy during challenging walking
conditions as able-bodied persons. However, the attentional demands seem to depend on the
complexity of the task.
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Introduction

Persons with a lower limb amputation (LLA) have altered
sensorimotor inputs and outputs from and to the prosthetic
limb (Knaepen et al., 2015). This may challenge prosthetic
mobility and have an impact on gait quality and attentional
demands, particularly in challenging walking environments
(Hafner, Morgan, Abrahamson, and Amtmann, 2016b).
Many people with LLA have reported increased attention
and concentration needs when walking, which might reflect
an increased use of cognitive resources during ambulation
(Miller, Speechley, and Deathe, 2001; Morgan, Hafner,
Kartin, and Kelly, 2018).

Prior research on LLA recognizes the impact cognitive
function has on walking performance (Coffey et al., 2012;
Frengopoulos et al., 2017; Morgan, Hafner, Kartin, and
Kelly, 2018) and the interaction between cognition and

mobility has commonly been assessed using dual-taskmeth-
ods which challenge the attentional capacities (Morgan,
Hafner, Kartin, and Kelly, 2018; Yogev-Seligmann,
Hausdorff, and Giladi, 2008). To our knowledge, only
a limited number of dual-task studies in persons with LLA
exists (Frengopoulos et al., 2018a; Hunter et al., 2018;
Lamoth, Ainsworth, Polomski, and Houdijk, 2010;
Morgan, Hafner, and Kelly, 2016, 2017; Pruziner et al.,
2019) and cognitive tasks like serial subtractions or the
Stroop test have been used together with walking tasks.
The results indicate that both walking and cognitive perfor-
mance decreases when adding a concurrent cognitive task in
combination with walking (Hunter et al., 2018; Morgan,
Hafner, and Kelly, 2017; Pruziner et al., 2019), and
a decrease in performance is observed regardless of time
since amputation and etiology (Frengopoulos et al., 2018a).
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Studies have also indicated that adding a concurrent cogni-
tive task does not affect walking performance in a different
way in persons with lower limb amputation compared with
able-bodied controls (Lamoth, Ainsworth, Polomski, and
Houdijk, 2010; Morgan, Hafner, and Kelly, 2016; Pruziner
et al., 2019). However, a previous study has reported that the
gait quality (i.e. increased asymmetry) while dual-task walk-
ing on an unstable surface was different between persons
with and without transfemoral amputation (Morgan,
Hafner, and Kelly, 2017). This might indicate that the use
of cognitive resources depends on the environmental
conditions.

Except for a recent study (Pruziner et al., 2019), dual-task
studies in persons with LLA havemainly looked at cognitive
and mobility performance and not on the underlying cor-
tical activation during the performance. Pruziner et al.
(2019) evaluated both gait mechanics (i.e. dual-task walking
with a visual task) and cortical activity by electroencephalo-
graphy (EEG) in a population with and without transtibial
amputation and both groups showed overall similar cortical
dynamics. Cortical structures play an important role in the
control of mobility during daily activities (Hamacher et al.,
2015). Neuroimaging studies have revealed that several dif-
ferent cortical and subcortical regions are involved during
walking (Hamacher et al., 2015) and the literature describes
two pathways (Bayot et al., 2018; Herold et al., 2017): 1)
a direct locomotor pathway (primary motor cortex, cerebel-
lum and spinal cord); and 2) indirect locomotor pathway
(prefrontal cortex (PFC), premotor areas, and basal ganglia).
During attentional demanding and challenging walking
conditions, the activation of the indirect locomotor pathway
increases and the PFC, in particular, plays a key role (Clark,
2015; Hamacher et al., 2015; Yogev-Seligmann, Hausdorff,
and Giladi, 2008). According to the capacity sharing theory
(Kahneman, 1973), the attentional capacity is limited; hence,
there might be a risk of attentional overload during challen-
ging mobility conditions.

