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ABSTRACT

In this quantitative study, the relationships between high school students’ preference for
solution methods, geometry performance, task difficulty, and gender were investigated. The data
was collected from 161 high school students from six different schools at a county located in
central Florida in the United States. The study was conducted during the 2013-2014 school year.
The participants represented a wide range in socioeconomic status, were from a range of grades
(10-12), and were enrolled in different mathematics courses (Algebra 2, Geometry, Financial
Algebra, and Pre-calculus). Data were collected primarily with the aid of a geometry test and a
geometry questionnaire. Using a think-aloud protocol, a short interview was also conducted with
some students.

For the purpose of statistical analysis, students’ preferences for solution methods were
quantified into numeric values, and then a visuality score was obtained for each student.
Students’ visuality scores ranged from -12 to +12. The visuality scores were used to assess
students’ preference for solution methods. A standardized test score was used to measure
students’ geometry performance. The data analysis indicated that the majority of students were
visualizers. The statistical analysis revealed that there was not an association between preference
for solution methods and students’ geometry performance. The preference for solving geometry
problems using either visual or nonvisual methods was not influenced by task difficulty. Students
were equally likely to employ visual as well as nonvisual solution methods regardless of the task
difficulty. Gender was significant in geometry performance but not in preference for solution
methods. Female students’ geometry performance was significantly higher than male students’

geometry performance. The findings of this study suggested that instruction should be focused
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on incorporating both visual and nonvisual teaching strategies in mathematics lesson activities in

order to develop preference for both visual and nonvisual solution methods.
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CHAPTER ONE: INTRODUCTION

Preference and Performance in Mathematics

Preferences have an important implication in educational theory and practice (Stenberg &
Grigorenko, 1997). In this study, preference refers to an individual’s preferred and habitual
approach to organizing, representing, and processing information, which subsequently affects the
way in which an individual perceives and responds to ideas, events, or problems (Riding &
Rayner, 1998). Preference is also called cognitive styles. Researchers have identified various
types of cognitive styles, but in the domain of mathematics education, the verbalizers and
visualizers continuum is the most widely accepted (Krutetskii, 1976).

Krutetskii (1976), a Russian scholar, laid a foundation for the verbalizers and visualizers
continuum for the teaching and learning of mathematics. He identified two modes of thought or
ways of processing mathematical information: verbal-logical and visual-pictorial. He contended
that everyone is endowed with these two modes of thought. Verbalizers use verbal-logical modes
of thought and visualizers employ visual-pictorial modes of thought while attempting to learn
mathematical ideas and concepts or do mathematical tasks.

Krutetskii (1976) investigated the relationships between mathematical abilities and
spatial abilities based on a study of several gifted students. According to Krutetskii, students can
be placed in a continuum with regard to their preference for thinking and correlation between the
two modes of thought. They belong to one of three categories: (a) visualizers (geometric), who
have a preference for the use of visual solution methods, which involve graphic representation
(i.e., figures, diagrams, and pictures); (b) verbalizers (analytic), who have a preference for the
use of nonvisual solution methods, which involve algebraic, numeric, and verbal representation;

and (c) harmonics (mixer), who use visual and verbal methods equally.



Based on the Krutetskii (1976) framework, several research studies have been conducted
which examined the relationships between students’ preferences for solution methods, and
mathematical performance (Battista, 1990; Haciomeroglu, Aspinwall, & Presmeg, 2010;
Krutetskii, 1976; Moses, 1977; Suwarsono, 1982). For example, researchers attempted to find
the correlation between preference for solution methods and mathematical performance. What
kind of solution methods an individual uses and how the method is associated with mathematical
performance have been of interest to many researchers in the mathematics education field.

Krutetskii (1963) categorized low-achieving students into different categories and
investigated the factors behind their poor performance. He suggested that high-level
development of analytical thinking does not determine mathematical thinking; however, low
development of analytical thinking does result in an incapacity for mathematics. Krutetskii
(1976) further contended that there is a correlation between the ability to visualize abstract
mathematical relationships and the ability to make sense of spatial geometric concepts. However,
these are not the essential components that determine students’ mathematical abilities. He further
stated that strengths or weaknesses of analytical or visual thinking do not determine the extent of
students’ mathematical giftedness; however, they determine its type. A student can be
mathematically capable with different correlations between verbal-logical and visual-pictorial
modes of thinking. In fact, it is the correlation between the two modes of thinking—verbal-
logical and visual-pictorial—that determines each student’s category (analytical, geometric, and
harmonic).

Krutetskii’s study (1976) also revealed a correlation between the verbalizers and success
in learning algebra and, similarly, between the geometric type and success in learning geometry.

However, Krutetskii further contended that the classification of verbalizers and visualizers



should not be regarded as a classification of thinking according to the subject relationships
(school subject—algebra and geometry). In fact, the analytic cast of mind can be shown in
geometry and geometric type can be shown in algebra.

Spatial ability is defined as the ability to generate, retain, retrieve, and transform well-
structured visual images (Lohman, 1996). It also refers to skill in representing, transforming,
generating, and recalling symbolic, non-linguistic information (Linn & Petersen, 1985).
Krutetskii contended that spatial ability does not determine students’ geometric performance; he
documented many cases in which students who showed good spatial ability were poor in
geometry performance. Moreover, he contended that a well-developed spatial ability does not
imply that students will use it while attempting mathematical tasks. For example, students may
be able to solve a problem by visual methods; however, they may not prefer to solve it using
visual methods. Several research studies have been conducted to examine the relationships
between the preferences for solution methods and spatial ability; however, they revealed that
there was little or no correlation between preferences and spatial ability (Haciomeroglu, Chicken,
& Dixon, 2013; Hagarty & Kozhevnikov, 1999; Kozhevnikov, Hagarty, & Mayer, 2002; Moses,
1977; Lean & Clements, 1981; Suwarsono, 1982). Presmeg (1985) also pointed out the same
issues: spatial tests may be solved by using analytic solution methods, or students with good
spatial ability may not prefer to use visual solution methods. Reffering the work of Wattanawha
and Clements, Clements (1984) reported that mathematically gifted students had a strong
preference for analytic methods (nonvisual solution methods) on space visualization tests.
Therefore, for this study spatial ability will not be used to measure students’ geometry
performance; rather, preference for solution methods will be the focus. One of the main purposes

of this study is to examine the relationship between students’ preference for solution methods



and their geometry performance.
Solution Methods and Preference

Research shows that visual and verbal (nonvisual) methods both predominantly used
solution methods while attempting mathematical tasks (Janvier, 1987; Krutetskii, 1976; Lesh,
Post, & Behr, 1987). Many researchers have investigated students’ preferences for solution
methods and their relationships to mathematical performance (Gorgorio, 1988; Haciomeroglu,
2012; Lean & Clements, 1981; Lowrie & Kay, 2001; Moses, 1977; Presmeg, 1986b). Various
distinctions have been made between visual and nonvisual solution methods.

Presmeg (1986) stated that a visual solution method is one that involves visual imagery,
with or without a diagram, even if algebraic methods are also employed. Visual imagery in
solution methods involves any kind of graphic representation (diagrams, figures, and visual
representations), either on paper or in the head of students. Krutetskii (1976) referred to these
two methods as visual and mental solution methods. However, Suwarsono (1982) used the term
mathematical visuality to describe solution methods. He stated that mathematical visuality is the
degree to which someone prefers to use a visual method when attempting mathematical problems
that can be solved in both visual and nonvisual ways. When students use either given diagrams
and figures or they draw diagrams and figures or visualize diagrams and figures in their head
while attempting mathematical tasks, it is considered to be a visual solution method.

In nonvisual solution methods (verbal), the reasoning is conducted purely on the basis of
the processing or manipulation of verbal and mathematical statements, and these manipulations
are performed using the rules of language and mathematics (Suwarsono, 1982). Nonvisual
solution methods do not involve visual imagery (Presmeg, 1986b). Thus, algebraic, numeric, and

verbal representations have fundamental roles in nonvisual solution methods. A nonvisual



solution method is one that involves analytic reasoning while attempting mathematical tasks. By
analytic reasoning, the researcher means employing mathematical formulae, rules, postulates,
axioms, conjectures, and so forth while students attempt to solve mathematical tasks. Students do
not use any kind of diagrams or figures; they do not visualize them when attempting
mathematical tasks in nonvisual solution methods. Despites of using different terms for two
types of solution methods, the research will used visual and nonvisual solution methods for the
purpose of this study.

Several research studies examined the relationships between preferences for solution
methods, gender, and mathematical performance but without conclusive findings (Battista, 1990;
Fennema, 1979; Fennema & Carpenter, 1981; Galindo, 1994; Haciomeroglu, Chicken, & Dixon,
2013; Moses, 1977; Suwarsono, 1982). For example, Lowrie and Kay (2001) suggested that
visual solution methods are positively correlated with mathematics performance while Lean and
Clements (1981) claimed that nonvisual solution methods are positively correlated with
mathematics achievement.

Preferences for solution methods are also associated with difficulty levels of the
mathematics problems (Haciomeroglu, 2012; Lowrie, 2001; Lowrie & Kay, 2001). As the degree
of difficulty of the mathematics problems change, students also alter their preferences. For
example, students were more likely to use visual methods than nonvisual methods to solve
difficult problems (Lowrie & Kay, 2001). Haciomeroglu (2012) also found that as task difficulty
increased, the number of visual solution methods (correct to incorrect) increased significantly,
supporting the conclusions of Lowrie and Kay (2002). On the other hand, some studies revealed
that there is no significant relationship between task difficulty and preference for solution

method (Lowrie, 2001).



Gender, Preference, and Mathematics Performance

The relationship between gender, preference for solution methods, and mathematical
performance has been of great interest to researchers for many decades. A substantial number of
research studies were done in this area and many of them revealed that generally male students
outperform female students (Battista, 1990; Fennema, 1974; Fennema & Sherman, 1978; Guay
& McDaniel, 1977; Maccoby & Jacklin, 1974; Matteucci & Mignani, 2011). However, several
research studies that have been done in this area also assert that gender is independent of
mathematical performance (Galindo, 1994; Haciomeroglu & Chicken, 2012). Similarly, The
Trends in International Mathematics and Science Studies (TIMMS) also revealed inconsistent
relationships between gender and geometry performance. Gender differences in geometry
performance were evident in some countries; however, other countries showed no gender
difference in geometry performance (Neuschmid, Barth, & Hastedt, 2008). Some studies,
however, did not find relationships between gender and mathematics performance (Hall & Hoff,
1988; Penner & Paret, 2008). Hyde, Fennema, and Lamon (1990) also reported that there was no
gender difference in students’ arithmetic or algebra performance in elementary and middle
school. Thus, findings are not conclusive regarding gender, preferences, and performance.

Gallagher and De Lisi (1994) reported gender difference both in preference for solution
methods and mathematics performance. Fennema, Carpenter, Jacobs, Franke, and Levi (1998)
reported that there was no gender difference in mathematics performance, but that gender
difference prevailed in solution methods. On the other hand, some studies did not find gender
difference in preference for solution methods and mathematics performance (Galindo, 1994;
Haciomeroglu & Chicken, 2012; Haciomeroglu, Chicken, & Dixon, 2013; Lowrie & Kay, 2001).

Hyde, Fennema, and Lamon (1990) indicated that there was a gender difference in arithmetic or



algebra performance; male superiority in geometry was small, and the tests with mixed content
showed the largest gender differences.
Representation

Representation is an important topic for this study because students employ various types
of representations in their solution methods. The fact is that visualizers have preference for using
graphic representations while verbalizers have preference for employing algebraic, numeric, and
verbal representations. Kaput (1987b) stated that “representation and symbolization are the heart
of the content of mathematics and are simultaneously at the heart of cognitions associated with
mathematical activity” (p. 22). The role of representation in mathematics is supported by the
National Council of Teachers of Mathematics (NCTM, 2000), which includes representation as
one of the process standards. The Common Core State Standards for Mathematics (CCSM) also
emphasize the role of representation. For example, the document states that students should be
able to analyze functions using different representations (Council of Chief State School Officers
& National Governors Association, 2010). In fact, representation acts as a tool for manipulation,
communication, and conceptual understanding of mathematical ideas (Zazkis & Liljedahl, 2004).
Researchers contend that representation plays an important role and its use is fundamental in
teaching and learning mathematics (Arcavi, 2003; Goldin, 1987; Janvier, 1987; Kaput, 1987a;
Roubicek, 2006; Zazkis & Liljedahl, 2004).

A representation is a sign or combination of signs, characters, objects, diagrams, or
graphs, and it can be an actual physical product or mental process (Goldin, 2001). In fact, it may
be a combination of something expressed on paper, existing in the form of physical objects, and
a constructed arrangement of ideas in one’s mind (Janvier, 1987). Researchers suggested various

types of representational systems (Goldin, 2001; Janvier, 1987; Lesh, Post, & Behr, 1987).



Gleason and Hallett (1992) proposed the rule of three which consists of three types of
representation: (a) symbolic, (b) graphic, and (¢) numeric. The rule of three was modified to
become the rule of four, which includes four types of representation: (a) graphic, (b) numeric, (c)
algebraic, and (d) verbal. The rule of four is one of the most widely used and commonly
accepted classifications of representation in mathematics education.

Rationale

Some students prefer to use visual solution methods based on the visual-pictorial thought
process, while others like to use nonvisual solution methods based on the verbal-logical thought
process. Some research studies focused on visual solution methods, while others emphasized
nonvisual solution methods. Some research studies showed that students need to have both
problem-solving skills—visual and nonvisual solution methods—for successful mathematical
performance. For instance, the balance between visual and analytical reasoning ability is likely to
be an important factor, particularly in geometry performance (Battista, 1990). In fact, the
research findings related to preferences for solution methods and mathematical performance are
not conclusive (Haciomeroglu et al., 2013). Thus, more research studies would help to find
conclusive findings in this regard.

Gorgorio (1998) contended that solution methods can be shared and therefore taught,
while preference is an individual trait. For instance, although students in the same class get the
same instruction in problem-solving mathematics, there is much variance in their solution
methods (Hegarty & Kozhevnikov, 1999). Gorgorio further stated that the study of preferences
can contribute not only to the enlargement of theory but also to the solution of the actual
problems of teaching mathematics. Thus, exploring the relationships between preferences and

performance will provide insights and ideas to mathematics teachers, researchers, and educators



when developing a mathematics curriculum, as well as planning effective instructional strategies
(Galindo, 1994). Moreover, rigorous study in this area will help elucidate which solution
methods students use and the difficulties they encounter when solving geometry tasks.

The correlation between gender and mathematical performance has been of great interest
for researchers for many decades with several studies conducted regarding students’ gender and
its impact on preferences and mathematical performance. However, the related research studies
indicated inconclusive findings in this area as well. For instances, some studies identified that
gender is related with preference for solution methods and mathematical performance (Fennema
& Sherman, 1978; Gallagher & De Lisi,1994) while other studies revealed that gender is
independent of preference for solution methods and mathematical performance (Galindo, 1994;
Haciomeroglu & Chicken, 2012; Haciomeroglu, Chicken, & Dixon, 2013; Lowrie & Kay, 2001).
Some studies found gender difference on preference for solution methods but not on
mathematical performance (Fennema, Carpenter, Jacobs, Franke, & Levi, 1998). Moreover,
Fennema and Sherman (1978) stated that “in view of negative sociocultural effect of the belief
that female do not do well in mathematics; authors and journal editors should be more
responsible in reporting sex-related difference in mathematics achievement” (p. 202). Thus, more
research studies in this area will help reach more general agreement regarding sex-related
differences in mathematics achievement.

From a didactic perspective, it is important to know students’ preferences for solution
methods because students’ preferences may stimulate teachers’ awareness that students’
problem-solving methods may be different from their own (Gorgorio, 1998). For instance,
teaching style might be a learning obstacle for students who use problem-solving methods that

are different from those of their teachers, their manuals, or their textbooks. Thus, understanding



preference and performance helps in the design of course content and teaching approaches with a
consideration for the differences in the learning environment (Sevimli & Delice, 2011).
Moreover, comparing students’ differences in geometry performance can also help us better
understand how all students learn geometry (Battista, 1990). Therefore, more research studies
can contribute to add more didactical and pedagogical knowledge.

The preferences for solution methods are also associated with difficulty levels of the
mathematics problems (Haciomeroglu, 2012; Lowrie, 2001; Lowrie & Kay, 2001); however,
research studies have shown inconclusive findings. Therefore, further studies are required to find
more concrete results.

The Mathematical Processing Instrument (MPI) developed by Suwarsono (1982) has
been used extensively to examine the verbalizer-visualizer continuum, preference for solution
methods, and mathematical performance. However, the MPI is limited to algebraic word
problems and was designed for middle school students. Thus, conducting similar study but in a
different domain will provide broader perspectives. Moreover, the balance between verbal-
logical and visual-pictorial processing may be a key variable in investigating students’ problem-
solving abilities and strategies in geometry (Battista, 1990). Thus, it is worthwhile to investigate
the verbalizer-visualizer continuum for high school geometry.

Representation is fundamental in teaching and learning mathematics (NCTM, 2000).
Mathematics textbooks contain wide varieties of representations; however, limited attention is
given to the effects of representations. As a result, children are confused by various types of
representations while learning mathematics (Dufour-Janvier, Bednarz, & Belanger, 1987). Kaput
(1987) stated that there is a common tendency to undermine the role of representation in teaching

and learning mathematics as well as in the mathematics curriculum. Thus, the knowledge of
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students’ usage of different types of representations during problem solving can help in the
design of suitable educational resources and the development of effective teaching strategies.

Students employ different modes of representation while attempting to solve mathematics
problems and the representations may have an influence on their solution methods, because each
mode of representation has different characteristics (Jane, 1996). For instance, some
representations, such as graphic, are visual, while others, such as verbal representations, are
nonvisual. Larkin and Simon (1987) suggested that graphic representations help learners to
recognize features easily and help to make inferences directly. Moreover, pictures, diagrams, and
similar visual representations can give learners access to knowledge and skills that are
unavailable from less visual representations (Zhang, 1997). However, graphic representation is
open to interpretation and can reveal as well as can hide necessary information (Mathai &
Ramdas, 2006), which might influence students’ solution methods and mathematical
performance. Thus, there are controversies concerning the role of representation. In fact, most
researchers contend that being able to use both visual and nonvisual representation and being
able to translate between them will result in a more in-depth understanding of mathematics (De
Jong & van Joolingen, 1998; Lesh et al., 1987). Further research will help to address issues
pertinent to the effectiveness of representation.
Purpose of the Study

How students process mathematical information (verbal-logical or visual-pictorial) can
affect their solution methods (Galindo, 1994; Haciomeroglu et al., 2013; Lowrie & Kay, 2001;
Krutetskii, 1976; Moses, 1977; Suwarsono, 1982). In-depth knowledge about what kind of
solution methods students prefer to use and what difficulties they encounter when solving

geometry tasks can contribute not only to theoretical knowledge but also to the solution of the
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actual problems in learning mathematics (Gorgorio, 1998). Thus, one of the main purposes of
this study is to examine the relationship between preference for solution methods and
performance on geometry.

The way in which mathematical ideas are represented is fundamental to how students can
understand and use those ideas; using and interpreting representations in appropriate ways are
essential parts of learning and doing mathematics (NCTM, 2000). Geometry, in particular, is the
study of the visualization, drawing, and construction of geometrical objects (Usiskin, 1987).
Despite the fact that geometry problems may require more drawings and figures, this study also
intends to analyze how students use different modes of representation while attempting to solve
the problems.

An extensive number of studies have examined the verbal-visual continuum in
mathematics based on Suwarsono’s (1982) Mathematical Processing Instrument (MPI). The MPI
was originally designed for middle school students using algebraic word problems. Thus, this
study also aims to examine the verbal-visual continuum and students’ preferences for solution
methods in the domain of high school geometry. There can be various factors that may influence
students’ preferences for solution methods. For example, one could be teachers’ teaching style.
However, this study is focused on testing situations because a geometry test will be used to
examine students’ preferences for solution methods. The researcher poses the following research
questions:

1. Are preferences for solution methods associated with high school students’ geometry
performance?
2. Are the degrees of difficulty of geometry tasks associated with students’ preference for

solution methods?
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3. Do males and females differ in preference for solution methods and geometry
performance after controlling for course assignments and grade levels?
Definition of Terms
For the purpose of the study, the following terms based on the existing literature and
background will be used.
Imagery: Visual representations of things or events, available even in their absence that depicts
visual and spatial information inside the head.
Nonvisual Solution Method (NSM): A solution method in which students use mathematical
formulae, rules, axioms, and postulates, while attempting mathematical tasks.
Representation: A combinations of signs, characters, symbols, and any kind of diagrams and
pictures that can be used to present mathematical ideas, concepts, and problems.
Spatial Ability: The ability to see, inspect, generate, retrieve, and manipulate the given visual
situation.
Visual Solution Method (VSM): A solution method in which students use given diagrams and
figures, or draw diagrams and figures, or visualize diagrams and figures in their mind while
attempting mathematical tasks. The diagrams and figures play a dominant role while attempting

mathematical tasks.
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CHAPTER TWO: LITERATURE REVIEW

The literature review for this study consists of four parts: (a) a review of modes of
thought and solution methods; (b) a review of imagery and spatial ability; (c) a review of
preference for solutions methods, gender, and students’ mathematical performance; and (d) a
review of representation in mathematics education.

Modes of Thought and Solution Methods

Krutetskii (1976) conducted a comprehensive study on gifted students’ cast of mind in
connection with mathematical abilities. He identified two modes of processing mathematical
information: verbal-logical and visual-pictorial, stating that everybody is endowed with these
two components of thinking. In the context of mathematics, students attempt to solve
mathematical tasks or learn mathematics with the aid of formulae, logical reasoning, and so
forth, without using the visual images in the verbal-logical mode of thought, whereas they
process mathematical information based on visual images in the visual-pictorial mode of
thought. He further suggested that verbalizers employ the verbal-logical component while
visualizers use the visual-pictorial component.

Krutetskii (1976) contended that every person has two components of thinking. He also
identified two propositions: (1) the two components, the ability to visualize abstract
mathematical relationship and the ability to use spatial geometry concepts, are not necessary
components in the structure of mathematical ability; and (2) the presence or absence of these two
components does not determine the extent of mathematical giftedness, but the components do
determine its type. He contended that “A pupil can be mathematically capable with a different
correlation between visual—pictorial and the verbal-logical components, but the given correlation

determines what type the pupil belongs to” (p. 315).
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According to Krutetskii (1976), the level and quality of schoolchildren’s mathematics
achievements are determined by the level of development of each thinking component and by the
interrelation between these two thinking components. Based on the correlation between verbal-
logical and visual-pictorial components, different structures of mathematical abilities and casts of
mind are formed for successful mathematical performance. In fact, the levels of mathematical
abilities are largely determined by a verbal-logical component, while the types of mathematical
giftedness are determined largely by a visual-pictorial component. Moreover, in the case of the
visual-pictorial component, it is not only the ability to use the component but the preference for
its use that determines the type of mathematical giftedness of an individual. Krutetskii observed,
from his analysis of children’s thinking processes while they were attempting mathematical
problems, that mathematically weak students always had a very weak verbal-logical component,
whereas mathematically capable students always had a very strong verbal-logical component. He
claimed that the visual-pictorial component merely affects the nature of a student’s mathematical
ability but not its level, because Krutetskii found some students in his study were very capable in
mathematics but had very weak visual-pictorial components. Thus, he associated the preference
for solution methods with the visual-pictorial component, while mathematical ability would be
associated with the verbal-logical component.

Following the work of Krutetskii, Moses (1977) placed students in a continuum with
regard to their preference for solution methods for solving mathematical problems. Students
belong to one of the three categories: (a) analytic (a preference for manipulating words and
sentences), (b) geometric (a preference for manipulating images), and (c) harmonic (a preference
for using both analytic and geometric methods equally). The analytic type operates mathematical

concepts and ideas easily with abstract schemes without a need for visual supports for visualizing
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objects or patterns in problem solving, even when a given mathematical task demands visual
schemes. These students always attempt to process mathematical information via a verbal-logical
approach. However, the geometric type attempts mathematical tasks with the aid of graphic
representations. According to Krutetskii, the geometric type students feel a need to interpret
visually an expression of an abstract mathematical relationship, and they always try to use
graphic representations even when the problem can be done easily using nonvisual solution
methods. Students who belong to the visualizer type process the mathematical information with
the help of a visual-pictorial component. The third type is called harmonic. The majority of
capable students in Krutetskii’s research study belonged to the harmonic group. Students who
belong to this group are successful at implementing both visual and nonvisual solution methods
while solving mathematical problems. Spatial concepts are well developed in harmonic types.
Krutetskii further classified the harmonic into two subtypes: abstract-harmonic and pictorial-
harmonic. Both subtypes can depict mathematical relationships equally well by visual pictorial
means; however, the abstract-harmonic subtype feels no need to do so and does not strive to use
visual images, whereas the pictorial-harmonic subtype does feel a need and often relies on
graphic schemes while attempting mathematical tasks.

Following Krutetskii’s (1976) work, Suwarsono (1982) also classified students into three
groups based on the preference for solution methods. He, however, slightly modified the name of
the groups. Suwarsono divided students into verbalizers, visualizers, and mixers. He also called
the visual method and nonvisual method of processing mathematical information what Krutetskii
called the verbal-logical method (mental method) and visual-pictorial method (visual method). In
fact, there are no fundamental differences between Krutetskii and Suwarsono’s classification.

The analytic and verbalizers are the same. Similarly, geometric and visualizers as well as
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harmonic and mixers are also the same. Suwarsono called visual and nonvisual methods of
solving mathematical tasks what Krutetskii called visual and verbal methods. However, for the
purpose of this study, the researcher uses verbal solution method (verbalizer), visual solution
method (visualizer), and harmonic method (use both verbal and visual solution method).

