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ABSTRACT 

This multiple-case study examines the explicit and implicit assumptions of six veteran 

calculus instructors from three types of educational institutions, comparing and contrasting their 

views on the iteration of conceptual understanding and procedural fluency of pre-calculus topics.  

There were three components to the research data recording process.  The first component was a 

written survey, the second component was a “think-aloud” activity of the instructors analyzing 

the results of a function diagnostic instrument administered to a calculus class, and for the third 

component, the instructors responded to two quotations.  As a result of this activity, themes were 

found between and among instructors at the three types of educational institutions related to their 

expectations of their incoming students’ prior knowledge of pre-calculus topics related to 

functions.  Differences between instructors of the three types of educational institutions included 

two identifiable areas: (1) the teachers’ expectations of their incoming students and (2) the 

methods for planning instruction.  In spite of these differences, the veteran instructors were in 

agreement with other studies’ findings that an iterative approach to conceptual understanding and 

procedural fluency are necessary for student understanding of pre-calculus concepts.  

 Keywords: Student misconceptions of functions; Teacher expectations; Transition from 

high school to university mathematics; Diagnostic assessment; Error analysis; Conceptual 

understanding; Procedural fluency 
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CHAPTER 1: INTRODUCTION 

In the mid-1970s several mathematics educators posed the question, “Should we teach 

calculus in high school?” (Mann, 1976; Rash, 1977; Sorge & Wheatley, 1977)  Ferrini-Mundy 

and Gaudard (1992) intended to answer that question through a study conducted in the 1987-88 

academic year at a mid-sized university in a first semester calculus course with 751 college 

students.  The study revealed that the highest level of mathematics one studies in secondary 

school has the strongest influence on subsequent completing of a bachelor’s degree (p. 56).  A 

better question before us now is not should we teach calculus in high school, but rather how 

should we teach calculus in high school.  In an attempt to contribute to the mathematics 

education literature on how we should teach calculus in high school, I conducted a qualitative 

study of calculus instructors, but not just high school calculus instructors, rather instructors at the 

postsecondary levels as well.  The aim of this research was to compare and contrast the 

similarities and differences between and among instructors of calculus at three types of 

educational institutions, high school, state college and university, where first semester college 

calculus is offered.  

Although the Ferrini-Mundy and Gaudard (1992) study did not address affective matters, 

it is interesting to note that many college calculus instructors in the study noticed a “false 

confidence” among students with a year’s calculus course in secondary school.  The authors 

suggest that secondary school courses in calculus may predispose students to the procedural 

aspects of the college course and may be less open to the conceptual development of the 

derivative and integral (p. 68-9).  Similarly, Orton (1985) states the crucial issue is not if or when 

calculus should be taught, but how should instructors promote the understanding of calculus and 



2 

pre-calculus concepts such that students can comprehend and retain the information presented.  

In order to examine the issue of how instructors promote the understanding of calculus, this study 

focused on the calculus instructors’ assumptions of their incoming students’ prior knowledge at 

the three educational institutions where calculus is taught. 

Calculus is offered at three separate types of educational institutions: high schools, 

community/state colleges and four-year universities.  The first semester of calculus, which is the 

focus of this study, is offered in most high schools through the Advanced Placement (AP) 

Calculus AB course.  According to the College Board,  

An AP course in calculus consists of a full high school academic year of work that is 

comparable to calculus courses in colleges and universities. It is expected that students 

who take an AP course in calculus will seek college credit, college placement, or both, 

from institutions of higher learning…Calculus AB can be offered as an AP course by any 

school that can organize a curriculum for students with advanced mathematical ability 

(College Board AP, 2006, p. 3). 

  The major difference between AP Calculus AB and the first semester of Calculus in 

postsecondary institutions is the length of time of instruction.  AP Calculus is designed as a year-

long course while Calculus I at most postsecondary institutions is a semester course.  In addition 

to the length of time from start to finish of the course, the amount of time the students spend with 

the instructor in the classroom is also worth noting.  In a secondary school, students usually meet 

with their instructor on a daily basis for 45 minutes, or 90 minutes every other day if the school 

is on a “block” schedule.  At the postsecondary institutions, classes typically meet for two 75 - 

90 minute sessions per week.  Although it states on the AP Calculus AB course description that 

“each AP course is modeled upon a comparable college course, and college and university 

faculty play a vital role in ensuring that AP courses align with college-level standards” (College 

Board AP, 2011, p. 2), surveys have shown that secondary and postsecondary mathematics 
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instructors tend to have differing views as to the importance of particular knowledge and skills 

that will lead to a student’s success in college-level mathematics (ACT 2006, 2009).  

Studies have compared high school and college faculty ratings of importance of specific 

content and pedagogy with respect to success in college (Artigue et al., 2007; Carlson, 1998; 

James, 1995; Stroumbakis, 2010); these studies were focused on the content of the calculus 

course itself.  In contrast, this study focuses on the calculus instructors and their underlying 

assumptions about the iteration of conceptual understanding and procedural fluency.  

Specifically, the instructional decisions calculus instructors make based upon their assessment of 

their students’ prior knowledge of functions.  Topics in mathematics prior to calculus include 

arithmetic, algebra, geometry and trigonometry, but according to the Atlantic Universities Inter-

university Council on the Sciences (APICS) Mathematics Committee, functions are the 

mathematical objects that link quantities and much of calculus involves manipulating functions 

(Dawson, 2007). “A strong understanding of the function concept is also essential for any student 

hoping to understand calculus – a critical course for the development of future scientists, 

engineers, and mathematicians” (Carlson & Oehrtman, 2005, p.1).  Since functions are the 

fundamental objects of calculus, it is appropriate to begin a study of teaching calculus with 

students’ prior knowledge of functions.    

Rationale 

Calculus is considered the first postsecondary course in a string of mandatory 

mathematics courses for students wishing to pursue careers in Science, Technology, Engineering 

and Mathematics (STEM).  “Many students do not enter college prepared for mathematics at the 

level required for most STEM majors” (Cheatham, Rowell, Nelson, Stephens, & Tenpenny, 
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2012, p. 1).  Cheatham et al. found that if students perform poorly in early mathematics courses 

in college, it may discourage students from pursuing a STEM-related degree, or worse, drop out 

of college, leading to a reduced STEM workforce.  Organizations such as STEM Talent 

Expansion Program (STEP), funded by the National Science Foundation (NSF), were founded to 

improve recruitment and retention of STEM students based on "best practices" of prerequisite 

courses with typically high failure rates such as pre-calculus and calculus (STEP, n.d.).  This and 

other such organizations believe a successful experience in calculus may lead to continued 

success in mathematics and further study in STEM fields (Cheatham et al., 2012). 

The timeliness and relevance of this particular study was made clear by the March 2012 

release of the joint position statement of the Mathematical Association of America (MAA) and 

the National Council of Teachers of Mathematics (NCTM).  The statement reads as follows: 

Although calculus can play an important role in secondary school, the ultimate goal of 

the K–12 mathematics curriculum should not be to get students into and through a course 

in calculus by twelfth grade but to have established the mathematical foundation that will 

enable students to pursue whatever course of study interests them when they get to 

college. The college curriculum should offer students an experience that is new and 

engaging, broadening their understanding of the world of mathematics while 

strengthening their mastery of tools that they will need if they choose to pursue a 

mathematically intensive discipline (National Council of Teachers of Mathematics 

[NCTM], 2012, p. 1). 

 

Along with the statement, NCTM and MAA listed several requirements and suggestions as to 

how this goal could be accomplished.  This joint statement served as a background for the 

research questions, the initial surveys, and the subsequent interviews of both secondary and 

postsecondary calculus instructors in this study. 

 This was not the first joint statement issued by MAA and NCTM.  In 1986 the presidents 

of these two professional organizations sent a letter to secondary mathematics teachers stating 
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two problems with teaching single variable calculus in the high school.  “The first problem 

concerns the relationship between the calculus course offered in high school and the succeeding 

calculus courses in college” (The Mathematical Association of America [MAA], 1986, para.2).  

The MAA and NCTM presidents recommended that all students taking calculus in high school 

who are performing satisfactorily in the course should expect to place out of the comparable 

college calculus course and not use the high school course as an introductory course prior to 

taking Calculus 1 at the college.  This recommendation spoke directly to the teachers 

expectations for their students.  The teachers should expect students that successfully complete 

AP Calculus in high school to have the knowledge and skills necessary to successfully complete 

the follow-up Calculus course at the college-level.  The second problem addressed in the 1986 

letter concerned preparation for the calculus course, which was the focus of this study.  The letter 

stated: 

MAA and NCTM recommend that students who enroll in a calculus course in secondary 

school should have demonstrated mastery of algebra, geometry, trigonometry, and 

coordinate geometry. This means that students should have at least four full years of 

mathematical preparation beginning with the first course in algebra. The advanced topics 

in algebra, trigonometry, analytic geometry, complex numbers, and elementary functions 

studied in depth during the fourth year of preparation are critically important for students' 

later courses in mathematics (The Mathematical Association of America [MAA], 1986, p. 

1). 

During the American Youth Policy Forum, Conley (2009) stated the importance of 

secondary and postsecondary educational institutions coming together to discuss and explicitly 

define the knowledge and skills necessary for a student to succeed in credit-bearing general 

education courses at the university level.  Conley defined the term succeed as “completing entry-

level courses at a level of understanding and proficiency that makes it possible for the student to 

consider taking the next course in the sequence or the next level of course in the subject area” 
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(p.5).  When a student has reached this level, he or she is considered “college-ready.”  There is a 

larger proportion of high school students today aspiring for a college education than ever before; 

however, not all are “college-ready.”  According to the Chicago Public School Postsecondary 

Department and the Consortium’s Research Project, 40% of all tenth-graders aspired to a 4-year 

degree in 1980 and that percentage jumped to 83% in 2005.  Although the majority of tenth-

grade students aspire for a 4-year degree, less than one-third actually attain that goal (Roderick, 

Nagaoka, Coca, & Moeller, 2008, p. 2).  Although the percentage of students that begin work 

leading toward a college degree has increased dramatically, the percentage of students that 

actually accomplish their goal of completing a college degree has remained relatively unchanged 

(Conley, 2005).  Waits and Demana (1988) found that only 28% of the freshmen entering Ohio 

State University with five or more years of preparatory mathematics were ready for calculus 

according to the college placement test.  If we can clearly identify the differences in expectations 

between secondary and postsecondary instructors, a conversation can begin amongst and 

between the instructors of Calculus at the three educational institutions about how to best prepare 

students for the challenges they will face in postsecondary mathematics.  

The data about calculus readiness suggest a need for a careful look at the content of the 

college-preparatory mathematics courses.  The current curriculum scratches the surface 

of too many concepts and fails to dig deeply enough for students to acquire needed 

understanding.  The curriculum should stress problem-solving and place major emphasis 

on the fundamental concepts of functions and graphs, concepts that are so very important 

for the successful study of collegiate mathematics (Waits & Demana, 2008, p. 13). 

The above quotation goes to the role of conceptual knowledge versus procedural knowledge in 

the teaching and learning of mathematics.  Twenty-five years later, mathematics educators are 

continuing to state that the expectations of secondary and postsecondary calculus instructors 
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differ on their students’ procedural knowledge and conceptual understanding of mathematics 

(Stoumbakis, 2010; Zelkowski, 2011). 

Conceptual Framework 

Debates on learning have often focused on which type of knowledge, conceptual or 

procedural, develops first or is more important (Baroody, 2003; Hiebert & LeFevre, 1986; Rittle-

Johnson & Seigler, 1998; Star, 2005).  However, Rittle-Johnson, Siegler, and Alibali (2001) 

believe that the efforts expended on debating which type of knowledge is more important may 

have overshadowed the importance of the interactions between the two knowledge types during 

development.  Specifically, knowledge of concepts and procedures may develop iteratively, with 

increases in one type of knowledge leading to gains in the other type of knowledge, which in turn 

lead to increases in the first.  More recent research by Rittle-Johnson and Koedinger (2009) 

seems to support the theory that an iterative sequencing of conceptual and procedural activities 

facilitates students’ ability to learn and transfer new mathematical concepts.  

An iterative perspective for the development of knowledge of concepts and procedures is 

also supported by the nation’s largest professional organization of mathematics teachers and 

mathematics educators, the National Council of Teachers of Mathematics (NCTM).  In the 

introduction to their document, Principles and Standards for School Mathematics (2000) it 

states: “… all students should learn important mathematical concepts and processes with 

understanding” (p. ix).  And within the Learning Principle of this same document the authors 

state that the alliance of factual knowledge, procedural proficiency and conceptual understanding 

are vital to the learning of complex subjects such as mathematics.   
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This theory is reiterated in the more recent publication of Implementing the Common 

Core State Standards by the National Governor’s Association Center for Best Practices and the 

Council of Chief State School Officers (2012).  In this document, the authors pose the question, 

“But what does mathematical understanding look like?” (Standards for mathematical practice, 

n.d., p. 4)  It is one thing for a student to be able to recall the mnemonic device such as FOIL 

(First-Outside-Inside-Last; see List of Acronyms), when they see (a+b)(c+d), but it is quite 

different thing for the same student to be able to explain the mathematics behind the mnemonic 

and why it works.  If the student is able to do the latter, they are more likely to be able to 

extrapolate on that knowledge and be able to know what to do when confronted with a less 

familiar problem such as (a+b+c)(d+e+f).  The authors of CCSS-M state the following: 

“Mathematical understanding and procedural skill are equally important, and both are assessable 

using mathematical tasks of sufficient richness” (p. 4).   

This need for a balance of both types of understanding is not a new theory.  Brownell 

(1956) warned against substituting the teaching of procedures to be memorized (skill) for the 

teaching of mathematical meaning (understanding).  “Understanding and skill are not identical.  

A single instance of insight may lead to understanding but will hardly produce skill.  For skill, 

practice is necessary” (p. 130).  Skemp (1976) distinguished between two specific types of 

understanding: instrumental understanding, and relational understanding.  Skemp also points out 

the advantages of both types of understanding.  Within a limited context, instrumental 

mathematics is usually easier to understand and one can get correct answers quickly and reliably.  

On the other hand, relational mathematics is more adaptable to different contexts and easier to 

remember because you are not burdened with a series of steps or formulas to memorize.   
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The terms “procedural fluency” and “conceptual understanding” of mathematics have 

varied, though the ideas behind the terms, as related to mathematics education, have remained 

relatively unchanged.  Skemp (1976) coined the term “instrumental understanding” and he 

defined the term to mean learning the rules without learning the reason behind those rules.  He 

contrasted “instrumental understanding” with “relational understanding.” He defined relational 

understanding as both the “what” and “why” of mathematics.  Herscovics and Kieran (1980) 

distinguish between “mathematical form” and “mathematical content.”  They define 

mathematical content to be the concepts, rules and relationships of mathematics, much like 

Skemp’s relational understanding, and how I am using the term conceptual understanding for this 

study.  Regardless of the term being used, teaching for understanding in mathematics requires 

that the continuity of mathematical content (relational or conceptual understanding) be 

demonstrated to the student during, and prior to, the introduction of the new mathematical form 

in order for the attainment of instrumental understanding or procedural knowledge to occur 

(Byers & Herscovics, 1977).  

In mathematics, Ben-Hur (2006) describes conceptual understanding as “a connected web 

of knowledge, a network in which the linking relationships are as prominent as the discrete bits 

of information” (p.2).  By this definition, conceptual knowledge cannot be learned by rote, rather 

it must be learned by thoughtful and reflective learning.  To have a conceptual understanding of 

the square root of 2, a student may think of the length of the hypotenuse of a right isosceles 

triangle with sides of one.  By recalling the Pythagorean Theorem and applying it to the unit 

triangle the student may have a conceptual understanding of 2   as the length of the hypotenuse 

in proportion to the length of either side.  Another student may provide a short proof of the 

irrationality of 2  from the Rational Root Theorem.  
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On the other hand, procedural knowledge “involves the ability to solve problems through 

the manipulation of mathematical skills with the help of pencil and paper, calculator, computer, 

and so forth” (Ben-Hur, 2006, p.5). An example of procedural knowledge for an approximation 

of the 2  a student would use an algorithm such as  
n

n

a

a 1

2
 and iterate the answer until they 

received the necessary accuracy.  Starting with substituting 1 in for na  , the student would use 

his procedural knowledge of mathematics to get 
2

3
 or 1.5.  If this level of accuracy was not 

sufficient, then the student would repeat the process by substituting the answer, 1.5, in the same 

algorithm, and get 
12

17
  or 1.416.  This process could be repeated indefinitely for an increasingly 

more accurate estimation of 2 .  For a procedural knowledge of deriving the square root of two, 

the student may not know the formal definitions of terms they need for proofs or understand the 

relationship between the sides and hypotenuse of a right triangle which is necessary for a 

conceptual understanding of the same number.   

Research Questions 

Ernest (1989) stated that the practice of teaching mathematics depends upon three key 

elements. The first key element is the teacher’s mental schema, or cognitive framework, that 

helps organize and interpret mathematics and its teaching and learning.  The next is the social 

context of the teaching situation and the constraints and/or opportunities each provides and the 

final element is the teacher’s level of thought processes and reflection.  The selection of a 

multiple-case study was to describe the assumptions calculus instructors at three types of 

educational institutions have of their incoming students’ procedural fluency and conceptual 
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understanding of the function concept and how these assumptions effect their instructional 

decisions concerning the teaching of calculus.  Instructors’ assumptions will be generally defined 

as beliefs they hold concerning their students’ procedural fluency and conceptual understanding 

of functions prior to the students taking calculus.  The instructors may either explicitly or 

implicitly state these assumptions. 

The research questions for this study are: 

1.  How are secondary calculus instructors’ assumptions of their students’ prior 

knowledge of the function concept different from that of the postsecondary calculus instructors’ 

assumptions? 

2.  How do secondary and postsecondary instructor assumptions of their students’ prior 

knowledge of functions impact instructional decision-making for their calculus course? 

3.  How do secondary and postsecondary instructors differ on their views toward 

students’ conceptual understanding and procedural fluency of functions? 

The learning of calculus requires knowledge of algebra, analytic geometry, functions, and 

trigonometry.  The task of explicating instructors’ expectations in each of these areas would be a 

lifetime achievement for a mathematics educator.  For the purpose of this study, research is 

limited to the specific concept of functions.  This chapter presented a brief introduction, 

rationale, conceptual framework, and research questions for this study.  In the next chapter, I will 

review the literature pertaining to instructor assessments including a section on teacher 

assumptions.  I examined the function concept with a variety of definitions and the evolution of 

the function concept from various mathematicians’ perspective.  This section also presents 
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various research studies that have attempted to identify common student misconceptions of 

functions.  It also incorporates misconceptions related to topics prior to pre-calculus to include 

algebra, variable, and interpreting and creating word problems.  

 Chapter 3 is a detailed description of the methodology used in order to conduct this study 

to include the research design, participant sampling strategies, and instrumentation.  Chapter 4  

presents the results of the six interviews that were conducted with veteran calculus instructors at 

three types of educational institutions. The intent of the interview process was to use the 

triangulation methods to answer the research questions posed at the beginning of this study.  In 

this chapter, various tables were constructed to visually display the data and assist in the 

comparison and contrast of the six instructors’ responses.  Being as this is a qualitative study, 

there is an abundance of direct quotations from the calculus instructors.  The final chapter is a 

discussion of the results of the multiple-case study as it pertains to the three research questions.  

The results are structured both by components as they occurred in the interview, and by research 

question.   
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CHAPTER 2: LITERATURE REVIEW 

In this literature review, I review and critique the research and scholarship on the 

differences between secondary and postsecondary mathematics instructors’ assessments of their 

incoming calculus students’ prior knowledge, specifically that of functions.  Although studies in 

mathematics education have examined the differences between procedural and conceptual 

understandings of entering college freshman (Carlson, Oehrtman, & Engelke, 2010; Heibert & 

Lefevre, 1986; Rittle-Johnson et al., 2001; Stoumbakis, 2010), these studies have not asked 

instructors to analyze actual student results of a diagnostic instrument and then conduct follow-

up interviews of the instructors to compare and contrast secondary and postsecondary 

instructors’ instructional decision-making based on these results.  As such, this literature review 

provides additional insight into the impact the instructors’ expectations of incoming students 

have on the materials and methods that are chosen for instruction at each of these levels.  The 

analytic focus on the communication between secondary and postsecondary instructors on 

clearly defining the necessary skills needed to ensure student success in college-level calculus 

provides another insight.  

“Though it is possible, and even popular, to talk about teacher behavior, it is obvious that 

what teachers do is directed in no small measure by what they think” (National Institute of 

Education, 1975, p. 7).  Recognizing the importance of teacher beliefs to teacher practice, the 

first part of the literature review is a sociological view as to the influence teacher expectations or 

assumptions have on student achievement.  Since I used the results of a student diagnostic 

instrument to explicate these assumptions and how the assumptions teachers make influence their 

instructional decision-making, there is a section in the literature review about assessments.  The 
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third part of the literature review is a detailed examination of the mathematical concept of a 

function from various mathematicians’ perspective and its importance in the understanding of 

higher-level mathematics. In this section I have also clearly defined the specific aspects of the 

function concept that will be assessed in this study.  Finally, the last part of this literature review 

is a survey of studies on students’ misconceptions of functions. 

Teacher Assumptions/Expectations 

Cooper and Good (1983) define “teacher expectations” to be the presumptions that 

teachers make about their students’ academic achievement.  Academic expectations of teachers 

have shown to have an effect on student performance (Weinstein, 2002).  The most publicized 

and controversial study concerning teacher expectation is Rosenthal and Jacobson’s Pygmalion 

in the Classroom (1968).  Prior to a new school year researchers told teachers that particular 

students scored high on a test for intellectual ability when in fact no such test was administered 

and the students were randomly selected for identification.  Tests conducted at the end of the 

school year offered some evidence that the identified students did perform better than non-

identified students.  In their study, Rosenthal and Jacobson concluded that students' intellectual 

development is largely a response to the teachers’ expectations of the students and how those 

expectations are communicated.  This study sparked controversy over the ethics of the 

experiment and the age group of the students being studied, but this is consistent with the social-

cognitive perspective that beliefs can affect classroom behavior (Good & Brophy, 1997). The 

Pygmalion study was conducted on first and second grade students.  Some critics of the theory 

stated that the young age of the students was a major factor in teacher expectation influencing 
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student performance and therefore the same cannot be said of older students. When interviewed 

in 1999, Rosenthal replied,  

Oh, it applies. They're wrong. There've been experiments looking at college algebra 

classes at the Air Force Academy, a study of undergraduates in engineering; there've been 

lots of studies at the college level since the book came out confirming the findings," he 

continues. "In fact, the original research conducted when I was at the University of North 

Dakota was all done with graduate students and under-graduates (Rheem, 1999, para. 2). 

 

Rosenthal’s study examined how teachers influenced selected individuals within the classroom.  

Few have empirically examined the possibility that teachers can have expectations for a class, as 

a whole.  This is in spite of the fact that in 1985, years after the Pygmalion study, Brophy stated, 

“differential teacher treatment of intact groups and classes may well be a much more widespread 

and powerful mediator of self-fulfilling prophecy effect on student achievement than differential 

teacher treatment of individual students within the same group or class” (p. 309).    

 Ernest (1989) also argues that teachers’ beliefs have a powerful impact on the practice of 

teaching, specifically on the teaching of mathematics. He states there are three roles mathematics 

teachers assume, depending upon their intended outcome of instruction. Ernest uses the term 

“instructor” to describe the role a teacher assumes when the intended outcome is skills mastery 

with correct performance, he uses the term “explainer” when the intended outcome is conceptual 

understanding with unified knowledge and “facilitator” when the intended outcome is confident 

problem solving.  When a teacher assumes the role of Ernest’s “instructor” and expects their 

students to attain only a procedural understanding of mathematical concepts, the instructional 

decision-making for the class will reflect that expectation.  When there is no expectation of 

conceptual development or problem solving, there is no impetus for the student to understand the 

concepts behind the procedures in order to pose and solve complex mathematical problems.  
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Mathematics could get reduced to a series of decontextualized steps to be memorized (Baroody, 

2003; Ben-Hur, 2006; Heibert and Lefever, 1986; Herscovics, 1996; Skemp, 1976).   

 Gonzales Thompson (1984) stated that in mathematics, teachers’ beliefs, views, and 

preferences about the subject matter are important factors in determining the role the teacher 

assumes between the subject and the learner.   

In some cases, these patterns may be manifestations of consciously held notions, beliefs, 

and preferences that act as ‘driving forces’ in shaping the teacher’s behavior.  In other 

cases, the driving forces may be unconsciously held beliefs or intuitions that may be 

evolved out of the teacher’s experience (p. 105). 

Gonzales Thompson conducted case studies of junior high school teachers in order to investigate 

the relationship between the teachers’ beliefs about mathematics and their classroom practice.  

She concluded that the beliefs played a “significant, albeit subtle, role in shaping their 

instructional behavior” (p. 125).  Whether these beliefs about the mathematics are conscious or 

unconscious, any attempt to improve the quality of mathematics teaching must begin with an 

understanding of the beliefs and assumptions held by the teachers and how these are manifested 

in their instructional decision-making.  