Several studies have examined PFC activation dur-
ing dual-task walking using functional near-infrared
spectroscopy (fNIRS) (Herold et al., 2017; Vitorio
et al., 2017) and mixed findings have been reported.
Several studies report increased PFC activity during
dual-task walking when using cognitive tasks (Fraser
et al., 2016; Holtzer et al., 2011; Mirelman et al., 2017)
or motor tasks (Clark, Rose, Ring, and Porges, 2014;
Osofundiya, Benden, Dowdy, and Mehta, 2016).
However, a decreased PFC activation has been
observed in dual-task walking with a visual task in
older persons (Beurskens, Helmich, Rein, and Bock,
2014) and during different complex walking paths in
younger persons (Lin and Lin, 2016). When comparing
different challenging dual tasks, the magnitude of the
PFC activation seems to depend on: type of task and its

complexity (Clark, Rose, Ring, and Porges, 2014); age
(Holtzer et al., 2011; Lin and Lin, 2016; Mirelman
et al., 2017); and presence of pathology (Maidan
et al., 2016; Mori, Takeuchi, and Izumi, 2018). One
recent study on persons with transfemoral amputation
during straight-path walking showed increased brain
activity in the prefrontal and motor cortex compared
to healthy controls (Möller, Rusaw, Hagberg, and
Ramstrand, 2019). However, knowledge of neuronal
processes required during challenging mobility condi-
tions in home and community is still incomplete
(Hamacher et al., 2015; Pruziner et al., 2019). New
knowledge about PFC activation during mobility for
persons with LLA can help us to gain a better under-
standing of cognitive and cortical control mechanisms
during mobility and may contribute to better planning
of rehabilitation strategies. The present study aimed to
evaluate PFC activity by fNIRS and walking perfor-
mance in persons with and without LLA during differ-
ent challenging walking conditions. Our main
hypothesis was that there would be increased PFC
activation and reduced walking performance in per-
sons with LLA compared with able-bodied controls
during all walking conditions. Secondly, we also
hypothesized that the walking conditions would differ-
entially affect PFC activation and/or walking perfor-
mance in people with LLA compared with able-bodied
controls.

Method

The current observational study is part of a larger pro-
ject examining mobility in persons with LLA. The
Regional Committee for Medical and Health Research
Ethics in Norway (2015/1245) approved the study
which was performed according to the principles of
the Declaration of Helsinki. All participants signed an
informed consent prior to participation.

The main hypothesis was to investigate between-
group comparisons. To identify the minimum sample
size, an a priori power analysis was conducted based on
walking speed (Wezenberg et al., 2013). Power was set
to 90%, alpha to .05 and power analysis (by Stata/SE
14.2 for Windows, College Station, TX, USA) estimated
to a total sample size of 20. To increase the robustness
of the analyses, a sample size of more than 30 persons
in each group was considered appropriate.

Participants

Inclusion criteria: 1) 18 years or older; 2) ability to walk
without an assistive device for at least 500 m; 3) no
psychiatric or neurologic comorbidities; 4) no diagnosis
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of dementia; and 5) no comorbidities impacting the
ability to complete the protocol. For persons with
LLA, additional criteria were: 1) unilateral transtibial
or transfemoral/knee-disarticulation; 2) non-vascular
or non-diabetic etiology of amputation; and 3) walking
with a prosthesis for at least 1 year. Participants were
recruited from: 1) local prosthetic workshops and reha-
bilitation centers through flyers; 2) Facebook groups for
the two prosthetic user organizations in Norway; and 3)
friends, family and peers of the participants.

Baseline cognitive and physical function

Baseline cognitive function was measured by the Montreal
Cognitive Assessment (MoCA), which is a tool for screen-
ing global cognition (Frengopoulos et al., 2017;
Frengopoulos, Payne, Viana, and Hunter, 2018b;
Nasreddine et al., 2005) and the Trail Making Test (TMT-
A and TMT-B) which is a tool for measuring cognitive
flexibility and executive functions (Tombaugh, 2004).
Persons with LLA also performed the Amputee Mobility
Predictor (AMP) (Gailey et al., 2002), a performance-based
measure of mobility and the Prosthetic Limb Users Survey
ofMobility (PLUS-M) (Amtmann et al., 2014), a self-report
measure of mobility for persons with LLA.