Kozhevnikov, Hegarty, and Mayer (2002) suggested that the verbalizer-visualizer
continuum needs to be revised to include two groups of visualizers. They stated that visualizers
are not one homogenous group with respect to their spatial abilities. Some of them have a low
spatial ability and some of them have a high spatial ability. They called these groups of students
as iconic type (low spatial ability) and spatial type (high spatial ability). Kozhevnikov, Kosslyn,
and Shepard (2005) even objected to the verbalizer-visualizer dichotomy. They suggested three
types of groups: verbalizers, object visualizers, and spatial visualizers. Object visualizers are
more accurate and faster in generating static objects, whereas spatial visualizers are good at
manipulating dynamic images.

Why students solving mathematical problems prefer one solution method over another
when multiple solution methods are possible could be an important field of investigation in
mathematics education. In this regard, Krutetskii (1976) laid a foundation for the distinction
between preferences and abilities in relation to doing mathematics tasks. He contended that
ability and preference are not the same thing. For example, students might have the ability to
solve a problem with visual methods, but they might not prefer to solve it by visual methods;
rather, they might prefer to solve it by a verbal method. Similarly, students might have the ability
to solve a problem by a verbal method, which does not necessarily imply that they prefer to solve
it by the verbal method. Thus, as far as the verbal-logical and visual-pictorial frameworks are

concerned, students demonstrate different preferences for solution methods while attempting
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mathematical tasks.

Verbal and visual are the predominantly used solution methods in the domain of
mathematics. Even though researchers may have used different terms to represent these solution
methods, most of the researchers, if not all, share common concepts about verbal and visual
solution methods. Many researchers have investigated preferences for verbal and visual solution
methods while attempting mathematical tasks (Haciomeroglu, 2012; Lean & Clements, 1981;
Lowrie & Kay, 2001; Moses, 1977; Presmeg, 1986b). Various distinctions are made between
verbal and visual solution methods. Presmeg (1986b) stated that:

A visual solution method is one which involves visual imagery, with or without a

diagram, as an essential part of the solution method; even if algebraic methods are also

employed while verbal solution method involves no visual imagery (p. 42).

Based on the use of visual imagery, Presmeg (1986b), Suwarsono (1982), and Moses
(1977) defined and explained mathematical visuality— the extent to which a person prefers to
use visual imagery when attempting mathematical problems. Moses stated that degree of
visuality refers to the extent to which the subject uses visual solution processes to solve the given
mathematical problems. In fact, the visual approach involves the act of visualization, which
consists of any mental constructions and/or transformation of objects or processes (Suwarsono,
1982). In general, visualizers primarily rely on graphs, pictures, or symbols. In contrast,
verbalizers attempt to solve problems by relying on rules, formulas, and algorithms (Moses,
1977).

It is worthwhile to mention that visual solution methods may also use some verbal and
mathematical symbols, verbal statements, and mathematical statements. The fact is that

diagrams, pictures, or similar constructions need to be labeled or they require verbal description
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in order to communicate about the constructions. Verbal and mathematical symbols are merely
the shorthand for ordinary language and mathematical language (Skemp, 1987). However, the
role of diagrams and figures is significantly important, and without using diagrams and figures it
is not possible to solve problems using visual solution methods, regardless of whether the answer
is correct or incorrect. In summary, in visual solution methods students use given diagrams and
figures, or draw diagrams and figures, or visualize diagrams and figures in their head while
attempting mathematical tasks. The diagrams and figures play a dominant role in visual solution
methods to find the answer while attempting mathematical tasks.

A verbal solution method is one that involves analytic reasoning while attempting
mathematical tasks. Analytic reasoning implies the use of mathematical formulae, algebra,
arithmetic, rules, postulates, axioms, conjectures, and so forth while attempting mathematical
tasks. With this method, students do not use diagrams and figures. Suwarsono (1982) stated that
in verbal solution methods, the reasoning is conducted purely on the basis of the processing or
manipulation of verbal and mathematical statements and these manipulations are performed
using the rules of language and mathematics. Zazkis, Dubnisky, and Dautermann (1996) stated
that verbal solution methods involve an act of any mental manipulation of objects with or
without the aid of symbols. Regardless of the different terms used to describe solution methods,
the researcher decided to use verbal and visual solution methods for this study.

Imagery
Though imagery is not a focus of this study, it is relevant to provide a brief description
about imagery because it is associated with students’ preference for visual solution methods.
Imagery involves students visualizing mathematics problems in their head while attempting the

problems. The term imagery can refer to mental imagery, visual imagery, or simply imagery.
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Most researchers agree that visual imagery plays an important role in mathematics because
imagery enhances intuitive views and understandings in many areas of mathematics (Krutetskii,
1976; Suwarsono, 1982; Usiskin, 1987). Despite variations in definitions and interpretations
noted when performing this literature review, scholars have been able to derive a common
definition and meaning of imagery. Suwarsono (1982) stated that

Clearly, several important controversies concerning the nature of imagery have not been

resolved. For example, such questions as “What exactly is a visual image?” “What are the

characteristics of images?”” and “How are images stored in the memory?”” have not been
answered satisfactorily. Despite such problems, recent research enables several
statements about imagery and mental images to be made with confidence, and these will

form the basis for the research involving imagery in the present thesis (p. 38).

Visual imagery is defined as a mental construct depicting visual and spatial information
(Presmeg, 1986a). The visual imagery occurs inside the mind in absence of objects when our
sense organs (eyes, ears, tongue, nose, and skin) perceive them (Suwarsono, 1982). Further,
according to Suwarsono, visual imagery is meant to be a pictorial representation, either on paper
or in the mind. For example, when we read the word cow, we can visualize the cow in our mind
as a mental image, which could be different from the actual cow we see. Thus, mental imagery is
an ability to form images of things or events even in the absence of the objects or events. This
means that students may use imagery while attempting geometry problems because they do not
want to draw figures and diagrams; rather, they may prefer to visualize them in their head.
Suwarsono further contended that even if pictorial representations are drawn on paper, visual
imagery is also involved since before the pictorial representations are put on paper, students first

must imagine the representational system in their mind. Imagery also refers to a representation of

20



the visual appearance of an object, such as its shape, color, or brightness (Hegarty &
Kozhevnikov, 1999). Clements (1982) defined visual imagery as creating a “picture in the mind”
(p. 36) whereas Presmeg (1986b) defined it as “a mental scheme depicting visual or spatial
information” (p. 297).

Individuals use a wide range of visual imagery in the teaching and learning of
mathematics. In her research, Presmeg (1986a, 1986b) refined Suwarsono’s Mathematical
Processing Instrument (MPI). She divided research instruments into three parts: A, B, and C.
Parts A and B were designed for high school students, whereas part B and C were intended for
mathematics teachers. Presmeg (1986b) also conducted a study with only visual students (N =
54) while they were solving problems in algebra, trigonometry, and geometry. She found that
students’ use of imagery was widespread in mathematical reasoning, but students themselves
were unaware of using visual imagery in their reasoning. Based on the study, Presmeg identified
five different kinds of mental imagery: (a) concrete pictorial imagery; (b) pattern imagery; (c)
memory images of formula; (d) Kinesthetic imagery; and (e) dynamic imagery. Following the
work of Lakoff (1987), Wheatley (1998), however, differentiated imagery into rich images and
images schemata. Rich images are static, fixed, and contain much visual details, whereas image
schemata represent spatial relationships and can be transformed in various ways.

Presmeg (1986a, 1986b, 1992) also found that concrete pictorial imagery was the most
used while the dynamic imagery was the least used during attempting mathematics tasks.
Presmeg contended that the use of concrete pictorial imagery may focus the reasoning on
irrelevant details that take the students’ attention from the main elements in the original problem
representation; however, other kinds of imagery play more positive roles. Presmeg stated that the

most important role in mathematical problem solving is pattern imagery, in which concrete
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details are disregarded and pure relationships are portrayed. However, Clements (1981)
contended that the imagery vividness factor was the most important one. The fact is that during
the problem solving process, students do not necessarily stay with only one type of visual
imagery; rather, they may use different types of imageries based on different types of
mathematical situations and context. Thus, visual imagery is an important factor that teachers
need to take into account while teaching mathematics (Bishop, 1989).

Spatial Ability

The literature on imagery indicates that imagery is an important component of spatial
ability. The geometry test (research instrument) designed for this study does not require spatial
ability; however, students may use spatial ability while solving geometry problems. Thus, it is
worthwhile to provide a brief description about spatial ability in connection with solution
methods. The researcher also sheds light as to why preference has been chosen instead spatial
ability to measure students’ geometry performance.

The term “spatial ability” is related to space and is derived from the literature of
psychology on human abilities (McGee, 1979). Various terms such as spatial sense, spatial
visualization, spatial orientation, spatial perception, spatial reasoning, and spatial structure are
associated with the term spatial ability. It is not a specific mathematical ability; rather, it extends
across various intellectual activities. Moses (1977) stated that spatial ability may or may not be
an integral part of an individual’s mathematical problem-solving process. However, Fennema
(1979) argued that all mathematical tasks require some kind of spatial thinking and reasoning.
Similarly, Clements and Battista (1992) also contended that geometry and spatial reasoning are
strongly interrelated, and most mathematics educators seem to include spatial reasoning as part

of the geometry curriculum.
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Definitions of spatial ability abound. Spatial ability is the ability to perceive the essential
relationships among the elements of a given visual situation and the ability to mentally
manipulate one or more of these elements (Moses, 1977). It may be defined as the ability to
generate, retain, retrieve, and transform well-structured visual images (Lohman, 1996). Spatial
reasoning is the ability to see, inspect, and reflect on spatial objects, images, relationships, and
transformations (Battista, 2007). Linn and Petersen (1985) stated that “spatial ability is the skill
in representing, transforming, generating, and recalling symbolic, non-linguistic information” (p.
1482). The National Council of Teachers of Mathematics (NCTM, 1993) used the term spatial
sense to refer to spatial perception or spatial visualization. It stated that spatial visualization is
the ability to imagine movement or spatial displacement by mentally rotating, folding, or in some
other way manipulating visual representations of objects.

Spatial ability includes mainly two components: spatial visualization and spatial
orientation (McGee, 1979). However, Lohman (1996) stated that there are three major spatial
factors: spatial visualization, spatial orientation, and speeded rotation. Wheatley (1998) has given
different meanings and interpretations for spatial ability and spatial visualization. According to
Wheatley, spatial visualization is the ability to mentally manipulate, rotate, twist, or invert
pictorially presented two- and three-dimensional objects, and spatial orientation refers to
understanding and operating on the relationships between the positions of the objects in the space
with respect to one’s own position (Clements & Battista, 1992). Carroll (1993) contended that
there are five factors that impact spatial ability: spatial visualization, spatial relations, closure
speed (conceal words and mutilated words in which tasks are mainly those of apprehending a

spatial form), flexibility of closure (hidden figures, patterns and copying, in which the tasks are
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mainly those of searching a visual field to find spatial form), and perceptual speed (finding
number comparison and identical
pictures).

Various research studies have shown that spatial ability is positively correlated with
measures of mathematical performance (Battista, 1990; Clements & Battista, 1992). However,
spatial ability alone does not determine students’ mathematical abilities because a student with
high spatial ability may not prefer to use it while solving mathematics problems (Krutetskii,
1976). For example, students might be able to solve a problem by visual methods; however, they
might not prefer to solve using visual methods. Presmeg (1985) also pointed out the same issues:
spatial tests may be solved by using analytic solution methods, or students with good spatial
ability may not prefer to use visual solution methods. Thus, spatial ability will not be measured
in connection with geometry performance in this study. Rather, an investigation of students’
preferences for solution methods is the main aim of this study. Krutetskii (1976) also contended
that spatial ability does not determine students’ geometric performance; he documented many
cases in which students who showed good spatial ability were poor in geometry performance.
Moreover, he contended that a well-developed spatial ability does not imply that students will
use it while attempting mathematical tasks. For example, students may be able to solve a
problem by visual methods; however, they may not prefer to solve it using visual methods.
Several research studies have been conducted to examine the relationships between the
preferences for solution methods and spatial ability; however, they revealed that there was little
or no correlation between preferences and spatial ability (Haciomeroglu, Chicken, & Dixon,
2013; Hagarty & Kozhevnikov, 1999; Kozhevnikov, Hagarty, & Mayer, 2002; Moses, 1977;

Lean & Clements, 1981; Suwarsono, 1982). Presmeg (1985) also pointed out the same issues:
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spatial tests may be solved by using analytic solution methods, or students with good spatial
ability (i.e., the geometric type) may not prefer to use visual solution methods. Quoting the work
of Wattanawha and Clements (1982), Clements (1984) reported that mathematically gifted
students had a strong preference for verbal methods on space visualization tests. Similarly,
Haciomeroglu, Chicken, and Dixon (2013) found that that cognitive ability (spatial ability and
analytical reasoning) did not influence students’ preference for visual or verbal solution methods.
Thus, for this study spatial ability will not be used to measure students’ geometry performance;
rather, preference for solution methods will be the focus.
Preference and Mathematical Performance

Preferences for solution methods, gender, and mathematical performance have been of
great interest to researchers for several decades (Battista, 1990; Fennema & Sherman, 1978;
Haciomeroglu et al., 2013; Lean & Clements, 1981; Moses, 1977; Samuels, 2010; Suwarsono,
1982). Students can choose different solution methods when a mathematical task can be solved
in multiple ways by employing either a visual-pictorial or a verbal-logical mode of thought. For
example, a study conducted for a nationally representative sample in the UK and the USA
identified that males preferred to use visual solution methods but females preferred to used
verbal solution methods (Lohman & Larkin, 2009; Strand, Deary, & Smith, 2006). In contrast,
Calvin, Farnandes, Smith, Visscher, and Deary (2010) revealed that the association between
preferences and educational achievement, including mathematics, were the same for both sexes,
and there was no significant difference in employing solution methods based on gender. These
are just two examples of the findings of the research studies that are not consistent with each
other in this area. In this section, different research studies will be described that have been

performed in the arena of preferences for solution methods and mathematical performance.
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Moses (1977) conducted a comprehensive study with fifth-grade students (N =131) to
measure relationships between problem-solving performance, and mathematical visuality. To
measure the preferences for solution methods, she employed a problem-solving inventory, which
contained 10 word problems. Only problem number seven had a diagram. Verbal representation
was employed, except for the seventh problem, to present the problems. The problems were
different in nature in the sense that three problems were analytic, four problems were spatial, and
three problems were both analytic and spatial in nature. Her study revealed that there was no
correlation between mathematical performance and preferences for solution method.

Moses’s study (1977) also had some limitations. She measured the preferences for
solution methods based on students’ written response only, but some students may not express
their solution process in their written response. Moreover, students at the primary school level
may not be able to express all or some of their thinking process on paper. Thus, the Moses study
is criticized by many researchers, including Lean and Clements (1981). Students’ mean score
was also too low for the problem-solving inventory both in pretest and the posttest. The pretest
mean score was 1.9 out of a possible maximum score of 10, and 2.18 in the posttest. This finding
suggests that the mathematics problems were too difficult for the fifth graders, and there could be
consequences of this in the findings of the study as well.

In order to avoid Moses’s limitation (1977), Suwarsono (1982) conducted a study with
middle school students (N=112) in which he developed an instrument called the Mathematical
Processing Instrument (MPI) to investigate the students’ degree of preference to use visual
imagery (visual and verbal solution methods) and its effects on their mathematical performance.
The MPI consists of two parts. The first part includes 30 algebraic word problems, while the

second part includes the written description of different possible solution methods
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(questionnaires). He also used verbal representation to present the 30 problems. None of these 30
problems were from geometry. Suwarsono designed the questionnaires to elude the limitation of
Moses’s study. The questionnaires contained various solution methods (visual, verbal, and other)
for each problem. Students were asked to solve the word problems in the first part of MPL. In the
second stage, students were required to choose the solution methods from the questionnaires.
Beyond this, if students’ methods were different from the ones that were listed in the
questionnaires, the researcher instructed them to describe their solution methods. Thus, the
researcher could understand the solution methods of those students who did not indicate their
solution methods while attempting the word problems.

Consistent with Moses’s findings, Suwarsono (1982) also found that mathematical
visuality (preferences for solution methods) did not have a significant effect on mathematical
performance. Students who preferred using visual solution methods in problem solving were
likely to do as well as students who used verbal solution methods. In an experimental study,
Pitta-Pantazi and Christou (2009) found that preference was not related to performances. Their
results also corroborated Moses and Suwarsono’s findings.

Lean and Clements (1981) conducted a study with foundation year engineering college
students (N=116) in which they used a slightly modified version of Suwarsono’s Mathematical
Processing Instrument (MPI) in order to investigate relationships between preference for solution
methods and mathematical performance. They found that preferences had significant influence
on students’ mathematical performance. Their study further revealed that students who employed
verbal solution methods performed significantly better than the students who employed visual
solution methods. They also contended that the verbalizers developed logical reasoning ability

and were able to avoid unnecessary visual information. Their finding also supports the Krutetskii
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(1976) thesis that spatial ability does not determine students’ mathematical performance.
However, their findings conflicted with those of Moses (1977, 1980) and Webb (1979), who
reported that students who preferred to use visual solution methods tend to outperform those who
use less visual solution methods.

Haciomeroglu, Aspinwall, and Presmeg (2009) conducted an empirical case study for
calculus students to explore the relationship between mode of representation and preference for
solution methods and calculus performance. Rather than using the verbal representation of MPI,
the researchers used graphic representations to present the derivative problems. They found that
students used visual as well as verbal solution methods to complete the given tasks, but students
who used visual solution methods showed limited understanding and were not able to provide a
complete answer, which contradicts the Lowrie and Kay (2001) findings. They also suggested
that teachers need to incorporate both visual and nonvisual solution methods in their teaching
strategies to support the successful mathematical performance of students. This study supported
the Krutetskii (1976) thesis that regardless of the mode of representation used to present a
problem, verbal-logical and visual-pictorial modes of mathematical processing were equally
likely in student responses.

With the aid of 16 graphical calculus problems, Haciomeroglu, Aspinwall, and Presmeg
(2010) investigated the relationship between students’ preference for solution methods and
calculus performance. Though a graphic representation was used to present the calculus
problems, students translated the problems into algebraic representation based on their
preferences for solution method, according to the researchers. Similar to the findings of
Haciomeroglu et al., (2009), this study also concluded that both visual and verbal solution

methods are essential components for successful mathematical performance. They emphasized
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the need for both modes of thinking—verbal and visual—to deepen students’ understanding.
Additionally, they contended that students need to be able to translate one mode of
representation to another for successful mathematical performance.

With the help of graphic and algebraic words problems, Haciomeroglu and Chicken
(2011) examined the relationships among student cognitive ability, preference for solution
method, and calculus performance of high school students (N=169). This study revealed that
students’ preferences for solution methods were positively correlated with calculus performance,
where the problems were presented with the aid of graphic representation; however, the
preferences were not associated with calculus performance, where the problems were presented
with the aid of algebraic representation. Moreover, this study also found that Suwarsono’s (1982)
Mathematical Processing Instrument (MPI) is not an appropriate instrument to measure
preferences and calculus performance. In another similar study, Haciomeroglu, Chicken, and
Dixon (2013) examined high school students’ (N=150) preference for solution methods and
calculus performance by employing a graphic-calculus test. The preference for visual solution
methods was significantly correlated with calculus performance, which was not consistent with
Moses (1977), Lean and Clements (1981) and Suwarsono’s (1982) findings. Similar to
Haciomeroglu and Chicken (2011), they also argued that the MPI, which is considered an ideal
test to examine students’ preference for solution methods and mathematical performance, was
not an appropriate test for the calculus students. Moreover, they explained that visual schemes
involved in calculus tasks may not be captured by the algebraic test.

With the help of MPI, Hegarty and Kozhevnikov (1999) investigated how visual-spatial
representations affect problem-solving performance of sixth graders (NV=33). They found that

preference for visual solution methods was positively correlated with mathematical performance.
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They made further distinctions among visual solution methods. They contended that there are, in
fact, two types of visualizers: schematic types (representing the spatial relationships between
objects and imagining spatial transformation), who are generally successful in mathematics
problem solving, and pictorial types (constructing vivid and detailed visual images), who are less
successful than schematic types. The distinction between two visual solution processes was
further supported by Kozhevnikov, Hegarty and Mayer (2002). The researchers found that the
verbalizers and visualizers were the same on all parameters except their preferences for solution
methods. Verbalizers did not have any clearly marked preference for using verbal solution
methods. In contrast, visualizers showed a consistent preference for using visual solution
processes. They claimed that various studies (Krutetskii, 1976; Lean & Clements, 1981;
Presemeg, 1986a, 1986b) did not take the two types of visualizers into account which led them
not to find the relationships between preferences for visual solution methods and mathematical
performance.

Similar to Suwarsono (1982), Battista (1990) examined high school students’ (N=145)
preferences and geometry performance. To identify solution methods and to assess geometry
performance, he designed an instrument of nine geometry problems. He concluded that
preferences for solution methods were not significantly correlated to geometry performance.
However, preferences for verbal solution methods were positively correlated with geometry
performance only for male students. Only female students who preferred to use visual solution
methods (correct number of drawings) were positively correlated with geometry performance.

Ling and Ghazali (2007) examined primary school students’ preferences for solution
methods (N =5) and pre-algebra problems. The problems were presented with the aid of verbal

and graphic representation. Students equally used visual and verbal solution methods to solve the
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problems. Similarly, Sevimli and Delice (2011) investigated the relationships between calculus
students’ preferences for solution methods and representation preference while solving
mathematics problems using the modified version of MPI developed by Presmeg (1985). They
concluded that the mode of representation used to present the problems affected students’
preference for solution methods. Verbalizers and harmonic were observed to have similar
preference tendencies. However, visualizers altered their preference based on the mode of
representation used to present the problems. This study corroborated findings of Haciomeroglu,
Chicken, and Dixon (2013) and Haciomeroglu and Chicken (2011). The greater variance in
preferences of solution methods particularly for visualizers was consistent with the findings of
the Kozhevnikov et al., study (2002). Moreover, this study also found that most of the
verbalizers predominantly preferred verbal solution methods (algebraic representation).

Galindo (1994) investigated the relationships between preferences and use of technology
with calculus students and calculus performance using a modified version of Suwarsono’s MPI.
This study revealed that students who were verbalizers obtained significantly higher scores than
visualizers in the calculus section with and without the use of technology (computers and
Mathematica); however, there was not a significant relationship between preference and calculus
performance using graphing calculators. In a similar way, Coskun (2011) conducted a multiple
case study investigating students’ preference for solution methods using algebraic word
problems of Suwarsono’s MPI, where she compared the effects of used paper-pencil, dynamic
geometry software, and calculator for students’ solution methods. Her study revealed that
students were able to perform better in a dynamic geometry software environment compared to a
paper-pencil environment. Students’ preferences for solution methods altered in the different

learning environments. It appeared that the different modes of representation (i.e., graphic and
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algebraic) and various tools used in both studies could be an underlying reason for the disparity
in findings between paper-pencil, computer technology, and graphing-calculator learning
environments. This study is not directed to investigate the teaching and learning environment and
its connection to preferences for solution methods; however, the different modes (graphic or
algebraic) of representation students’ use during solving geometry problems can affect students’
preferences and performance.

Booth and Thomas (2000), Gagatsis and Elia (2004), Hart (1991), and Campbell, Collis,
and Watson (1995) conducted different studies where they compared the preferences for solution
methods with the mode of representations that they used to present problems. Their findings
suggested that the different modes of representation influence preferences and mathematical
performances. However, their study was limited to only graphic representations. They also
reported that students’ preference for visual solution methods was partly determined by both the
level of abstraction of the visual methods and students’ corresponding ability to draw or visualize
figures and pictures.

Preference and Task Difficulty

One of the aims of this study is to examine the relationships between task difficulty and
preferences for solution methods; however, there is a meager amount of research studies which
explain the relationships between these two factors. Lowrie and Kay (2001) conducted a study
with six-year-old children (N=112) to examine the relationships between students’ preference for
solution methods, task difficulty, and mathematical performance. They used the 10 easiest and
the 10 most difficult problems from Suwarsono’s MPI as a research instrument; however, they
did not explain that how they classified problems into easy and difficult level. Their study

revealed that task difficulty had a major influence on the way students solved mathematics

32



problems. Students were more likely to use visual solution methods than nonvisual solution
methods to solve the difficult problems. They also found that visual solution methods were more
efficient because it helped the problem solvers organize and access relevant knowledge
effectively.

Lowrie (2001) also conducted a study for a middle school students with six-year-old
students (N=58) to investigate preferences for solution methods, preferences efficiency for
solution methods, and mathematical performance with the aid of Suwarsonso’s Mathematical
Processing Instrument (MPI). The visuality preference for solution methods included solutions of
all problems, irrespective of whether the solutions were correct or incorrect. However, the
researcher took only the solution methods with correct answers into account when measuring the
preference efficiency. He found that there was no significant correlation between the preference
for solution method (visuality preference) and mathematical performance. In contrast, there was
a significant difference between students’ mathematical performance and preference efficiency.
Students who predominantly used visual solution methods outperformed to students who
substantially used the nonvisual solution methods. This study also revealed that there was no
significant relationship between task difficulty and preference for solution method, which did not
support the Lowrie and Kay (2001) and Lean and Clements (1981) findings. Lowrie and Kay
used the 10 easiest and the 10 most difficult problems from the MPI, while Lowrie (2001) used
20 problems, but it is not clear which 20 problems he used from the MPI. The different ways
they chose the problems might lead them not to have similar result between their studies.

Haciomeroglu (2012) conducted a study with calculus students (N=498) to delve into the
relationship between task difficulty and solution method. Unlike the MPI, he used 14 graphic and

six algebraic word problems along with the questionnaires. Similar to Lowrie and Kay (2001),
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Haciomeroglu also concluded that as task difficulty level increased, the number of visual
solution methods (correct and incorrect) increased significantly, and the number of nonvisual
methods decreased significantly for the graphic representation. For the algebraic problems,
students used more nonvisual methods than visual method. However, as the level of problem
difficulty increased, the number of nonvisual solution methods was significantly decreased,
while the visual methods were substantially increased.