Diagnostic Assessment/Error Analysis 

Assessment is the process of gathering information about student learning and using that 

information to plan instruction (Ashlock, 2010).  It is expected that teachers use their classroom 

experience to develop knowledge of their students' mathematical potential.  What varies between 

teachers and among educational institutions is how the teacher conveys what mathematical 

knowledge or skills are important, and how the student interprets and expresses what the student 

thinks the teacher values.  
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Watson (2000) studied practices of 30 teachers of 10 -12 year old students as they 

assessed students' mathematics in the normal course of classroom work.  The teachers of this age 

group were chosen because Watson was interested in teachers’ assessment of students as they 

transitioned from primary to secondary school. Her study had three main parts: the identification 

of practices of mathematics teachers acting as informal assessors; a critical study of how two 

teachers developed their views of some of their students during their first term with them; and a 

brief inquiry into peer-examination of professional judgment in school-based moderation 

practices. 

Watson found assessment to be complex and intimately related to every aspect of 

teaching and learning.  She found that even teachers who had undergone some assessment 

training underestimated the role of interpretation of evidence.  She raised questions of equity in 

the uses of teachers' judgments in relation to awareness and practice. Watson suggested that 

more care needed to be taken over the formation and use of professional judgments’ within 

systems of assessment.  Watson studied assessments that occurred during a mathematics course.  

At the beginning of a course, a teacher may opt to give a diagnostic assessment to determine 

their students’ prior knowledge on a specific topic. 

For this study, I will use a diagnostic assessment for the purpose of determining student 

prior knowledge of functions.  “As the bridge between identification of students who may be at-

risk for failure and delivery of carefully designed supplemental interventions, diagnosis provides 

valuable information about students’ persistent misconceptions in the targeted domain” 

(Ketterlin-Geller & Yovanoff, 2009).  I will refer to the definition for diagnostic assessment 

provided to students at the University of Exeter, “diagnostic assessment looks backwards rather 
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than forwards.  It assesses what the learner already knows and/or the nature of difficulties that 

the learner might have.” (UE, n.d. para. 3).   

All calculus instructors do not choose to use a formal diagnostic assessment of functions 

as presented in this study.  Factors such as the time involved administering, interpreting, and 

implementing changes based upon the results may cause many instructors to avoid diagnostic 

tests altogether.  However, if such a diagnostic instrument is used, the results would provide 

information about students’ level understanding of key concepts, as well as any misconceptions 

about the underlying concepts that could lead to confusion later in the course (Ketterlin-Geller 

and Yovanoff, 2009).  Teachers that do choose to use a student diagnostic instrument, similar to 

the one used in this study, typically use this information to make instructional decisions based 

upon the results and adjust curricular plans by identifying which areas students have and have 

not mastered.  Two major approaches to diagnostic assessment are: (a) deficit assessment, which 

focuses on weaknesses of the student, and (b) error analysis, which focuses on the kinds of errors 

the student commits (Bejar, 1984).  Deficit assessment will occur as the teacher notices that a 

student chose not to answer a specific question on the diagnostic instrument.  A teacher will 

employ error analysis when the student answers a diagnostic question incorrectly or 

incompletely. 

Error analysis is not simply identifying when an incorrect answer is given to a 

mathematical problem. It is a first step, but further analysis needs to be conducted by the teacher 

in order to reveal if the error was due to a careless mistake that is easily corrected, or if the 

student has a misconception of the underlying mathematical concept.  Ketterlin-Geller & 

Yovanoff (2009) refer to these two types of errors as “slips” and “bugs.”  Identifying bugs is the 

primary interest of diagnostic assessment.  Error patterns in computation as described by 
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Ashlock (2010) often reveal these bugs or misconceptions our students have learned.  He 

classified computational-skill bugs into three basic categories: (1) student uses an inappropriate 

operation when attempting to solve a math problem; (2) student uses the correct operation but 

makes an error involving number facts; (3) student makes a non-number fact error in one or more 

steps of applying the strategy or selects an incorrect strategy.  Additional errors involve 

interpreting and applying the language of mathematics (Ketterlin-Geller & Yovanoff, 2009). 

Evolution of the Function Concept 

“Calculus is a branch of mathematics that deals with change and motion” (Stewart, 2010, 

p. 2).  Its roots can be traced back at least 2500 years to ancient Greeks and China, but calculus 

as we know it today began in the 17th century with Newton and Leibniz (Rosenthal, 1951).  

Ideas of calculus that are included in first semester calculus are limit, derivative, and integral of a 

function.  The derivative of a function is its instantaneous rate of change, with respect to 

something else.  Thus, the derivative of height (with respect to position) is slope; the derivative 

of position (with respect to time) is velocity; and the derivative of velocity (with respect to time) 

is acceleration.  The integral of a function can be thought of as the area under its graph, or as a 

sort of total over time.  Thus, the integral of slope is (up to a constant) height; the integral of 

velocity is (up to a constant) position; and the integral of acceleration (with respect to time) is 

velocity (Stewart, 2010). Many functions studied in calculus can be represented by algebraic 

expressions.  For instance, the area of a circle is related to its radius by the formula 2rA  ; and 

the distance that a body falls in a time t, starting at rest, is given by 2

2

1
atx  . Given such an 

expression, calculus allows us to find expressions for the integral and derivative of the function, 

when they exist (Dawson, 2007). 
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Although the first stage of the concept of function was that of antiquity, it was toward the 

end of the 17
th

 century before the word “function” appeared in mathematics literature 

(Youschkevitch, 1976).  The word was first used by Leibniz to designate the dependence of 

geometrical quantities such as subtangents and subnormals on the shape of a curve.  The words 

“constant,” “variable,” and “parameter” were also introduced at this time (Ponte, 1992).  The 

mathematical definition of the word “function” as quantities that were dependent on one variable 

by means of an analytic expression was agreed upon through correspondence between Leibniz 

and Bernoulli right before the turn of the century (Youschkevitch, 1976).  The term was first 

published in a mathematics lexicon in 1716.  Euler, a former student of Bernoulli, later changed 

the definition of a function of a variable to be an analytic expression (as opposed to quantity) that 

is composed in some way from that variable and constants (Ponte, 1992).  In the 19
th

 century the 

definition was changed again to enlarge the concept of function to include a correspondence 

between two variables so that to any value of the independent variable, there is associated one 

and only one value of the dependent variable (Youschkevitch, 1976). 

The function concept is a pre-calculus concept taught at most secondary educational 

institutions in preparation for the study of calculus.  The importance of understanding the 

concept of function is foundational for the understanding of major concepts in advanced 

mathematics (Carlson, Smith & Persson, 2003; Rasmussen, 2000; Zandieh, 2000).  The teaching 

of functions needs to include the definition of function as the correspondences between 

numerical sets and a balance of the three most important forms of the representation, namely the 

numerical, graphical, and algebraic forms.  The “well-behaved” examples, for which there is a 

simple rule, must be clearly emphasized in school mathematics, but the focus should not stop 
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with the algebraic manipulation of the function.  Students need to be provided with opportunities 

for the application of the functions being studied so as to ascertain the meaning of the concepts 

being presented (Ponte, 1992). 

If one wants to teach functions, or topics dependent upon the function concept, it is 

important to know the starting point of their audience (Dreyfus & Eisenberg, 1982).  This 

starting point would be an analysis of the stages a student passes through when they learn 

explicitly about functions.  First they should learn about the subconcepts of domain, range and 

the rule of correspondence.  This is usually done in a first year algebra course.  Then they learn 

that functions can be represented in various forms such as mapping diagrams, tables (x-y charts), 

and graphical and algebraic representations.  They also learn that the same function can be 

represented by each of these representations and they need to be able to go from one 

representation of a function to another.  By the end of their first year of algebra, students should 

be introduced to the specific functions; linear and quadratic. (Markovits, Eylon, & Bruckheimer, 

1986).  In the follow-on algebra courses, preceding the study of calculus, students  are introduced 

to higher-order polynomials, radical and exponential functions, the translation and composition 

of functions, inverse functions, and discontinuous functions such as piecewise and step 

functions.  For the purposes of this study, the instructors being interviewed were asked to focus 

their analysis of student work to specific pre-calculus topics on functions that were identified as 

common student misconceptions by a review of the literature. 
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Student Misconceptions about Functions 

All of us make mistakes from time to time, and an incorrect answer does not necessarily 

mean that the student does not understand the underlying mathematical concept behind the 

problem.  However there is a difference between careless mistakes and misconceptions about 

mathematical ideas and procedures.  Research has shown that many undergraduates that received 

a grade of A in a calculus course in high school still possessed a weak understanding of function 

(Breidenback, Dubinsky, Hawks, & Nichols, 1992; Carlson, 1998; Thompson, 1994). 

Carlson (1998) conducted a study of college students that received a grade of A in 

College Algebra (a pre-calculus course) and the second semester of calculus, and their 

understanding of functions.  She found that students who think about functions only in terms of 

procedural techniques are unable to comprehend a more general conceptual structure for 

modeling functions where the dependent variable changes continuously along with the 

continuous changes of the independent variable.  She describes specific examples of college 

algebra students’ work that reflected a lack of conceptual understanding of function. When 

students were asked to find )( axf  , 43% of the A-students added “a” to the end of the 

expression for ƒ rather than substituting     into the function.  Only 7% of the A-students 

could produce a correct example of a function all of whose output values are equal to each other, 

and only 25% of A-students in second semester calculus produced     as an example. “Such 

weak understandings and highly procedural orientations are often displayed in the inability to 

move fluidly between various function representations, such as the inability to construct a 

formula given a function situation described in words” (p. 114).  In a more recent study of over 

2000 pre-calculus students, at the end of the semester, only 17% were able to determine the 
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inverse of a function for a specific value given a small table of function values (Carlson, 

Oehrtman, and Engelke, 2010).  Students who possess only a procedural understanding of 

functions will likely be unable to recognize even simple situations in which procedures such as 

those necessary to find the inverse of a function work (Carlson & Oehrtman, 2005).   

In addition to these studies, many others have conducted studies to examine 

misconceptions of functions.  Table 1:Studies on Misconceptions of Functions summarizes six 

studies that investigated misconceptions of functions over a thirty-year period from 

approximately 1980 – 2010.  Although the number of participants, ages of participants, and 

education levels of the participants varied from study to study, an overview of all these studies 

informed decisions that were made as to which specific misconceptions would be used for this 

particular study.  A detailed summary of each study follows the table. 
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Table 1: 

 

Studies on Misconceptions of Functions 

Author(s) of 

study 

Year of 

study 

# of parti-

cipants 

Age/Education of 

participants 

Specific Difficulties/Misconceptions 

Markovits, 

Eylon, and 

Bruckheimer 

1986 400 9
th

 graders  

(14-15 years old) 

Neglect of domain and range 

Difficulty with constant and piecewise functions 

Difficulty with functions represented by a discrete set of 

points 

Inability to transfer from graphic to algebraic form 

Less successful with technically complex functions 

Vinner and 

Dreyfus 

1989 271/36 1
st
 year college students/jr 

high teachers 

Difficulty with discontinuous functions 

Difficulty with functions with split domains 

Difficulty with functions with exceptional points 

Becker 1991 264 College students enrolled 

in pre-calculus 

Students do not recognize written forms of functions 

Students think functions are linear and follow a pattern 

Students think functions must include the variable “x” 

Graphs of functions must be smooth, continuous curves 

Doorman, et al. 2012 155 8
th

 grade  

(13-14 years old) 

Difficulty integrating operational and structural aspects 

of the function concept. 

Hitt 1998 30 Mathematics teachers Difficulty with discontinuous functions 

Misidentifying the domain and range of functions 

Oversimplified definitions of function 

Inability to interpret a graph to a physical context 

Cansiz, Kucuk, 

and Isleyen 

2011 61 Secondary students 

(9
th

-11th grade) 

Difficulty identifying graphs of functions 

Difficulty with verbal expressions of functions 

Confusion with identifying algebraic functions 
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 The Vinner and Dreyfus (1989) study examined some aspects of the images and 

definitions for the concept of function held by college students and junior high school teachers in 

Israel.  The students were in their first year of college and had not yet reviewed functions as part 

of a mathematics course, but were introduced to functions during their secondary mathematics 

courses prior to college.  A seven question questionnaire was administered to the participants 

with six questions examining concept images and one question asking participants to define a 

function.  Three questions referred to a graphical representation of a function and three referred 

to a verbal representation.  There was no reference to algebraic representations of functions.  The 

areas of difficulty included discontinuous functions, functions with split domains and functions 

with exceptional points.  The authors emphasize that a concept is not acquired in one step and 

several stages precede the complete acquisition and mastery of a complex concept.  The more 

mathematically-oriented the student, the more the student is aware of their thought processes and 

thus more likely to reflect upon them. 

In order to investigate how students understand the components of the function concept, 

Markovits, Eylon, and Bruckheimer (1986) wrote a large variety of problems and administered 

them to approximately four hundred 9
th

 graders (ages 14-15).  They limited their study to graphic 

and algebraic representation of numerical functions.  They found three types of function caused 

difficulty: the constant function, a piecewise defined function, and a function represented by a 

discrete set of points.  Transfer from the graphical form to the algebraic form of a function was 

more difficult than transfer from the algebraic to the graphical form of the same function.  As the 

“complexity” of the technical manipulations increased, the students were less successful and 

when examples of functions were required, students tended to adhere to the linear function.  

They also noticed that students neglected the domain and range of a function. 
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 Although the central question to the Doorman Drijvers, Gravemeijer, Boon, and Reed. 

(2012) study focused on how computer tools foster the transition from a procedural calculation 

understanding to a conceptual understanding of functions, since their study did examine student 

misconceptions of functions, I chose to include it in this review of literature.  The quantitative 

portion of their study used data from 155 students in 8
th

 grade at two different schools.  The 

participants were given paper-and-pencil tests consisting of open-ended questions to test the 

students’ understanding of functions. Initial assessment revealed that students had difficulty 

integrating operational and structural aspects of the function concept. The study also showed that 

student learning of the operational aspects preceded the structural aspects of functions. 

 The purpose of the Becker (1991) study was to identify and then remediate pre-calculus 

students’ major misconceptions about the function concept. A pre- and post-instruction 

questionnaire was administered to 227 students enrolled in one of eight pre-calculus classes at 

Illinois State University. A sub group of twenty volunteers then participated in a supplementary 

unit designed to remediate the misconceptions identified by the questionnaire.  The questionnaire 

contained the same seven questions in the Vinner and Dreyfus (1989) study plus demographic 

questions and 14 additional questions pertaining to functions developed by the researcher.  The 

Becker study examined the students’ knowledge of graphic, tabular, written, and algebraic 

representations of the function concept.  The Becker study revealed that students do not 

recognize written forms of functions.  Students think functions are linear and must follow a 

recognizable pattern.  Students think functions must include the variable “x,” and the graphs of 

functions must be smooth, continuous curves. 

 The focus of the Hitt (1998) study was not on the students, but rather on the secondary 

school teachers who were beginning a postgraduate course on mathematics education and the 
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articulation of the concept of function.  Thirty mathematics teachers were given two 

questionnaires per week for seven consecutive weeks for a total of 14 questions.  The questions 

included verbal, algebraic, graphic, and written representations of functions. The results of the 

study revealed that the mathematics teachers had difficulty with identifying the domain and 

range of functions.  They tended to oversimplify definitions of function to a rule of 

correspondence or a set of ordered pairs.  The identification of functions did not pose a problem, 

but the construction of discontinuous or piecewise functions was a problem.  Another problem 

identified was the interpretation of a graph to a physical context or vice versa.  For example, if 

the teacher was asked to identify the graph of area vs. height of water being filled in a cylindrical 

beaker, they often were unable to identify the correct graph.  The results of the Hitt study showed 

that the secondary school teachers in the study had difficulty coherently articulating between the 

various systems of representations involved with the concept of functions. 

 The purpose of the Cansiz, Kucuk, and Isleyen (2011) study was to detect secondary 

school students’ misconceptions about functions.  The study was conducted in the county of 

Turkey where the “introduction of the concept of function is made by taking set theory as a 

basis” (Cansiz et al., 2011, p. 3838).  The Cansiz et al. study consisted of a 14 question function 

knowledge test given to 61 randomly selected secondary school students in grades 9-11.  Of the 

14 questions, six were from the Vinner and Dreyfus (1989) study, seven were from the Becker 

(1991) study and one question was developed by one of the researchers from a previous study.  

The researchers concluded that the students had difficulty identifying functions from written, 

graphic, and algebraic representations.   

 Throughout the history of our nation, education, generally, and mathematics education, 

specifically has been the lifework of many esteemed individuals.  By familiarizing ourselves 



28 

with prior research through a literature review we can stand on the shoulders of those that have 

gone before us with the hope of making our contribution to the body of literature, thus improving 

mathematics education for subsequent generations.  Calculus is a dominating presence in the 

preparation of students seeking STEM careers.  Unlike other secondary disciplines, the studying 

of calculus is a “capstone for school mathematics, the culmination of study in the only subject 

(apart from reading) taught systematically all through K-12 education” (Steen, 1987, p. xi).  For 

secondary students, calculus is often seen as the final course in mathematics, but for 

postsecondary STEM students, it is often the pre-requisite course for the majority of their 

programs of study.   

This chapter presented a sociological view of teacher expectations, a description of how 

diagnostic assessment and error analysis influences instructional decisions, a closer look at 

functions as fundamental objects of calculus, and finally a review of studies that attempted to 

identify students’ misconceptions of functions.  In Chapter 3, I reviewed the literature to inform 

my decisions and describe the methods in which I studied the differences and similarities in 

vision amongst and between the instructors of calculus at the three educational institutions in 

which this subject is taught.  Success in calculus requires the prior knowledge of many 

mathematical topics, but for the purpose of this study I focused specifically on these teachers’ 

expectations of their students’ knowledge of the pre-calculus topic of functions.  Chapter 4 was 

written after the six interviews were conducted and contains various tables which display 

pertinent data and Chapter 5 is a discussion of the findings. 
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CHAPTER 3: METHODOLOGY 

 The primary goal of this study was to take that which is implicit about one aspect of 

teaching calculus and make it explicit for the purpose of bringing the three educational 

institutions together for a discussion on how to best teach calculus in order to prepare our 

students for future STEM careers.  As presented in the Rationale section of the Introduction 

chapter, there is a gap into which many students fall when transitioning from secondary 

mathematics (high school) to postsecondary mathematics (state/community colleges and 

universities). Since the primary goal of this study is identifying and describing that gap, I chose 

to conduct a qualitative, as opposed to a quantitative, study.  I chose a multiple-case study with 

the intent of expressing the assumptions of instructors from each of the three types of institutions 

and comparing and contrasting their assumptions.  I hypothesized the gap is related to teacher 

assumptions of prior knowledge of their students, and the communication of these expectations 

to their students among the three institutions teaching the same course.   

Multiple-case Study 

When one sets out to study a complex system such as teaching, many variables may have 

an impact on what happens in a classroom.  Some of these variables are explicit, and some are 

implicit (Wagner & Sternberg, 1985).  Policies, procedures, and guidelines can have a positive 

influence on the explicit factors influencing the teaching of calculus and pre-calculus, but with 

this study I attempted to uncover the tacit influences that a teacher may not consciously realize 

are influencing his or her curricular decisions.  The phenomenon of a teacher determining how to 

teach a calculus course cannot be separated from the context of the students’ prior knowledge of 

mathematics.  Yin and Davis (2007) state, “One strength of the case study method is its ability to 
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tolerate the real-life blurring between phenomenon and context” (p. 78).  Baxter and Jack (2008) 

raise the question, “What is the difference between a holistic case study with embedded units and 

a multiple-case study?” (p. 550) and then answer their own question by stating the context is 

different for multiple-case studies as opposed to a holistic case study.  If my goals were to just 

study the teaching of AP Calculus, or the teaching of first-year Calculus at a 4-year university, 

then I would conduct a holistic case study, but since I was attempting to explicate teacher 

expectations at various educational institutions in order to understand the similarities and 

differences between the cases, a multiple-case study was warranted.  

Participant Sampling Strategies 

Yin (2003) states that a multiple-case study enables the researcher to explore differences 

within and between cases. The goal is to replicate findings across cases. Because comparisons 

will be drawn, it is imperative that the cases are chosen carefully so that the researcher can 

predict similar results across cases, or predict contrasting results based on a theory.  The six 

calculus instructors interviewed for my study were from the three types of institutions:  high 

schools (secondary), community/state colleges and universities (postsecondary). In order to have 

a balance between the three educational institutions, I chose the same number of instructors from 

each type of institution.   When choosing participants for this study, the intent was to interview 

effective, veteran teachers as opposed to novice teachers.  Guarino, Santibanez & Daley (2006) 

state that teacher quality is an important variable when considering student academic success, but 

“evidence is not always clear regarding the observable characteristics of effective teachers” (p. 

175).  In order to select effective teachers for this study, names were suggested by peers and 

former graduate mathematics faculty for participation.  From the list of names, the participant  
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sampling was purposive for a number of reasons.  First, all persons interviewed were teaching 

calculus at the time of the interview, all instructors were identified as respected and trustworthy 

instructors by their peers, and all instructors had a minimum of 20 years teaching experience.  

Within the purposive parameters, the sampling was convenient sampling based upon the 

instructor’s willingness to participate in the study.  The secondary instructors were teaching 

calculus at different high schools in the same suburban school district.  The state college 

instructors taught at the same state college located in the same large, metropolitan city and 

located relatively close to the university of the other postsecondary calculus instructors. 

Structure of Study 

I interviewed all instructors using the same protocol at both the secondary (high school) 

and postsecondary educational institutions (community/state college and university).  Calculus is 

typically one of the last mathematics courses that a student will take in their secondary 

educational experience, but it is often the first course they take in a series of postsecondary 

mathematics courses if the student intends to pursue a STEM major.  In this sense, Calculus 

serves as a type of bridge for these students from their secondary to postsecondary mathematics 

education experience and the reason why I chose to focus on Calculus for this study.  It is also 

the reason why I chose to interview both secondary and postsecondary instructors at various 

educational settings.  The mathematics a student typically takes prior to a calculus course is 

extensive.  For the purpose of taking what is implicit and making it explicit I needed to limit the 

focus of the prerequisite mathematics to a fairly narrow topic.  I chose the topic of functions 

based upon a review of the literature and my own experience of teaching secondary mathematics 

for over 20 years.   
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Nine coherent arguments in regard to structure.  

Prior to conducting a qualitative study, it is recommended by Maxwell (2005) that the 

researcher address a series of nine arguments that were adapted by Creswell (2007) which need 

to be coherent in regard to the organization of the structure of a qualitative research study.  I 

have taken those nine arguments, numerated them, and addressed each based upon my study. 

1.  We need to better understand the differences between how secondary and 

postsecondary calculus instructors teach calculus and if those differences can be explained within 

the conceptual framework of a balance between procedural fluency and conceptual 

understanding.  

2.  We know little about the gap between the increasing number of secondary students 

taking AP Calculus and the declining number of postsecondary students successfully completing 

advanced mathematics courses. 

3.  I proposed to study how teachers of calculus at the three types of educational 

institutions assess their calculus students’ prior knowledge of the function concept and if those 

assessments include a balance between procedural fluency and conceptual understanding. 

4. The setting and participants were appropriate for this study because I interviewed 

secondary and postsecondary calculus teachers at their work places. 

5.  The methods I used provided the data I needed to answer the research questions 

because I conducted an interview that consisted of three components.  A 11-question written 

survey, a think-aloud as the teachers look at student responses to a functions diagnostic 

instrument and the instructors’ responded to two quotations concerning assessment and the 
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balance between conceptual understanding and computational fluency.  I asked the instructors to 

provide their course syllabus and a copy of any diagnostic tools that they use in their course. 

6.  Analysis generated answers to these questions by analyzing instructors’ think-alouds 

and responses to the interview questions; I was able to identify how instructors assess their 

students’ prior knowledge and how the results of that assessment impacted their instructional 

decision-making. 

7.  The findings were validated by peer review, triangulation, and member check. 

8.  The study posed no serious ethical problems. The participants were not identified by 

name or educational institution and the data were kept confidential by the researcher. 

9.  Preliminary results supported the practicability and value of the study.  I conducted 

pilot studies with calculus instructors not used in the actual study. The time allotment was 

practical and by analyzing the interview I was able to assess some of the instructors’ implicit 

assumptions about her students’ prior knowledge of functions findings.  

Research questions. 

