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ABSTRACT 

In this quantitative study, the relationships between high school students’ preference for 

solution methods, geometry performance, task difficulty, and gender were investigated. The data 

was collected from 161 high school students from six different schools at a county located in 

central Florida in the United States. The study was conducted during the 2013–2014 school year. 

The participants represented a wide range in socioeconomic status, were from a range of grades 

(10-12), and were enrolled in different mathematics courses (Algebra 2, Geometry, Financial 

Algebra, and Pre-calculus). Data were collected primarily with the aid of a geometry test and a 

geometry questionnaire. Using a think-aloud protocol, a short interview was also conducted with 

some students. 

For the purpose of statistical analysis, students’ preferences for solution methods were 

quantified into numeric values, and then a visuality score was obtained for each student. 

Students’ visuality scores ranged from -12 to +12. The visuality scores were used to assess 

students’ preference for solution methods. A standardized test score was used to measure 

students’ geometry performance. The data analysis indicated that the majority of students were 

visualizers. The statistical analysis revealed that there was not an association between preference 

for solution methods and students’ geometry performance. The preference for solving geometry 

problems using either visual or nonvisual methods was not influenced by task difficulty. Students 

were equally likely to employ visual as well as nonvisual solution methods regardless of the task 

difficulty. Gender was significant in geometry performance but not in preference for solution 

methods. Female students’ geometry performance was significantly higher than male students’ 

geometry performance. The findings of this study suggested that instruction should be focused 
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on incorporating both visual and nonvisual teaching strategies in mathematics lesson activities in 

order to develop preference for both visual and nonvisual solution methods.   
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CHAPTER ONE: INTRODUCTION 

Preference and Performance in Mathematics  

Preferences have an important implication in educational theory and practice (Stenberg & 

Grigorenko, 1997). In this study, preference refers to an individual’s preferred and habitual 

approach to organizing, representing, and processing information, which subsequently affects the 

way in which an individual perceives and responds to ideas, events, or problems (Riding & 

Rayner, 1998). Preference is also called cognitive styles. Researchers have identified various 

types of cognitive styles, but in the domain of mathematics education, the verbalizers and 

visualizers continuum is the most widely accepted (Krutetskii, 1976). 

 Krutetskii (1976), a Russian scholar, laid a foundation for the verbalizers and visualizers 

continuum for the teaching and learning of mathematics. He identified two modes of thought or 

ways of processing mathematical information: verbal-logical and visual-pictorial. He contended 

that everyone is endowed with these two modes of thought. Verbalizers use verbal-logical modes 

of thought and visualizers employ visual-pictorial modes of thought while attempting to learn 

mathematical ideas and concepts or do mathematical tasks. 

Krutetskii (1976) investigated the relationships between mathematical abilities and 

spatial abilities based on a study of several gifted students. According to Krutetskii, students can 

be placed in a continuum with regard to their preference for thinking and correlation between the 

two modes of thought. They belong to one of three categories: (a) visualizers (geometric), who 

have a preference for the use of visual solution methods, which involve graphic representation 

(i.e., figures, diagrams, and pictures); (b) verbalizers (analytic), who have a preference for the 

use of nonvisual solution methods, which involve algebraic, numeric, and verbal representation; 

and (c) harmonics (mixer), who use visual and verbal methods equally.  
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Based on the Krutetskii (1976) framework, several research studies have been conducted 

which examined the relationships between students’ preferences for solution methods, and 

mathematical performance (Battista, 1990; Haciomeroglu, Aspinwall, & Presmeg, 2010; 

Krutetskii, 1976; Moses, 1977; Suwarsono, 1982). For example, researchers attempted to find 

the correlation between preference for solution methods and mathematical performance. What 

kind of solution methods an individual uses and how the method is associated with mathematical 

performance have been of interest to many researchers in the mathematics education field. 

Krutetskii (1963) categorized low-achieving students into different categories and 

investigated the factors behind their poor performance. He suggested that high-level 

development of analytical thinking does not determine mathematical thinking; however, low 

development of analytical thinking does result in an incapacity for mathematics. Krutetskii 

(1976) further contended that there is a correlation between the ability to visualize abstract 

mathematical relationships and the ability to make sense of spatial geometric concepts. However, 

these are not the essential components that determine students’ mathematical abilities. He further 

stated that strengths or weaknesses of analytical or visual thinking do not determine the extent of 

students’ mathematical giftedness; however, they determine its type. A student can be 

mathematically capable with different correlations between verbal-logical and visual-pictorial 

modes of thinking. In fact, it is the correlation between the two modes of thinking—verbal-

logical and visual-pictorial—that determines each student’s category (analytical, geometric, and 

harmonic). 

Krutetskii’s study (1976) also revealed a correlation between the verbalizers and success 

in learning algebra and, similarly, between the geometric type and success in learning geometry. 

However, Krutetskii further contended that the classification of verbalizers and visualizers 
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should not be regarded as a classification of thinking according to the subject relationships 

(school subject—algebra and geometry). In fact, the analytic cast of mind can be shown in 

geometry and geometric type can be shown in algebra.  

Spatial ability is defined as the ability to generate, retain, retrieve, and transform well-

structured visual images (Lohman, 1996). It also refers to skill in representing, transforming, 

generating, and recalling symbolic, non-linguistic information (Linn & Petersen, 1985). 

Krutetskii contended that spatial ability does not determine students’ geometric performance; he 

documented many cases in which students who showed good spatial ability were poor in 

geometry performance. Moreover, he contended that a well-developed spatial ability does not 

imply that students will use it while attempting mathematical tasks. For example, students may 

be able to solve a problem by visual methods; however, they may not prefer to solve it using 

visual methods. Several research studies have been conducted to examine the relationships 

between the preferences for solution methods and spatial ability; however, they revealed that 

there was little or no correlation between preferences and spatial ability (Haciomeroglu, Chicken, 

& Dixon, 2013; Hagarty & Kozhevnikov, 1999; Kozhevnikov, Hagarty, & Mayer, 2002; Moses, 

1977; Lean & Clements, 1981; Suwarsono, 1982). Presmeg (1985) also pointed out the same 

issues: spatial tests may be solved by using analytic solution methods, or students with good 

spatial ability may not prefer to use visual solution methods. Reffering the work of Wattanawha 

and Clements, Clements (1984) reported that mathematically gifted students had a strong 

preference for analytic methods (nonvisual solution methods) on space visualization tests. 

Therefore, for this study spatial ability will not be used to measure students’ geometry 

performance; rather, preference for solution methods will be the focus. One of the main purposes 

of this study is to examine the relationship between students’ preference for solution methods 
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and their geometry performance. 

Solution Methods and Preference 

Research shows that visual and verbal (nonvisual) methods both predominantly used 

solution methods while attempting mathematical tasks (Janvier, 1987; Krutetskii, 1976; Lesh, 

Post, & Behr, 1987). Many researchers have investigated students’ preferences for solution 

methods and their relationships to mathematical performance (Gorgorio, 1988; Haciomeroglu, 

2012; Lean & Clements, 1981; Lowrie & Kay, 2001; Moses, 1977; Presmeg, 1986b). Various 

distinctions have been made between visual and nonvisual solution methods.  

Presmeg (1986) stated that a visual solution method is one that involves visual imagery, 

with or without a diagram, even if algebraic methods are also employed. Visual imagery in 

solution methods involves any kind of graphic representation (diagrams, figures, and visual 

representations), either on paper or in the head of students. Krutetskii (1976) referred to these 

two methods as visual and mental solution methods. However, Suwarsono (1982) used the term 

mathematical visuality to describe solution methods. He stated that mathematical visuality is the 

degree to which someone prefers to use a visual method when attempting mathematical problems 

that can be solved in both visual and nonvisual ways. When students use either given diagrams 

and figures or they draw diagrams and figures or visualize diagrams and figures in their head 

while attempting mathematical tasks, it is considered to be a visual solution method.  

In nonvisual solution methods (verbal), the reasoning is conducted purely on the basis of 

the processing or manipulation of verbal and mathematical statements, and these manipulations 

are performed using the rules of language and mathematics (Suwarsono, 1982). Nonvisual 

solution methods do not involve visual imagery (Presmeg, 1986b). Thus, algebraic, numeric, and 

verbal representations have fundamental roles in nonvisual solution methods. A nonvisual 
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solution method is one that involves analytic reasoning while attempting mathematical tasks. By 

analytic reasoning, the researcher means employing mathematical formulae, rules, postulates, 

axioms, conjectures, and so forth while students attempt to solve mathematical tasks. Students do 

not use any kind of diagrams or figures; they do not visualize them when attempting 

mathematical tasks in nonvisual solution methods. Despites of using different terms for two 

types of solution methods, the research will used visual and nonvisual solution methods for the 

purpose of this study. 

Several research studies examined the relationships between preferences for solution 

methods, gender, and mathematical performance but without conclusive findings (Battista, 1990; 

Fennema, 1979; Fennema & Carpenter, 1981; Galindo, 1994; Haciomeroglu, Chicken, & Dixon, 

2013; Moses, 1977; Suwarsono, 1982). For example, Lowrie and Kay (2001) suggested that 

visual solution methods are positively correlated with mathematics performance while Lean and 

Clements (1981) claimed that nonvisual solution methods are positively correlated with 

mathematics achievement. 

Preferences for solution methods are also associated with difficulty levels of the 

mathematics problems (Haciomeroglu, 2012; Lowrie, 2001; Lowrie & Kay, 2001). As the degree 

of difficulty of the mathematics problems change, students also alter their preferences. For 

example, students were more likely to use visual methods than nonvisual methods to solve 

difficult problems (Lowrie & Kay, 2001). Haciomeroglu (2012) also found that as task difficulty 

increased, the number of visual solution methods (correct to incorrect) increased significantly, 

supporting the conclusions of Lowrie and Kay (2002). On the other hand, some studies revealed 

that there is no significant relationship between task difficulty and preference for solution 

method (Lowrie, 2001). 



 

6 

 

Gender, Preference, and Mathematics Performance 

The relationship between gender, preference for solution methods, and mathematical 

performance has been of great interest to researchers for many decades. A substantial number of 

research studies were done in this area and many of them revealed that generally male students 

outperform female students (Battista, 1990; Fennema, 1974; Fennema & Sherman, 1978; Guay 

& McDaniel, 1977; Maccoby & Jacklin, 1974; Matteucci & Mignani, 2011). However, several 

research studies that have been done in this area also assert that gender is independent of 

mathematical performance (Galindo, 1994; Haciomeroglu & Chicken, 2012). Similarly, The 

Trends in International Mathematics and Science Studies (TIMMS) also revealed inconsistent 

relationships between gender and geometry performance. Gender differences in geometry 

performance were evident in some countries; however, other countries showed no gender 

difference in geometry performance (Neuschmid, Barth, & Hastedt, 2008). Some studies, 

however, did not find relationships between gender and mathematics performance (Hall & Hoff, 

1988; Penner & Paret, 2008). Hyde, Fennema, and Lamon (1990) also reported that there was no 

gender difference in students’ arithmetic or algebra performance in elementary and middle 

school. Thus, findings are not conclusive regarding gender, preferences, and performance. 

Gallagher and De Lisi (1994) reported gender difference both in preference for solution 

methods and mathematics performance. Fennema, Carpenter, Jacobs, Franke, and Levi (1998) 

reported that there was no gender difference in mathematics performance, but that gender 

difference prevailed in solution methods. On the other hand, some studies did not find gender 

difference in preference for solution methods and mathematics performance (Galindo, 1994; 

Haciomeroglu & Chicken, 2012; Haciomeroglu, Chicken, & Dixon, 2013; Lowrie & Kay, 2001). 

Hyde, Fennema, and Lamon (1990) indicated that there was a gender difference in arithmetic or 
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algebra performance; male superiority in geometry was small, and the tests with mixed content 

showed the largest gender differences.  

Representation  

Representation is an important topic for this study because students employ various types 

of representations in their solution methods. The fact is that visualizers have preference for using 

graphic representations while verbalizers have preference for employing algebraic, numeric, and 

verbal representations. Kaput (1987b) stated that “representation and symbolization are the heart 

of the content of mathematics and are simultaneously at the heart of cognitions associated with 

mathematical activity” (p. 22). The role of representation in mathematics is supported by the 

National Council of Teachers of Mathematics (NCTM, 2000), which includes representation as 

one of the process standards. The Common Core State Standards for Mathematics (CCSM) also 

emphasize the role of representation. For example, the document states that students should be 

able to analyze functions using different representations (Council of Chief State School Officers 

& National Governors Association, 2010). In fact, representation acts as a tool for manipulation, 

communication, and conceptual understanding of mathematical ideas (Zazkis & Liljedahl, 2004). 

Researchers contend that representation plays an important role and its use is fundamental in 

teaching and learning mathematics (Arcavi, 2003; Goldin, 1987; Janvier, 1987; Kaput, 1987a; 

Roubicek, 2006; Zazkis & Liljedahl, 2004).   

A representation is a sign or combination of signs, characters, objects, diagrams, or 

graphs, and it can be an actual physical product or mental process (Goldin, 2001). In fact, it may 

be a combination of something expressed on paper, existing in the form of physical objects, and 

a constructed arrangement of ideas in one’s mind (Janvier, 1987). Researchers suggested various 

types of representational systems (Goldin, 2001; Janvier, 1987; Lesh, Post, & Behr, 1987). 
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Gleason and Hallett (1992) proposed the rule of three which consists of three types of 

representation: (a) symbolic, (b) graphic, and (c) numeric. The rule of three was modified to 

become the rule of four, which includes four types of representation: (a) graphic, (b) numeric, (c) 

algebraic, and (d) verbal. The rule of four is one of the most widely used and commonly 

accepted classifications of representation in mathematics education.  

Rationale 

Some students prefer to use visual solution methods based on the visual-pictorial thought 

process, while others like to use nonvisual solution methods based on the verbal-logical thought 

process. Some research studies focused on visual solution methods, while others emphasized 

nonvisual solution methods. Some research studies showed that students need to have both 

problem-solving skills—visual and nonvisual solution methods—for successful mathematical 

performance. For instance, the balance between visual and analytical reasoning ability is likely to 

be an important factor, particularly in geometry performance (Battista, 1990). In fact, the 

research findings related to preferences for solution methods and mathematical performance are 

not conclusive (Haciomeroglu et al., 2013). Thus, more research studies would help to find 

conclusive findings in this regard. 

Gorgorio (1998) contended that solution methods can be shared and therefore taught, 

while preference is an individual trait. For instance, although students in the same class get the 

same instruction in problem-solving mathematics, there is much variance in their solution 

methods (Hegarty & Kozhevnikov, 1999). Gorgorio further stated that the study of preferences 

can contribute not only to the enlargement of theory but also to the solution of the actual 

problems of teaching mathematics. Thus, exploring the relationships between preferences and 

performance will provide insights and ideas to mathematics teachers, researchers, and educators 



 

9 

 

when developing a mathematics curriculum, as well as planning effective instructional strategies 

(Galindo, 1994). Moreover, rigorous study in this area will help elucidate which solution 

methods students use and the difficulties they encounter when solving geometry tasks. 

The correlation between gender and mathematical performance has been of great interest 

for researchers for many decades with several studies conducted regarding students’ gender and 

its impact on preferences and mathematical performance. However, the related research studies 

indicated inconclusive findings in this area as well. For instances, some studies identified that 

gender is related with preference for solution methods and mathematical performance (Fennema 

& Sherman, 1978; Gallagher & De Lisi,1994) while other studies revealed that gender is 

independent of preference for solution methods and mathematical performance (Galindo, 1994; 

Haciomeroglu & Chicken, 2012; Haciomeroglu, Chicken, & Dixon, 2013; Lowrie & Kay, 2001). 

Some studies found gender difference on preference for solution methods but not on 

mathematical performance (Fennema, Carpenter, Jacobs, Franke, & Levi, 1998). Moreover, 

Fennema and Sherman (1978) stated that “in view of negative sociocultural effect of the belief 

that female do not do well in mathematics; authors and journal editors should be more 

responsible in reporting sex-related difference in mathematics achievement” (p. 202). Thus, more 

research studies in this area will help reach more general agreement regarding sex-related 

differences in mathematics achievement.  

From a didactic perspective, it is important to know students’ preferences for solution 

methods because students’ preferences may stimulate teachers’ awareness that students’ 

problem-solving methods may be different from their own (Gorgorio, 1998). For instance, 

teaching style might be a learning obstacle for students who use problem-solving methods that 

are different from those of their teachers, their manuals, or their textbooks. Thus, understanding 
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preference and performance helps in the design of course content and teaching approaches with a 

consideration for the differences in the learning environment (Sevimli & Delice, 2011). 

Moreover, comparing students’ differences in geometry performance can also help us better 

understand how all students learn geometry (Battista, 1990). Therefore, more research studies 

can contribute to add more didactical and pedagogical knowledge.  

The preferences for solution methods are also associated with difficulty levels of the 

mathematics problems (Haciomeroglu, 2012; Lowrie, 2001; Lowrie & Kay, 2001); however, 

research studies have shown inconclusive findings. Therefore, further studies are required to find 

more concrete results. 

The Mathematical Processing Instrument (MPI) developed by Suwarsono (1982) has 

been used extensively to examine the verbalizer-visualizer continuum, preference for solution 

methods, and mathematical performance. However, the MPI is limited to algebraic word 

problems and was designed for middle school students. Thus, conducting similar study but in a 

different domain will provide broader perspectives. Moreover, the balance between verbal-

logical and visual-pictorial processing may be a key variable in investigating students’ problem-

solving abilities and strategies in geometry (Battista, 1990). Thus, it is worthwhile to investigate 

the verbalizer-visualizer continuum for high school geometry. 

Representation is fundamental in teaching and learning mathematics (NCTM, 2000).  

Mathematics textbooks contain wide varieties of representations; however, limited attention is 

given to the effects of representations. As a result, children are confused by various types of 

representations while learning mathematics (Dufour-Janvier, Bednarz, & Belanger, 1987). Kaput 

(1987) stated that there is a common tendency to undermine the role of representation in teaching 

and learning mathematics as well as in the mathematics curriculum. Thus, the knowledge of 
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students’ usage of different types of representations during problem solving can help in the 

design of suitable educational resources and the development of effective teaching strategies.   

Students employ different modes of representation while attempting to solve mathematics 

problems and the representations may have an influence on their solution methods, because each 

mode of representation has different characteristics (Jane, 1996). For instance, some 

representations, such as graphic, are visual, while others, such as verbal representations, are 

nonvisual. Larkin and Simon (1987) suggested that graphic representations help learners to 

recognize features easily and help to make inferences directly. Moreover, pictures, diagrams, and 

similar visual representations can give learners access to knowledge and skills that are 

unavailable from less visual representations (Zhang, 1997). However, graphic representation is 

open to interpretation and can reveal as well as can hide necessary information (Mathai & 

Ramdas, 2006), which might influence students’ solution methods and mathematical 

performance. Thus, there are controversies concerning the role of representation. In fact, most 

researchers contend that being able to use both visual and nonvisual representation and being 

able to translate between them will result in a more in-depth understanding of mathematics (De 

Jong & van Joolingen, 1998; Lesh et al., 1987). Further research will help to address issues 

pertinent to the effectiveness of representation. 

Purpose of the Study 

How students process mathematical information (verbal-logical or visual-pictorial) can 

affect their solution methods (Galindo, 1994; Haciomeroglu et al., 2013; Lowrie & Kay, 2001; 

Krutetskii, 1976; Moses, 1977; Suwarsono, 1982). In-depth knowledge about what kind of 

solution methods students prefer to use and what difficulties they encounter when solving 

geometry tasks can contribute not only to theoretical knowledge but also to the solution of the 
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actual problems in learning mathematics (Gorgorio, 1998). Thus, one of the main purposes of 

this study is to examine the relationship between preference for solution methods and 

performance on geometry. 

The way in which mathematical ideas are represented is fundamental to how students can 

understand and use those ideas; using and interpreting representations in appropriate ways are 

essential parts of learning and doing mathematics (NCTM, 2000). Geometry, in particular, is the 

study of the visualization, drawing, and construction of geometrical objects (Usiskin, 1987). 

Despite the fact that geometry problems may require more drawings and figures, this study also 

intends to analyze how students use different modes of representation while attempting to solve 

the problems.  

An extensive number of studies have examined the verbal-visual continuum in 

mathematics based on Suwarsono’s (1982) Mathematical Processing Instrument (MPI). The MPI 

was originally designed for middle school students using algebraic word problems. Thus, this 

study also aims to examine the verbal-visual continuum and students’ preferences for solution 

methods in the domain of high school geometry. There can be various factors that may influence 

students’ preferences for solution methods. For example, one could be teachers’ teaching style. 

However, this study is focused on testing situations because a geometry test will be used to 

examine students’ preferences for solution methods.  The researcher poses the following research 

questions:  

1. Are preferences for solution methods associated with high school students’ geometry 

performance?  

2. Are the degrees of difficulty of geometry tasks associated with students’ preference for 

solution methods?  
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3. Do males and females differ in preference for solution methods and geometry 

performance after controlling for course assignments and grade levels?  

Definition of Terms 

For the purpose of the study, the following terms based on the existing literature and 

background will be used. 

Imagery: Visual representations of things or events, available even in their absence that depicts 

visual and spatial information inside the head. 

Nonvisual Solution Method (NSM): A solution method in which students use mathematical 

formulae, rules, axioms, and postulates, while attempting mathematical tasks.  

Representation:  A combinations of signs, characters, symbols, and any kind of diagrams and 

pictures that can be used to present mathematical ideas, concepts, and problems.  

Spatial Ability: The ability to see, inspect, generate, retrieve, and manipulate the given visual 

situation.  

Visual Solution Method (VSM):  A solution method in which students use given diagrams and 

figures, or draw diagrams and figures, or visualize diagrams and figures in their mind while 

attempting mathematical tasks. The diagrams and figures play a dominant role while attempting 

mathematical tasks. 
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CHAPTER TWO: LITERATURE REVIEW 

  The literature review for this study consists of four parts: (a) a review of modes of 

thought and solution methods; (b) a review of imagery and spatial ability; (c) a review of 

preference for solutions methods, gender, and students’ mathematical performance; and (d) a 

review of representation in mathematics education.   

Modes of Thought and Solution Methods 

Krutetskii (1976) conducted a comprehensive study on gifted students’ cast of mind in 

connection with mathematical abilities. He identified two modes of processing mathematical 

information: verbal-logical and visual-pictorial, stating that everybody is endowed with these 

two components of thinking. In the context of mathematics, students attempt to solve 

mathematical tasks or learn mathematics with the aid of formulae, logical reasoning, and so 

forth, without using the visual images in the verbal-logical mode of thought, whereas they 

process mathematical information based on visual images in the visual-pictorial mode of 

thought. He further suggested that verbalizers employ the verbal-logical component while 

visualizers use the visual-pictorial component. 

 Krutetskii (1976) contended that every person has two components of thinking. He also 

identified two propositions: (1) the two components, the ability to visualize abstract 

mathematical relationship and the ability to use spatial geometry concepts, are not necessary 

components in the structure of mathematical ability; and (2) the presence or absence of these two 

components does not determine the extent of mathematical giftedness, but the components do 

determine its type. He contended that “A pupil can be mathematically capable with a different 

correlation between visual–pictorial and the verbal–logical components, but the given correlation 

determines what type the pupil belongs to” (p. 315).   
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According to Krutetskii (1976), the level and quality of schoolchildren’s mathematics 

achievements are determined by the level of development of each thinking component and by the 

interrelation between these two thinking components. Based on the correlation between verbal-

logical and visual-pictorial components, different structures of mathematical abilities and casts of 

mind are formed for successful mathematical performance. In fact, the levels of mathematical 

abilities are largely determined by a verbal-logical component, while the types of mathematical 

giftedness are determined largely by a visual-pictorial component. Moreover, in the case of the 

visual-pictorial component, it is not only the ability to use the component but the preference for 

its use that determines the type of mathematical giftedness of an individual. Krutetskii observed, 

from his analysis of children’s thinking processes while they were attempting mathematical 

problems, that mathematically weak students always had a very weak verbal-logical component, 

whereas mathematically capable students always had a very strong verbal-logical component. He 

claimed that the visual-pictorial component merely affects the nature of a student’s mathematical 

ability but not its level, because Krutetskii found some students in his study were very capable in 

mathematics but had very weak visual-pictorial components. Thus, he associated the preference 

for solution methods with the visual-pictorial component, while mathematical ability would be 

associated with the verbal-logical component. 