Walking performance

The Figure-of-eight Walk test (F8W) (time and number
of steps) was used, which is a valid measure of walking
skill and involves straight and curved-path walking and
is designed to stimulate more of the complexity of
walking in daily life than straight-path walking (Hess,
Brach, Piva, and VanSwearingen, 2010; Schack,
Mirtaheri, Steen, and Gjøvaag, 2019). Three different
walking conditions were used: 1) UW = Usual walking
with self-selected walking speed; 2) WCT = walking
and carrying a tray with two cups filled with water;
and 3) WUT = walking on uneven terrain. WCT and
WUT are known to be challenging mobility conditions
for persons with LLA (Hafner, Morgan, Abrahamson,
and Amtmann, 2016b). The uneven terrain consisted of
six foam mats (185 cm long, 60 cm wide and 1.5 cm
thick, Airex® Coronella, Airex AG, Switzerland). An
additional foam mat of the same material as the six
foam mats was cut into slices and these slices were
placed underneath the larger mats with eight slices
around each of the cones in the F8W (Schack,
Mirtaheri, Steen, and Gjøvaag, 2019). Before applying
the fNIRS equipment, the walking conditions were
explained and demonstrated to the participants and
they could practice the F8W (one to two laps) in each
condition before data collection.

PFC activity

A portable continuous-wave NIRSport system (NIRStar,
NIRX Medical Technologies LLC, Glen Head, NY, USA)
with two wavelengths (760 nm, 850 nm) was used during
the experiments. The system had 16 active optodes; 8
sources and 8 detectors, resulting in 20 channels in total
with a sampling frequency of 7.81 Hz. The optodes were
placed in a cap (EasyCap, GmbH, Germany) based on the
10–20 international standardized EEG system (Herold,
Wiegel, Scholkmann, and Müller, 2018) (Figure 1). The
source and detector separation was approximately 3 cm.
To ensure the correct position of the measuring cap, the
Cz position was used as a reference point and the cap was
centered between the nasion and the inion as well as
between the left and right preauricular points. The
optodes mainly covered the left and right prefrontal cor-
tex representing Broadmann areas (BA) 8, 9 10, 11, 45 and
46 (Morais, Balardin, and Sato, 2018; Rorden and Brett,
2000) (Figure 1). A block design with a random order of
the three walking conditions was used. Each condition
was repeated 5 times and began with a rest period of
60 seconds. The duration of each walking trial was 20 sec-
onds, considering the temporal delay of 2 to 5 seconds in
the hemodynamic response (Herold et al., 2017). The
participants walked in the figure-of-eight-pattern during
the trials and the total time duration was used in the
subsequent analysis of the signals. The participants
returned to the starting position in the figure-of-eight
after each trial and rested for 40 seconds. The stimulus
presentation software NIRSStim (NIRX Medical
Technologies LLC, Glen Head, NY, USA) triggered the
onset of each walking trial. Heart rate (HR) was measured
simultaneously during the walking trials using
SOMNOtouch NIBP (SOMNOmedics, Randersacker,
Germany). HR was used as a regressor for filtering the
fNIRS signal (Herold, Wiegel, Scholkmann, and Müller,
2018; Tachtsidis and Scholkmann, 2016).