According to Creswell (2007) qualitative research questions are often one of four types: 

exploratory, explanatory, descriptive, and emancipatory.  In this study, I attempted to explain or 

explicate teachers’ assumptions concerning their students’ procedural and conceptual 

understanding of functions, therefore my research questions are explanatory.  According to the 

Merriam-Webster dictionary (n.d.) to explicate is to develop the implications of or analyze 

logically.  In this study, the word explicate is similar to the word explain, but explicate contains 

the implication that the concept attempting to be explained is more complicated or detailed than 

it may initially appear.  For example, while one may explain why they are late for work due to an 
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unexpected traffic jam, one would explicate their tardiness by examining the individual’s 

behavior patterns, their psychological state of mind prior to leaving for work and their 

philosophy on tardiness.  Explication is a process which is designed to uncover the implicit with 

the intention of revealing something which is more explicit.  Implicit or tacit knowledge of a 

teacher’s vision is that which is neither expressed nor declared openly but rather implied or 

simply understood and is often associated with intuition (Wagner & Sternberg, 1985).   This kind 

of knowledge about teacher vision is difficult to transfer to another person by means of writing it 

down or verbalizing it.  Although it is possible to distinguish between the idea of explicit and 

implicit pedagogical knowledge, an instructor does not separate their own types of knowledge 

when dealing with students in the classroom (Collins, 2010).  The instructor comes into the 

classroom with some explicit knowledge of their students’ prior knowledge from their studies in 

education and develops their implicit or tacit knowledge of their students’ prior knowledge over 

time.  One tenet of this study is to discover how the tacit knowledge of the secondary instructors 

compares to the tacit knowledge of the postsecondary calculus instructors with respect to their 

vision of the transition from secondary to postsecondary mathematics and preparation for 

mathematically intensive careers. Without clearly delineated visions of the various calculus 

instructors, there is the possibility that teachers of the same course are using different “sheets of 

music” when it comes to preparing their students for their futures.   

I followed the guidelines of Stake (1995) for the formation of the research questions for 

this study.  The three questions are (1) “How are secondary calculus instructors’ assumptions of 

their students’ prior knowledge of the function concept different from that of the postsecondary 

calculus instructors’ assumptions? (2) “How do secondary and postsecondary instructor 

assumptions of their students’ prior knowledge of functions impact instructional decision-making 
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for their calculus course?” and (3) “How do secondary and postsecondary instructors differ on 

their views toward students’ conceptual understanding of functions and procedural fluency of 

functions?”  

Instrumentation 

Component 1: Written survey.  

In order to maintain consistency, I wrote out and followed a script during the interviews 

(see Appendix A). The first component of data recording was an eleven question written 

questionnaire (see Appendix B).  As stated in the review of literature, teachers have both implicit 

and explicit expectations of their students.  In this study, I asked instructors to state their 

expectations of their incoming students in a variety of ways so that I could compare and contrast 

their statements in an attempt to reveal both the implicit and explicit expectations.  In the first 

component, I asked instructors to write their answers to the eleven questions on the 

questionnaire.  

Questions 1-3 pertained to specifics about their institution, course title, and textbook.  

Question 4 asked the instructor if they would provide me a copy of the syllabus they use for their 

calculus course.  Parkes and Harris (2002) state that one purpose of a course syllabus is to state 

the expectations and “guide the behaviors” of both the instructor and the students during the 

course of the semester.  I used the syllabi the instructors provided to compare and contrast the 

instructors’ written expectations of both prior knowledge and student behavior to the oral 

expectations in the second and third components. 

  Question 5 asked if the instructor used a diagnostic assessment tool in their calculus 

class. The use of an assessment tool is discussed in Chapter 2.  If the instructor stated that they 
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did use an assessment tool, I asked if the diagnostic instrument was research-based and how the 

results influenced their instructional plans. I also asked the instructor to provide me a copy of the 

diagnostic instrument so that I could compare and contrast the various tools instructors use at 

different institutions.   The intent of Question 6 was to determine how familiar the instructor was 

with how and where their incoming students attained their pre-calculus knowledge.  Question 7 

was in the form of a chart where the instructors were given a list of 8 pre-calculus topics and 

asked to check if they felt their students needed “review”, “clarification”, “both”, or “neither” for 

each topic.  Question 8 then asked if the instructor determined that their students did need review 

or clarification of a pre-calculus topic, where would the student receive that service.  Question 9 

asked the instructor to estimate the amount of time they spent in their calculus class reviewing 

pre-calculus topics.   

For question 10 I asked the instructors to write their understanding of the terms 

“procedural fluency” and “conceptual understanding.”  I wanted to compare and contrast the 

instructors’ written definitions in Component 1 to their oral response to the same question in 

Component 3, after analyzing student work in Component 2, and reacting to two quotations in 

Component 3.  The last question asked the instructor to take a few minutes to look at the 

textbook diagnostic instrument that was used for Component 2 and rate the diagnostic on a scale 

from 1-10 on the adequacy of the instrument for assessing their incoming students’ prior 

knowledge of functions.  The answers to the diagnostic were also provided (see Appendix C). 

Component 2: Student answers. 

The use of a student diagnostic instrument was vital for my study because it allowed me 

to ask the same questions during the interview of each instructor based upon the teacher’s 
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expectations of their students’ prior knowledge of functions.  Because the instructors were not 

teaching at the same educational institution, there was no expectation of consistency between, 

nor among, instructors as to how, or even it, they assessed their students’ prior knowledge of 

functions.  In order to ensure consistency among the participants, I had all instructors assess the 

same results of the same diagnostic instrument regardless of the type of institution the instructor 

teaches.  This means that the teachers did not assess their own students’ work.  By using the 

same student results with the six instructors at different institutions, I was able to compare and 

contrast comments made by the instructors during the analysis of the student responses in 

Component 2 of the interview.  

For the student diagnostic instrument, I surveyed instruments from numerous Calculus 

textbooks and online sources for an instrument that could be administered in one typical class 

period (45 minutes) and focused specifically on functions (see Appendix D).  I looked for a 

diagnostic which contained questions that could be identifiable as testing a students’ procedural 

knowledge or conceptual knowledge.  Since it is difficult to determine if a student is using their 

conceptual or procedural knowledge (Hiebert & Lefevre, 1986) without having the student 

explain what they are doing verbally, I looked specifically for an instrument with fewer 

questions and multiple parts to each question.  The multiple parts helped to delineate if the 

student employed procedural knowledge or conceptual understanding in order to arrive at a 

solution. I found and received permission to use a seven-question diagnostic calculus exam on 

functions from a major textbook publisher (see Appendix E).   

The textbook diagnostic instrument that was administered to students has 7 questions 

with most questions having multiple parts, for a total of 26 individual questions (see Appendix C 

for student answers to the functions diagnostic instrument).  Initially, I intended for the 
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instructors to analyze a problem from the diagnostic representative of each of the student 

misconceptions listed in Table 1:  Studies on Misconceptions of Functions.  After an initial pilot 

study, I realized that the time it would take for a teacher to analyze student answers 

representative of each misconception was too time-consuming so I narrowed the misconceptions 

down to the ones that appeared most often in the literature. From those 26 questions on the 

diagnostic, I selected four questions for the instructors to analyze student work.  The questions 

for the study included the following subtopics: determining the domain and range of the graph of 

a function, finding the domain of a rational function, given the equation, describing the 

translation of a function from an equation, and sketching the graph of a piecewise function.   

I selected five examples of student work from the class set of student answers for each of 

the four questions.  The examples of student work were selected to reflect student 

misconceptions as presented in the review of literature and common errors as seen by the 

researcher with over 20 years of secondary education experience. In addition to misconceptions 

and errors, I selected one student answer for each question that exemplified a student’s 

understanding of the particular pre-calculus subtopic.  Prior to the study, mathematics education 

doctoral students that had previous experience teaching calculus reviewed the student work and 

agreed that they would give full-credit to the answers with the asterisk (*) symbol after the 

student number (see Table 2:  Four Questions and Five Student Answers Selected for Instructor 

Interviews). The entire student answer sheet for each of the students listed on Table 2 is found in 

Appendix C.   
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Table 2: 

 

Four Questions and Five Student Answers Selected for Instructor Interviews 

 

Note. The asterisk (*) identifies a student answer that educators agreed would receive full-credit.  

 

Question #1:  

 

The graph of a 

function f is given at 

the [left] above. 

  

 (e) State the domain 

and range of  f. 

 

Student Answer Misconception/Error Study related to 

misconception/error 

Student #17 

 

Domain: Improper inequality notation  

Range: Not written as an interval 

Interval notation versus 

inequality notation discussed 

in member check. 

Student #18 

 
 

Improper use of union symbol and 

misidentifying the domain and range 

Hitt (1998) 

Student #21 

 

Student assumes graph continues 

indefinitely 

Becker (1991) 

Student #24* 

 
 

Although considered correct, student 

used bracket instead of parenthesis after 

infinity symbol 

Discussed in member check 

as common error. 

 

Student #27 

 

Student does not appear to understand 

domain and range. 

Markovits, Eylon, and 

Bruckheimer (1986) 
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Question #3(a): 

 

Find the domain of 

the function. 

 

Student Answer Misconception/Error Study related to 

misconception 

Student #7 

 

Student appears to believe there is a 
continuous pattern of values† which the 

function is not defined‡. 

†Vinner and Dreyfus 

(1979) 
‡Becker (1991) 

Student #14 

 
 

Student only found one point of 

discontinuity 

Hitt (1998) 

Student #16* 

 

 

Although student copied the problem 

incorrectly, the work and answer would 

be considered correct. 

Discussed during member 

check. 

Student #18 

 

 

Student does not appear to understand the 

function is not defined for values that 

make the denominator equal zero. 

Markovits, Eylon, and 

Bruckheimer (1986) 

Student #24 

 

Student understands where the function 

is not defined, but does not seem to 

understand where the function is defined. 

Hitt (1998) 

Note. The asterisk (*) identifies a student answer that educators agreed would receive full-credit. 
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Question #4:  

 

How are the graphs 

of the functions 

obtained from the 

graph of f? 

                                               

(c) y= f(x-3) + 2 

 

Student Answer Misconception/Error Study related to 

misconception 

Student #3 

 
 

Incorrectly remembered how the values 

in the function effect the graph. 

Doorman, et al. (2012) 

  

Student #4* 

 

 

Although considered correct, answer 

should be more explicit 

Cansiz, Kucuk, and Isleyen 

( 2011) 

Discussed during member 

check. 

Student #7 

 

 

Student does not seem to know how the 

values in the algebraic form of the 

function effect the graph of the function. 

Carlson (1998) 

Student #14 

 

 

Student possibly did not read question 

carefully. 

Discussed during member 

check. 

Student #20 

 

Incorrectly remembered how the values 

in the function effect the graph. 

Doorman, et al. (2012) 

  

Note. The asterisk (*) identifies a student answer that educators agreed would receive full-credit. 
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Question #6: 

 

 (a) Evaluate f(-2) 

and f(1) 

 

 (b) Sketch the graph 

of f. 

Student Answer Misconception Study related to 

misconception 

Student #2* 

 

f(-2) was calculated 

incorrectly, but graph 

appeared to be 

correct. 

Discussed in member 

check. 

Student #4 

 

Student seems to 

believe graph should 

be smooth and 

continuous. 

Becker (1991) 

Student #7 

 

Student not relating 

algebraic answers in 

part (a) to graphic 

representation of 

same function in part 

(b). 

Doorman, et al. (2012) 

Student #9 

 

Difficulty graphing 

piecewise function. 

Vinner and Dreyfus 

(1979) 

Student #18 

 

Not relating algebraic 

and graphic 

representation of 
same function†, and 

believing graph 

should be smooth and 
continuous‡ 

†Doorman, et al. (2012) 

‡Becker (1991) 
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Component 3: Quotations.  

 From the research on the use of assessments for instructional decision-making and the 

iteration of conceptual and procedural understanding, I selected two quotations to elicit the 

instructors’ explicit assumptions.   The first quotation is, “In the absence of research-based 

curricular instruments, teachers tend to rely on their own opinions about what students need to 

learn as they plan instruction” (Carlson, Oehrtman, Engelke, 2010, p. 114).  The quotation was 

followed by two questions about their agreement or disagreement with this statement and then 

instructors were asked specific resources the instructor used to plan instruction for their calculus 

class.   

 The second quotation refers to the iteration of conceptual and procedural understanding 

in the teaching of mathematics,  

Developing fluency requires a balance and connection between conceptual understanding 

and computational fluency.  On the one hand computational methods that are over-

practiced are often forgotten or remembered incorrectly…On the other hand, 

understanding without fluency can inhibit the problem solving process” (Principles and 

Standards, 2000, p. 35). 

 

This question was followed up by four questions.  The first question asked the instructor to 

verbalize their meaning of conceptual understanding and computational fluency.  Their verbal 

response to this question was compared and contrasted to their written response in the 

questionnaire.  The intent of the next two questions were to get concrete examples from the 

instructor that support or refute the author of the quotation’s position and then finally see if the 

instructor agrees or disagrees with this statement. 
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Data Recording 

Glesne (2011) suggests the phrase “data recording” or “data production” versus data 

collection when conducting a qualitative research study because often researchers have an active 

role in producing the data they record.  There were three components to the research data 

recording process. Two of the three components were audio recorded and transcribed after the 

interview.  The interviews for the secondary instructors were conducted in the teachers’ 

classrooms and the interviews for the postsecondary instructors were conducted in the teachers’ 

offices at the respective educational institutions, as opposed to having the instructors come to 

me, in order to immerse myself in the respective environments (Patton, 1990).  

Verbal reports and “think-aloud” technique 

In order to ensure consistency between the interviews, a script was used and read verbatim (see 

Appendix A) for each interview.  The data were recorded using verbal reports and “think-aloud” 

techniques as described by Someren, Barnard, and Sandberg (1994). I adopted Ericsson and 

Simon’s central assumption of protocol analysis that it is possible to get the subject to verbalize 

their thoughts in a manner consistent with the sequencing of thoughts while performing a given 

task.  The given task in this case was the instructor establishing the expectations of his or her 

students’ prior knowledge of functions, thus making it possible to explicate the instructor’s 

expectations.  

For the “think-aloud” method to be valid, the subject must verbalize their thoughts in as 

much detail as possible, which is time-consuming.  The amount of time the instructor is willing 

to be interviewed may shorten the interview and not be as thorough as if time was not an issue. 

“Verbal reports are only one indicator of the thought processes that occur during problem 
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solving.  Other indicators include reaction times (RTs), error rates, patterns of brain activation, 

and sequences of eye fixations” (Kuusela & Paul, 2000, p. 390).  Wilson (1994) contends that the 

protocol method cannot trace cognitive processes that never reach consciousness.  Much of how 

an instructor bases their expectations of students’ prior knowledge is not conscious, rather it is 

based on instinctual or unconscious processes.  Wilson recommends including other methods 

such as reaction time and eye fixations, which do not seem pertinent for this study.   

Possible sources for error. 

Rip (1980) presents various possible sources for error for such data.  The first is the error 

of transmission or communication.  In this study, the instructors at the three institutions may not 

share the same vocabulary for the same process or they may use the same vocabulary to mean 

different things.  The second is commission, in which the subject may misreport their cognitive 

processes and lastly, omission in which the subject leaves out particular elements.  Considering 

the nature of this study, instructors may commit or omit information about the expectations of his 

or her students’ prior knowledge in order to avoid showing themselves or their institutions in an 

unfavorable light.  As the researcher, I was cognizant of these potential errors of communication, 

especially during the interview component.  I made sure all participants were aware that their 

responses would be collected in strict confidentiality and they would not be traced back to 

themselves or to their particular institution.  I asked participants to restate any terms that may be 

used differently in different institutions, for example the word, “homework.”  The amount of 

time and effort expected in a secondary institution can be quite different from postsecondary 

institutions.  I used a system of comparing written responses from the survey from Component 1 

to the oral responses in the remaining two components to check for inconsistencies.  When 
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inconsistencies were noted, I asked the participant to clarify those statements during the 

interview. 

Component 1: Written Survey 

The instructors that participated in this study began the interview by filling out a written 

questionnaire (Appendix B) about their particular calculus course, their use of an assessment tool 

and were asked to evaluate the student answers to a diagnostic instrument on functions that will 

be used in the next component of this study.  I also asked the instructors to provide me with a 

copy of any assessment tool they use to determine their students’ prior knowledge of functions 

and a copy of their syllabus for their calculus course.  Since I did not ask the instructor to think-

aloud during this component, it was not audio-recorded.  Some instructors did think-aloud while 

evaluating the diagnostic instrument for this first components and I noted their comments and 

addressed these comments during the recorded components. 

Component 2: Student answers. 

The intent of the second component of the data recording process was to uncover any 

implicit assumptions the instructors might have about their students’ prior knowledge of 

functions.  I showed the calculus teachers selected answers to specific questions from an actual 

student diagnostic instrument (see Appendix B).  The intent of showing the teachers the 

diagnostic instrument results was to elicit the calculus instructor’s explicit and implicit 

assumptions of student prior knowledge of functions.  The actual student diagnostic instrument is 

discussed in more detail in the Instrumentation section of this chapter.  The students that took 

this diagnostic were not the students of any of the instructors being interviewed.  They were 

secondary students in their fourth month of AP Calculus and they took the diagnostic for the sole 
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purpose of this study.  I chose to use the same diagnostic results with all instructors, regardless of 

their educational institutions, in order to standardize the information being presented to the 

instructors.   

After the instructor evaluated a blank copy of the diagnostic instrument, they were asked 

to review five selected student answers to four specific questions.  During the interview, I used 

Table 3: Selected Student Answers for Think-Aloud as a reference as I showed the instructor the 

student answers to the diagnostic.  Four of the five student answers are student misconceptions or 

common errors and the answers with the asterisk were considered to be correct.  The instructors 

did not see this table during the interview, nor did they have any knowledge as to why particular 

questions or student answers were selected. 

Table 3: 

 

Selected Student Answers for Think-Aloud 

 

 

Student 

Answers 

Question Number 

#1e #3a #4c #6 

1st 17 7 3 2* 

2nd 18 14 4* 4 

3rd 21 16* 7 7 

4th 24* 18 14 9 

5th 27 24 20 18 

 

During Component 2 of the interview, I showed the instructor one student’s paper and pointed to 

the specific question that the instructor was to analyze using the “think-aloud” method.  When 

the instructor finished analyzing the particular question for the selected student, I showed the 
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instructor another student’s paper for the same question.  The entire student answer sheet for 

each of the students listed on Table 3 is found in Appendix C.  I provided the instructors with the 

answer key provided by the textbook company for the diagnostic instrument (see Appendix F). 

Following guidelines for verbal reports (Ericsson & Simon, 1983), I asked the instructor to 

“think-aloud” as he or she reviewed the set of student responses to the diagnostic instrument.  

Component 3: Quotations.   

The intent of the third component was to elicit the instructor’s explicit assumptions about 

student prior knowledge and conceptual versus procedural understanding.  I selected two 

quotations from the review of literature that speak directly to the research questions (see 

Appendix A).  One quotation was on the use of assessments and instructional decision-making, 

and the other was on conceptual understanding and procedural fluency.  For each quotation I 

developed follow-up questions.  If after asking these questions, and I still did not have a clear 

idea as to the instructor’s explicit assumptions about student prior knowledge and conceptual 

versus procedural understanding, I asked more questions such as, “Anything else?” “Can you tell 

me more,” or “How do you mean that?” (Fraenkel & Wallen, 1990, p. 444). 

Analysis of Data 

 In order to analyze the data, I used an inductive analysis of calculus instructors’ 

expectations of their students’ prior knowledge of functions.  According to Patton (1990), "The 

first decision to be made in analyzing interviews is whether to begin with case analysis or cross-

case analysis" (p. 376).  In order to analyze the written surveys, the information from all six 

participants was put in a grid by topic and participant so that the data could be compared and 

contrasted.  The data were initially analyzed by case, and then afterward analyzed by cross-case.   
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As Patton suggests I immersed myself in the details and specifics of the data with the 

intent of discovering important categories of expectations, identifying dimensions of 

expectations that may not otherwise be apparent with the hope of finding interrelationships 

amongst instructors from the three educational institutions. The tables in Chapter 4 were 

constructed as a result of the hand-written grids that were developed during the analysis of the 

data.  Once the grids were developed, the audio tape recordings were listened to while reading 

the written transcriptions from each interview.  From this inductive analysis process, it was 

apparent that the initial eight pre-calculus topics listed in Table 7: Review/Clarification of Pre-

calculus Topics needed to be narrowed down to the three main topics listed in Table 8: Instructor 

Expectations of Prior Knowledge of Functions.  

Validity/Reliability 

Since the intent of this qualitative study is to describe an individual’s expectations it 

would not be appropriate to conduct traditional research methods for validity and reliability such 

as the test-retest method or the equivalent forms method as described by Fraenkel and Wallen 

(1990).  In order to insure validity and reliability of this study, I used peer review as described by 

Saldana (2009), triangulation as described by Guion (2012) and Thurmond (2001) and a member 

check as described by Stake (1995) and Glesne (2011). 

Peer review. 

“Sometimes we need an outside pair of eyes or ears to respond to our work in progress” 

(Saldaña, 2009, p. 190).  Peer review was used extensively in this study.  I used peer review 

before, during, and after data collection.  Prior to conducting research, mathematics education 

faculty and doctoral students from this and other institutions were consulted in order to validate 
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the research questions and the instruments that were used during the study.  The feedback 

received during this peer review helped determine the format of the instruments and the structure 

of the study.  Pilot studies were conducted with calculus instructors that did not participate in the 

study in order to get feedback on the interview protocol.  Several changes were made to the 

protocol as a result of these initial pilot studies.  Once the interviews were conducted, peer 

review was used during the analysis portion of the study.   Education faculty and fellow doctoral 

students from both within and outside mathematics education, helped to validate the codes and 

emerging themes found in Component 2.  During the member check, a fellow doctoral candidate 

that is familiar with qualitative research methods as described by Saldaña, (2009) assisted in the 

video recording and analyzing of the session. 

Triangulation. 

 Triangulation is a method used by qualitative researchers to check and establish validity 

in their studies by analyzing a research question from multiple perspectives (Guion, 2012).  

Since this data recording often comes from multiple methods, qualitative researchers have 

borrowed the phrase triangulation from surveying to describe this practice.  Triangulation in 

surveying followed the work of mathematician Willebrord Sness in 1615 – 1617, who showed 

how a point could be located from the angles subtended from three known points (O’Connor & 

Robertson, n.d.) 

In this study, triangulation of data from the three data sources was used in order to 

answer the research questions.  The written questionnaire in the first component was used to 

record the instructor’s explicit responses to their expectations of incoming students’ pre-calculus 

abilities.  The instructor’s syllabus was also requested and analyzed in order to compare the 
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explicit expectations given to the students with the expectations written on the survey.  The 

instructors’ “think-alouds” as they analyzed student work from the second component were used 

to uncover any possible implicit expectations on student expectations, and finally, analyzing the 

responses to questions about specific quotations on the use of a diagnostic assessment and the 

iteration of conceptual understanding and computational fluency during the third component 

established triangulation in this study.  In Table 4: Triangulation of Research Methods by 

Research Question and Component, the three research questions of this study are listed on the 

left and the specific components of the interview, the instrument or data recording procedures, 

and corresponding analysis procedures that were used in order to triangulate the data are listed in 

the columns to the right.   
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Table 4: 

 

Triangulation of Research Methods by Research Question and Component 

Research Questions Component Instrument or Data Recording 

Procedures 

Analysis Procedures 

1.  How are secondary calculus 

instructors’ assumptions of their 

students’ prior knowledge of the 

function concept different from 

that of the postsecondary calculus 

instructors’ assumptions? 

Component 1: 

Written Survey  

Appendix B: Written Survey 

Questions #5-7, 

 

Compare and contrast responses 

within and between types of 

institutions 

Component 2: 

Student Answers 

Appendix A: Script for 

Instructor Interview, Question 

#1 

Inductive Analysis (Patton, 1990)  

Component 3: 

Quotations 

Appendix A: Script of 

Instructor Interview, Quotation 

2, Question #3 

Inductive Analysis (Patton, 1990) 

2.  How do secondary and 

postsecondary instructor 

assumptions of their students’ 

prior knowledge of functions 

impact instructional decision-

making for their calculus course? 

Component 1: 

Written Survey 

Appendix B: Written Survey 

Questions #1-4  

Compare and contrast responses 

within and between types of 

institutions 

Component 2: 

Student Answers 

This component did not directly relate to this research question. 

Component 3: 

Quotations 

Appendix A: Script for 

Instructor Interview, Quotation 

1,  Question1 #1-2 

Compare and contrast responses 

within and between types of 

institutions 

3.  How do secondary and 

postsecondary instructors differ on 

their views toward students’ 

conceptual understanding of 

functions and procedural fluency 

of functions? 

Component 1: 

Written Survey 

Appendix B: Written Survey 

Question #10 

Compare and contrast written 

response with verbal response of 

same instructor 

Component 2: 

Student Answers 

Appendix A: Script for 

Instructor Interview, Question 

#2 

Inductive Analysis (Patton, 1990) 

Component 3: 

Quotations 

Appendix A: Script for 

Instructor Interview, Quotation 

2, Question #3 

Compare and contrast written 

response with verbal response of 

same instructor  
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Thurmond (2001) stated that the benefits of triangulation include “increasing confidence 

in research data, creating innovative ways of understanding a phenomenon, revealing unique 

findings, challenging or integrating theories, and providing a clearer understanding  

of the problem” (p. 254).  A disadvantage of triangulation is the time involved in data recording 

and analysis and reconciling any possible incongruence that may be uncovered through the 

triangulation process.  In spite of the possible disadvantages, I used triangulation in this study to 

give depth to my understanding of the Calculus instructors’ expectations of their students’ prior 

knowledge of functions and to maximize confidence in the findings of the research. 

Member check. 