Following the work of Krutetskii, Moses (1977) placed students in a continuum with 

regard to their preference for solution methods for solving mathematical problems. Students 

belong to one of the three categories: (a) analytic (a preference for manipulating words and 

sentences), (b) geometric (a preference for manipulating images), and (c) harmonic (a preference 

for using both analytic and geometric methods equally). The analytic type operates mathematical 

concepts and ideas easily with abstract schemes without a need for visual supports for visualizing 
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objects or patterns in problem solving, even when a given mathematical task demands visual 

schemes. These students always attempt to process mathematical information via a verbal-logical 

approach. However, the geometric type attempts mathematical tasks with the aid of graphic 

representations. According to Krutetskii, the geometric type students feel a need to interpret 

visually an expression of an abstract mathematical relationship, and they always try to use 

graphic representations even when the problem can be done easily using nonvisual solution 

methods. Students who belong to the visualizer type process the mathematical information with 

the help of a visual-pictorial component. The third type is called harmonic. The majority of 

capable students in Krutetskii’s research study belonged to the harmonic group. Students who 

belong to this group are successful at implementing both visual and nonvisual solution methods 

while solving mathematical problems. Spatial concepts are well developed in harmonic types. 

Krutetskii further classified the harmonic into two subtypes: abstract-harmonic and pictorial-

harmonic. Both subtypes can depict mathematical relationships equally well by visual pictorial 

means; however, the abstract-harmonic subtype feels no need to do so and does not strive to use 

visual images, whereas the pictorial-harmonic subtype does feel a need  and often relies on 

graphic schemes while attempting mathematical tasks.  

Following Krutetskii’s (1976) work, Suwarsono (1982) also classified students into three 

groups based on the preference for solution methods. He, however, slightly modified the name of 

the groups. Suwarsono divided students into verbalizers, visualizers, and mixers. He also called 

the visual method and nonvisual method of processing mathematical information what Krutetskii 

called the verbal-logical method (mental method) and visual-pictorial method (visual method). In 

fact, there are no fundamental differences between Krutetskii and Suwarsono’s classification. 

The analytic and verbalizers are the same. Similarly, geometric and visualizers as well as 
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harmonic and mixers are also the same. Suwarsono called visual and nonvisual methods of 

solving mathematical tasks what Krutetskii called visual and verbal methods. However, for the 

purpose of this study, the researcher uses verbal solution method (verbalizer), visual solution 

method (visualizer), and harmonic method (use both verbal and visual solution method).  

Kozhevnikov, Hegarty, and Mayer (2002) suggested that the verbalizer-visualizer 

continuum needs to be revised to include two groups of visualizers. They stated that visualizers 

are not one homogenous group with respect to their spatial abilities. Some of them have a low 

spatial ability and some of them have a high spatial ability. They called these groups of students 

as iconic type (low spatial ability) and spatial type (high spatial ability). Kozhevnikov, Kosslyn, 

and Shepard (2005) even objected to the verbalizer-visualizer dichotomy. They suggested three 

types of groups: verbalizers, object visualizers, and spatial visualizers. Object visualizers are 

more accurate and faster in generating static objects, whereas spatial visualizers are good at 

manipulating dynamic images.  

Why students solving mathematical problems prefer one solution method over another 

when multiple solution methods are possible could be an important field of investigation in 

mathematics education. In this regard, Krutetskii (1976) laid a foundation for the distinction 

between preferences and abilities in relation to doing mathematics tasks. He contended that 

ability and preference are not the same thing. For example, students might have the ability to 

solve a problem with visual methods, but they might not prefer to solve it by visual methods; 

rather, they might prefer to solve it by a verbal method. Similarly, students might have the ability 

to solve a problem by a verbal method, which does not necessarily imply that they prefer to solve 

it by the verbal method. Thus, as far as the verbal-logical and visual-pictorial frameworks are 

concerned, students demonstrate different preferences for solution methods while attempting 
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 mathematical  tasks. 

 Verbal and visual are the predominantly used solution methods in the domain of 

mathematics. Even though researchers may have used different terms to represent these solution 

methods, most of the researchers, if not all, share common concepts about verbal and visual 

solution methods. Many researchers have investigated preferences for verbal and visual solution 

methods while attempting mathematical tasks (Haciomeroglu, 2012; Lean & Clements, 1981; 

Lowrie & Kay, 2001; Moses, 1977; Presmeg, 1986b). Various distinctions are made between 

verbal and visual solution methods. Presmeg (1986b) stated that:  

A visual solution method is one which involves visual imagery, with or without a 

diagram, as an essential part of the solution method; even if algebraic methods are also 

employed while verbal solution method involves no visual imagery (p. 42).   

Based on the use of visual imagery, Presmeg (1986b), Suwarsono (1982), and Moses 

(1977) defined and explained mathematical visuality— the extent to which a person prefers to 

use visual imagery when attempting mathematical problems. Moses stated that degree of 

visuality refers to the extent to which the subject uses visual solution processes to solve the given 

mathematical problems. In fact, the visual approach involves the act of visualization, which 

consists of any mental constructions and/or transformation of objects or processes (Suwarsono, 

1982). In general, visualizers primarily rely on graphs, pictures, or symbols. In contrast, 

verbalizers attempt to solve problems by relying on rules, formulas, and algorithms (Moses, 

1977).  

It is worthwhile to mention that visual solution methods may also use some verbal and 

mathematical symbols, verbal statements, and mathematical statements. The fact is that 

diagrams, pictures, or similar constructions need to be labeled or they require verbal description 
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in order to communicate about the constructions. Verbal and mathematical symbols are merely 

the shorthand for ordinary language and mathematical language (Skemp, 1987). However, the 

role of diagrams and figures is significantly important, and without using diagrams and figures it 

is not possible to solve problems using visual solution methods, regardless of whether the answer 

is correct or incorrect. In summary, in visual solution methods students use given diagrams and 

figures, or draw diagrams and figures, or visualize diagrams and figures in their head while 

attempting mathematical tasks. The diagrams and figures play a dominant role in visual solution 

methods to find the answer while attempting mathematical tasks. 

A verbal solution method is one that involves analytic reasoning while attempting 

mathematical tasks. Analytic reasoning implies the use of mathematical formulae, algebra, 

arithmetic, rules, postulates, axioms, conjectures, and so forth while attempting mathematical 

tasks. With this method, students do not use diagrams and figures. Suwarsono (1982) stated that 

in verbal solution methods, the reasoning is conducted purely on the basis of the processing or 

manipulation of verbal and mathematical statements and these manipulations are performed 

using the rules of language and mathematics. Zazkis, Dubnisky, and Dautermann (1996) stated 

that verbal solution methods involve an act of any mental manipulation of objects with or 

without the aid of symbols. Regardless of the different terms used to describe solution methods, 

the researcher decided to use verbal and visual solution methods for this study. 

Imagery 

 Though imagery is not a focus of this study, it is relevant to provide a brief description 

about imagery because it is associated with students’ preference for visual solution methods. 

Imagery involves students visualizing mathematics problems in their head while attempting the 

problems. The term imagery can refer to mental imagery, visual imagery, or simply imagery. 
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Most researchers agree that visual imagery plays an important role in mathematics because 

imagery enhances intuitive views and understandings in many areas of mathematics (Krutetskii, 

1976; Suwarsono, 1982; Usiskin, 1987). Despite variations in definitions and interpretations 

noted when performing this literature review, scholars have been able to derive a common 

definition and meaning of imagery. Suwarsono (1982) stated that  

Clearly, several important controversies concerning the nature of imagery have not been 

resolved. For example, such questions as “What exactly is a visual image?” “What are the 

characteristics of images?” and “How are images stored in the memory?” have not been 

answered satisfactorily. Despite such problems, recent research enables several 

statements about imagery and mental images to be made with confidence, and these will 

form the basis for the research involving imagery in the present thesis (p. 38). 

Visual imagery is defined as a mental construct depicting visual and spatial information 

(Presmeg, 1986a). The visual imagery occurs inside the mind in absence of objects when our 

sense organs (eyes, ears, tongue, nose, and skin) perceive them (Suwarsono, 1982). Further, 

according to Suwarsono, visual imagery is meant to be a pictorial representation, either on paper 

or in the mind. For example, when we read the word cow, we can visualize the cow in our mind 

as a mental image, which could be different from the actual cow we see. Thus, mental imagery is 

an ability to form images of things or events even in the absence of the objects or events. This 

means that students may use imagery while attempting geometry problems because they do not 

want to draw figures and diagrams; rather, they may prefer to visualize them in their head. 

Suwarsono further contended that even if pictorial representations are drawn on paper, visual 

imagery is also involved since before the pictorial representations are put on paper, students first 

must imagine the representational system in their mind. Imagery also refers to a representation of 
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the visual appearance of an object, such as its shape, color, or brightness (Hegarty & 

Kozhevnikov, 1999). Clements (1982) defined visual imagery as creating a “picture in the mind” 

(p. 36) whereas Presmeg (1986b) defined it as “a mental scheme depicting visual or spatial 

information” (p. 297).  

Individuals use a wide range of visual imagery in the teaching and learning of 

mathematics. In her research, Presmeg (1986a, 1986b) refined Suwarsono’s Mathematical 

Processing Instrument (MPI). She divided research instruments into three parts: A, B, and C. 

Parts A and B were designed for high school students, whereas part B and C were intended for 

mathematics teachers. Presmeg (1986b) also conducted a study with only visual students (N = 

54) while they were solving problems in algebra, trigonometry, and geometry. She found that 

students’ use of imagery was widespread in mathematical reasoning, but students themselves 

were unaware of using visual imagery in their reasoning. Based on the study, Presmeg identified 

five different kinds of mental imagery: (a) concrete pictorial imagery; (b) pattern imagery; (c) 

memory images of formula; (d) Kinesthetic imagery; and (e) dynamic imagery. Following the 

work of Lakoff (1987), Wheatley (1998), however, differentiated imagery into rich images and 

images schemata. Rich images are static, fixed, and contain much visual details, whereas image 

schemata represent spatial relationships and can be transformed in various ways. 

Presmeg (1986a, 1986b, 1992) also found that concrete pictorial imagery was the most 

used while the dynamic imagery was the least used during attempting mathematics tasks. 

Presmeg contended that the use of concrete pictorial imagery may focus the reasoning on 

irrelevant details that take the students’ attention from the main elements in the original problem 

representation; however, other kinds of imagery play more positive roles. Presmeg stated that the 

most important role in mathematical problem solving is pattern imagery, in which concrete 
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details are disregarded and pure relationships are portrayed. However, Clements (1981) 

contended that the imagery vividness factor was the most important one. The fact is that during 

the problem solving process, students do not necessarily stay with only one type of visual 

imagery; rather, they may use different types of imageries based on different types of 

mathematical situations and context. Thus, visual imagery is an important factor that teachers 

need to take into account while teaching mathematics (Bishop, 1989).  

Spatial Ability 

The literature on imagery indicates that imagery is an important component of spatial 

ability. The geometry test (research instrument) designed for this study does not require spatial 

ability; however, students may use spatial ability while solving geometry problems. Thus, it is 

worthwhile to provide a brief description about spatial ability in connection with solution 

methods. The researcher also sheds light as to why preference has been chosen instead spatial 

ability to measure students’ geometry performance.  

The term “spatial ability” is related to space and is derived from the literature of 

psychology on human abilities (McGee, 1979). Various terms such as spatial sense, spatial 

visualization, spatial orientation, spatial perception, spatial reasoning, and spatial structure are 

associated with the term spatial ability. It is not a specific mathematical ability; rather, it extends 

across various intellectual activities. Moses (1977) stated that spatial ability may or may not be 

an integral part of an individual’s mathematical problem-solving process. However, Fennema 

(1979) argued that all mathematical tasks require some kind of spatial thinking and reasoning. 

Similarly, Clements and Battista (1992) also contended that geometry and spatial reasoning are 

strongly interrelated, and most mathematics educators seem to include spatial reasoning as part 

of the geometry curriculum.  
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Definitions of spatial ability abound. Spatial ability is the ability to perceive the essential 

relationships among the elements of a given visual situation and the ability to mentally 

manipulate one or more of these elements (Moses, 1977). It may be defined as the ability to 

generate, retain, retrieve, and transform well-structured visual images (Lohman, 1996). Spatial 

reasoning is the ability to see, inspect, and reflect on spatial objects, images, relationships, and 

transformations (Battista, 2007). Linn and Petersen (1985) stated that “spatial ability is the skill 

in representing, transforming, generating, and recalling symbolic, non-linguistic information” (p. 

1482). The National Council of Teachers of Mathematics (NCTM, 1993) used the term spatial 

sense to refer to spatial perception or spatial visualization. It stated that spatial visualization is 

the ability to imagine movement or spatial displacement by mentally rotating, folding, or in some 

other way manipulating visual representations of objects. 

Spatial ability includes mainly two components: spatial visualization and spatial 

orientation (McGee, 1979). However, Lohman (1996) stated that there are three major spatial 

factors: spatial visualization, spatial orientation, and speeded rotation. Wheatley (1998) has given 

different meanings and interpretations for spatial ability and spatial visualization. According to 

Wheatley, spatial visualization is the ability to mentally manipulate, rotate, twist, or invert 

pictorially presented two- and three-dimensional objects, and spatial orientation refers to 

understanding and operating on the relationships between the positions of the objects in the space 

with respect to one’s own position (Clements & Battista, 1992). Carroll (1993) contended that 

there are five factors that impact spatial ability: spatial visualization, spatial relations, closure 

speed (conceal words and mutilated words in which tasks are mainly those of apprehending a 

spatial form), flexibility of closure (hidden figures, patterns and copying, in which the tasks are 
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mainly those of searching a visual field to find spatial form), and perceptual speed (finding 

number comparison and identical 

 pictures). 

Various research studies have shown that spatial ability is positively correlated with 

measures of mathematical performance (Battista, 1990; Clements & Battista, 1992). However, 

spatial ability alone does not determine students’ mathematical abilities because a student with 

high spatial ability may not prefer to use it while solving mathematics problems (Krutetskii, 

1976). For example, students might be able to solve a problem by visual methods; however, they 

might not prefer to solve using visual methods. Presmeg (1985) also pointed out the same issues: 

spatial tests may be solved by using analytic solution methods, or students with good spatial 

ability may not prefer to use visual solution methods. Thus, spatial ability will not be measured 

in connection with geometry performance in this study. Rather, an investigation of students’ 

preferences for solution methods is the main aim of this study.  Krutetskii (1976) also contended 

that spatial ability does not determine students’ geometric performance; he documented many 

cases in which students who showed good spatial ability were poor in geometry performance. 

Moreover, he contended that a well-developed spatial ability does not imply that students will 

use it while attempting mathematical tasks. For example, students may be able to solve a 

problem by visual methods; however, they may not prefer to solve it using visual methods. 

Several research studies have been conducted to examine the relationships between the 

preferences for solution methods and spatial ability; however, they revealed that there was little 

or no correlation between preferences and spatial ability (Haciomeroglu, Chicken, & Dixon, 

2013; Hagarty & Kozhevnikov, 1999; Kozhevnikov, Hagarty, & Mayer, 2002; Moses, 1977; 

Lean & Clements, 1981; Suwarsono, 1982). Presmeg (1985) also pointed out the same issues: 
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spatial tests may be solved by using analytic solution methods, or students with good spatial 

ability (i.e., the geometric type) may not prefer to use visual solution methods. Quoting the work 

of Wattanawha and Clements (1982), Clements (1984) reported that mathematically gifted 

students had a strong preference for verbal methods on space visualization tests. Similarly, 

Haciomeroglu, Chicken, and Dixon (2013) found that that cognitive ability (spatial ability and 

analytical reasoning) did not influence students’ preference for visual or verbal solution methods. 

Thus, for this study spatial ability will not be used to measure students’ geometry performance; 

rather, preference for solution methods will be the focus. 

Preference and Mathematical Performance  

Preferences for solution methods, gender, and mathematical performance have been of 

great interest to researchers for several decades (Battista, 1990; Fennema & Sherman, 1978; 

Haciomeroglu et al., 2013; Lean & Clements, 1981; Moses, 1977; Samuels, 2010; Suwarsono, 

1982). Students can choose different solution methods when a mathematical task can be solved 

in multiple ways by employing either a visual-pictorial or a verbal-logical mode of thought. For 

example, a study conducted for a nationally representative sample in the UK and the USA 

identified that males preferred to use visual solution methods but females preferred to used 

verbal solution methods (Lohman & Larkin, 2009; Strand, Deary, & Smith, 2006). In contrast, 

Calvin, Farnandes, Smith, Visscher, and Deary (2010) revealed that the association between 

preferences and educational achievement, including mathematics, were the same for both sexes, 

and there was no significant difference in employing solution methods based on gender. These 

are just two examples of the findings of the research studies that are not consistent with each 

other in this area. In this section, different research studies will be described that have been 

performed in the arena of preferences for solution methods and mathematical performance. 
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Moses (1977) conducted a comprehensive study with fifth-grade students (N =131) to 

measure relationships between problem-solving performance, and mathematical visuality. To 

measure the preferences for solution methods, she employed a problem-solving inventory, which 

contained 10 word problems. Only problem number seven had a diagram. Verbal representation 

was employed, except for the seventh problem, to present the problems. The problems were 

different in nature in the sense that three problems were analytic, four problems were spatial, and 

three problems were both analytic and spatial in nature. Her study revealed that there was no 

correlation between mathematical performance and preferences for solution method.  

Moses’s study (1977) also had some limitations. She measured the preferences for 

solution methods based on students’ written response only, but some students may not express 

their solution process in their written response. Moreover, students at the primary school level 

may not be able to express all or some of their thinking process on paper. Thus, the Moses study 

is criticized by many researchers, including Lean and Clements (1981). Students’ mean score 

was also too low for the problem-solving inventory both in pretest and the posttest. The pretest 

mean score was 1.9 out of a possible maximum score of 10, and 2.18 in the posttest. This finding 

suggests that the mathematics problems were too difficult for the fifth graders, and there could be 

consequences of this in the findings of the study as well. 

In order to avoid Moses’s limitation (1977), Suwarsono (1982) conducted a study with 

middle school students (N=112) in which he developed an instrument called the Mathematical 

Processing Instrument (MPI) to investigate the students’ degree of preference to use visual 

imagery (visual and verbal solution methods) and its effects on their mathematical performance. 

The MPI consists of two parts. The first part includes 30 algebraic word problems, while the 

second part includes the written description of different possible solution methods 
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(questionnaires). He also used verbal representation to present the 30 problems. None of these 30 

problems were from geometry. Suwarsono designed the questionnaires to elude the limitation of 

Moses’s study. The questionnaires contained various solution methods (visual, verbal, and other) 

for each problem. Students were asked to solve the word problems in the first part of MPI. In the 

second stage, students were required to choose the solution methods from the questionnaires. 

Beyond this, if students’ methods were different from the ones that were listed in the 

questionnaires, the researcher instructed them to describe their solution methods. Thus, the 

researcher could understand the solution methods of those students who did not indicate their 

solution methods while attempting the word problems.  

Consistent with Moses’s findings, Suwarsono (1982) also found that mathematical 

visuality (preferences for solution methods) did not have a significant effect on mathematical 

performance. Students who preferred using visual solution methods in problem solving were 

likely to do as well as students who used verbal solution methods. In an experimental study, 

Pitta-Pantazi and Christou (2009) found that preference was not related to performances. Their 

results also corroborated Moses and Suwarsono’s findings. 

Lean and Clements (1981) conducted a study with foundation year engineering college 

students (N=116) in which they used a slightly modified version of Suwarsono’s Mathematical 

Processing Instrument (MPI) in order to investigate relationships between preference for solution 

methods and mathematical performance. They found that preferences had significant influence 

on students’ mathematical performance. Their study further revealed that students who employed 

verbal solution methods performed significantly better than the students who employed visual 

solution methods. They also contended that the verbalizers developed logical reasoning ability 

and were able to avoid unnecessary visual information. Their finding also supports the Krutetskii 
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(1976) thesis that spatial ability does not determine students’ mathematical performance.  

However, their findings conflicted with those of Moses (1977, 1980) and Webb (1979), who 

reported that students who preferred to use visual solution methods tend to outperform those who 

use less visual solution methods. 

Haciomeroglu, Aspinwall, and Presmeg (2009) conducted an empirical case study for 

calculus students to explore the relationship between mode of representation and preference for 

solution methods and calculus performance. Rather than using the verbal representation of MPI, 

the researchers used graphic representations to present the derivative problems. They found that 

students used visual as well as verbal solution methods to complete the given tasks, but students 

who used visual solution methods showed limited understanding and were not able to provide a 

complete answer, which contradicts the Lowrie and Kay (2001) findings. They also suggested 

that teachers need to incorporate both visual and nonvisual solution methods in their teaching 

strategies to support the successful mathematical performance of students. This study supported 

the Krutetskii (1976) thesis that regardless of the mode of representation used to present a 

problem, verbal-logical and visual-pictorial modes of mathematical processing were equally 

likely in student responses. 

With the aid of 16 graphical calculus problems, Haciomeroglu, Aspinwall, and Presmeg 

(2010) investigated the relationship between students’ preference for solution methods and 

calculus performance. Though a graphic representation was used to present the calculus 

problems, students translated the problems into algebraic representation based on their 

preferences for solution method, according to the researchers. Similar to the findings of 

Haciomeroglu et al., (2009), this study also concluded that both visual and verbal solution 

methods are essential components for successful mathematical performance. They emphasized 
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the need for both modes of thinking—verbal and visual—to deepen students’ understanding. 

Additionally, they contended that students need to be able to translate one mode of 

 representation to another for successful mathematical performance.  

With the help of graphic and algebraic words problems, Haciomeroglu and Chicken 

(2011) examined the relationships among student cognitive ability, preference for solution 

method, and calculus performance of high school students (N=169). This study revealed that 

students’ preferences for solution methods were positively correlated with calculus performance, 

where the problems were presented with the aid of graphic representation; however, the 

preferences were not associated with calculus performance, where the problems were presented 

with the aid of algebraic representation. Moreover, this study also found that Suwarsono’s (1982) 

Mathematical Processing Instrument (MPI) is not an appropriate instrument to measure 

preferences and calculus performance. In another similar study, Haciomeroglu, Chicken, and 

Dixon (2013) examined high school students’ (N=150) preference for solution methods and 

calculus performance by employing a graphic-calculus test. The preference for visual solution 

methods was significantly correlated with calculus performance, which was not consistent with 

Moses (1977), Lean and Clements (1981) and Suwarsono’s (1982) findings. Similar to 

Haciomeroglu and Chicken (2011), they also argued that the MPI, which is considered an ideal 

test to examine students’ preference for solution methods and mathematical performance, was 

not an appropriate test for the calculus students. Moreover, they explained that visual schemes 

involved in calculus tasks may not be captured by the algebraic test.   

With the help of MPI, Hegarty and Kozhevnikov (1999) investigated how visual-spatial 

representations affect problem-solving performance of sixth graders (N=33). They found that 

preference for visual solution methods was positively correlated with mathematical performance. 
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They made further distinctions among visual solution methods. They contended that there are, in 

fact, two types of visualizers: schematic types (representing the spatial relationships between 

objects and imagining spatial transformation), who are generally successful in mathematics 

problem solving, and pictorial types (constructing vivid and detailed visual images), who are less 

successful than schematic types. The distinction between two visual solution processes was 

further supported by Kozhevnikov, Hegarty and Mayer (2002). The researchers found that the 

verbalizers and visualizers were the same on all parameters except their preferences for solution 

methods. Verbalizers did not have any clearly marked preference for using verbal solution 

methods. In contrast, visualizers showed a consistent preference for using visual solution 

processes. They claimed that various studies (Krutetskii, 1976; Lean & Clements, 1981; 

Presemeg, 1986a, 1986b) did not take the two types of visualizers into account which led them 

not to find the relationships between preferences for visual solution methods and mathematical 

performance. 

Similar to Suwarsono (1982), Battista (1990) examined high school students’ (N=145) 

preferences and geometry performance. To identify solution methods and to assess geometry 

performance, he designed an instrument of nine geometry problems. He concluded that 

preferences for solution methods were not significantly correlated to geometry performance. 

However, preferences for verbal solution methods were positively correlated with geometry 

performance only for male students. Only female students who preferred to use visual solution 

methods (correct number of drawings) were positively correlated with geometry performance. 

Ling and Ghazali (2007) examined primary school students’ preferences for solution 

methods (N =5) and pre-algebra problems. The problems were presented with the aid of verbal 

and graphic representation. Students equally used visual and verbal solution methods to solve the 
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problems. Similarly, Sevimli and Delice (2011) investigated the relationships between calculus 

students’ preferences for solution methods and representation preference while solving 

mathematics problems using the modified version of MPI developed by Presmeg (1985). They 

concluded that the mode of representation used to present the problems affected students’ 

preference for solution methods. Verbalizers and harmonic were observed to have similar 

preference tendencies. However, visualizers altered their preference based on the mode of 

representation used to present the problems. This study corroborated findings of Haciomeroglu, 

Chicken, and Dixon (2013) and Haciomeroglu and Chicken (2011). The greater variance in 

preferences of solution methods particularly for visualizers was consistent with the findings of 

the Kozhevnikov et al., study (2002). Moreover, this study also found that most of the 

verbalizers predominantly preferred verbal solution methods (algebraic representation). 