The MPI was originally developed for seventh graders (12/13 years). It can be argued
that the way that six-year-old children respond to the MPI may be significantly different from the
way 12-year-old students respond. The fact is that the content level of the MPI may not reflect
six-year-old students’ actual preferences for solution method and mathematical performance.
Thus, the appropriateness of the MPI for six-year-old students could be questioned. On the other
hand, Lean and Clements (1981) used the MPI for college-level students. One of the reasons for
conflicting findings between Lean and Clements’ and Lowrie and Kay’s (2001) could be the
different types of participants they had in their studies, regardless of the use of a similar
instrument.

Gorgorio (1998) conducted a qualitative study to examine students’ preferences and task
difficulties with the help of graphic problems. The researcher found that subjects’ preference for
solution methods depended on task difficulty and required action. The required action is the
action to be done by students to solve the given problems. The required action consists of
interpretation (students have to gain meaning from given representation) and construction
(students have to generate or construct new objects). The study further revealed that when the
required action was of interpretation, students tended to use visual solution methods when an

object was simple; when the object was difficult, students used nonvisual solution methods.
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However, when the required action was of construction, students tended to use visual solution
methods when an object was complex and manipulation was not suggested (a drawing was
required) and use nonvisual solution methods when an object was simple or manipulation was
required (students needed to build an object). One finding supported while the other contradicted
findings of Lowire and Kay (2001) and Haciomeroglu (2012). Moreover, the researcher did not
make distinction between simple and complex objects.
Gender, Preference, and Mathematical Performance

The relationship between gender and mathematical performance has been of great interest
to researchers for many decades. A substantial number of research studies were done in this area
and many of them revealed that generally male students outperform female students (Battista,
1990; Fennema, 1974; Fennema & Sherman, 1978; Guay & McDaniel, 1977; Maccoby &
Jacklin, 1974; Matteucci & Mignani, 2011). However, several research studies that have been
done in this area also assert that gender is independent of mathematical performance (Galindo,
1994; Haciomeroglu & Chicken, 2012). Similarly, The Trends in International Mathematics and
Science Studies (TIMMS) also revealed inconsistent relationships between gender and geometry
performance. Gender differences in geometry performance were evident in some countries;
however, other countries showed no gender difference in geometry performance (Neuschmid,
Barth, & Hastedt, 2008). Thus, there are no conclusive findings regarding gender, preferences,
and performance.

Fennema and Sherman (1978) investigated sex-related differences in mathematics and
related factors with middle school students (N=1320). Spatial visualization and verbal reasoning
ability were two of the factors they examined. They reported that there was no significant

difference between male and female students in terms of mathematics performance. However, in
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another similar study, Fennama and Tartre (1985) found that boys solved more problems
correctly than girls.

Fennema and Carpenter (1981) conducted a study using the 1978 National Assessment of
Educational Progress (NAEP) results to examine sex-related difference in mathematics
performance. They found that males significantly outperformed females in the area of geometry.
This study also reported that there was no significant difference in mathematical performance
between male and female students ages 9 and 13; however, there was significant difference in
achievement of 17-year-old male and female students. In fact, 17-year-old male students’
performance exceeded that of 17-year-old female students at every cognitive level. Their
findings provide very important insights for research to explore with respect to what causes the
gap in achievement between male and female students as their ages increase. In a similar study,
Fennema and Tartre (1985) examined the relationship between verbal logical reasoning and
gender of sixth grade students (N=669). They concluded that students who were discrepant in
verbal skills differed in the process they used to solve mathematical problems.

Battista (1990) examined high school students’ gender and geometry performance. In his
study, male students scored significantly higher than female students on a geometry problem
solving test. The greatest difference between males’ and females’ geometry scores occurred for
students whose nonvisual reasoning scores were much greater than their visual reasoning scores;
the smallest difference occurred when the visual solution score was much greater than the
nonvisual solution score. He found that males and females differed in geometry performance but
not in preferences for solution methods. Similarly, Mayer and Massa (2003) also concluded that

there were no significant gender differences on students’ preferences for solution methods.
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Haciomeroglu and Chicken (2012) conducted a study to investigate visual thinking and
gender difference with high school calculus students (N =188). The calculus problems were
presented with the help of graphic representation. Their study suggested that preference for
visual thinking was a significant factor influencing male students’ performance on the AP test
but not for female students. However, similar to Battista’s (1990) findings, students’ gender did
not have a significant influence on their preference for solution methods on the calculus test.
They also found that a stronger preference for visual thinking was associated with higher
mathematical performance, which also aligned with Battista’s finding. However, the stronger
preference for visual thinking and its association with higher mathematical performance was not
consistent with the findings of studies by Moses (1977), Suwarsono (1982), Galindo (1994), and
Lean and Clements (1981).

Haciomeroglu, Chicken, and Dixon (2013) examined high school students’ (N=150)
preferences and calculus performance by employing a calculus test. Their results suggested that
gender did not have a significant effect on preferences for solution methods. Their study also
revealed that visualizers and harmonics did not differ significantly with respect to their calculus
scores but the verbalizers had significantly lower calculus scores than the other two groups. They
also suggested that gender was not enough to predict the preference for solution methods.
Galindo (1994) also reported similar results in which he noted no significant sex-related
difference in preference for solution methods and calculus performance of college students.
Furthermore, he also did not find interaction between gender, preference for solution methods,
and calculus performance. A research study conducted by Guay and McDaniel (1977) also

corroborated Galindo’s findings.
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Calvin, Farnandes, Smith, Visscher, and Deary (2010) compared 11-year-old students’
(N=178599) reasoning abilities (verbal, visual, and quantitative) and their effect on educational
achievement based on national standardized test scores. Their study revealed that there were no
significant differences in preferences for solution methods and gender. However, girls’
performances were higher than boys’ in verbal and visual solution methods, whereas boys’
performances were higher than girls’ on quantitative reasoning. Their findings supported, as well
as contradicted, some of the earlier findings reported in this area.

Kolloffel (2012) examined the relationships between preferences and mathematical
performance with college students (N=40). The researcher experimented with two different
modes of representation (graphic and verbal) as an instructional strategy. Despite the differing
teaching strategies used, no correlation was observed between preferences and mathematical
performance. However, participants in the verbal instruction condition obtained significantly
higher posttest scores than did students in the visual instruction condition. The findings of this
study contradicted the findings of various other studies, including Moses (1977). The researcher
made some arguments that conflicted with several research findings. They argued that it was
counterproductive to give students the opportunity to choose multiple representations, which
undermined the role of multiple representations in the teaching and learning of mathematics.
This study is open to criticism for several reasons. It did not mention the duration of the teaching
interval and criteria of selection of students for the two environments. Moreover, one can argue
about the appropriateness of selecting psychology students for participation in a mathematics
study.

There are various factors which might influence students’ preference for solution

methods. For example, teaching styles, students’ grade level, and courses they enrolled in, and so
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on. However, a search of the related literature particularly on effects of students’ grade level and
different mathematics subject they enrolled in indicated that it is likely that no research studies
have been published in this area. Ben-Chaim, Lappan, and Houang (1988) examined the effects
of grade level on spatial visualization. They reported that there were significant effects of grade
level (grade 6, 7, and 8) on spatial visualization.

Researchers investigated different aspects of gender that attributed preference for solution
strategies and mathematics performance. Some researchers identified factors such as cognitive
abilities, socioeconomic status etc., underlying gender difference in mathematics (Ceci, Williams
& Barnett, 2009; Wai, Cacchio, Putalaaz, & Makel, 2010), while others found that gender
difference in mathematical performance was due to difference in preferred mode of processing
mathematical information (Carr, Steiner, Kyser, & Biddlecomb, 2010; Lin & Peterson, 1985).
For example, Carr, Steiner, Kyser, and Biddlecomb (2010) investigated different factors in
conjunction with gender difference in mathematics of elementary level students. The different
factors they took into account were influence of strategy use, fluency, accuracy, spatial ability,
and confidence in mathematics competency. They reported that only two factors, fluency and
strategy, indicated gender difference and significantly predicted mathematics competency. They
further suggested that girls’ preference for manipulatives used as a means of solving arithmetic
problems may eventually constrain their mathematical development and skill. However, boys’
preference for cognitive strategies and higher fluency may support boys’ higher mathematics
performance.

Gallagher and De Lisi (1994) examined the gender difference in solution strategies and
mathematical performance of high school students’ with the help of Scholastic Aptitude Test for

Mathematics (SAT-M) problems. They classified the SAT-M problems into conventional
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problems and unconventional problems based on solution strategies. Conventional problems
were those that could be answered only by primarily algorithmic methods. These problems were
examples of routine textbook problems. Unconventional problems were those that either required
the use of an atypical solution strategy, such as logical reasoning, insights or estimation. They
reported that male and female students did not differ in overall mathematical performance;
however, gender difference was significant for conventional problems but was not significant for
unconventional problems. Female students used conventional strategies significantly more often
than male students and male students used unconventional strategies significantly more often
than female students. The findings of this study were partially supported by several other studies
(Haciomeroglu & Chicken, 2012; Haciomeroglu, Chicken, & Dixon, 2013; Galindo, 1994).

Following the Gallagher and De Lisi (1994) study, Gallagher, De Lisi, Holst,
McGillicuddy-De Lisi, Morely, and Cahalan (2000) conducted multiple studies for junior and
senior high school students where they examined gender difference in solution strategies and
performance with the help of multiple-choice and free response format questions. They reported
that in multiple choice conditions, female students were more successful with conventional than
with unconventional problems; however, in free response-response conditions male students
were more successful with conventional than unconventional problems. Female students’
performance was lower than male students’ performance on conventional problems. They further
reported that performance success rates between conventional and unconventional problems
were significantly greater in the longer time condition. The timing condition did not affect
significantly on gender.

Fennema, Carpenter, Jacobs, Franke, and Levi (1998) examined gender differences in

young children’s mathematical thinking and their solution strategies. They focused on operations
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of basic fact of numbers. They found that no gender difference in solving number fact,
addition/subtraction, or nonroutine problems; however, gender differences were noted in solution
strategies. Girls tended to use more concrete strategies such as counting and boys tended to use
more abstract strategies, which was consistent with findings of Gallagher and De Lisi (1994).
Similarly, a meta-analysis conducted on gender differences by Hyde, Fennema, and Lamon
(1990) reported that there was no gender difference in arithmetic or algebra performance;
however, males’ geometry performance was slightly higher than females’ geometry
performance. They further found that gender difference was greatest in a test with mixed content.
They also investigated students’ cognitive levels, their Socio Economic Status (SES), and age
regarding gender difference. Hyde, Fennema, and Lamon (1990) found that there were
significant gender differences existing in students’ cognitive levels, ethnicity, and age.
Representation

Representation is an important topic for this study because students’ preferences for
solution methods require various types of representations. Students use different types of
representational systems while attempting geometry problems. Algebraic, numeric, and verbal
representation are associated with nonvisual solution methods, whereas graphic representation is
linked with visual solution methods. Thus, verbalizers employ particularly algebraic, numeric,
and verbal representations because they prefer to use nonvisual solution methods. However,
visualizers primarily utilize the graphic representation since they prefer to employ visual solution
methods. Harmonic prefer to use both visual and nonvisual solution methods. Students also
constantly change the modes of representation based on the nature of problems and their

preferences.
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Students translate one representation to another based on their preferences for solution
methods (Lesh, Post, & Behr, 1987). For example, graphic representation includes pictures and
diagrams. However, students who prefer to use nonvisual solution methods will translate graphic
representations, for example, to algebraic representations to solve the problems. For the purpose
of this study, when students employ graphic representation while attempting geometry problems,
it is considered to be a visual solution method, and when they use algebraic, numeric, or verbal
representation, it is pertinent to the nonvisual solution method. Thus, what kind of
representation students use while attempting a geometry problem is important for this study
because the use of representation is associated with visual and nonvisual solution methods.
Moreover, it is also a crucial factor for the teaching and learning of mathematics (Vergnaud,
1987) and has gained significant importance in recent decades (Ozgun-Koca, 1998). Many
educators, psychologists, and researchers have defined, explained, and discussed the various
aspects of representation in relation to the teaching and learning of mathematics. In this section,
representational systems will be briefly discussed in light of their types, nature, and translation
processes.

The meaning and interpretation of representation is not consistent and uniform. Various
types of definitions and descriptions are attributed to the notion of representation, particularly in
the teaching and learning of mathematics (Zazkis & Liljedahl, 2004), because the meaning and
interpretation of representation depends on mathematical context (Mesquita, 1998). For instance,
Goldin (1998) used the term external representation; however, Lesh, Post and Behr (1987) used
the term representation. Moreover, representation is a difficult concept, because it is not a static

thing but a dynamic process that is associated with an individual’s mathematical activities and
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mind (Vergnaud, 1998). In spite of the difference in naming, most of the researchers interpreted
representation in a similar fashion.

Various distinctions have been made regarding the types, classifications, and nature of
representation. Representation can be categorized as internal or external based upon whether the
representation is formed inside the mind of an individual as mental imagery or expressed
externally in the form of symbols, schemas, or graphs (Janvier, 1987). Various researchers
discussed the distinction between external and internal representation (Goldin, 2001; Goldin &
Shteingold, 2001; Goldin, 2003; Zhang, 1997). There is also controversy about the existence of
internal representations because many scholars do not believe in the existence of internal
representations (Goldin, 2003; Haciomeroglu, Aspinwall, & Presemeg, 2010). Moreover, it is
very difficult to measure what’s going on inside the head of an individual. Thus, this study
focused only on students’ external representation, therefore internal representation will not be
described in this section. The term representation will be used for the purpose of this study
instead of using external representation.

Kaput (1987) stated that mathematics is the study of the representation of one
mathematical structure by another, and the focus is usually a determination of what structure is
preserved in that representation. Thus several researchers have explained the nature, role, and
types of representational systems. Goldin (2003) stated that representation is “A configuration of
signs, characters, icons, or objects that can somehow stand for, or represent something else”
(p-276). Goldin stressed the role of the configuration of signs, characters, icons, or objects in the
representational system. He contended that the notion of representational system is scarcely
meaningful without the configurations of signs, icons, and symbols. The symbols can be

language (words and sentences).

43



Brinker (1996) defined representation, focusing on elementary school mathematical
concepts. He stated that representation refers to students’ notations and pictures, readymade
drawings and fraction strips, and cuisenaire rods. Brinker’s definition is more object oriented and
limited to only concrete mathematical materials. In contrast, Cuoco’s (2001) interpretation of
representation covers a wide range of mathematics content. He affirmed that representation
involves drawings, sketchings, markings, and writing algebraic equations.

Representation is classified in various categories based on nature, attributes, and modes.

Janvier (1987) proposed four modes of representation: (a) verbal descriptive, (b) tablular, (c)
graphic, and (d) formulaic (equation). Text, symbols, and sentences are ingredients of the verbal
descriptive representation, whereas tables have a dominant role in tabular representation.
Drawings, figures, and images are the main components of graphic representation. Similarly,
formulas and equations are the major means of expressing mathematical ideas in formulaic
representation.

Based on the existing literature and research, Lesh, Post, and Behr (1987) suggested five
modes of representational systems in mathematics learning and problem solving: (a) real script
model, (b) manipulative model, (c) static figural model, (d) spoken language, and (e) written
symbol. The script model is experienced based in which knowledge is organized around the real
world that serves as general context for interpreting and solving other kinds of problem
situations. In the manipulative model, elements such as arithmetic bars, base-ten blocks, or
similar manipulatives have little meaning intrinsically, but the built-in relationships and
operations fit many everyday situations. The static figural model includes different types of
pictures or diagrams that can be internalized as images during the teaching and learning of

mathematics. The spoken languages include specialized languages and sublanguages related to
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domains like logic and reasoning. The written symbols refer to varieties of mathematical
symbols and equations, specialized sentences and phrases, and normal English sentences and
phrases.

Miura (2001) classified the representational system based on classroom activities. she
stated that there are two types of representations: instructional representation and cognitive
representation. Larkin and Simon (1987) also described two types of representation: sentential
and diagrammatic; however, their types are different from Miura’s. The sentential representation
refers to the expression of problems with the help of sentences. Furthermore, Larkin and Simon
stated that diagrammatic representation preserves the information about topological and
geometric relations among the components of the problem, while sentential representation does
not. It seems that the sentential representation is associated with nonvisual solution methods and
diagrammatic representation is associated with visual solution methods. Wadsworth (2004)
described different types of representational systems based on children’s mental development.
The different representations include deferred imitation, symbolic play, drawing, mental
imagery, and spoken languages. However, according to Piaget (1926), generally there are only
two types of representation: symbols (pictures, tally marks etc.,) and signs (spoken words,
written language, numerals, etc.,) that play a dominant role in the learning process of children.

Palmer (1978) proposed a different view about nature and classification of
representational systems. He contended that representational systems involve two related but
functionally separate entities. The two related entities are representing world and represented
world. The function of representing world is to reflect some or all aspects of the represented
world in some fashion. In the representing—represented framework, Palmer contended that the

represented world can be modeled by the representing world. In so doing, however, every
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characteristic of the represented world would not necessarily be reflected by the representing

world. An example is provided in Figure 1.
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Figure 1: Examples of represented-representing world

From Cognition and Categorization by Palmer; E. Rosch, B. B. Lloyd, (Eds), 1978, p.263,
Copyright, 1978 by Lawrence Erlbaum Associates

In this example, the represented world is the set of four rectangles as shown in Figure 2.1 (part
A). The representing worlds B, C, and D show how different aspects of a same represented world
can be modeled by representing worlds in different ways. Each vertical line with a different
height in B is representing each rectangle of the represented world of A. World B reflects the
relative height of the rectangles (a, b, ¢, d) of the represented world A by the relative lengths of

corresponding lines (a', b', ¢', and d') . In fact, the representing world B models the height of

rectangles in the represented world A in terms of line length; the taller the rectangle, the longer
the line. However, between A and C, the wider the rectangles are in A, the taller the lines are in

C. As described in the example, there must be some specific relationship or correspondence
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between the represented and representing worlds. In fact, all of these representing worlds in the
Figure 1 are not the same. They contain some similar information about the world they represent.

The two worlds, represented and representing, consist of objects that are characterized by
certain relationships that hold among them. In fact, the function of the representing world is to
preserve information about the represented world as precisely as possible. Palmer (1978) further
stated that there exists a correspondence (mapping) from objects in the represented world to
objects in the representing world where at least some relationships in the represented world are
structurally preserved in the representing world. For example, a world X is a representation of
another world Y if at least some of the relations for objects of X are preserved by relations for
corresponding objects in Y.

Following the represented—representing framework, Kaput (1987) classified the
representation system into four broad and general categories: (a) cognitive and perceptual
representation, (b) explanatory representation involving models, (c) representation within
mathematics, and (d) external symbolic representation. He further explained the different types
of representational systems within mathematics. Some of the common representations that Kaput
explained include morphisms, generic algebraic constructions, canonical building-block
constructions, approximation, feature/property isolation, and logic models. The different types of
representation that Kaput described are more focused, however, on representation of abstract
mathematics. Additionally, his classification is oriented to represent one mathematical concept
with the aid of some sort of mathematical mappings or correspondence. Thus, for the purpose of
this study, Kaput’s classification of representation has limited scope because the representation

he described may not be applicable to geometry.
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A representation, so called rule of the three, includes three types of representations:
symbolic, graphic, and numeric. Normally, mathematical ideas and concepts, particularly in
calculus, can be presented with the help of these three types of representation (Gleason &
Hallett, 1992). The rule of three, however, is not enough to grasp the various mathematical ideas
and concepts. Thus, the rule of three becomes a rule of four. According to the rule of four,
mathematical contents can be presented or expressed by using four modes of representation:
graphic, numeric, algebraic, and verbal. The graphic representation includes pictures, diagrams,
coordinate planes, and other figural representations. The numeric representation refers to
displaying data or mathematical ideas and concepts in an organized fashion, possibly in an
ordered list or in a table. The algebraic representation indicates the use of symbol and formula.
The verbal representation includes written and spoken languages.

Following the work of Denis and Dubious (1976), Janvier (1987c¢) interpreted
representation in three different ways: (a) representation refers to some material organization of
symbols such as diagrams, graphs, schema etc., which denotes other entities or modalizes
various mental processes; (b) it implies a certain organization of knowledge in the human mental
system or in long-term memory; and (c) it also refers to a mental image. Janvier, however, did
not make a distinction between actual material objects and mental images.

Goldin (1987) stated that representation systems consist of a collection of elements called
characters or signs. He described the cognitive representation system in conjunction with
mathematical problem solving, where the higher level structure and language are associated with
the representational system. The higher level structures or languages include rules for forming
configurations of configurations, networks of configurations, relations on the configurations,

rules for assigning values to configurations, and operations on the collection of configurations.
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The configuration is the set of words, characters, or symbols. He proposed a model for
competence in mathematical problem solving based on five higher level languages:

(a) a verbal/syntactic system, (b) a nonverbal system for imagistic, (c) a formal notation system
of representation, (d) a planning language, and (e) an affective system that monitors and

evaluates problem-solving progress. The main feature of this model is shown in Figure 2.
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Figure 2: A model for competency in mathematical problem solving

From Problem of Representation in the Teaching and Learning of Mathematics by C. Janvier,
1987, p. 136, Copyright, 1987 by Lawrence Erlbaum Associates

In this model, we can see five representational systems. A verbal/syntactic system of
representation can be described by means of signs, which are words and punctuation marks,
together with correspondence between written and spoken words, rules for tagging by parts of

speech and grammatical rules for combining words. An imagistic system of representation
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includes visual-spatial, kinesthetic, and auditory systems. A formal notational system includes
the ability to use the notations conventionally described as the language of mathematics, and it
also includes knowledge of how to represent a problem state and move from one state to another
in non-standard problems. For example, it includes numeration and algebraic notations and rules
for manipulating them. The planning and executive control includes four dimensions with
respect to which sub-process is involved in their use. It guides problem solving, including
strategic thinking, heuristics, and metacognitive capabilities. The affective representational
system indicates the states of feeling that a problem solver experiences and expresses while
solving a problem. Students may employ various representational systems mentioned above
while doing geometry problems. For instance, students may use verbal processing and convert it
into visual form by using imagistic processing, or they might convert visual (imagistic
processing) forms into formula by using in the formal notational processing.
Researcher’s View

The review on representational systems shows that the definitions, meanings, and
interpretations of representational systems are not uniform. Moreover, disparities also exist in the
categorization and classifications of representational systems. Various authors and scholars
propose different ideas and concepts regarding its nature, interpretations, and classifications.

The author primarily advocates Janvier’s (1987a) classification of the external
representation where he classified the representation system into four classes: verbal descriptive,
tabular, graphic, and formulaic. Janvier’s classification of representation is similar to the rule of
four. As a reminder, the rule of four includes graphic, numeric, algebraic, and verbal
representations. The only distinct differences between these classifications are numeric and table.

However, the rest of the modes of representation are similar. The researcher believes that tabular
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representation can be included in the graphic representation because graphic representation
contains diagrams, figures, pictures, and also tables. Table can be considered also as a figure.
Thus, for the purpose of this study, the researcher supports the rule of four representational
systems. Advocating the rule of four implies participants in this study will use one or more than
one mode of representation while attempting the geometry problems. Employing numeric,
algebraic, and verbal representations while attempting geometry problems are considered to be
nonvisual solution methods for the purpose of this study. In contrast, using a graphic
representation while attempting geometry tasks will be taken as a visual solution method.
Translations between Representational Systems

Translation of geometry problems while solving from one mode of representation to
another is important for this study because geometry performance also depends on students’
translation (dis)abilities (Lesh, Post, & Behr, 1987). Translation ability refers to the
psychological process involved in going from one mode of representation to another, for
example from graphic to algebraic representation (Janvier, 1987). Most researchers agree that
translation ability is very important for learning and problem solving in mathematics because
translation of one mode of representation to another will provide flexibility to problem solvers
while attempting mathematics problems (Doufour-Janvier, Bednarz, & Belanger, 1987; Gagatsis
& Shiakalli, 2004; Hitt, 1998; Janvier, 1987; Lesh, Post, & Behr, 1987). Lesh, Post and Behr
(1987) stated that:

Good problem solvers tend to be sufficiently flexible in their use of a variety of relevant

representational systems that they instinctively switch to the most convenient

representation to emphasize at any given point in the solution process (p. 38).
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Moreover, using different types of representation often illuminates different aspects of complex
mathematical ideas or relationships (NCTM, 2000). Thus, it is important to develop skills in
students so they can translate one representation to another based on the nature and situation of
mathematics ideas, concepts, or tasks. Following the work of Behr, Lesh, Post, and Wachsmuth
(1985), Lesh, Post, and Behr (1987) stated that translations (dis)abilities are significant factors
that influence problem-solving performance, and these abilities facilitate the acquisition and use
of elementary mathematical ideas. Thus, a translation process between representational systems
and the ability to transfer within them is an important process for effective learning and the
acquisition of successful problem-solving skills (Lesh et al., 1987).

Janvier (1987) described the translation process between the four modes of
representations as shown in Figure 3. In the figure we can see that there are translations between
the several modes of representations. For example, verbal representation can be translated into
tabular and graphic representations, respectively, by creating a table of measurements and
sketching a graph. Similarly, graphic representation can be translated into verbal by interpreting

the information that is given in graphic representations.
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TRANSLATION PROCESSES

To Situations,
Yerbal Tables Graphs Formulase
From Description
Situations,

Yerbal Measuring Sketching Modelling

Description

Tables Reading Plotting Fitting
Graphs Interpretation| Reading off Curve fitting
Formulae Paramalar Computing Sketching

Recognition

Figure 3: Translation process among four modes of representations

From Problem of Representation in the Teaching and Learning of Mathematics by C. Janvier,
1987, p.28, Copyright, 1987 by Lawrence Erlbaum Associates

While solving problems from the geometry test (see appendix A), students may translate
the problems into graphic, algebraic, numeric, or verbal representation based on their preferences
for solution methods to solve the problems. Consider the following problem:

From a ship on the sea at night, the captain can see three lighthouses and can measure the

angles between them. If the captain knows the positions of the light houses from a map,

can the caption determine the position of the ship (NCTM, 2000, p. 69)?