Upon completing analysis, the participants were invited to attend a member checking 

session.  Lincoln and Guba (1985) consider member checking to be “the most critical technique 

for establishing credibility” (p. 314) when conducting qualitative research.  For the member 

check, a focus group of the instructors participating in the study was convened, and after a 

presentation of the study, the instructors were asked to reflect on the accuracy of the account as 

suggested by Stake (1995).  Although all instructors were invited, the four postsecondary 

instructors participated in the member check.  The two secondary instructors were not able to 

attend.  The results of the member check are recorded in Chapter 4. The use of a member check 

ensured the researcher accurately reflected the thoughts of the respondents. These are a few of 

the strategies suggested for researcher credibility as summarized by Glesne (2011). 

 

The next two chapters present the results of the study and discuss the impact of the study 

on the teaching of calculus. Both of the next two chapters are organized according to the three 
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components of the study as discussed in this chapter.  Each of these components was described 

in detail in the Instrumentation section of this chapter.  In Component 2, the interviews were 

transcribed and analyzed in attempt to explicate each instructor’s expectation of their students’ 

prior knowledge of functions.  In many cases, as I analyzed the interviews, I constructed tables 

that facilitated the comparison and contrast of the interviewee’s responses.  The use of the tables 

allowed me to look for common themes of expectations and use the themes to compare and 

contrast the explications.  The final chapter was the result after immersing myself in the 

transcriptions, tables, and analysis of the interviews.  It includes a summary of the study, 

conclusions that can be reached and recommendations for further studies  
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CHAPTER 4: RESULTS 

In this chapter, the results of the instructor interviews are revealed.  The chapter is 

divided into three parts to reflect the three components of the instructor interview which were 

described in detail in the Methodology section. Within each component, the subsections address 

various aspects of the research questions of the study which were: 

  1.  How are secondary calculus instructors’ assumptions of their students’ prior 

knowledge of the function concept different from that of the postsecondary calculus instructors’ 

assumptions? 

2.  How do secondary and postsecondary instructor assumptions of their students’ prior 

knowledge of functions impact instructional decision-making for their calculus course? 

3.  How do secondary and postsecondary instructors differ on their views toward 

students’ conceptual understanding of functions and procedural fluency of functions? 

The research questions, along with the review of the literature, drove the development of 

the instructor interview protocol, the analysis of the data, and the reporting of the data which is 

found in this section.  The goal of the study was to answer the research questions, but due to the 

nature of qualitative studies, the questions are not addressed linearly as may be the case in a 

quantitative study.  Each of the three research questions are addressed and readdressed 

throughout the three components of the interview in order to reveal implicit, as well as explicit, 

answers to the questions.  Table 4: Triangulation of Research Methods in the Methodology 

section of this study identifies where in the structure of the interview each research question was 

addressed.  The analysis generated answers to the research questions by analyzing instructors’ 
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think-alouds and individual responses to the written and verbal interview questions. I was able to 

identify how these instructors assess their students’ prior knowledge and how the results of that 

assessment impact their unique decision-making processes for the instruction of calculus.  The 

findings were validated by comparing and contrasting the three components of the interview 

between and among the three types of educational institutions and then conducting a member 

check for the participants.  After the results are presented in this chapter, the next and final 

chapter is a discussion of the results, also organized by the three components of the interview, 

and addressed potential limitations of the study along with suggestions for further study. 

 Component 1: Written Survey 

Questions 1-3: Course and textbook. 

The first three questions on the Written Survey were as follows: 

1. Where are you currently employed and teaching calculus? 

2.  What is the title of your calculus course? 

3.  What is the title/publisher of the textbook you are using? 

 

For the first question, the secondary instructors named two different secondary schools in 

the same east coast school district.  The same state college was listed by both of the state college 

instructors. It is located in a major city and approximately 50 miles from the school district of the 

high school instructors.  The same university was listed by both of the university instructors.  It 

is located in the same major city as the state college and is in close proximity to the state college.  

The secondary instructors referred to their course as AP Calculus AB. The course name 

and content is approved by the state department of education for all public secondary institutions.  
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The postsecondary instructors at both the state college and university use the nomenclature MAC 

2311 Calculus with Analytic Geometry I.  Similarly, this numbering system is used by all public 

postsecondary institutions within the state in order to facilitate the transfer of courses between 

institutions.   

Although the nomenclature of the course for the two postsecondary institutions was the 

same, the textbooks used for the postsecondary courses were different.  In fact, the state college 

instructors used the same textbook series for their course as did the secondary instructors, which 

was the Stewart (2010) Calculus Series, either the 6
th

 or 7
th

 edition, published by Cengage 

Learning Brooks/Cole.  The two university instructors both used Briggs & Cochran (2011) 

Calculus published by Pearson.  The textbooks used for the courses were consistent within the 

same institutions (see Table 5: Textbook and Course Title)   
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Table 5: 

 

Textbook and Course Title 

 Instructor Course title Length of 

course 

Textbook 

Sec #1 AP Calculus AB 1 year Calculus: Early Transcendental 

from the Stewart's Calculus 

Series 

Sec #2 AP Calculus AB 1 year Calculus: Early Transcendental 

from the Stewart's Calculus 

Series 

State #1 MAC 2311 

Calculus with 

Analytic 

Geometry  

1 semester Calculus, 7
th

 Edition from the 

Stewart Calculus Series  

State #2 MAC 2311 

Calculus with 

Analytic 

Geometry  

1 semester Calculus, 7
th

 Edition from the 

Stewart's Calculus Series 

Univ #1 MAC 2311 

Calculus with 

Analytic 

Geometry  

1 semester Calculus by Briggs/Cochran 

Univ #2 MAC 2311 

Calculus with 

Analytic 

Geometry  

1 semester Calculus by Briggs/Cochran 
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Question 4: The syllabi. 

The fourth question on the Written Survey was as follows: 

4. Can you provide me a copy of the syllabus for your calculus course?  

 

When examining the instructors’ syllabi I was looking specifically for any formal, written 

evidence of individual instructors’ expectations of their incoming calculus students’ prior 

knowledge of functions.  One of the secondary instructor’s syllabi was four pages in length with 

one page addressing Course Overview, Course Objectives and the Textbook.  Three pages listed 

an outline of the course in bulleted format arranged by four units.  Evidence of the instructor’s 

expectations was found in a number of places throughout the syllabus.  The first was in the 

Course Objectives section of the syllabus.  It stated, “The course will provide students with the 

opportunity to work with functions represented in a variety of ways – graphically, numerically, 

analytically, and verbally; and emphasizes the connections among these representations.”  In the 

Course Outline section of the syllabus the instructor stated the first unit would include a section 

on the four ways to represent a function (verbally, numerically, visually, and algebraically) and 

within that unit the subtopics of domain and range, and piece-wise functions would be included.  

The following section reviewed basic families of functions and their graphs.  Subtopics included 

polynomial functions, rational functions, transformations and composition of functions.   

In addition to formal, written evidence of individual instructors’ expectations of their 

incoming students’ prior knowledge of functions, I was also looking for written evidence of the 

instructors’ expectations of successful student behavior.  This was evident in the secondary 

instructor’s second paragraph which stated:  
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Students are expected to complete all assignments and read the textbook daily.  Students 

are expected to come to class prepared and to focus on the material being discussed in 

class.  You will put out your best effort in keeping up with your assignments, in 

participating in class discussions/activities, and in preparing for tests and quizzes.  You 

must devote at least one hour [the bold and underline of this phrase is in the syllabus] 

every day to studying and completing your assignments for this class. 

 

The other secondary instructor stated that there was not a requirement to provide students with a 

syllabus by the school, and therefore the instructor did not write one.    

All postsecondary instructors did provide a copy of their syllabi.  The state college 

instructors’ syllabi were very similar in structure, two to three pages in length, and did not 

specifically mention expectations of students’ prior knowledge other than stating a minimum 

grade of C in the Pre-calculus Algebra and Trigonometry prerequisite courses or an appropriate 

score on the college’s approved assessment test was required for the course.  Written evidence of 

the instructors’ expectations of successful student behavior were found in one state college 

instructor’s syllabus in the Course Description, Attendance, Tardiness, and Cell Phones sections 

of the syllabus.  In the Course Description section the instructor stated, “To be successful in this 

class it is important to set aside time between each class meeting to work on the assignment 

[the bold font is in the syllabus]. It is suggested that you discuss homework ideas with other 

students in the class.”  In the Attendance section, the instructor stated, “The student will be 

responsible of obtaining and doing any assignment that is made during their absence.”  In the 

Tardiness section of the same syllabus the instructor stated,  

Being late to class, leaving early, or leaving and returning, is a disruption to the class and 

is discourteous to the professor and the other students.  All students are expected to be on 

time and to stay for the entire class period.  Please inform the instructor if you know you 

will need to leave the class early. 

 

In the Cell Phones section, the instructor stated,  
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Cell phones are a distraction! [Bold font in syllabus] Students should turn the ringer off 

on all electronic devices and THEY SHOULD NOT BE IN SIGHT [Bold and 

capitalized font in syllabus].  There should be no texting during class time. If a student’s 

phone rings or he/she is found texting during class time, then there will be an automatic 

pop quiz on a topic of the instructor’s choice. Multiple infractions will result in expulsion 

from the class.   

 

Written evidence of the instructors’ expectations of successful student behavior was 

found in the other state college instructor’s syllabus in the Attendance, Cell Phone, and 

Homework sections of the syllabus.  In the Attendance section, the syllabus stated, “Students are 

responsible for all class materials and any announcements made in class whether they are present 

or not.”  In the Cell Phones and Other Disruptions section the instructor stated,  

Students are expected to turn off cell phones at the start of class unless the instructor is 

notified of a possible emergency call.  Being late to class or leaving early is a disruption 

to the class and is discourteous to the professor and other students. All students are 

expected to be on time to class and to stay in class for the entire period.  Students are 

expected to behave in a manner that is conducive to learning both for themselves and 

others in the class.  Student may be asked to leave if their behavior is deemed a disruption 

by the instructor. 

 

 In the Homework section the instructor stated,  

Students are expected to make an honest attempt to complete all assigned problems prior 

to the next class.  It is recommended that you keep all homework neatly organized in a 

notebook.  The key for success in this course is to do the homework. Depending on your 

understanding of the material, you may wish to do more than or fewer than the suggested 

number of problems.  Selected homework problems may be collected for a grade. 

  

 In addition to the instructor expectations stated above, both state college instructors 

included a section in their syllabi which outlined the competencies expected of a graduate of 

their particular educational institution that were defined by the faculty of that institution.  The 

four interrelated competencies included Think, Value, Communicate, and Act.  Students were 

directed to a website for more details concerning these institutional expectations.   
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 The syllabi provided by the university instructors were the most lengthy and detailed.  

Like the state college instructors’ syllabi, the university instructors did not specifically mention 

expectations of students’ prior knowledge other than stating a minimum grade of C in the Pre-

calculus Algebra and Trigonometry prerequisite courses or an appropriate score on the 

university’s approved assessment test was required for the course.  In addition to the course 

prerequisite statement, one of the university instructors added, “If you have not passed the 

prerequisites with a “C” or better, you must retake the prerequisite course before you 

enroll in this course.  Note that the grade of “NC” does NOT constitute a passing grade in a 

course.” [All bold, underlined, and capitalized fonts appeared in syllabus]. 

 Although they did not mention specific mathematical expectations for their course, both 

university instructors’ syllabi mentioned a requirement of the students to spend time in the 

computer lab located in the Mathematics Building on the main campus of the university. The 

computer lab requirements between the two university instructors varied.  In one instructor’s 

syllabus it stated that prior to the first test grade; all students were required to spend 4 hours per 

week in the computer lab.  The amount of time after the first test decreased to zero hours, stayed 

4 hours, or increased to 6, or 8 hours of required computer lab time depending upon the test score 

of the first test.  In the other university instructor’s syllabus it stated that the students were 

required to take four skills tests according to a stated time table throughout the semester.  The 

instructor then gave an explanation of the computer lab’s scheduling policy in general, how to 

schedule a skills test in particular, and rules to access the lab and the skills test.  In addition to 

including a paragraph in his syllabus about the policies of the computer lab, he also attached a 

page of very detailed explanation of the policies and procedures of the computer lab at the end of 

his syllabus.   
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 In addition to the required lecture given by the instructor, which is 50 minutes in length 

three times per week, one of the university instructors had the additional requirement for students 

to attend “Application Sessions” twice a week taught by teaching assistants. The syllabi included 

a section which delineated the section number, office hours, and email addresses of the three 

sections and their assigned teaching assistant.  For the 50-minute lecture, the students were 

required to purchase and bring a remote student response device called an “iClicker2” to the 

lecture sessions.  This device is used for attendance as well as participation during the lecture.  

The syllabus includes detailed instructions about the purchase and use of this device.  This 

instructor also included a two page, week-by-week, outline of the sections from the textbook that 

would be covered and the due dates for the Skills Tests and written test dates for the semester.  

 One instructor stated these expectations in the Attendance/Etiquette section of the 

syllabus.  He stated the following: 

Attendance of all the lectures and application sessions is mandatory: Past experience 

indicates that the students who will succeed in the class are the ones who attend.  Observe 

common rules of courtesy.  Once inside the classroom you must turn off all cell-phones 

and laptops, as they are not to be used during class.  You should plan on staying the entire 

50 minutes.  Avoid leaving early or arriving late as it is a distraction to your classmates 

and your instructor. 

 

There was also a section on the calculator usage, academic honesty, and online homework 

assignments.  Students were permitted to use a non-graphing and non-programmable calculator 

for the in-class tests, but not for the computer-based tests.  Cell phone usage and the sharing on 

calculators were not permitted.   The homework was graded online, therefore students were 

expected to have access to a computer.  All assignments had posted due dates and these due dates 

would not be extended under any circumstances and personal computer issues, including login 
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errors, would NOT be a reason to offer any type of extension.  For academic honesty, the 

instructor stated, “The work submitted in this class is expected to be your own.”  

The instructor also included a detailed explanation of the scheduling policy for the skills 

tests.  There were three more sections on the “No-Credit” (NC) Grade Policy for the university, 

the instructor’s grading policy with two options for how grades could be calculated, and the 

expectation that all students will check their university email account on a regular basis for 

important messages from the instructor. 

 The other university instructor included expectations about calculator, cell phone, laptop 

computer, and music player usage.  For Calculators, she stated the students are permitted to use 

only the TI-30XA scientific calculator for tests and quizzes and that lap top computers, iPods and 

other music players may not be used in class.  She also stated that cell phones must be turned off 

before coming to class.  She goes on to clarify that cell phones are strictly prohibited during tests 

and quizzes and the use of a cell phone will be viewed as academic dishonesty.  She adds, 

“Thus, do not touch your cell phone during a test or quiz.  Wait until after you have left the 

room and are finished with the test/quiz to use it.”  She also contained a section on homework 

and academic dishonesty.  She explained there will be graded and ungraded homework 

assignments that are to be completed online.  Very similar to the other university instructor, she 

stated “As these assignments must be completed online, students will be expected to have access 

to a computer.  Students were permitted to use a computer in one of the computer labs on the 

main campus.” In addition, “All assignments will have posted due dates and these due dates will 

not be extended so please plan accordingly.  Personal computer issues, including login errors, 

will NOT be a reason to offer any type of extension.”  Again, very similarly to the other 

university instructor, for academic honesty she stated, “The work you submit in this class is 
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expected to be your own.”  The tables below show the number of pages of each instructor’s 

syllabus, and the written mathematical and behavioral expectations of the students. 
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Table 6: 

 

Written Expectations in Instructor Syllabi 

Instructor Length 

# pages 

Instructor’s Written Expectations 

Mathematical Behavioral 

Sec #1 No syllabus provided 

Sec #2 4 (3 

pages of 

course 

content) 

+Work with functions represented 

in a variety of ways – graphically, 

numerically, analytically, and 

verbally; and emphasizes the 

connections among these 

representations.”  

+Subtopics of domain and range, 

and piece-wise functions would 

be included. 

+Complete all assignments and read the textbook daily. 

+Come to class prepared and to focus on the material being 

discussed in class.   

+Put out your best effort in keeping up with your assignments, in 

participating in class discussions/activities, and in preparing for tests 

and quizzes.   

+Must devote at least one hour every day to studying and 

completing your assignments for this class. 

State #1 2  

Minimum grade of C in the Pre-

calculus Algebra and 

Trigonometry prerequisite 

courses or an appropriate score on 

the college’s approved 

assessment test was required for 

the course 

+Responsible for all class materials and any announcements made in 

class whether they are present or not  

+Expected to turn off cell phones at the start of class unless the 

instructor is notified of a possible emergency call.   

+Being late to class or leaving early is a disruption to the class and is 

discourteous to the professor and other students.  

+Expected to be on time to class and to stay in class for the entire 

period. 

+Expected to behave in a manner that is conducive to learning both 

for themselves and other in the class.   

+Expected to make an honest attempt to complete all assigned 

problems prior to the next class. 

+The key for success in this course is to do the homework.  
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Instructor Length 

# pages 

Instructor’s Written Expectations 

Mathematical Behavioral 

State #2 3  

Minimum grade of C in the Pre-

calculus Algebra and 

Trigonometry prerequisite 

courses or an appropriate score on 

the college’s approved 

assessment test was required for 

the course 

+To be successful in this class it is important to set aside time 

between each class meeting to work on the assignment 

+Responsible of obtaining and doing any assignment that is made 

during their absence.  

+Expected to be on time and to stay for the entire class period.  

+ Inform the instructor if you know you will need to leave the class 

early. 

+ Turn the ringer off on all electronic devices and THEY SHOULD 

NOT BE IN SIGHT  
+No texting during class time.  

Univ #1 5 +MAC 1140 and MAC 1114 or 

equivalent.  

+If you have not passed the 

prerequisites with a “C” or 

better, you must retake the 

prerequisite course before you 

enroll in this course.  Note that 

the grade of “NC” does NOT 

constitute a passing grade in a 

course. 

+ prior to the first test grade; all 

students were required to spend 4 

hours per week in the computer 

lab 

+The amount of time after the 

first test decreased to zero hours, 

stayed 4 hours, or increased to 6, 

or 8 hours of required computer 

lab time depending upon the test 

score of the first test. 

+Students are permitted to use only the TI-30XA scientific 

calculator for tests and quizzes and that lap top computers, 

+ iPods and other music players may not be used in class.  

+Cell phones must be turned off before coming to class.  

+Cell phones are strictly prohibited during tests and quizzes and the 

use of a cell phone will be viewed as academic dishonesty 

+Do not touch your cell phone during a test or quiz.  Wait until after 

you have left the room and are finished with the test/quiz to use it.” 

+Graded and ungraded homework assignments that are to be 

completed online. As these assignments must be completed online, 

students will be expected to have access to a computer.  Students 

may use a computer in one of the computer labs on the main 

campus. 

+All assignments will have posted due dates and these due dates will 

not be extended so please plan accordingly. 

+Personal computer issues, including login errors, will NOT be a 

reason to offer any type of extension. 

+The work you submit in this class is expected to be your own.” 
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Instructor Length 

# pages 

Instructor’s Written Expectations 

Mathematical Behavioral 

Univ #2 8 +Appropriate score on the 

[college] Math Placement Exam, 

or MAC 1140 and MAC 1114 

with a C or better. 

+In addition to the required 

lecture given by the instructor, 

which is 50 minutes in length 

three times per week, one of the 

university instructors has the 

additional requirement for 

students to attend “Application 

Sessions” twice a week taught by 

teaching assistants. 

+Students are required to purchase and bring a remote device called 

an “iClicker2” for attendance as well as participation during the 

lecture.  

+Attendance of all the lectures and application sessions is 

mandatory: 

+Observe common rules of courtesy.   

+Once inside the classroom you must turn off all cell-phones and 

laptops, as they are not to be used during class.  

+Plan on staying the entire 50 minutes.  Avoid leaving early or 

arriving late as it is a distraction to your classmates and your 

instructor. 

+Students may use a non-graphing and non-programmable 

calculator for the in-class tests, but not for the computer-based tests.  

+Cell phone usage and the sharing on calculators will not be 

permitted.    

+The homework is graded online homework, therefore students will 

be expected to have access to a computer.   

+All assignments have posted due dates and these due dates will not 

be extended under any circumstances and personal computer issues, 

including login errors, will NOT be a reason to offer any type of 

extension.  

+The work submitted in this class is expected to be your own.”  
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Question 5: Use of diagnostic. 

The fifth question on the Written Survey was as follows: 

5.  Do you use a diagnostic tool to assess your incoming calculus students’ prior knowledge of 

functions?   

 

Only one instructor, a state college instructor, stated he or she used a diagnostic tool other 

than the placement test that is given to all students. When the instructors were asked why they 

did not use a diagnostic instrument to assess their incoming student prior knowledge of 

functions, the two university instructors did not answer the question.  One secondary instructor 

stated, “I generally have taught the students for one to two years in a row prior to entering 

calculus (the majority).”  The other instructor stated that she provides a summer assignment to be 

completed by her incoming students prior to the beginning of the course.  The assignment covers 

pre-calculus material and the instructor reviews the assignment during the first week of Calculus 

and gives a test at the end of the first week of class.  The state college instructor that does not use 

a diagnostic stated, “I feel that I can address review topics as they arise.”   

For the state college instructor that did provide a diagnostic instrument to her students 

during the course of the calculus class, the instructor stated that she developed her diagnostic 

instrument from years of teaching the course and having a sense as to the types of pre-calculus 

topics with which students had difficulty.  The state college instructor’s diagnostic instrument 

contained 11 questions. The first question asked students to factor a cubic trinomial, the next 

question had four parts, and asked students to simplify radical expressions with negative and 

fractional exponents.  The next question was three parts and asked students to simplify rational 

expressions with a denominator.  The next questions asked students to factor and simplify two 
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polynomial expressions.  They need to recognize the difference of two squares and recognize 

common factors.  The next question referred back to the rational polynomial expression they 

simplified in the previous question, and asked where the expression would be zero and where it 

would be undefined.  The next question asked students to describe the graph of a quadratic and 

linear function.  The remainder of the diagnostic covered logarithmic functions and 

trigonometric functions.  The instructor stated that she uses the results of the diagnostic to 

determine how much class time needed to be spent on specific pre-calculus topics. 

Question 6: Learning of pre-calculus concepts. 

The sixth question on the Written Survey was as follows: 

6. Where do the majority of your students learn the pre-calculus concept of function prior to your 

class? 

Secondary instructors’ responses: 

#1: “Functions are introduced in Honors Algebra 1 and taught more thoroughly in Honors 

Algebra 2, taught a third time in Pre-calculus.” 

#2: “Pre-calculus at [this institution], different instructor.  Book – Recall Stewart (same 

author as Calc book) 

 

State college instructors’ responses: 

 #1: “[This institution]’s Precalc. MAC 1140 MAC 1114 Trig 

#2: “3/4 are from [this institution] and ¼ are transients.”  By transients, the instructor 

stated that she meant the students took the prerequisite courses at the nearby university. 

 

University instructors’ responses: 

 #1: “Ask [name of another faculty member] 

#2:  “I teach in the [name removed for anonymity] Program in the fall semester and they 

take Calc I with me in the spring. 

Question 7: Review/clarification of pre-calculus topics 

The seventh question on the Written Survey was as follows: 
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7. Based on your experience from teaching calculus, which, if any, of the following pre-calculus 

topics do you feel that many of your students need clarification/review prior to starting your 

class? 

 A chart was provided for the teachers to complete (see Appendix B).  They were asked to 

put an X in the appropriate box for each pre-calculus concept.  If asked by the instructor, I 

explained that by “review” I meant the students came to their course with a misconception of the 

subtopic and by “clarification” I meant that the students did not remember the concept 

incorrectly, but needed to be reminded of the concept.  Table 7: Review/Clarification of Pre-

calculus Topics reflects the instructors’ responses by type of institution.  It contains a color-

coded legend.  Red X’s denote a secondary instructor’s response, green X’s denote a state 

college instructor’s response and blue X’s denote a university instructor’s response. 
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Table 7: 

 

Review/Clarification of Pre-calculus Topics 

 “Many of my incoming students need”… 

Pre-calculus Topic Review Clarification  Both Neither 

a. Arithmetic computation used to evaluate a function at a single numerical 

value 
  X XXXXX 

b. Subconcepts of function such as domain, range and correspondence XXXX XX   

c. Definition of function XXXXX   X 

d. Graphing/evaluating piecewise functions XXXXX  X  

e. Graphing/evaluating discontinuous functions such as step functions or 

rational functions 
XX X XX X 

f. Identifying points of discontinuity in rational functions XXXX  X X 

g. Graphing/identifying  functions that have been translated XXXX  XX  

h. Problem solving using function models XX X XXX  

 

Secondary Instructors (red) 

State College Instructors (green)   

University Instructors (blue) 
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Question 8: Opportunities for pre-calculus review. 

The eighth question on the Written Survey was as follows: 

8.  If you determine that your students need clarification or review of functions (excluding 

trigonometric, exponential, and logarithmic) in order to be successful in your calculus class, how 

and/or where do students receive this service? 

 The two secondary instructors stated that they provide review of the pre-calculus topics 

themselves either during class or by the use of worksheets and extra assignments.  The state 

college instructors also stated that they provided some review in class and one state college 

instructor refers her students to an online tutoring site that was developed by herself and 

colleagues at the state college.  One university instructor also mentioned that she provides review 

in class, “when those topics come up.”  The other university instructor stated that his teaching 

assistants provided the necessary review, clarification, or both. 