Galindo (1994) investigated the relationships between preferences and use of technology 

with calculus students and calculus performance using a modified version of Suwarsono’s MPI. 

This study revealed that students who were verbalizers obtained significantly higher scores than 

visualizers in the calculus section with and without the use of technology (computers and 

Mathematica); however, there was not a significant relationship between preference and calculus 

performance using graphing calculators. In a similar way, Coskun (2011) conducted a multiple 

case study investigating students’ preference for solution methods using algebraic word 

problems of Suwarsono’s MPI, where she compared the effects of used paper-pencil, dynamic 

geometry software, and calculator for students’ solution methods. Her study revealed that 

students were able to perform better in a dynamic geometry software environment compared to a 

paper-pencil environment. Students’ preferences for solution methods altered in the different 

learning environments. It appeared that the different modes of representation (i.e., graphic and 



 

32 

 

algebraic) and various tools used in both studies could be an underlying reason for the disparity 

in findings between paper-pencil, computer technology, and graphing-calculator learning 

environments. This study is not directed to investigate the teaching and learning environment and 

its connection to preferences for solution methods; however, the different modes (graphic or 

algebraic) of representation students’ use during solving geometry problems can affect students’ 

preferences and performance.  

Booth and Thomas (2000), Gagatsis and Elia (2004), Hart (1991), and Campbell, Collis, 

and Watson (1995) conducted different studies where they compared the preferences for solution 

methods with the mode of representations that they used to present problems. Their findings 

suggested that the different modes of representation influence preferences and mathematical 

performances. However, their study was limited to only graphic representations. They also 

reported that students’ preference for visual solution methods was partly determined by both the 

level of abstraction of the visual methods and students’ corresponding ability to draw or visualize 

figures and pictures. 

Preference and Task Difficulty 

One of the aims of this study is to examine the relationships between task difficulty and 

preferences for solution methods; however, there is a meager amount of research studies which 

explain the relationships between these two factors.  Lowrie and Kay (2001) conducted a study 

with six-year-old children (N=112) to examine the relationships between students’ preference for 

solution methods, task difficulty, and mathematical performance. They used the 10 easiest and 

the 10 most difficult problems from Suwarsono’s MPI as a research instrument; however, they 

did not explain that how they classified problems into easy and difficult level. Their study 

revealed that task difficulty had a major influence on the way students solved mathematics 
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problems. Students were more likely to use visual solution methods than nonvisual solution 

methods to solve the difficult problems. They also found that visual solution methods were more 

efficient because it helped the problem solvers organize and access relevant knowledge 

 effectively.  

Lowrie (2001) also conducted a study for a middle school students with six-year-old 

students (N=58) to investigate preferences for solution methods, preferences efficiency for 

solution methods, and mathematical performance with the aid of Suwarsonso’s Mathematical 

Processing Instrument (MPI). The visuality preference for solution methods included solutions of 

all problems, irrespective of whether the solutions were correct or incorrect. However, the 

researcher took only the solution methods with correct answers into account when measuring the 

preference efficiency. He found that there was no significant correlation between the preference 

for solution method (visuality preference) and mathematical performance. In contrast, there was 

a significant difference between students’ mathematical performance and preference efficiency. 

Students who predominantly used visual solution methods outperformed to students who 

substantially used the nonvisual solution methods. This study also revealed that there was no 

significant relationship between task difficulty and preference for solution method, which did not 

support the Lowrie and Kay (2001) and Lean and Clements (1981) findings. Lowrie and Kay 

used the 10 easiest and the 10 most difficult problems from the MPI, while Lowrie (2001) used 

20 problems, but it is not clear which 20 problems he used from the MPI. The different ways 

they chose the problems might lead them not to have similar result between their studies. 

Haciomeroglu (2012) conducted a study with calculus students (N=498) to delve into the 

relationship between task difficulty and solution method. Unlike the MPI, he used 14 graphic and 

six algebraic word problems along with the questionnaires. Similar to Lowrie and Kay (2001), 
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Haciomeroglu also concluded that as task difficulty level increased, the number of visual 

solution methods (correct and incorrect) increased significantly, and the number of nonvisual 

methods decreased significantly for the graphic representation. For the algebraic problems, 

students used more nonvisual methods than visual method. However, as the level of problem 

difficulty increased, the number of nonvisual solution methods was significantly decreased, 

while the visual methods were substantially increased.  

The MPI was originally developed for seventh graders (12/13 years). It can be argued 

that the way that six-year-old children respond to the MPI may be significantly different from the 

way 12-year-old students respond. The fact is that the content level of the MPI may not reflect 

six-year-old students’ actual preferences for solution method and mathematical performance. 

Thus, the appropriateness of the MPI for six-year-old students could be questioned. On the other 

hand, Lean and Clements (1981) used the MPI for college-level students. One of the reasons for 

conflicting findings between Lean and Clements’ and Lowrie and Kay’s (2001) could be the 

different types of participants they had in their studies, regardless of the use of a similar 

instrument.  

Gorgorio (1998) conducted a qualitative study to examine students’ preferences and task 

difficulties with the help of graphic problems. The researcher found that subjects’ preference for 

solution methods depended on task difficulty and required action. The required action is the 

action to be done by students to solve the given problems. The required action consists of 

interpretation (students have to gain meaning from given representation) and construction 

(students have to generate or construct new objects). The study further revealed that when the 

required action was of interpretation, students tended to use visual solution methods when an 

object was simple; when the object was difficult, students used nonvisual solution methods. 
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However, when the required action was of construction, students tended to use visual solution 

methods when an object was complex and manipulation was not suggested (a drawing was 

required) and use nonvisual solution methods when an object was simple or manipulation was 

required (students needed to build an object). One finding supported while the other contradicted 

findings of Lowire and Kay (2001) and Haciomeroglu (2012). Moreover, the researcher did not 

make distinction between simple and complex objects.  

Gender, Preference, and Mathematical Performance 

The relationship between gender and mathematical performance has been of great interest 

to researchers for many decades. A substantial number of research studies were done in this area 

and many of them revealed that generally male students outperform female students (Battista, 

1990; Fennema, 1974; Fennema & Sherman, 1978; Guay & McDaniel, 1977; Maccoby & 

Jacklin, 1974; Matteucci & Mignani, 2011). However, several research studies that have been 

done in this area also assert that gender is independent of mathematical performance (Galindo, 

1994; Haciomeroglu & Chicken, 2012). Similarly, The Trends in International Mathematics and 

Science Studies (TIMMS) also revealed inconsistent relationships between gender and geometry 

performance. Gender differences in geometry performance were evident in some countries; 

however, other countries showed no gender difference in geometry performance (Neuschmid, 

Barth, & Hastedt, 2008). Thus, there are no conclusive findings regarding gender, preferences, 

and performance. 

Fennema and Sherman (1978) investigated sex-related differences in mathematics and 

related factors with middle school students (N=1320). Spatial visualization and verbal reasoning 

ability were two of the factors they examined. They reported that there was no significant 

difference between male and female students in terms of mathematics performance. However, in 
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another similar study, Fennama and Tartre (1985) found that boys solved more problems 

correctly than girls.  

Fennema and Carpenter (1981) conducted a study using the 1978 National Assessment of  

Educational Progress (NAEP) results to examine sex-related difference in mathematics 

performance. They found that males significantly outperformed females in the area of geometry. 

This study also reported that there was no significant difference in mathematical performance 

between male and female students ages 9 and 13; however, there was significant difference in 

achievement of 17-year-old male and female students.  In fact, 17-year-old male students’ 

performance exceeded that of 17-year-old female students at every cognitive level. Their 

findings provide very important insights for research to explore with respect to what causes the 

gap in achievement between male and female students as their ages increase. In a similar study, 

Fennema and Tartre (1985) examined the relationship between verbal logical reasoning and 

gender of sixth grade students (N=669). They concluded that students who were discrepant in 

verbal skills differed in the process they used to solve mathematical problems. 

Battista (1990) examined high school students’ gender and geometry performance. In his 

study, male students scored significantly higher than female students on a geometry problem 

solving test. The greatest difference between males’ and females’ geometry scores occurred for 

students whose nonvisual reasoning scores were much greater than their visual reasoning scores; 

the smallest difference occurred when the visual solution score was much greater than the 

nonvisual solution score. He found that males and females differed in geometry performance but 

not in preferences for solution methods. Similarly, Mayer and Massa (2003) also concluded that 

there were no significant gender differences on students’ preferences for solution methods. 
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 Haciomeroglu and Chicken (2012) conducted a study to investigate visual thinking and 

gender difference with high school calculus students (N =188). The calculus problems were 

presented with the help of graphic representation. Their study suggested that preference for 

visual thinking was a significant factor influencing male students’ performance on the AP test 

but not for female students. However, similar to Battista’s (1990) findings, students’ gender did 

not have a significant influence on their preference for solution methods on the calculus test. 

They also found that a stronger preference for visual thinking was associated with higher 

mathematical performance, which also aligned with Battista’s finding. However, the stronger 

preference for visual thinking and its association with higher mathematical performance was not 

consistent with the findings of studies by Moses (1977), Suwarsono (1982), Galindo (1994), and 

Lean and Clements (1981). 

Haciomeroglu, Chicken, and Dixon (2013) examined high school students’ (N=150) 

preferences and calculus performance by employing a calculus test. Their results suggested that 

gender did not have a significant effect on preferences for solution methods. Their study also 

revealed that visualizers and harmonics did not differ significantly with respect to their calculus 

scores but the verbalizers had significantly lower calculus scores than the other two groups. They 

also suggested that gender was not enough to predict the preference for solution methods. 

Galindo (1994) also reported similar results in which he noted no significant sex-related 

difference in preference for solution methods and calculus performance of college students.  

Furthermore, he also did not find interaction between gender, preference for solution methods, 

and calculus performance. A research study conducted by Guay and McDaniel (1977) also 

corroborated Galindo’s findings.  
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Calvin, Farnandes, Smith, Visscher, and Deary (2010) compared 11-year-old students’ 

(N=178599) reasoning abilities (verbal, visual, and quantitative) and their effect on educational 

achievement based on national standardized test scores. Their study revealed that there were no 

significant differences in preferences for solution methods and gender. However, girls’ 

performances were higher than boys’ in verbal and visual solution methods, whereas boys’ 

performances were higher than girls’ on quantitative reasoning. Their findings supported, as well 

as contradicted, some of the earlier findings reported in this area. 

Kolloffel (2012) examined the relationships between preferences and mathematical 

performance with college students (N=40). The researcher experimented with two different 

modes of representation (graphic and verbal) as an instructional strategy. Despite the differing 

teaching strategies used, no correlation was observed between preferences and mathematical 

performance. However, participants in the verbal instruction condition obtained significantly 

higher posttest scores than did students in the visual instruction condition. The findings of this 

study contradicted the findings of various other studies, including Moses (1977). The researcher 

made some arguments that conflicted with several research findings. They argued that it was 

counterproductive to give students the opportunity to choose multiple representations, which 

undermined the role of multiple representations in the teaching and learning of mathematics. 

This study is open to criticism for several reasons. It did not mention the duration of the teaching 

interval and criteria of selection of students for the two environments. Moreover, one can argue 

about the appropriateness of selecting psychology students for participation in a mathematics 

study. 

There are various factors which might influence students’ preference for solution 

methods. For example, teaching styles, students’ grade level, and courses they enrolled in, and so 
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on. However, a search of the related literature particularly on effects of students’ grade level and 

different mathematics subject they enrolled in indicated that it is likely that no research studies 

have been published in this area. Ben-Chaim, Lappan, and Houang (1988) examined the effects 

of grade level on spatial visualization. They reported that there were significant effects of grade 

level (grade 6, 7, and 8) on spatial visualization.  

Researchers investigated different aspects of gender that attributed preference for solution 

strategies and mathematics performance. Some researchers identified factors such as cognitive 

abilities, socioeconomic status etc., underlying gender difference in mathematics (Ceci, Williams 

& Barnett, 2009; Wai, Cacchio, Putalaaz, & Makel, 2010), while others found that gender 

difference in mathematical performance was due to difference in preferred mode of processing 

mathematical information (Carr, Steiner, Kyser, & Biddlecomb, 2010; Lin & Peterson, 1985). 

For example, Carr, Steiner, Kyser, and Biddlecomb (2010) investigated different factors in 

conjunction with gender difference in mathematics of elementary level students. The different 

factors they took into account were influence of strategy use, fluency, accuracy, spatial ability, 

and confidence in mathematics competency. They reported that only two factors, fluency and 

strategy, indicated gender difference and significantly predicted mathematics competency. They 

further suggested that girls’ preference for manipulatives used as a means of solving arithmetic 

problems may eventually constrain their mathematical development and skill. However, boys’ 

preference for cognitive strategies and higher fluency may support boys’ higher mathematics 

performance. 

Gallagher and De Lisi (1994) examined the gender difference in solution strategies and 

mathematical performance of high school students’ with the help of Scholastic Aptitude Test for 

Mathematics (SAT-M) problems. They classified the SAT-M problems into conventional 
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problems and unconventional problems based on solution strategies. Conventional problems 

were those that could be answered only by primarily algorithmic methods. These problems were 

examples of routine textbook problems. Unconventional problems were those that either required 

the use of an atypical solution strategy, such as logical reasoning, insights or estimation. They 

reported that male and female students did not differ in overall mathematical performance; 

however, gender difference was significant for conventional problems but was not significant for 

unconventional problems. Female students used conventional strategies significantly more often 

than male students and male students used unconventional strategies significantly more often 

than female students. The findings of this study were partially supported by several other studies 

(Haciomeroglu & Chicken, 2012; Haciomeroglu, Chicken, & Dixon, 2013; Galindo, 1994). 

Following the Gallagher and De Lisi (1994) study, Gallagher, De Lisi, Holst, 

McGillicuddy-De Lisi, Morely, and Cahalan (2000) conducted multiple studies for junior and 

senior high school students where they examined gender difference in solution strategies and 

performance with the help of multiple-choice and free response format questions. They reported 

that in multiple choice conditions, female students were more successful with conventional than 

with unconventional problems; however, in free response-response conditions male students 

were more successful with conventional than unconventional problems. Female students’ 

performance was lower than male students’ performance on conventional problems. They further 

reported that performance success rates between conventional and unconventional problems 

were significantly greater in the longer time condition. The timing condition did not affect 

significantly on gender. 

Fennema, Carpenter, Jacobs, Franke, and Levi (1998) examined gender differences in 

young children’s mathematical thinking and their solution strategies. They focused on operations 
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of basic fact of numbers. They found that no gender difference in solving number fact, 

addition/subtraction, or nonroutine problems; however, gender differences were noted in solution 

strategies. Girls tended to use more concrete strategies such as counting and boys tended to use 

more abstract strategies, which was consistent with findings of Gallagher and De Lisi (1994). 

Similarly, a meta-analysis conducted on gender differences by Hyde, Fennema, and Lamon 

(1990) reported that there was no gender difference in arithmetic or algebra performance; 

however, males’ geometry performance was slightly higher than females’ geometry 

performance. They further found that gender difference was greatest in a test with mixed content. 

They also investigated students’ cognitive levels, their Socio Economic Status (SES), and age 

regarding gender difference. Hyde, Fennema, and Lamon (1990) found that there were 

significant gender differences existing in students’ cognitive levels, ethnicity, and age.       

Representation 

Representation is an important topic for this study because students’ preferences for 

solution methods require various types of representations. Students use different types of 

representational systems while attempting geometry problems. Algebraic, numeric, and verbal 

representation are associated with nonvisual solution methods, whereas graphic representation is 

linked with visual solution methods. Thus, verbalizers employ particularly algebraic, numeric, 

and verbal representations because they prefer to use nonvisual solution methods. However, 

visualizers primarily utilize the graphic representation since they prefer to employ visual solution 

methods. Harmonic prefer to use both visual and nonvisual solution methods. Students also 

constantly change the modes of representation based on the nature of problems and their 

preferences.  
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Students translate one representation to another based on their preferences for solution 

methods (Lesh, Post, & Behr, 1987). For example, graphic representation includes pictures and 

diagrams. However, students who prefer to use nonvisual solution methods will translate graphic 

representations, for example, to algebraic representations to solve the problems. For the purpose 

of this study, when students employ graphic representation while attempting geometry problems, 

it is considered to be a visual solution method, and when they use algebraic, numeric, or verbal 

representation, it is pertinent to the nonvisual solution method.  Thus, what kind of 

representation students use while attempting a geometry problem is important for this study 

because the use of representation is associated with visual and nonvisual solution methods. 

Moreover, it is also a crucial factor for the teaching and learning of mathematics (Vergnaud, 

1987) and has gained significant importance in recent decades (Ozgun-Koca, 1998). Many 

educators, psychologists, and researchers have defined, explained, and discussed the various 

aspects of representation in relation to the teaching and learning of mathematics. In this section, 

representational systems will be briefly discussed in light of their types, nature, and translation 

processes. 

The meaning and interpretation of representation is not consistent and uniform. Various 

types of definitions and descriptions are attributed to the notion of representation, particularly in 

the teaching and learning of mathematics (Zazkis & Liljedahl, 2004), because the meaning and 

interpretation of representation depends on mathematical context (Mesquita, 1998). For instance, 

Goldin (1998) used the term external representation; however, Lesh, Post and Behr (1987) used 

the term representation. Moreover, representation is a difficult concept, because it is not a static 

thing but a dynamic process that is associated with an individual’s mathematical activities and 
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mind (Vergnaud, 1998). In spite of the difference in naming, most of the researchers interpreted 

representation in a similar fashion.  

Various distinctions have been made regarding the types, classifications, and nature of 

representation. Representation can be categorized as internal or external based upon whether the 

representation is formed inside the mind of an individual as mental imagery or expressed 

externally in the form of symbols, schemas, or graphs (Janvier, 1987). Various researchers 

discussed the distinction between external and internal representation (Goldin, 2001; Goldin & 

Shteingold, 2001; Goldin, 2003; Zhang, 1997). There is also controversy about the existence of 

internal representations because many scholars do not believe in the existence of internal 

representations (Goldin, 2003; Haciomeroglu, Aspinwall, & Presemeg, 2010). Moreover, it is 

very difficult to measure what’s going on inside the head of an individual. Thus, this study 

focused only on students’ external representation, therefore internal representation will not be 

described in this section. The term representation will be used for the purpose of this study 

instead of using external representation.  

Kaput (1987) stated that mathematics is the study of the representation of one 

mathematical structure by another, and the focus is usually a determination of what structure is 

preserved in that representation. Thus several researchers have explained the nature, role, and 

types of representational systems. Goldin (2003) stated that representation is “A configuration of 

signs, characters, icons, or objects that can somehow stand for, or represent something else” 

(p.276). Goldin stressed the role of the configuration of signs, characters, icons, or objects in the 

representational system. He contended that the notion of representational system is scarcely 

meaningful without the configurations of signs, icons, and symbols. The symbols can be 

language (words and sentences).  
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Brinker (1996) defined representation, focusing on elementary school mathematical 

concepts. He stated that representation refers to students’ notations and pictures, readymade 

drawings and fraction strips, and cuisenaire rods. Brinker’s definition is more object oriented and 

limited to only concrete mathematical materials. In contrast, Cuoco’s (2001) interpretation of 

representation covers a wide range of mathematics content. He affirmed that representation 

involves drawings, sketchings, markings, and writing algebraic equations. 

Representation is classified in various categories based on nature, attributes, and modes. 

 Janvier (1987) proposed four modes of representation: (a) verbal descriptive, (b) tablular, (c) 

graphic, and (d) formulaic (equation). Text, symbols, and sentences are ingredients of the verbal 

descriptive representation, whereas tables have a dominant role in tabular representation. 

Drawings, figures, and images are the main components of graphic representation. Similarly, 

formulas and equations are the major means of expressing mathematical ideas in formulaic 

representation.  

Based on the existing literature and research, Lesh, Post, and Behr (1987) suggested five 

modes of representational systems in mathematics learning and problem solving: (a) real script 

model, (b) manipulative model, (c) static figural model, (d) spoken language, and (e) written 

symbol. The script model is experienced based in which knowledge is organized around the real 

world that serves as general context for interpreting and solving other kinds of problem 

situations. In the manipulative model, elements such as arithmetic bars, base-ten blocks, or 

similar manipulatives have little meaning intrinsically, but the built-in relationships and 

operations fit many everyday situations. The static figural model includes different types of 

pictures or diagrams that can be internalized as images during the teaching and learning of 

mathematics. The spoken languages include specialized languages and sublanguages related to 
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domains like logic and reasoning. The written symbols refer to varieties of mathematical 

symbols and equations, specialized sentences and phrases, and normal English sentences and 

phrases. 

Miura (2001) classified the representational system based on classroom activities. she 

stated that there are two types of representations: instructional representation and cognitive 

representation. Larkin and Simon (1987) also described two types of representation: sentential 

and diagrammatic; however, their types are different from Miura’s. The sentential representation 

refers to the expression of problems with the help of sentences. Furthermore, Larkin and Simon 

stated that diagrammatic representation preserves the information about topological and 

geometric relations among the components of the problem, while sentential representation does 

not. It seems that the sentential representation is associated with nonvisual solution methods and 

diagrammatic representation is associated with visual solution methods. Wadsworth (2004) 

described different types of representational systems based on children’s mental development. 

The different representations include deferred imitation, symbolic play, drawing, mental 

imagery, and spoken languages. However, according to Piaget (1926), generally there are only 

two types of representation: symbols (pictures, tally marks etc.,) and signs (spoken words, 

written language, numerals, etc.,) that play a dominant role in the learning process of children. 

  Palmer (1978) proposed a different view about nature and classification of 

representational systems. He contended that representational systems involve two related but 

functionally separate entities. The two related entities are representing world and represented 

world. The function of representing world is to reflect some or all aspects of the represented 

world in some fashion. In the representing–represented framework, Palmer contended that the 

represented world can be modeled by the representing world. In so doing, however, every 
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characteristic of the represented world would not necessarily be reflected by the representing 

world. An example is provided in Figure 1.  

 

Figure 1: Examples of represented-representing world 

From Cognition and Categorization by Palmer; E. Rosch, B. B. Lloyd, (Eds), 1978, p.263, 

Copyright, 1978 by Lawrence Erlbaum Associates 

 

In this example, the represented world is the set of four rectangles as shown in Figure 2.1 (part 

A). The representing worlds B, C, and D show how different aspects of a same represented world 

can be modeled by representing worlds in different ways. Each vertical line with a different 

height in B is representing each rectangle of the represented world of A. World B reflects the 

relative height of the rectangles (a, b, c, d) of the represented world  A by the relative lengths of 

corresponding lines (a', b', c', and d'). In fact, the representing world B models the height of 

rectangles in the represented world A in terms of line length; the taller the rectangle, the longer 

the line. However, between A and C, the wider the rectangles are in A, the taller the lines are in 

C. As described in the example, there must be some specific relationship or correspondence 
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between the represented and representing worlds. In fact, all of these representing worlds in the 

Figure 1 are not the same. They contain some similar information about the world they represent. 

The two worlds, represented and representing, consist of objects that are characterized by 

certain relationships that hold among them. In fact, the function of the representing world is to 

preserve information about the represented world as precisely as possible. Palmer (1978) further 

stated that there exists a correspondence (mapping) from objects in the represented world to 

objects in the representing world where at least some relationships in the represented world are 

structurally preserved in the representing world. For example, a world X  is a representation of 

another world Y if at least some of the relations for objects of X are preserved by relations for 

corresponding objects in Y.  

 Following the represented–representing framework, Kaput (1987) classified the 

representation system into four broad and general categories: (a) cognitive and perceptual 

representation, (b) explanatory representation involving models, (c) representation within 

mathematics, and (d) external symbolic representation. He further explained the different types 

of representational systems within mathematics. Some of the common representations that Kaput 

explained include morphisms, generic algebraic constructions, canonical building-block 

constructions, approximation, feature/property isolation, and logic models. The different types of 

representation that Kaput described are more focused, however, on representation of abstract 

mathematics. Additionally, his classification is oriented to represent one mathematical concept 

with the aid of some sort of mathematical mappings or correspondence. Thus, for the purpose of 

this study, Kaput’s classification of representation has limited scope because the representation 

he described may not be applicable to geometry. 
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A representation, so called rule of the three, includes three types of representations: 

symbolic, graphic, and numeric. Normally, mathematical ideas and concepts, particularly in 

calculus, can be presented with the help of these three types of representation (Gleason & 

Hallett, 1992). The rule of three, however, is not enough to grasp the various mathematical ideas 

and concepts. Thus, the rule of three becomes a rule of four. According to the rule of four, 

mathematical contents can be presented or expressed by using four modes of representation: 

graphic, numeric, algebraic, and verbal. The graphic representation includes pictures, diagrams, 

coordinate planes, and other figural representations. The numeric representation refers to 

displaying data or mathematical ideas and concepts in an organized fashion, possibly in an 

ordered list or in a table. The algebraic representation indicates the use of symbol and formula. 