This problem can be translated into a graphic representation. In the graphic representation, the
ship and the lighthouses become points in the plane. In order to solve the problem, students do
not necessarily need to know about a graphic representation of the ship and the lighthouses
because they might solve it by analytical reasoning using algebraic and or numeric
representation, which is a nonvisual solution method. However, if a student prefers to use a
visual solution method, then he/she needs the graphic representation of the lighthouse problem.

In this situation, students need to be able to translate from verbal to graphic representation.
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Whether students are visual or nonvisual learners, it would be useful to learn the translation
process from one representation to another, which provides students with the flexibility to
understand mathematical ideas and concepts effectively.

Importance of Representation

Mathematics, especially geometry, is based on the system of representation. Students
employ different types of modes of representation while attempting mathematics problems.
Whether students are verbalizers or visualizers, they need representation to solve mathematics
problems. For example, visualizers prefer to employ graphic representation and verbalizers
prefer to use algebraic representation. Moreover, mathematics teachers would hardly think of
teaching geometry without using some kind of representations as pedagogical strategies. Kaput
(1987b) stated that “representation and symbolization are the heart of the content of mathematics
and are simultaneously at the heart of cognitions associated with mathematical activity” (p. 22).
Geometry is even more a visual subject because it deals with different types of figures and
diagrams, which are of fundamental importance in teaching and learning geometry (Niven,
1987). The fact is that most textbooks make use of a wide variety of representation with the goal
of enhance understanding and learning of mathematics.

The National Council of Teachers of Mathematics (NCTM, 2000) described the
importance of representation in the book Principles and Standards for School Mathematics. It
states:

Instructional programs from pre-kindergarten through grade 12 should enable all

students to: (a) create and use representations to organize, record, and communicate

mathematical ideas, (b) select, apply, and translate among mathematical representations
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to solve problems, and (c) use representations to model and interpret physical, social, and
mathematical phenomena. (p. 67)

Asli (1998) explained that the representational system has an important role in presenting
problems to students and solving problems by students. Dufour-Janvier, Bednarz, and Belanger
(1987) identified several reasons for tactical use of representational systems in teaching and
learning mathematics (p. 110):

e Representations are an inherent part of mathematics,

e Representations are multiple concretizations of a concept,

e Representations are used locally to mitigate certain difficulties,

e Representations are intended to make mathematics more attractive and interesting.

Translation of one mode of representation to another is useful for students to learn because
translation processes are essential tools for communication and reasoning about concepts and
information in mathematics, and help to conceptualize the real world problem with the help of
representations (Greeno & Hall, 1997; Vergnaud, 1987). For instance, students may use graphic
representation although a geometry problem given using verbal representation Thus, one can
argue that the more translation skills students possess the more they become successful in
solving mathematics problems.

Summary

This chapter described various studies as they relate to students’ preference for solution
methods, task difficulty, mathematics performance, and their gender. There is not a consensus
regarding the relationships between preference for solution methods and mathematics
performance. Some studies found a significant relationship between preference and performance,

while others reported no correlation between these two variables. Similarly, regarding the gender
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differences on preference for solution methods and mathematics performance, no studies derived
the same conclusions. Some studies reported that there was a significant effect of gender on
preference for solution methods and students’ mathematical performance, while others found that
gender differences prevail either only on preference for solution methods or mathematical
performance. A majority of research studies reported that male students outperformed female
students in mathematics performance. However, some studies reported that female students
outperformed male students, and a few studies also found males and females did not differ in
mathematics achievement.

In the domain of mathematics, four types of representation, graphic, numeric, algebraic,
and verbal are employed in teaching and learning mathematics. While solving mathematics
problems, students may translate problems from one mode of representation to the other based
on their preference for solution methods to solve the problems. Translation ability is an
important factor for learning and problem solving in mathematics because translation of one
mode of representation to another will provide flexibility to problem solvers while attempting

mathematics problems.

56



CHAPTER THREE: RESEARCH METHODOLOGY

Research Design and Method

A quantitative research design was chosen for this study. In a quantitative research
design, the potential subjects are naturally embedded in a large group or setting, for example
students in a class or in a school (Campbell & Stanley, 1963). Quantitative methods focus on
objective measurement and numerical analysis of data collection through instruments, surveys,
or polls. In a quantitative research design, the researcher answers a research questions by
establishing the overall tendency of responses from individuals and notes how the tendency
varies (Creswell, 2007). This study also has a causal-comparative design. This design generally
involves pre-existing groups of participants, and often the variables that are examined in causal-
comparative designs cannot be experimentally manipulated, for example, gender. Thus, there
were no control and experimental groups in the research design.
Data Collection

Population, Sample, and Participants

Patten (2004) suggested that obtaining an unbiased sample is the main criterion when
evaluating the adequacy of a sample, which can be determined by using Krejcie and Morgan’s
(1970) statistical formula. Many research studies employ a convenience sampling procedure
because the researchers have access to students in a school, customers of a business, or patients
in a hospital (Schreiber & Asner-Self, 2011). The researcher of this study had access to certain
schools. Thus, convenience sampling was employed to select participants for this study.

The researcher was working as a research assistant on the Geometry Professional Series
(GPS) program for high school geometry teachers. The professional development was focused on

improving the teachers’ depth of knowledge in relation to geometry topics and their real world
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applications. The topics were covered through discovery learning with the goal of improving the
participants’ depth of conceptual knowledge and providing strategies for incorporating the
Standards for Mathematical Practice from the CCSSM into their mathematics lessons. Teachers
were encouraged to integrate technology in their lesson activities. There were two cohorts in the
GPS. There were 38 teachers in the first group in the school year of 2012-2013 and 35 in the
second cohort in the school year of 2013-2014. However, during the time of this study, the first
cohort completed the professional development series and cohort two was enrolled in the
professional development series. Thus, the researcher only talked with most of the teachers in the
second cohort about his research study and asked whether they could help to collect data for the
study. And then, the researcher also communicated with teachers about the research study via
emails. However, some teachers did not show interest to participate in the study. The researcher
chose the first nine teachers, from six different schools, who were interested to help collect data
in their classrooms for this study. The expected sample size for this study was 150 students and
the number of students that had been taught by nine teachers was more than 150 students. Thus,
when the researcher ensured that there were enough numbers of students, he did not have to go to
other school and teachers who still were interested to help conduct this study.

The students of this study consisted of a population representative of the high school’s
population with respect to the proportions of compositions of gender and ethnicity. The sample
consisted of 161 students whose ages ranged from 14 to 19. A total of 41% of the students were
male, and 59% were female. The students also consisted of various ethnicities. Of the students,
24% were White, 37% Hispanic, 26% African American, 2.5% Asian or Pacific Islander, and

6.8% Multiracial. The breakdown for the percentage of ethnicity is listed in Table 1.
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Table 1: Descriptive statistics of ethnicity

Ethnicity Frequency Percent
White 39 24.2
Hispanic 60 373
African American 41 25.5
Asian or Pacific Islander 4 2.5
Native American 1 .6
Multiracial 11 6.8
Other 3 1.9

A total of 6.8 % of the participants were between the ages of 14 and 15, 54% were
between the ages of 16 and 17, and 38% were 18 and above. Eight teachers were involved from
six different schools. The students were in a range of grades. Of the total students, 18.6% were
from grade 10, 47.2% from grade 11, and 34.2% from grade 12. The participants were enrolled
in different mathematics courses during the 2013—-2014 school year. Of the total test population,
67.6% were enrolled in Algebra 2, 5% in Geometry, 19.3% in Financial Algebra, and 8.1% in
Pre-calculus. Table 2 illustrates descriptive statistics of subject and grades.

Table 2: Descriptive statistics of subjects and grades

Subjects Students Percent Grades Students Percent
Algebra 2 109 67.6% Ten 30 18.6 %
Regular Geometry 8 5% Eleven 76 47.2%
Financial Algebra 31 19.3% Twelve 55 34.2%
Precalculus 13 8.1%
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Table 2 showed that only 5% of the students were enrolled in regular geometry. The
school district made a change of course sequence so a limited number of students enrolled in
geometry. In fact, in the school year of 2013-2014, a geometry course was not offered in almost
all high schools from where that data was collected. Thus, there were only 5% of the total
students enrolled during the time of the study.

Procedure

The data were collected from high schools at a county located in Florida in the United
States. The study was conducted during the 2013-2014 school year. The geometry test and the
geometry questionnaire were used to collect data for all 161 students. Upon completion of the
geometry test, students were given the geometry questionnaire.

The test was conducted in a regular classroom during school time. The normal time
interval of most of the classes was 52 minutes. Normally, students took a class period to
complete the test. The researcher clearly described the geometry test and corresponding
geometry questionnaire. The researcher also displayed an example of a geometry problem on
chart paper that was solved in different ways similar to the geometry problems that were solved
in the geometry questionnaire. Moreover, the researcher also explained that students were
allowed to use a calculator, a ruler, scratch paper, etc., but not a reference sheet (formula sheet).
(While taking the test, many participants still asked the researcher whether they were allowed to
use the reference sheet.) When students finished the geometry test, the test was collected;
students were then provided with the geometry questionnaires to complete. There was a variation
in the time taken to complete the test. The majority of students used the entire time to work on

the geometry test and the geometry questionnaire. Some students, however, finished (or gave up)
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the geometry test in 10-15 minutes. In general, the first 30-35 minutes were used to complete the
geometry test and the remaining 15 minutes were utilized to complete the geometry
questionnaire. The researcher also explained to the participants that even if they were unable to
solve the geometry problems, they could still choose the solution methods that were a best fit for
them from the list provided in the geometry questionnaire. Participants’ demographic
information relevant to this study, such as age, gender, etc., was also collected. For more
information, please look at the first page of the geometry test in Appendix A.

Some classes were in a block schedule (90 minutes); others were in a regular schedule
(52 minutes). Participating teachers who were in the block schedule started their lessons when
students finished the test. It was noted during administering the test that all but two students were
not be able to finish the geometry test and the geometry questionnaire in a regular class. In fact,
the two participants did finish the test but were not able to complete the geometry questionnaire.
Thus, the researcher asked them to complete the packet at home and return it to their teachers.
During the test there were no time-related issues 1.e., students completed the geometry test and
geometry questionnaire within 52 minutes.

Instrument

A geometry test and a geometry questionnaire were used to collect quantitative data. The
geometry test contained 12 geometry problems from different topics of high school geometry.
Students were required to show their work while completing the geometry problems. The
geometry questionnaire contained different types of solution methods of each problem in the
geometry test. Upon completion of the geometry test, students were given the geometry
questionnaire and asked to choose the solution methods from the list that best described the

solution methods they employed to complete geometry problems. The geometry test and the
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geometry questionnaire were designed to measure students’ preferences for solution methods as
well as the geometry knowledge and skills they had already been taught. The researcher adopted
the first six geometry problems from Battista’s instrument; the rest of them were designed and
developed based on the existing literature. For more details about the geometry test and
geometry questionnaire, please see appendices A and B respectively.

Approximately 2-3 weeks after administering the geometry test, the researcher conducted
short interviews to further explore students’ preference for solution methods. It turned out to be
difficult to conduct interviews with all participants. Moreover, since this was primarily a
quantitative study, interviews for all subjects were not strictly necessary. Thus, the researcher
chose only 17 students for a short interview in order to further explore the solution methods they
used while solving the geometry problems. Typically, the audiotaped interview lasted 2 to 3
minutes.

Students were selected from each school to represent all schools where quantitative data
were collected. From the list of names of all students who took the geometry test and the
geometry questionnaire, the researcher requested participating teachers to provide the names of a
couple of students for a short interview. Thus, participating teachers selected some students from
their class for the interview. The researcher did not ask participating teachers how they chose
their students for interview. Thus, it was not clear how participating teachers selected their
students as it relates to the procedure of selection of students for the interview. In most cases,
interviews were conducted in a corner of a regular classroom; however, in some cases interviews
were conducted outside of the classroom, such as in a hallway or corridor of a school building.

Three problems from the geometry test— numbers 1, 4, and 8—were chosen as the basis

for the interviews. A hard copy of the questions was also provided. The researcher decided to
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choose these three problems after preliminary analysis of the geometry test and the geometry
questionnaire. Preliminary analysis of the data revealed that most of the participants chose visual
solution methods while solving the geometry problems. The researcher chose three types of
problems based on participants’ preference for solution methods: a problem for which most
students used a visual solution method, a problem for which students used visual as well as
nonvisual solution methods, and a problem for which the majority of students used a nonvisual
solution method.

The “think aloud” method was used to conduct interviews. Students were asked to
explain their solution methods aloud so that the researcher could have the opportunity to
understand their preference for solution methods. “In think aloud method the subject is asked to
talk aloud, while solving a problem, and this request is repeated if necessary during the problem-
solving process thus encouraging the subject to tell what he or she is thinking” (Someren,
Barnard, & Sandberg, 1994, p. 25). The analysis of the audiotaped interview was carried out in a
number of steps. The audiotaped interviews were carefully transcribed word by word. Glesne
(2011) recommended that researcher’s start a codebook soon after the data collection starts. The
researcher kept track of all the data collected; however, the codebook was developed during data
analysis. In fact, coding is a progressive process of sorting and defining, and defining and sorting
of collected data (Glesne, 2011).

Development of Geometry Tests

Developing and designing an appropriate instrument for a research study is not easy
because various aspects, such as reliability, validity, content, and standard of the items of the
research instrument, are always open to comments and criticism. Even selecting a reliable

instrument to measure mathematical problem-solving performance is a difficult task (Moses,
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1977). Thus, the researcher has attempted to find suitable preexisting research instruments. The
Mathematical Processing Instrument (MPI) developed by Suwarsono (1982) and geometry
problem-solving strategies designed by Battista (1990) are the only closely related instruments
for this study. The MPI, however, consists of algebra word problems and would not be an
appropriate research instrument to measure students’ preferences for geometry problems
(Haciomeroglu et al., 2013). Battista’s (1990) “Geometry Problem Solving/Strategies” was a
closer fit. Battista’s test consisted of 12 problems dealing with finding midpoints, determining
specified distances in two and three dimensions, and so forth. The Suwarsono and Battista
instruments provided very important insights and ideas useful in designing the geometry test and
questionnaire for this study.

Battista’s geometry instrument (problem-solving strategies) contains 12 geometry
problems; however, for this study only six problems were chosen from his instrument. One of the
main aims of the geometry test was to distinguish between students’ preference for visual and
nonvisual solution methods. Thus, if the problems from Battista’s instrument clearly appeared
not to have two easily accessible solution methods, they were not included in the geometry test.
Similarly, another important factor for selecting only specific problems from Battista’s
instrument was to make sure that the potential solution methods were distinct and non-
overlapping. If the problems had two solution methods but the two solution methods seemed to
overlap, then the problems were not included in the geometry test.

Problem number 11 was designed based on an example provided in Common Core State
Standards for Mathematics (CCSSM, 2010). Problem number 12 was chosen from a chapter of a
book written by Blair and Canada (2009) and published by the National Council of Teachers of

Mathematics (2009). The rest—problems 7, 8, 9, and 10—were developed and designed by the
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researcher. The researcher also compared the geometry problems with content standards of
CCSSM. Geometry content covered by the geometry test was included in various sections of
middle and high school geometry in the CCSSM. Problem one appeared to belong to grade 6
(NS-number system). Problem three (F-function), five (G-geometry), and eight (EE-expressions
and equations) are closely aligned with content for 7" and 8" grades. The rest of the problems
belong to high school geometry. Different content areas, such as Congruency (CO), Circle (C),
Similarity, Right Triangle, and Trigonometry (SRT), Geometric Properties with Equation (GPE),
and Geometric Measurement with Dimension (GMD) were covered by the geometry test which
is aligned with the CCSSM. An overview of the coverage and content of the geometry test and
its relation to CCSSM is provided in Table 3.

Table 3: Source of test item, content coverage, and relation to CCSSM

Problem | Sources (taken/adapted) Geometry content coverage CCSSM
1 Battista, M. T (1990) Integers on a number line 6-NS

2 Battista, M. T (1990) Similarity, right triangle and trigonometry | G-SRT
3 Battista, M. T (1990) Coordinate geometry 8-F

4 Battista, M. T (1990) Circle G-C

5 Battista, M. T (1990) Area and perimeter of rectangle 7-EE

6 Battista, M. T (1990) Surface area and volume of 3D objects G-GMD
7 Designed Congruence: prove geometric theorem G-CO

8 Designed Coordinate geometry 8-EE,5
9 Designed Transformations G-CO
10 Designed Coordinate geometry G-GPE
11 CCSSM (2010) Geometric properties with equations G-GPE
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Problem | Sources (taken/adapted) Geometry content coverage CCSSM

12 NCTM (2009) Circle G-C

The geometry test that was intended as a research instrument for the purpose of this study
was an achievement test rather than an aptitude test. An achievement test is designed to measure
what somebody has already learned, whereas an aptitude test is designed to determine a learner’s
potential for learning new information or skills (Friedenberg, 1995). The geometry test and the
geometry questionnaire were designed to measure students’ preferences for solution methods as
well as the geometry knowledge and skills they had already been taught. However, it was not
possible to include questions from each topic of high school geometry because there would have
been too many questions on the test.

Another important criterion for designing and developing this test was whether the
problems could be solved by using visual and nonvisual solution methods. Some topics in
geometry do not lend themselves to both visual and nonvisual approaches. Thus, the researcher
decided to design the questions to cover as many topics as possible from high school geometry.

Domino (2000) explained eight steps that researchers would need to think about before
designing a test. They include the role of theory, practical choices, pool of items, tryouts, and
refinements. Various types of tests, such as multiple-choice, true or false, and fill-in-the-blank
can be designed based on the purpose and nature of the research study. In this study students
were asked to solve the problems and show their work. Domino (2000) mentioned various
advantages of multiple-choice items, such as the fact that they can be administered in a short
interval of time, can be scored quickly and inexpensively, and can be easy to analyze; however,

the researcher did not use a multiple-choice test. The fact is that this study aimed to investigate
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how students prefer to think and process mathematical information; thus, with the geometry test,
students were required to show their work on paper while solving the problems. Doing so gave
the researcher an opportunity to see students’ preference for solution methods or strategies in
addition to evaluating an answer as correct or incorrect.

Based on the existing literature about the mode of representation as well as theoretical
and empirical evidence, verbal representations were used in the presentation of items on the
geometry test. Similar to Suwarsono’s MPI, the geometry test also has two parts. The first part
includes 12 geometry problems suitable for high school students. The second part is a
questionnaire consisting of visual, nonvisual, and other solution methods for each task. In the
second part, students were asked to choose the solution method(s) from the given list that best
described their solution method. If students came up with different solution methods that were
not listed on the geometry questionnaire, they were asked for a description of their methods.

The researcher decided to design some of the problems of the geometry test based on the
high school geometry curriculum for several reasons. First, high school students can respond to
the questionnaire in more explicit ways than could students from elementary or middle school.
Second, the visual solution methods include drawings and figures with and without coordinate
axes, and the study of coordinate geometry is the best fit for high school students. In addition to
this, research studies show that the gender difference in mathematical performance is almost
unnoticeable in the primary grades; in the upper grade it becomes quite marked (Gallagher & De
Lisi, 1994; Hyde, Fennema, & Lamon, 1990; Krutetskii, 1976; Steele, 2003).

Task Difficulty
The geometry test contained 12 geometry problems on various topics in high school

geometry. The problems differed in level of difficulty based on whether they required few steps
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and simple calculations or multiple steps and rigorous thinking to solve them. Generally, test
items that require more steps to solve are more difficult than test
items that require fewer steps (Cheng, 2006).

One of the aims of this study was to examine the relationship between students’
preference for solution methods and task difficulty. Thus, the researcher divided the geometry
problems into three categories: easy, moderate, and difficult. The researcher used the following
criteria to make the distinction between easy, moderate, and difficult problems. If a problem did
not require many steps to solve, then it was considered easy. Students did not have to think
critically, and simple calculations and formulas would be enough to solve the easy problems.
Easy problems did not require using geometry theorems. Moderate problems were not as
straightforward and simple as easy problems. They needed more steps and required sound
knowledge to solve them. The difficult problems required more rigorous and critical thinking.
Students needed to use formulae as well as geometry theorems in order to solve the difficult
problems. For more detail, please see Appendixes A and B for the geometry test and
questionnaire, respectively. The researcher also discussed the geometry problems with some
doctoral students (mathematics education track, University of Central Florida) to determine the
degree of difficulty of the problems. Based on the criteria, the researcher categorized the
geometry problems as shown in Table 4.

Table 4: Classification of geometry problems

Task difficulty Problem number
Easy 1,8,9,10
Moderate 3,4,5,11
Difficult 2,6,7,12
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Although it would have been feasible to design a test containing items from various areas of
geometry, the test would then be too long and impossible to administer due to time constraints.
Thus, the researcher needed to make a decision as to what types of geometry problems should be
included in the test. In this regard, the following criteria were used during the development of the
geometry test as a research instrument:

e The problems should be suitable for high school students.

e The geometry tasks could be equally solvable in at least two different ways: visual and

nonvisual.

e The geometry test needs to include problems of varying levels of difficulty: easy,

moderate, and difficult.

The geometry test included 12 items of varying degrees of difficulty. Difficulty is defined
in terms of the likelihood of a correct response, not in terms of the perceived difficulty or
amount of effort required (Demars, 2010). From the research standpoint, classification of the
geometry problems into easy, moderate, and difficult may not be scientific, because an easy
problem for one student could be difficult for another. Thus, the researcher also took
students’ actual work into account as well as his/her knowledge to categorize the geometry
problems into easy and difficult groups.

Geometry Performance

This study is centered on students’ preference for solution method, their gender, and their
geometry performance. The geometry test used to collect data in this study did not cover the
entire content of the high school geometry curriculum. It must be noted that this test might not
assess students’ actual geometry performance. Thus, the researcher decided to use students’

geometry performance based on standardized test scores. The End of Course (EOC) is a
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standardized assessment administered for the first time in 2012 in the state of Florida where the
research had been carried out.

The Florida Department of Education (FLDOE) has implemented End of Course (EOC)
assessments for certain courses administered at the middle and high school levels. The EOC is
part of Florida’s Next Generation Sunshine State Standards (NGSSS), which is designed to
measure student achievement (content knowledge and skills) for specific courses outlined in the
course descriptions (Florida Department of Education, 2012). Regardless of students’ enrollment
in different types of geometry courses in high school, there was only a single EOC assessment
for all students.

The End of Course (EOC) assessment for geometry is designed to measure students’
content knowledge and skills in three areas of geometry: two-dimensional geometry, three-
dimensional geometry, and trigonometry and discrete mathematics. The computerized test is
administered in one 160-minute session. Students are allowed to use hand-held four-function
calculators and four pages of scratch paper. Additionally, students are also allowed to use a
reference sheet (formula sheet) during the assessment. For a more detail about the reference
sheet, please see Appendix D.

Participants’ geometry EOC scores were gathered with the help of participating teachers.
It is worthwhile to mention that while most students had 2013 scores, some students had no
scores more recent than 2012. In fact, 65% of students had their EOC scores from 2013. This
distribution implies that some students had not taken geometry courses for two years. EOC
scores for geometry were reported in two different ways between 2012 and 2013. A T-scale score

ranging from 20 to 80 was used to report students’ geometry scores in 2012; the mean was a
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score of 50 and the standard deviation was 10. In 2013, however, actual scores were reported,
ranging from 325 to 475.

The anticipated sample size for this study was 150 high school students. As earlier
explained, participating students’ grades ranged from 10 to 12, and their courses also ranged
from algebra to pre-calculus. Though students were in same grade levels and courses assignment
during the time of this study, some of them had taken geometry a year earlier while others had
taken before two years. For example, students who were enrolled in financial geometry at grade
12, some had their EOC scores from 2012 while others had from 2013. Thus, the researcher had
to look for their EOC scores over the last two years.

Participants’ EOC score should be in the same scale for the purpose of statistical analysis.
Thus, the researcher converted participants’ 2013 actual EOC scores into 7-scale scores for
consistency. The raw score can be converted into a Z score, and then the Z score can be

converted into a 7-scale score as follows:

o (Z score)

T= (10*2)+50 (T-scale score)

The statistical software SPSS was used to convert the raw score into 7-scale score.
Scoring of the Instrument

The easier the test items, the more likely that students got correct answers and vice versa.
To analyze the task difficulty, the researcher quantified participants’ work by assigning numeric
values to the students’ work on geometry problems. The problems differed in level of
difficulty—easy, moderate, and difficult—based on whether they required few steps and simple
calculations or multiple steps and rigorous thinking to solve them. However, regardless of

different types of problems, the researcher used only two numeric values, one for correct answer
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and the other for incorrect answer, for the geometry problems. Students received one point (1)
for the correct answer and zero points (0) for the incorrect answer. Thus, students could receive a
minimum of zero points to a maximum of 12 points on the geometry test. If students did not
solve a problem or skipped it, they received zero points.

The difficulty level of each problem in the geometry task was determined by how many
students were able to solve the geometry problems correctly as well as the researcher’s
knowledge and experience of teaching and learning mathematics. The more participants able to
solve the task correctly, the easier would the problem be. For example, 26% of the total
participants were able to solve problem one correctly, while only 6.8% of participants were able
to solve problem two correctly. Thus, Problem 1 was deemed easier than Problem 2. Table 5
delineates the task difficulty of the geometry test, showing the percentage of students getting
correct answers on the geometry test.