fNIRS data analysis

The nirsLAB v201706 software (https://www.nitrc.org/
projects/fnirs_downstate/) was used to analyze the sig-
nals. The relative coefficient of variation (CV) was
initially calculated for the raw signals for both wave-
lengths in order to estimate the signal-to-noise quality
for each channel (Lu et al., 2015). The default CV
(7.5%) was used as signal quality control since high
standard deviation from unfiltered data might indicate
the presence of motion artifact (Morais et al., 2017).
The differential pathlength factor was calculated
according to the participants’ age for both wavelengths
(Herold et al., 2017). The last 20 seconds of the rest
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period preceding UW were used as baseline (Herold,
Wiegel, Scholkmann, and Müller, 2018). The relative
changes of oxygenated hemoglobin (OxyHb) and
deoxygenated hemoglobin (deoxyHb) were then calcu-
lated using the modified Beer–Lambert’s law. In pre-
vious studies, it has been reported that OxyHb appears
to be a more sensitive and reliable parameter for
measuring mobility-dependent changes in cerebral
blood flow (Harada, Miyai, Suzuki, and Kubota,
2009; Holtzer et al., 2011; Miyai et al., 2001).
Accordingly, we used the changes in OxyHb as
a primary outcome for PFC activation.

The general linear model (GLM) as incorporated in
nirsLAB was used to analyze the hemodynamic signals. HR
measurements were synchronized with the NIRS data and
loaded as a user-defined regressor. In addition, the effect of
motion artifacts and serial temporal correlation (Tachtsidis
and Scholkmann, 2016) were reduced via an autoregressive
model with the prewhitening iterative reweighted least square

algorithms inside the GLM engine (Barker, Rosso, Sparto,
and Huppert, 2016). The canonical hemodynamic response
function (HRF)was used as a base function for theGLM.The
GLM model-fitting coefficients for each channel were
exported to SPSS for further statistical analysis.

Statistical analyses

Score distributions were evaluated for normality using his-
tograms and Q-Q plots and found normally distributed for
all variables. Descriptive statistics with means and standard
deviations (SD) were calculated for participants’ demo-
graphic and health characteristics. Continuous data were
compared using the Student’s t-test and categorical data
were compared using the chi-square test. Linear mixed
effects models using a random intercept for subject, with
group (persons with LLA and able-bodied controls) as
between-subject factor, walking conditions (UW, WCT,
andWUT) as repeated within-subject factor and interaction

Figure 1. Illustrates the location of the optode sources and detectors on the scalp. The labels starting with S (S1, S2 … S8)(light gray
color) represent the sources. The labels starting with D (D1, D2, …, D8)(dark gray color) represent the detectors. The 20 source-
detector pairs called channels are illustrated with bars.
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terms between group and walking condition were estimated
for each of the 20 channels (PFC activation), F8W time and
steps as the dependent variables. We calculated the effect
sizes (Cohen’s d) and used the following definition:
0.01 = very small 0.2 = small; 0.5 = medium; 0.8 = large;
1.2 = very large and 2.0 = huge (Sawilowsky, 2009). We
performed pairwise posthoc tests for all combinations of
walking conditions and groups, and Bonferroni adjusted for
three multiple tests. Significant group-by-condition interac-
tionswould indicate that thewalking condition differentially
affected PFC activation or walking performance in people
with LLA compared with able-bodied controls. To help the
interpretation of the data, Pearson’s correlation analysis was
conducted to investigate potential relationships between
“time since amputation” and age to PFC activation and
walking performance. Furthermore, we conducted
Pearson’s correlation analysis between PFC activation and
mobility scores (PLUS-M and AMP) for persons with LLA.

Results

Participants

Seventy-four persons volunteered to participate in this
study. Two persons with LLA were excluded because of
technical problems. Thirty-nine persons with LLA and
thirty-three able-bodied persons completed the study
and their personal characteristics are summarized in
Table 1. There were no significant differences between
the groups in relation to age, sex, height, weight, MoCa
score or TMT. The level of amputation was: transtibial
(n = 20), transfemoral (n = 11) and knee-disarticulation
(n = 8). All persons with LLA wore energy-storing
prosthetic feet. Six of the persons with transfemoral
amputation/knee-disarticulation used different types
of mechanical knees, while the others (13) used micro-
processor-controlled prosthetic knees. PLUS-M
T-scores for persons with LLA indicate that average
mobility for participants with LLA was higher than
approximately 80% of people with lower-limb loss.