The verbal representation includes written and spoken languages.  

Following the work of Denis and Dubious (1976), Janvier (1987c) interpreted 

representation in three different ways: (a) representation refers to some material organization of 

symbols such as diagrams, graphs, schema etc., which denotes other entities or modalizes 

various mental processes; (b) it implies a certain organization of knowledge in the human mental 

system or in long-term memory; and (c) it also refers to a mental image. Janvier, however, did 

not make a distinction between actual material objects and mental images. 

 Goldin (1987) stated that representation systems consist of a collection of elements called 

characters or signs. He described the cognitive representation system in conjunction with 

mathematical problem solving, where the higher level structure and language are associated with 

the representational system. The higher level structures or languages include rules for forming 

configurations of configurations, networks of configurations, relations on the configurations, 

rules for assigning values to configurations, and operations on the collection of configurations. 
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The configuration is the set of words, characters, or symbols. He proposed a model for 

competence in mathematical problem solving based on five higher level languages: 

(a) a verbal/syntactic system, (b) a nonverbal system for imagistic, (c) a formal notation system 

 of representation, (d) a planning language, and (e) an affective system that monitors and 

evaluates problem-solving progress. The main feature of this model is shown in Figure 2. 

 

Figure 2: A model for competency in mathematical problem solving 

From Problem of Representation in the Teaching and Learning of Mathematics by C. Janvier, 

1987, p. 136, Copyright, 1987 by Lawrence Erlbaum Associates 

 

In this model, we can see five representational systems. A verbal/syntactic system of 

representation can be described by means of signs, which are words and punctuation marks, 

together with correspondence between written and spoken words, rules for tagging by parts of 

speech and grammatical rules for combining words. An imagistic system of representation 
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includes visual-spatial, kinesthetic, and auditory systems. A formal notational system includes 

the ability to use the notations conventionally described as the language of mathematics, and it 

also includes knowledge of how to represent a problem state and move from one state to another 

in non-standard problems. For example, it includes numeration and algebraic notations and rules 

for manipulating them. The planning and executive control includes four dimensions with 

respect to which sub-process is involved in their use. It guides problem solving, including 

strategic thinking, heuristics, and metacognitive capabilities. The affective representational 

system indicates the states of feeling that a problem solver experiences and expresses while 

solving a problem. Students may employ various representational systems mentioned above 

while doing geometry problems. For instance, students may use verbal processing and convert it 

into visual form by using imagistic processing, or they might convert visual (imagistic 

processing) forms into formula by using in the formal notational processing. 

Researcher’s View 

The review on representational systems shows that the definitions, meanings, and 

interpretations of representational systems are not uniform. Moreover, disparities also exist in the 

categorization and classifications of representational systems. Various authors and scholars 

propose different ideas and concepts regarding its nature, interpretations, and classifications.   

The author primarily advocates Janvier’s (1987a) classification of the external 

representation where he classified the representation system into four classes: verbal descriptive, 

tabular, graphic, and formulaic. Janvier’s classification of representation is similar to the rule of 

four. As a reminder, the rule of four includes graphic, numeric, algebraic, and verbal 

representations. The only distinct differences between these classifications are numeric and table. 

However, the rest of the modes of representation are similar. The researcher believes that tabular 
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representation can be included in the graphic representation because graphic representation 

contains diagrams, figures, pictures, and also tables. Table can be considered also as a figure. 

Thus, for the purpose of this study, the researcher supports the rule of four representational 

systems. Advocating the rule of four implies participants in this study will use one or more than 

one mode of representation while attempting the geometry problems. Employing numeric, 

algebraic, and verbal representations while attempting geometry problems are considered to be 

nonvisual solution methods for the purpose of this study. In contrast, using a graphic 

representation while attempting geometry tasks will be taken as a visual solution method. 

Translations between Representational Systems 

Translation of geometry problems while solving from one mode of representation to 

another is important for this study because geometry performance also depends on students’ 

translation (dis)abilities (Lesh, Post, & Behr, 1987). Translation ability refers to the 

psychological process involved in going from one mode of representation to another, for 

example from graphic to algebraic representation (Janvier, 1987). Most researchers agree that 

translation ability is very important for learning and problem solving in mathematics because 

translation of one mode of representation to another will provide flexibility to problem solvers 

while attempting mathematics problems (Doufour-Janvier, Bednarz, & Belanger, 1987; Gagatsis 

& Shiakalli, 2004; Hitt, 1998; Janvier, 1987; Lesh, Post, & Behr, 1987). Lesh, Post and Behr 

(1987) stated that: 

Good problem solvers tend to be sufficiently flexible in their use of a variety of relevant 

representational systems that they instinctively switch to the most convenient 

representation to emphasize at any given point in the solution process (p. 38). 
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Moreover, using different types of representation often illuminates different aspects of complex 

mathematical ideas or relationships (NCTM, 2000). Thus, it is important to develop skills in 

students so they can translate one representation to another based on the nature and situation of 

mathematics ideas, concepts, or tasks. Following the work of Behr, Lesh, Post, and Wachsmuth 

(1985), Lesh, Post, and Behr (1987) stated that translations (dis)abilities are significant factors 

that influence problem-solving performance, and these abilities facilitate the acquisition and use 

of elementary mathematical ideas. Thus, a translation process between representational systems 

and the ability to transfer within them is an important process for effective learning and the 

acquisition of successful problem-solving skills (Lesh et al., 1987).  

Janvier (1987) described the translation process between the four modes of 

representations as shown in Figure 3. In the figure we can see that there are translations between 

the several modes of representations. For example, verbal representation can be translated into 

tabular and graphic representations, respectively, by creating a table of measurements and 

sketching a graph. Similarly, graphic representation can be translated into verbal by interpreting 

the information that is given in graphic representations. 
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Figure 3: Translation process among four modes of representations 

From Problem of Representation in the Teaching and Learning of Mathematics by C. Janvier, 

1987, p.28, Copyright, 1987 by Lawrence Erlbaum Associates 

  

 While solving problems from the geometry test (see appendix A), students may translate 

the problems into graphic, algebraic, numeric, or verbal representation based on their preferences 

for solution methods to solve the problems. Consider the following problem: 

From a ship on the sea at night, the captain can see three lighthouses and can measure the 

angles between them. If the captain knows the positions of the light houses from a map, 

can the caption determine the position of the ship (NCTM, 2000, p. 69)? 

This problem can be translated into a graphic representation. In the graphic representation, the 

ship and the lighthouses become points in the plane. In order to solve the problem, students do 

not necessarily need to know about a graphic representation of the ship and the lighthouses 

because they might solve it by analytical reasoning using algebraic and or numeric 

representation, which is a nonvisual solution method.  However, if a student prefers to use a 

visual solution method, then he/she needs the graphic representation of the lighthouse problem. 

In this situation, students need to be able to translate from verbal to graphic representation. 
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Whether students are visual or nonvisual learners, it would be useful to learn the translation 

process from one representation to another, which provides students with the flexibility to 

understand mathematical ideas and concepts effectively. 

Importance of Representation 

Mathematics, especially geometry, is based on the system of representation. Students 

employ different types of modes of representation while attempting mathematics problems. 

Whether students are verbalizers or visualizers, they need representation to solve mathematics 

problems. For example, visualizers prefer to employ graphic representation and verbalizers 

prefer to use algebraic representation. Moreover, mathematics teachers would hardly think of 

teaching geometry without using some kind of representations as pedagogical strategies. Kaput 

(1987b) stated that “representation and symbolization are the heart of the content of mathematics 

and are simultaneously at the heart of cognitions associated with mathematical activity” (p. 22). 

Geometry is even more a visual subject because it deals with different types of figures and 

diagrams, which are of fundamental importance in teaching and learning geometry (Niven, 

1987). The fact is that most textbooks make use of a wide variety of representation with the goal 

of enhance understanding and learning of mathematics.  

The National Council of Teachers of Mathematics (NCTM, 2000) described the 

importance of representation in the book Principles and Standards for School Mathematics. It 

states: 

Instructional programs from pre-kindergarten through grade 12 should enable all 

students to: (a) create and use representations to organize, record, and communicate 

mathematical ideas, (b) select, apply, and translate among mathematical representations 
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to solve problems, and (c) use representations to model and interpret physical, social, and 

mathematical phenomena. (p. 67) 

 Asli (1998) explained that the representational system has an important role in presenting 

problems to students and solving problems by students. Dufour-Janvier, Bednarz, and Belanger 

(1987) identified several reasons for tactical use of representational systems in teaching and 

learning mathematics (p. 110): 

 Representations are an inherent part of mathematics, 

 Representations are multiple concretizations of a concept, 

 Representations are used locally to mitigate certain difficulties, 

 Representations are intended to make mathematics more attractive and interesting. 

Translation of one mode of representation to another is useful for students to learn because 

translation processes are essential tools for communication and reasoning about concepts and 

information in mathematics, and help to conceptualize the real world problem with the help of 

representations (Greeno & Hall, 1997; Vergnaud, 1987). For instance, students may use graphic 

representation although a geometry problem given using verbal representation Thus, one can 

argue that the more translation skills students possess the more they become successful in 

solving mathematics problems. 

Summary 

This chapter described various studies as they relate to students’ preference for solution 

methods, task difficulty, mathematics performance, and their gender. There is not a consensus 

regarding the relationships between preference for solution methods and mathematics 

performance. Some studies found a significant relationship between preference and performance, 

while others reported no correlation between these two variables. Similarly, regarding the gender 
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differences on preference for solution methods and mathematics performance, no studies derived 

the same conclusions. Some studies reported that there was a significant effect of gender on 

preference for solution methods and students’ mathematical performance, while others found that 

gender differences prevail either only on preference for solution methods or mathematical 

performance. A majority of research studies reported that male students outperformed female 

students in mathematics performance. However, some studies reported that female students 

outperformed male students, and a few studies also found males and females did not differ in 

mathematics achievement.  

In the domain of mathematics, four types of representation, graphic, numeric, algebraic, 

and verbal are employed in teaching and learning mathematics. While solving mathematics 

problems, students may translate problems from one mode of representation to the other based 

on their preference for solution methods to solve the problems. Translation ability is an 

important factor for learning and problem solving in mathematics because translation of one 

mode of representation to another will provide flexibility to problem solvers while attempting 

mathematics problems. 
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CHAPTER THREE: RESEARCH METHODOLOGY 

Research Design and Method 

A quantitative research design was chosen for this study. In a quantitative research 

design, the potential subjects are naturally embedded in a large group or setting, for example 

students in a class or in a school (Campbell & Stanley, 1963). Quantitative methods focus on 

objective measurement and numerical analysis of data collection through instruments, surveys, 

or polls. In a quantitative research design, the researcher answers a research questions by 

establishing the overall tendency of responses from individuals and notes how the tendency 

varies (Creswell, 2007). This study also has a causal-comparative design. This design generally 

involves pre-existing groups of participants, and often the variables that are examined in causal-

comparative designs cannot be experimentally manipulated, for example, gender. Thus, there 

were no control and experimental groups in the research design.  

Data Collection  

Population, Sample, and Participants 

Patten (2004) suggested that obtaining an unbiased sample is the main criterion when 

evaluating the adequacy of a sample, which can be determined by using Krejcie and Morgan’s 

(1970) statistical formula. Many research studies employ a convenience sampling procedure 

because the researchers have access to students in a school, customers of a business, or patients 

in a hospital (Schreiber & Asner-Self, 2011). The researcher of this study had access to certain 

schools. Thus, convenience sampling was employed to select participants for this study. 

The researcher was working as a research assistant on the Geometry Professional Series 

(GPS) program for high school geometry teachers. The professional development was focused on 

improving the teachers’ depth of knowledge in relation to geometry topics and their real world 
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applications. The topics were covered through discovery learning with the goal of improving the 

participants’ depth of conceptual knowledge and providing strategies for incorporating the 

Standards for Mathematical Practice from the CCSSM into their mathematics lessons. Teachers 

were encouraged to integrate technology in their lesson activities. There were two cohorts in the 

GPS. There were 38 teachers in the first group in the school year of 2012-2013 and 35 in the 

second cohort in the school year of 2013-2014. However, during the time of this study, the first 

cohort completed the professional development series and cohort two was enrolled in the 

professional development series. Thus, the researcher only talked with most of the teachers in the 

second cohort about his research study and asked whether they could help to collect data for the 

study. And then, the researcher also communicated with teachers about the research study via 

emails. However, some teachers did not show interest to participate in the study. The researcher 

chose the first nine teachers, from six different schools, who were interested to help collect data 

in their classrooms for this study. The expected sample size for this study was 150 students and 

the number of students that had been taught by nine teachers was more than 150 students. Thus, 

when the researcher ensured that there were enough numbers of students, he did not have to go to 

other school and teachers who still were interested to help conduct this study. 

The students of this study consisted of a population representative of the high school’s 

population with respect to the proportions of compositions of gender and ethnicity. The sample 

consisted of 161 students whose ages ranged from 14 to 19. A total of 41% of the students were 

male, and 59% were female. The students also consisted of various ethnicities. Of the students, 

24% were White, 37% Hispanic, 26% African American, 2.5% Asian or Pacific Islander, and 

6.8% Multiracial. The breakdown for the percentage of ethnicity is listed in Table 1.   
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Table 1: Descriptive statistics of ethnicity 

Ethnicity Frequency      Percent 

White 39 24.2 

Hispanic 60 37.3 

African American 41 25.5 

Asian or Pacific Islander 4 2.5 

Native American 1 .6 

Multiracial 11 6.8 

Other 3 1.9 

 

A total of 6.8 % of the participants were between the ages of 14 and 15, 54% were 

between the ages of 16 and 17, and 38% were 18 and above. Eight teachers were involved from 

six different schools. The students were in a range of grades. Of the total students, 18.6% were 

from grade 10, 47.2% from grade 11, and 34.2% from grade 12. The participants were enrolled 

in different mathematics courses during the 2013–2014 school year. Of the total test population, 

67.6% were enrolled in Algebra 2, 5% in Geometry, 19.3% in Financial Algebra, and 8.1% in 

Pre-calculus. Table 2 illustrates descriptive statistics of subject and grades. 

Table 2: Descriptive statistics of subjects and grades 

Subjects             Students         Percent           Grades           Students         Percent 

Algebra 2                   109          67.6%                 Ten                  30               18.6 %              

Regular Geometry      8             5%            Eleven              76               47.2% 

Financial Algebra      31           19.3%           Twelve               55              34.2% 

Precalculus                 13           8.1%  
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Table 2 showed that only 5% of the students were enrolled in regular geometry. The 

school district made a change of course sequence so a limited number of students enrolled in 

geometry. In fact, in the school year of 2013-2014, a geometry course was not offered in almost 

all high schools from where that data was collected. Thus, there were only 5% of the total 

students enrolled during the time of the study. 

Procedure 

 The data were collected from high schools at a county located in Florida in the United 

States. The study was conducted during the 2013–2014 school year. The geometry test and the 

geometry questionnaire were used to collect data for all 161 students. Upon completion of the 

geometry test, students were given the geometry questionnaire. 

The test was conducted in a regular classroom during school time. The normal time 

interval of most of the classes was 52 minutes. Normally, students took a class period to 

complete the test. The researcher clearly described the geometry test and corresponding 

geometry questionnaire. The researcher also displayed an example of a geometry problem on 

chart paper that was solved in different ways similar to the geometry problems that were solved 

in the geometry questionnaire. Moreover, the researcher also explained that students were 

allowed to use a calculator, a ruler, scratch paper, etc., but not a reference sheet (formula sheet).  

(While taking the test, many participants still asked the researcher whether they were allowed to 

use the reference sheet.) When students finished the geometry test, the test was collected; 

students were then provided with the geometry questionnaires to complete. There was a variation 

in the time taken to complete the test. The majority of students used the entire time to work on 

the geometry test and the geometry questionnaire. Some students, however, finished (or gave up) 
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the geometry test in 10-15 minutes. In general, the first 30-35 minutes were used to complete the 

geometry test and the remaining 15 minutes were utilized to complete the geometry 

questionnaire. The researcher also explained to the participants that even if they were unable to 

solve the geometry problems, they could still choose the solution methods that were a best fit for 

them from the list provided in the geometry questionnaire. Participants’ demographic 

information relevant to this study, such as age, gender, etc., was also collected. For more 

information, please look at the first page of the geometry test in Appendix A.  

Some classes were in a block schedule (90 minutes); others were in a regular schedule 

(52 minutes). Participating teachers who were in the block schedule started their lessons when 

students finished the test. It was noted during administering the test that all but two students were 

not be able to finish the geometry test and the geometry questionnaire in a regular class. In fact, 

the two participants did finish the test but were not able to complete the geometry questionnaire. 

Thus, the researcher asked them to complete the packet at home and return it to their teachers. 

During the test there were no time-related issues i.e., students completed the geometry test and 

geometry questionnaire within 52 minutes.   

Instrument 

  A geometry test and a geometry questionnaire were used to collect quantitative data. The 

geometry test contained 12 geometry problems from different topics of high school geometry. 

Students were required to show their work while completing the geometry problems. The 

geometry questionnaire contained different types of solution methods of each problem in the 

geometry test. Upon completion of the geometry test, students were given the geometry 

questionnaire and asked to choose the solution methods from the list that best described the 

solution methods they employed to complete geometry problems. The geometry test and the 
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geometry questionnaire were designed to measure students’ preferences for solution methods as 

well as the geometry knowledge and skills they had already been taught. The researcher adopted 

the first six geometry problems from Battista’s instrument; the rest of them were designed and 

developed based on the existing literature. For more details about the geometry test and 

geometry questionnaire, please see appendices A and B respectively. 

Approximately 2-3 weeks after administering the geometry test, the researcher conducted 

short interviews to further explore students’ preference for solution methods. It turned out to be 

difficult to conduct interviews with all participants. Moreover, since this was primarily a 

quantitative study, interviews for all subjects were not strictly necessary. Thus, the researcher 

chose only 17 students for a short interview in order to further explore the solution methods they 

used while solving the geometry problems. Typically, the audiotaped interview lasted 2 to 3 

minutes. 

Students were selected from each school to represent all schools where quantitative data 

were collected. From the list of names of all students who took the geometry test and the 

geometry questionnaire, the researcher requested participating teachers to provide the names of a 

couple of students for a short interview. Thus, participating teachers selected some students from 

their class for the interview. The researcher did not ask participating teachers how they chose 

their students for interview. Thus, it was not clear how participating teachers selected their 

students as it relates to the procedure of selection of students for the interview. In most cases, 

interviews were conducted in a corner of a regular classroom; however, in some cases interviews 

were conducted outside of the classroom, such as in a hallway or corridor of a school building.   

Three problems from the geometry test— numbers 1, 4, and 8—were chosen as the basis 

for the interviews. A hard copy of the questions was also provided. The researcher decided to 
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choose these three problems after preliminary analysis of the geometry test and the geometry 

questionnaire. Preliminary analysis of the data revealed that most of the participants chose visual 

solution methods while solving the geometry problems. The researcher chose three types of 

problems based on participants’ preference for solution methods: a problem for which most 

students used a visual solution method, a problem for which students used visual as well as 

nonvisual solution methods, and a problem for which the majority of students used a nonvisual 

solution method.  

The “think aloud” method was used to conduct interviews. Students were asked to 

explain their solution methods aloud so that the researcher could have the opportunity to 

understand their preference for solution methods. “In think aloud method the subject is asked to 

talk aloud, while solving a problem, and this request is repeated if necessary during the problem-

solving process thus encouraging the subject to tell what he or she is thinking” (Someren, 

Barnard, & Sandberg, 1994, p. 25). The analysis of the audiotaped interview was carried out in a 

number of steps. The audiotaped interviews were carefully transcribed word by word. Glesne 

(2011) recommended that researcher’s start a codebook soon after the data collection starts. The 

researcher kept track of all the data collected; however, the codebook was developed during data 

analysis. In fact, coding is a progressive process of sorting and defining, and defining and sorting 

of collected data (Glesne, 2011).   

Development of Geometry Tests 

Developing and designing an appropriate instrument for a research study is not easy 

because various aspects, such as reliability, validity, content, and standard of the items of the 

research instrument, are always open to comments and criticism. Even selecting a reliable 

instrument to measure mathematical problem-solving performance is a difficult task (Moses, 
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1977). Thus, the researcher has attempted to find suitable preexisting research instruments. The 

Mathematical Processing Instrument (MPI) developed by Suwarsono (1982) and geometry 

problem-solving strategies designed by Battista (1990) are the only closely related instruments 

for this study. The MPI, however, consists of algebra word problems and would not be an 

appropriate research instrument to measure students’ preferences for geometry problems 

(Haciomeroglu et al., 2013). Battista’s (1990) “Geometry Problem Solving/Strategies” was a 

closer fit. Battista’s test consisted of 12 problems dealing with finding midpoints, determining 

specified distances in two and three dimensions, and so forth. The Suwarsono and Battista 

instruments provided very important insights and ideas useful in designing the geometry test and 

questionnaire for this study. 

Battista’s geometry instrument (problem-solving strategies) contains 12 geometry 

problems; however, for this study only six problems were chosen from his instrument. One of the 

main aims of the geometry test was to distinguish between students’ preference for visual and 

nonvisual solution methods. Thus, if the problems from Battista’s instrument clearly appeared 

not to have two easily accessible solution methods, they were not included in the geometry test. 

Similarly, another important factor for selecting only specific problems from Battista’s 

instrument was to make sure that the potential solution methods were distinct and non-

overlapping. If the problems had two solution methods but the two solution methods seemed to 

overlap, then the problems were not included in the geometry test.  

Problem number 11 was designed based on an example provided in Common Core State 

Standards for Mathematics (CCSSM, 2010). Problem number 12 was chosen from a chapter of a 

book written by Blair and Canada (2009) and published by the National Council of Teachers of 

Mathematics (2009). The rest—problems 7, 8, 9, and 10—were developed and designed by the 
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researcher. The researcher also compared the geometry problems with content standards of 

CCSSM. Geometry content covered by the geometry test was included in various sections of 

middle and high school geometry in the CCSSM. Problem one appeared to belong to grade 6 

(NS-number system). Problem three (F-function), five (G-geometry), and eight (EE-expressions 

and equations) are closely aligned with content for 7
th

 and 8
th

 grades. The rest of the problems 

belong to high school geometry. Different content areas, such as Congruency (CO), Circle (C), 

Similarity, Right Triangle, and Trigonometry (SRT), Geometric Properties with Equation (GPE), 

and Geometric Measurement with Dimension (GMD) were covered by the geometry test which 

is aligned with the CCSSM.  An overview of the coverage and content of the geometry test and 

its relation to CCSSM is provided in Table 3. 

Table 3: Source of test item, content coverage, and relation to CCSSM 

Problem Sources (taken/adapted) Geometry content coverage CCSSM 

1 Battista, M. T (1990) Integers on a number line 6-NS 

2 Battista, M. T (1990) Similarity, right triangle and trigonometry G-SRT 

3 Battista, M. T (1990) Coordinate geometry 8-F 

4 Battista, M. T (1990) Circle G-C 

5 Battista, M. T (1990) Area and perimeter of rectangle 7-EE 

6 Battista, M. T (1990) Surface area and volume of 3D objects  G-GMD 

7 Designed Congruence: prove geometric theorem G-CO 

8 Designed Coordinate geometry 8-EE,5 

9 Designed Transformations G-CO 

10 Designed Coordinate geometry G-GPE 

11 CCSSM (2010) Geometric properties with equations G-GPE 
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Problem Sources (taken/adapted) Geometry content coverage CCSSM 

12 NCTM (2009) Circle G-C 

 

The geometry test that was intended as a research instrument for the purpose of this study 

was an achievement test rather than an aptitude test. An achievement test is designed to measure 

what somebody has already learned, whereas an aptitude test is designed to determine a learner’s 

potential for learning new information or skills (Friedenberg, 1995). The geometry test and the 

geometry questionnaire were designed to measure students’ preferences for solution methods as 

well as the geometry knowledge and skills they had already been taught. However, it was not 

possible to include questions from each topic of high school geometry because there would have 

been too many questions on the test. 

Another important criterion for designing and developing this test was whether the 

problems could be solved by using visual and nonvisual solution methods. Some topics in 

geometry do not lend themselves to both visual and nonvisual approaches. Thus, the researcher 

decided to design the questions to cover as many topics as possible from high school geometry.   

Domino (2000) explained eight steps that researchers would need to think about before 

designing a test. They include the role of theory, practical choices, pool of items, tryouts, and 

refinements. Various types of tests, such as multiple-choice, true or false, and fill-in-the-blank 

can be designed based on the purpose and nature of the research study. In this study students 

were asked to solve the problems and show their work. Domino (2000) mentioned various 

advantages of multiple-choice items, such as the fact that they can be administered in a short 

interval of time, can be scored quickly and inexpensively, and can be easy to analyze; however, 

the researcher did not use a multiple-choice test. The fact is that this study aimed to investigate 
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how students prefer to think and process mathematical information; thus, with the geometry test, 

students were required to show their work on paper while solving the problems. Doing so gave 

the researcher an opportunity to see students’ preference for solution methods or strategies in 

addition to evaluating an answer as correct or incorrect.  