Table 5: Task difficulty of the geometry test

Problems 1 2 3 4 5 6 7 8 9 10 11 12

Correct (%) 26 6.8 155 74 74 93 8 37.8 335 28 37.8 74

Each participant’s geometry test and geometry questionnaire were analyzed
simultaneously. The researcher recorded how many geometry problems students answered
correctly and incorrectly. The solution method for each participant was also recorded. The data
analysis indicated that students chose the same solution methods on the geometry questionnaire
that they utilized to complete the geometry problems in the test. For these students, there was
consistency between the solution methods they used to solve the problems and the solution

methods they chose in the geometry questionnaire. However, there were some cases in which
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students used one method to solve the problems but chose different methods for those problems
in the questionnaire, creating an inconsistency in response between the two instruments. Some
participants clearly used visual solution methods while solving the problems in the geometry test,
but they chose nonvisual solution methods in the geometry questionnaire. Similarly, some
students used both visual and nonvisual solution methods while solving geometry problems but
they chose only one solution method in the geometry questionnaire. Other students mentioned
that they just guessed the solution method from the geometry questionnaire. Moreover, some
cases were noted where students chose solution method four (Other Method) in the geometry
questionnaire without explaining the solution method they employed in order to solve the
problems. In solution method four, students were required to explain the solution method if they
came up with different types of solution methods other than those provided in the geometry
questionnaire.

The researcher analyzed the geometry test and the geometry questionnaire at the same
time for every participant to ensure the accuracy between the actual solution methods they used
to solve the problems and solution method they chose in the geometry questionnaire. In so doing,
the researcher was able to see and verify the actual solution method participants used in the
geometry test and the solution method they chose in the geometry questionnaire. Examples of

students’ work are given in figures 4 and 5.
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PROBLEM 10

Find the distance between the points P (—6,1) and Q (2,1).

v/

Figure 4: A visual solution of problem 10 (unedited)

Figure 5: A nonvisual solution of problem 10 (unedited)
The researcher used the following criteria to address the various issues in connection with
the students’ actual solution methods for the geometry test and geometry questionnaire:
1. When students solved a problem using a visual solution method on the geometry test, for

example, but chose the nonvisual solution method in the geometry questionnaire, the
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researcher primarily relied on the geometry questionnaire to determine participants’
preference for solution method.

When students solved a geometry problem but did not choose a solution method in the
geometry questionnaire, their solution method was decided based on the geometry test as
long as there was clear evidence as to the methods they used to solve the problems.
When students chose solution method four in the geometry questionnaire but did not
describe their method, their solution method was determined based on the actual method
they employed to solve the problems in the geometry test. If there was no clear evidence
as to the solution method participants used to solve the problems, their solution methods
received a score of zero.

When students solved a problem both ways—i.e., using both visual and nonvisual
methods—their solution method was determined based on what solution method they
chose from the geometry questionnaire.

When students solved a problem both ways—i.e., using visual and nonvisual methods—
and they also chose both methods in the geometry questionnaire, their solution methods
were considered harmonic.

When students chose solution method two (drawing) and solution method three
(visualization) in the geometry questionnaire, their solution methods were considered to
be visual.

When students mentioned in the geometry questionnaire that they simply guessed or did
not know their solution method, and if there was also no clear evidence as to what

solution method they employed in the geometry test, they were also placed in the
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undecided group in regard to preference for solution methods and received a score of

Zero.

As previously stated, there are three types of students: visualizers, nonvisualizers, and
harmonics. Visualizers use visual solution methods i.e., their solution methods are based purely
on the diagrams, pictures, and figures. Nonvisualizers use nonvisual solution methods in which
they employ arithmetic, algebra, or formulas to solve problems. Harmonic students use both
visual and nonvisual solution methods.

For the purpose of statistical analysis, students’ preferences for solution methods were
also quantified into numeric values. To recap, students belong to one of three categories: (a)
visualizers, who have a preference for the use of visual solution methods, including graphic
representation (i.e. figures, diagrams, and pictures); (b) nonvisualizers (verbalizers), who have a
preference for the use of nonvisual solution methods, which involve algebraic, numeric, and
verbal representation; and (c) harmonic students, who use visual and verbal methods equally.
Students’ visuality score can be determined by their preferences for solution methods (i.e. how
many geometry problems they solved using visual, nonvisual, or both methods). The visuality
score was determined by adding students’ visual, nonvisual, and harmonic scores.

Researchers used different scoring systems to measure visual and nonvisual solution
methods and visual scores (Haciomeroglu & Chicken, 2011; Lean & Clements, 1981; Moses,
1977; Suwarsono, 1982). For example, Suwarsono gave plus two (+2) for visual solutions with
the correct answer, plus one (+1) for visual solution with the incorrect answer, and zero (0) for
no answer. He gave minus one (-1) for nonvisual solutions with the incorrect answer, minus two
(-2) for nonvisual solutions with the correct answer. Similarly, Haciomeroglu and Chicken

(2011) gave a score of zero (0) for nonvisual solution methods, two (2) for visual solution
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methods, and one (1) for using both methods. Moses (1977) gave a zero (0) for nonvisual
solution method, one (1) for the solution method where both methods were manifested, and two
(2) for visual solution methods.

The underlying reason for using different numeric values by different researchers was to
differentiate the types of students based on the solution methods students used. In fact, the
associated numeric values do not express the quantity; rather, they help to discriminate students’
preferences for solution methods. Thus, for the purpose of this study, students were given a score
one (1) for the visual solution method and negative one (-1) for the nonvisual solution method.

A score of zero (0) was given if students did not choose their solution methods, chose both
methods, or could not determine the solution methods they used. Students were placed into the
harmonic group if they used both visual and nonvisual solution methods when completing the
geometry test and the questionnaire and they also received a score of zero (0). Thus, for 12 items,
an individual could obtain a ‘nonvisual-visual’ score ranging from -12 to +12.

An Overview of the Geometry Problems

The geometry test and the geometry questionnaire were designed to measure students’
preferences for solution methods. The first six geometry problems were taken directly from
Battista’s (1990) research instrument (geometry problem solving/strategies); the remaining six
problems were designed based on different criteria as stated earlier. The analysis of the data
revealed that the geometry test appeared to be a difficult one. However, not all the problems
were of the same degree of difficulty, with some easier than others. A brief overview of each

problem is described below.
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Problem 1

Problem one was directly taken from Battista’s instrument. Originally, the researcher categorized
this problem as being in the easy group. This problem deals with the concepts of integers in a
number line. The introduction of the concept of integers is part of the middle and high school
curriculum. However, this problem did not appear to be quite as easy as anticipated before
conducting the study. The majority of the participants used visual solution methods to solve this
problem. Though drawing a number line would be enough for this problem, the majority of the
visualizers drew coordinate axes and tried to find the answer in terms of Cartesian coordinates,
which led them to wrong answers. An example is given in figure 6. It must be remembered that
the participants were from grade 10, 11, and 12, and coordinate geometry is one of the major
topics in high school geometry, which might be a reason why so many students drew coordinate
axes rather than a number line. Moreover, it had been a while since participants had learned the
concept of integers in middle school. Therefore, they might have forgotten the concepts of
integers that had they learned in middle school.

Problem 1 -2 )

—)
What is the coordinate of the pointon the ngmhgr_hm;.\lialhvay between —8 and +5?

i

Figure 6: Example of use of coordinate axes
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Problem 2

This problem was also adapted from Battista’s instrument. The analysis of the
participants’ work unveiled that this was a difficult problem as anticipated. The majority of the
participants used visual solution methods to solve this problem. Only very few students used the
Pythagorean Theorem to solve this problem. Many of them directly used the numeric value given
in the problem and used numeric ratios to solve it.
Problem 3

This problem was moderately difficult. The majority of the participants used visual
solution methods to solve it. It appeared that most of the students were able to plot the given
points on the coordinate system appropriately. However, all four points seemed to lie on the
same straight line on the rough sketch. When students plotted the points on scratch paper, it was
natural that the scaling of the coordinate system might not have been precise enough, which
might have led students to the wrong conclusion regardless of whether they plotted the points
correctly. The researcher believes that if these four points had been distinctly apart from each
other, more students, particularly those in the visualizer group, could have done this problem

correctly. An example of a participant’s work is given in figure 7.

Figure 7: Example of student's work (unedited)
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Problem 4

Problem 4 was adapted from Battista’s (1990) research instrument. The researcher
categorized it as a moderately difficult problem, a designation that was supported by the analysis
of participants’ work. Students used both visual and nonvisual solution methods equally to
complete this problem.
Problem 5

Participants were asked to find the perimeter of a swimming pool in this problem, which
was placed into the moderately difficult problem group. The majority of students used visual
solution methods to find the answer to this problem. This problem also appeared to be a difficult
one.
Problem 6

Problem 6 was the only problem for which graphic as well as verbal representations were
used to present the problem. The majority of the participants used visual solution methods. In
spite of the presence of a diagram, some students employed nonvisual solution methods.
Participants’ work indicated that this was a difficult problem.
Problem 7

Problem 7 was designed based on a geometry theorem. The majority of students used
visual solution methods for this problem. An analysis of participants’ work indicated that this
was one of the most difficult problems of the geometry test.
Problem 8

Compared to the rest of the problems, the majority of students used nonvisual solution
methods to solve problem 8. Moreover, many participants asked during the test whether they

were allowed to use a reference sheet because they are allowed to use a references sheet while
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taking quizzes and the End of Course (EOC) assessments. The researcher believed that if
participants were provided with the reference sheet, there would have been even more students
using a nonvisual solution method. Problem 8 appeared to be a relatively easy problem compared
to other problems in the geometry test.
Problem 9

This problem was designed based on transformation geometry. The majority of students
used a visual solution method to solve this problem. This problem also appeared to be in the easy
category. Very few students used a formula to complete this problem. Similar to problem 8, if
students were provided with the reference sheet, there would have been even more students using
a nonvisual solution method.
Problem 10

The researcher anticipated that this would be the easiest problem of the geometry test;
however, that appeared not to be the case. Only 28% of students were able to do this problem
correctly. Compared to other problems, this problem still belonged in the easy category. Like in
problem 8, many participants asked whether they were allowed to use a reference sheet for this
one, because they are allowed to use a reference sheet during quizzes and on the End of Course
(EOC) assessments. It must be noted that many students mentioned that they did not know the
distance formula. Furthermore, they explained that if they had known the distance formula, they
could have done it. Providing formulae might be useful to solve this problem, particularly for
nonvisual students.
Problem 11

Problem 11 was designed based on the high school geometry standard (Expressing

Geometric properties with Equations G-GPE) of the Common Core State Standards for
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Mathematics (CCSSM). Most of the participants used visual solution methods to solve this
problem. Participants’ work revealed that it was easier to solve this problem with a visual
solution method. In order to solve this problem in a nonvisual way, participants were required to
know the standard equation of the circle. It seemed that nonvisual solution methods required
more steps and information.

The data also revealed that this problem was at a moderate level of difficulty. It is
worthwhile to mention that Problem 11 was the only yes/no problem. Students could choose
simply yes or no without doing any mathematics. Quite a few students chose their answer
without showing any work in this problem. The researcher had to accept the participants’
responses regardless of whether they showed their work or not.

Problem 12

This problem was adapted from a book published by the National Council of Teachers of
Mathematics (2009). All participants used visual solution methods to solve this problem and
many chose visual solution methods in the geometry questionnaire, too. However, a few students
actually chose nonvisual solution methods in the geometry questionnaire, even though they had
selected a visual solution method on this problem on the test. The analysis of participants’ work
indicated that this was a difficult problem. Many participants did not attempt this problem and
mentioned that they had no idea how to solve it.

Reliability and Validity of the Instrument

Validity and reliability are important factors for research studies. Internal validity refers

to the process of controlling variables within the study to ensure that the instrument examines

what it is intended to measure (Shadish, Cook, & Campbell, 2002). With respect to internal
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validity, the researcher wanted to measure whether the test results truly indicated what they were
supposed to measure: the students’ preference for solution methods.

Campbell and Stanley (1963) stated that there are variables that can jeopardize the
internal and external validity of any research instrument. However, the researcher tried to
minimize the validity threats as much as possible. The researcher was concerned about the
various issues pertaining to the design and development of the geometry test. Does the test
measure whatever it is supposed to measure in a consistent way? Are the questions well posed?
Are the questions too difficult or too easy? Do the questions discriminate between higher and
lower mathematical performance? Are the outcomes significant? In short, the researcher was
concerned with the reliability and validity of the geometry test. An instrument (test) is said to be
reliable if it yields a consistent result (Patten, 2004). Similarly, an instrument is valid to the
extent that it measures what it is designed to measure and accurately performs the function it is
supposed to perform.

The internal consistency method of “coefficient alpha” also known as Cronbach’s alpha
was chosen to determine the reliability the geometry questionnaire. This method is based on the
principle that sets of scores can be correlated to determine reliability. For example, to determine
the amount of variance, the test scores determine true differences among students. A Cronbach’s
alpha coefficient between 0.7 and 1 is a widely accepted indicator of the reliability of an
instrument (Wiersma, 2000).

One of the main purposes of the geometry test and geometry questionnaire was to
measure students’ preference for solution methods, as shown by their choice of solution methods
when solving geometry problems. Thus, the reliability of the geometry questionnaire must be

measured, because the questionnaire was a primary instrument used to measure students’
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preference for solution methods. As explained earlier, positive one (+1) was assigned for a visual
solution method, negative one (-1) for a nonvisual solution method, and zero (0) was assigned
when the solution methods were undecided.

The reliability analysis was conducted to examine the reliability scale of the 12 items of
the geometry questionnaire. The analysis indicated that Cronbach’s Alpha value is 0.675. The
reliability analysis also indicated that the Cronbach's Alpha could be improved from 0.675 to
0.682 by removing problem six. Table 6 delineates the reliability scale of the geometry
questionnaire.

Table 6: Reliability scale

Cronbach's Alpha Cronbach's Alpha Based on Standardized N of
Items Items
675 .690 12

As explained earlier, many participants asked during the test whether they were allowed
to use a reference sheet because they are allowed to use a references sheet while taking quizzes
and the End of Course (EOC) assessments. Providing a reference sheet might have raised the
validity and reliability of the geometry test.

An instrument is valid to the extent that it measures what it is designed to measure and
accurately performs the function it is supposed to perform. The geometry test and the geometry
questionnaire were designed to measure students’ preference for solution methods. The
researcher was concerned particularly about the function of the geometry questionnaire: did it
measure what it was supposed measure? To ensure the validity of the geometry test and
geometry questionnaire, a short interview was also conducted with 17 students. The analysis of

the interviews indicated that the geometry test and the geometry questionnaire reflected students’

84



preference for solution methods. This further validated the aim of the geometry test and the

geometry questionnaire in connection with assessing students’ preference for solution methods.
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CHAPTER FOUR: DATA ANALYSIS AND RESULTS

Data Analysis

The purpose of this study was to investigate the relationship between preference for
solution methods, geometry performance, task difficulty, and gender. The tools were a geometry
test and a geometry questionnaire. A short interview was also used to collect data. This chapter
presents the analysis of data, organized around the following research questions:

1. Are preferences for solution methods associated with high school students’ geometry
performance?

2. Are degrees of difficulty of geometry tasks associated with students’ preference for
solution methods?

3. Do males and females differ in preference for solution methods and geometry
performance after controlling for course assignments and grade levels?

Analysis of the geometry test and geometry questionnaire revealed that a majority of the
students used visual solution methods in order to solve the geometry problems. In the population
of subjects, 5% of the total students were nonvisual and 91% were visual. However, the
percentages of visual and nonvisual students were different for each geometry problem.

Table 7 illustrates the percentages of visual and nonvisual students for each problem.

Table 7: Descriptive statistics of visuality

Problems Visual students (%) Nonvisual students (%) Mean visuality score

1 84.47 11.1 74
2 81.36 10.55 71
3 76.39 13.66 .63
4 62.11 28.57 34
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Problems Visual students (%) Nonvisual students (%) Mean visuality score

5 81.36 12.42 .70
6 75.15 17.39 .58

7 72.04 14.28 .58

8 43.47 47.88 -.02
9 62.73 18.63 46
10 67.08 22.36 43
11 77.08 7.45 .70

12 70.18 11.18 .60

Interview

Seventeen students were selected from each school to represent all schools where
quantitative data were collected. From the list of names of all students who took the geometry
test and the geometry questionnaire, the researcher requested participating teachers to provide
the names of a couple of students for a short interview. Thus, participating teachers selected
some students from their class for the interview. The researcher did not ask participating teachers
how they chose their students for interview. Thus, it was not clear how participating teachers
selected their students as it relates to the procedure of selection of students for the interview. In
most cases, interviews were conducted in a corner of a regular classroom; however, in some
cases interviews were conducted outside of the classroom, such as in a hallway or corridor of a
school building.

In order to verify further about students’ preference for solution methods, the researcher

cross checked between the actual solution methods students employed to complete the geometry
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problems and the solution methods they explained during the interview. In doing so, the
researcher analyzed and compared qualitative and quantitative data of the 17 students who took
part in the interview. The comparative analysis between quantitative and qualitative data
revealed that the solution methods that participants used in the geometry test and the one they
explained during the interview were the same. The preference for the solution method of only
one student was found to be inconsistent between quantitative and qualitative data. In fact, this
particular student explained during the interview that she considered herself a harmonic;
however, she appeared to be a visualizer based on the quantitative analysis. Moreover, slight
variations were also found between the actual solution methods utilized during the test and those
they explained during the interview.

The comparative analysis revealed that one student was found to be a nonvisualizer, one
harmonic, and the rest visualizers. The student who was a nonvisualizer during the interview
used nonvisual solution methods to solve almost all of the geometry problems in the geometry
test. Similarly, students who were harmonic during the interview used visual as well as nonvisual
solution methods while solving geometry problems. Visualizers primarily used visual solution
methods for the most of the geometry problems.

Table 8 delineates a comparison of participants’ preference for solution methods between
quantitative and qualitative data. QT and QL indicate that data come from quantitative and
qualitative study. One (1), negative one (-1), and zero (0) respectively indicate visual, nonvisual,
and harmonic solution methods. Visuality is the sum of visual and nonvisual scores for all of the

problems on the geometry test and geometry questionnaire.
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Table 8: Comparison between quantitative and qualitative data

Students | Question 1 Question 4 Question 8 Question 5 Visuality
OT | OL OT | OL OT | OL

1 1 Visual | -1 Visual | 1 Visual | Visualizer 4

2 1 Visual 1 Visual | 1 Visual | Visualizer 12

3 1 Visual 1 Visual | 1 Visual | Visualizer 12

4 1 Visual 1 Visual | 1 Visual | Visualizer 12

5 -1 Nonvis | -1 Nonvi | -1 Nonvi | Nonvisulizer -10

ual sual sual

6 1 Visual 1 Visual | 0 Nonvi | Visualizer 7
sual

7 1 Visual 1 Visual | 1 Visual | Visualizer 7

8 1 Visual 1 Visual | 1 Visual | Visualizer 12

9 1 Visual 1 Visual | -1 Visual | Visualizer 8

10 1 Visual 1 Visual | 1 Visual | Visualizer 9

11 1 Visual | -1 Mixer | -1 Nonvi | Harmonic 0
sual

12 1 Visual 1 Visual | -1 Nonvi | Visualizer 8
sual

13 1 Visual 1 Visual | -1 Visual | Visualizer 8

14 1 Visual 1 Visual | 1 Mixer | Visualizer 10

15 1 Visual 1 Visual | -1 Nonvi | Visualizer 8
sual

16 1 Visual | -1 Visual | -1 Visual | Harmonic 8

17 1 Visual | -1 Visual | 1 Visual | Visualizer 8

One of the underlying reasons for conducting the interviews was to assess whether the

geometry test and the geometry questionnaire truly gathered the relevant data regarding students’
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preference for solution methods. The qualitative data indicated that the geometry test and the
geometry questionnaire reflected students’ preference for solution methods, which further
validated the aim of the instruments in with regard to assessing students’ preference for solution

methods.

Results of the Statistical Analysis
Research Question one: preference and geometry performance
Are preferences for solution methods associated with high school students’ geometry
performance?

A simple linear regression can be used to explore the relationships between two variables
by predicting the effect of one variable on the other (Lomax, 2007). Students’ preference for
solution methods was measured in terms of their visuality score which ranged from -12 to +12.
Categorizing students into two different groups, visualizers and nonvisualizers, will eliminate the
variances in visuality scores. For example, two different students with visual scores of 2 and 12
respectively belong to a same group (visualizers); however, there could be significant variance
between these two students regardless of where they are from the same group. One of the
important advantages of using a regression model is that it takes all the variances into account.
Thus, the simple linear regression model was used to explore the relationships between students’
preference for solution methods and their geometry performance.

Students’ geometry performance was measured by the End-of-Course (EOC) assessment.
The End of Course (EOC) is a standardized assessment administered Florida Department of
Education. It is designed to measure students’ content knowledge and skills in high school
geometry course. The different geometry topics such as two-dimensional geometry, three-

dimensional geometry, and trigonometry and discrete mathematics were covered by the EOC
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assessment. The geometry test designed for this study was not a standard test and it did not cover
all topics of high school geometry. Thus, the researcher decided not to use the geometry test
score to measure students’ geometry performance.

All assumptions for simple regression analysis were satisfied. The residual statistics
indicated that there was no issue regarding the assumption of the homogeneity of variance. The
histogram and P-P plot indicated a normal distribution. Table 9 shows the normal P-P plot of
regression standardized residual statistics. Similarly, the scatter plot showed that there were no
systematic patterns between students’ visuality score and geometry performance.

Table 9: The normal P-P Plot of regression standardized residual
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Students’ performance (EOC score) was a dependent variable, whereas preference for
solution methods (visuality score) was an independent (predicator) variable. A simple regression

analysis was used to test if the students’ preference for solution methods significantly predicted

91



students’ geometry performance. The results of the regression analysis indicated that preference
for solution methods explained only 1.1% variance (R?=0.011, F= 1.702, df = 1,159, p > 0.05).
Table 10 illustrates the summary of the regression model.

Table 10: Regression model summary

Model R R Square Adjusted R Square  Std. Error of the Estimate

1 .103* 011 .004 11.070

a. Predictors: (Constant) Visuality
b. Dependent Variable: Performance

The ANOVA summary in Table 11 indicated that the visuality did not predict a
significant a proportion of the total variance in the geometry scores (F (1, 8) = 1.702, p > 0.05).

Table 11: ANOVA summary

Model Sum of df Mean F Sig.
Squares Square
Regression 208.500 1 208.500 1.702 .194°
1 Residual 19483.166 159 122.536
Total 19691.666 160

a. Dependent Variable: Performance
b. Predictors: (Constant), Visuality

The coefficient Table 12 indicated that the unstandardized slope (0.280) and the
standardized slope (0.103) were not significantly different from zero (¢t =1.304, p > 0.05). Thus,
students’ preference for solution methods was shown to be not a statistically significant predictor
of students’ geometry performance, which implied that there was not a significant relationship

between preference for solution methods and geometry performance.
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Table 12: Coefficient table

Model Unstandardized Standardized t Sig.  95.0% Confidence
Coefficients Coefficients Interval for B
B Std. Beta Lower Upper
Error Bound Bound
(Constant)  45.397 1.634 27.785 .000 42.170  48.624
1
Visuality 280 215 103 1.304 .194 -.144 .705

a. Dependent Variable: Performance

As a follow up to the simple linear regression, a multiple regression analysis was used to
test if the students’ preference for solution methods, grades, and mathematics courses assignment
(subjects) significantly predicted students’ geometry performance. All assumptions of the
multiple regression analysis were examined and satisfied the requirement. The multicollinearity
was checked by a tolerance and variation inflation factor. The tolerance statistics for each
variable was greater than 0.1.

Students’ grade levels composite was a statistically significant predictor ( F, (2,158) =
56.53, p <.001) explaining approximately 41.7% of the variance in geometry performance.
Similarly, the linear composite of grade level and mathematics courses was a statistically
significant predictor ( F,(2,158) = 6.91, p <.001) explaining approximately 48.6% of the
variance in geometry performance. The addition of subjects increased the explained variance in
geometry performance by 6.9%. Furthermore, the linear composite of grades, subjects, and
preference for solution methods was not a statistically significant predictor ( F; (2,158) =2.17, p
> .05) explaining approximately 49.3% of the variance in geometry performance. The addition of
preference for solution methods increased the explained variance in geometry performance by

only 0.07%. A summary of multiple regression analysis is given in Tables 13 and 14. The
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preference for solution methods including subjects and grades did not predict students’ geometry
performance.

The multiple regression analysis indicated that model one seemed to be the best model.
The different models are given in the Table 13. In the model three, preference for solution
methods explained only 0.7% variance which implies that preference for solution methods did
not predict students’ geometry performance. The variance explained by preference for solution
methods in multiple regression analysis was less than that of the simple linear regression.

Table 13: Regression model summary

Model R R Adjusted  Std. Error Change Statistics
Square R Square of the

Estimate R Square F dfl df2 Sig. F

Change Change Change
1 646" 417 410 8.523 417 56.534 2 158 .000
2 697" 486 469 8.082 069 6911 3 155 .000
3 702° 493 473 8.051 007  2.173 1 154 143

a. Predictors: (Constant), Grade 11, Grade 10
b. Predictors: (Constant), Grade 11, Grade 10, RegularGeo, Financial Algebra, Algebra2
c. Predictors: (Constant), Grade 11, Grade 10, RegularGeo, Financial Algebra, Algebra2,
Visuality
d. Dependent Variable: Performance

A summary of regression coefficients is presented in Table 14 indicating that only four
variables (algebra 2, geometry, financial algebra, and grade 10) of the six variables significantly

contributed to the model. Preference for solution methods (visuality) did not contribute to the

regression model.
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Table 14: Regression coefficients summary

Model Unstandardized =~ Standardized t Sig. Collinearity
Coefficients Coefficients Statistics
B Std. Error Beta Tolerance VIF
(Constant) 40.681 1.139 35.718 .000
1 Grade 10 20.421 1.928 719 10.589 .000 .800 1.250
Grade 11 5.823 1.505 263 3.869 .000 .800 1.250
(Constant) 49.747 2401 20.718 .000
Grade 10 17.480 2.553 615 6.848 .000 411 2435
Grade 11 3.111 2.287 140 1.360 176 312 3.209
’ Algebra2 -6.563 2.645 =277 -2.481 014 265 3.770
RegularGeo -15.622 3.732 -307 -4.186 .000 617 1.621
FinancialAlg  -10.569 2.785 -377 -3.795 .000 336 2.973
(Constant) 48.421 2.555 18.948 .000
Grade 10 17.220 2.549 606  6.755 .000 409 2.447
Grade 11 3.134 2.279 141 1.376 171 312 3.209
3 Algebra2 -6.658 2.636 -282  -2.526 013 265 3.773
RegularGeo -16.041 3.729 -315 -4.302 000 613 1.631
FinancialAlg  -10.813 2.780 -386 -3.890 .000 335 2.983
Visuality 233 158 085 1.474 .143 981 1.019

a. Dependent Variable: Performance
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Research Question Two: Task difficulty

Are the degrees of difficulty of the geometry tasks associated with students’ preference
for solution methods?