Question 9: Class days spent on functions. 

The ninth question on the Written Survey was as follows: 

9.  Approximately how much class time do you spend on functions (excluding trigonometric, 

exponential, and logarithmic) in your calculus class?  For example, “I spend 5 class days on 

functions.”   

The secondary instructors ranged from 2 days to one week during the first week of the 

course.  One state college instructor stated, “Initially one class day (75 minutes) and then 

intermittently throughout the semester.”  The other state college instructor stated that the 

functions were reviewed in approximately 10 minute segments throughout the entire course as 

opposed to one entire class day. The university instructors stated one day and two days. 

Question 10: Procedural fluency and computational understanding 

The tenth question on the Written Survey was in two parts.  The first part was: 
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a) What is your understanding of the term “procedural fluency” as it relates to the pre-calculus 

concept of functions? 

 

Secondary instructors’ responses: 

#1: “Students can identify domain, range, evaluate, find inverses and graph various 

functions.” 

 #2: “knowing algorithm” 

State college instructors’ responses: 

 #1: “Not familiar” 

 #2: “Procedural is the “crunching” of functions – how to use them symbolically.” 

 

University instructors’ responses: 

 #1: “I am not sure.” 

 #2:  left blank by instructor  

 

The second part was: 

(b) What is your understating of the term “conceptual understanding” as it relates to the pre-

calculus concept of functions? 

Secondary instructors’ responses: 

#1: “Students understand the definition of a function, why it is a function. 

 #2: “Students should have a visual picture of the function in their minds and know the 

properties (asymptotes, zeros, etc.) 

 

State college instructors’ responses: 

 #1: “Basic understanding” 

 #2: “Those students understand functions, function notation (graphically and 

symbolically) with ease – moving between representations with ease.” 

 

University instructors’ responses: 

 #1: “Students understand what they are doing and why.” 

 #2: “Students understand what a function is as well as related properties.” 
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Question 11: Adequacy of function diagnostic. 

For the last question on the written survey, the instructors were asked to take a few 

minutes and review the questions on the diagnostic instrument that was going to be used in the 

second component of the interview.  A copy of the diagnostic instrument was provided (see 

Appendix B).   

The eleventh question on the Written Survey was as follows: 

11.  On a scale of 1-10 with 1 being “completely inadequate” and 10 being “completely 

adequate” how would you rate the overall adequacy of this instrument in assessing your 

students’ prior knowledge of functions? 

Sec #1: 9, Sec #2: 10 

State #1: 8, State #2: 9 

Univ #1: 9, Univ #2: 7 

In Component 1, after being shown the function diagnostic instrument, instructors were 

asked to give a rating from one to ten of the overall adequacy of the instrument for determining 

their incoming students’ prior knowledge of functions. For the Likert-type scale, 1 was defined 

as “completely inadequate” and 10 being “completely adequate.” The instructors were instructed 

to give one number for the entire diagnostic instrument which was composed of seven questions 

with multiple parts. The range of instructor scores were from 7 – 10 with the secondary 

instructors rating the instrument as 9 and 10, the state college instructors’ ratings were 8 and 9 

and the university instructors’ ratings were 7 and 9.  The mean average of these ratings was 6.8  

and the mode was 9. 

That completed the first component of the interview.  The instructors handed me their 

written responses and I turned on the tape recorder to audio record the remainder of the 
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interview.  During component two, I encouraged the interviewees to “think-aloud” as they 

responded to seeing 5 students’ answers to 4 of the questions from the diagnostic instrument they 

just evaluated.  I asked them to respond as if they had administered this instrument to their 

incoming calculus students.  

Component 2: Student Answers 

In Component 2, the instructors were asked to look at each question on the function 

diagnostic instrument individually and comment on how well they anticipated their incoming 

students would do on each question.  Table 8: Instructor Expectations of Prior Knowledge of 

Functions shows the results of the teacher responses to the questions that were identified as 

specific problem areas in the literature review.  The plus sign (+) was recorded when the 

instructors stated that they expected their students to be able to answer that specific question 

correctly.  The instructors made statements such as, “They should be able to answer (question 

number) correctly” or “all students will answer (question number) with no problem.”  The tilde 

sign (    ) was recorded when the instructors stated that some of their students would be able to 

answer that specific question correctly.  The instructors made statements such as, “I hope the 

majority would be able to do it, but probably 50-50” or “It is important, but I am not too 

optimistic here, I would say 50-50.”  For the last symbol, the minus sign ( - ) was recorded when 

the instructors expected that the majority of their students would not be able to answer a question 

correctly.  The instructors made statements such as, “I  would not believe that they would do 

very well at all” or “I have to say that I don’t anticipate my students being able to do that one 

correctly.” 
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Table 8: 

 

Instructor Expectations of Prior Knowledge of Functions 

Question 

# 

Mathematical Concept Sec #1 Sec #2 State #1 State #2 Univ #1 Univ #2 

1e Domain/Range of Graph + + + +   + 

3a Domain of Rational Function + + - +   + 

4c Translation of Function + + + + - + 

6a Evaluating Piecewise Function + + + + + - 

6b Graphing Same Piecewise 

Function 
  - - -     - 

 

       + = Instructor expects most students to answer correctly 

 ̴  = Instructor expects about half  to answer correctly 

- = Instructor expects few, if any, to answer correctly 
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Domain and range themes. 

 For both questions 1e and 3a the students were asked about the domain of a given 

function (see Table 2: Four Questions and Student Answers Selected for Instructor Interview).  

In question 1e the unspecified function was given in graphical form and in question 3a the 

rational function was given in algebraic form.  In 1a, the student was asked about the range as 

well as the domain while in 3a the student was asked only to find the domain.  In both problems 

the following three themes for domain and range emerged when analyzing the instructors’ 

responses to student answers:  

Domain/Range Theme 1: Students may have the idea of domain and range, but they don’t 

know how to communicate what they know.   

Domain/Range Theme 2: Sometimes the questions we ask, as teachers, are ambiguous to 

the students. 

Domain/Range Theme 3: Students put “all real numbers” when they don’t know the 

answer to a domain/range question. 

Tables 9 and 10 below show the actual selected student responses to the diagnostic question on 

the left side of the table.  The right side of the table displays the instructors’ responses to the 

student work from which these themes emerged.   
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Table 9: 

 

Instructor Responses to Question 1e 

 

 

Question #1: The graph of a function f is given at the left 

  

                       (e) State the domain and range of  f. 
 

 

Domain/Range Theme 1: Students may have the idea of domain and range, but they don’t know how to communicate 

what they know. 

 

Student #17: 

 

 

Sec#1 They do not know how to properly show an interval 

Sec#2 Inequality symbol is switched around. 

State#1 This is a common error…they realize what they want to say, but they don’t understand the 

inequality notation…they don’t understand how to communicate it well. 

State#2 It may be easier to explain this in interval notation rather that inequality notation. 

Univ#1 The student seems to be confused 

Univ#2 General idea of what he/she is doing, but doesn’t know the notation to describe it.  

Domain/Range Theme 2: Sometimes the questions we ask, as teachers, are ambiguous. 

 

Student #21: 

 

 

Sec#1 Understands what domain and range are. 

Sec#2 I could see how domain could be a possible answer based at what they are looking at. 

State#1 It could be the student didn’t understand the graph…I could see how you could 

misinterpret that. 

State#2 I think it is our fault as teachers by not making it clear. 

Univ#1 I think it would be better if a thicker line. I can see why they think that. 

Univ#2 It could be the student didn’t understand the graph ended and I could see how you 

could misinterpret that. 
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Question #1: The graph of a function f is given at the left 

  

                       (e) State the domain and range of  f. 
 

 

Domain/Range Theme 3: Students put “all real numbers” when they don’t know the answer to a domain/range question. 

 

Student #27: 

 

 
 

Sec#1 Doesn’t understand domain and range. Not looking at graph. 

Sec#2 They just don’t have the concept of what domain and range is. 

State#1 I would say they don’t have any understanding of domain and range. 

State#2 All R, that is the default if you don’t know what the domain and range are. 

Univ#1 Student thinks that is a common answer. It is a good guess. 

Univ#2 That student didn’t really understand much and just guessed. 
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Table 10: 

 

Instructor Responses to Question 3a 

 

2

12
)(

2 




xx

x
xf   

Question #3(a): Find the domain of the function. 

 
 

Domain/Range Theme 1: Students may have the idea of domain and range, but they don’t know how to communicate what they 

know. 

 

 

Student #7: 

 

 

Sec#1 This student knows there are restrictions, but not sure how to find them. 

Sec#2 I think just the notation and the 4. Student knows 2 and -1. 

State#1 I don’t know where the 4 is coming from and the dot-dot-dot.  It looks like they are 

continuing a pattern, but there is no pattern. 

State#2 They obviously know there are several places undefined. I don’t know where they got 4 or 

what dot-dot-dot means. 

Univ#1 The student got two points but that 4 and dot-dot-dot.  Communication is lacking. 

Univ#2 The first two are correct, but I don’t know why those other numbers are there. I’m not sure 

why they think it goes on indefinitely. 

Domain/Range Theme 2: Sometimes the questions we ask, as teachers, are ambiguous. 

 

 

Student #24: 

 

 

Sec#1 Some teachers would accept this, but they should write intervals. 

Sec#2 It should have specified to put it in interval form. 

State#1 I think that is an acceptable answer. I don’t feel they need to put it in interval form. 

State#2 Some algebra teachers are perfectly fine with that answer. That may be just a notational 

thing. They understand the idea. 

Univ#1 I think the student just isn’t comfortable with how to write down the answer. It is clear that 

they know what to do. 

Univ#2 Maybe not the notation, but it looks good. 
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Question #3(a): Find the domain of the function. 

 
 

Domain/Range Theme 3: Students put “all real numbers” when they don’t know the answer to a domain/range question. 

 

 

Student #18: 

 

 

Sec#1 Has no idea. 

Sec#2 Definitely not right and no work shown.  

State#1 They don’t have a clue there. That person doesn’t have an idea of domains and undefined. 

State#2 Just a default. I think most would understand that you can’t divide by zero. So it is just a 

default. 

Univ#1 It is just the wrong thing and there is nothing there to explain it. 

Univ#2 Maybe R is often the right answer. So maybe they are choosing something they see most 

often. 
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Translation of functions themes. 

For question 4c, students were asked to describe the translation of a graph from its parent 

function given the algebraic form of the function.  In this particular problem, the function had 

either a horizontal and a vertical shift, but no reflection, rotation, or dilation. Two themes 

emerged for the translation of functions when analyzing the instructors’ responses to student 

answers:  

 Translation Theme 1:  Students remember something, they just remember it wrong. 

Translation Theme 2: Students may have the idea of translation, but they don’t know how 

to communicate what they know.   

For the first translation theme, the instructors gave very similar responses to two different 

student’s answers.  Table 11: Instructor Responses to Question 4c shows the actual student 

answers and subsequent instructor responses to one of the translation questions on the function 

diagnostic instrument.   
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Table 11: 

 

Instructor Responses to Question 4c 

Question #4: How are the graphs of the functions obtained from the graph of f? 

                                               (c) y= f(x-3) + 2 

 

 

Translation Theme 1: Students remember something, they just remember it wrong. 

  

 

Student #3: 

 

 
 

Sec#1 This student has horizontal and vertical reversed.  

Sec#2 I wouldn’t give credit because it is vague. 

State#1 This person has the vertical and horizontal shifting reversed. 

State#2 They are backwards. They knew one was supposed to go the opposite, they’re just 

backwards. 

Univ#1 They remember something but they remember it wrong. They’re just trying to 

memorize, and switched it around. 

Univ#2 Student sort of has an idea, but has forgotten the details and why things work. He 

has messed up the vertical and horizontal shift. 

 

 

Student #20: 

 

 

Sec#1 Backwards. 

Sec#2 Shifting up is correct but not left 3. 

State#1 They knew which to move horizontal and vertical but got it wrong. Memorizing 

instead of understanding. 

State#2 This is a typical wrong answer. They don’t understand that you have to set equal 

to zero to see the shift.  

Univ#1 Well almost right. Some partial understanding. 

Univ#2 Seems to understand the vertical shift but seems to have forgotten the horizontal 

shift. 
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Question #4: How are the graphs of the functions obtained from the graph of f? 

                                                (c) y= f(x-3) + 2 

 

 

Translation Theme 2: Students may have the idea of translation, but they don’t know how to communicate what they know.   
 

 

Student #4: 

 

 

Sec#1 Needs reinforcement review. I’d tell them to plot some points. 

Sec#2 They realize horizontal and vertical. Maybe lazy or slang. I think it is a 

communication thing. 

State#1 Communication error. They understand it, they are just not saying it in a way that 

is good. 

State#2 They have the translation idea right. We would have a discussion about it’s the 

entire graph that move. 

Univ#1 It’s a funny way of saying that, but I think this student understands what is going 

on. 

Univ#2 That student has the idea correct but does not express it correctly. 
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For Translation Theme 1, two of the instructors stated that the shifting is “reversed” but 

don’t elaborate on why they believe the students reversed the two translations.  One instructor 

just stated that the answer is “too vague” for Student #3, while another instructor just replies, 

“Backward” for Student #20.  The other three instructors stated the reason for the students’ 

vagueness or reversal is due to remembering incorrectly or not memorizing correctly.  The 

students’ lack of ability to communicate what they knew came up as a concern in both the 

domain and range problems and also the translation of functions problem. 

 The two themes pertaining to piecewise functions emerged differently than the other two 

sets of themes.  For piecewise functions, the first of the two themes emerged from the secondary 

and university instructors and the second theme emerged from the two state college instructors.  

For that reason, Table 12: Instructor Responses to Question 6, is structured slightly different 

from Tables 9, 10, and 11.  The same student answers are displayed but the themes are separated 

by the instructors rather than the diagnostic questions as they are in Tables 9, 10 and 11. 
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Table 12: 

 

Instructor Response to Question 6 
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Question #6: (a) Evaluate f(-2) and f(1) 

                       (b) Sketch the graph of f. 
 

Piecewise Function Theme 1: Students are better at evaluating a piecewise function than sketching a piecewise function.  

 

 

Student #4: 

 

 

Sec#1 Letter (a) correct. No clue how to draw a graph. 

Sec#2 (a) part is correct (b) is wrong.  

  

Univ#1 Here the numbers are right, the graph is not.  

Univ#2 Student correctly found the answers in (a), but sketch is incorrect.  

 
 

Student #7: 

 

Sec#1 Part (a) right, part (b) I’m not sure.  

Sec#2 (a) is correct, (b) is not correct. 

  

Univ#1 Almost right, correctable understanding. 

Univ#2 The student correctly does the work in part (a). General idea but trouble in the 

details. 

 
 

Student #9: 

 

Sec#1 General idea. 

Sec#2 Part (a) is OK but part (b) is not correct because they have discontinuity. They didn’t 

know how to graph the parabola. 

  

Univ#1 The numbers are good. For the graph the placement is wrong. 

Univ#2 Part (a) is correct. Part (b), problem with the details. 
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Question #6: (a) Evaluate f(-2) and f(1) 

                       (b) Sketch the graph of f. 
 

Piecewise Function Theme 2: Students don’t see the connection between the answers they wrote in part (a) and the sketch they 

drew in part (b).   
 

Student #4: 

 

State#1 Procedural understanding, but not conceptual. They understand how to evaluate but 

they don’t seem to have a connection between the graph. 

State #2 They have (a) right but they don’t have (b) right. They did know there were two parts 

but they didn’t know what the two parts looked like. 

 

Student #7: 

 

State#1 They can do the procedural but there is no tie to the graph. Such a huge problem that 

they can’t tie rule to graph. 

State#2 They can evaluate. I would point out that part (a) should match part (b). 

 

Student #9: 

 

State #1 Again, no connection between symbolic rule and the graph. No conceptual connection 

between these two pieces. 

State#2 This one ignored the domain restrictions. I expected the wrong answer. 
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Piecewise function themes. 

The theme that emerged from analyzing the secondary and university instructors’ 

responses was: 

Piecewise Function Theme 1: Students are better at evaluating a piecewise function than  

sketching a piecewise function.  

The theme that emerged from analyzing the state college instructors’ responses was:  

Piecewise Function Theme 2: Students don’t see the connection between the answers  

they wrote in part (a) and the sketch they drew in part (b).   

All of these themes will be discussed in detail in Chapter 5. 

Component 3: Quotations 

 Component 3 consisted of asking the instructors to respond to two quotations from 

mathematics education research studies.  One quotation is from the Carlson, Oehrtman, and 

Engleke (2010) study first described in Chapter 1, and the second quotation is from NCTM’s 

Principles and Standards for School Mathematics (2000) and addresses conceptual 

understanding and computational fluency.  

Quotation 1: Resources to plan instruction. 

Quotation 1 was as follows: 

“In the absence of research-based curricular instruments, teachers tend to rely on their own 

opinions about what students need to learn as they plan instruction” (Carlson, Oehrtman, & 

Engelke, 2010, p .114). 

The quotation was followed by the following two questions: 

1. Do you agree or disagree with this statement?  

2. What specific resources do you use to plan instruction for your calculus class? 
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 One of the two secondary instructors stated that she both agreed and disagreed with the 

quotation.  She stated that it depended upon the experience level of the teacher.  Speaking from 

personal experience, she stated, “The more I taught, the more I learned.”  The second secondary 

instructor disagreed with the quotation.  She stated, “I don’t think we just rely on our own 

opinion if we are AP-trained.  I follow everything I am taught. I don’t rely on my own opinion. I 

use what the experts tell me.  I think all teachers do because they want their students to do well.” 

 One of the two state college instructors also stated that she both agreed and disagreed 

with the quotation.  She stated the following, 

I think the second part is true about teachers use their own opinion about what students 

need to learn.  I think they rely on opinion, but also what the [institutional mathematics] 

department has laid out, you have to follow a list of outcomes…own opinions but also 

requirements for the class.  But I don’t think the reason is because of research-based 

curricular instruments. I think there is an absence of research-based curricular 

instruments but I’m not sure that even if they were available teachers would rely on them 

anyway.  There are too many variables.  Well-designed tests are almost impossible.  Too 

many things affect a classroom, time of the day, the semester, even class to class. 

Teachers see themselves as being unique and what happens in other classes with other 

teachers has nothing to do with them as a teacher and their students. 

  

The second state college instructor just said, “I would agree with that.”  The two university 

instructors also agreed with the quotation. One stating, “Yeah, we really don’t have any other 

option.” The other simply stating, “I agree.” 

 In reply to the question on specific resources the instructors used to plan instruction, both 

of the secondary instructors listed many AP resources including the AP syllabus, AP former 

questions, Barron’s AP Prep Guide, the AP website, old resources from former AP workshops, 

the College Board website (see Table 13: Resources Used to Plan Instruction).  One secondary 

instructor also mentioned the AP wiki, other AP Calculus teachers including local teachers, and 

teachers that are active on the AP listserv.   
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 One state college instructor listed the Internet, online applets, the “fancy bells and 

whistles that come with the book, and 24 years of experience.”  She went on to mention that she 

also discusses teaching with colleagues and her husband whom also taught mathematics at the 

same institution for many years.  The other state college instructor also mentioned how long she 

had been teaching calculus, she said, “I have been doing this a very long time, 25 years.” She 

stated that she used the resources provided by the textbook company, she had “a million calculus 

books,” and that she was a “worksheet” teacher.  She developed her own activities and practice 

problems.  She stated that calculus was the first time students had to determine how to make 

decisions based upon the problem.  She said that when she was a new instructor, her main 

resource was the instructor she was replacing because “the books cover so much.”  She also 

mentioned that she “borrowed stuff” from her colleagues and from conferences. 

 In reply to the question about resources instructors used to prepare one of the university 

instructors stated, “My own understanding of the subject.  I open the book and say, ‘Oh!’ I close 

the book and teach.  With large lectures, I do have to prepare.”  He mentioned two websites in 

particular that are useful for preparing his classes. He stated that he does not use the material that 

comes with the textbook.  The other university instructor stated that she has a set curriculum that 

she needs to cover that comes from the [institution’s mathematics] department.  She went on to 

say, “I have some other textbooks, especially for the recitation problems.  Then we use the Math 

Lab which is the online component.  Plus years of experience, just knowing where students are 

going to have difficulty.” 
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Table 13: 

 

Resources Used to Plan Instruction 

Instructor Agree/Disagree 

with Quotation 

Specific Resources Used to Plan Instruction 

Sec #1 Disagree AP syllabus, AP former questions, Barron’s AP Prep Guide, the AP website, older 

resources from former AP workshops, the College Board 

Sec #2 Disagree the AP website, AP workshops, AP wiki, other AP Calculus teachers to include local 

teachers, and teachers that are active on the AP listserv 

 

State #1 Agree The internet, online applets, the “fancy bells and whistles that come with the book, and 

24 years of experience, collaboration with colleagues and her husband whom also taught 

mathematics at the same institution for many years. 

State #2 Agree 25 years of experience, resources provided by the textbook company, older calculus 

books, instructor-created worksheets with activities and practice problems, resources 

“borrowed” from her colleagues and from professional conferences. 

 

Univ #1 Agree set curriculum from the [institution’s mathematics] department, other calculus 

textbooks, the online component of the course, years of experience 

Univ #2 Agree Own understanding of the subject, two mathematics two websites 
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Quotation 2: Balance between conceptual understanding and computational 

fluency. 

 The second quotation was selected in order for the instructors’ written responses on the 

survey in Component 1, to be compared to the same instructor’s oral responses to a very similar 

question in Component 3, after the instructors were able to analyze actual student work in  

Component 2.  The quotation and the follow-up questions are below: 

“Developing fluency requires a balance and connection between conceptual understanding and 

computational fluency. On the one hand computational methods that are over-practiced and are 

often forgotten or remembered incorrectly…On the other hand, understanding without fluency 

can inhibit the problem solving process” (Principles and Standards, 2000, p. 35).   

1.  What do you interpret the author of this quotation to mean by the terms “conceptual 

understanding” and “computational fluency”? 

2. Do you agree or disagree with this statement?  Why or why not? 

3. If you had to choose between computational fluency and conceptual understanding for your 

incoming calculus students, which would you choose for the following pre-calculus topics: 

State either “computational fluency” or “conceptual understanding”. 

  a. Identifying the domain and range of functions 

  b. Graphing and evaluating piecewise functions 

c. Graphing and evaluating discontinuous functions such as step functions or 

rational functions 

  d. Identifying points of discontinuity in rational functions 

  e. Graphing and identifying functions that have been translated 

  f. Problem solving using function models 

 

The table below shows the instructors’ written response in Component 1 and their oral response 

in Component 3. 
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Table 14: 

 

Written (Component 1) versus Oral (Component 3) Definitions 

Instructor Type of 

Understanding 

Instructor’s Response 

Written in Component 1 Oral in Component 3 

Sec #1 Conceptual Students understand the definition of a function, 

why it is a function. 

They can tell you, “When we do ___ we get 

___” they can explain the process and why we 

are doing it 

Procedural Students can identify domain, range, evaluate, 

find inverses and graph three functions. 

Doing the problem. Step-by-step from 

beginning to end. They can work through a 

problem by steps. 

 

Sec #2 Conceptual Students should have a visual picture of the 

function in their minds and know the properties 

(asymptotes, zeros, etc.) 

Understanding whatever concepts need to be 

done. 

Procedural Knowing algorithm The working out of the problem 
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Instructor Type of 

Understanding 

Instructor’s Response 

Written in Component 1 Oral in Component 3 

State #1 Conceptual Students understand functions, function 

notation (graphically and symbolically) with 

ease – moving between representations with 

ease. 

So important, but so under-valued. Students 

understand why things are happening and not 

how. The big picture in relation to the graph. 

Procedural “Crunching” of functions – how to use them 

symbolically  

Procedural fluency is doing it. Put -1 in the 

equation, number crunching, there’s a rule. 

Details. 

 

State #2 Conceptual Basic understanding You actually understand what you are trying to do 

and its connection to any other topic. 

Procedural Not familiar [with term] You can actually do the analytic work to get the 

answer. One is you understand how to it and the 

other is you can actually do it. 
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Instructor Type of 

Understanding 

Instructor’s Response 

Written in Component 1 Oral in Component 3 

Univ #1 Conceptual Students understand what they are doing and 

why. 

It is difficult to memorize without understanding. 

In calculus you can’t survive without 

understanding it. 

Procedural I am not sure [the meaning of this term]. Things are remembered incorrectly. Students lack 

computational fluency. 

 

Univ #2 Conceptual Students understand what a function is as 

well as related properties. 

Understanding what you are doing and why you 

are doing it 

Procedural (Instructor left question blank.) Make computations and calculate whatever it is 

that you are calculating. 
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 When asked if the instructors agreed or disagreed with the author of this quotation, one 

secondary instructor replied, “I don’t think I agree with ‘overpracticed’ but forgotten or 

remembered incorrectly, yes!”  The other secondary instructor replied, “I do agree because I tell 

them [calculus students], ‘Don’t use your calculator for homework!’ They use it and they find it 

hard to take a test without a calculator. It bogs them down.”  The state college instructor said, 

“They see math as algorithms that need to be memorized.” The other state college instructor said, 

“I agree.”  One of the university instructors replied, “Yes, yes, yes. Absolutely!” and the other 

said, “I agree with it. You need a balance.” 