Based on the existing literature about the mode of representation as well as theoretical 

and empirical evidence, verbal representations were used in the presentation of items on the 

geometry test. Similar to Suwarsono’s MPI, the geometry test also has two parts. The first part 

includes 12 geometry problems suitable for high school students. The second part is a 

questionnaire consisting of visual, nonvisual, and other solution methods for each task. In the 

second part, students were asked to choose the solution method(s) from the given list that best 

described their solution method. If students came up with different solution methods that were 

not listed on the geometry questionnaire, they were asked for a description of their methods.  

The researcher decided to design some of the problems of the geometry test based on the 

high school geometry curriculum for several reasons. First, high school students can respond to 

the questionnaire in more explicit ways than could students from elementary or middle school. 

Second, the visual solution methods include drawings and figures with and without coordinate 

axes, and the study of coordinate geometry is the best fit for high school students. In addition to 

this, research studies show that the gender difference in mathematical performance is almost 

unnoticeable in the primary grades; in the upper grade it becomes quite marked (Gallagher & De 

Lisi, 1994; Hyde, Fennema, & Lamon, 1990; Krutetskii, 1976; Steele, 2003).  

Task Difficulty 

The geometry test contained 12 geometry problems on various topics in high school 

geometry. The problems differed in level of difficulty based on whether they required few steps 
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and simple calculations or multiple steps and rigorous thinking to solve them. Generally, test 

items that require more steps to solve are more difficult than test 

 items that require fewer steps (Cheng, 2006). 

One of the aims of this study was to examine the relationship between students’ 

preference for solution methods and task difficulty. Thus, the researcher divided the geometry 

problems into three categories: easy, moderate, and difficult. The researcher used the following 

criteria to make the distinction between easy, moderate, and difficult problems. If a problem did 

not require many steps to solve, then it was considered easy. Students did not have to think 

critically, and simple calculations and formulas would be enough to solve the easy problems. 

Easy problems did not require using geometry theorems. Moderate problems were not as 

straightforward and simple as easy problems. They needed more steps and required sound 

knowledge to solve them. The difficult problems required more rigorous and critical thinking. 

Students needed to use formulae as well as geometry theorems in order to solve the difficult 

problems. For more detail, please see Appendixes A and B for the geometry test and 

questionnaire, respectively. The researcher also discussed the geometry problems with some 

doctoral students (mathematics education track, University of Central Florida) to determine the 

degree of difficulty of the problems. Based on the criteria, the researcher categorized the 

geometry problems as shown in Table 4. 

Table 4: Classification of geometry problems 

Task difficulty  Problem number 

Easy 1, 8, 9, 10 

Moderate 3, 4, 5, 11 

Difficult 2, 6, 7, 12 
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Although it would have been feasible to design a test containing items from various areas of 

geometry, the test would then be too long and impossible to administer due to time constraints. 

Thus, the researcher needed to make a decision as to what types of geometry problems should be 

included in the test. In this regard, the following criteria were used during the development of the 

geometry test as a research instrument: 

 The problems should be suitable for high school students. 

 The geometry tasks could be equally solvable in at least two different ways: visual and 

nonvisual. 

 The geometry test needs to include problems of varying levels of difficulty: easy, 

moderate, and difficult. 

The geometry test included 12 items of varying degrees of difficulty. Difficulty is defined 

in terms of the likelihood of a correct response, not in terms of the perceived difficulty or 

amount of effort required (Demars, 2010). From the research standpoint, classification of the 

geometry problems into easy, moderate, and difficult may not be scientific, because an easy 

problem for one student could be difficult for another. Thus, the researcher also took 

students’ actual work into account as well as his/her knowledge to categorize the geometry 

problems into easy and difficult groups. 

Geometry Performance 

This study is centered on students’ preference for solution method, their gender, and their 

geometry performance. The geometry test used to collect data in this study did not cover the 

entire content of the high school geometry curriculum. It must be noted that this test might not 

assess students’ actual geometry performance. Thus, the researcher decided to use students’ 

geometry performance based on standardized test scores. The End of Course (EOC) is a 



 

70 

 

standardized assessment administered for the first time in 2012 in the state of Florida where the 

research had been carried out. 

The Florida Department of Education (FLDOE) has implemented End of Course (EOC) 

assessments for certain courses administered at the middle and high school levels. The EOC is 

part of Florida’s Next Generation Sunshine State Standards (NGSSS), which is designed to 

measure student achievement (content knowledge and skills) for specific courses outlined in the 

course descriptions (Florida Department of Education, 2012). Regardless of students’ enrollment 

in different types of geometry courses in high school, there was only a single EOC assessment 

for all students.    

The End of Course (EOC) assessment for geometry is designed to measure students’ 

content knowledge and skills in three areas of geometry: two-dimensional geometry, three-

dimensional geometry, and trigonometry and discrete mathematics. The computerized test is 

administered in one 160-minute session. Students are allowed to use hand-held four-function 

calculators and four pages of scratch paper. Additionally, students are also allowed to use a 

reference sheet (formula sheet) during the assessment. For a more detail about the reference 

sheet, please see Appendix D.   

Participants’ geometry EOC scores were gathered with the help of participating teachers. 

It is worthwhile to mention that while most students had 2013 scores, some students had no 

scores more recent than 2012. In fact, 65% of students had their EOC scores from 2013. This 

distribution implies that some students had not taken geometry courses for two years. EOC 

scores for geometry were reported in two different ways between 2012 and 2013. A T-scale score 

ranging from 20 to 80 was used to report students’ geometry scores in 2012; the mean was a 
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score of 50 and the standard deviation was 10. In 2013, however, actual scores were reported, 

ranging from 325 to 475.  

The anticipated sample size for this study was 150 high school students. As earlier 

explained, participating students’ grades ranged from 10 to 12, and their courses also ranged 

from algebra to pre-calculus. Though students were in same grade levels and courses assignment 

during the time of this study, some of them had taken geometry a year earlier while others had 

taken before two years. For example, students who were enrolled in financial geometry at grade 

12, some had their EOC scores from 2012 while others had from 2013. Thus, the researcher had 

to look for their EOC scores over the last two years. 

Participants’ EOC score should be in the same scale for the purpose of statistical analysis. 

Thus, the researcher converted participants’ 2013 actual EOC scores into T-scale scores for 

consistency. The raw score can be converted into a Z score, and then the Z score can be 

converted into a T-scale score as follows: 

x
Z






    (Z score) 

T = (10* ) 50Z   (T-scale score) 

The statistical software SPSS was used to convert the raw score into T-scale score. 

Scoring of the Instrument 

The easier the test items, the more likely that students got correct answers and vice versa. 

To analyze the task difficulty, the researcher quantified participants’ work by assigning numeric 

values to the students’ work on geometry problems. The problems differed in level of 

difficulty—easy, moderate, and difficult—based on whether they required few steps and simple 

calculations or multiple steps and rigorous thinking to solve them. However, regardless of 

different types of problems, the researcher used only two numeric values, one for correct answer 



 

72 

 

and the other for incorrect answer, for the geometry problems. Students received one point (1) 

for the correct answer and zero points (0) for the incorrect answer. Thus, students could receive a 

minimum of zero points to a maximum of 12 points on the geometry test. If students did not 

solve a problem or skipped it, they received zero points.  

The difficulty level of each problem in the geometry task was determined by how many 

students were able to solve the geometry problems correctly as well as the researcher’s 

knowledge and experience of teaching and learning mathematics. The more participants able to 

solve the task correctly, the easier would the problem be. For example, 26% of the total 

participants were able to solve problem one correctly, while only 6.8% of participants were able 

to solve problem two correctly. Thus, Problem 1 was deemed easier than Problem 2. Table 5 

delineates the task difficulty of the geometry test, showing the percentage of students getting 

correct answers on the geometry test. 

Table 5: Task difficulty of the geometry test 

Problems 1 2 3 4 5 6 7 8 9 10 11 12 

Correct (%) 26 6.8 15.5 7.4 7.4 9.3 8 37.8 33.5 28 37.8 7.4 

 

Each participant’s geometry test and geometry questionnaire were analyzed 

simultaneously. The researcher recorded how many geometry problems students answered 

correctly and incorrectly. The solution method for each participant was also recorded. The data 

analysis indicated that students chose the same solution methods on the geometry questionnaire 

that they utilized to complete the geometry problems in the test. For these students, there was 

consistency between the solution methods they used to solve the problems and the solution 

methods they chose in the geometry questionnaire. However, there were some cases in which 
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students used one method to solve the problems but chose different methods for those problems 

in the questionnaire, creating an inconsistency in response between the two instruments. Some 

participants clearly used visual solution methods while solving the problems in the geometry test, 

but they chose nonvisual solution methods in the geometry questionnaire. Similarly, some 

students used both visual and nonvisual solution methods while solving geometry problems but 

they chose only one solution method in the geometry questionnaire. Other students mentioned 

that they just guessed the solution method from the geometry questionnaire. Moreover, some 

cases were noted where students chose solution method four (Other Method) in the geometry 

questionnaire without explaining the solution method they employed in order to solve the 

problems. In solution method four, students were required to explain the solution method if they 

came up with different types of solution methods other than those provided in the geometry 

questionnaire.  

The researcher analyzed the geometry test and the geometry questionnaire at the same 

time for every participant to ensure the accuracy between the actual solution methods they used 

to solve the problems and solution method they chose in the geometry questionnaire. In so doing, 

the researcher was able to see and verify the actual solution method participants used in the 

geometry test and the solution method they chose in the geometry questionnaire. Examples of 

students’ work are given in figures 4 and 5. 
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PROBLEM 10 

Find the distance between the points P (−6,1) and Q (2,1). 

. 

                                         

 

Figure 4: A visual solution of problem 10 (unedited) 

 

Figure 5: A nonvisual solution of problem 10 (unedited) 

The researcher used the following criteria to address the various issues in connection with 

the students’ actual solution methods for the geometry test and geometry questionnaire: 

1. When students solved a problem using a visual solution method on the geometry test, for 

example, but chose the nonvisual solution method in the geometry questionnaire, the 
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researcher primarily relied on the geometry questionnaire to determine participants’ 

preference for solution method. 

2. When students solved a geometry problem but did not choose a solution method in the 

geometry questionnaire, their solution method was decided based on the geometry test as 

long as there was clear evidence as to the methods they used to solve the problems. 

3. When students chose solution method four in the geometry questionnaire but did not 

describe their method, their solution method was determined based on the actual method 

they employed to solve the problems in the geometry test. If there was no clear evidence 

as to the solution method participants used to solve the problems, their solution methods 

received a score of zero. 

4. When students solved a problem both ways—i.e., using both visual and nonvisual 

methods—their solution method was determined based on what solution method they 

chose from the geometry questionnaire. 

5. When students solved a problem both ways—i.e., using visual and nonvisual methods—

and they also chose both methods in the geometry questionnaire, their solution methods 

were considered harmonic. 

6. When students chose solution method two (drawing) and solution method three 

(visualization) in the geometry questionnaire, their solution methods were considered to 

be visual.  

7. When students mentioned in the geometry questionnaire that they simply guessed or did 

not know their solution method, and if there was also no clear evidence as to what 

solution method they employed in the geometry test, they were also placed in the 
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undecided group in regard to preference for solution methods and received a score of 

zero. 

As previously stated, there are three types of students: visualizers, nonvisualizers, and 

harmonics. Visualizers use visual solution methods i.e., their solution methods are based purely 

on the diagrams, pictures, and figures. Nonvisualizers use nonvisual solution methods in which 

they employ arithmetic, algebra, or formulas to solve problems. Harmonic students use both 

visual and nonvisual solution methods.  

For the purpose of statistical analysis, students’ preferences for solution methods were 

also quantified into numeric values. To recap, students belong to one of three categories: (a) 

visualizers, who have a preference for the use of visual solution methods, including graphic 

representation (i.e. figures, diagrams, and pictures); (b) nonvisualizers (verbalizers), who have a 

preference for the use of nonvisual solution methods, which involve algebraic, numeric, and 

verbal representation; and (c) harmonic students, who use visual and verbal methods equally. 

Students’ visuality score can be determined by their preferences for solution methods (i.e. how 

many geometry problems they solved using visual, nonvisual, or both methods). The visuality 

score was determined by adding students’ visual, nonvisual, and harmonic scores. 

Researchers used different scoring systems to measure visual and nonvisual solution 

methods and visual scores (Haciomeroglu & Chicken, 2011; Lean & Clements, 1981; Moses, 

1977; Suwarsono, 1982). For example, Suwarsono gave plus two (+2) for visual solutions with 

the correct answer, plus one (+1) for visual solution with the incorrect answer, and zero (0) for 

no answer. He gave minus one (-1) for nonvisual solutions with the incorrect answer, minus two 

(-2) for nonvisual solutions with the correct answer. Similarly, Haciomeroglu and Chicken 

(2011) gave a score of zero (0) for nonvisual solution methods, two (2) for visual solution 
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methods, and one (1) for using both methods. Moses (1977) gave a zero (0) for nonvisual 

solution method, one (1) for the solution method where both methods were manifested, and two 

(2) for visual solution methods.  

The underlying reason for using different numeric values by different researchers was to 

differentiate the types of students based on the solution methods students used. In fact, the 

associated numeric values do not express the quantity; rather, they help to discriminate students’ 

preferences for solution methods. Thus, for the purpose of this study, students were given a score 

one (1) for the visual solution method and negative one (-1) for the nonvisual solution method.  

A score of zero (0) was given if students did not choose their solution methods, chose both 

methods, or could not determine the solution methods they used. Students were placed into the 

harmonic group if they used both visual and nonvisual solution methods when completing the 

geometry test and the questionnaire and they also received a score of zero (0). Thus, for 12 items, 

an individual could obtain a ‘nonvisual-visual’ score ranging from -12 to +12. 

An Overview of the Geometry Problems 

The geometry test and the geometry questionnaire were designed to measure students’ 

preferences for solution methods. The first six geometry problems were taken directly from 

Battista’s (1990) research instrument (geometry problem solving/strategies); the remaining six 

problems were designed based on different criteria as stated earlier. The analysis of the data 

revealed that the geometry test appeared to be a difficult one. However, not all the problems 

were of the same degree of difficulty, with some easier than others. A brief overview of each 

problem is described below. 
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Problem 1 

Problem one was directly taken from Battista’s instrument. Originally, the researcher categorized 

this problem as being in the easy group. This problem deals with the concepts of integers in a 

number line. The introduction of the concept of integers is part of the middle and high school 

curriculum. However, this problem did not appear to be quite as easy as anticipated before 

conducting the study. The majority of the participants used visual solution methods to solve this 

problem. Though drawing a number line would be enough for this problem, the majority of the 

visualizers drew coordinate axes and tried to find the answer in terms of Cartesian coordinates, 

which led them to wrong answers. An example is given in figure 6. It must be remembered that 

the participants were from grade 10, 11, and 12, and coordinate geometry is one of the major 

topics in high school geometry, which might be a reason why so many students drew coordinate 

axes rather than a number line. Moreover, it had been a while since participants had learned the 

concept of integers in middle school. Therefore, they might have forgotten the concepts of 

integers that had they learned in middle school. 

 

Figure 6: Example of use of coordinate axes 
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Problem 2 

This problem was also adapted from Battista’s instrument. The analysis of the 

participants’ work unveiled that this was a difficult problem as anticipated. The majority of the 

participants used visual solution methods to solve this problem. Only very few students used the 

Pythagorean Theorem to solve this problem. Many of them directly used the numeric value given 

in the problem and used numeric ratios to solve it.  

Problem 3 

This problem was moderately difficult. The majority of the participants used visual 

solution methods to solve it. It appeared that most of the students were able to plot the given 

points on the coordinate system appropriately. However, all four points seemed to lie on the 

same straight line on the rough sketch. When students plotted the points on scratch paper, it was 

natural that the scaling of the coordinate system might not have been precise enough, which 

might have led students to the wrong conclusion regardless of whether they plotted the points 

correctly. The researcher believes that if these four points had been distinctly apart from each 

other, more students, particularly those in the visualizer group, could have done this problem 

correctly. An example of a participant’s work is given in figure 7. 

 

Figure 7: Example of student's work (unedited) 



 

80 

 

Problem 4 

Problem 4 was adapted from Battista’s (1990) research instrument. The researcher 

categorized it as a moderately difficult problem, a designation that was supported by the analysis 

of participants’ work. Students used both visual and nonvisual solution methods equally to 

complete this problem.  

Problem 5 

 Participants were asked to find the perimeter of a swimming pool in this problem, which 

was placed into the moderately difficult problem group. The majority of students used visual 

solution methods to find the answer to this problem. This problem also appeared to be a difficult 

one. 

Problem 6 

  Problem 6 was the only problem for which graphic as well as verbal representations were 

used to present the problem. The majority of the participants used visual solution methods. In 

spite of the presence of a diagram, some students employed nonvisual solution methods. 

Participants’ work indicated that this was a difficult problem.  

Problem 7 

  Problem 7 was designed based on a geometry theorem. The majority of students used 

visual solution methods for this problem. An analysis of participants’ work indicated that this 

was one of the most difficult problems of the geometry test. 

Problem 8 

Compared to the rest of the problems, the majority of students used nonvisual solution 

methods to solve problem 8. Moreover, many participants asked during the test whether they 

were allowed to use a reference sheet because they are allowed to use a references sheet while 
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taking quizzes and the End of Course (EOC) assessments. The researcher believed that if 

participants were provided with the reference sheet, there would have been even more students 

using a nonvisual solution method. Problem 8 appeared to be a relatively easy problem compared 

to other problems in the geometry test. 

Problem 9 

This problem was designed based on transformation geometry. The majority of students 

used a visual solution method to solve this problem. This problem also appeared to be in the easy 

category. Very few students used a formula to complete this problem. Similar to problem 8, if 

students were provided with the reference sheet, there would have been even more students using 

a nonvisual solution method. 

Problem 10 

The researcher anticipated that this would be the easiest problem of the geometry test; 

however, that appeared not to be the case. Only 28% of students were able to do this problem 

correctly. Compared to other problems, this problem still belonged in the easy category. Like in 

problem 8, many participants asked whether they were allowed to use a reference sheet for this 

one, because they are allowed to use a reference sheet during quizzes and on the End of Course 

(EOC) assessments. It must be noted that many students mentioned that they did not know the 

distance formula. Furthermore, they explained that if they had known the distance formula, they 

could have done it. Providing formulae might be useful to solve this problem, particularly for 

nonvisual students. 

Problem 11 

Problem 11 was designed based on the high school geometry standard (Expressing 

Geometric properties with Equations G-GPE) of the Common Core State Standards for 
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Mathematics (CCSSM). Most of the participants used visual solution methods to solve this 

problem. Participants’ work revealed that it was easier to solve this problem with a visual 

solution method. In order to solve this problem in a nonvisual way, participants were required to 

know the standard equation of the circle. It seemed that nonvisual solution methods required 

more steps and information. 

The data also revealed that this problem was at a moderate level of difficulty. It is 

worthwhile to mention that Problem 11 was the only yes/no problem. Students could choose 

simply yes or no without doing any mathematics. Quite a few students chose their answer 

without showing any work in this problem. The researcher had to accept the participants’ 

responses regardless of whether they showed their work or not.  

Problem 12 

This problem was adapted from a book published by the National Council of Teachers of 

Mathematics (2009). All participants used visual solution methods to solve this problem and 

many chose visual solution methods in the geometry questionnaire, too. However, a few students 

actually chose nonvisual solution methods in the geometry questionnaire, even though they had 

selected a visual solution method on this problem on the test. The analysis of participants’ work 

indicated that this was a difficult problem. Many participants did not attempt this problem and 

mentioned that they had no idea how to solve it.  

Reliability and Validity of the Instrument 

Validity and reliability are important factors for research studies. Internal validity refers 

to the process of controlling variables within the study to ensure that the instrument examines 

what it is intended to measure (Shadish, Cook, & Campbell, 2002). With respect to internal 
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validity, the researcher wanted to measure whether the test results truly indicated what they were 

supposed to measure: the students’ preference for solution methods.  

Campbell and Stanley (1963) stated that there are variables that can jeopardize the 

internal and external validity of any research instrument. However, the researcher tried to 

minimize the validity threats as much as possible. The researcher was concerned about the 

various issues pertaining to the design and development of the geometry test. Does the test 

measure whatever it is supposed to measure in a consistent way? Are the questions well posed? 

Are the questions too difficult or too easy? Do the questions discriminate between higher and 

lower mathematical performance? Are the outcomes significant?  In short, the researcher was 

concerned with the reliability and validity of the geometry test. An instrument (test) is said to be 

reliable if it yields a consistent result (Patten, 2004). Similarly, an instrument is valid to the 

extent that it measures what it is designed to measure and accurately performs the function it is 

supposed to perform. 

The internal consistency method of “coefficient alpha” also known as Cronbach’s alpha 

was chosen to determine the reliability the geometry questionnaire. This method is based on the 

principle that sets of scores can be correlated to determine reliability. For example, to determine 

the amount of variance, the test scores determine true differences among students. A Cronbach’s 

alpha coefficient between 0.7 and 1 is a widely accepted indicator of the reliability of an 

instrument (Wiersma, 2000).  

One of the main purposes of the geometry test and geometry questionnaire was to 

measure students’ preference for solution methods, as shown by their choice of solution methods 

when solving geometry problems. Thus, the reliability of the geometry questionnaire must be 

measured, because the questionnaire was a primary instrument used to measure students’ 
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preference for solution methods. As explained earlier, positive one (+1) was assigned for a visual 

solution method, negative one (-1) for a nonvisual solution method, and zero (0) was assigned 

when the solution methods were undecided.  

The reliability analysis was conducted to examine the reliability scale of the 12 items of 

the geometry questionnaire. The analysis indicated that Cronbach’s Alpha value is 0.675. The 

reliability analysis also indicated that the Cronbach's Alpha could be improved from 0.675 to 

0.682 by removing problem six. Table 6 delineates the reliability scale of the geometry 

questionnaire. 

Table 6: Reliability scale 

Cronbach's Alpha Cronbach's Alpha Based on Standardized 

Items 

N of 

Items 

.675 .690 12 

 

As explained earlier, many participants asked during the test whether they were allowed 

to use a reference sheet because they are allowed to use a references sheet while taking quizzes 

and the End of Course (EOC) assessments. Providing a reference sheet might have raised the 

validity and reliability of the geometry test. 

An instrument is valid to the extent that it measures what it is designed to measure and 

accurately performs the function it is supposed to perform. The geometry test and the geometry 

questionnaire were designed to measure students’ preference for solution methods. The 

researcher was concerned particularly about the function of the geometry questionnaire: did it 

measure what it was supposed measure? To ensure the validity of the geometry test and 

geometry questionnaire, a short interview was also conducted with 17 students. The analysis of 

the interviews indicated that the geometry test and the geometry questionnaire reflected students’ 
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preference for solution methods. This further validated the aim of the geometry test and the 

geometry questionnaire in connection with assessing students’ preference for solution methods.  
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CHAPTER FOUR: DATA ANALYSIS AND RESULTS 

Data Analysis 

The purpose of this study was to investigate the relationship between preference for 

solution methods, geometry performance, task difficulty, and gender. The tools were a geometry 

test and a geometry questionnaire. A short interview was also used to collect data. This chapter 

presents the analysis of data, organized around the following research questions: 

1. Are preferences for solution methods associated with high school students’ geometry 

performance?  

2. Are degrees of difficulty of geometry tasks associated with students’ preference for 

solution methods?  

3. Do males and females differ in preference for solution methods and geometry 

performance after controlling for course assignments and grade levels?  

Analysis of the geometry test and geometry questionnaire revealed that a majority of the 

students used visual solution methods in order to solve the geometry problems. In the population 

of subjects, 5% of the total students were nonvisual and 91% were visual. However, the 

percentages of visual and nonvisual students were different for each geometry problem. 

Table 7 illustrates the percentages of visual and nonvisual students for each problem. 

Table 7: Descriptive statistics of visuality  

Problems Visual students (%) Nonvisual students (%) Mean visuality score 

 1    84.47       11.1       .74 

 2    81.36       10.55       .71 

 3    76.39       13.66       .63 

 4    62.11       28.57       .34 
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Problems Visual students (%) Nonvisual students (%) Mean visuality score 

5   81.36      12.42       .70 

6   75.15      17.39      .58 

7   72.04      14.28      .58 

8  43.47     47.88      -.02 

9  62.73     18.63       .46 

10  67.08     22.36       .43 

11  77.08     7.45      .70 

12  70.18    11.18      .60 

 

Interview 

Seventeen students were selected from each school to represent all schools where 

quantitative data were collected. From the list of names of all students who took the geometry 

test and the geometry questionnaire, the researcher requested participating teachers to provide 

the names of a couple of students for a short interview. Thus, participating teachers selected 

some students from their class for the interview. The researcher did not ask participating teachers 

how they chose their students for interview. Thus, it was not clear how participating teachers 

selected their students as it relates to the procedure of selection of students for the interview. In 

most cases, interviews were conducted in a corner of a regular classroom; however, in some 

cases interviews were conducted outside of the classroom, such as in a hallway or corridor of a 

school building.   