Visuality and task difficulty were the two variables for research question two. The mean
visual score of each problem was calculated for all participants. It was the sum of visual score of
each problem of all students divided by the total number of students. The researcher divided the
geometry problem into three groups: easy, moderate, and difficult while developing and
designing the geometry test. However, the task difficulty was also assessed based on students’
actual work on the geometry test. The task difficulty of each problem was determined by
dividing the total number of correct answers produced by the total number of students. The easier
the geometry problem, the more likely were student to get correct answers and vice versa. The
mean visual score and level of difficulty for each problem is given in Table 15.

Table 15: Mean visual score and task difficulty

Problems 1 2 3 4 5 6 7 8 9 10 11 12
Correct (%) 26 68 155 74 74 93 8 378 335 28 378 74

Visuality 74 71 63 34 70 58 58 -02 46 43 70 .60

Analysis of students’ work revealed that (Table 15) problems 1, 8, 9, 10, and 11 appeared
to be relatively easy tasks, and problems 2, 4, 5, 6, 7, and 12 seemed to be relatively difficult
tasks. Only the problem 3 appeared to be a medium-difficult problem compared to the rest of the
problems. The difficulty level of geometry task did not fall into three categories: easy, medium,

and difficult as it was anticipated when the test was designed and developed. The researcher,
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therefore, decided not to divide problems into three categories; rather, used the degree of
difficulty as it was they appeared when students solved problems.

Visuality and degree of difficulties were the two variables for the research question two.
The association between task difficulty level and preference for solution methods were examined
using a Pearson’s product-moment correlation coefficient. One of the advantages of using
Pearson’s correlation coefficient is that students’ visuality scores and numeric values of task
difficulty can be used directly i.e., dividing the problems into three groups (easy, medium, and
difficult) is not necessary.

The Pearson’s product-moment correlation coefficient indicated that there was not a
significant correlation between task difficulty and preference for solution methods (r =-.385 n
=12, p > .05). The summary of the analysis is shown in Table 16. The result indicated that there
is negative correlation between task difficulty and preference for solution methods.

Table 16: Summary of correlation analysis

Visuality Difficulty

Pearson Correlation 1 -.385
Visuality Sig. (2-tailed) 216

N 12 12

Pearson Correlation -.385 1
Difficulty Sig. (2-tailed) 216

N 12 12
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The geometry test contained 12 problems. Students were expected to show their work to
while solving the geometry problems. However, students could find answer of problem 11
without showing any work because the problem 11 was yes-no question in nature. Thus, the
problem 11 was somewhat different than rest of the problems in which students simply can
choose their answer yes or no. Analysis of the test also indicated that many students did not show
their work; instead they simply chose their answer in the problem 11. This might be a reason that
problem 11 appeared to be easier than it was anticipated. Thus, the researcher also examined the
association task difficulty and preference for solution methods excluding the problem 11.

The Pearson’s product-moment correlation coefficient indicated that there was not a
significant correlation between task difficulty and preference for solution methods (r =-.578 n
=11, p > .05). However, the p value was very close to the alpha level of 0.05. The summary of
the analysis is shown in Table 17. The result indicated that there is negative correlation between
task difficulty and preference for solution methods. The negative correlation indicated that as
task difficulty increases the visuality decreases, which implies that students tend to use visual
solution methods for more difficult task. However, correlation was not significant.

Table 17: Summary of correlation analysis

Visuality Difficulty

Pearson Correlation 1 -.578
Visuality Sig. (2-tailed) .063

N 11 11

Pearson Correlation -.578 1
Difficulty Sig. (2-tailed) .063

N 11 11
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The number of variables in the Pearson’s product-moment correlation coefficient was
comparatively low because there were only 12 variables (geometry problems). Thus, the
researcher also conducted Spearman’s rank correlation coefficient to examine the correlation
between task difficulty and preference for solution methods. However, the analysis indicated that
still there was not a significant correlation between task difficulty and preference for solution
methods.

Research Question Three: Gender, preference, and performance
Do males and females differ in preference for solution methods and geometry performance after
controlling for course assignments and grade levels?

Multivariate Analysis of Covariance (MANCOVA) can be used to examine effects of
various covariates on independent variables. The researcher can incorporate one or more
covariates into MANCOVA, and inclusion of several variables helps to reduce error variance
(Mertler & Vannatta, 2005). MANCOVA also helps to control the effects of various covariates
and provides more accurate results that researcher aims to find. As an extension of further
investigation of effects of gender on preference for solution method and geometry performance,
the researcher decided to conduct MANCOVA.

Grades and subjects were taken as covariates for MANCOVA analysis because grade and
subject were significantly correlated with preference for solution methods and geometry
performance. Correlation between performance, visuality, subject, and grade is given in Table

18. Subject-performance of students is given in Table 19
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Table 18: Summary of correlation analysis

Performance Visuality Subject Grade

P kk kk
carson | 103 -203"  -617
Correlation

Performance Sig. (2-tailed) 194 010 .000
N 161 161 161 160
Pearson 103 1 008  -.019
Correlation

Visuality  Sig. (2-tailed) 194 923 812
N 161 161 161 160
P *k k%
carson -203 008 1 583
Correlation

Subject Sig. (2-tailed) 010 923 .000
N 161 161 161 160
P kk kk
carson _617 019 583 ]
Correlation

Grade Sig. (2-tailed) .000 812 .000
N 160 160 160 160

**_ Correlation is significant at the 0.01 level (2-tailed).
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Table 19: Descriptive statistics of subject-performance

N Mean Std. Deviation
Algebra 2 109 49.70 9.942
Regular geometry 8 34.13 12.552
Financial Algebra 31 39.28 9.395
PreCalculus 13 53.15 8.214
Total 161 47.20 11.094

MANCOVA rests on some basic assumptions. The following assumptions were checked:

e Testing for homogeneity of regression slopes: The correlation between covariates and
dependent variables did not differ across independent variable (gender).

e Independence of covariates: There was not a significant difference in subject scores (F
(1,158 =0.007), p = .935) or grade (F (1,158) =3.026, p = .084)).

e Correlation between covariates and dependent variables: There was a significant
correlation between performance, grade, and subject. There was not a significant
correlation between preference, grade, and subject, and none of them had a correlation
coefficient greater than 0.7.

Multivariate Analysis of Covariance (MANCOVA) was conducted to determine the
effects of gender on preference for solution methods and geometry performance while
controlling the effects of subjects and grades. Subjects (four categories) and grades (three
categories) were categorical variables. Thus, the categorical variables were dummy coded to

convert them into bivariate measures.
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Homoscedasticity is the assumption that variability in scores for one continuous
dependent variable is roughly the same at all values of another continuous variable. Box’s M test
of equality of variance-covariance matrices was used to assess the homoscedasticity. Box's M =
50.97 with F (3, 1333792.95) = 2.85, p = .036 revealed that the assumption of equality of
covariance matrices across the cells was not met, indicating that the null hypothesis of equal
covariance matrices was rejected. Similarly, the assumption of linearity was also not satisfied.
Since the homoscedasticity assumption was not satisfied and group sample sizes were unequal,
Pillar’s Trace was selected to report the analysis.

The statistical analysis showed that gender was significant in determining the combined
test results in preference for solution methods and geometry performance (F (2,153) =4.08, p <
.05, Pillar’s Trace = .051, #? = .051). The combined covariates did not significantly influence the
gender difference on preference for solution methods and geometry performance. Table 20
illustrates the summary of the multivariate test. After controlling the covariates, the effect size
reduced from 9.2% to 5.1%. The MANCOVA analysis indicated that the covariates did not
significantly influence the gender difference in preference for solution methods and geometry
performance.

Table 20: Summary of multivariate test

Effect Value F Hypothesis Error df  Sig.  Partial Eta
df Squared
Pillai's Trace 702 180.125° 2.000 153.000  .000 702
Wilks' Lambda 298 180.125" 2.000 153.000  .000 702
Intercept Hotelling'
otelimg s 2.355 180.125 2.000 153.000  .000 702
Trace
Roy's Largest
Rzzts AEeSt 5 355 180.125° 2.000 153.000  .000 702
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Effect Value F Hypothesis Error df Sig.  Partial Eta
df Squared

Pillai's Trace 208 32.523° 2.000 153.000  .000 298

Wilks' Lambda ~ .702  32.523° 2.000 153.000  .000 298
Grl0 -

I;:::ihngs 425 32.523° 2.000 153.000  .000 298

Roy's Largest

RZZ: arges 425 32523 2.000 153.000  .000 298

Pillai's Trace 015 1.173° 2.000 153.000 312 015

Wilks' Lambda ~ .985  1.173° 2.000 153.000 312 015
Grl2 -

I;g:gmgs 015 1.173° 2.000 153.000 312 015

izzts Largest 515 11730 2.000 153.000 312 015

Pillai's Trace 030 2.334° 2.000 153.000  .100 030

Wilks' Lambda ~ .970  2.334° 2.000 153.000  .100 030
Algebra2 -

?f:ihngs 031 2334 2.000 153.000  .100 030

Roy's L

Rzzts agest 31 2334 2.000 153.000  .100 030

Pillai's Trace 096 8.105° 2.000 153.000  .000 096

Wilks' Lambda ~ .904  8.105" 2.000 153.000  .000 096
RegularGe o

I;f::ihngs 106 8.105° 2.000 153.000  .000 096

Roy's Largest

RZZ: arges 106 8.105° 2.000 153.000  .000 096

Pillai's Trace 065  5327° 2.000 153.000  .006 065

Wilks' Lambda 935  5.327° 2.000 153.000  .006 065
FinancialAlg i telline'

Tr‘;:e nes 070 5.327° 2.000 153.000  .006 065

Roy's Largest

Rzzts arges 070 5327 2.000 153.000  .006 065
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Effect Value F Hypothesis Error df Sig.  Partial Eta

df Squared

Pillai's Trace ~ .051  4.080" 2.000 153.000  .019 051

Wilks' Lambda ~ .949  4.080° 2.000 153.000  .019 051

Gender I;:::ihng's 053 4.080° 2.000 153.000 019 051
EZZ;S Largest 53 4.080° 2.000 153.000  .019 051

a. Design: Intercept + Gr10 + Grl12 + Algebra2 + RegularGe + Financial Alg + Gender
b. Exact statistic

The univariate analysis indicated that gender was a significant in geometry performance

(F, (2,154)=8.127, p <.001, ?=0.051) but not significant in preference for solution methods
(F,(2,154)=.004, p < .05, n?=0.00, p > .05) after controlling the effect of covariates. None of

the covariates had significant effects in gender difference on students’ preference for solution
method. However, the covariates grade 10 and subjects (geometry, algebra, and financial
geometry) had significant gender effects on students’ geometry performance. Table 21
summarizes the univariate analysis.

Table 21: Summary of univariate analysis

Source Dependent Type II1 df Mean F Sig.  Partial Eta
Variable Sum of Square Squared
Squares
Corrected Visuality 54.787 6 9.131 541 176 .021
Model Performance  10070.453° 6 1678409 26.865  .000 511
Visuality 235.166 1 235.166 13.936 .000 .083
Intercept
Performance 22532.586 1 22532.586 360.663 .000 701
Grl0 Visuality 35.535 1 35.535  2.106 .149 .013
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Source Dependent Type 111 df Mean F Sig.  Partial Eta
Variable Sum of Square Squared
Squares
Performance 4077.468 1 4077.468 65.265 .000 298
Visuality 4.485 1 4.485 .266 .607 .002
Grl2
Performance 117.715 1 117.715 1.884 172 012
Visuality 4.280 1 4.280 254 615 .002
Algebra2
Performance 257.440 1 257440 4.121 044 026
Visuality 12.199 1 12.199 723 .397 .005
RegularGe
Performance 908.450 1 908.450 14.541 .000 086
Visuality 6.406 1 6.406 380 .539 .002
FinancialAlg
Performance 606.356 1 606.356 9.706 .002 059
Visuality .062 1 .062 .004 .952 .000
Gender
Performance 507.721 1 507.721 8.127 .005 050
Visuality 2598.642 154 16.874
Error
Performance 9621.213 154 62.475
Visuality 9307.000 161
Total
Performance 378355.144 161
Corrected Visuality 2653.429 160
Total Performance  19691.666 160

a. R Squared =.021 (Adjusted R Squared =-.018)

b. R Squared =.511 (Adjusted R Squared = .492)
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The MANCOVA indicated that the students’ grades level and courses they enrolled in
did not covariate students’ gender. Thus, students’ grade levels and courses they enrolled in were
eliminated, and MANOVA was used to compare males and females within preference for
solution methods (visuality) and their geometry performance. The statistical analysis showed that
gender was significant in determining the combined test results in preference for solution
methods and geometry performance (F (2,158) = 7.985, p <.001, Pillar’s Trace = .092). The test
between-subject effects indicated that gender was a significant factor in geometry performance
(F, (2,158)=15.895, p <0.001, #2=0.091) but not significant in preference for solution methods
(F,(2,158)=0.00, n?=0.00, p > .05).

The statistical analysis indicated that an effect of gender was significant in students’
geometry performance but not in preference for solution methods. To investigate further the
gender differences in geometry performance, an independent sample ¢ was conducted. Table 22
delineates descriptive statistics of gender and geometry performance.

Table 22: Descriptive statistics

Gender N Mean Std. Std. Error
Deviation Mean
Male 66 43.20 12.233 1.506
Performance
Female 95 49.98 9.326 957

According to Leven’s test, the homogeneity of variances assumption was not satisfied
(F=6.06, p=.015). The independent ¢ test indicated that geometry performance was statistically
significantly different (¢ (115.10) = -3.80, p <.001) between male and female students. Female
students’ geometry performance (M =49.98, SD = 9.32) was significantly higher than male

students’ geometry performance (M = 43.20, SD = 12.33). The effect size was measured by using
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Cohen’s d. The effect size was 0.623, implying a medium effect size. Table 23 summarizes the
results of the independent  test.

Table 23: Result of independent t test

Levene's Test t-test for Equality of Means
for Equality of
Variances
F Sig. t df Sig. Mean  Std. Error
(2- Difference Differenc
tailed) e
Equal
variances 6.066 .015 -3.987 159  .000 -6.779 1.700
Performance assumed
Equal
variances -3.800 115.109 .000 -6.779 1.784

not assumed

Summary of the Statistical Analysis

The analysis of data unveiled that about 90% of students were found to be visualizers
while nonvisualizers and harmonic students consisted of only 9%. A simple linear regression
analysis was conducted to test if the students’ preference for solution methods significantly
predicted students’ geometry performance. Analysis indicated that students’ preference for
solution methods was not associated with students’ geometry performance. There was not a
significant relationship between task difficulty and preference for solution methods. The
direction of the difference in visuality between easy and difficult tasks indicated that preference
for solution methods chosen was independent to tasks difficulty. The statistical analysis showed
that gender was significant in determining the combined results of preference for solution
methods and geometry performance. The test between-subject effects, however, indicated that

gender was significant only in geometry performance but not significant in preference for
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solution methods. Geometry performance of female students was statistically significantly higher

than that of male students.
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CHAPTER FIVE: SUMMARY, DISCUSSION, AND RECOMMENDATIONS

Summary of the Study

The purpose of this study was to examine the relationships between preference for
solution methods, task difficulty, geometry performance, and gender. The data were collected
during the 2013-2014 school year from six different high schools at a county located in Florida
within the United States. High school students who took the geometry test were enrolled in
various mathematics courses at the time of the study.

A geometry test and a geometry questionnaire were used to collect data from all 161
students. Upon completion of the geometry test, students were given the geometry questionnaire
and asked to choose the solution methods from the list that best described the solution methods
they employed to complete the geometry problems. Students were allowed to use a calculator,
ruler, scratch paper, etc., but not a reference sheet (formula sheet). The test was conducted in a
regular classroom during school time. The normal time interval of the classes was 52 minutes.
There was a variation in time to complete the geometry test. The majority of students used the
entire time to work on the geometry test and the geometry questionnaire. However, some
students finished the geometry test in 10-15 minutes. In general, the first 30/35 minutes were
used to complete the geometry test and the remaining 15 minutes were utilized to finish the
geometry questionnaire.

A short interview (2 to 3 minutes) was also conducted with 17 students. Using an
audiotaped think-aloud protocol, four questions were asked during the interview. The students
were presented with each problem and asked to think aloud. A hard-copy of the questions was
also provided. Three questions were aimed to further explore which solution methods students

used in solving geometry problems. However, the fourth question was directed to understand
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how students think of themselves: as visualizers or nonvisualizers. The comparative analysis
between quantitative and qualitative data revealed that the solution methods that students used in
the geometry questionnaire and the one they explained during the interview appeared to be
consistent.

For the purpose of statistical analysis, students’ preferences for solution methods were
quantified into numeric values, and visuality score was obtained for each student. Students were
given a score of +1 for the visual solution method and a score of -1 for the nonvisual solution
method. If students did not choose their solution methods, chose both methods, or could not
determine the solution methods they used, then a score of 0 was given. Thus, for twelve items, an
individual could obtain a ‘nonvisual-visual’ score ranging from -12 to +12.

A simple linear regression analysis was conducted to test if the students’ preference for
solution methods significantly predicted students’ geometry performance. The results of the
regression analysis indicated that preference for solution methods explained only 1.1% variance.
Thus, students’ preference was not shown to be a statistically significant predictor of geometry
performance.

There was not a significant relationship between task difficulty and preference for
solution methods. The direction of the difference in visuality between easy and difficult tasks
indicated that preference for solution methods chosen was independent to tasks difficulty. Thus,
the result indicated that preference for visual or nonvisual solution methods for the geometry
problems was not influenced by tasks’ difficulty such that students were equally likely to employ
visual and nonvisual solution methods for difficult and easy tasks.

The statistical analysis showed that gender was significant in determining the combined

results of preference for solution methods and geometry performance. The test between-subject
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effects, however, indicated that gender was significant only in geometry performance but not
significant in preference for solution methods. Geometry performance of female students was
statistically significantly higher than that of male students.

Discussion

The purpose of this study was to investigate the relationship between preference for
solution methods, geometry performance, tasks difficulty, and gender. Under this section, the
results and findings of this study are discussed in connection with related literature. The
discussion is centered on the following research questions:

1. Are preferences for solution methods associate with high school students’ geometry
performance?

2. Are the degrees of difficulty of geometry tasks associated with students’ preference for
solution methods?

3. Do males and females differ in preference for solution methods and geometry
performance after controlling for course assignments and grade levels?

This study revealed that the preference for solution methods did not correlate with
mathematical performance, in particular geometry performance. This is consistent with previous
research studies (Galindo, 1994; Hegarty & Kozhevnikov, 1999; Lowrie, 2001; Moses, 1977,
Suwarsono, 1982). The findings of this study indicated that students who prefer to use visual
solution methods in solving geometry problems were likely to do as well as students who used
nonvisual solution methods. However, some studies found a correlation between the visual
solution method and mathematical performance (Battista, 1990; Bremigan, 2005; Ferrini-Mundy,

1987; Haciomeroglu, Chicken, & Dixon, 2013).
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Findings of this study are inconsistent with Battista’s (1990) study. One explanation of
inconsistency in the findings of this study with those of other studies including Battista’s
involves the use of different types of mathematical tasks to measure students’ preference for
solution methods. Though six problems were employed from Battista’s instrument, the geometry
test and the geometry questionnaire were not the same as his instrument. In fact, half of the
geometry problems were presented using some kind of geometric figures in Battista’s
instrument; however, only one problem was presented with the help of a diagram in the geometry
test. Thus, these two tests were different in terms of employment of representation to present
geometry problems, and that might explicate the inconsistencies in the findings between these
two studies.

Students were enrolled in different types of mathematics courses at the time of this study.
Thus, there was a distinct variation in terms of the mathematics courses that participating
students had taken, which could have influenced students’ preferences for solution methods and
geometry performance. Limiting the study to a specific group of students could have provided
different results. If this study had been given to different groups of geometry students—for
example, regular, standard, or honor students—the results and findings might have been
different.

The geometry test appeared to be difficult for the students because the majority of them
were not able to solve the problems correctly. Easier geometry problems could have helped
students to express their preference for solution methods in a clearer way. If the problems were
easier, the findings of this study could have been different. Moreover, a convenient sampling was
used to choose the population sample of this study. A much larger randomized sample from a

larger population might yield a different result. Beyond this, the reliability scale of the geometry
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questionnaire is low (0.68). One explanation is that the low reliability scale could have affected
the relationships between preference for solution methods and mathematics performance.

Students’ geometry EOC scores were gathered from the year 2012 and 2013. In fact, 35%
and 65% of the students had their EOC score respectively from the years 2012 and 2013. Only
5% of students were enrolled in a geometry course at the time of this study (2014). This
distribution implies that some students had not taken geometry courses for two years. Thus, it
seemed that students might have forgotten different rules and formulae that they had learned a
year or two before and could not perform as well as they were expected. This might be one of the
critical factors that resulted in no significant relationships between students’ preference for
solution methods and their geometry performance.

As stated earlier, many students asked whether they were allowed to use a reference sheet
because the students were accustomed to using a reference sheet during quizzes, tests, and End-
of-Course (EOC) assessments. Many students clearly informed the researcher that if they were
allowed to use the reference sheet, they would have used formulae instead of diagrams and
figures. Allowing students to use the reference sheet could have influenced students’ preference
for solution methods and indeed its relations with geometry performance. The researcher also
observed during the test that many students quickly finished the test (or gave up), which could
have also influenced students’ preference for solution methods. If students were allowed to use a
reference sheet, the number of nonvisual solution methods could have increased, which could
influence their preference as well as performance on geometry tasks.

Not only the nature of mathematical tasks, but the mathematics-content areas were also

different between this study and with other studies (Bremigan, 2005; Ferrini-Mundy, 1987;

Haciomeroglu, Chicken, & Dixon, 2013). Bremigan (2005) focused on calculus emphasizing the
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role of visual representation. Ferrini-Mundy (1987) and Haciomeroglu, Chicken, and Dixon
(2013) conducted studies focused on calculus and used primarily a graphic representation to
present the derivative and antiderivative problems. However, verbal representation was used to
design the geometry test and the geometry questionnaire in this study. The representations
employed to present mathematics problems vary greatly among these studies. It is an important
factor for teaching and learning mathematics. The fact is that mathematical ideas can be taught
and learned in an effective way by utilizing suitable modes of representation (Goldin, 1987;
Kaput, 1987; Janvier, 1987). Moreover, the ways in which mathematical ideas and problems are
represented is fundamental to how students can understand and use those ideas, using and
interpreting representation in appropriate ways (NCTM, 2000). For example, sketching diagrams
(graphs) in high school geometry might not be as important and necessary as in college calculus.
Therefore, different modes of representation influence students’ mathematical thinking and
problem solving skills (Campbell, Collis, & Watson, 1995) and they influence students’
preference for visual and nonvisual solution methods (Haciomeroglu, 2012).

Translation ability is an important factor for problem solving in mathematics because
translation of one mode of representation to another will provide flexibility to problem solvers
while attempting mathematics problems (Doufour-Janvier, Bednarz, & Belanger, 1987; Janvier,
1987; Lesh, Post, & Behr, 1987). Thus, the role of representation as well as students’ ability to
translate mathematics problem from one mode of representation to another might be contributing
factors to the inconsistency between the findings of this study compared with other studies.
Beyond this, there are several factors such as students’ socioeconomic status, age, grade, number
of mathematics courses taken etc., which can influence the relationship between preference for

solution methods and students’ geometry performance. For example, this study also found that
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the different mathematics courses that students enrolled in and their grades were significantly
related with students’ geometry performance.

This study also examined the relationships between task difficulty and preference for
solution methods and found that there was not a significant correlation between task difficulty
and preference for solution methods. Results indicated that preference for solution methods for
the geometry problems in either visual or nonvisual solution methods were not influenced by
task difficulty such that students were equally likely to employ visual as well as nonvisual
solution methods for difficult tasks. This is not consistent with the findings of Lowrie and Kay
(2001) and Haciomeroglu (2012), who reported that task difficulty had an influence on students’
preference for solution methods. As task difficulty increased, the number of visual solution
methods also increased significantly. However, this finding supported the findings of Lowrie
(2001), who found that there was not a significant relationship between task difficulty and
preference for solution methods.

The reliability scale of the geometry test was low (0.68). Moreover, the sample size in
this study was also small and significance level of the p value was close to the cut-off point of
0.05 when problem 11 was eliminated. Thus, if the sample size of this study would be larger, the
result could have been changed, which might result in inconsistency with Lowrie and Kay (2001)
and Haciomeroglu’s (2012) findings.

Lowrie (2001) used the MPI to assess students’ preference for solution methods. He used
a three-point Likert scale survey to determine task difficulty. Students were asked to indicate
whether they felt that the question on the MPI they had completed/attempted was easy, moderate,

or difficult to solve. The task difficulty in both studies was based on students’ response and
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work. This could also be a factor which might result in consistency with Lowrie’s (2001)
findings.