Changes in PFC activation

Between-group comparisons for each condition (UW,
WCT, WUT) are shown separately in Figure 2 a, b, c,
respectively. A large variability in PFC activation was
found across all channels in both groups. The observed
results revealed a significant increase in PFC activation
during UW (channel 5, p = .039, Cohen’s d = 0.62; chan-
nel 18, p = .036, Cohen’s d = 0.58) andWUT (channel 2, p
= .042, Cohen’s d = 0.51; channel 4, p = .051, Cohen’s
d = 0.51; channel 5, p = .039, Cohen’s d = 0.55; channel 14,
p = .009, Cohen’s d = 0.63) in persons with LLA compared

with able-bodied controls. No significant differences were
observed between groups during WCT (p > .1).

In persons with LLA, within-group comparisons showed
a significantly higher PFC activation in WUT compared to
UW (channel 4, p = .039, Cohen’s d = 0.44) and WCT
(channel 4, p = .003, Cohen’s d = 0.50; channel 5, p = .033,
Cohen’s d = 0.45; channel 14, p = .018, Cohen’s d = 0.37),
respectively. In the able-bodied controls, the results were
similar showing a significant increase in PFC activation dur-
ing WUT compared to UW (channel 3, p = .039, Cohen’s
d = 0.54; channel 6, p = .045, Cohen’s d = 0.43; channel 7,
p = .039, Cohen’s d = 0.49) and WCT (channel 4, p = .039,
Cohen’s d = 0.74), respectively. Both groups were not sig-
nificantly different when comparing UW and WCT in all
channels. The effect of walking condition on PFC activity was
not modified by group, the interaction term group
x condition was non-significant in all the statistical models.

Changes in walking performance

Table 2 shows the results from the F8Wperformance in each
group. Between-group comparisons of the F8W parameters
revealed significant differences in both time and number of
steps duringWCT andWUT, but not in UW.Within-group
comparisons revealed significant differences in F8W time
(p < .01) and the number of steps (p < 0 .001) in both groups
between the three walking conditions, except for F8W steps
between UW andWUT for able-bodied controls (p = .105).
However, the interaction term group x condition was non-
significant (F8W time, p = .108; F8 W steps, p = .073).

Table 1. Participant demographics and characteristics.
Able-bodied
controls
(N = 33)

Persons
with LLA
(N = 39) p-value

Sex (female/male), n 14/19 17/22 0.92
Age, years 53.6 (12.4) 51.7 (12.3) 0.51
Weight, kg 82.9 (15.7) 84.2 (19.7) 0.76
Height, m 1.76 (0.1) 1.76 (0.1) 0.89
MoCA 27.5 (1.7) 27.1 (1.9) 0.60
TMT-A, s 29.9 (7.8) 34.0 (12.0) 0.09
TMT-B, s 70.9 (24.8) 81.0 (31.4) 0.13
Time since amputation, years N/A 22 (18)
Amputation etiology
Cancer, n N/A 6
Trauma, n N/A 24
Infection (non-diabetic), n N/A 1
Congenital, n N/A 6
Other (non-diabetic), n N/A 2

PLUS-M N/A 58.4 (7.6)
AMP N/A 42.9 (2.2)

Values are means (SD) except for sex and amputation etiology which is the
number of observations (n). MoCA = The Montreal Cognitive Assessment
(Scale range 0–30; higher scores indicate greater cognitive function). TMT-
A = Trail Making Test A. TMT-B = Trail Making Test B. PLUS-M = Prosthetic
Limb Users Survey of Mobility (T-score ranging between 21.8 and 71.4,
higher score indicates greater mobility). AMP = Amputee Mobility
Predictor (Scale 0–47, higher scores indicate better mobility). N/A = not
applicable. Clinical data were compared using Student’s t-test. Sex was
compared using the chi-square test.
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Correlation analysis