In order to verify further about students’ preference for solution methods, the researcher 

cross checked between the actual solution methods students employed to complete the geometry 
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problems and the solution methods they explained during the interview. In doing so, the 

researcher analyzed and compared qualitative and quantitative data of the 17 students who took 

part in the interview. The comparative analysis between quantitative and qualitative data 

revealed that the solution methods that participants used in the geometry test and the one they 

explained during the interview were the same. The preference for the solution method of only 

one student was found to be inconsistent between quantitative and qualitative data. In fact, this 

particular student explained during the interview that she considered herself a harmonic; 

however, she appeared to be a visualizer based on the quantitative analysis. Moreover, slight 

variations were also found between the actual solution methods utilized during the test and those 

they explained during the interview. 

 The comparative analysis revealed that one student was found to be a nonvisualizer, one 

harmonic, and the rest visualizers. The student who was a nonvisualizer during the interview 

used nonvisual solution methods to solve almost all of the geometry problems in the geometry 

test. Similarly, students who were harmonic during the interview used visual as well as nonvisual 

solution methods while solving geometry problems. Visualizers primarily used visual solution 

methods for the most of the geometry problems.  

Table 8 delineates a comparison of participants’ preference for solution methods between 

quantitative and qualitative data. QT and QL indicate that data come from quantitative and 

qualitative study.  One (1), negative one (-1), and zero (0) respectively indicate visual, nonvisual, 

and harmonic solution methods. Visuality is the sum of visual and nonvisual scores for all of the 

problems on the geometry test and geometry questionnaire.  
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Table 8: Comparison between quantitative and qualitative data 

Students Question 1 Question 4 Question 8 Question 5 Visuality 

 QT QL QT QL QT QL   

1 1 Visual -1 Visual 1 Visual Visualizer 4 

2 1 Visual 1 Visual 1 Visual Visualizer 12 

3 1 Visual 1 Visual 1 Visual Visualizer 12 

4 1 Visual 1 Visual 1 Visual Visualizer 12 

5 -1 Nonvis

ual 

-1 Nonvi

sual 

-1 Nonvi

sual 

Nonvisulizer -10 

6 1 Visual 1 Visual 0 Nonvi

sual 

Visualizer 7 

7 1 Visual 1 Visual 1 Visual Visualizer 7 

8 1 Visual 1 Visual 1 Visual Visualizer 12 

9 1 Visual 1 Visual -1 Visual Visualizer 8 

10 1 Visual 1 Visual 1 Visual Visualizer 9 

11 1 Visual -1 Mixer -1 Nonvi

sual 

Harmonic 0 

12 1 Visual 1 Visual -1 Nonvi

sual 

Visualizer 8 

13 1 Visual 1 Visual -1 Visual Visualizer 8 

14 1 Visual 1 Visual 1 Mixer Visualizer 10 

15 1 Visual 1 Visual -1 Nonvi

sual 

Visualizer 8 

16 1 Visual -1 Visual -1 Visual Harmonic 8 

17 1 Visual -1 Visual 1 Visual Visualizer 8 

 

One of the underlying reasons for conducting the interviews was to assess whether the 

geometry test and the geometry questionnaire truly gathered the relevant data regarding students’ 
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preference for solution methods. The qualitative data indicated that the geometry test and the 

geometry questionnaire reflected students’ preference for solution methods, which further 

validated the aim of the instruments in with regard to assessing students’ preference for solution 

methods. 

Results of the Statistical Analysis 

Research Question one: preference and geometry performance 

Are preferences for solution methods associated with high school students’ geometry 

performance?  

A simple linear regression can be used to explore the relationships between two variables 

by predicting the effect of one variable on the other (Lomax, 2007). Students’ preference for 

solution methods was measured in terms of their visuality score which ranged from -12 to +12. 

Categorizing students into two different groups, visualizers and nonvisualizers, will eliminate the 

variances in visuality scores. For example, two different students with visual scores of 2 and 12 

respectively belong to a same group (visualizers); however, there could be significant variance 

between these two students regardless of where they are from the same group. One of the 

important advantages of using a regression model is that it takes all the variances into account. 

Thus, the simple linear regression model was used to explore the relationships between students’ 

preference for solution methods and their geometry performance. 

Students’ geometry performance was measured by the End-of-Course (EOC) assessment. 

The End of Course (EOC) is a standardized assessment administered Florida Department of 

Education. It is designed to measure students’ content knowledge and skills in high school 

geometry course. The different geometry topics such as two-dimensional geometry, three-

dimensional geometry, and trigonometry and discrete mathematics were covered by the EOC 
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assessment. The geometry test designed for this study was not a standard test and it did not cover 

all topics of high school geometry. Thus, the researcher decided not to use the geometry test 

score to measure students’ geometry performance. 

All assumptions for simple regression analysis were satisfied. The residual statistics 

indicated that there was no issue regarding the assumption of the homogeneity of variance. The 

histogram and P-P plot indicated a normal distribution. Table 9 shows the normal P-P plot of 

regression standardized residual statistics. Similarly, the scatter plot showed that there were no 

systematic patterns between students’ visuality score and geometry performance. 

Table 9: The normal P-P Plot of regression standardized residual 

 
 

Students’ performance (EOC score) was a dependent variable, whereas preference for 

solution methods (visuality score) was an independent (predicator) variable. A simple regression 

analysis was used to test if the students’ preference for solution methods significantly predicted 
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students’ geometry performance. The results of the regression analysis indicated that preference 

for solution methods explained only 1.1% variance (R² = 0.011, F= 1.702, df = 1,159, p > 0.05). 

Table 10 illustrates the summary of the regression model.  

Table 10: Regression model summary 

Model R   R Square    Adjusted R Square      Std. Error of the Estimate 

1 .103
a
 .011 .004 11.070 

a. Predictors: (Constant) Visuality 

b. Dependent Variable: Performance 

The ANOVA summary in Table 11 indicated that the visuality did not predict a 

significant a proportion of the total variance in the geometry scores (F (1, 8) = 1.702, p > 0.05). 

Table 11: ANOVA summary 

Model Sum of 

Squares 

df Mean 

Square 

F Sig. 

1 

Regression 208.500 1 208.500 1.702 .194
b
 

Residual 19483.166 159 122.536 
  

Total 19691.666 160 
   

a. Dependent Variable: Performance 

b. Predictors: (Constant), Visuality 

The coefficient Table 12 indicated that the unstandardized slope (0.280) and the 

standardized slope (0.103) were not significantly different from zero (t =1.304, p > 0.05).  Thus, 

students’ preference for solution methods was shown to be not a statistically significant predictor 

of students’ geometry performance, which implied that there was not a significant relationship 

between preference for solution methods and geometry performance.  
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Table 12: Coefficient table 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 95.0% Confidence 

Interval for B 

B Std. 

Error 

Beta Lower 

Bound 

Upper 

Bound 

1 

(Constant) 45.397 1.634 
 

27.785 .000 42.170 48.624 

Visuality .280 .215 .103 1.304 .194 -.144 .705 

a. Dependent Variable: Performance 

As a follow up to the simple linear regression, a multiple regression analysis was used to 

test if the students’ preference for solution methods, grades, and mathematics courses assignment 

(subjects) significantly predicted students’ geometry performance. All assumptions of the 

multiple regression analysis were examined and satisfied the requirement. The multicollinearity 

was checked by a tolerance and variation inflation factor. The tolerance statistics for each 

variable was greater than 0.1. 

 Students’ grade levels composite was a statistically significant predictor ( 1F (2,158) = 

56.53, p < .001) explaining approximately 41.7% of the variance in geometry performance. 

Similarly, the linear composite of grade level and mathematics courses was a statistically 

significant predictor ( 2F (2,158) = 6.91, p < .001) explaining approximately 48.6% of the 

variance in geometry performance. The addition of subjects increased the explained variance in 

geometry performance by 6.9%.  Furthermore, the linear composite of grades, subjects, and 

preference for solution methods was not a statistically significant predictor ( 3F (2,158) = 2.17, p 

> .05) explaining approximately 49.3% of the variance in geometry performance. The addition of 

preference for solution methods increased the explained variance in geometry performance by 

only 0.07%. A summary of multiple regression analysis is given in Tables 13 and 14. The 
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preference for solution methods including subjects and grades did not predict students’ geometry 

performance. 

The multiple regression analysis indicated that model one seemed to be the best model. 

The different models are given in the Table 13. In the model three, preference for solution 

methods explained only 0.7% variance which implies that preference for solution methods did 

not predict students’ geometry performance. The variance explained by preference for solution 

methods in multiple regression analysis was less than that of the simple linear regression.  

Table 13: Regression model summary 

Model R R 

Square 

Adjusted 

R Square 

Std. Error 

of the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Change 

df1 df2 Sig. F 

Change 

1 .646
a
 .417 .410 8.523 .417 56.534 2 158 .000 

2 .697
b
 .486 .469 8.082 .069 6.911 3 155 .000 

3 .702
c
 .493 .473 8.051 .007 2.173 1 154 .143 

a. Predictors: (Constant), Grade 11, Grade 10 

b. Predictors: (Constant), Grade 11, Grade 10, RegularGeo, Financial Algebra, Algebra2 

c. Predictors: (Constant), Grade 11, Grade 10, RegularGeo, Financial Algebra, Algebra2, 

Visuality 

d. Dependent Variable: Performance 

A summary of regression coefficients is presented in Table 14 indicating that only four 

variables (algebra 2, geometry, financial algebra, and grade 10) of the six variables significantly 

contributed to the model. Preference for solution methods (visuality) did not contribute to the 

regression model. 

 

 



 

95 

 

Table 14: Regression coefficients summary 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. Collinearity 

Statistics 

B Std. Error Beta Tolerance VIF 

1 

(Constant) 40.681 1.139 
 

35.718 .000 
  

Grade 10 20.421 1.928 .719 10.589 .000 .800 1.250 

Grade 11 5.823 1.505 .263 3.869 .000 .800 1.250 

2 

(Constant) 49.747 2.401 
 

20.718 .000 
  

Grade 10 17.480 2.553 .615 6.848 .000 .411 2.435 

Grade 11 3.111 2.287 .140 1.360 .176 .312 3.209 

Algebra2 -6.563 2.645 -.277 -2.481 .014 .265 3.770 

RegularGeo -15.622 3.732 -.307 -4.186 .000 .617 1.621 

FinancialAlg -10.569 2.785 -.377 -3.795 .000 .336 2.973 

3 

(Constant) 48.421 2.555 
 

18.948 .000 
  

Grade 10 17.220 2.549 .606 6.755 .000 .409 2.447 

Grade 11 3.134 2.279 .141 1.376 .171 .312 3.209 

Algebra2 -6.658 2.636 -.282 -2.526 .013 .265 3.773 

RegularGeo -16.041 3.729 -.315 -4.302 .000 .613 1.631 

FinancialAlg -10.813 2.780 -.386 -3.890 .000 .335 2.983 

Visuality .233 .158 .085 1.474 .143 .981 1.019 

a. Dependent Variable: Performance 
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Research Question Two: Task difficulty 

Are the degrees of difficulty of the geometry tasks associated with students’ preference 

for solution methods?  

 Visuality and task difficulty were the two variables for research question two. The mean 

visual score of each problem was calculated for all participants. It was the sum of visual score of 

each problem of all students divided by the total number of students. The researcher divided the 

geometry problem into three groups: easy, moderate, and difficult while developing and 

designing the geometry test. However, the task difficulty was also assessed based on students’ 

actual work on the geometry test. The task difficulty of each problem was determined by 

dividing the total number of correct answers produced by the total number of students. The easier 

the geometry problem, the more likely were student to get correct answers and vice versa. The 

mean visual score and level of difficulty for each problem is given in Table 15.  

Table 15: Mean visual score and task difficulty  

Problems 1 2 3 4 5 6 7 8 9 10 11 12 

Correct (%) 26 6.8 15.5 7.4 7.4 9.3 8 37.8 33.5 28 37.8 7.4 

Visuality  .74      .71 .63 .34 .70 .58 .58 -.02 .46 .43 .70 .60 

 

Analysis of students’ work revealed that (Table 15) problems 1, 8, 9, 10, and 11 appeared 

to be relatively easy tasks, and problems 2, 4, 5, 6, 7, and 12 seemed to be relatively difficult 

tasks. Only the problem 3 appeared to be a medium-difficult problem compared to the rest of the 

problems. The difficulty level of geometry task did not fall into three categories: easy, medium, 

and difficult as it was anticipated when the test was designed and developed. The researcher, 
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therefore, decided not to divide problems into three categories; rather, used the degree of 

difficulty as it was they appeared when students solved problems.   

Visuality and degree of difficulties were the two variables for the research question two. 

The association between task difficulty level and preference for solution methods were examined 

using a Pearson’s product-moment correlation coefficient. One of the advantages of using 

Pearson’s correlation coefficient is that students’ visuality scores and numeric values of  task 

difficulty can be used directly i.e., dividing the problems into three groups (easy, medium, and 

difficult) is not necessary. 

The Pearson’s product-moment correlation coefficient indicated that there was not a 

significant correlation between task difficulty and preference for solution methods (r = -.385 n 

=12, p > .05). The summary of the analysis is shown in Table 16. The result indicated that there 

is negative correlation between task difficulty and preference for solution methods.  

Table 16: Summary of correlation analysis 

 Visuality Difficulty 

Visuality 

Pearson Correlation 1 -.385 

Sig. (2-tailed) 
 

.216 

N 12 12 

Difficulty 

Pearson Correlation -.385 1 

Sig. (2-tailed) .216 
 

N 12 12 
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The geometry test contained 12 problems. Students were expected to show their work to 

while solving the geometry problems. However, students could find answer of problem 11 

without showing any work because the problem 11 was yes-no question in nature. Thus, the 

problem 11 was somewhat different than rest of the problems in which students simply can 

choose their answer yes or no. Analysis of the test also indicated that many students did not show 

their work; instead they simply chose their answer in the problem 11. This might be a reason that 

problem 11 appeared to be easier than it was anticipated. Thus, the researcher also examined the 

association task difficulty and preference for solution methods excluding the problem 11. 

The Pearson’s product-moment correlation coefficient indicated that there was not a 

significant correlation between task difficulty and preference for solution methods (r = -.578 n 

=11, p > .05). However, the p value was very close to the alpha level of 0.05. The summary of 

the analysis is shown in Table 17. The result indicated that there is negative correlation between 

task difficulty and preference for solution methods. The negative correlation indicated that as 

task difficulty increases the visuality decreases, which implies that students tend to use visual 

solution methods for more difficult task. However, correlation was not significant. 

Table 17: Summary of correlation analysis 

 Visuality Difficulty 

Visuality 

Pearson Correlation 1 -.578 

Sig. (2-tailed) 
 

.063 

N 11 11 

Difficulty 

Pearson Correlation -.578 1 

Sig. (2-tailed) .063 
 

N 11 11 
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The number of variables in the Pearson’s product-moment correlation coefficient was 

comparatively low because there were only 12 variables (geometry problems). Thus, the 

researcher also conducted Spearman’s rank correlation coefficient to examine the correlation 

between task difficulty and preference for solution methods. However, the analysis indicated that 

still there was not a significant correlation between task difficulty and preference for solution 

methods. 

Research Question Three: Gender, preference, and performance  

Do males and females differ in preference for solution methods and geometry performance after 

controlling for course assignments and grade levels?  

  Multivariate Analysis of Covariance (MANCOVA) can be used to examine effects of 

various covariates on independent variables. The researcher can incorporate one or more 

covariates into MANCOVA, and inclusion of several variables helps to reduce error variance 

(Mertler & Vannatta, 2005). MANCOVA also helps to control the effects of various covariates 

and provides more accurate results that researcher aims to find. As an extension of further 

investigation of effects of gender on preference for solution method and geometry performance, 

the researcher decided to conduct MANCOVA. 

  Grades and subjects were taken as covariates for MANCOVA analysis because grade and 

subject were significantly correlated with preference for solution methods and geometry 

performance. Correlation between performance, visuality, subject, and grade is given in Table 

18. Subject-performance of students is given in Table 19 

 

. 



 

100 

 

Table 18: Summary of correlation analysis 

 Performance Visuality Subject Grade 

Performance 

Pearson 

Correlation 
1 .103 -.203

**
 -.617

**
 

Sig. (2-tailed) 
 

.194 .010 .000 

N 161 161 161 160 

Visuality 

Pearson 

Correlation 
.103 1 .008 -.019 

Sig. (2-tailed) .194 
 

.923 .812 

N 161 161 161 160 

Subject 

Pearson 

Correlation 
-.203

**
 .008 1 .583

**
 

Sig. (2-tailed) .010 .923 
 

.000 

N 161 161 161 160 

Grade 

Pearson 

Correlation 
-.617

**
 -.019 .583

**
 1 

Sig. (2-tailed) .000 .812 .000 
 

N 160 160 160 160 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table 19: Descriptive statistics of subject-performance 

 N Mean Std. Deviation 

Algebra 2 109 49.70 9.942 

Regular geometry 8 34.13 12.552 

Financial Algebra 31 39.28 9.395 

PreCalculus 13 53.15 8.214 

Total 161 47.20 11.094 

  

 MANCOVA rests on some basic assumptions. The following assumptions were checked:  

 Testing for homogeneity of regression slopes: The correlation between covariates and 

dependent variables did not differ across independent variable (gender).  

 Independence of covariates: There was not a significant difference in subject scores (F 

(1,158 = 0.007), p = .935) or grade (F (1,158) =3.026, p = .084)).   

 Correlation between covariates and dependent variables: There was a significant 

correlation between performance, grade, and subject. There was not a significant 

correlation between preference, grade, and subject, and none of them had a correlation 

coefficient greater than 0.7. 

Multivariate Analysis of Covariance (MANCOVA) was conducted to determine the 

effects of gender on preference for solution methods and geometry performance while 

controlling the effects of subjects and grades. Subjects (four categories) and grades (three 

categories) were categorical variables. Thus, the categorical variables were dummy coded to 

convert them into bivariate measures.  
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Homoscedasticity is the assumption that variability in scores for one continuous 

dependent variable is roughly the same at all values of another continuous variable. Box’s M test 

of equality of variance-covariance matrices was used to assess the homoscedasticity. Box's M = 

50.97 with F (3, 1333792.95) = 2.85, p = .036 revealed that the assumption of equality of 

covariance matrices across the cells was not met, indicating that the null hypothesis of equal 

covariance matrices was rejected. Similarly, the assumption of linearity was also not satisfied. 

Since the homoscedasticity assumption was not satisfied and group sample sizes were unequal, 

Pillar’s Trace was selected to report the analysis. 

The statistical analysis showed that gender was significant in determining the combined 

test results in preference for solution methods and geometry performance (F (2,153) = 4.08, p < 

.05, Pillar’s Trace = .051, η² = .051). The combined covariates did not significantly influence the 

gender difference on preference for solution methods and geometry performance. Table 20 

illustrates the summary of the multivariate test. After controlling the covariates, the effect size 

reduced from 9.2% to 5.1%. The MANCOVA analysis indicated that the covariates did not 

significantly influence the gender difference in preference for solution methods and geometry 

performance. 

Table 20: Summary of multivariate test 

Effect Value F Hypothesis 

df 

Error df Sig. Partial Eta 

Squared 

Intercept 

Pillai's Trace .702 180.125
b
 2.000 153.000 .000 .702 

Wilks' Lambda .298 180.125
b
 2.000 153.000 .000 .702 

Hotelling's 

Trace 
2.355 180.125

b
 2.000 153.000 .000 .702 

Roy's Largest 

Root 
2.355 180.125

b
 2.000 153.000 .000 .702 
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Effect Value F Hypothesis 

df 

Error df Sig. Partial Eta 

Squared 

Gr10 

Pillai's Trace .298 32.523
b
 2.000 153.000 .000 .298 

Wilks' Lambda .702 32.523
b
 2.000 153.000 .000 .298 

Hotelling's 

Trace 
.425 32.523

b
 2.000 153.000 .000 .298 

Roy's Largest 

Root 
.425 32.523

b
 2.000 153.000 .000 .298 

Gr12 

Pillai's Trace .015 1.173
b
 2.000 153.000 .312 .015 

Wilks' Lambda .985 1.173
b
 2.000 153.000 .312 .015 

Hotelling's 

Trace 
.015 1.173

b
 2.000 153.000 .312 .015 

Roy's Largest 

Root 
.015 1.173

b
 2.000 153.000 .312 .015 

Algebra2 

Pillai's Trace .030 2.334
b
 2.000 153.000 .100 .030 

Wilks' Lambda .970 2.334
b
 2.000 153.000 .100 .030 

Hotelling's 

Trace 
.031 2.334

b
 2.000 153.000 .100 .030 

Roy's Largest 

Root 
.031 2.334

b
 2.000 153.000 .100 .030 

RegularGe 

Pillai's Trace .096 8.105
b
 2.000 153.000 .000 .096 

Wilks' Lambda .904 8.105
b
 2.000 153.000 .000 .096 

Hotelling's 

Trace 
.106 8.105

b
 2.000 153.000 .000 .096 

Roy's Largest 

Root 
.106 8.105

b
 2.000 153.000 .000 .096 

FinancialAlg 

Pillai's Trace .065 5.327
b
 2.000 153.000 .006 .065 

Wilks' Lambda .935 5.327
b
 2.000 153.000 .006 .065 

Hotelling's 

Trace 
.070 5.327

b
 2.000 153.000 .006 .065 

Roy's Largest 

Root 
.070 5.327

b
 2.000 153.000 .006 .065 
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Effect Value F Hypothesis 

df 

Error df Sig. Partial Eta 

Squared 

Gender 

Pillai's Trace .051 4.080
b
 2.000 153.000 .019 .051 

Wilks' Lambda .949 4.080
b
 2.000 153.000 .019 .051 

Hotelling's 

Trace 
.053 4.080

b
 2.000 153.000 .019 .051 

Roy's Largest 

Root 
.053 4.080

b
 2.000 153.000 .019 .051 

a. Design: Intercept + Gr10 + Gr12 + Algebra2 + RegularGe + FinancialAlg + Gender 

b. Exact statistic 

 

The univariate analysis indicated that gender was a significant in geometry performance 

 ( 1F  (2,154) =8.127, p < .001, η² = 0.051) but not significant in preference for solution methods 

 ( 2F (2,154) = .004, p < .05, η² = 0.00, p > .05) after controlling the effect of covariates. None of 

the covariates had significant effects in gender difference on students’ preference for solution 

method. However, the covariates grade 10 and subjects (geometry, algebra, and financial 

geometry) had significant gender effects on students’ geometry performance. Table 21 

summarizes the univariate analysis. 

Table 21: Summary of univariate analysis 

Source Dependent 

Variable 

Type III 

Sum of 

Squares 

df Mean 

Square 

F Sig. Partial Eta 

Squared 

Corrected 

Model 

Visuality 54.787
a
 6 9.131 .541 .776 .021 

Performance 10070.453
b
 6 1678.409 26.865 .000 .511 

Intercept 

Visuality 235.166 1 235.166 13.936 .000 .083 

Performance 22532.586 1 22532.586 360.663 .000 .701 

Gr10 Visuality 35.535 1 35.535 2.106 .149 .013 
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Source Dependent 

Variable 

Type III 

Sum of 

Squares 

df Mean 

Square 

F Sig. Partial Eta 

Squared 

Performance 4077.468 1 4077.468 65.265 .000 .298 

Gr12 

Visuality 4.485 1 4.485 .266 .607 .002 

Performance 117.715 1 117.715 1.884 .172 .012 

Algebra2 

Visuality 4.280 1 4.280 .254 .615 .002 

Performance 257.440 1 257.440 4.121 .044 .026 

RegularGe 

Visuality 12.199 1 12.199 .723 .397 .005 

Performance 908.450 1 908.450 14.541 .000 .086 

FinancialAlg 

Visuality 6.406 1 6.406 .380 .539 .002 

Performance 606.356 1 606.356 9.706 .002 .059 

Gender 

Visuality .062 1 .062 .004 .952 .000 

Performance 507.721 1 507.721 8.127 .005 .050 

Error 

Visuality 2598.642 154 16.874 
   

Performance 9621.213 154 62.475 
   

Total 

Visuality 9307.000 161 
    

Performance 378355.144 161 
    

Corrected 

Total 

Visuality 2653.429 160 
    

Performance 19691.666 160 
    

a. R Squared = .021 (Adjusted R Squared = -.018) 

b. R Squared = .511 (Adjusted R Squared = .492) 
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  The MANCOVA indicated that the students’ grades level and courses they enrolled in 

did not covariate students’ gender. Thus, students’ grade levels and courses they enrolled in were 

eliminated, and MANOVA was used to compare males and females within preference for 

solution methods (visuality) and their geometry performance. The statistical analysis showed that 

gender was significant in determining the combined test results in preference for solution 

methods and geometry performance (F (2,158) = 7.985, p < .001, Pillar’s Trace = .092). The test 

between-subject effects indicated that gender was a significant factor in geometry performance  

( 1F  (2,158) =15.895, p < 0.001, η² = 0.091) but not significant in preference for solution methods 

( 2F (2,158) = 0.00, η² = 0.00, p > .05).  