The findings of this study regarding gender difference in preference for solution methods
and mathematics performance are consistent with some studies and contradict several other
studies. This study found that there was a significant effect of gender only in geometry
performance but not in the preference for solution methods. Female students outperformed male
students in geometry performance. The findings of this study are partially consistent with
Battista’s (1990) findings. Battista reported that male and female students differed in geometry
performance (males outperformed females), but not in their solution strategies. He suggested that
there is a fundamental difference in the relative roles of spatial visualization and logical
reasoning played in males’ and females’ geometry achievement. Moreover, he contended that
discrepancy between spatial visualization and logical reasoning also influenced students’
solution strategies. Male students’ spatial visualization was negatively correlated with using
drawing strategy and the reverse was true for female students.

Similarly, the finding of this study are partially consistent with Gallagher and De Lisi
(1994), who reported gender difference both in preference for solution methods and mathematics
performance. Fennema, Carpenter, Jacobs, Franke, and Levi (1998) reported that there was no
gender difference in mathematics performance, but that gender difference prevailed in solution
methods. On the other hand, while some studies did not find gender difference in preference for
solution methods and mathematics performance (Galindo, 1994; Haciomeroglu & Chicken,
2012; Haciomeroglu, Chicken, & Dixon, 2013; Lowrie & Kay, 2001). Hyde, Fennema, and

Lamon (1990) indicated that there was a gender difference in arithmetic or algebra performance;
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male superiority in geometry was small, and the tests with mixed content showed the largest
gender differences.

The nature and content of mathematics problems might influence gender difference in
preference and mathematics performance not only in different areas in mathematics but also
within the same area of mathematics. Calculus problems may need more sketching and graphing,
algebraic problems may require more computational work, and geometry problems might need
more figures. Thus, the instruments used to measure students’ mathematics performance varied
greatly. This research study used a geometry test, a geometry questionnaire, and students’
geometry End-of-Course (EOC) scores, Galindo used the modified version of MPI, quizzes, and
exam, Haciomeroglu, Chicken, and Dixon used AP calculus score, and Gallagher and De Lisi
(1994) used SAT score. The different areas of mathematics and the nature of mathematics
problems could have supported or contradicted the findings of this study with other studies.

According to the research, computational problems versus word problems and algebra
versus geometry problems have significant influence on students’ mathematics performance
(Gallagher & De Lisi 1994). In contrast to the geometry questionnaire used in this study,
Gallagher and De Lisi used the conventional (algorithmic methods) and unconventional (atypical
solution strategies) problems for high school students to measure solution methods. Fennema,
Carpenter, Jacobs, Franke, and Levi (1998) conducted interviews and administered tests
simultaneously to assess first graders’ solution methods and performance on number facts,
addition and subtraction problems. According to Gallagher, De Lisi, Holst, Mcgillicuddy-De
Lisi, Morely, and Cahalan (2000) female students were more successful with conventional
problems than with unconventional problems, but male students’ performance did not vary

significantly with problem type. However, male students were more successful with
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conventional problems than unconventional problems. Solving geometry problems may be
significantly different than completing arithmetic or algebra problems because the nature of
mathematics problems might contribute to gender difference (Meyer, 1989). For example, there
was no gender difference in arithmetic or algebra problems; however, gender difference was
found in geometry (Hyde, Fennema, & Lamon, 1990).

The findings of this study were also consistent with the findings of Calvin, Fernandes,
Smith, Visscher, and Deary (2010); Felson and Trudeau (1991); and Lawton (1997), who found
that female students’ performance was significantly higher than male students’ performance.
However, this is not consistent with some of the previous research studies (Battista, 1990;
Fennema, 1974; Fennema & Sherman, 1978; Guay & McDaniel, 1977; Maccoby & Jacklin,
1974; Matteucci & Mignani, 2011), who reported that male students outperformed female
students in mathematics performance. Some studies, however, did not find relationships between
gender and mathematics performance (Hall & Hoff, 1988; Penner & Paret, 2008). Hyde,
Fennema, and Lamon (1990) also reported that there was no gender difference in students’
arithmetic or algebra performance in elementary and middle school.

There are various factors, such as students’ Socioeconomic Status (SES), ethnicity, grade
and age, number of mathematics courses students had taken, confidence in learning mathematics,
mathematics content etc., which could have contributed to (in)consistency in the findings
regarding gender differences in mathematics performance between this study and various other
studies. For example, white students outperformed Hispanic students, and greater difference
between males and females was noted in mathematics performance in Hispanic students than in
White students (Moore & Smith, 1987). Similarly, confidence in learning mathematics is an

effective factor related to mathematics achievement (Tartre & Fennema, 1995).
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In contrast to findings of the majority of research studies, that males outperformed
females, this study revealed that females outperformed males. One of the reasons could be the
change in the trends of people’s perception of mathematics. People believe that mathematics is
considered to be a male-dominant subject. Students’ mathematics achievement is also related to
their attitude (Childs, 2013). Particularly, girls believed that mathematics is less useful for them
and were less confident in their ability to do mathematics (Fennema & Sherman, 1978). During
the last couple of decades, people’s perception of mathematics as a male-dominant subject might
have changed. Parents might have particularly encouraged their daughters to enroll in more
mathematics courses. Female students’ perception might have also changed as it relates to ability
to do mathematics. Due to a change in the perception of parents as well as female students,
female students might have higher geometry performance than males. However, more research
studies need to be conducted in this area.

Researchers investigated different aspects of gender that attributed differences in
mathematics performance. Some researchers identified factors such as cognitive abilities,
socioeconomic status etc., underlying gender difference in mathematics (Ceci, Williams, &
Barnett, 2009; Wai, Cacchio, Putalaaz, & Makel, 2010) while others found that gender difference
in mathematical performance was due to difference in preferred mode of processing
mathematical information (Carr, Steiner, Kyser, Biddlecomb, 2010; Lin & Peterson, 1985). For
example, Carr, Steiner, Kyser, and Biddlecomb (2010) investigated different factors in
conjunction with gender differences in mathematics performance of students in elementary
school. They reported that only two factors, fluency and strategy, indicated gender differences
and significantly predicted mathematics competency. Similarly, Meyer (1989) reported that even

the nature of mathematics problems can cause gender difference because he found that gender
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difference was slightly higher in problem-solving tasks than in skill-level tasks. In fact, there are
several factors that seem caused gender difference in preference for solution methods and
mathematics performance.

Carr, Steiner, Kyser, and Biddlecomb (2010) suggested that there might be some theories
that explain gender differences in mathematics performance, but no single theory can be used to
explain gender difference in mathematics because there can be various factors that contribute to
the gender differences in preference for solution methods and mathematics performance. It is
obvious that the various factors such as influences of parents and their educational backgrounds,
students’ motivational factors, instructional strategy, teachers’ visuality, students’ demography,
location of schools, and so forth could have influenced gender differences in preference for
solution methods and mathematics performance.

During the interviews, students clearly explained the solution methods they used during
the test or that they would use if they were required to do the problems. The researcher also tried
to explore why students wanted to use diagrams and pictures over the rules and formulae, or
vice-versa. Most students simply replied that they (dis)liked to use diagrams or formulae, but
they were not able to explain clearly why they liked to use one solution method over the other.
Qualitative research studies such as case studies, phenomenological studies, or ethnographic
studies can provide more insights on why students prefer to use a specific solution method while
solving mathematics problems and how it relates to gender and mathematics performance.
Implications for Teaching

This study found that the majority of students preferred to use visual solution methods.
Moreover, results of statistical analysis indicated that as the geometry problems become more

difficult, students tended to use visual solution methods. However, from problem-solving
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methods and mathematical performance perspectives, it is essential for students to develop both
solution methods because some problems are easier to solve using visual solution methods over
nonvisual solution methods and vice-versa. Thus, the development of only one-sided preferred
mode of mathematical processing results in narrow mathematical development for students
because they do not have an opportunity to see mathematics problems from the other
perspective. Similar to the recommendation made by Haciomeroglu, Chicken, and Dixon (2013),
Haciomeroglu, Aspinwall, and Presmeg (2010), and Clements (2014), instruction needs to focus
on students’ development of balance in their knowledge and skills between visual and nonvisual
solution methods. In fact, students who use only (non)visual solution methods may have a
limited understanding, and will not be able to provide a complete answer.

This study also unveiled that about 90% of students were found to be visualizers while
nonvisualizers and harmonic students consisted of only 9%. Because students had a strong
preference for visual solution methods, either more emphasis on nonvisual solution methods
seems to be in order in lesson activities or high school geometry books may need to include
lesson activities that are more non-visually oriented. To be proficient in mathematics, students
are encouraged to develop preference for both solution methods: visual and nonvisual.

Some mathematics problems can be done in an easier way when they are solved with a
(non)visual solution method. For example, when students used visual solution method to solve
the problem number 3 of the geometry test, the majority of them got an incorrect answer.
However, when students used nonvisual solution methods, the majority of them got the correct
answer. Similarly, when students used visual solution methods to solve the problem number 11,
the majority of them got correct answer. However, when they used the nonvisual solution

method, the majority of them got an incorrect answer. Thus, based on the nature of mathematics
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problems, one specific solution method to solve mathematics problems can be more useful over
the other solution methods. Thus, it is equally important to develop both visual and nonvisual
preference for solution methods in order to be a successful learner and performer of
mathematics.

Nonvisual teachers might over-emphasize rote memorization of mathematics rules and
formulae for success in mathematics whereas visual teachers might be over reliant on figures and
diagrams to assist their students to learn mathematics. In doing so, teachers inhibit students’
opportunity learning mathematics employing visual as well as nonvisual solution methods.
Teachers might be unaware of the fact that they are over reliant on only one instructional
strategy, which might lead their students to develop preference for using only visual or nonvisual
solution methods. Thus, it is suggested that instruction should be focused on incorporating both
visual and nonvisual teaching strategies in mathematics lesson activities.

Limitations

This study had some limitations. The sample size was relatively small, and the students
were not randomly selected. Moreover, only 17 students were interviewed and the researcher did
not observe the classes. The participating teachers were not interviewed. The instructional
strategies that participating teachers have been using in the classroom would be helpful to further
explore and explicate the relationships between gender, preference for solution methods and
mathematics performance.

The researcher intended to pilot the geometry test. However, due to time constraints and
for some other reasons, piloting the geometry test was not feasible. Piloting the geometry test

would have provided more insights and ideas to make the test better for actual study, which
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might yielded different results in this study. Moreover, the geometry test appeared to be difficult.
If the problems were easier, the findings of this study could have been different.

The results concerning preference for solution methods for this study were primarily
based on the geometry questionnaire and the geometry test. However, the researcher also
conducted a short interview with 17 students to explore their preference for solution methods.
Conducting similar interviews for the entire sample of participants might have provided more
accurate and comprehensive results regarding preference for solution methods.

Another limitation of this study is that it was impossible to know whether students were
putting their full effort into solving the geometry problems. Some students may have been
randomly guessing answers and randomly choosing solution methods. This approach would
reduce the validity of the results of this study and could affect the findings of this study.

As explained earlier, the participating teachers of this study participated in geometry
professional series where they were encouraged to use various teaching learning materials,
including technology. Thus, mathematics teachers from the participating schools might have
used various types of mathematical resources such as manipulatives, dynamic geometry
software, and so forth. Integrating technology and various mathematical resources in the lesson
activities might have encouraged their students to solve the mathematics problems using more
visual solution methods. This could be a reason that a majority of students were visualizers in
this study. If participating teachers were not participated in the geometry professional series, the
findings of this study could have been different.

Recommendations for Future Research
The sample in this study was students in grades 9 through 12, enrolled in different

courses: algebra 2, regular geometry, pre-calculus, and financial algebra. In future studies
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researchers could look at students’ geometry performance and preference for solution methods,
limiting the sample to a particular group of students, for example groups of geometry students.
Beyond this, researchers could conduct similar studies on a specific topic from high school
geometry. Similar studies can also be conducted in other branches of mathematics such as
algebra.

About 90% of students were found to be visualizers. There could be different factors why
a majority of students preferred to use visual solution methods. For example, instructional
strategies and technology-integrated lesson activities could have influenced students’ preference
for solution methods. Beyond this, even teachers’ preference of instructional strategies might
have affected students’ preferred mode of processing mathematical information. Thus,
researchers could further investigate various factors in conjunction with students’ preference for
solution methods. Including the quantitative research, the researcher recommends conducting
more qualitative studies to delve deeper regarding students’ preference for solution methods,
gender difference, and mathematics performance. The qualitative studies would be helpful to
find why students prefer to use one solution method over the other and how they develop one-
sided preference for solving mathematics problems.

The geometry test did not cover the entire content of a high school geometry curriculum.
Thus, the results and findings reported in this study could have been different if the geometry test
had been designed based on different geometry topics other than those used in this study. Rather
than trying to cover different topics, researchers could investigate students’ preference for
solution methods focusing on a specific geometry topic, which might lead to a more general

conclusion.
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Mathematics is considered to be a male-dominant subject (Fennema & Sherman, 1977).
Noddings (1998) posed a question as to why males outperformed females; is it because females
are simply less interested than males in mathematics. However, female students outperformed
male students in this study. The findings of this study could be important and interesting from a
gender-issue perspective. The sample size of this study was small, and the findings of this study
may not be generalized. Therefore, more research studies need to be conducted with greater
sample size in various content areas of mathematics to further examine the findings of this study.

The researcher has also tried to explore why students like to use one solution method
over the others. Students were not able to explain clearly why they liked to use one solution
method over the others. Qualitative research studies such as case studies, phenomenological
studies, or ethnographic studies can help to explore students’ preference for solution methods

and its relationships with mathematical performance and gender.
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Geometry Test
First of all, I would like to thank you for taking part in this research study. Please do your best on

the test; however, you will not receive a grade for it.

1. Name:

2. Circle to indicate appropriate:

Gender: Male Female
Ethnicity: White African American Asian or Pacific Islander
Hispanic Multiracial Native American Other
Your Age Grade

The geometry test contains 12 items.
On each page, there is a problem that you are asked to try to solve. Complete the problem to the
best of your ability. Show your work. Be sure to place your answer in the answer box provided

on the page.
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Problem 1

What is the coordinate of the point on the number line halfway between —8 and +5?

Answer

128



Problem 2
A wire is stretched tightly from the top of a 60 foot tall pole to the top of a 10 foot pole.
Both poles are standing vertically in level ground. If the poles are 100 feet apart, how

long is the wire?

Answer

129



Problem 3

Which three of the points (2,6), (3,8), (4,12), and (6,18), lie on a straight line?

Answer

130



Problem 4
When the circumference of a circle is decreased from 200 inches to 150 inches, by how

many inches is the diameter decreased?

Answer

131



Problem 5
David and Lisa have a rectangular swimming pool that measures 10 feet by 7 feet. A
cement walkway 8 feet wide boarders the pool on all sides. (Thus, the walkway forms a
rectangular region surrounding the pool). If David and Lisa want to erect a fence to

enclose the pool and walkway, how many feet of fencing will they need?

Answer

e J




Problem 6
Sixty-four identical cubes are arranged to form the larger cube depicted below. If the
entire outside surface of the large cube is painted, how many of the smaller cubes will

have no painted faces?

Answer

133 [




Problem 7

Points A (1,1), B(7,1),and C (3,5) are the vertices of the A ABC. Find the length of the
midsegment DE by connecting the midpoints of sides AC and BC .

Answer

134



Problem 8§

Find the slope of the line segment joining the points A (1,1) and B (3,2).

Answer

135



Problem 9
A ABC with vertices A (4,3), B(2,1), and C (6,2) is reflected about the X axis, where

AA'B'C' is the image of AABC . A’ (x,y), B' (2,-1), and C’ (6,-2) are the vertices of the
AA'B'C'. Find the coordinates of the point A'.

Answer

136



Problem 10

Find the distance between the points P (—6,1) and Q (2,1).

Answer

137



Problem 11

Does the point (5,3) lie on the circle centered at the point (5,0) with a radius of 3 units?

Answer

138



Problem 12

What is the maximum number of points of intersection are possible between a circle and
a square?

Answer

139
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Geometry Questionnaire
How did you solve it?
Although there are correct answers to the problems, there are no correct ways to think about
solving the problems. So be sure that you accurately indicate the type of thinking you used in
attempting the problem.
It does not matter whether you completed the solution or not; whether your answer is right or
wrong. If your solution is similar to one of the methods provided in the list, please choose the

method that best explains how you solved the problem, even if other methods are considered.

Please put a tick mark (‘/) in the appropriate box.

Name
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PROBLEM 1

What is the coordinate of the point on the number line halfway between —8 and +5?

Solution Method 1
I did not draw a diagram or try to visualize the situation. I tried to logically deduce the
answer based on a careful analysis of the given information using arithmetic, algebra, or

formula. For instance, I added —8 and 5 and divided by 2.

-8+5
2

S
2

Solution Method 2
I drew a diagram. I was then able to figure out the answer using the diagram. For

instance, I counted_halfway from the point —8 towards the left and halfway from the point

5 towards the right in the diagram. Thus, the coordinate is -1.5.

0 1 2 3 4 5 6

g <8 ~f B 5 =4 3 2 =4

Solution Method 3
I did not draw a diagram, but I tried to visualize the situation. I was then able to figure

out the answer.

Other Method
I did not use any of the above methods. I attempted the problem in the following way:
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PROBLEM 2

A wire is stretched tightly from a top of a 60 foot tall pole to the top of a 10 foot pole. Both
poles are standing vertically in level ground. If the poles are 100 feet apart, how long is the
wire?

Solution Method 1
I did not draw a diagram or try to visualize the situation. I tried to logically deduce the
answer based on a careful analysis of the given information using arithmetic, algebra, or
formula. For instance, I used Pythagorean Theorem to find the length of the wire.
The difference in the height between the two poles is 50 feet.
Distance between the two poles is 100 feet.

Using Pythagorean Theorem

Length of the wire = /507 +100% = 2500 + 10000 = /12500 =50+/5 feet

Solution Method 2
I drew a diagram. I was then able to figure out the answer using the diagram. For
instance, I used Pythagorean Theorem to determine the length of the wire.

50

................

Length of the wire = /507 +100% = 2500 + 10000 = /12500 =50+/5 feet

Solution Method 3
I did not draw a diagram, but I tried to visualize the situation. I was then able to figure
out_the answer.

Other Method
I did not use any of the above methods. I attempted the problem in the following way:
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PROBLEM 3

Which three of the points (2,6), (3,8), (4,12), and (6,18) lie on a straight line?

Solution Method 1:

I did not draw a diagram or try to visualize the situation. I tried to logically deduce the
answer based on a careful analysis of the given information using arithmetic, algebra, or
formula. For instance, I used the slope formula to calculate the slope between two given

2270 Y then figured out points with same slope lie in a straight line.

X =X

points, m =

Slope of the line segment joining the points (6,18) and (4,12)
= Y, =) :12—18 :—_6:3
X, — X, 4-6 -2
Slope of the line segment joining the points (2,6) and (4,12)
= Yo ™0 :12_6 :§:3
x,—-x 4-2 2
Thus, the points (2,6), (6,18), and (4,12) lie on a straight line.
Solution Method 2:
I drew a diagram. I was then able to figure out the answer using the diagram. For
instance, I drew a line to determine which points were on the same line.

T

181Y D(6,18)

16

14

12 C(4.12)

10

8 -B(3,8)

61 ‘A(2.6)

4

2

0 X,
2 o2 4 6 8 10 12 14 16

Solution Method 3

I did not draw a diagram but I tried to visualize the situation. I was then able to figure out
the answer.

Other Method

I did not use any of the above methods. I attempted the problem in the following way:
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PROBLEM 4

When the circumference of a circle is decreased from 200 inches to 150 inches, by how
many inches is the diameter decreased?

Solution Method 1
I did not draw a diagram or try to visualize the situation. I tried to logically deduce the
answer based on a careful analysis of the given information using arithmetic, algebra or

formula. For instance, I used the formula C = 7zd where C is circumference and d is the
diameter of a circle.

C =nd, C, =nd,
200 = 7d, 150 = d,
200_, 150_,
7 pa
Decrease in diameter, d, —d, = 200 150 _30 _ 15.9 inches
r T 7
Solution Method 2

I drew a diagram. I was then able to figure out the answer using the diagram. I then, used
algebra and formula to find the answer.

Cl = 7Z'd1 C2 = 7Z-d2
200 = 7d, 150 = 7d,
w0 _, 150_,
T Vs
Decrease in diameter, d, —d, _200_150 _50 _ 15.9 inches
Vs T 7
Solution Method 3

I did not draw a diagram but I tried to visualize the situation. I was then able to figure out
the answer.

Other Method
I did not use any of the above methods. I attempted the problem in the following way:
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PROBLEM 5

David and Lisa have a rectangular swimming pool that measure 10 feet by 7 feet. A cement
walkway 8 feet wide boarders the pool in all sides. If David and Lisa want to erect a fence
to enclose the pool and walkway, how many feet of fencing will they need?

Solution Method 1

I did not draw a diagram or try to visualize the situation. I tried to logically deduce the
answer based on a careful analysis of the given information using arithmetic, algebra, or
formula. For instance, I used the formula2(/ + 5) to find the perimeter. I added the width
of cement walkway to the length and breadth of the swimming pool.

Now, dimensions of swimming pool including the walkway are,

Length (/) = (10+8+8) =26

Breadth (b) = 7+8+8 =23

Length of fence = 2(I + b)= 2(26 +23)=2(49)= 98 feet.

Solution Method 2:
I drew a diagram representing the situation. I was then able to figure out the answer using
the diagram. For instance, I used formula 2(/ + b) to find the length of the fence. Length

of fence = 2(I +b)= 2(26 +23)=2(49)= 98 feet.

8+10+8
R s e s )
8 el
: 10 '
8+7+8| 1+ |7 bl
I
: ! !
— —
1 8! 8 |
JQ T AT - A
Solution Method 3
I did not draw a diagram but I tried to visualize the situation. I was then able to figure out
the answer.
Other Method

I did not use any of the above methods. I attempted the problem in the following way:
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PROBLEM 6

Sixty-four identical cubes are arranged to form the larger cube depicted below. If the
entire outside surface of the large cube is painted, how many of the smaller cubes will have
no painted faces?

Solution Method 1

I did not draw a diagram or try to visualize the situation. I tried to logically deduce the
answer based on a careful analysis of the given information using arithmetic, algebra, or
formula. For instance, I used the formula V =7’ to find the length of the side of the big
cube. 64 =n’ = 4=n, Each face of large cube has 4 * 4 = 16 small cubes with painted
faces. I take off one small cube from each side from the large cube and subtracted it from
the side of the large cube (4-2 =2). Number of small cubes that do not lie on the faces of
large cube is 2 * 2 * 2 = § small cubes. Thus, 8 small cubes will have no pained faces.

Solution Method 2

I used the diagram to help me count the small cubes on the outside of the large cube
because all of these cubes would be painted. I then subtracted this number form the total
number of small cubes. Total number of small cubes with painted faces is 56. Total
number of cubes is 64.

Thus, number of small cubes with no painted faces = 64 —56 =8

Solution Method 3
[ tried to visualize how many small cubes were on the inside of the large cube because
these cube would not be painted.

Other Method
I did not use any of the above methods. I attempted the problem in the following way:
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PROBLEM 7

Points A (1,1), B(7,1), and C (3,5) are the vertices of the A ABC . Find the length of the
midsegment DE by connecting the midpoints of sides AC and BC.

Solution Method 1

I did not draw a diagram or try to visualize the situation. I tried to logically deduce the
answer based on a careful analysis of the given information using arithmetic, algebra, or

formula. For instance, I figured out the length of the side AB by using distance formula.
AB = J(x, =%, )} +(3, —3)* = (T =1 +(1=1)* = {/(6)* +(0)* = 6 units

I know from the midsegment theorem, segment joining midpoints of two sides of a
triangle is parallel to the third side and half of its length. Thus, length of DE 1is 3 units.

Solution Method 2

I drew a diagram representing the situation. I was then able to figure out the answer using

the diagram. I simply counted distance from the point D to the point E on the coordinate
axes which is 3 units.

YT
C(3,9)
D =
| ACTLT) B(7,1)
Solution Method 3
I did not draw a diagram but I tried to visualize the situation. I was then able to figure out
the answer.
Other Method

I did not use any of the above methods. I attempted the problem in the following way:
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PROBLEM 8

Find the slope of the line segment joining the points A (1,1) and B (3,2).

Solution Method 1
I did not draw a diagram or try to visualize the situation. I tried to logically deduce the
answer based on a careful analysis of the given information using arithmetic, algebra, or
formula. For instance, I used the slope formula.
"= Yo =N =2_1 :l

X, — X, 3-1 2

Solution Method 2:

I drew a diagram representing the situation. I was then able to figure out the answer using
the diagram. I calculated the ratio of rise over run between the two points on the
coordinate axes.

Rise = 1 units, Run = 2 units.

Slope, m = UL 1
run 2
Y/'\
/ B(3,2)
A(1,1)
O X’
Solution Method
I did not draw a diagram but I tried to visualize the situation. I was then able to figure out
the answer.
Other Method

I did not use any of the above methods. I attempted the problem in the following way:
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PROBLEM 9

A ABC with vertices A (4,3), B (2,1), and C (6,2) is reflected about the X axis, where
AA'B'C' is the image of the AABC. A’ (x,y), B’ (2,-1), and C’ (6,-2) are the vertices of the
image A'B'C’. Find the coordinates of the point A’.

Solution Method 1
I did not draw a diagram or try to visualize the situation. I tried to logically deduce the
answer based on a careful analysis of the given information using arithmetic, algebra, or
formula. For instance, I used formula for the reflection of a point about the x axis.

P()C, y) —> P (.X,—y)

Using this formula the coordinates of the point A’ is (4,-3).

Solution Method 2

I drew a diagram representing the situation. I was then able to figure out the answer using
the diagram. I drew the triangle ABC on the coordinate axes. I calculated the distance
from the point A to the x axis. And, I then reflected the point A to the below about the x
axis as a same distance from the point A to the x axis. The coordinates of the point A’ is

(47_3)'
Ya"\
A(4,3)
C(6,2)
B(2,1) |
e : : 2

I
I
| '
*A(4,-3)

Solution Method 3

I did not draw a diagram but I tried to visualize the situation. I was then able to figure out

the answer.