Age was not significantly correlated with PFC activity in
any channels of all three walking conditions in both groups,
while age was correlated with F8W time and steps in all
conditions in persons with LLA (F8W time (r = 0.48 − 0.57
and p = <0.001 − 0.002); F8W steps (r = 0.41 − 0.53 and p =
.001 0.01)) and able-bodied controls (F8W time (r = 0.47 −
0.54 and p = .001 − 0.006); F8W steps (r = 0.42 − 0.51 and
p= .002− 0.02)), respectively. “Time since amputation”was
not significantly correlated with PFC activity or walking
performance in any of the walking conditions. For persons

with LLA, we found a significant negative correlation
between PFC activity during WUT and PLUS-M (ch 10:
r = −0.473; p < .011) and AMP (ch 18: r = −0.508, p < .003;
ch 20: r = −0.457, p < .011)

Discussion

The aim of the current study was to evaluate the cortical
activity and walking performance during different chal-
lenging walking conditions in persons with and without
LLA. The results partially confirmed our hypothesis. The

Figure 2. a, b, c. Bar charts of the mean PFC activation (Arbitrary Unit) with 95% confidence intervals (shown as light gray lines) for
each of the 20 channels in condition.
UW (Usual walking with self-selected walking speed), WCT (walking and carrying a tray with two cups filled with water) and WUT (walking
on uneven terrain), respectively, for both groups.

Table 2. Figure-of-eight Walk test (F8W) parameters for the participants.

Walking condition Variable
Persons with LLA

(N = 39)
Able-bodied controls

(N = 33) Mean difference
95% CI

of the difference

Between-groups
p-values

(Bonferroni adjusted)
Effect size
Cohen’s d

UW Time, s. 9.0 (2.0) 8.0 (1.9) .9 −.03–1.86 0.177 0.51
Steps, n. 13.8 (2.5) 12.6 (2.0) 1.2 .12–2.36 0.090 0.68

WCT Time, s. 10.6 (2.2) 9.4 (2.0) 1.2 .28–2.17 0.033 0.77
Steps, n. 15.8 (2.9) 14.3 (1.9) 1.5 .41–2.66 0.021 0.61

WUT Time, s. 10.1 (2.4) 8.6 (1.9) 1.4 .50–2.39 0.009 0.69
Steps, n. 15.0 (3.0) 13.1 (1.9) 1.9 .81–3.05 0.003 0.76

Values are means (SD). s. = seconds. n. = number. UW = Usual walking with self-selected walking speed. WCT = Walking and carrying a tray with two cups
filled with water. WUT = Walking on uneven terrain. Figure-of-eight Walk test (F8 W) parameters were compared and mean difference estimated using
linear mixed effects models. Bold numbers are significant values after Bonferroni adjustment for multiple tests. CI = confidence interval.
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results from the between-group comparison showed an
increased PFC activation with a medium effect size
(0.58 < d < 0.62) in persons with LLA compared with able-
bodied controls during UW, which was accompanied by
a non-significant difference in walking performance. In
the context of neural compensation, this suggests that
increased levels of brain activity might be necessary to
maintain walking performance and support mobility for
persons with LLA (Debaere et al., 2004; Holtzer et al.,
2015; Stern, 2009). The results suggest that persons with
LLA might have less capacity for processing other con-
current cognitive tasks like talking in a mobile phone, due
to the assumption that the brain capacity for information
processing is limited (Kahneman, 1973; Woollacott and
Shumway-Cook, 2002). This limitationmight increase the
risk of attentional overload during community mobility
and consequently increase the risk of falling (Bayot et al.,
2018) and reduce participation in social activities
(Gallagher, O’Donovan, Doyle, and Desmond, 2011;
Miller, Deathe, Speechley, and Koval, 2001).