 For the last question pertaining to this quotation I asked the instructors if they would 

prefer that their incoming students to have a conceptual understanding or computational fluency 

with the specific pre-calculus topics.  Table 15: Instructor Preference for Conceptual 

Understanding or Computational Fluency was color-coded in order to visually display the 

instructors’ preferences.  The blue box was used if an instructor stated that they prefer their 

incoming students had a conceptual understanding of a specific pre-calculus topic.  A red box 

was used if the instructor stated that they prefer their students to have computational fluency of a 

specific pre-calculus topic and a purple box was used if the instructor preferred their students to 

have both conceptual understanding and computational fluency for a specific pre-calculus topic.
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Table 15: 

 

Instructor Preference for Conceptual Understanding or Computational Fluency 

 

Pre-calculus Concept Sec #1 Sec #2 State #1 State #2 Univ #1 Univ #2 

a. Identify  domain and range of functions       

b. Graph and evaluate piecewise functions       

c. Graph and evaluate discontinuous 

functions 

      

d. Identify points of discontinuity rational 

functions 

      

e. Graph and identify translated functions       

f. Problem solve using function models       

 

          Blue box = conceptual understanding  

          Red box = computational fluency 

          Purple box = both conceptual understanding and computational fluency 
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Member Check 

 As stated in Chapter 3, member checking is considered by some to be the most critical 

technique for establishing credibility in a qualitative study (Lincoln & Guba, 1985).  In this 

study, all six instructors were invited to attend a focus group in which a presentation of the study 

was given, and the instructors were asked to reflect on the accuracy of the account as suggested 

by Stake (1995).  Four of the six instructors, were able to attend.  The member check was video 

recorded by another doctoral student familiar with member checks.  After the member check, the 

video recording was replayed and analyzed separately by myself and this outside reviewer.  We 

met to discuss our analysis of the video recording to insure accuracy and validity.  

During the member check, the issue of students successfully transitioning from high 

school to college was of immediate concern to all instructors.  One university instructor stated 

that his understanding was that secondary instructors were required to focus on standardized 

state tests and therefore do not have time to focus on conceptual understanding of pre-calculus 

concepts.  A state instructor stated that her understanding was that at the secondary level most 

learning happens in the classroom while at the postsecondary level, most learning happened 

outside of the classroom.  She hypothesized that this could be an explanation for the difficulty 

students have in transitioning from high school to college.  The other university instructor 

mentioned that she belonged to a local organization that meets once per semester with university 

and local state college instructors to discuss transition issues.  She stated that K-12 instructors 

have recently been invited to these biannual meetings and have been in attendance.   

 When reviewing the Results chapter of this study, the state college instructors made a 

clarification of the name of the textbook that they were currently using (see Table 5: Textbook 
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and Course Title).  During this clarification, the university instructors stated that they chose their 

textbook based on the online resources available for that particular textbook.  The university 

instructors stated that they used the book from the series currently used by the secondary and 

state instructors until two years ago and decided to change textbooks because of their need for 

additional online resources.  Although the textbook they are currently using provides the 

necessary online resources, the two university professors agreed that they prefer the actual 

textbook being used by the other instructors.  The postsecondary instructors agreed with the 

codes, themes and conclusions of this study. 

 As the participants were reviewing Table 6: Written Expectations in Instructor Syllabi, 

comments were made by the instructors about successful student behaviors in the calculus 

classroom.  All of the participants agreed that it was necessary to state expectations of student 

behavior in the syllabus at the postsecondary level.  It was mentioned that many of these 

behaviors could be addressed by school administrators at the secondary level in the form of 

student handbooks.  It was mentioned that the presence of such administrators as the Dean of 

Students at the secondary schools could help to explain the shorter syllabi of the secondary 

instructors.   

Toward the end of the member check, the issue of preparing students for the transition 

from secondary to postsecondary resurfaced for a second time as a major concern to all 

participants.  The comment was made that preparing students for postsecondary mathematics 

courses involved more than academics, but also instilling the need for students to take 

responsibility for their own education.  The research of Conley (2005) and the “Habits of Mind” 

mentioned in his work were also discussed at this time.  
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In Chapter 4 I presented the results of the six interviews that were conducted with 

calculus instructors with 20 or more years of teaching experience at three types of educational 

institutions. The structure of Chapter 4 followed the structure of the interview which was divided 

into three components.  The intent of each component was to answer the research questions for 

the study by means of triangulation as described in Chapter 3.  When specific pre-calculus topics 

were addressed, the topics were chosen based upon a thorough review of the literature on student 

misconceptions of functions as described in Chapter 2.  I constructed tables when I felt the visual 

display of the data would assist in the comparison and contrast of the various instructors.  I used 

direct quotations from the interviews as often as possible.  Since the study focused on veteran 

teachers, I felt it was important to provide a platform for the instructors to address their 

individual concerns with mathematics education, in general.   In the final chapter of this study 

there will be a discussion of the interviews, with comparison and contrast among and between 

educational institutions being the focus of the discussion.    
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CHAPTER 5:  

DISCUSSIONS AND RECOMMENDATIONS 

During the beginning stages of this study the Mathematical Association of America 

(MAA) and the National Council of Teachers of Mathematics (NCTM), two of the largest 

professional organizations of mathematicians and mathematics educators, jointly released a 

position statement on the teaching of calculus.  Within that statement, it says the ultimate goal of 

K-12 mathematics curriculum is to establish the mathematical foundation necessary for students 

to pursue further study (NCTM, 2012).  With that in mind, the aim of this research was to pool 

the expertise of instructors from three types of educational institutions in order to compare and 

contrast the similarities and differences between and among the institutions that are currently 

teaching calculus in order to discuss how to best teach calculus in order to prepare our students 

for future STEM careers. As presented in the Rationale section of the Introduction chapter, many 

undergraduates that received an A in their calculus course in high school still possess a weak 

understanding of function (Breidenback, Dubinsky, Hawks, & Nichols, 1992; Carlson, 1998; 

Thompson, 1994) thus leaving a gap in the transition from secondary to postsecondary 

mathematics. In an attempt to describe and eventually bridge that gap, I used triangulation 

methods as described by Guion (2012) in both designing and conducting the study in order to 

address the research questions posed at the beginning of the study.   

The three components used to structure this study are described in detail in the 

Methodology chapter.  The ultimate goal of the study was to answer the research questions, but 

due to the nature of a qualitative study, the questions were not addressed linearly throughout the 

data collection process as may be the case in a quantitative study.  Each of the questions were 
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addressed and readdressed throughout three components of the interview to reveal implicit as 

well as explicit answers to the questions (see Table 1 Studies on Misconceptions of Functions).  

Although, the last two chapters are not organized according to the research questions, I did 

include a section at the end of Chapter 5, which does answer each research question, in order.  In 

Chapter 4, I immersed myself in the details of the written components and transcripts of the oral 

components in order to identify themes which were compared and contrasted between and 

among veteran Calculus instructors currently teaching at the three types of educational 

institutions.  While reviewing the data for this study, I noticed a stark contrast in the instructors’ 

syllabi and list of resources.  Although interesting, since these findings did not directly address 

the research questions of this particular study, I included these findings in the last section of this 

chapter as suggestions for future research. 

Component 1: Written Survey 

 In order to explicate both the instructors’ implicit and explicit expectations of their 

incoming students, the research questions of this study were not asked and answered in numeric 

order.  Each question was asked in a variety of ways in three components of the interview in 

order to reveal any possible implicit expectations.  Table 4: Triangulation of Research Methods 

by Research Question and Component states each research question and where within the 

interview that particular question was addressed.  It also states the instrument or data recording 

procedure used for that particular component of the interview.  The first four questions on the 

written survey were intended to gather information from the instructors in order to address the 

second research question: “How do secondary and postsecondary instructor assumptions of their 

students’ prior knowledge of functions impact instructional decision-making for their calculus 



104 

course?”  Although information was drawn in order to address this question, while analyzing the 

data, an additional question for another study arose from the data.  Since this data did not directly 

answer the research questions of this study, I have reserved the discussion of the results from 

these first four questions of Component 1 for the Suggestions for Future Research section of this 

chapter.  There will be additional questions later in the interview that will further attempt to 

answer this same research question. 

Use of a diagnostic assessment. 

The next three questions on the written survey were used to gather information from the 

instructors in order to address the research question: How are secondary calculus instructors’ 

assumptions of their students’ prior knowledge of the function concept different from that of the 

postsecondary calculus instructors’ assumptions? They were asked if and how they used a 

diagnostic tool in their calculus classes to assess their incoming students, and their expectations 

of their students’ prior knowledge of functions.  Again, this one component will not answer this 

research questions completely.  This same research question will be readdressed in later 

components. 

As stated in the literature review, not all calculus instructors use a diagnostic assessment 

like the one in this study.  Only one instructor, a state college instructor, stated that they used a 

function diagnostic instrument similar to the one used in this study in her calculus course.  One 

secondary instructor stated that she did not use a diagnostic instrument because she taught the 

pre-calculus course prior to AP Calculus and was very aware of her individual student’s 

strengths and weaknesses.  The other secondary instructor stated that she spends the first week 

reviewing pre-calculus concepts to include the concepts covered by the diagnostic instrument in 
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this study.  She then administers a test on all pre-calculus topics in order to identify any 

misconceptions.  The fact the secondary instructors have a year-long course with more contact 

hours per week with the students than the postsecondary instructors would have to be a 

consideration in the administration of a diagnostic assessment. 

The other state and the two university instructors gave one or both of the following 

reasons for not using a diagnostic assessment instrument: (1) There was not enough time built 

into the course to administer and review/clarify misconceptions identified by analyzing the 

results of a diagnostic assessment and/or (2) The results would not have a significant impact on 

how the course was taught; therefore, there was not a need to assess the students’ prior 

knowledge of functions prior to direct instruction. 

Awareness of pre-calculus instruction. 

The intent of Question 6 was to see how “aware” the calculus instructors were of the 

teaching practices of the instructors that were responsible for their students’ pre-calculus 

concepts, prior to their course.  The responses varied greatly among the three types of 

educational institutions.  The secondary instructor that stated that she teaches the pre-calculus 

course at her high school stated that she sometimes even teaches the Honors Algebra 2 course 

which precedes the pre-calculus course.  She also stated that it is not unusual for the same 

instructor to have taught the same student for three years in a row.  Since she taught the courses, 

she was very aware of her own teaching practices.  The other secondary instructor stated that the 

students learn the pre-calculus concept of function in the pre-calculus class at the same school.  

She stated the pre-calculus course is taught by a different instructor but they use the same series 

of textbook and she was very familiar with the instructor and how the pre-calculus concepts were 
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presented to her students.  For the two secondary institutions, the instructors were very aware of 

how the pre-calculus concepts were presented to her current calculus students.   

The secondary instructors’ responses to this question were in contrast to the state college 

instructors’ responses.   The state college instructors did not know which of the instructors taught 

their students in prior mathematics courses, but they both stated that their students learned the 

pre-calculus concept of function at the same state college in which they taught.  They seemed to 

have an awareness as to the content of the pre-calculus courses, but not specific details about 

which pre-calculus concepts were emphasized, or if the instructors emphasized computational 

fluency over conceptual understanding, or vice versa. 

The two university instructors’ responses to this question were quite different from each 

other.  One university instructor stated that he did not know the answer to the question and 

directed me to another faculty member who could look the information up on the university data 

base.  He also stated that there were too many students in the calculus course for him to have a 

sense of where the majority of the students learned the pre-calculus concept of function. He 

seemed to have little to no awareness of where or how his students were instructed in the pre-

calculus concepts prior to his course.  

This is in contrast to the other university instructor’s response to the same question.  Like 

the first secondary instructor, this university instructor stated that she was part of a special 

program at her university in which she taught her students pre-calculus the semester before 

teaching them calculus.  She stated that her students enrolled in pre-calculus with her as the 

instructor in the fall semester and then took Calculus I with her in the spring semester.  She 

mentioned that the middle half (second and third quartiles) of students that take the college 

placement test at the university are placed into this program.  One of the goals of this program is 
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to have the same instructor and use the same series of textbook for both the Pre-calculus and 

Calculus courses.  It is the program director’s belief that this continuity will improve the success 

rate for this group of students. 

Preference for conceptual understanding or procedural fluency. 

For Question 7, the instructors completed a chart on their preference for conceptual 

understanding and computational fluency for their incoming students (see Table 15: Instructor 

Preference for Conceptual Understanding or Computational Fluency).  All but one instructor 

felt that their students were coming into their calculus course not needing either a review or 

clarification of how to compute the value of a function at a single numerical value.  This would 

suggest that all but one of the instructors expected their incoming students to enter Calculus with 

computational fluency.  In contrast, the one university instructor that marked that his incoming 

students needed both a review and clarification stated his expectation was that his incoming 

students did not have enough practice of “algebra” prior to taking his course and were not 

computationally fluent. 

For the pre-calculus topics domain, range, correspondence; definition of function; 

graphing/evaluation piecewise functions; identifying points of discontinuity in rational functions 

and graphing/identifying functions that have been translated all but one of the instructors 

interviewed agreed that their incoming students needed a review of these topics.  There was very 

little agreement between or among instructors as to the subtopic of graphing/evaluating 

discontinuous functions such as step functions or rational functions.  As for the last subtopic of 

problem solving using function models, all instructors agreed that their incoming students 

needed “something”.  Two felt as if they just needed a review, one felt that they just needed 
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clarification and three instructors felt that they needed both.  Since word problems require 

conceptual understanding, the instructors’ unanimous responses to this question suggest that all 

of the instructors expect incoming students to enter calculus without a conceptual understanding 

of pre-calculus topics.  

Review/clarification of pre-calculus topics. 

 Questions 8 and 9 were follow-up questions to Question 7.  If the instructors expected 

their incoming students to need review and/or clarification of a specific pre-calculus topic, where 

was that additional instruction to come from?  All but one of the instructors stated that they 

would provide the review and/or clarification themselves during the course of the Calculus class.  

The means of providing that instruction varied from the use of worksheets, extra assignments, 

and online resources developed by the instructor. Only one of the instructors stated that he, 

personally, would not provide the additional review and/or clarification.  He stated that his 

teaching assistants would provide any necessary review and/or clarification of pre-calculus 

topics.  The disconnection between the presentation of the calculus material and the review 

and/or clarification of common student misconceptions of pre-calculus topics by this one 

instructor stood out as a stark contrast to the other instructors interviewed. 

 Question 9 asked the instructors how much time in their calculus class was spent on 

reviewing pre-calculus topics.  All but one of the instructors stated they spent either one to two 

class days at the beginning of the course, or 10 minutes per class intermittently throughout the 

course.  For most instructors interviewed, there is a fairly small percentage of the calculus class 

time spent on pre-calculus topics.  The exception was with one of the secondary instructors.  She 

stated that she spent the first week of class reviewing pre-calculus concepts.  Her students are 
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given a packet of pre-calculus problems to be worked independently over the summer and for the 

first week of Calculus; the instructor answers questions and clarifies any misconceptions.  At the 

end of the first week, the instructor gives the students a test over pre-calculus topics prior to 

starting with the calculus material.   

Conceptual understanding versus procedural fluency of functions 

 Question 10 was the first attempt to answer the third research question, “How do 

secondary and postsecondary instructors differ on their views toward students’ conceptual 

understanding of functions and procedural fluency of functions?”  

I asked the instructors to write down their understanding of the terms “procedural 

fluency” and “conceptual understanding.”  I wanted to compare their understanding of these 

terms before they analyzed student work in Component 2 to their understanding after they 

analyzed student work.  A direct comparison to each instructor’s two responses can be found on 

Table 14: Written (Component 1) versus Oral (Component 3) Definitions and a discussion of the 

comparison between their written response in Component 1 and their oral response can be found 

in Component 3 of this chapter.  When comparing just the instructors’ written responses in 

Component 1 to each other, half of the instructors were not sure about the meaning of the term 

“procedural fluency.”  Two instructors actually stated that they were unfamiliar with the term 

and one instructor chose to leave that question blank.  Two of the three that attempted to explain 

their understanding of the term, gave short answers and mentioned “algorithm”, or “crunching 

numbers.”  One of the secondary instructors mentioned the pre-calculus concepts of domain, 

range, inverse functions, and graphing of various functions.  
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For the phrase “conceptual understanding” all of the instructors gave a more lengthy 

answer.  Although the instructors seemed more familiar with this term their responses varied as 

to what the students should understand in order to attain “conceptual understanding.”   One 

secondary instructor stated that students should know the definition of a function; the other stated 

that the students should have a visual picture of the function and know the properties.  For the 

state college instructors, one stated that the students should have a “basic understanding” while 

the other emphasized the ability to move between the graphic and symbolic representations of a 

function.  One university instructor stated that the students needed to understand what they are 

doing and why, while the other stated that in addition to knowing what a function is the students 

needed to know the related properties. 

Adequacy of diagnostic instrument used in study. 

The final question on the written survey was to have the instructors rate the adequacy of 

the functions diagnostic instrument that was going to be used in component two of the interview.  

This question was important because if the instructors felt that the instrument was not adequate, 

the results of the student work would not be meaningful to the instructor.  On the other hand, if 

the instructors believed the instrument was adequate, they would be more likely to value the 

results of the assessment.  Although only one instructor considered the instrument completely 

adequate by giving it a score of 10 out of 10, all of the scores seemed to reflect that the 

instrument was adequate for assessing student knowledge of functions with a mean score of 6.8 .  

This high score help to give credibility to the instrument used in the study. 
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Component 2: Student Answers 

 A major difference between Component 1 and Component 2 was that instructors were 

asked to write their responses to the questions in Component 1 and they were asked to state their 

responses in Component 2.  Some of the same questions were asked in both Component 1 and 

Component 2 so that I could compare the instructors’ written response to their oral response in 

order to uncover implicit as well as explicit expectations.  After having the instructors give an 

overall rating of the functions diagnostic instrument in writing in Component 1, I asked the 

instructors to look at each question on the diagnostic individually and comment on their 

expectation of their incoming students’ ability to provide an adequate answer to the question in 

order to readdress the first research question: “How are secondary calculus instructors’ 

assumptions of their students’ prior knowledge of the function concept different from that of the 

postsecondary calculus instructors’ assumptions?:   

Although the instructors commented on each question, I focused on the questions that 

were common misconceptions of functions based upon the literature review (see Table 1: Studies 

on Misconceptions of Functions).  The questions that related directly to these misconceptions 

were #1e, 3a, 4c, and 6.  Based upon the instructors’ responses, I initially created a hand-written 

grid, and then subsequently converted that to a table to visualize the instructor’s expectations of 

these common misconceptions (see Table 8: Instructor Expectations of Prior Knowledge of 

Functions).     

Both secondary instructors anticipated their incoming students doing well on the 

functions diagnostic instrument, with the only exception being the graphing of a piecewise 

function.  One instructor stated that her incoming students had trouble with graphing piecewise 
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functions and that she has to spend time in calculus going over that concept.  One state college 

instructor was in agreement with the secondary instructors and the other stated she anticipated 

her students would also have trouble with stating the domain of rational functions.  The biggest 

difference between calculus instructors at the same educational institution was with the 

university instructors.  One instructor was in agreement with the secondary and state college 

instructors that her students would do well on the instrument, with the only exception being that 

she anticipated her students having trouble with both evaluating and graphing piecewise 

functions.  She stated, “I think they would have trouble with both 6a and b.  I think they have 

trouble with piecewise functions … although we go over it; there is a gap in time from when it is 

introduced in pre-calculus and when it occurs again in calculus.” This is in contrast to the other 

university instructor that stated that the only question that his students would not have difficulty 

with was 6a.  He stated that although his hope was that most of his students would be able to 

answer these questions correctly, he expected at least half to not be able to answer the questions 

correctly.  He repeated the phrase, “It is important, but I am not too optimistic.”   

After the instructors familiarized themselves with the functions diagnostic instrument and 

stated their expectation of the incoming students’ prior knowledge for each question, I then 

showed the instructors five different students’ answers to the questions that related directly to the 

common student misconceptions of functions which were Questions 1e, 3a, 4c, and 6 (see Table 

2: Four Questions and Student Answers Selected for Instructor Interviews)  The second question 

in this component addressed the third research question, “How do secondary and postsecondary 

instructors differ on their views toward students’ conceptual understanding of functions and 

procedural fluency of functions?”   
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Domain and range themes.   

For both diagnostic questions 1e and 3a the students had to state the domain of a 

function.  In question 1e they also stated the range of the function that was given in graphical 

form.  In question 3a, the function was given in algebraic form.  Tables 9 and 10 in Chapter 4 

show the question, student answer and the instructor’s responses.  The first theme that emerged 

from the instructors’ responses pertaining to these two questions was: 

Domain/Range Theme 1: Students may have the idea of domain and range, but they don’t 

know how to communicate what they know.   

Calculus is considered the first postsecondary course in a string of mandatory 

mathematics courses for students wishing to pursue careers in Science, Technology, Engineering 

and Mathematics (STEM).  Organizations such as STEM Talent Expansion Program (STEP), 

funded by the National Science Foundation (NSF), were founded to improve recruitment and 

retention of STEM students based on "best practices" of prerequisite courses with typically high 

failure rates such as pre-calculus and calculus (Cheatham et al., 2012).  According to the 

Common Core State Standards, one of the eight mathematical practices necessary to attain 

mathematical proficiency is for students to be able to construct viable arguments and critique the 

reasoning of others (Standards for mathematical practice, n.d.).  If our students are not able to 

communicate what they know from pre-calculus to calculus, it will be difficult for them to 

construct these arguments and critique the reasoning of others.  Communication pertaining to the 

domain and range of functions needs to be considered when evaluating a students’ understanding 

of pre-calculus topics.  

The second theme was: 
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Domain/Range Theme 2: Sometime the questions we ask, as teachers, are ambiguous to 

the students. 

This theme is addressing the ability of the teacher to ask a good question.  A good 

question could also be ambiguous, if that is the intent.  A question may be left intentionally 

ambiguous in order for the student to practice constructing viable arguments for multiple 

answers to the same question.  But if this is the case, short answers and phrases such as those 

given by the students on this functions diagnostic instrument would not be acceptable. The 

teaching of mathematics must move away from checking to ensure student answers match the 

answers in the back of the book and move toward instructors being open to not only showing one 

algorithm for the solution to a specific type of mathematical problem, but explaining the 

concepts behind the algorithm and not only holding students accountable for getting the right 

answer, but knowing why he or she got that answer. 

And the third theme was: 

Domain/Range Theme 3: Students put “all real numbers” when they don’t know the 

answer to a domain/range question. 

At times students learn lessons that we as teachers never intended to teach.  Such as, if 

you don’t know the domain or range of a function, write all real numbers.  Ashlock (2010) states, 

“… we need to remember that our students are not necessarily learning what we think we are 

teaching; we need to keep our eyes and ears open to find out what our students are actually 

learning” (p. 14).  It is very possible that the students that wrote these answers don’t even know 

what real numbers are, not to mention what the words domain and range of a function mean.  
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Some students get through the system with learning just enough of what we do intend to teach, 

and just enough of what we don’t intend to teach to be passed on.  Short answers to complicated 

questions need to be looked at with a certain amount of skepticism.  Does the student really 

know what they are saying when they say “all real numbers” or even worse just use the all real 

numbers symbol when stating the domain and range, or have they instead learned that if they put 

that answer down, they usually get it right? 

For these three themes, all six of the instructors appear to be in agreement.  There does 

not seem to be a stark contrast in responses when analyzing secondary and postsecondary 

instructors.  They only discrepancy based upon the types of educational institutions for which the 

instructors are employed, appears to occur for Question 3a for Student 24.  The secondary 

instructors believe the students should write the answer in interval form, while the postsecondary 

instructors at both the state college and university are comfortable that the students have the 

correct idea of the domain, regardless of the form in which the student chooses to use for the 

answer.   

Translation of functions themes.   

Question 4c on the functions diagnostic instrument pertained to the translation of 

functions.  The following two themes emerged when analyzing the instructors’ responses to the 

student answers.  

 Translation Theme 1:  Students remember something, they just remember it wrong. 

Translation Theme 2: Students may have the idea of translation, but they don’t know how 

to communicate what they know. 
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In 1998, Carlson found that students who think about functions only in terms of 

procedural techniques are unable to comprehend a more general conceptual structure for 

modeling functions where the dependent variable changes continuously along with the 

continuous changes of the independent variable. That seems to be the case with these students in 

this study as well.  When students are taught about the translation of functions only in terms of 

procedural techniques they do not understand how a specific change in the domain affects the 

entire function.  Without the conceptual understanding, the translation of functions is 

oversimplified to the students attempting to memorize a set of rules which are often times 

memorized incorrectly.  That appears to be the case with these students. As one instructor stated, 

“They remember something, they just remember it wrong.” 