Other Method

I did not use any of the above methods. I attempted the problem in the following way:




PROBLEM 10

Find the distance between the points P (—6,1) and Q (2,1).

Solution Method 1

I did not draw a diagram or try to visualize the situation. I tried to logically deduce the
answer based on a careful analysis of the given information using arithmetic, algebra, or

formula. For instance, I used the distance formula \j(xz - X ) +( y, — yl)2
Let P (-6, 1) be (x,,y,) and O (2, 1) be (x,,y,)

PO=\J2-(=6))* +(1-1) = /(8)* +(0)* = 8 units.

Solution Method 2

I drew a diagram representing the situation. I was then able to figure out the answer using
the diagram. For instance, I counted the distance between the points P and Q on the
coordinate system. The distance is 8 units.

Y/\

AN

[
=3
xJ

Solution Method 3

I did not draw a diagram but I tried to visualize the situation. I was then able to figure out
the answer.

Other Method
I did not use any of the above methods. I attempted the problem in the following way:
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PROBLEM 11

Does the point (5,3) lie on the circle centered at the point (5,0) with a radius of 3 units?

Solution Method 1
I did not draw a diagram or try to visualize the situation. I tried to logically deduce the
answer based on a careful analysis of the given information using arithmetic, algebra, or

formula. For instance, I used the standard equation for a circle, (x —h)* +(y —k)* = 7.
(x=5+(y-0)* =3’

I then plugged the point (5, 3) in the above equation of the circle to examine whether it

lies on the circle. The point (5,3) lies on the circle.

Solution Method 2

I drew a diagram representing the situation. I was then able to figure out the answer using
the diagram. I drew the circle and I plotted the point (5,3) to examine whether it lies on
the circle. The point (5,3) lies on circle.

Y/'\
(5,3)
0 (5.0) X’
Solution Method 3:

I did not draw a diagram but I tried to visualize the situation. I was then able to figure out
the answer.

Solution Method
I did not use any of the above methods. I attempted the problem in the following way:
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PROBLEM 12

What is the maximum numbers of points of intersection are possible between a circle and a
square?

Solution Method 1

I did not draw a diagram or try to visualize the situation. I tried to logically deduce the
answer based on a careful analysis of the given information using arithmetic, algebra, or
formula. For instance, a line intersects a circle at most two points. A square has four
sides; thus, it intersects a circle at 8 points.

Solution Method 2
I drew diagrams representing the situation. I was then able to figure out the answer using
the diagram. I drew squares and circles intersecting each other in different possible ways.
I then tried to figure it out by manipulating the squares and circles. Square intersects at 8
points to the circle.

P

/ﬁ'\ D .

'\\-‘__—__/'
Solution Method 3:
[ did not draw a diagram but I tried to visualize the situation. I was then able to figure out
the answer.
Other Solution Method

I did not use any of the above methods. I attempted the problem in the following way:
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Geometry Interview
First of all, I would like to thank you for taking part in this short interview. You will be
asked some questions regarding the solution methods you used to solve geometry problems in
the geometry test that you have taken recently. If you do not remember the solution methods you
used that is ok. Please, try to explain how you would solve them.

Problem 1

What is the coordinate of the point on the number line halfway between —8 and +5?
Questions:

1. How did you solve this problem? Could you please explain?

2. If you did not solve it during the test, how would solve it.

Problem 4

When the circumference of a circle is decreased from 200 inches to 150 inches, by how many
inches is the diameter decreased?
Questions:

1. How did you solve this problem? Could you please explain?

2. If you did not solve it during the test, how would solve it.

Problem 8

Find the slope of the line segment joining the points A (1,1) and B (3,2).
Questions:

1. How did you solve this problem? Could you please explain?

2. If you did not solve it during the test, how would solve it.
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Additional Question

Visualizers are the ones whose solution method primarily is relied on drawings, pictures, and
figures while solving mathematics problems. Nonvisualizers are the ones whose solution
methods primarily is based on formula, arithmetic, or logical reasoning while attempt to solve

mathematics problems.

What do you categorized yourself: visualizer or nonvisualizer?
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Students | Problem 1 Problem 4 Problem 8 Visual/nonvisual
1 I drew a line. I think I solved it. I I kind of drew Visualizer
was thinking about it.
one of the diameters
like how to use it
solve and then I drew
a circle.
2 I drew a graph I don’t know. I have | First a plotted Visualizer
and put a point - | to write it. [ don’t the point A and
8 and 5 on the know. I don’t then plotted B,
graph, and | remember, but I think | and I then I used

counted evenly
what I got to
middle point, the
middle
coordinates
between

negative 8 and 5.

I did it. So

circumference

200....I think I drew

it.

rise over run to
count like slope
between these
two points.
Sometimes I
also use

formula.
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So, I would draw | I definitely had I drew a graph Definitely visualizer.
a graph and | drawn for this too. I | and I thought, I
would plots two | would use references | used formula
of numbers sheet if [ have because I can
given and [ provided a reference | visually see rise
would find the sheet. I do not know | over run and
midway between | definitely geometry | drew a graph.
the lines, and and I do not
that would be remember the
line halfway. formula. I would
draw it and see
visually.
I did the graph I drew a circle. Then | This one Ialso | Visualizer
and I plotted this | it says it decreases drew a graph

number and that
number and
coordinates, and
then I plugged

this number.

250 to 150. I drew a

circle and then [

visualized it.

because two
coordinates
given A and B,
and I did rise
and run because

this is the way

we find it.
T used a formula. | I did not use Tuseda Non-visualizer
drawings. formula.
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6 I drew a number | I drew a circle. I used formula. | More visualizer
line.
7 I made a graph. | I will draw a circle. I made graph. Visualizer
8 I'kind of drew a | I drew a circle. I drew a line Visualizer
number line. with coordinate.
9 [ would draw a I would draw a I would draw a | Visualizer
number line. circle. coordinate line
an plot it on the
line
10 I do not know Divide 200 and I would put the | Visualizer
how to solve it. I | 150...1drew a points where A
think I drew on | picture. as what it is and

the graph paper.
I used rise over
run and drew on

graph.

B and draw

them.
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11

I think what [

did is graph and

I think what I did is I
did 200 minus 150
and I got my answer

like that I did divide.

Tused y two
minus y one
over X two
minus x one. [
used slope

formula. I did

I think I am kind of
both. I got visualizing

and I got don’t.

not make
drawing.

12 I did a number I drew out a circle. I did the [ am more visual.
line and then formula of y
decided you two minus y one
know... in kind over X two
of between lines. minus X one.

13 [ drew a number | I drew the circle and | I drew the line I am a visualizer
line and counted | subtracted it to get segment and [ because I used
it. circumference. used rise over drawings.

run.
14 I drew a number | I drew a circle. [ used formula Visual

line.

and did

drawings too.
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15 I just made a [ used the Tused y two Probably I used
number line and | circumference minus- y one formula more often
kind of between | equation. I did not over X two and I am more non-
pretty much use any drawings. minus x one. | visualizer
median. did not use

drawings.

16 I'used a number | I used the formula of | I graphed the Well, I think, I
line and I circumference of a points and qualified for both
basically found | circle and I found the | found the half categories because
midpoint one for 200 inches way between once I graphed

between the two.

and I found one for

150 inches and solve

the diameter because

that was missing

what was and |

subtracted two.

the points.

actually I used formula
to solve it, so like lot
of them bunch of them
I can do with formula

and pictures also.
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17

I Solved it by
writing a number
line between
negative 8 and
positive 5, and
how many
difference

between them.

I think I would use
formula. I do not use

drawings.

I drew a graph. I
did not use
formula to solve

it.

I am more a visualizer.
I like to draw. I do not
know why I like to

draw.
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Algebra 1 End-of-Course and Geometry End-of-Course
Assessments Reference Sheet

B KEY
s Azbh b - base A = area
; = height 8 = ares of base
Triangle A = Sbh w = width € = arcumference
d = diameter V = volume
-] 4 r o= rodius P o= perimeter
Uiy QLERAPEN e e of base
4 = apothem SA = surface aren
Circle A g Use 3.14 or ? for m.
!
Reguiar:Polygon A=pur Circumference
C=nd or C=2nr
Volume/Capacity Total Surface Area
Rectangular Prism V= buf or S.A. = 20 + 2l + 2w or
@ V=8 5A. = M« 28
Right Circular V = wr'k or SA. = 2mrht « 2ur o¢
Cylinder V = Bk SA. = 2arh + 28
Right Square 1 cA =1
& ’,'9 : V = 38k SA. =5Pl+B
Right Circular Ve -;-w:k or SA = -%(21")}‘0 B
A Gone V o« 8h
O Sphere V=i SA. = 4nr
Sum of the measures of the Interior angles of a polygon = 180 (n~2)
Measure of an interior angle of a regular polygon - 0=D

where:

n represents the number of sides

n
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Algebra 1 End-of-Course and Geometry End-of-Course
Assessments Reference Sheet

Slope formula Distance between two points
. [ P, (x,. v,)and P, (x, v,)
m= -
X=X

G- x )+ (Gw)
WomzsbpeW(xl.y,)W
(x;. ¥;) are points on the line  Midpoint between two points
'“.- . 3 o ;~ P, (".’, yl) and r! (xr yl)
qsmmmmmaammuml
: (2% n+)
y=mx+b e— 2 "2

where i = slope and b = yintercept , I—il |

Point-slope form of a linear equation O >3, i

2a

y-y, =mxy=-x) .
where e, b, and ¢ are coefficients in

where m = slope and (x,, v,) is a point on an equation of the form ax + bx +c=0
the line

Special Right Triangles Trigonometric Ratios

R sn A" - P
Ly 2x ° x\[z— nypotenuse
._ _hdjacent
N A’ e et
, \!;_3" x“" coRA= Hypotenuse
xa) 3
tan A* = Dmﬂ.
adyacent
Conversions
1yard = 3 feet 1 cup = 8 fluid ounces
1 mile = 1,760 yards = 5280 feet 1 pint = 2 cups
1 acre = 43,560 square feol 1 quart = 2 pints
1 hour = 60 minutes 1 gallon = 4 quarts
1 minute = 60 seconds 1 pound = 16 ounces

1 lon = 2,000 pounds
1 metor = 100 centimeters = 1000 millimeters
1 kilometer = 1000 melers
1 llter = 1000 miliditars = 1000 cubic cantimeters
1 gram = 1000 milligrams
1 kilogram = 1000 grams

Fland s Departinernt of Education
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& Eoa University af Centml Ilecida Institutivaal Beview Bourd
Cu"" """“’adl Odfios of Regcarch & Cornarcizlization
entr 17901 Research Pacsway, Suite 501
Florida Otlande, Florida 32826-324F
Telephene: $07-8223-2001 ur 407-882-2276
www,resenduuel sdwieamplianeich hun

Approval of Human Research

Froan: UCT Institutionsl Review Board il
FWAQOO0U3ST, LRBOOODI 13

Ta: Bhesh Raj Muoinoli

Date: Fehruary 24, 2014

Dear Researcher:

Or 22472012, he LRE gpproved the fallowing minor medifications to human parti cipant resaanca orti!
10242014 inchogive:
Type viRevicw: [RE Addendum and Medificatica Request Focm
Maodification Type:  Studeats ic will he recruitad; in
additivn o 350 shudenls, 330 adulls from
R . il 5i5n Le rezruited for a total of
00 slucly maricipants, A revised protecol bos bemn uplcaded; a
revized Percot Consent and an Adnlt Crasent dncoment have
bern wpproved fur vse.
Project Title:  Investigating the Relationships bebweer: 'references, Gender,
and High Schiool Sludents' Cecmetry Performunces
Investigator:  Bhesh Raj Mainali
TRE Number:  SBEE1A048700
Funding Apency:
Grunl " Tilhe:
Reacarch TD: NVA

The szeatie men) ol e reseureh v vungidered during te [RB review. The Contnuing Reviaw
Applicacon must he submitted 20days prior to tie expieation Sate for stidies thal were previvasty
expedited, and 600 daye prior to the expuation date for rescarch fhet waa proviously covicwed et a convened
meeting. De noticake elhanges to the stody (Le., avetnenl, methocology, ecvnsenl lormy, pessunnel, site,
l¢.) before odtuining IR B npprmrnL A \1ndmc:trm l-ctm cannat bz w:lac\cnm'nd the aperoval peried of
astudy. Al forms sy’ he eomplelad and cubxn ted anline b bl -iris, reses iU

If' continuing reviey opp.oval is not granted betare the expiration cate of | 1:24/2014,
approval of this esseareh expine oo (it date. When you hove compleed your regeureh, plenge submiz g
Study Closuse request in iRIS aa that [RH recards will Te aceurace.

1ize of the approved, sfrmped coosent documentis) tsrequiced, Ihe new form supeczedss all provious
versions, which ere no invalid for furthes sz, Only appraved investigadoes (or $ker spproeed key gaudy
zersonnel) maoy solicit canseat for research zerticipation. Purticipants or dicir represantativea musl tocei
a copy of the consant formds).

In the conduct of thia reasarch, vou are respansible to followv the requitements of the Tnvisuis-tor Maoual,

o kehal®of Sophon Dziepielensc, PR, LGS W, UCE LRB Chiar, this Letlor is simmeé by

Page | of 2
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@’Unlvc.rslry of
Central

NMI'c
Florida
Informed Cousent form for Parents

Title: Tnvestigntine the Relativnships betwreen Preferencs, tGonder, und Hiph Schaul Studenty’
Ceomelry Performance

Principle luvestigator: Bhesh Raj Mainali
Hacnlty Supervisor: Dr Erhan Scleuk 11acivmenigla, PhD

Investigational Site: I

How to Return this Consent Form: Please return this form to the sehacl where your child

goes,
Introduction: Rescerchers af the University of Central Flarida (UCF) study many wepizs, To du this
we noed the help of people whe agree tn tke part in a rescarch study. Your child is being inviled Lo
teke part in this rescarch study hecuuse he or she is student in a peametry or algebra class.

"The porson doing this reseurch s a Phi) candidate in mathematics education trak, al scheol nf
Educulivn, University of Ceritral Flarida, Orlando, KL, This research study is canducted under the
guidunce of the associate professor Dr, krhan, Scleuk Hacionieroglu, Scionl of Tducation, Tniversity
of Central Flarida, FL. In this study, studenls aro cxpected to take a geometry test faliowed hy a
geametry quastionnaire in a regulur classronm. The test will be an hour long,

What you should kaow about a research study;

s Someone will explain Cuis research study ta yon.
A research stucy is sometaing you volunteer for,
Whether ar nol yeu teke part is up o vou.
You should allew your chili to take part in this study oaly kecanse vou want (0.
You can cheose not (¢ take part in the rescarch study.
You van agres to take part now and later change your mind,
Whratever you decide it will not be held against you or yaurchild,

» Fesl free to ask el the questions you want before you deside.
Purpose of the resenrch study: The Purpese of this study is to vestigate the relationships helween
preference, pender, and students” peometry perfurmance,
What yonr child will be asked fo do in the study: Yuur child participation will involve complefing
educational tests. [ this study, since we will he obtaining students’ demographic information and {es!
seores (Geomerey End of Course Exam soires nr any other standsrdized test scores) that are
identifiable by student name, we will ensure thut vee have speciiia peomission from e schoals
Access thase receeds that fall under TERPA ruley.

Univeristy of Central Floride IRH
& (RIS NUMBER: SBE-12-[9703
[RIVAPPRIOVAL DA'ULE: 2823552014
IRN EXPIRATION DAVE: 167242014
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I 15 whso possible that yeur clald will be individual lv instructed or infervigwed by (he rezsarchers to
detenuine your preference for solution swateaies. The tasks e will administer in the tests or the
interviows will cheely reseonble those problecs alroady assigned by child's instructar. We will assist
vou ducng inlerviews and discuss the solitions b the problems atter the interviews, You or your
ehild will nat fase any benelios 7 your child skips questions ar tesks. The tests will he sdministered in
& regular cliss period. Your ohild will be asked verbally for hisher assent hefore the test, A claar and
understandably caplanation will be provided R ehild/sinoe whedier heishe want ta participete i this
or st I8 yoor child does not want to take purt in the est, heike will be allowsd to cngaas in
educativral activities withuwul disturbing ather participants in the classmucn, Alternatively, te
cooperaling teacher will muke srrangement to cnpage himiher in relevent lessom Rotivities i wour
child does mos want 1o Lake part in the test.

Loeation: The test will bz administered in a rognlae elagsroom of the scheol day i the schue! where
i ehild poes.

Time required: Texpect that pour child will ba engoped foran hour for the mests.

Audio or vides taping: It is pogsible that your child will ke andio taped doring this study. 17 vou o
nit weant yonir ehild to be audio laped, your child will ke shle 1o he in the snidy, Discuss this with the
researchier of a rescarch team member. TF your child is sudio taped, iz taps will be kepl in 4 lecked,
safle plee, The lape will be erased ordestroyed 1 veurs ufter the end of the studsr unless he TRE
advises 1o destroy ut an earlier time,

Risks: There are minimel risks to parlivipants to #1is projoet, Uhis may lnclode the unlikelv breach of
coulidentfality. Students do nol have r answer every question or complats every Lk, Shudants will
st duse uny benefits I they skip questions or tasks. Stwlenls do net have to answer any quostions that
ke them fezl onoom fortalle.

Dencfits: We cannct promise ony hanefits m pow, sour child, orotiers Som pouwr elild Laking patt in
this research. Howover, possible henefit of the stady b your chitd 5 an enbanced eonceplual
understanding of the fundamenial coneepts of geatnelry. Morenver, the instmments et will he vsed
1 thiy project will previde your child and hisdher teacher with informatica abeut Jew your child
processes muthcmatisal information orwhat his'her copnilive preferenees arc.

Compensation or payment: There s no compensation, peyment o celta sredit Tor your shild®s
taking parlin this shads,

Confidentiality: T will limic vour personal duts ecllested iy this study, Bifors will be made % Fmit
your child's persomal information 1o peoples wha have & need 16 revicw this infirmatice, In thiz study,
aller ublzining your childs fest seores (e, Geometry End of Course Exam), we will 788 4 numerical
vode system; thot is, miomerical codes will ceplece stedeat names W proteed confidentiality of Fanr
=hild,

study eoutact for questivny about the study or to report a problem: 0 you have questions,
eoneerns, o cornplainly, or think the rasearch has hurt your clild fafk L Dhesh Raj Mainali, Grodusss
Sludent, Mathcmatics Fdueaiion Lrack, Collepe of Edacatinng, (M7} B0S BROG or Dr, Grhoo Hesiomcgln,
Faculty Supersizor, Mathermalivs Bducation ‘Tteek, College of Educalion, (407) 8231355 or by omai a2t
iadngli bbpshtkniphs wef edu

IRE contact atout you and your child's rights in the smdy or o report a complaint:  Hescarcl
al the University of Centeal Flesida dnvelving hisman paricipants is carricd out under the eversiglht of
he: Tstitutional Weview Board (TTCT TRR). This rescarch bas ksen reviewed aud approved by the
TRT.

Univeriste of Certrnl Flarida Ien
. IR BLUMAKE: SRE-1 302720
@LFLF TRR AV AL TATE: 24330614
TR TR A T TOATT: |00
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For infounation showt the tights of people who talee part in rescarch, please contact: Listicitionel
Beview Toard, University of Central Florida, Otfive of Research & Commercializarion, 12201
Lezearch Parkwsy, Suite 300, Orlanda, FL 32826-3246 r hey telephone ab (4070 B23-2901. You way
also el o thamn for any ol the followizg:

»  Your questions, concems, or complaints are ol being answered by the rescarch teas.

®  Fou cannar peach the research team.

= ¥owwant 1o talk 10 someene besides the rescarch tear,

= You wand to get information or provide input about this eescarch,

Withid rawing from the study: You may decide not o have your child coslinae in the Tescarch smdy
atany Lime yithont it belne huld against vou ar vour shild. [ veu decide 1 have vour child Jeave the

reszarch there will ot be any sdverse effects ur hanma to your child, 17 you decide to heve your child

tewve the study. contact me s that [ean exeluds your ohild from tha sy,

Your sipmaturs bolow Dadicales your permission fr the chilld named hislage 2o takes pacl in
this research.

DO NOT SIGN THIS FORM AFTER THE IRB EXPIRATION DATE

BELOW
! Mamc ot participant
e
Sipnatore of parent or puardian Dt

ﬁ Puren,
' Printad name of passnt ur guardian

W Chlarad

Mot on pecmigiion by guardians A- individical may provide secidsion lor g ehild m]_}. if 1228 snefvicaal
A prawide usritten docament ndicating tast he of ghe s by potzocdzed ooomsanl o e child' s pencea’ ezl
oG ALl (e docemeniodon %o the slgned doeace.

Uriverizty of Conval Flarich TR
- o BENUMBLER; 3BE-12-09M50
@"UCJ" LiEH ATPROVAL DUl b 1351 4
TEB EXVIRATION DATE: 13245014
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BENKKIT KOR (i) S CHOOLS

All research approved must have a specific benefit to the students, teachers audlor
administrators of (NN Schools. Please deseribe in detuil how (his
research praject directly benefits the district.

Studcnts will get oppurionilies ta take part in a peometry iest where they will get chance
1 explote different ways that geometry problems can be solved. It also helps to enbance
students' geomelry undesstanding,

This study is enticipated to inform mathematics teachers and school administraloss sbout
the importasice of tho reprosentation in teuching and learming mathematics, which will provide
insights ahout which mode of representation could be useful for teaching und learning geometry,
and its corrclations to students’ cogaitive style and mathomatical performance,

ATTACH THT. FOLLOWING I'TENS 10 'THIS FORM:
+ Acopy of your TRB approval
*  (2) Two capics of your approved praposal, grant, of projost
o Al survey and/or interview instuments
ASSURANCE
Using the proposed procedures and instrument, I hereby agree to conduct research within the

policies of (BRGNS S chocls. Devistions from the approved procedures must be
cleared theough the Senior Director of Accountability, Research ind Assessment. Reports and

materials should ke supplicd when specified.

Requesior's Signalure g’ag ?: ___Date Mgh.b’_?i

NOTE TO REQUESTRR: When seeking approval at the schonl level, a copy of the eatire
Request Farm, signed by the Senjor Director, Acconstability, Ressarch, and Assessment, should
e shawn ta the schuo] principal who hes the uption Lo refuse participation depeading upon any
school circumstsnce or condition. 'The ariginal Research Regquest Form is preferable to a faxed
decument,

APPROVAL STATUS

K Approved: The research request was completed in full and the ressarch meets ell
@ oquirsments. The following must he completed to meet seeurily requirements
before your reseerch can begin:

‘/f.--' Comg.  ginley POy tad 4o contwet  foaghers 7Di‘! e Ve ""‘_;} i te
7l N

Geametry, [Poglriplemn] Pe-elopencnt Seozg ,(_E- E‘-&\ A P i i Tl
7 ? R
Revieed 8.13.13

P*PL.:‘?"‘F'."" _S.‘.,“, le goce Ia mnf- A— s 35‘0, a~d
ferdent Fres ALip ba F—w;h.d‘ fom aft bt /3“""""/':30\""‘.
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O Conditienzlly Approved: The resanrch raquest containg ome memuome slernents that
sl be clanified or are missing, Howevér, the requast hias an opporlunity (o he
approved i the following is completed:

o+
B

Mease make thess changes within twa weeks amd resubmil the enlire Request Feam and
supporang documents:

& Lefected: The tesearch tequest contalns denilicant omissions and'oc dozs net meet
B -ovivcroces. This research roques: has been rejeetod duc to the following:

4

Signatore of the Senlor Director for Acconntability, Research and Assessment

oo

— -

Date

F-:ré-’-vn-*?r F‘?'H'_. e By )

Fomsrd § 1243
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Confirmation Number: 11154603
Order Date: 01727 /2014

Customer Information

Customer: Bhesh Mainall
Account Mumber: 3000743773
Organization: Bhesh Mainall
Email: bhesh.mainali@uct.edu
Phone: +1 (407 1B0BES06
Payment Method: Invoice

Order Details

Problems of representation in the teaching and leaming of mathematics

Cognright Clearance Cener

This not

Ordar detzil ID: 64363005

ISBMN: S78-0-89855-802-5

Publicakion Book

Type:
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Author/Editor:  JANVIER, CLAUDE ; UNIVERSITE DU
QUEBEC A MONTREAL
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Billing Status:
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Parmission type: Republish or display content

Type of use:

Repubdish in & thesis/disertation
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FW: Copy right permission

Bhesh Mainali =Bhesh.Mainali@ucf edu= Sun, Mar 18, 2014 at 7:38 AM
To: "mnaradfigmail com™ <mnarad@gmail com>

From: Eleanor H. ROSCH [roschi@berkeiey.edu]
Sent: Monday, February 10, 2014 6:4% PM

To: Bhesh Mainali

Cc: palmer@cogso.berkeley.edu

Subject: Re: Copy right permission

You ako have nry permmssion to vse Fimwe 9.1 from Chapter 9 m E Rosch & B Tiowd (Eds.) Copniion
and Categorzation, Hilldale, N1 - Erlbbaum

Eleanor Rosch

OnMon Feb 10, 2014 at 158 PM. Bhesh Mamal <Bhesh Mamabinefedit wrote:
Hello Dear Dr Rosch and Dr Palmer, Good afternocon,

1 am Bhesh Mainali, PhD candidate in mathematics education. University of Central Florida, working on my
dissertation. [ would like to use of one of the figures in my dissertation from your book " Cognition and
Categorization”. The figure is from the chapter 9, fundamental aspects of cognitive representation (fig 9.1 page
263}, In this regard, I would like you to grant me permission to use this figure in my dissertation.

Thank you very much for your help and support.
Bhesh Mainali
Ph candidate, Mathematics Education Track

University of Central Florida, Orlando, FL
USA

e ma qoog ke commEE T M= 2 8= 00087405008 das=nt Lr e ch= nnodane 12 2can0e7 o0 1 S Asim= 143067 ol 1 318 "
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