It is interesting that the largest increase in PFC activity
for persons with LLA, in contrast to able-bodied controls,
was observed in channels 4 and 14 (Figure 2a–c) during all
three walking conditions. These channels roughly represent
the dorsolateral prefrontal area (dlPFC) (BA 9) in the left
and right hemispheres, respectively. Although the function
of the dlPFC is not fully understood, it appears to be
involved in the processing of sensory information and
may play a significant role during attention-demanding
tasks (Debaere et al., 2004; MacDonald, Cohen, Stenger,
and Carter, 2000). A possible explanation might be that
increased levels of sensory information processing in
dlPFC might be necessary to support mobility due to the
lack of sensorimotor inputs and outputs from and to the
prosthetic limb in persons with LLA (Knaepen et al., 2015)

The within-group results showed an increased PFC
activity during WUT, in comparison with UW, which
was accompanied by a significant decrease in walking
performance (F8W time) in both groups. Increased
activation of the PFC accompanied by a decrease in
walking performance might indicate neural inefficiency
rather than neural compensation (Stern, 2009). The
results suggest that the PFC networks assessed in this
study, might not be able to adequately support WUT
and consequently a reduction in performance occurs.
The results indicate that uneven terrain, which is an
environmental condition often faced during commu-
nity mobility, is a demanding activity for both able-
bodied persons and persons with LLA (Gallagher,
O’Donovan, Doyle, and Desmond, 2011; Morgan,
Hafner, and Kelly, 2017).

The results showed in addition that the difference in
PFC activation and walking performance between the

groups was not differentially affected by walking condi-
tions (i.e. the interaction term group x condition was non-
significant). Several studies have reported similar findings
that the addition of a secondary task during walking did
not affect persons with LLA in a different way compared
with able-bodied controls. (Lamoth, Ainsworth,
Polomski, and Houdijk, 2010; Morgan, Hafner, and
Kelly, 2016; Pruziner et al., 2019). Although individual
differences and large variability in PFC activity are pre-
sented in both groups related to how walking conditions
are handled, the results in the current study might suggest
that persons with LLA in comparison with able-bodied
controls use the same cognitive-mobility strategy in order
to cope with challenging walking conditions (Pruziner
et al., 2019; Stern, 2009).

Contrary to our hypothesis, between-group compari-
son of WCT and within-group comparison of UW and
WCT showed a non-significant difference in PFC activa-
tion. A possible explanation for the results may be due to
the “carrying a load” task. This task might be character-
ized as a complex vision-motor task (Bond and Morris,
2000) including both a motor task (“carrying the tray”)
and visual tasks (“looking at the cups to avoid spilling any
water” with deprivation of visual feedback by “not being
able to look at the ground”) (Woollacott and Shumway-
Cook, 2002). It has been reported that dual-task walking
with a visual taskmight not induce increased activation of
PFC in comparison with single-task walking (Beurskens,
Helmich, Rein, and Bock, 2014). This might explain the
non-significant difference in PFC activation between UW
and WCT in both groups in the present study. WCT
might induce activation in other deeper regions of the
brain (Hamacher et al., 2015; Yogev-Seligmann,
Hausdorff, and Giladi, 2008), which is not possible to
examine with fNIRS due to the limited penetration
depth of the fNIRS signals (Herold et al., 2017). The
results, therefore, agree with the literature (Clark, Rose,
Ring, and Porges, 2014; Lin and Lin, 2016; Mirelman
et al., 2014), that the type and complexity of the secondary
task influence PFC activation. Within-group analysis
revealed that both groups reduced the walking speed
and increased the number of steps during WCT com-
pared with UW and WUT. Reducing the gait speed as
a compensatory strategy when simultaneously perform-
ing a cognitive task has been reported in the literature in
both healthy older adults (Yogev-Seligmann, Hausdorff,
and Giladi, 2008) and persons with LLA (Hunter et al.,
2018). Since the instruction to focus on “not spilling any
water” was given, the participants might not have prior-
itized the walking performance (Yogev-Seligmann,
Hausdorff, and Giladi, 2012). In the current study, walk-
ing performance involved curved-path walking (F8W)
and increasing the time and number of steps while
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turning has been reported to increase the risk of falling in
persons with LLA (Dite, Connor, and Curtis, 2007).