As evidenced by this second theme, the inability of students to communicate their 

knowledge is not limited to domain and range.  We see this again with the pre-calculus concept 

of translation of functions as well.  As was stated earlier, when teachers accept short phrases or 

symbols for answers to rather complex conceptual questions, they may be instilling a sense of 

“false confidence” in their students’ mathematical ability that Ferrini-Mundy and Gaudard 

(1992).  If the student is able to give a simple answer to a rather complex question and this 

answer is satisfactory to the instructor, the student will not realize the complexity of the question 

being asked. The result could be a “false confidence” in thinking that his or her surface level 

understanding of a concept is “good enough” and not persevere in order to develop a deeper 

understanding of what is being presented. 
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Piecewise function themes.   

For Question 6 the students were asked to evaluate and sketch the graph of a piecewise 

function (see Table 12: Instructor Responses to Question 6).  This is the question that most of the 

instructors expected their students to have difficulty with which is in line with the research on 

students’ misconceptions of functions (see Table 8: Instructor Expectations of Prior Knowledge 

of Functions).  If we include discontinuous and split domain functions in piecewise functions, 

four of the six research studies in the literature review (see Table 1: Studies on Misconceptions of 

Functions) specifically stated this as an area of concern. The first of two themes that emerged 

from this question was: 

 Piecewise Function Theme 1: Students are better at evaluating a piecewise function than 

sketching a piecewise function.   

This theme emerged from both the secondary and university instructors.  Some of the students 

that evaluated the function correctly had difficulty sketching the graph of the same function. 

Some of the student answers supported Becker’s (1991) findings that students mistakenly think 

that all functions must be smooth and continuous.  When students have to sketch a discontinuous 

function, they just “connect the parts” to force the continuity of the function. 

A second theme emerged from the state college instructors’ responses: 

 Piecewise Function Theme 2: Students don’t see the connection between the answers they 

wrote in part (a) and the sketch they drew in part (b).   

This seems to be the most troubling theme, not only with these instructors, but by the researchers 

mentioned in the literature review as well.  Markovits, et al. (1986) found that students were 
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unable to transfer from graphic to algebraic forms of functions and Doorman (2012) found that 

students had difficulty integrating operational and structural aspects of the function concept. 

For the piecewise functions all instructors seem to be in agreement that students have 

more difficulty graphing piecewise functions than evaluating a piecewise function given a 

function in algebraic form.  The major discrepancy amongst the instructors in this case was when 

the instructors attempted to identify the cause of the problem with piecewise functions.  The 

secondary instructors and the university instructors did not give a reason as to why students had 

more difficulty evaluating piecewise functions than graphing; they simply stated that the students 

were wrong.  In contrast, the state college instructors commented that the students were not 

connecting the numerical answers in part (a) to the graph in part (b).  That observation led one 

instructor to conclude that the students in this study had a procedural understanding of piecewise 

functions, but not a conceptual understanding.  The same instructor stated that the disconnection 

between the algebraic manipulation and the resultant graph of the same function is a “huge 

problem” for her incoming calculus students. 

As stated in the literature review, teachers use diagnostic assessment instruments to look 

for “slips,” careless miscalculations, and “bugs,” persistent misconceptions that interfere with 

students’ demonstration of their abilities.  Ashlock (2010) classified computational-skill bugs 

into three basic categories: (1) student uses an inappropriate operation when attempting to solve 

a math problem; (2) student uses the correct operation but makes an error involving number 

facts; (3) student makes a non-number fact error in one or more steps of applying the strategy or 

selects an incorrect strategy.  Ketterlin-Geller and Yovanoff (2009) added that errors also involve 

misinterpreting and misapplying the language of mathematics.  The two errors revealed in this 
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component as areas of concern for the calculus instructors were students selecting an incorrect 

strategy, and misinterpreting or misapplying the language of mathematics. 

Component 3: Quotations 

 The intent of the third component was to have the calculus instructors clarify their 

expectations of their incoming students’ prior knowledge of functions by having them respond to 

two quotations from mathematics educators. In light of the activity the instructors did in 

Component 2, I chose one quotation that dealt with the use of research-based diagnostic 

instruments in the mathematics classroom, and the other question was selected with the intent of 

having the instructors restate their definitions of conceptual understanding and computational 

fluency when it comes to mathematics education, in general, and the teaching of calculus, 

specifically.   

Quotation 1: Resources to plan instruction. 

Questions 1 and 2 of this first quotation readdress the second research question, “How do 

secondary and postsecondary instructor assumptions of their students’ prior knowledge of 

functions impact instructional decision-making for their calculus course?” 

Quotation 1 was as follows: 

“In the absence of research-based curricular instruments, teachers tend to rely on their own 

opinions about what students need to learn as they plan instruction” (Carlson, Oehrtman, 

Engelke, 2010, p. 114). 

The quotation was followed by the following two questions: 

1. Do you agree or disagree with this statement?  

2. What specific resources do you use to plan instruction for your calculus class? 
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 In response to the whether the instructors agreed or disagreed with this quotation the 

reactions were quite varied.  The two university instructors and one state college instructor stated 

that they agreed with the quotation and provided little to no explanation as to their agreement.  

One secondary instructor stated that she disagreed with the quotation.  She stated that she does 

not believe calculus instructors like her that are “AP trained” use their own opinion in planning 

instruction.  She explained that she follows the guidelines of the “experts” and the 

recommendations set forth by the College Board in multiple AP resources. 

The other state college instructor, along with one of the secondary instructors agreed with 

one part of the quotation, but disagreed with other parts.  Interestingly, the parts that they agreed 

with were different parts.  The secondary instructor stated that the part she disagreed with was 

teachers using their own opinion.  Like the secondary instructor that disagreed with the 

quotation, the instructor stated that she relied on AP workshops and other AP calculus instructors 

as resources to plan instruction, not her own opinion.  In contrast, the state college instructor 

agreed that teachers use their own opinions about what students learn.  She further explained that 

this opinion is formed from years of experience in teaching calculus, conversations with other 

instructors, and workshops at professional conferences.  The part of the quotation that the state 

college instructor disagreed with was the part about research-based curricular instruments.  She 

stated that instructors don’t use research-based curricular instruments because there is an absence 

of quality, well-designed instruments available.  Echoing this sentiment, the state college 

instructor that agreed with the quotation commented, “Yeah, we don’t really have any other 

option.” 

The intent of the second question for the first quotation was to compare and contrast the 

resources instructors at the three types of educational institutions use to plan instruction. Ernest 
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(1989) stated that whether an instructor chooses to use or not use curricular materials in the 

teaching of mathematics reflects the teacher’s mental model of the learning of mathematics.  

Teachers typically follow into one of three patterns, (1) strict following of text or scheme; (2) 

modification of the textbook approach, enriched with additional problems and activities; (3) 

teacher or school construction of the mathematics curriculum.   The responses to this question fit 

nicely into these three patterns.  The secondary instructors recited a long list of AP resources that 

they use to plan instruction (see Table 13: Resources Used to Plan Instruction).  It appeared that 

the secondary instructors had a common goal of preparing the students taking Calculus to make a 

passing score on the nationally standardized calculus test prepared by the College Board.  The 

secondary instructors appeared to fit into the first pattern of strictly following the text or scheme 

provided by the national testing agency. 

This is in contrast to the postsecondary instructors.  Not one of the four postsecondary 

instructors mentioned the AP test or AP resources in response to this question.  All but one of the 

postsecondary instructors stated they used the textbook, accompanying teacher resources, and 

departmental guidelines for the course as resources to plan instruction.  Additional resources 

were mentioned by these three instructors to include conversations with colleagues, self-

developed activities, additional Calculus textbooks, online math tutorials, and information 

obtained at professional conferences.  The state college instructors and one of the two university 

instructors fit into the second pattern of modifying the textbook with older versions of Calculus 

textbooks and with additional problems and activities.   

One university instructor stated that he used the textbook only for quick reference and 

that he did not use any teacher resources that came with the textbook.  He stated that he used 

mainly online resources and his own understanding of Calculus to prepare instruction.  He 
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appeared to be the only instructor that fit the third pattern in which the teacher constructed the 

mathematics curriculum.    

Quotation 2: Balance between conceptual understanding and computational 

fluency. 

Unlike the first quotation, the main reason the second quotation was selected was to 

compare instructor responses in Component 1 to the same instructor’s responses in Component 

3.  Table 14: Written (Component 1) versus Oral (Component 3) Definitions in Chapter 4 

displays the two responses by the individual instructor to facilitate the comparison.  In order to 

further explicate the instructor’s understanding of conceptual understanding and computational 

fluency, additional questions were asked in reference to this second quotation.  Similarly to the 

first quotation, the instructors were asked if they agree or disagree with the quotation, and they 

were asked to state whether they prefer their incoming students to have conceptual understanding 

or computational fluency in the pre-calculus topics identified as common misconceptions.  A 

color chart was used to display the results of that question (see Table 15: Instructor Preference 

for Conceptual Understanding or Computational Fluency).  The intent of this question was to 

help answer the first and third research questions.  The first research question pertains to the 

teacher’s expectations of the incoming students’ prior knowledge of functions and the third 

question pertains to the students’ conceptual and procedural fluency of functions.   

By examining Table 14: Written (Component 1) versus Oral (Component 3) Definitions 

and comparing the written responses of the instructors’ understanding to the terms “conceptual 

understanding” and “computational fluency” it becomes evident that after the instructors 

analyzed student work they provided more detailed responses to their understanding of these 

terms.  Component 2 appears to have helped the instructors solidify their thoughts on the 
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meaning of these terms.  Even the instructors that initially stated that they were not familiar with 

the term “procedural fluency” before the activity were able to give a definition of the term after 

Component 2.  When comparing responses among the types of educational institutions, there is 

very little difference in the instructors’ understanding of the terms.  All instructors, regardless of 

the type of institution, stated their understanding of the terms conceptual understanding and 

procedural fluency were in alignment with the definition of the terms found in the review of 

literature as presented in Chapter 2. 

When asked if the instructors agreed or disagreed with this quotation, there was 

unanimous agreement with the part of the quotation concerning “a balance and connection 

between conceptual understanding and computational fluency.”  This agreement supports the 

conceptual framework of this study which supports an iterative perspective for the development 

of knowledge of concepts and procedures.  The only disagreements instructors had with this 

quotation was the use of the phrase “…computational methods that are over-practiced…”  Two 

instructors (one secondary and one university) pointed out that they believe their incoming 

students have not practiced computational methods enough prior to their course, and do not see 

“over-practiced” methods as a problem. 

The third question for this quotation asked the instructors to state if they would prefer 

their incoming students to have conceptual understanding or computational fluency with each of 

the pre-calculus topics identified as common misconceptions of functions (see Table 15: 

Instructor Preference for Conceptual Understanding or Computational Fluency).  Although the 

majority of instructors prefer conceptual understanding to computational fluency on most of the 

topics, there were some exceptions between and among instructors from the three types of 
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educational institutions.  For the secondary instructors, the preference for computational fluency 

was with discontinuous functions. One of the state college instructors was in agreement about 

her preference for computational fluency for identifying points of discontinuity but added a 

preference for computational fluency for identifying the domain and range of functions.  This is 

in contrast to the other state college instructor that did not prefer computational fluency over 

conceptual understanding for any of the pre-calculus topics.  Both state college instructors agreed 

that for graphing and identifying translated functions they preferred that their incoming students 

had both conceptual understanding and computational fluency.   

One of the university instructors preferred that her incoming students had both conceptual 

understanding and computational fluency for all the pre-calculus topics with the exception of 

graphing and evaluating piecewise functions.  For this topic, the instructor mentioned a 

preference for conceptual understanding over computational fluency.  The other university 

instructor preferred his incoming students have a conceptual understanding of the topics except 

for graphing and evaluating piecewise functions for which he preferred both. Like the state 

college instructor, this university instructor preferred that his students had computational fluency 

for identifying the domain and range of functions. 

Answering the Research Questions 

 The structure of Chapters 4 and 5 followed the structure of the study which was 

organized by components.  For the next section, I reorganized the discussion by research 

question.  The same information is being presented but in a manner that may be preferred by 

some readers.  While reading the next section, the reader may find it helpful to refer to Table 4: 
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Triangulation of Research Methods by Research Question and Component.  This table displays 

each research question and where, within the structure of the study, each question is answered.  

Research question 1. 

The first research question for this study was: 

1.  How are secondary calculus instructors’ assumptions of their students’ prior 

knowledge of the function concept different from that of the postsecondary calculus instructors’ 

assumptions? 

When examining the instructor’s responses to the Written Survey in Component 1 to their 

“think-aloud” activity in Component 2 and finally their responses to the Quotations in 

Component 3 we can see how secondary calculus instructors’ assumptions of their students’ 

prior knowledge of the function concept differ from that of the postsecondary calculus 

instructors.  The most striking contrast between secondary and postsecondary instructor 

expectations of their student prior knowledge of functions was displayed in Table 8: Instructor 

Expectations of Prior Knowledge of Functions.  Prior to analyzing actual student answers to 

specific questions, the secondary instructors were confident that their incoming students would 

do well on most aspects of the functions diagnostic instrument.  The only question in which the 

secondary instructors were either unsure or did not expect the students to answer correctly 

pertained to the graphing of piecewise functions.  Similarly the state college instructors and one 

of the university instructors were fairly confident in their incoming students’ ability with the 

additional concern for students being able to find the domain of a rational function and 

evaluating a piecewise function.   
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This is in contrast to one of the university instructors’ assumptions that half or fewer of 

his incoming students would be able to answer the questions correctly.  The only question that he 

expected his students to be able to answer correctly was the one pertaining to evaluating 

piecewise functions.  In addition, in Question 7 on the Written Survey when the instructors were 

asked if many of their incoming students needed review and/or clarification on these same pre-

calculus topics, this is the only instructor that replied that his students need review, clarification 

or both on all of the topics, but when asked in Question 8 where the students would receive this 

necessary review and/or clarification he was the only instructor to state that he did not provide 

this review/clarification, personally.  He stated that it was provided by his teaching assistants  

(see Table 7: Review/Clarification of Pre-calculus Topics).   

 In Component 2, during the “think-aloud” of student answers to the functions diagnostic 

instrument, there was a difference in themes by educational institutions but surprisingly the 

contrast was not with the secondary and university instructors, but rather with the state college 

instructors.  When comparing the instructor responses to Question 6 of the diagnostic instrument 

(see Table 12: Instructor Responses to Question 6) both the secondary and university instructors 

mentioned that students are better at evaluating a piecewise function than sketching the same 

function, but the two state college instructors went further to explain this observation.  They 

agreed that students don’t see the connection between graphical representation of the function in 

part (b) and the algebraic representation of the same function in part (a).  In Component 3, there 

did not appear to be stark contrasts, neither between nor among instructors at the three types of 

educational institutions for the first research question. 
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Research question 2. 

2.  How do secondary and postsecondary instructor assumptions of their students’ prior 

knowledge of functions impact instructional decision-making for their calculus course? 

This question was addressed specifically in the first and third components of the 

interview process.  Within the four questions of the Written Survey it is revealed that the course 

objectives of the secondary instructors teaching AP Calculus to high school students are quite 

different from the course objectives of the postsecondary instructors.  The secondary instructors 

are specifically “teaching to the test.”  Their objective is to prepare their students to take and pass 

a standardized test in order to receive college credit in high school.  There was no mention of a 

standardized end-of-course exam by the postsecondary instructors.  The other interesting 

difference in instructional decision-making that was revealed in this study is that secondary 

instructors rely mainly on materials generated by the testing company for their instructional 

decision-making.  None of the postsecondary instructors mentioned using resources from this 

company.   

Another interesting contrast between secondary and postsecondary instructors was that all 

of the postsecondary instructors mentioned collaborating with colleagues for the preparation of 

their course, while the secondary instructors did not seem to have colleagues in their institution 

with which to collaborate.  In the secondary educational institutions, AP Calculus is often the 

highest level mathematics course offered at the school and there is usually only one instructor at 

the school that teaches the course.  In contrast, at the postsecondary institutions, there are other 

higher level mathematics courses offered and there are often many other instructors at the same 
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institution teaching calculus with which the instructors can collaborate for instructional decision-

making.   

In Component 3, for the first Quotation, the instructors’ responses to the first and second 

questions again show the contrast between the secondary and postsecondary instructors’ 

instructional decision-making.  The secondary instructors disagree with the part of the quotation 

that stated “teachers tend to rely on their own opinions about what students need to learn…”  The 

secondary instructors emphasized the point that they rely on the materials provided by the testing 

company, not their own opinions, while the postsecondary instructors unanimously agreed with 

this part of the quotation.  This difference was again obvious when examining the responses to 

the second question to this quotation which asks the instructors to list the resources they use to 

plan instruction.  The secondary instructor’s list consisted mainly of resources provided by the 

testing company, while all but one of the postsecondary instructors listed the required textbook 

and teacher’s resources provided by the textbook company.   

Research question 3. 

3.  How do secondary and postsecondary instructors differ on their views toward 

students’ conceptual understanding of functions and procedural fluency of functions? 

The data in this study were triangulated from the three components of the interview as 

suggested by Guion (2012). When examining the instructors’ responses to the Written Survey in 

Component 1 to their “think-aloud” activity in Component 2 and finally their responses to the 

quotations in Component 3, it is not clear as to how secondary and postsecondary calculus 

instructors differ on their views toward students’ conceptual understanding of functions and 
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procedural fluency of functions.  It appears that the instructors of the three types of educational 

institutions are in agreement as to the views.  There are some slight differences in response to 

Question 10 in the first component in that the postsecondary instructors seemed less comfortable 

providing a definition for the term procedural fluency, initially, but when this question was 

readdressed in the third component, all of the instructors’ definitions for this term were within 

the definitions discussed in the literature review.   

In Component 2, themes were able to be identified for the questions pertaining to student 

misconceptions because similar statements were found by all instructors, regardless of 

educational institution.  The only exception to this was Question 6 and even then, the secondary 

and postsecondary (university) instructors’ responses were similar.  The difference in themes 

was not detected based upon the differences between secondary and postsecondary institutions. 

Naturalistic Generalizations/Implications 

When describing case study analysis and representation, Creswell (2007) states that as a 

final step, “the researcher develops naturalistic generalizations from analyzing the data, 

generalizations that people can learn from the case either for themselves or to apply to a 

population of cases” (p. 163).  This section is intended to take the data from Chapter 4 and 

develop these naturalistic generalizations that would be of benefit to teachers of calculus, pre-

calculus, and mathematics educators of secondary mathematics.  The generalizations from this 

study include communication about mathematics and the disconnection between the algebraic 

and graphic representations of functions. 
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Communication about mathematics 

When the calculus instructors in this study were asked to analyze student work, a theme 

of communication about mathematics emerged in both of the pre-calculus subconcepts of domain 

and range, and translation of functions.  Wood (1998) describes communication in the 

mathematics classroom as either having a univocal function, one voice transmitting information 

to students, or a dialogic function, interactive conversation intended to generate new meanings 

for the receiver.  When one instructor stated, “I think it is our fault as teachers by not making it 

clear” she is referring to the univocal function of the teacher and the need to be clear in how and 

what we say during this type of communication so as not to create confusion when explaining a 

new mathematical concept or procedure.  Even if the mathematics instructor is the most eloquent 

of speakers, the need for a more dialogic view of communication is advocated by the NCTM 

(1989, 2000) and more recently, the Common Core State Standards (2012).   

It is through this dialog that the instructor can informally assess the students’ 

comprehension of the material being transmitted and make sense of the information for them.   

As teachers, we need to convey to convey to our students the importance of communication and 

the language of mathematics.  It is through this mathematical language that students express their 

mathematical understanding.  Instructors need to know and be able to communicate clearly, and 

expect students to communicate clearly, so the transmission and reception of the mathematics is 

without ambiguity.   Pirie (1998) states, “All we can ever work from when trying to access the 

understanding being constructed by pupils is their language – of whatever form, verbal or 

symbolic” (p. 28). 
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As the emphasis on test-driven data to determine a teacher’s effectiveness in a classroom 

increases, the idea of language and communication in the mathematics classroom cannot get 

“lost in the shuffle.”  Communication and the use of proper mathematical language need to be 

emphasized, not overlooked, when assessment instruments are being developed.  Multiple-choice 

tests with numeric-only answers will hopefully be a thing of the past and not acceptable as a 

means of assessing a student’s mathematical understanding in the future.  Assessments should 

include written problems that require students to read and understand a mathematical problem, 

devise a plan to solve the problem, carryout the plan, and then examine the solution obtained to 

either justify or refute the solution.  This suggestion is not new, in fact the famous 

mathematician, George Polya, recommended this four-step approach to mathematics education 

almost 70 years ago.  Polya (1945) also stated, “One of the most important tasks of the teacher is 

to help his students.  This task is not quite easy; it demands time, practice, devotion, and sound 

principles” (p.1). 

Operational aspects precede structural aspects of functions 

I started this study with the hypothesis that the gap between students desiring to pursue a 

STEM career and students actually attaining a STEM degree was related to teacher expectations 

of student prior knowledge, and the communication of these expectations among the three 

institutions teaching the same course.  Throughout the study I found that both the secondary and 

postsecondary instructors have similar expectations of their students’ conceptual and procedural 

understanding of function with slightly more pessimistic expectations from secondary to state 

college to university.  Interestingly, all six instructors interviewed for this study agreed that 

students’ understanding of function requires a balance of both types of knowledge.  All of the 
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instructors also agreed that different representations of functions (algebraic, numeric, and 

graphic) offer a different view of the function and students need to see the connection between 

these different representations. 

Rather than procedural fluency and conceptual understanding, Sfard (1991) distinguishes 

between operational concepts concerning mathematical processes and structural concepts 

concerning mathematical objects.  He states that a function may operationally be seen as a 

computational process, and structurally thought of a set of ordered pairs.  “Sfard’s theory on this 

dual nature of mathematical conceptions plays a central role and is exemplified by the transition 

from a calculation view to an object view on function” (Doorman et al., p1245). This dual nature 

of the piecewise function appears difficult for students to comprehend and may help to explain 

the disconnect, described by the state college instructors, between the two parts of question 6 in 

this study.   

The students seemed to be fine with the operational concept of this particular function, 

thus being able to correctly answer part a, but were less comfortable with the structural concept 

when asked to sketch a graph of the same function.  In order to promote the understanding of the 

dual nature of functions, suggestions have been made to emphasize the coordinations of the 

dynamics of input-output dependency relationships (Oehrtman et al., 2008).  The idea of 

presenting the operational concept prior to the structural concept was suggested in this study by 

one of the state college instructors when she stated, “I would have them make an x-y chart before 

they sketched the graph.”  
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Importance of assessments, reviews, and clarifications 

A stark contrast between the secondary and postsecondary instructors interviewed in this 

study was their awareness of, and importance placed upon, diagnosing the incoming students on 

prerequisite concepts.  Three instructors (two secondary and one university) were very familiar 

with their students’ prior knowledge of functions while three instructors (two state college and 

one university) ranged from less familiar to not familiar at all.  The reasons the instructors gave 

that did not use a diagnostic assessment instrument during class were : (1) There was not enough 

time built into the course to administer and review/clarify misconceptions identified by analyzing 

the results of a diagnostic assessment and/or (2) The results would not have a significant impact 

on how the course was taught; therefore, they did not see a need to assess the students’ prior 

knowledge of functions prior to direct instruction.   

One has to consider the difference in the purposes of secondary education versus 

postsecondary education when making implications based upon these results.  Because AP 

Calculus is taught at the high school, it is assumed that the secondary instructors are still 

preparing their students for the rigors of postsecondary mathematics.  In contrast to the 

postsecondary instructors, that assume their incoming students have been properly prepared for 

the rigors of postsecondary education.  David Bressoud (2013) mentions these concerns and 

states that as secondary instructors teaching first semester calculus: 

1. We should ensure that students who take calculus in high school are prepared for the 

further study of mathematics.  

2. We should address the particular needs of those students who arrive in college with 

credit for calculus. 

3. We should recognize that the students who take first-semester calculus in college may 

need more support and be less likely to continue with further mathematics than those of a 

generation ago (Bressoud, 2013, para 3.) 
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“I don’t know, and I don’t want to know.” 

It is interesting to note that the same university instructor that stated he does not review 

and/or clarify pre-calculus concepts during his calculus class also does not expect his incoming 

students to do well on the functions diagnostic instrument.  In other words, this instructor does 

not expect the students to do well on the questions pertaining to misconceptions of functions and 

also does not review and/or clarify these pre-calculus concepts in class. When asked earlier 

where his students would receive their review and/or clarification if it is needed, his response 

was that his teaching assistants would provide that instruction.  This is also the only instructor 

that did not know where his students received their pre-calculus instruction prior to his course.  It 

appeared as if the instructor had accepted a position of “I don’t know, and I don’t want to know” 

when it came to his students’ prior knowledge.  When this finding was raised during the member 

check, a discussion ensued about students taking responsibility for their own education.  The 

university and state college instructors agreed that a difference in secondary and postsecondary 

education is the expectation at the postsecondary level that students are more accountable for 

finding additional assistance with review and/or clarification of prerequisite material, outside of 

class, than at the secondary level.  In the same article, Bressoud (2013) addresses university 

instructors of first semester Calculus by stating,  

But there still remain far too few university-level mathematicians who are willing to 

assist in the task of preparing and supporting high school teachers. At the very least, all 

mathematicians have a responsibility to be aware of the AP Calculus program: its course 

expectations and the nature of its examinations. Every department should encourage at 

least one individual to attend the annual AP Reading (the grading of the free response 

questions), to work with local AP Calculus teachers, or to help prepare and support those 

who will teach calculus in high school (Bressoud, 2013, para. 11) 
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Future research: Title, Textbook, and Syllabi  

During my analysis of the data from the first four questions in Component 1, I noticed 

some interesting observations about the course titles, textbooks and stark differences among the 

syllabi used by the calculus instructors at the three types of educational institutions.  Although 

these questions were asked with the intent of answering the research questions of this study, the 

data did not directly answer the questions posed, rather they suggested new research questions 

for possible future research studies.  I am including the discussion based upon these first four 

questions in this section of the chapter with the hope that the data can be used at a later time. 