  The statistical analysis indicated that an effect of gender was significant in students’ 

geometry performance but not in preference for solution methods. To investigate further the 

gender differences in geometry performance, an independent sample t was conducted. Table 22 

delineates descriptive statistics of gender and geometry performance. 

Table 22: Descriptive statistics 

 
Gender N Mean Std. 

Deviation 

Std. Error 

Mean 

Performance 

Male 66 43.20 12.233 1.506 

Female 95 49.98 9.326 .957 

 

According to Leven’s test, the homogeneity of variances assumption was not satisfied  

(F = 6.06, p = .015). The independent t test indicated that geometry performance was statistically 

significantly different (t (115.10) = -3.80, p < .001) between male and female students. Female 

students’ geometry performance (M = 49.98, SD = 9.32) was significantly higher than male 

students’ geometry performance (M = 43.20, SD = 12.33). The effect size was measured by using 
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Cohen’s d. The effect size was 0.623, implying a medium effect size. Table 23 summarizes the 

results of the independent t test.  

Table 23: Result of independent t test 

 Levene's Test 

for Equality of 

Variances 

t-test for Equality of Means 

F Sig. t df Sig. 

(2-

tailed) 

Mean 

Difference 

Std. Error 

Differenc

e 

Performance 

Equal 

variances 

assumed 

6.066 .015 -3.987  159 .000 -6.779 1.700 

Equal 

variances 

not assumed 

  

-3.800 115.109 .000 -6.779 1.784 

 

Summary of the Statistical Analysis  

The analysis of data unveiled that about 90% of students were found to be visualizers 

while nonvisualizers and harmonic students consisted of only 9%. A simple linear regression 

analysis was conducted to test if the students’ preference for solution methods significantly 

predicted students’ geometry performance. Analysis indicated that students’ preference for 

solution methods was not associated with students’ geometry performance. There was not a 

significant relationship between task difficulty and preference for solution methods. The 

direction of the difference in visuality between easy and difficult tasks indicated that preference 

for solution methods chosen was independent to tasks difficulty. The statistical analysis showed 

that gender was significant in determining the combined results of preference for solution 

methods and geometry performance. The test between-subject effects, however, indicated that 

gender was significant only in geometry performance but not significant in preference for 
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solution methods. Geometry performance of female students was statistically significantly higher 

than that of male students.  
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CHAPTER FIVE: SUMMARY, DISCUSSION, AND RECOMMENDATIONS  

Summary of the Study 

The purpose of this study was to examine the relationships between preference for 

solution methods, task difficulty, geometry performance, and gender. The data were collected 

during the 2013-2014 school year from six different high schools at a county located in Florida 

within the United States. High school students who took the geometry test were enrolled in 

various mathematics courses at the time of the study.  

A geometry test and a geometry questionnaire were used to collect data from all 161 

students. Upon completion of the geometry test, students were given the geometry questionnaire 

and asked to choose the solution methods from the list that best described the solution methods 

they employed to complete the geometry problems. Students were allowed to use a calculator, 

ruler, scratch paper, etc., but not a reference sheet (formula sheet). The test was conducted in a 

regular classroom during school time. The normal time interval of the classes was 52 minutes. 

There was a variation in time to complete the geometry test. The majority of students used the 

entire time to work on the geometry test and the geometry questionnaire. However, some 

students finished the geometry test in 10-15 minutes. In general, the first 30/35 minutes were 

used to complete the geometry test and the remaining 15 minutes were utilized to finish the 

geometry questionnaire.  

A short interview (2 to 3 minutes) was also conducted with 17 students. Using an 

audiotaped think-aloud protocol, four questions were asked during the interview. The students 

were presented with each problem and asked to think aloud. A hard-copy of the questions was 

also provided. Three questions were aimed to further explore which solution methods students 

used in solving geometry problems. However, the fourth question was directed to understand 
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how students think of themselves: as visualizers or nonvisualizers. The comparative analysis 

between quantitative and qualitative data revealed that the solution methods that students used in 

the geometry questionnaire and the one they explained during the interview appeared to be 

consistent.    

For the purpose of statistical analysis, students’ preferences for solution methods were 

quantified into numeric values, and visuality score was obtained for each student. Students were 

given a score of +1 for the visual solution method and a score of -1 for the nonvisual solution 

method. If students did not choose their solution methods, chose both methods, or could not 

determine the solution methods they used, then a score of 0 was given. Thus, for twelve items, an 

individual could obtain a ‘nonvisual-visual’ score ranging from -12 to +12. 

A simple linear regression analysis was conducted to test if the students’ preference for 

solution methods significantly predicted students’ geometry performance. The results of the 

regression analysis indicated that preference for solution methods explained only 1.1% variance. 

Thus, students’ preference was not shown to be a statistically significant predictor of geometry 

performance. 

There was not a significant relationship between task difficulty and preference for 

solution methods. The direction of the difference in visuality between easy and difficult tasks 

indicated that preference for solution methods chosen was independent to tasks difficulty. Thus, 

the result indicated that preference for visual or nonvisual solution methods for the geometry 

problems was not influenced by tasks’ difficulty such that students were equally likely to employ 

visual and nonvisual solution methods for difficult and easy tasks. 

The statistical analysis showed that gender was significant in determining the combined 

results of preference for solution methods and geometry performance. The test between-subject 
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effects, however, indicated that gender was significant only in geometry performance but not 

significant in preference for solution methods. Geometry performance of female students was 

statistically significantly higher than that of male students.  

Discussion 

The purpose of this study was to investigate the relationship between preference for 

solution methods, geometry performance, tasks difficulty, and gender. Under this section, the 

results and findings of this study are discussed in connection with related literature. The 

discussion is centered on the following research questions:  

1. Are preferences for solution methods associate with high school students’ geometry 

performance?  

2. Are the degrees of difficulty of geometry tasks associated with students’ preference for 

solution methods?  

3. Do males and females differ in preference for solution methods and geometry 

performance after controlling for course assignments and grade levels?   

This study revealed that the preference for solution methods did not correlate with 

mathematical performance, in particular geometry performance. This is consistent with previous 

research studies (Galindo, 1994; Hegarty & Kozhevnikov, 1999; Lowrie, 2001; Moses, 1977; 

Suwarsono, 1982). The findings of this study indicated that students who prefer to use visual 

solution methods in solving geometry problems were likely to do as well as students who used 

nonvisual solution methods. However, some studies found a correlation between the visual 

solution method and mathematical performance (Battista, 1990; Bremigan, 2005; Ferrini-Mundy, 

1987; Haciomeroglu, Chicken, & Dixon, 2013).   
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Findings of this study are inconsistent with Battista’s (1990) study. One explanation of 

inconsistency in the findings of this study with those of other studies including Battista’s 

involves the use of different types of mathematical tasks to measure students’ preference for 

solution methods. Though six problems were employed from Battista’s instrument, the geometry 

test and the geometry questionnaire were not the same as his instrument. In fact, half of the 

geometry problems were presented using some kind of geometric figures in Battista’s 

instrument; however, only one problem was presented with the help of a diagram in the geometry 

test. Thus, these two tests were different in terms of employment of representation to present 

geometry problems, and that might explicate the inconsistencies in the findings between these 

two studies. 

Students were enrolled in different types of mathematics courses at the time of this study. 

Thus, there was a distinct variation in terms of the mathematics courses that participating 

students had taken, which could have influenced students’ preferences for solution methods and 

geometry performance. Limiting the study to a specific group of students could have provided 

different results. If this study had been given to different groups of geometry students—for 

example, regular, standard, or honor students—the results and findings might have been 

different.  

The geometry test appeared to be difficult for the students because the majority of them 

were not able to solve the problems correctly. Easier geometry problems could have helped 

students to express their preference for solution methods in a clearer way. If the problems were 

easier, the findings of this study could have been different. Moreover, a convenient sampling was 

used to choose the population sample of this study. A much larger randomized sample from a 

larger population might yield a different result. Beyond this, the reliability scale of the geometry 
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questionnaire is low (0.68). One explanation is that the low reliability scale could have affected 

the relationships between preference for solution methods and mathematics performance.  

Students’ geometry EOC scores were gathered from the year 2012 and 2013. In fact, 35% 

and 65% of the students had their EOC score respectively from the years 2012 and 2013. Only 

5% of students were enrolled in a geometry course at the time of this study (2014). This 

distribution implies that some students had not taken geometry courses for two years. Thus, it 

seemed that students might have forgotten different rules and formulae that they had learned a 

year or two before and could not perform as well as they were expected. This might be one of the 

critical factors that resulted in no significant relationships between students’ preference for 

solution methods and their geometry performance. 

As stated earlier, many students asked whether they were allowed to use a reference sheet 

because the students were accustomed to using a reference sheet during quizzes, tests, and End-

of-Course (EOC) assessments. Many students clearly informed the researcher that if they were 

allowed to use the reference sheet, they would have used formulae instead of diagrams and 

figures. Allowing students to use the reference sheet could have influenced students’ preference 

for solution methods and indeed its relations with geometry performance. The researcher also 

observed during the test that many students quickly finished the test (or gave up), which could 

have also influenced students’ preference for solution methods. If students were allowed to use a 

reference sheet, the number of nonvisual solution methods could have increased, which could 

influence their preference as well as performance on geometry tasks. 

Not only the nature of mathematical tasks, but the mathematics-content areas were also 

 different between this study and with other studies (Bremigan, 2005; Ferrini-Mundy, 1987; 

Haciomeroglu, Chicken, & Dixon, 2013). Bremigan (2005) focused on calculus emphasizing the 
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role of visual representation. Ferrini-Mundy (1987) and Haciomeroglu, Chicken, and Dixon 

(2013) conducted studies focused on calculus and used primarily a graphic representation to 

present the derivative and antiderivative problems. However, verbal representation was used to 

design the geometry test and the geometry questionnaire in this study. The representations 

employed to present mathematics problems vary greatly among these studies.  It is an important 

factor for teaching and learning mathematics. The fact is that mathematical ideas can be taught 

and learned in an effective way by utilizing suitable modes of representation (Goldin, 1987; 

Kaput, 1987; Janvier, 1987). Moreover, the ways in which mathematical ideas and problems are 

represented is fundamental to how students can understand and use those ideas, using and 

interpreting representation in appropriate ways (NCTM, 2000). For example, sketching diagrams 

(graphs) in high school geometry might not be as important and necessary as in college calculus. 

Therefore, different modes of representation influence students’ mathematical thinking and 

problem solving skills (Campbell, Collis, & Watson, 1995) and they influence students’ 

preference for visual and nonvisual solution methods (Haciomeroglu, 2012).  

Translation ability is an important factor for problem solving in mathematics because 

translation of one mode of representation to another will provide flexibility to problem solvers 

while attempting mathematics problems (Doufour-Janvier, Bednarz, & Belanger, 1987; Janvier, 

1987; Lesh, Post, & Behr, 1987). Thus, the role of representation as well as students’ ability to 

translate mathematics problem from one mode of representation to another might be contributing 

factors to the inconsistency between the findings of this study compared with other studies. 

Beyond this, there are several factors such as students’ socioeconomic status, age, grade, number 

of mathematics courses taken etc., which can influence the relationship between preference for 

solution methods and students’ geometry performance. For example, this study also found that 
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the different mathematics courses that students enrolled in and their grades were significantly 

related with students’ geometry performance. 

This study also examined the relationships between task difficulty and preference for 

solution methods and found that there was not a significant correlation between task difficulty 

and preference for solution methods. Results indicated that preference for solution methods for 

the geometry problems in either visual or nonvisual solution methods were not influenced by 

task difficulty such that students were equally likely to employ visual as well as nonvisual 

solution methods for difficult tasks. This is not consistent with the findings of Lowrie and Kay 

(2001) and Haciomeroglu (2012), who reported that task difficulty had an influence on students’ 

preference for solution methods. As task difficulty increased, the number of visual solution 

methods also increased significantly. However, this finding supported the findings of Lowrie 

(2001), who found that there was not a significant relationship between task difficulty and 

preference for solution methods.  

The reliability scale of the geometry test was low (0.68). Moreover, the sample size in 

this study was also small and significance level of the p value was close to the cut-off point of 

0.05 when problem 11 was eliminated. Thus, if the sample size of this study would be larger, the 

result could have been changed, which might result in inconsistency with Lowrie and Kay (2001) 

and Haciomeroglu’s (2012) findings. 

Lowrie (2001) used the MPI to assess students’ preference for solution methods. He used 

a three-point Likert scale survey to determine task difficulty. Students were asked to indicate 

whether they felt that the question on the MPI they had completed/attempted was easy, moderate, 

or difficult to solve. The task difficulty in both studies was based on students’ response and 
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work. This could also be a factor which might result in consistency with Lowrie’s (2001) 

findings. 

The findings of this study regarding gender difference in preference for solution methods 

and mathematics performance are consistent with some studies and contradict several other 

studies. This study found that there was a significant effect of gender only in geometry 

performance but not in the preference for solution methods. Female students outperformed male 

students in geometry performance. The findings of this study are partially consistent with 

Battista’s (1990) findings. Battista reported that male and female students differed in geometry 

performance (males outperformed females), but not in their solution strategies. He suggested that 

there is a fundamental difference in the relative roles of spatial visualization and logical 

reasoning played in males’ and females’ geometry achievement. Moreover, he contended that 

discrepancy between spatial visualization and logical reasoning also influenced students’ 

solution strategies. Male students’ spatial visualization was negatively correlated with using 

drawing strategy and the reverse was true for female students.  

Similarly, the finding of this study are partially consistent with Gallagher and De Lisi 

(1994), who reported gender difference both in preference for solution methods and mathematics 

performance. Fennema, Carpenter, Jacobs, Franke, and Levi (1998) reported that there was no 

gender difference in mathematics performance, but that gender difference prevailed in solution 

methods. On the other hand, while some studies did not find gender difference in preference for 

solution methods and mathematics performance (Galindo, 1994; Haciomeroglu & Chicken, 

2012; Haciomeroglu, Chicken, & Dixon, 2013; Lowrie & Kay, 2001). Hyde, Fennema, and 

Lamon (1990) indicated that there was a gender difference in arithmetic or algebra performance; 
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male superiority in geometry was small, and the tests with mixed content showed the largest 

gender differences.  

The nature and content of mathematics problems might influence gender difference in 

preference and mathematics performance not only in different areas in mathematics but also 

within the same area of mathematics. Calculus problems may need more sketching and graphing, 

algebraic problems may require more computational work, and geometry problems might need 

more figures. Thus, the instruments used to measure students’ mathematics performance varied 

greatly. This research study used a geometry test, a geometry questionnaire, and students’ 

geometry End-of-Course (EOC) scores, Galindo used the modified version of MPI, quizzes, and 

exam, Haciomeroglu, Chicken, and Dixon used AP calculus score, and Gallagher and De Lisi 

(1994) used SAT score. The different areas of mathematics and the nature of mathematics 

problems could have supported or contradicted the findings of this study with other studies.   

According to the research, computational problems versus word problems and algebra 

versus geometry problems have significant influence on students’ mathematics performance 

(Gallagher & De Lisi 1994). In contrast to the geometry questionnaire used in this study, 

Gallagher and De Lisi used the conventional (algorithmic methods) and unconventional (atypical 

solution strategies) problems for high school students to measure solution methods. Fennema, 

Carpenter, Jacobs, Franke, and Levi (1998) conducted interviews and administered tests 

simultaneously to assess first graders’ solution methods and performance on number facts, 

addition and subtraction problems. According to Gallagher, De Lisi, Holst, Mcgillicuddy-De 

Lisi, Morely, and Cahalan (2000) female students were more successful with conventional 

problems than with unconventional problems, but male students’ performance did not vary 

significantly with problem type. However, male students were more successful with 
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conventional problems than unconventional problems. Solving geometry problems may be 

significantly different than completing arithmetic or algebra problems because the nature of 

mathematics problems might contribute to gender difference (Meyer, 1989). For example, there 

was no gender difference in arithmetic or algebra problems; however, gender difference was 

found in geometry (Hyde, Fennema, & Lamon, 1990).  

The findings of this study were also consistent with the findings of Calvin, Fernandes, 

Smith, Visscher, and Deary (2010); Felson and Trudeau (1991); and Lawton (1997), who found 

that female students’ performance was significantly higher than male students’ performance. 

However, this is not consistent with some of the previous research studies (Battista, 1990; 

Fennema, 1974; Fennema & Sherman, 1978; Guay & McDaniel, 1977; Maccoby & Jacklin, 

1974; Matteucci & Mignani, 2011), who reported that male students outperformed female 

students in mathematics performance. Some studies, however, did not find relationships between 

gender and mathematics performance (Hall & Hoff, 1988; Penner & Paret, 2008). Hyde, 

Fennema, and Lamon (1990) also reported that there was no gender difference in students’ 

arithmetic or algebra performance in elementary and middle school. 

There are various factors, such as students’ Socioeconomic Status (SES), ethnicity, grade 

and age, number of mathematics courses students had taken, confidence in learning mathematics, 

mathematics content etc., which could have contributed to (in)consistency in the findings 

regarding gender differences in mathematics performance between this study and various other 

studies. For example, white students outperformed Hispanic students, and greater difference 

between males and females was noted in mathematics performance in Hispanic students than in 

White students (Moore & Smith, 1987). Similarly, confidence in learning mathematics is an 

effective factor related to mathematics achievement (Tartre & Fennema, 1995).  
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In contrast to findings of the majority of research studies, that males outperformed 

females, this study revealed that females outperformed males. One of the reasons could be the 

change in the trends of people’s perception of mathematics. People believe that mathematics is 

considered to be a male-dominant subject. Students’ mathematics achievement is also related to 

their attitude (Childs, 2013). Particularly, girls believed that mathematics is less useful for them 

and were less confident in their ability to do mathematics (Fennema & Sherman, 1978). During 

the last couple of decades, people’s perception of mathematics as a male-dominant subject might 

have changed. Parents might have particularly encouraged their daughters to enroll in more 

mathematics courses. Female students’ perception might have also changed as it relates to ability 

to do mathematics. Due to a change in the perception of parents as well as female students, 

female students might have higher geometry performance than males. However, more research 

studies need to be conducted in this area. 

Researchers investigated different aspects of gender that attributed differences in 

mathematics performance. Some researchers identified factors such as cognitive abilities, 

socioeconomic status etc., underlying gender difference in mathematics (Ceci, Williams, & 

Barnett, 2009; Wai, Cacchio, Putalaaz, & Makel, 2010) while others found that gender difference 

in mathematical performance was due to difference in preferred mode of processing 

mathematical information (Carr, Steiner, Kyser, Biddlecomb, 2010; Lin & Peterson, 1985). For 

example, Carr, Steiner, Kyser, and Biddlecomb (2010) investigated different factors in 

conjunction with gender differences in mathematics performance of students in elementary 

school. They reported that only two factors, fluency and strategy, indicated gender differences 

and significantly predicted mathematics competency. Similarly, Meyer (1989) reported that even 

the nature of mathematics problems can cause gender difference because he found that gender 
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difference was slightly higher in problem-solving tasks than in skill-level tasks. In fact, there are 

several factors that seem caused gender difference in preference for solution methods and 

mathematics performance. 

Carr, Steiner, Kyser, and Biddlecomb (2010) suggested that there might be some theories 

that explain gender differences in mathematics performance, but no single theory can be used to 

explain gender difference in mathematics because there can be various factors that contribute to 

the gender differences in preference for solution methods and mathematics performance. It is 

obvious that the various factors such as influences of parents and their educational backgrounds, 

students’ motivational factors, instructional strategy, teachers’ visuality, students’ demography, 

location of schools, and so forth could have influenced gender differences in preference for 

solution methods and mathematics performance.  

 During the interviews, students clearly explained the solution methods they used during 

the test or that they would use if they were required to do the problems. The researcher also tried 

to explore why students wanted to use diagrams and pictures over the rules and formulae, or 

vice-versa. Most students simply replied that they (dis)liked to use diagrams or formulae, but 

they were not able to explain clearly why they liked to use one solution method over the other. 

Qualitative research studies such as case studies, phenomenological studies, or ethnographic 

studies can provide more insights on why students prefer to use a specific solution method while 

solving mathematics problems and how it relates to gender and mathematics performance.   

Implications for Teaching 

This study found that the majority of students preferred to use visual solution methods. 

Moreover, results of statistical analysis indicated that as the geometry problems become more 

difficult, students tended to use visual solution methods. However, from problem-solving 
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methods and mathematical performance perspectives, it is essential for students to develop both 

solution methods because some problems are easier to solve using visual solution methods over 

nonvisual solution methods and vice-versa. Thus, the development of only one-sided preferred 

mode of mathematical processing results in narrow mathematical development for students 

because they do not have an opportunity to see mathematics problems from the other 

perspective. Similar to the recommendation made by Haciomeroglu, Chicken, and Dixon (2013), 

Haciomeroglu, Aspinwall, and Presmeg (2010), and Clements (2014), instruction needs to focus 

on students’ development of balance in their knowledge and skills between visual and nonvisual 

solution methods. In fact, students who use only (non)visual solution methods may have a 

limited understanding, and will not be able to provide a complete answer.  

This study also unveiled that about 90% of students were found to be visualizers while 

nonvisualizers and harmonic students consisted of only 9%. Because students had a strong 

preference for visual solution methods, either more emphasis on nonvisual solution methods 

seems to be in order in lesson activities or high school geometry books may need to include 

lesson activities that are more non-visually oriented. To be proficient in mathematics, students 

are encouraged to develop preference for both solution methods: visual and nonvisual.  

Some mathematics problems can be done in an easier way when they are solved with a 

(non)visual solution method. For example, when students used visual solution method to solve 

the problem number 3 of the geometry test, the majority of them got an incorrect answer. 

However, when students used nonvisual solution methods, the majority of them got the correct 

answer. Similarly, when students used visual solution methods to solve the problem number 11, 

the majority of them got correct answer. However, when they used the nonvisual solution 

method, the majority of them got an incorrect answer. Thus, based on the nature of mathematics 
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problems, one specific solution method to solve mathematics problems can be more useful over 

the other solution methods. Thus, it is equally important to develop both visual and nonvisual 

preference for solution methods in order to be a successful learner and performer of 

mathematics. 

Nonvisual teachers might over-emphasize rote memorization of mathematics rules and 

formulae for success in mathematics whereas visual teachers might be over reliant on figures and 

diagrams to assist their students to learn mathematics. In doing so, teachers inhibit students’ 

opportunity learning mathematics employing visual as well as nonvisual solution methods. 

Teachers might be unaware of the fact that they are over reliant on only one instructional 

strategy, which might lead their students to develop preference for using only visual or nonvisual 

solution methods. Thus, it is suggested that instruction should be focused on incorporating both 

visual and nonvisual teaching strategies in mathematics lesson activities.     

Limitations  

 This study had some limitations. The sample size was relatively small, and the students 

were not randomly selected. Moreover, only 17 students were interviewed and the researcher did 

not observe the classes. The participating teachers were not interviewed. The instructional 

strategies that participating teachers have been using in the classroom would be helpful to further 

explore and explicate the relationships between gender, preference for solution methods and 

mathematics performance.  

The researcher intended to pilot the geometry test. However, due to time constraints and 

for some other reasons, piloting the geometry test was not feasible. Piloting the geometry test 

would have provided more insights and ideas to make the test better for actual study, which 
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might yielded different results in this study. Moreover, the geometry test appeared to be difficult. 

If the problems were easier, the findings of this study could have been different. 

The results concerning preference for solution methods for this study were primarily 

based on the geometry questionnaire and the geometry test. However, the researcher also 

conducted a short interview with 17 students to explore their preference for solution methods. 

Conducting similar interviews for the entire sample of participants might have provided more 

accurate and comprehensive results regarding preference for solution methods.   

Another limitation of this study is that it was impossible to know whether students were 

putting their full effort into solving the geometry problems. Some students may have been 

randomly guessing answers and randomly choosing solution methods. This approach would 

 reduce the validity of the results of this study and could affect the findings of this study.  

 As explained earlier, the participating teachers of this study participated in geometry 

professional series where they were encouraged to use various teaching learning materials, 

including technology. Thus, mathematics teachers from the participating schools might have 

used various types of mathematical resources such as manipulatives, dynamic geometry 

software, and so forth. Integrating technology and various mathematical resources in the lesson 

activities might have encouraged their students to solve the mathematics problems using more 

visual solution methods. This could be a reason that a majority of students were visualizers in 

this study. If participating teachers were not participated in the geometry professional series, the 

findings of this study could have been different. 