Only a limited number of channels showed significant
differences between the groups, although almost all channels
during all thewalking conditions showed an increase in PFC
activation for persons with LLA in comparison with able-
bodied controls. The non-significant results could be due to
the advanced level of experience of prosthetic users in the
current study (Pruziner et al., 2019), as the mobility mea-
sures (AMP and PLUS-M) showed that persons with LLA
had a high mobility level (Gailey et al., 2002; Hafner et al.,
2016a). Prosthetic experience and good mobility might pos-
sibly result in lower attentional demands due to motor
learning and sensorimotor adjustments that occur during
rehabilitation (Geurts et al., 1991; Pruziner et al., 2019;
Yogev-Seligmann, Hausdorff, and Giladi, 2012). The results
from the correlation analysis between PFC activity during
WUT and the mobility scores (PLUS-M and AMP) showed
that high levels of mobility are associated with lower atten-
tional demands during walking. However, the results did
not show any significant correlations between “time since
amputation” and PFC activity in any of the walking condi-
tions. The explanation might be due to the long experience
of most of the participants, as 88% hadmore than 5 years of
experience as prosthetic walkers. An association between
PFC activity and “time since amputation”might be observed
in prosthetic users with less experience and lower mobility
level compared to the participants in the present study.

In addition, power analysis based on PFC activation
between groups may have revealed the need of a higher
sample size to gain adequate statistical power. The large
variability in PFC activation, which is also reported in
previous fNIRS studies (de Lima-pardini et al., 2017;
Perrey, 2014; Quaresima et al., 2009), might support
this notion. Although we did increase the robustness of
the analysis by increasing the power to 90% and the
sample size to above 30, the study may have had insuf-
ficient statistical power to detect differences with
respect to the results of PFC activation.

Limitations

The present study consisted of relatively active persons
with LLA of non-diabetic or non-vascular etiology. They
all walked without an assistive device, which might limit
the generalizability of the results. The sample might not be
representative of all prosthetic users, especially those with
amputation due to vascular causes or persons with a lower
mobility level (e.g. due to older age or comorbidities). In
addition, there was a large age range of participants in
both groups, but there was no significant difference
between the groups related to age. Baseline cognitive
function was only assessed using MoCA and TMT (A

and B) which are screening tools to assess cognition and
therefore might provide limited information about cogni-
tion. Spatio-temporal parameters of gait were not mea-
sured and might have provided additional information
about walking performance and the quality of gait
(Holtzer et al., 2015; Morgan, Hafner, and Kelly, 2017).
During the preprocessing of fNIRS signals, we controlled
for heart rate, but not for other systemic changes like
blood pressure or respiratory rate, which might have
changed during the walking conditions. Thus, we cannot
exclude the influence of these confounding factors
(Tachtsidis and Scholkmann, 2016). Furthermore, we
used a laboratory setting for the examination, which
does not replicate ecologic environmental dimensions
and might have influenced the cognitive processes.

Clinical implications

The results of the present study indicate the importance of
addressing walking limitations in the context of environ-
mental challenges that persons with LLA face in their
daily lives. Developing rehabilitation interventions for
persons with LLA with a focus on dual-task abilities in
complex environments might reduce the attentional
demands over time and improve safety, increase commu-
nity participation and increase quality of life.

Conclusion

Persons with LLA showed an increased PFC activation
compared with able-bodied persons during UW and
WUT. The activation of PFC seems to depend on the
nature and complexity of the task and was not signifi-
cantly different between groups in WCT. Persons with
LLA had reduced walking performance during WCT
and WUT compared to able-bodied controls. However,
the challenging walking conditions did not affect PFC
activation and walking performance in a different way
in persons with LLA compared with able-bodied con-
trols. This suggests that persons with LLA have
increased attentional demands during complex walking
but use the same cognitive-mobility strategy during
challenging walking conditions as able-bodied persons.
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