As presented in the Rationale section of the Introduction chapter, there is a gap into 

which many students fall when transitioning from secondary mathematics to postsecondary 

mathematics.  However, Conley (2005) refers to a more general educational “gap” described by 

first year college students’ between their high school experiences and college instructors’ 

expectations of student behavior.  “College courses require students to be independent, self-

reliant learners who recognize when they are having problems and know how to seek help from 

professors, fellow students, or other sources” (Conley, 2007, p. 23).  The need for further 

research on this gap, as described by Conley, of successful student behavior was mentioned 

during the member check of this study.  All four postsecondary instructors commented on their 

concern for the lack of student preparation or maturity for college-level courses and 

recommended further research to be conducted in this area. 

Course title and textbook.  In both the secondary and postsecondary institutions the name 

of the course and the textbook used for the course appeared to be determined by persons other 

than the instructor of the course.  The flexibility the instructors had was the extent to which they 
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chose to use the required text and accompanying teacher resources.  All of the instructors, except 

for one of the university instructors, stated that they did use the textbook and accompanying 

resources.  The university instructor stated that he preferred to rely on his own familiarity with 

the topics being presented than the content by the textbook authors. The instructor mentioned 

that he would defer to the required textbook for names of theorems that had multiple names in 

various textbooks, so as not to confuse the students.  

Instructor syllabi.  Conley (2007) states:  

Research suggests that the syllabi in high school courses are different from those found in 

college courses. High school syllabi rarely undergo external review, as all college syllabi 

do.  The content of high school syllabi tends to be eclectic, with teachers selecting class 

content largely on the basis of their own interests and skills rather than on what students 

need to succeed in college. The format and structure may differ dramatically from teacher 

to teacher (p. 25). 

 

My findings supported the research Conley refers to in this statement.  There were stark 

contrasts between syllabi between the three types of educational institutions.  Because one 

secondary instructor did not write a syllabus, and three out of four pages of the other secondary 

instructor’s syllabus consisted of a reprint of the table of contents of the textbook, it appears as if 

the use of the syllabus itself is viewed differently at the three educational institutions.  Although 

what is meant by a “syllabus” varies greatly among individuals, Parkes and Harris (2002) 

presume that “every college professor realizes the necessity of preparing a syllabus for each 

course taught” (p. 55).  While attempting to define an agreed upon purpose for the syllabus by 

their review of over 200 syllabi, Parkes and Harris state the purpose of a syllabus is to set forth 

what is expected and to guide the behavior of the both the instructor and student.  The syllabi of 

the postsecondary instructors of this study seem to do just that.   
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While the one secondary instructor was the only instructor to specifically address her 

expectations of her students incoming students’ prior knowledge of functions, all of the 

postsecondary instructors used the majority of the syllabus to address student behavior.  All 

postsecondary instructors clearly defined their expectations for attendance, homework 

assignments, and cell phone usage during class.  A reason for these topics not to be mentioned in 

the syllabus of the secondary instructor may have to do with the type of educational institution.  

Most secondary institutions have institutional rules governing attendance, and cell phone usage 

during class and the instructor may not have seen a need to repeat those rules in her individual 

syllabus.  That is in contrast to most postsecondary institutions that do not enforce violations of 

the stated attendance and cell phone usage regulations and the instructors feel it is necessary to 

include these items in their syllabus in case a student attempts to challenge their final grade in 

the course.  Another major difference between the types of educational institutions, specifically 

the state college and university syllabi, were the detailed instructions explaining the requirements 

of students to utilize the university’s computer lab located in the Mathematics building on the 

university.  These sections were unique to the university because the other institutions did not 

have a dedicated mathematics computer laboratory.   

In addition to homework, attendance and cell phone usage, the individual instructors 

emphasized multiple expectations of student behavior necessary for success in their course.  

Recommendations such as reading the textbook daily; participating in class discussions; time 

devoted outside of class for study; and keeping all homework neatly organized.  Although there 

was some variance as to which student behaviors would lead to success in the courses, the 

inclusion of these items in the syllabus distinguishes the veteran teacher’s syllabus from a novice 

teacher’s syllabus. 
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Potential Limitations of the Study 

Limited geographical area. 

 One of the potential limitations of this study is the fact that the participants were from the 

same geographical area.  A multiple-case study methodology was chosen in this study to explore 

differences within and between cases, but if differences are found within and between secondary 

and postsecondary calculus instructors’ expectations, the differences could be associated with a 

local issue within the particular region the study was conducted.  Another potential limitation is 

the aspect of convenience sampling.  I solicited instructors to voluntarily participate in this study.  

The willingness of the instructors to take the time and effort to participate may be due to strong 

views toward the topic of the study.  The possibility of sampling instructors with strong views 

regarding either the transition from secondary to postsecondary or the instruction of calculus at 

the three institutions may skew the results.  For the purpose of this study I limited calculus 

instructors to brick-and-mortar educational institutions.  Today calculus is also being taught 

online.  How to best teach calculus virtually is a topic that should be included in later studies of 

this type. 

Use of a student diagnostic. 

 Although as the researcher I felt the functions diagnostic instrument helpful to compare 

and contrast instructor expectations of their incoming student expectations at the three 

educational institutions, an argument could be made that the use of such an instrument is another 

potential limitation of the study.  A specific diagnostic instrument was chosen for the purpose of 

this study in order to standardize the information being presented to the calculus instructors at 

the three institutions, but it is recognized that different purposes for educational assessment 
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require different levels and models of assessment as is pointed out by Snow (1989). Student 

diagnostic instruments may be useful for “macro adaptations” of instruction at the beginning of a 

course, but should be followed-up with “micro adaptations” as the course develops.  

Deep understanding, higher order skill, strategic flexibility, adaptive control, and 

achievement motivation are exhibited when students have to generate explanations, 

assemble skilled performances, and persist through learning problem solving and 

problem finding. Student weaknesses are exhibited in the degree and kind of help they 

need to do these things. Conventional tests are limited because they cannot assess these 

end states explicitly (Snow, 1989, p. 14). 
 

 Watson (2000) pointed out an interesting parallel (with parallel limitations) of a teacher 

assessing his/her students’ mathematical ability and a researcher attempting to determine a 

teacher’s intentions.  The teacher is attempting to understand what the student knows about a 

mathematical topic and make a judgment about the student’s ability through interpretation, into a 

description, using the assessment tool.  The researcher attempts to do something similar through 

the interviews. There is interplay of conjecture and reality about the links and themes and issues 

identified.  I believe Watson’s advice of keeping an open mind should be heeded by both 

mathematics teachers and mathematics education researchers, alike: 

A more realistic approach might be to accept that the best a teacher can do is to behave as 

if her interpretation  of students' responses gives her adequate but tentative, ephemeral 

information for teaching purposes, retaining an open mind and avoiding irrevocable 

decisions such as tracking, stereotyping and labeling (Watson, 2000, p. 88). 

 

Potential Contribution of the Study  

Surveys have shown that high school mathematics instructors and postsecondary 

mathematics instructors tend to have different views about the importance of particular 

knowledge and skills as prerequisites for success for continued study in college-level 

mathematics (ACT 2006, 2009).  Surveys are a good start, but to address the issues we face as 
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mathematics educators there needs to be more.  Other research studies have been done to 

compare high school and college faculty ratings of importance of specific content and pedagogy 

with respect to importance for success in college calculus (Artigue, et.al, 2007; Carlson, 1998; 

James, 1995; Stroumbakis, 2010).  These studies all contribute to identifying the issues facing 

students when making the transition from secondary to postsecondary mathematics, but these 

studies were only focused on the calculus course itself without examining their underlying 

instructor expectations of their students’ preparation prior to taking the calculus course. 

 Weinstein (2002) states that instructor expectations of their students’ academic 

preparation for a particular course have been shown to have an effect on student performance 

within that course.  This study focused on explicating the explicit and implicit expectations of 

calculus instructors.  The different views from veteran instructors about the importance of 

particular knowledge and skills as prerequisites for success were highlighted.  This qualitative 

study adds to the work begun by others by explicating instructor expectations for one specific 

pre-calculus topic, functions.  This study is a step, not a destination.  The work begun by this 

study could be extrapolated to many more areas of instructor expectations that need to be 

explicated, to include basic algebra, analytic geometry, trigonometry, series and sequences.   

Conclusion 

On the first page of the first volume of the fledging journal, The Arithmetic Teacher, 

William A. Brownell (1954) describes the mathematics classroom of 1900:  

Teachers relying pretty much upon what was in the textbook, showed pupils what to do 

and then relied upon abundant bodies of practice to produce mastery. Homework 

assignments were heavy, and many parents were called upon to revive, temporarily at 

least, skills that they had forgotten (p. 1). 
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Over a hundred years later, we need to ask ourselves how far we have come.  Some aspects of 

this study, unfortunately, illustrate that we have not sufficiently progressed in the way we teach 

mathematics.  Although the title of his article was “The Revolution of Arithmetic,” Brownell 

clarifies that the process of change is more evolutionary than revolutionary.  “Each modification 

has emerged from a given status and has led to the next modification. The steadying and 

stabilizing influence in this period of evolution has been what I have called the search for a 

functional curriculum” (p. 3).  At the time of the article, Brownell was advocating for a 

mathematics curriculum that emphasized not only training the mind to calculate the correct 

answer, “faculty,” but also understanding the meaning of the mathematics behind the answer, 

“function.”  He went on to state, “Both aims are essential to a functional curriculum in 

arithmetic, and both are attainable. Indeed, both are now being attained under the conditions of 

good instruction” (p. 5). 

The conceptual framework for this study is that there needs to be a balance between 

procedural fluency and conceptual understanding and this balance is attained if both are taught 

iteratively.  In this study, I was looking for evidence of instructors’ explicit and/or implicit 

verification or rejection of this theory and how their assumptions of their students’ prior 

knowledge, either procedural or conceptual, influenced how they taught calculus.  Contrary to 

the Rosenthal and Jacobson (1968) Pygmalion study mentioned in the literature review, the 

participants in my study were not manipulated by providing false information about their 

students.  Nor do I say secondary teachers have too low of expectations and postsecondary 

teachers have too high of expectations of their incoming calculus students.  For this study I chose 

to show calculus instructors at the three different types of educational institutions the results of a 
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class set of student answers to a functions diagnostic instrument and asked them to analyze the 

student work as if they had given their own students this assessment.  Through this process I was 

able to compare and contrast teacher assumptions of their students’ prior procedural and 

conceptual knowledge of functions. 

Findings from this study affirm the importance of iterating conceptual understanding and 

procedural fluency when teaching pre-calculus concepts.  This research complements other 

studies highlighting the benefits to student understanding when mathematical concepts are 

taught.  When there is no expectation of conceptual development, there is no impetus for the 

student to understand the concepts behind the procedures.  Mathematics could get reduced to a 

series of decontextualized steps to be memorized (Baroody, 2003; Ben-Hur, 2006; Heibert and 

Lefever, 1986; Herscovics, 1996; Skemp, 1976).  In this study, although differences of teacher 

expectations of their incoming students and methods for planning instruction varied between 

educational institutions, the calculus instructors were in agreement that a balanced approach to 

conceptual understanding and computational fluency was key to a students’ understanding of 

pre-calculus concepts.   

In Component 1, by examining the explicit instructors’ expectations it was revealed that 

there were differences between types of educational institutions on the instructors’ expectations 

of how well their incoming students would do on a diagnostic instrument of common 

misconceptions of functions.  The expectations of the instructors seemed to become more 

pessimistic from high school to state college and then finally to a university instructor that 

repeated the stated, “I am not too optimistic” many times when speaking of his incoming 

students’ prior knowledge of functions. 
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In Component 2, when the instructors used the “think-aloud” protocol to analyze student 

work, there were many similarities between instructors’ responses for two of the three 

misconceptions of functions.  The three themes all instructors agreed upon for domain and range 

of functions were (a) Students may have the idea of domain and range, but they don’t know how 

to communicate what they know; (b) Sometimes the questions we ask, as teachers, are 

ambiguous to the students; (c) Students put “all real numbers” when they don’t know the answer 

to a domain/range question. For translation of functions, the two themes were (a)  Students 

remember something, they just remember it wrong; and similar to a domain and range theme, (b)  

Students may have the idea of translation, but they don’t know how to communicate what they 

know. For piecewise functions, differences between institutions were noticed.  The secondary 

and university instructors agreed that (a) Students are better at evaluating a piecewise function 

than sketching a piecewise function; in contrast, the state college instructors went further and 

stated (b) Students don’t see the connection between the algebraic representation of the function 

and the graphical representation which is in keeping with the findings from other researchers 

discussed in the literature review.  

In Component 3, there were differences between educational institutions as to the 

resources instructors used to plan instruction.  The secondary instructors mainly used resources 

produced by the company that generates the national standardized exam used by many colleges  

for determining college credit for calculus, while the postsecondary instructors did not mention 

these resources, rather they relied upon their prior experience teaching the course, conversations 

with colleagues, online mathematics websites, professional conferences, and with the exception 

of one university instructor, the textbook and materials supplied by the textbook company.  Only 
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one instructor stated that he used his own knowledge of the subject matter in order to prepare 

lectures.  There were also similarities found as a result of the data recorded in Component 3.  The 

instructors were in agreement that there needs to be a balance of both conceptual understanding 

and computational (or procedural) fluency for student understanding of pre-calculus topics, 

which was the basis for conceptual framework of this study. 

This study provided a platform for instructors of calculus at three educational institutions 

to discuss their expectations concerning their incoming students.  It provided a common 

language for secondary and postsecondary instructors to engage in conversation about 

differences and commonalities as recommended by both the NCTM and MAA in their joint 

position statements (NCTM, 1986, 2012).  The themes that were revealed by this study can serve 

as a springboard for future studies.  By conducting further studies of this type, mathematics 

educators representing both the secondary and postsecondary educational institutions are 

provided the opportunity to join forces to accomplish the common goal of preparing the next 

generation to face the STEM challenges of their future. 
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Appendix A: Script for Instructor Interview 

Interview Questions for Calculus Instructor 

There are three components to this interview. 

The first component is a survey pertaining to you as a calculus instructor.  This component will 

not be recorded.  The second and third components will be audio recorded and transcribed at a 

later time.  All information provided during this interview will be kept confidential. 

For the second component I will be asking you some general questions pertaining to your 

students’ prior knowledge of functions.  Next I will ask you to analyze a diagnostic of functions 

found in a calculus textbook.  Then, I will ask you to assess actual student answers to specific 

questions from the diagnostic.   

For the third component, I am going to read you two quotations concerning students’ 

understanding of mathematics. Afterwards I will ask you questions pertaining to the quotations.   

Do you have any questions before we begin? 

First Component: Written Survey of Calculus Instructor 

(Hand survey to instructor) 

Second Component: Diagnostic of Functions 

 (Hand diagnostic to instructor) 

1.  I ask you to relook at this diagnostic and this time, please comment on which questions you 

anticipate your incoming students being able to answer correctly and which questions you 

anticipate your incoming students to not answer correctly. 

For example, you may say, “I expect that all of my students would be able to answer #1a 

correctly, but I think some will have trouble answer #1b because…” 

(Give instructor time to complete this task) 

2. I am going to show you actual calculus students’ answers when they took this diagnostic.  I 

would like you to respond to each of these students’ answers as if these students were your 

incoming calculus students and you had administered this diagnostic. 

Do you have any questions before we begin? 

a. These are five students’ answers to question #1e.  Please comment on the students work as if 

they were your students and you were attempting to assess their prior knowledge of functions. 
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For example, you may say, “I think the student wrote this answer because…” 

(Show answers to question #1e) 

 

b. These are five students’ answers to question #3a.  Please comment on the students 

work as if they were your students and you were attempting to assess their prior 

knowledge of functions. 

(Show answers to question #3a) 

 

c. These are five students’ answers to question #4c.  Please comment on the students 

work as if they were your students and you were attempting to assess their prior 

knowledge of functions. 

(Show answers to question #4c) 

 

d. These are five students’ answers to question #6.  Please comment on the students work 

as if they were your students and you were attempting to assess their prior knowledge of 

functions. 

(Show answers to question #6) 

That completes the second component of this interview. For the third component I am going to 

be asking you to give your opinion about some quotations regarding mathematics education. 

Third component: Quotations about Mathematics Education 

The first quotation is addressing research-based diagnostic instruments for mathematics: 

“In the absence of research-based curricular instruments, teachers tend to rely on their own 

opinions about what students need to learn as they plan instruction” (Carlson, Oehrtman, 

Engelke, 2010, p. 114). 

1. Do you agree or disagree with this statement?  

2. What specific resources do you use to plan instruction for your calculus class? 
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The second quotation is referring to mathematics education, in general: 

“Developing fluency requires a balance and connection between conceptual understanding 

and computational fluency. On the one hand computational methods that are over-practiced 

and are often forgotten or remembered incorrectly…On the other hand, understanding 

without fluency can inhibit the problem solving process” (NCTM, 2000, p. 35).   

1.  What do you interpret the author of this quotation to mean by the terms “conceptual 

understanding” and “computational fluency”? 

2.  This quotation refers to “computational methods.”  Can you give me specific 

“computational methods” from your past years of teaching calculus of pre-calculus concepts of 

functions that are “over-practiced” and often forgotten or remembered incorrectly? 

3.  Can you give me specific examples where a student’s understanding of a function 

concept “without fluency inhibited their problem solving process”? 

4. Overall, do you agree or disagree with this statement?  Why or why not? 

5. If you had to choose between computational fluency or conceptual understanding for 

your incoming calculus students, which would you choose for the following pre-calculus topics: 

State either “computational fluency” or “conceptual understanding” for each of the following: 

  a. Identifying the domain and range of functions 

  b. Graphing and evaluating piecewise functions 

c. Graphing and evaluating discontinuous functions such as step functions or 

rational functions 

  d. Identifying points of discontinuity in rational functions 

  e. Graphing and identifying functions that have been translated 

  f. Problem solving using function models 

Those are all the questions that I have for you.   

5. Is there any other information you would like to share concerning your students’ prior 

knowledge of functions? 

6. Is there any other information you would like to share concerning conceptual understanding 

versus computational fluency of mathematics? 
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Thank you for agreeing to participate in my study.  I will be conducting a member-check with all 

the participants once I have completed my analysis, probably toward the end of May.  I will be 

sending you an email and would appreciate it if you could attend and give me feedback as to how 

well I was able to incorporate your perspective into my study. 

Thank you, again, for your time and honesty. 
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Written Survey of Calculus Instructors 

Please answer the following questions in the spaces provided. 

1. Where are you currently employed and teaching calculus? 

2.  What is the title of your calculus course? 

 

3.  What is the title/publisher of the textbook you are using? 

 

4. Can you provide me a copy of the syllabus for your calculus course? Circle one. Yes or No  

(If yes, I will send you an email requesting this information after the interview.) 

 

5.  Do you use a diagnostic tool to assess your incoming calculus students’ prior knowledge of 

functions?  Circle one. Yes or No 

If No, please state why not and continue on to question #6. 

 

 If Yes, please answer the following questions: 

a. Where do you get the diagnostic tool? 

 

b. Do you know if the diagnostic is research-based?  Circle one. Yes or No 

c. Do the results of the diagnostic influence your instructional plans?  Circle one. Yes or No 

If Yes,  how? 

 

d.  Is it possible for me to get a copy of the diagnostic tool you use? Circle one. Yes or No 

(If yes, I will send you an email requesting this information after the interview.) 

Please continue on to next page. 
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6. Where do the majority of your students learn the pre-calculus concept of function prior to your 

class? 

 

 

7. Based on your experience from teaching calculus, which, if any, of the following pre-calculus 

topics do you feel that many of your students need clarification/review prior to starting your 

class? 

Please put one X on the appropriate box for each pre-calculus topic. 

 Many of my incoming students 

need… 

Pre-calculus Topic Review Clarific

ation 

 Both Neither 

a. Arithmetic computation used to evaluate a function      

at a single numerical value 

    

b. Subconcepts of function such as domain, range 

and correspondence 

    

c. Definition of function     

d. Graphing/evaluating piecewise functions     

e. Graphing/evaluating discontinuous functions such 

as step functions or rational functions 

    

f. Identifying points of discontinuity in rational 

functions 

    

g. Graphing/identifying  functions that have been 

translated 

    

h. Problem solving using function models     

   

8.  If you determine that your students need clarification or review of functions (excluding 

trigonometric, exponential and logarithmic) in order to be successful in your calculus class, how 

and/or where do students receive this service? 

 

Please continue on to next page. 
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9.  Approximately how much class time do you spend on functions (excluding trigonometric, 

exponential and logarithmic) in your calculus class?  For example, “I spend 5 class days on 

functions.”   

Please fill in the blanks to this statement: 

 “I spend _____________ (numerical answer) class _________________ (unit of measure, i.e. 

days, weeks, hours) of my calculus class on functions. 

10.   a) What is your understanding of the term “procedural fluency” as it relates to the pre-

calculus concept of functions? 

 

 

(b) What is your understating of the term “conceptual understanding” as it relates to the 

pre-calculus concept of functions? 

 

 

Please take a few minutes to look at the individual questions on the diagnostic 

test of functions found on the next page of this survey. Refer to that diagnostic to 

answer the next question. 

11.  On a scale of 1-10 with 1 being “completely inadequate” and 10 being “completely 

adequate” how would you rate the overall adequacy of this instrument in assessing your 

students’ prior knowledge of functions? 

 

 

 This completes the first component.  The next two components will be audio 

recorded.  

Do you have any questions? 
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APPENDIX C: 

STUDENT ANSWERS TO DIAGNOSTIC (COMPONENT 2) 
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Student #2
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Student #3
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Student #4 
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Student #7
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Student #9
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Student #14 
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Student #16 
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Student #17 
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Student #18 
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Student #20 
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Student #21 
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Student #24 
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Student #27 
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ANALYSIS OF MATHEMATICS ASSESSED ON DIAGNOSTIC 
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# Information given 

in problem 

Mathematics being assessed Understanding 

being assessed 

1. The graph of a 

function  

 

  

(a) f(-1) Evaluate a function at a point Procedural 

(b) f(2) Estimate a function at a point Procedural/ 

Conceptual 

(c) f(x) = 2 Determine a value for x, given f(x). Procedural/ 

Conceptual 

(d) f(x) = 0 Estimate more than one value for x, given 

f(x). 

Procedural/ 

Conceptual 

(e)  State the domain and range. Conceptual 

 

2.  
h

fhf )2()2( 
 Evaluate the difference quotient for 

3)( xxf   

Procedural/ 

Conceptual 

  Simplify the expression. Procedural 

 

3.(a) 
2

12
)(

2 




xx

x
xf  Find the domain of rational function with 

polynomial expressions 

Conceptual 

(b) 

1
)(

2

3




x

x
xg  

Find the domain of a rational function with 

a radical and polynomial expression 

Conceptual 

(c) 14)( 2  xxxh  Find the domain of a sum of radical and 

polynomial expressions 

Conceptual 

 

4.(a)   y = -f(x) Recognize/describe the negative reflects 

the function over the x-axis 

Conceptual 

(b) y=2f(x)-1 Recognize/describe the stretch and 

translation 

Conceptual 

(c) y= f(x-3) + 2 Recognize/describe the two translations Conceptual 
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# Information given in 

problem 

Mathematics being assessed Understanding 

being assessed 

5.(a) 3xy   Recognize/sketch a cubic function  Conceptual 

(b) 3)1(  xy  Recognize/sketch a translation Conceptual/ 

Procedural 

(c) 3)2( 3  xy  Recognize/sketch a combination of 

translations 

Conceptual/ 

Procedural 

(d) 24 xy   
Recognize/sketch a quadratic with 

translation/reflection 

Conceptual 

(e) xy   Recognize/sketch a radical function Conceptual 

(f) xy 2  Recognize/sketch a translation Conceptual/ 

Procedural 

(g) xy 2  Recognize/sketch an exponential function Conceptual 

(h) 11  xy  Recognize/sketch a negative exponent as a 

rational function 

Conceptual 

6.     









0,12

0,1
)(

2

ifxx

ifxx
xf  

(a) f(-2) and f(1)

 
Evaluate a piecewise function at two points Procedural 

(b)  Sketch the graph of a piecewise function Conceptual 

7.     12)( 2  xxxf  

         32)(  xxg  

(a) gf 

 
Compose one function with another function, 

square binomial, simplify expression 

Conceptual/ 

Procedural 

(b) fg 

 
Order of composition, simplify expression Procedural 

(c) ggg 

 
Compose a function with itself  Conceptual/ 

Procedural 
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