Recommendations for Future Research   

The sample in this study was students in grades 9 through 12, enrolled in different 

courses: algebra 2, regular geometry, pre-calculus, and financial algebra. In future studies 
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researchers could look at students’ geometry performance and preference for solution methods, 

limiting the sample to a particular group of students, for example groups of geometry students. 

Beyond this, researchers could conduct similar studies on a specific topic from high school 

geometry. Similar studies can also be conducted in other branches of mathematics such as 

algebra. 

About 90% of students were found to be visualizers. There could be different factors why 

a majority of students preferred to use visual solution methods. For example, instructional 

strategies and technology-integrated lesson activities could have influenced students’ preference 

for solution methods. Beyond this, even teachers’ preference of instructional strategies might 

have affected students’ preferred mode of processing mathematical information. Thus, 

researchers could further investigate various factors in conjunction with students’ preference for 

solution methods. Including the quantitative research, the researcher recommends conducting 

more qualitative studies to delve deeper regarding students’ preference for solution methods, 

gender difference, and mathematics performance. The qualitative studies would be helpful to 

find why students prefer to use one solution method over the other and how they develop one-

sided preference for solving mathematics problems.  

The geometry test did not cover the entire content of a high school geometry curriculum. 

Thus, the results and findings reported in this study could have been different if the geometry test 

had been designed based on different geometry topics other than those used in this study. Rather 

than trying to cover different topics, researchers could investigate students’ preference for 

solution methods focusing on a specific geometry topic, which might lead to a more general 

conclusion. 
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Mathematics is considered to be a male-dominant subject (Fennema & Sherman, 1977). 

Noddings (1998) posed a question as to why males outperformed females; is it because females 

are simply less interested than males in mathematics. However, female students outperformed 

male students in this study. The findings of this study could be important and interesting from a 

gender-issue perspective. The sample size of this study was small, and the findings of this study 

may not be generalized. Therefore, more research studies need to be conducted with greater 

sample size in various content areas of mathematics to further examine the findings of this study.    

The researcher has also tried to explore why students like to use one solution method 

over the others. Students were not able to explain clearly why they liked to use one solution 

method over the others. Qualitative research studies such as case studies, phenomenological 

studies, or ethnographic studies can help to explore students’ preference for solution methods 

and its relationships with mathematical performance and gender.  
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APPENDIX A: GEOMETRY TEST  
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Geometry Test 

First of all, I would like to thank you for taking part in this research study. Please do your best on 

the test; however, you will not receive a grade for it.  

 

1. Name: _____________________________                            

2. Circle to indicate appropriate: 

 

Gender:     Male           Female 

 

Ethnicity:       White         African American            Asian or Pacific Islander  

 

      Hispanic        Multiracial                 Native American         Other 

 

Your Age _________ Grade _____ 

 

 

The geometry test contains 12 items. 

On each page, there is a problem that you are asked to try to solve. Complete the problem to the 

best of your ability. Show your work.  Be sure to place your answer in the answer box provided 

on the page. 
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Problem 1 

What is the coordinate of the point on the number line halfway between 8 and  +5? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                         Answer 
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Problem 2 

A wire is stretched tightly from the top of a 60 foot tall pole to the top of a 10 foot pole. 

Both poles are standing vertically in level ground. If the poles are 100 feet apart, how 

long is the wire? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answer 
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Problem 3 

Which three of the points (2,6), (3,8), (4,12), and (6,18),  lie on a straight line? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                      Answer 
  



 

131 

 

Problem 4 

When the circumference of a circle is decreased from 200 inches to 150 inches, by how 

many inches is the diameter decreased? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answer 
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Problem 5 

David and Lisa have a rectangular swimming pool that measures 10 feet by 7 feet. A 

cement walkway 8 feet wide boarders the pool on all sides. (Thus, the walkway forms a 

rectangular region surrounding the pool). If David and Lisa want to erect a fence to 

enclose the pool and walkway, how many feet of fencing will they need? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answer 
  



 

133 

 

Problem 6 

Sixty-four identical cubes are arranged to form the larger cube depicted below. If the 

entire outside surface of the large cube is painted, how many of the smaller cubes will 

have no painted faces?  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answer 
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Problem 7 

Points A (1,1), B (7,1), and C (3,5) are the vertices of the  ∆ ABC . Find the length of the 

midsegment DE  by connecting the midpoints of sides AC and BC . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answer 
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Problem 8 

Find the slope of the line segment joining the points A (1,1) and B (3,2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answer 
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Problem 9 

∆ ABC  with vertices A (4,3), B (2,1), and C (6,2) is reflected about the X axis, where 

∆AʹBʹCʹ is the image of ∆ ABC . Aʹ (x,y), Bʹ (2,-1), and Cʹ (6,-2) are the vertices of the  

∆AʹBʹCʹ. Find the coordinates of the point Aʹ.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answer 
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Problem 10 

Find the distance between the points P (−6,1) and Q (2,1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answer 
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Problem 11 

Does the point (5,3) lie on the circle centered at the point (5,0) with a radius of 3 units? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answer 
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Problem 12 

What is the maximum number of points of intersection are possible between a circle and 

a square? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answer 
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APPENDIX B: GEOMETRY QUESTIONNAIRE  
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Geometry Questionnaire 

How did you solve it? 

Although there are correct answers to the problems, there are no correct ways to think about 

solving the problems. So be sure that you accurately indicate the type of thinking you used in 

attempting the problem.  

It does not matter whether you completed the solution or not; whether your answer is right or 

wrong. If your solution is similar to one of the methods provided in the list, please choose the 

method that best explains how you solved the problem, even if other methods are considered. 

Please put a tick mark () in the appropriate box. 

 

Name___________________________________________ 
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PROBLEM 1 

What is the coordinate of the point on the number line halfway between −8 and  +5? 

 

 

Solution Method 1 

I did not draw a diagram or try to visualize the situation. I tried to logically deduce the 

answer based on a careful analysis of the given information using arithmetic, algebra, or 

formula. For instance, I added −8 and 5 and divided by 2. 

           
8 5

2

 
 = 

3

2


 =  −1.5 

 

Solution Method 2 
I drew a diagram. I was then able to figure out the answer using the diagram. For 

instance, I counted halfway from the point −8 towards the left and halfway from the point 
5 towards the right in the diagram. Thus, the coordinate is -1.5. 

 

 
 

Solution Method 3 

I did not draw a diagram, but I tried to visualize the situation. I was then able to figure 

out the answer. 

 

Other Method  

I did not use any of the above methods. I attempted the problem in the following way: 

 

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------ 
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PROBLEM 2 

A wire is stretched tightly from a top of a 60 foot tall pole to the top of a 10 foot pole. Both 

poles are standing vertically in level ground. If the poles are 100 feet apart, how long is the 

wire? 

 

 

Solution Method 1 

I did not draw a diagram or try to visualize the situation. I tried to logically deduce the 

answer based on a careful analysis of the given information using arithmetic, algebra, or 

formula. For instance, I used Pythagorean Theorem to find the length of the wire. 

The difference in the height between the two poles is 50 feet. 

      Distance between the two poles is 100 feet. 

      Using Pythagorean Theorem 

      Length of the wire = 
2 250 100 = 2500 10000 = 12500 =50 5  feet 

         

 Solution Method 2 

I drew a diagram. I was then able to figure out the answer using the diagram. For 

instance, I used Pythagorean Theorem to determine the length of the wire. 

 

 
 

Length of the wire = 
2 250 100 = 2500 10000 = 12500 =50 5  feet 

 

Solution Method 3 
I did not draw a diagram, but I tried to visualize the situation. I was then able to figure 

out the answer. 

 

Other Method  

I did not use any of the above methods. I attempted the problem in the following way: 

 

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------ 
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PROBLEM 3 

 

Which three of the points (2,6), (3,8), (4,12), and (6,18) lie on a straight line? 

 

Solution Method 1: 

I did not draw a diagram or try to visualize the situation. I tried to logically deduce the 

answer based on a careful analysis of the given information using arithmetic, algebra, or 

formula. For instance, I used the slope formula to calculate the slope between two given 

points, 2 1

2 1

y y
m

x x





. I then figured out points with same slope lie in a straight line. 

Slope of the line segment joining the points (6,18) and (4,12) 

              2 1

2 1

y y
m

x x





12 18

4 6





6

2





= 3 

Slope of the line segment joining the points (2,6) and (4,12) 

              2 1

2 1

y y
m

x x





12 6

4 2





6

2
 = 3 

Thus, the points (2,6), (6,18), and (4,12) lie on a straight line. 

Solution Method 2: 

I drew a diagram. I was then able to figure out the answer using the diagram. For 

instance, I drew a line to determine which points were on the same line.  

 

 

Solution Method 3 

I did not draw a diagram but I tried to visualize the situation. I was then able to figure out 

the answer. 

Other Method  

I did not use any of the above methods. I attempted the problem in the following way: 

 

------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------- 
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PROBLEM 4 

When the circumference of a circle is decreased from 200 inches to 150 inches, by how 

many inches is the diameter decreased? 

 

 

Solution Method 1 

I did not draw a diagram or try to visualize the situation. I tried to logically deduce the 

answer based on a careful analysis of the given information using arithmetic, algebra or 

formula. For instance, I used the formulaC d where C is circumference and d is the 

diameter of a circle.  

1 1C d                                   2 2C d  

1200 d                              1150 d  

1

200
d


                                  

2

150
d


  

Decrease in diameter, 1 2d d =
200 150

 
  =

50


 = 15.9 inches 

Solution Method 2 

I drew a diagram. I was then able to figure out the answer using the diagram. I then, used 

algebra and  formula to find the answer. 

 

1 1C d                                   2 2C d  

1200 d                              1150 d  

1

200
d


                                  

2

150
d


  

Decrease in diameter, 1 2d d =
200 150

 
  =

50


 = 15.9 inches 

Solution Method 3 
I did not draw a diagram but I tried to visualize the situation. I was then able to figure out 

the answer. 

 

Other Method  

I did not use any of the above methods. I attempted the problem in the following way: 

 

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------ 
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PROBLEM 5 

David and Lisa have a rectangular swimming pool that measure 10 feet by 7 feet. A cement 

walkway 8 feet wide boarders the pool in all sides. If David and Lisa want to erect a fence 

to enclose the pool and walkway, how many feet of fencing will they need? 

 

Solution Method 1 

I did not draw a diagram or try to visualize the situation. I tried to logically deduce the 

answer based on a careful analysis of the given information using arithmetic, algebra, or 

formula. For instance, I used the formula 2( )l b  to find the perimeter. I added the width 

of cement walkway to the length and breadth of the swimming pool. 

   Now, dimensions of swimming pool including the walkway are,  

   Length (l) = (10+8+8) = 26 

   Breadth (b) = 7+8+8 = 23 

    Length of fence = 2( )l b = 2(26 23) = 2(49) = 98 feet. 

       

Solution Method 2:  
I drew a diagram representing the situation. I was then able to figure out the answer using 

the diagram. For instance, I used formula 2( )l b  to find the length of the fence. Length 

of fence = 2( )l b = 2(26 23) = 2(49) = 98 feet. 

 

 
 

Solution Method 3  

I did not draw a diagram but I tried to visualize the situation. I was then able to figure out 

the answer. 

 

Other Method  

I did not use any of the above methods. I attempted the problem in the following way: 

 

------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------- 
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PROBLEM 6 

Sixty-four identical cubes are arranged to form the larger cube depicted below. If the 

entire outside surface of the large cube is painted, how many of the smaller cubes will have 

no painted faces?  

 

 
Solution Method 1  
I did not draw a diagram or try to visualize the situation. I tried to logically deduce the 

answer based on a careful analysis of the given information using arithmetic, algebra, or 

formula. For instance, I used the formula 3
V n  to find the length of the side of the big 

cube. 364 n    4 n , Each face of large cube has 4 • 4 = 16 small cubes with painted 

faces. I take off one small cube from each side from the large cube and subtracted it from 

the side of the large cube (4-2 =2).  Number of small cubes that do not lie on the faces of 

large cube is 2 • 2 • 2 = 8 small cubes. Thus, 8 small cubes will have no pained faces. 

       

Solution Method 2 
I used the diagram to help me count the small cubes on the outside of the large cube 

because all of these cubes would be painted. I then subtracted this number form the total 

number of small cubes. Total number of small cubes with painted faces is 56. Total 

number of cubes is 64. 

Thus, number of small cubes with no painted faces = 64 56 = 8 

 

Solution Method 3 
I tried to visualize how many small cubes were on the inside of the large cube because 

these cube would not be painted. 

 

Other Method 
I did not use any of the above methods. I attempted the problem in the following way: 

 

------------------------------------------------------------------------------------------------------------

-------------------- 

--------------------------------------------------------------------------------------------------------- 
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PROBLEM 7 

Points A (1,1), B (7,1), and C (3,5) are the vertices of the  ∆ ABC . Find the length of the 

midsegment DE  by connecting the midpoints of sides AC  and BC . 

 

 

Solution Method 1 

I did not draw a diagram or try to visualize the situation. I tried to logically deduce the 

answer based on a careful analysis of the given information using arithmetic, algebra, or 

formula. For instance, I figured out the length of the side AB  by using distance formula.  

   AB  = 
2 2

2 1 2 1( ) ( )x x y y   = 
2 2(7 1) (1 1)   = 

2 2(6) (0) = 6 units 

 I know from the midsegment theorem, segment joining midpoints of two sides of a 

triangle is parallel to the third side and half of its length. Thus, length of DE  is 3 units. 

 

Solution Method 2 

I drew a diagram representing the situation. I was then able to figure out the answer using 

the diagram. I simply counted distance from the point D to the point E on the coordinate 

axes which is 3 units. 

 

 
 

Solution Method 3 

I did not draw a diagram but I tried to visualize the situation. I was then able to figure out 

the answer. 

 

Other Method  
I did not use any of the above methods. I attempted the problem in the following way: 

 

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------ 
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PROBLEM 8 

Find the slope of the line segment joining the points A (1,1) and B (3,2). 

 

 

Solution Method 1 

I did not draw a diagram or try to visualize the situation. I tried to logically deduce the 

answer based on a careful analysis of the given information using arithmetic, algebra, or 

formula. For instance, I used the slope formula. 

2 1

2 1

y y
m

x x





 

2 1

3 1





1

2
  

 

Solution Method 2: 

I drew a diagram representing the situation. I was then able to figure out the answer using 

the diagram. I calculated the ratio of rise over run between the two points on the 

coordinate axes.  

    Rise = 1 units, Run = 2 units.  

    Slope, 
rise

m
run

  
1

2
  

 

 
 

Solution Method  

I did not draw a diagram but I tried to visualize the situation. I was then able to figure out 

the answer. 

 

Other Method  

I did not use any of the above methods. I attempted the problem in the following way: 

 

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------ 
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PROBLEM 9 

∆ ABC  with vertices A (4,3), B (2,1), and C (6,2) is reflected about the X axis, where 

∆AʹBʹCʹ is the image of the ∆ ABC . Aʹ (x, y), Bʹ (2,-1), and Cʹ (6,-2) are the vertices of the 

image AʹBʹCʹ. Find the coordinates of the point Aʹ.  
 

 

Solution Method 1 

I did not draw a diagram or try to visualize the situation. I tried to logically deduce the 

answer based on a careful analysis of the given information using arithmetic, algebra, or 

formula. For instance, I used formula for the reflection of a point about the x axis. 

       1( , ) ( , )P x y P x y     

      Using this formula the coordinates of the point Aʹ is (4,-3).   

                                                          

Solution Method 2 
I drew a diagram representing the situation. I was then able to figure out the answer using 

the diagram. I drew the triangle ABC on the coordinate axes. I calculated the distance 

from the point A to the x axis. And, I then reflected the point A to the below about the x 

axis as a same distance from the point A to the x axis. The coordinates of the point Aʹ is 

(4,-3). 

 
Solution Method 3 

I did not draw a diagram but I tried to visualize the situation. I was then able to figure out 

the answer. 

 

Other Method 
I did not use any of the above methods. I attempted the problem in the following way: 

 

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------ 
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PROBLEM 10 

Find the distance between the points P (−6,1) and Q (2,1). 

. 

                                                   

Solution Method 1 

I did not draw a diagram or try to visualize the situation. I tried to logically deduce the 

answer based on a careful analysis of the given information using arithmetic, algebra, or 

formula. For instance, I used the distance formula 
2 2

2 1 2 1( ) ( )x x y y     

Let P (-6, 1) be 1 1( , )x y  and Q (2, 1) be 2 2( , )x y  

PQ = 2 2(2 ( 6)) (1 1)     = 2 2(8) (0) = 8 units. 

                                                          

Solution Method 2 
I drew a diagram representing the situation. I was then able to figure out the answer using 

the diagram. For instance, I counted the distance between the points P and Q on the 

coordinate system. The distance is 8 units. 

 

 

Solution Method 3 

I did not draw a diagram but I tried to visualize the situation. I was then able to figure out 

the answer. 

 

Other Method  
I did not use any of the above methods. I attempted the problem in the following way: 

 

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------ 
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PROBLEM 11 

Does the point (5,3) lie on the circle centered at the point (5,0) with a radius of 3 units? 

 

 

Solution Method 1 

I did not draw a diagram or try to visualize the situation. I tried to logically deduce the 

answer based on a careful analysis of the given information using arithmetic, algebra, or 

formula. For instance, I used the standard equation for a circle, 2 2 2( ) ( )x h y k r    .  

                       2 2 2( 5) ( 0) 3x y     

I then plugged the point (5, 3) in the above equation of the circle to examine whether it 

lies on the circle. The point (5,3) lies on the circle.  

                                                     

Solution Method 2 
I drew a diagram representing the situation. I was then able to figure out the answer using 

the diagram. I drew the circle and I plotted the point (5,3) to examine whether it lies on 

the circle. The point (5,3) lies on circle.  

 

 

Solution Method 3: 

I did not draw a diagram but I tried to visualize the situation. I was then able to figure out 

the answer. 

. 

Solution Method  
I did not use any of the above methods. I attempted the problem in the following way: 

 

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------ 
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PROBLEM 12 

What is the maximum numbers of points of intersection are possible between a circle and a 

square? 

 

 

Solution Method 1 

I did not draw a diagram or try to visualize the situation. I tried to logically deduce the 

answer based on a careful analysis of the given information using arithmetic, algebra, or 

formula. For instance, a line intersects a circle at most two points. A square has four 

sides; thus, it intersects a circle at 8 points.  

 

Solution Method 2 

I drew diagrams representing the situation. I was then able to figure out the answer using 

the diagram. I drew squares and circles intersecting each other in different possible ways. 

I then tried to figure it out by manipulating the squares and circles. Square intersects at 8 

points to the circle. 

 

                                                 

 

 

 

 

 

 

 

 

 

 

Solution Method 3: 

I did not draw a diagram but I tried to visualize the situation. I was then able to figure out 

the answer. 

 

Other Solution Method  

I did not use any of the above methods. I attempted the problem in the following way: 

 

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------ 
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APPENDIX C: INTERVIEW QUESTIONS  
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Geometry Interview 

First of all, I would like to thank you for taking part in this short interview. You will be 

asked some questions regarding the solution methods you used to solve geometry problems in 

the geometry test that you have taken recently. If you do not remember the solution methods you 

used that is ok. Please, try to explain how you would solve them.  

Problem 1 

What is the coordinate of the point on the number line halfway between 8 and +5? 

Questions: 

1. How did you solve this problem? Could you please explain? 

2. If you did not solve it during the test, how would solve it. 

Problem 4 

When the circumference of a circle is decreased from 200 inches to 150 inches, by how many 

inches is the diameter decreased? 

Questions: 

1. How did you solve this problem? Could you please explain? 

2. If you did not solve it during the test, how would solve it. 

Problem 8 

Find the slope of the line segment joining the points A (1,1) and B (3,2). 

 
Questions: 

1. How did you solve this problem? Could you please explain? 

2. If you did not solve it during the test, how would solve it. 
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Additional Question 

Visualizers are the ones whose solution method primarily is relied on drawings, pictures, and 

figures while solving mathematics problems. Nonvisualizers are the ones whose solution 

methods primarily is based on formula, arithmetic, or logical reasoning while attempt to solve 

mathematics problems. 

 

What do you categorized yourself: visualizer or nonvisualizer?  
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APPENDIX D: INTERVIEW TRANSCRIPT 
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Students Problem 1 Problem 4 Problem 8 Visual/nonvisual 

1 I drew a line. I think I solved it. I 

was thinking about 

one of the diameters 

like how to use it 

solve and then I drew 

a circle. 

I kind of drew 

 it. 

Visualizer 

2 I drew a graph 

and put a point -

8 and 5 on the 

graph, and I 

counted evenly 

what I got to 

middle point, the 

middle 

coordinates 

between 

negative 8 and 5. 

I don’t know. I have 

to write it. I don’t 

know. I don’t 

remember, but I think 

I did it. So 

circumference 

200….I think I drew 

it. 

First a plotted 

the point A and 

then plotted B, 

and I then I used 

rise over run to 

count like slope 

between these 

two points.  

Sometimes I 

also use 

formula. 

Visualizer 
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3 So, I would draw 

a graph and I 

would plots two 

of numbers 

given and I 

would find the 

midway between 

the lines, and 

that would be 

line halfway. 

I definitely had 

drawn for this too. I 

would use references 

sheet if I have 

provided a reference 

sheet. I do not know 

definitely geometry 

and I do not 

remember the 

formula. I would 

draw it and see 

visually. 

I drew a graph 

and I  thought, I 

used formula 

because I can 

visually see rise 

over run and 

drew a graph. 

Definitely visualizer. 

4 I did the graph 

and I plotted this 

number and that 

number and 

coordinates, and 

then I plugged 

this number. 

I drew a circle. Then 

it says it decreases 

250 to 150. I drew a 

circle and then I 

visualized it. 

This one I also 

drew a graph 

because two 

coordinates 

given A and B, 

and I did rise 

and run because 

this is the way 

we find it. 

Visualizer 

5 I used a formula. I did not use 

drawings. 

I used a 

formula. 

Non-visualizer 
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6 I drew a number 

line. 

I drew a circle. I used formula. More visualizer 

7 I made a graph. I will draw a circle. I made graph. Visualizer 

8 I kind of drew a 

number line. 

I drew a circle. I drew a line 

with coordinate. 

Visualizer 

9 I would draw a 

number line. 

I would draw a 

circle. 

I would draw a 

coordinate line 

an plot it on the 

line 

Visualizer 

10 I do not know 

how to solve it. I 

think I drew on 

the graph paper. 

I used rise over 

run and drew on 

graph. 

Divide 200 and 

150…I drew a 

picture. 

I would put the 

points where A 

as what it is and 

B and draw 

them. 

Visualizer 
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11 I think what I 

did is  graph and 

... 

I think what I did is I 

did 200 minus 150 

and I got my answer 

like that I did divide. 

I used y two 

minus y one 

over x two 

minus x one. I 

used slope 

formula. I did 

not make 

drawing. 

I think I am kind of 

both. I got visualizing 

and I got don’t. 

12 I did a number 

line and then 

decided you 

know… in kind 

of between lines. 

 

I drew out a circle. I did the 

formula of y 

two minus y one 

over x two 

minus x one.   . 

I am more visual. 

13 I drew a number 

line and counted 

it. 

I drew the circle and 

subtracted it to get 

circumference. 

I drew the line 

segment and I 

used rise over 

run. 

I am a visualizer 

because I used 

drawings. 

14 I drew a number 

line. 

I drew a circle. I used formula 

and did 

drawings too. 

Visual 



 

162 

 

15 I just made a 

number line and 

kind of between 

pretty much 

median. 

I used the 

circumference 

equation. I did not 

use any drawings. 

I used y two 

minus- y one 

over x two 

minus x one. I 

did not use 

drawings. 

Probably I used 

formula more often 

and I am more non-

visualizer 

16 I used a number 

line and I 

basically found 

midpoint 

between the two. 

I used the formula of 

circumference of a 

circle and I found the 

one for 200 inches 

and I found one for 

150 inches and solve 

the diameter because 

that was missing 

what was and I 

subtracted two. 

I graphed the 

points and 

found the half 

way between 

the points. 

Well, I think, I 

qualified for both 

categories because 

once I graphed 

actually I used formula 

to solve it, so like lot 

of them bunch of them 

I can do with formula 

and pictures also. 
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17 I Solved it by 

writing a number 

line between 

negative 8 and 

positive 5, and 

how many 

difference 

between them. 

I think I would use 

formula. I do not use 

drawings. 

I drew a graph. I 

did not use 

formula to solve 

it. 

I am more a visualizer. 

I like to draw. I do not 

know why I like to 

draw. 
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APPENDIX F: INSTITTIONAL REVIEW BOARD APPROVAL 
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APPENDIX G: PARENT CONSENT FORM 
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